WO2011140671A1 - 一种利用全氧燃烧玻璃熔窑的烟气余热预热玻璃配合料的方法及装置 - Google Patents

一种利用全氧燃烧玻璃熔窑的烟气余热预热玻璃配合料的方法及装置 Download PDF

Info

Publication number
WO2011140671A1
WO2011140671A1 PCT/CN2010/000654 CN2010000654W WO2011140671A1 WO 2011140671 A1 WO2011140671 A1 WO 2011140671A1 CN 2010000654 W CN2010000654 W CN 2010000654W WO 2011140671 A1 WO2011140671 A1 WO 2011140671A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
preheating
flue
glass batch
glass
Prior art date
Application number
PCT/CN2010/000654
Other languages
English (en)
French (fr)
Inventor
赵恩录
张文玲
王志平
陈福
刘笑合
Original Assignee
秦皇岛玻璃工业研究设计院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 秦皇岛玻璃工业研究设计院 filed Critical 秦皇岛玻璃工业研究设计院
Priority to PCT/CN2010/000654 priority Critical patent/WO2011140671A1/zh
Publication of WO2011140671A1 publication Critical patent/WO2011140671A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/023Preheating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the invention relates to a method for preheating a glass batch material by using a high-temperature flue gas generated by an oxy-fired glass melting furnace and a special preheating device, which belongs to the field of high-temperature flue gas waste heat reuse in a melting furnace.
  • the oxy-combustion of a glass melting furnace converts a conventional air-fuel combustion system into an oxy-fuel combustion system to increase the fuel combustion efficiency, thereby reducing fuel consumption and increasing the melting rate of the furnace.
  • the structure of the all-oxygen melting furnace is similar to that of the unit kiln.
  • the oxidized refractory material is used for the chest wall and the large sill.
  • the oxy-fuel burners are staggered in the side wall of the upper structure of the molten pool, and the flue is distributed on the side of the kiln to burn across the surface of the molten glass. .
  • the products of combustion pass through the surface of the glass and exit the kiln at the other end, passing through the flue gas path and entering the heat recovery unit.
  • the oxy-combustion does not change direction, the combustion gas stays in the kiln for a long time, and the flame, kiln temperature and kiln pressure are stable, which is beneficial to the melting and clarification of the glass, and can reduce bubbles, ash bubbles and streaks in the glass body.
  • the temperature of flue gas directly discharged from the oxy-fired glass melting furnace is as high as 1200 ⁇ , so the potential for heat recovery of flue gas is huge, and efficient use of waste heat in glass production is an effective way to reduce energy consumption of glass.
  • Most of the domestic flue gas waste heat recovery uses a waste heat boiler to produce 0. 4 ⁇ 0. 8MPa of saturated steam, but due to seasonal, regional and production steam conditions, the recycling effect is not ideal, and the waste heat boiler or waste heat is utilized. Power generation has a large energy loss.
  • the patent application with the publication number CN101328005A discloses a preheating method and device for the oxy-combustion glass batch material, and proposes a form of heat exchange between the high-temperature flue gas and the batch material through radiation conduction, which has a certain recycling effect.
  • the preheating chamber of the preheating device is only a container with a sandwich, and the glass batch in the inner cavity of the container is preheated only by the flue gas rising in the interlayer, so that the preheating unevenness occurs;
  • the heat exchange time of the glass batch material from top to bottom and the bottom to top of the interlayer is short, and it is difficult to reach the preheating temperature of the batch material, so the waste heat utilization effect of the flue gas is not ideal, and the energy loss is large;
  • the mixed batch material is directly sent to the preheating device, and there may be problems such as flying, blocking material, adhesive material and uneven distribution of the ultrafine powder in the batch material, thereby causing high melting temperature and melting time of the glass batch material. Long, the generated soot will also contaminate the ingredients, so that the quality of the glass products is not guaranteed.
  • the object of the present invention is to provide a low energy loss and benefit.
  • the method of preheating the glass batch material with the anaerobic combustion glass furnace flue gas waste heat which is reasonable and does not affect the quality of the glass product, and also provides a special equipment for realizing the method.
  • a preheating device for a glass batch material comprising a hopper and a preheating chamber connected thereto, the hopper being a conical hopper, the preheating chamber being a rectangular parallelepiped, in a cone a conical hopper between the hopper and the rectangular preheating chamber;
  • a plurality of flues are arranged longitudinally in the inner cavity of the rectangular parallelepiped preheating chamber, and a plurality of sets of upper and lower multi-layer flaps for material passage are arranged side by side in a space between the plurality of flue ducts, and the flaps and the flue are mutually In the cross arrangement, there is a space between each flap and the side walls of the flue on both sides.
  • the above-mentioned flap is a rectangular plate-like structure, and its long center line is provided with a long shaft, the two wings are welded with the long shaft, and both ends of the long shaft are sleeved with the bearings on the opposite side walls of the preheating chamber.
  • a plurality of partition plates are arranged from top to bottom, and one end of the baffle is fixed on the inner wall of the flue, and the other end is spaced apart from the side wall of the flue to form a gap, and the gap between the adjacent two partitions The opposite direction.
  • the above-mentioned flue is 3-6, and the outer walls of the outer flutes of the outermost layer are respectively fixedly connected with the inner side walls of the longitudinal direction of the preheating chamber; the two ends of the intermediate flue are respectively opposite to the inner walls of the front and rear ends of the preheating chamber. Secured.
  • the lower end of the preheating chamber is provided with a flue gas inlet, and one side of the flue gas inlet pipe is provided with a plurality of flue gas pipes, each flue gas pipe is connected with a corresponding lower flue; the upper end of the preheating chamber is provided with a flue gas outlet
  • the exhaust pipe of the flue gas outlet pipe is provided with a plurality of flue gas pipes, and each flue gas pipe is connected with a corresponding upper flue pipe, and the flue gas inlet of each flue pipe and the flue gas outlet are independently connected.
  • the above-mentioned conical distributor is provided with a plurality of trapezoidal fabrics distributed evenly in the conical distributor; the oblique sides of the front and rear ends of the fabric are respectively before and after the conical distributor
  • the two inclined walls of the end are fixed; the bottom edge of the fabric board is welded and fixed to one side of the longitudinal end of the flue tip corresponding thereto, and the other side of the longitudinal direction of the top end of the flue is vertically connected to the upper side.
  • the surface of the cloth board is a radial rib; the material is a wear-resistant steel plate.
  • the tapered hopper, the conical hopper and the side wall of the preheating chamber are both made of double-layer steel sheets, and an insulating layer is provided between the double-layer steel sheets.
  • the present invention also provides a method for preheating a glass batch of a oxy-fired glass furnace flue gas waste heat, the preheating method utilizing the above-mentioned preheating device, including discharging with an oxy-fired glass melting furnace High-temperature flue gas, preheating process for glass batch materials prepared by mixing various raw materials; the specific steps are as follows:
  • the glass batch material is granulated before entering the preheating process, and the granularity of the granulated material is 5 ⁇ 30 mm;
  • step 2) diluting the high-temperature flue gas of the oxy-fired glass melting furnace with air, and cooling the high-temperature flue gas to below 900 ° C; 3) after the granulated material of step 1) is dehydrated and dried, it is sent to the conical hopper of the preheating device; at the same time, the high temperature flue gas cooled in step 2) is sent to the preheating through the flue gas inlet.
  • the high-temperature flue gas passes through the preheating device, the heat is conducted to the inner granulated material by radiation, and the granulated material is indirectly preheated, and the preheating temperature of the glass batch material reaches 400° C. or higher. After that, it is sent to the next process.
  • the beneficial effects of the present invention are as follows: 1) Through the multi-layer flap type preheating method, the heat exchange time of the flue gas and the glass batch material can be increased, and the waste heat of the flue gas can be fully utilized to make the batch material higher.
  • the preheating temperature increases the thermal efficiency; the vertical structure allows space to be exchanged for time, and avoids occupying the horizontal space in the glass factory, making the technology easier to implement.
  • the glass batch material is granulated before preheating. The granulated batch material can shorten the glass melting time, effectively improve the melting degree, reduce the melting temperature and fuel consumption, and further the granulated batch material is on the upper layer.
  • the problem of ultrafine powder flying and unevenness caused by material delamination is avoided; thereby achieving the purpose of saving energy, reducing glass production cost and reducing soot emission.
  • the dehydration and drying are carried out first, thereby avoiding the problems of blocking materials and sticking materials during the transportation and preheating process of the batch material.
  • the glass batch material gradually descends from the upper preheating chamber to the lower preheating chamber by its own gravity, and the flue gas relies on its own pumping force to pass the lower preheating chamber to the upper layer.
  • the hot chamber gradually : up, no need to add power to reduce power consumption.
  • the indirect preheating method is adopted, and the flue gas is transmitted to the flue side wall by convection, and the flue side wall is transmitted to the batch material by conduction. Thereby avoiding the problem of soot contamination of the batch material.
  • FIG. 1 is a schematic cross-sectional view of a preheating device dedicated to the present invention
  • Figure 2 is a schematic view of the structure of Figure 1A-A
  • Figure 3 is a schematic view of the structure of Figure 1B-B
  • Figure 4 is a schematic view of the structure of Figure 1C-C
  • the present invention is a method for preheating a glass batch material using a high temperature flue gas of an oxy-fired glass melting furnace and a dedicated preheating device. among them:
  • the method for preheating the glass batch material comprises the steps of preheating the glass batch material prepared by mixing a plurality of raw materials by using the high temperature flue gas discharged from the oxy-fired glass melting furnace; the specific steps are as follows:
  • the glass batch material is granulated before entering the preheating process, and the granularity of the granulated material is 5 ⁇ 30;
  • step 1) The granulated material of step 1) is dehydrated and dried, and then sent to a dedicated preheating device; at the same time, the high temperature flue gas cooled in step 2) is sent to the dedicated preheating device through the flue gas inlet; High temperature flue gas passes through the preheating In the device, the heat is transferred to the granulated material by radiation, and the granulated material is indirectly preheated. After the preheating temperature of the glass batch material reaches 400 ° C or higher, it is sent to the next process.
  • the high-temperature flue gas of the oxy-fired glass melting furnace is 1200 ° C, and is cooled to 90 (after TC or less), and then sent to the internal independent flue through the flue gas inlet of the special preheating device.
  • Each layer of flaps and adjacent flue side walls form a material preheating space, and the multi-layer turning
  • the plate and the plurality of flues constitute a plurality of material preheating spaces; after the granulated glass batch material is dehydrated and dried at a temperature higher than 120 ° C, the hopper is sent to the hopper at the top of the preheating device by a conveying device
  • the cone-shaped distributor connected to the lower side of the hopper disperses the incoming glass batch material into the material preheating space formed by the upper flap, and the granulated material is indirectly contacted with the high-temperature flue gas passing through the flue.
  • preheating 15 after 30 minutes the flap where the granulation material is located Turn 90°, unload to the next layer of flaps, and indirectly contact the flue gas passing through the flue to preheat; after preheating for 15 minutes, the granulated material is turned down again; and so on, the granulated material passes through multiple layers.
  • the flaps are preheated layer by layer, and the layers are turned down layer by layer.
  • the residence time of each flap is 15 30 minutes.
  • the preheating temperature of the pellets is above 400 °C; In a silo, sent to the next process;
  • the preheating device is formed by a conical hopper 7, a conical hopper 6 and a rectangular parallelepiped preheating chamber 10, and the outer side wall integrally formed by the preheating device is welded by a double-layer steel plate. It is made of insulation layer between the double-layer steel plates, and the insulation layer can be made of aluminum silicate fiber felt or glass wool.
  • the preheating chamber 10 is a rectangular parallelepiped, and a plurality of flue ducts 4 are arranged longitudinally spaced apart in the inner cavity, and the space between the plurality of flue ducts 4 in the preheating chamber is laterally juxtaposed with upper and lower layers for material passage.
  • the plate 3, the flap 3 and the flue are arranged at the intersection of each other, and each flap 3 and the side walls of the flue 4 on both sides thereof constitute a material preheating space, and the plurality of flaps and the plurality of flues constitute a plurality of materials.
  • the hot space; each flap 3 is the bottom plate of the material preheating space, and the two wings 32 (see Fig. 2) of the flap 3 and the flue side walls on both sides thereof are separated by a distance of 10 20 cm.
  • the flap 3 has a rectangular plate-like structure; the long center line is provided with a long shaft 31, the two wings 32 are wear-resistant steel plates and welded with the long shaft 31, and the long shaft 31 can be turned 90 degrees, the long axis
  • the two ends of the 31 are sleeved and mounted on the bearing 33 on the opposite side walls of the preheating chamber 10, and the flap 3 is fixed on the side wall of the preheating chamber 10; the flipping operation of the flap 3 is mechanically controlled.
  • the flap 3 is provided with a plurality of layers on the upper and lower sides, and each layer is provided in plurality, and each layer of the flaps 3 is disposed in a space between the two flues 4, so that the number of the flaps 3 is set less than the number set by the flue 4, If each layer of flaps 3 is set to 25, then a plurality of flues are provided with 36, and the flaps 3 are arranged in parallel from top to bottom to be 37 layers, and the length of each layer of flaps is equal to that of the preheating chamber 10.
  • the flue 4 is a rectangular box welded by a steel plate, and is divided into a top plate, a bottom plate and four side walls; the length of the flue 4 (the distance from the top plate to the bottom plate) is the same as the height of the preheating chamber 10;
  • the outer wall of the flue 4 is fixedly connected to the longitudinal inner wall of the preheating chamber 10, and the front and rear walls of the intermediate flue 4 are respectively fixed to the inner walls of the front and rear ends of the preheating chamber 10.
  • a plurality of partition plates 8 are provided in the inner cavity of the flue 4 from top to bottom.
  • the partition plate 8 is a rectangular heat-resistant steel plate having a width which is the same as the cross-sectional width of the flue 4 and a short length.
  • the length of the cross section of the flue 4; one end of the adjacent two partitions 8 are respectively welded on opposite sides of the flue in the opposite direction; the other end of the partition 8 is suspended and corresponding to the flue
  • the side wall forms a notch through which the flue 4 separated by the plurality of partitions 8 communicates with each other.
  • the flue gas inlet 1 at the lower end of the preheating chamber is welded on the outer side of the preheating chamber 10, and the side of the flue gas inlet 1 is provided with a plurality of flue gas pipes, 'each flue gas pipe and a corresponding flue pipe 4
  • the lower part is connected;
  • the flue gas outlet 5 located at the upper end of the preheating chamber is welded on the outer side of the other side wall of the preheater, and a plurality of flue gas ducts are arranged on one side of the flue gas outlet 5, and each flue gas duct corresponds to
  • the upper part of one flue 4 is connected; the flue gas inlet 1 of each flue is connected to the flue gas outlet 5 independently.
  • the high-temperature flue gas enters from the flue gas inlet 1 and enters a flue through the flue gas duct.
  • the gap along the inner partition 8 rises from bottom to top, and finally exits from the flue gas outlet 5 to form a flue gas passage;
  • the setting allows the flue gas to run longer in the flue.
  • a conical hopper 7 is used to introduce the batch material, and a lower outlet is connected to the conical hopper 6.
  • the conical hopper 6 is radially distributed with a plurality of fabric plates 11 made of wear-resistant steel plates.
  • the fabric plate 11 has a trapezoidal shape, a narrow upper and a lower width, and a radial rib on the surface; a length of the lower edge of the fabric plate 11 and the flue 4
  • the top plate has the same length, the upper edge is located below the conical hopper 7, and the slope of the two sides of the fabric board 11 is the same as the slope of the front and rear walls of the conical hopper 6 which is in contact therewith, and is fixed by the splicing in the conical shape.
  • the other side of the longitudinal direction of the flue top plate is vertically welded with a baffle plate 9 which is in contact with the inclined surface of the cloth sheet 6.
  • the preheating of the glass batch is carried out using the above apparatus of the present invention, and the working process is as follows:
  • the glass batch to be preheated is composed of sandstone, feldspar, limestone, dolomite, soda ash, thenardite and carbon powder. After adding water glass binder, it is evenly mixed by the mixer, and then transported to a pelletizing disk for granulation.
  • the ball, the granulated material has a particle size ranging from 5 to 30 awake, and after dehydration drying to 120 ° C, it is transported by a belt conveyor to the conical hopper 7 of the special preheating device of the present invention;
  • the oxy-combustion glass furnace flue gas is cooled by air to a temperature of 900 ° C or less by the rapid cooling air system, and the flue gas inlet 1 of the preheating device enters the flue, and the notch of the lower baffle 8 is supported by its own pumping force.
  • the gap at the opposite end of each partition is rolled up layer by layer, and the high temperature smoke passes the convection method to heat Passed to the side wall of the flue 4, the side wall of the flue is then heated
  • the radiation mode is transmitted to the glass batch material in the preheating space of the material outside the flue 4, and the flue gas is discharged from the flue gas outlet 5 to the preheating device after preheating; while the flue gas moves, the granulated glass batch material is fed by the hopper 7 Dispersing it in the preheating space of each material through the conical hopper 6, first falling into the uppermost flap 3 in the preheating space of each material, the glass batch receiving the heat transferred by the flue 4, preheating 15 ⁇ After 30 minutes, by controlling the rotation of the flap shaft 31, the flap 3 is turned down by 90°, and the glass batch material is discharged to the next layer of the flap to continue preheating; after the next layer of the sheet is prehe
  • the flipping operation of the flap can be automatically controlled by the mechanical arm through a set time circuit program; and so on, the glass batch material stays on each flap 3 for 15 to 30 minutes;
  • the plate is provided with 3 to 7 layers. After 3 to 7 layers of heat exchange, the glass batch material is brought to the preheating temperature requirement of 400 ° C or higher, and then the lowermost layer is turned into a silo and sent to the lower Process.
  • the amount of flue gas of 10484Nm :i is generated every hour, and the flue gas temperature is 1200 °C.
  • the flue gas is first diluted to 15000 Nm :i , the temperature is 900 ° C, and then sent to 0% ⁇
  • the glass mixture to be preheated by the sandstone 58%, feldspar 6%, limestone 0. 7%, dolomite 15%, soda ash 18%, Glauber's salt 2. 2% and toner 0. 1% mixed After that, it is granulated in a pelletizing plate and granulated into 5mn!
  • the granules in the range of ⁇ 30mm are put into the hopper, and then dispersed into the preheating chamber of the set preheating chamber by the cone conveyor to five multi-layer flaps arranged from above and below and the flue on both sides of the multi-layer flap
  • the high temperature flue gas conducts heat to the granulated material dispersed to the uppermost flap through the flue, and indirectly preheats the granulated material, and the delamination on each layer stays 15 ⁇ 30 Minutes, then turn to the next layer; after 1 ⁇ 2h preheating, the batch can be preheated to above 400 °C. It is equivalent to 1728000 kcal/h of flue gas residual heat per hour.
  • the heat consumption of the glass melting furnace can be reduced by about 10%.
  • the invention utilizes the method for preheating the glass batch material of the high-temperature flue gas of the oxy-fired glass melting furnace and the special preheating device, the material stays through the multi-layer flap, the high-temperature flue gas rises and rises in the flue, and the flue gas and the glass are increased.
  • the heat exchange time of the batch material can make full use of the residual heat of the flue gas to make the batch material reach a higher preheating temperature, thereby improving the thermal efficiency and being suitable for industrial application. .

Description

一种利用全氧燃烧玻璃熔窑的烟气余热预热玻璃
配合料的方法及装置 技术领域
本发明涉及一种利用全氧燃烧玻璃熔窑产生的高温烟气预热玻璃配合料的方法及 专用的预热装置, 属玻璃生产过程中熔窑高温烟气余热再利用领域。
背景技术
在玻璃熔窑的各项热损失中, 烟气余热量所占比例最大, 其带走的热量约占熔窑 总能耗的 30%左右。 因此, 如何提高熔窑排烟余热的回收利用, 一直是业界研究的热 门课题。
玻璃熔窑的全氧燃烧就是将传统的空气-燃料燃烧系统改为氧气-燃料燃烧系统, 以提高燃料的燃烧效率, 从而降低燃料消耗量和提高熔窑的熔化率。 全氧熔窑结构类 似于单元窑, 胸墙和大碹采用电熔耐火材料, 全氧燃烧器位于熔池上部结构的侧墙中 交错排列, 窑炉侧面分布烟道, 以便横跨玻璃液表面燃烧。 燃烧产物通过玻璃液面, 在另一端离开窑炉, 通过废气烟道, 进入热回收装置。 全氧燃烧不换向, 燃烧气体在 窑内停留时间长, 火焰、 窑温和窑压稳定, 有利于玻璃的熔化、 澄清, 能减少玻璃体 内的气泡、 灰泡及条纹。
全氧燃烧玻璃熔窑直接排出的烟气温度高达 1200Ό, 因此烟气热量回收的潜力巨 大, 高效利用玻璃生产中的余热成为降低玻璃能耗的有效途径。 国内烟气余热回收大 部分采用余热锅炉, 生产 0. 4〜0. 8MPa的饱和蒸汽, 但是由于季节、 地域和生产用汽 情况的不同, 回收利用的效果很不理想, 并且利用余热锅炉或余热发电都有较大的能 量损耗。
公开号为 CN101328005A 的专利申请公开了一种全氧燃烧玻璃配合料的预热方法 及装置, 提出了一种利用高温烟气与配合料之间通过辐射传导的形式换热, 具有一定 的回收效果; 但该预热装置的预热室仅为带有夹层的容器, 仅靠烟气在夹层中直升对 处于容器内腔的玻璃配合料进行预热, 致使产生预热不均; 同时, 该预热装置中玻璃 配合料由上至下与夹层中由下至上的烟气换热时间短,很难达到该配合料的预热温度, 因而烟气余热利用效果不理想, 能量损耗大; 另外, 将混合后的配合料直接送入预热 装置, 会出现配合料中超细粉的飞扬、 堵料、 粘料和料层分布不均等问题, 因而导致 玻璃配合料的熔化温度高, 熔化时间长, 产生的烟尘还会污染配合料, 致使玻璃产品 的质量得不到保证。
发明内容
为了解决上述现有技术中存在的缺陷, 本发明的目的是提供一种能量损耗低、 利 用合理、 不会对玻璃产品的质量产生影响的全氧燃烧玻璃熔窑烟气余热预热玻璃配合 料的方法, 同时还提供了实现该方法的专用设备。
为了实现上述目的, 本发明采用如下技术方案: 一种玻璃配合料的预热装置, 包 括料斗和与其连接的预热室, 所述料斗为锥形料斗, 所述预热室为长方体, 在锥形料 斗与长方体预热室之间还设有一锥形布料器; 其中,
长方体预热室的内腔中纵向间隔排布多条烟道, 且多条烟道之间的空间中横向并 列设有供物料通过的若干组上下多层翻板, 翻板和烟道互为交叉设置, 每一翻板和其 两侧的烟道侧壁之间分别留有一间距。
上述的翻板为长方形板状结构,其长向的中心线设置有一长轴,两翼与长轴焊接, 长轴的两端与所述预热室两相对侧壁上的轴承套接。
翻板上下平行设置多层, 上、 下层翻板之间间距为 400- 700誦; 每层翻板设置的数 量比烟道设置的数量少 1。
上述的烟道内腔中由上至下间隔设有多个隔板, 隔板一端固定在烟道内腔壁上, 另一端与烟道侧壁有间距而形成缺口, 且相邻两隔板的缺口方向相反。
上述的烟道为 3-6条, 位于最外层的两条烟道外壁分别与该预热室纵向的内侧壁 固定连接; 中间烟道的两端分别与预热室前、 后两端的内壁固接。
上述的预热室下端设烟气进口, 烟气进口管的一侧设有多条烟气分管, 每条烟气 分管与相对应的一条烟道下部连通; 预热室的上端设烟气出口, 烟气出口管的一 11』设 有多条烟气分管, 每条烟气分管与相对应的一条烟道上部连通, 每条烟道的烟气进口 与烟气出口均为独立连通。
上述的锥形布料器内设有多块呈梯形状的布料板, 均匀分布于该锥形布料器中; 该布料板的前、 后两端的斜边分别与所述锥形布料器前、 后端的两斜壁固接; 布料板 的底边和与其相对应的所述烟道顶端纵向的一侧边焊接固定, 在所述烟道顶端纵向的 另一侧边向上垂直悍接有一与所述布料板斜面相接的挡料板。
上述布料板的表面为放射状的凸棱; 其材质为耐磨钢板。
上述的锥形料斗、 锥形布料器与预热室的侧壁均为双层钢板构成, 在双层钢板之 间设有保温层。
为了实现上述目的, 本发明还提供了一种全氧燃烧玻璃熔窑烟气余热预热玻璃配 合料的方法, 该预热方法利用上述的预热装置, 包括用全氧燃烧玻璃熔窑排出的高温 烟气, 对由多种原料混 配制的玻璃配合料实施的预热工序; 具体步骤如下:
1 ) 玻璃配合料在进入预热工序前, 先进行粒化, 粒化料的颗粒度为 5〜30mm;
2 )将全氧燃烧玻璃熔窑的高温烟气用空气稀释,将该高温烟气冷却至 900°C以下; 3 ) 将步骤 1 ) 的粒化料经脱水、 干燥后, 送入上述预热装置的锥形料斗; 同时, 将步骤 2 ) 冷却后的高温烟气通过烟气入口输送至所述的预热装置中; 所述的高温烟 气通过该预热装置时, 以辐射方式向内装的粒化料传导热量, 对所述粒化料实施间接 预热, 玻璃配合料预热温度达到 400°C以上后, 送入下道工序。
由于采用了上述技术方案,本发明的有益效果如下: 1 )通过多层翻板式预热方式, 可增加烟气与玻璃配合料的热交换时间, 充分利用烟气余热, 使配合料达到较高的预 热温度, 从而提高热效率; 采用立式结构可以实现以空间换时间, 并且避免了占用玻 璃厂内水平空间,使该项技术更容易实现。 2 )玻璃配合料在预热前,先进行粒化处理, 粒化的配合料可缩短玻璃熔化时间, 有效提高熔化 度, 降低熔化温度和燃料消耗, 此外粒化的配合料在由上一层翻板到下一层翻板输送过程中避免了超细粉的飞扬及料 分层造成的不均匀等问题; 从而达到节约能量、 降低玻璃生产成本和减少烟尘排放量 的目的。 3 )玻璃配合料粒化后先进行脱水干燥, 避免了配合料在输送及预热过程中堵 料、 粘料等问题。 4 )在多层立式翻板预热室中, 玻璃配合料依靠自身的重力由上层预 热室到下层预热室逐渐向下, 烟气依靠自身的抽力由下层预热室到上层预热室逐渐 :向 上, 不需要再加动力输送, 从而减少动力消耗。 5 )在内设有多层立式翻板的预热室中, 采用间接预热的方式, 烟气通过对流方式传给烟道侧壁, 烟道侧壁再以传导方式传给 配合料, 从而避免了烟尘污染配合料的问题。
附图说明
图 1为本发明专用的预热装置剖面示意图
图 2为图 1A- A向结构示意图
图 3为图 1B-B向结构示意图
图 4为图 1C- C向结构示意图
具体实施方式
本发明为利用全氧燃烧玻璃熔窑的高温烟气预热玻璃配合料的方法以及专用的预 热装置。 其中:
预热玻璃配合料的方法, 包括用全氧燃烧玻璃熔窑排出的高温烟气, 对由多种原 料混合配制的玻璃配合料实施预热的工序; 具体步骤如下:
1 ) 玻璃配合料在进入预热工序前, 先进行粒化, 粒化料的颗粒度为 5〜30讓;
2 )全氧燃烧玻璃熔窑的高温烟气进入该预热工序前,还包括进行空气稀释的步骤, 将该高温烟气冷却至 900°C以下;
3 ) 步骤 1 ) 的粒化料经脱水、 干燥后, 送入专用的预热装置; 同时, 将步骤 2 ) 冷却后的高温烟气通过烟气入口输送至专用的预热装置中; 所述高温烟气通过该预热 装置时, 以辐射方式向所述粒化料传导热量, 对所述粒化料实施间接预热, 玻璃配合 料预热温度达到 400°C以上后, 送入下道工序。
全氧燃烧玻璃熔窑的高温烟气为 1200°C, 经空气稀释冷却至 90(TC以下后, 通过 专用的预热装置的烟气进口输送至内设的多条各自独立的烟道,烟道设有 3 6个, 各 烟道在预热装置内垂直排布;各烟道单独引入烟道进口的高温烟气由下至上迂回上升, 再由烟气出口排出; 多条烟道间隔设置,相邻 2条烟道之间设有上下多层翻板,多层翻 板设有 3 7层,每层翻板和其相邻的烟道侧壁构成一个物料预热空间, 多层翻板与多 条烟道构成多个物料预热空间; 经过上述粒化的玻璃配合料在高于 120°C的温度下脱 水、 干燥后, 由传送装置将其送入该预热装置顶端的料斗中, 经与该料斗下方相接的 锥形布料器将进入的玻璃配合料分散送入由上层翻板构成的物料预热空间内, 粒化料 与烟道内通过的高温烟气间接接触预热; 预热 15 30分钟后, 粒化料所在的翻板下翻 90° , 卸至下一层翻板上, 再次与烟道内通过的烟气间接接触预热; 预热 15 30分钟 后, 粒化料再次下翻; 以此类推, 粒化料经多层翻板逐层预热、 逐层下翻, 每块翻板 上的滞留时间均为 15 30分钟, 至最下层的翻板时, 粒化料的预热温度达到 400°C以 上; 然后卸至一料仓中, 送至下道工序;
实现上述玻璃配合料的预热方法专用的预热装置, 通过附图对该预热装置作进一 步的详细说明:
如图 1、 图 3、 图 4所示, 该预热装置由锥形料斗 7、 锥形布料器 6与长方体预热 室 10—体成型,预热装置一体成型的外侧壁由双层钢板焊接而成,在双层钢板之间设 有保温层, 保温层可以用硅酸铝纤维毡或玻璃棉。
其中, 预热室 10为长方体, 其内腔中纵向间隔排布多条烟道 4, 而预热室内腔多 条烟道 4之间的空间中横向并列装有供物料通过的上下多层翻板 3, 翻板 3和烟道互 为交叉设置, 每一翻板 3和其两侧的烟道 4侧壁构成一个物料预热空间, 多个翻板与 多条烟道构成多个物料预热空间; 每一翻板 3均为该物料预热空间的底板, 该翻板 3 的两翼 32 (参见图 2)和其两侧的烟道侧壁之间分别留有 10 20cm的间隔距离。
如图 2所示: 翻板 3为长方形板状结构; 其长向的中心线设置有一长轴 31, 两翼 32为耐磨钢板且与长轴 31焊接, 长轴 31可以 90度翻转, 长轴 31的两端套接安装在 预热室 10两相对侧壁上的轴承 33上,将翻板 3固定在预热室 10侧壁上; 翻板 3翻转 操作由机械控制。 翻板 3上下设置多层, 每层设多个, 每层翻板 3设置在两个烟道 4 之间的空间内, 因此翻板 3设置的数量比烟道 4设置的数量少 1个, 如每层翻板 3设 置为 2 5个, 则多条烟道设置有 3 6条, 翻板 3由上至下平行设置为 3 7层, 各层 翻板的长度均与预热室 10的宽度相同; 上、 下层翻板 3之间的间距为 400- 700 烟道 4为由钢板焊接成的长方形盒体, 分为顶板、 底板和四侧壁; 烟道 4的长度 (顶板至底板的距离) 与预热室 10的高度相同; 最外层的两条烟道 4外壁与预热室 10纵向内壁固定连接, 中间烟道 4的前、 后壁分别与预热室 10前、 后两端内壁固接。
参见图 4所示, 在烟道 4的内腔中由上至下间隔设有多个隔板 8, 隔板 8为长方 形耐热钢板, 其宽度与烟道 4的截面宽度相同, 长度则短于烟道 4的截面长度; 相邻 两个隔板 8的一端以相反方向分别焊接在烟道长向的两个侧壁上; 隔板 8的另一端悬 空设置, 并与所对应的烟道侧壁形成缺口, 通过该缺口端使由多块隔板 8隔出的烟道 4相互连通。
位于预热室下端的烟气进口 1焊接在预热室 10—侧壁的外侧,烟气进口 1的一侧 设有多条烟气分管, '每条烟气分管与相对应的一条烟道 4下部连通; 位于预热室的上 端的烟气出口 5焊接在预热器另一侧壁的外侧,烟气出口 5的一侧设有多条烟气分管, 每条烟气分管与相对应的一条烟道 4上部连通; 每条烟道的烟气进口 1与烟气出口 5 均为独立连通。 高温烟气由烟气进口 1进入, 通过烟气分管进入一条烟道内, 沿内设 的隔板 8的缺口由下至上迂回上升, 最终由烟气出口 5排出而形成烟气通道; 隔板 8 的设置可使烟气在烟道中运行距离加长。
锥形料斗 7用于引入配合料, 其下出口连接锥形布料器 6。
锥形布料器 6内放射状分布有若干个由耐磨钢板制作的布料板 11, 布料板 11呈 梯形状, 上窄下宽, 表面有放射状凸棱; 布料板 11下边缘的长度与烟道 4顶板的长度 相同,上边缘位于锥形料斗 7的下方,布料板 11两侧边的斜度和与其相接的锥形布料 器 6前、 后壁的斜度相同, 通过悍接固定在锥形布料器 6内腔的前、 后壁上; 布料板 11的个数比烟道 4安装的个数少 2个, 布料板 11的下边缘与烟道 4顶板纵向的一侧 边固定连接,为了防止玻璃配合料由料斗下落时被挡在烟道上方且存积在烟道顶板上, 在烟道顶板纵向的另一侧边向上垂直焊接有一与布料板 6斜面相接的挡料板 9。
使用本发明的上述装置实施玻璃配合料的预热, 其工作过程为:
待预热的玻璃配合料由砂岩、 长石、 石灰石、 白云石、 纯碱、 芒硝和碳粉按比例 组成, 加入水玻璃粘结剂经混料机混合均匀后, 输送到成球盘中粒化成球, 粒化料颗 粒度范围在 5〜30醒, 经脱水干燥到 120°C后,通过皮带输送机输送到本发明专用的预 热装置的锥形料斗 7内;
全氧燃烧玻璃熔窑烟气经快冷空气系统进行空气稀释冷却到 900°C以下, 由该预 热装置的烟气进口 1进入烟道, 依靠自身的抽力由下层隔板 8的缺口处进入上一层的 隔板, 再经该层隔板的缺口进入再上一层隔板隔出的通道内, 由各隔板相反端的缺口 逐层迂回向上升, 高温烟气通过对流方式将热量传给烟道 4侧壁, 烟道侧壁再以热辐 射方式传给烟道 4外物料预热空间中的玻璃配合料, 预热后烟气由烟气出口 5排出预 热装置; 与烟气运动的同时, 粒化后的玻璃配合料由料斗 7经锥形布料器 6将其分散 于各个物料预热空间中, 先落入各物料预热空间中最上层翻板 3上, 该玻璃配合料接 受了烟道 4传送的热量, 预热 15〜30分钟后, 通过控制翻板轴 31的转动, 翻板 3下 翻 90° , 将玻璃配合料卸到下一层翻板上继续预热; 经过下一层翻板预热后的玻璃配 合料翻至再下层翻板上; 翻板的翻转操作可由机械臂通过设定时间的电路程序自动控 制;以此类推,玻璃配合料在每块翻板 3上停留时间均为 15〜30分钟;翻板设置有 3〜 7层, 经过 3〜7层热交换后, 使玻璃配合料达到 400°C以上的预热温度要求后, 由最 下层的翻板翻落入一料仓中, 送入下道工序。
本发明的实施效果:
以 600t/d 全氧燃烧玻璃熔窑为例, 每小时产生 10484Nm:i的烟气量, 烟气温度 1200°C, 先将烟气稀释到 15000 Nm:i, 温度 900°C, 再输送到烟气进口; 待预热的玻璃 配合料由砂岩 58%、、 长石 6%、 石灰石 0. 7%、 白云石 15%、 纯碱 18%、 芒硝 2. 2%和碳粉 0. 1%混合后, 在成球盘中进行粒化, 粒化成 5mn!〜 30mm范围的粒化料后, 投入料斗中, 再经锥形布料器将其分散至所设的预热室内 5个由上下设置的多层翻板和该多层翻板 两侧的烟道构成的物料预热空间中, 高温烟气经烟道以辐射方式向分散至最上层翻板 的粒化料传导热量, 对该粒化料实施间接预热, 每层翻板上停留 15〜30分钟, 然后翻 至下一层; 经过 l〜2h预热后, 可将配合料预热到 400°C以上。 相当于每小时可利用 烟气余热 1728000 kcal/h, 考虑配合料粒化和预热新增设备的动力消耗, 经换算, 可 降低玻璃熔窑热耗 10%左右。
工业应用
本发明利用全氧燃烧玻璃熔窑的高温烟气预热玻璃配合料的方法以及专用的预热 装置, 物料经多层翻板停留, 高温烟气在烟道中迂回上升, 增加了烟气与玻璃配合料 的热交换时间, 可以充分利用烟气余热, 使配合料达到较高的预热温度, 从而提高热 效率, 适于在工业上推广应用。 .

Claims

权 利 要 求
1、一种玻璃配合料的预热装置, 包括料斗和与其连接的预热室, 所述料斗为锥形 料斗, 其特征在于: 所述预热室为长方体, 在锥形料斗与长方体预热室之间还设有一 锥形布料器; 其中,
长方体预热室的内腔中纵向间隔排布多条烟道, 且多条烟道之间的空间中横向并 列设有供物料通过的上下多层翻板, 翻板和烟道互为交叉设置, 每一翻板和其两侧的 烟道侧壁之间分别留有一间距。
2、 根据权利要求 1所述的预热装置, 其特征在于: 所述翻板为长方形板状结构, 其长向的中心线设置有一长轴, 两翼与长轴焊接, 长轴的两端与所述预热室两相对侧 壁上的轴承套接。
3、根据权利要求 2所述的预热装置, 其特征在于: 所述多层的长方形翻板上下平 行设置, 相邻两层的长方形翻板之间间距为 400- 700画; 每层翻板设置的数量比烟道 设置的数量少 1个。
4、根据权利要求 1或 2或 3所述的预热装置, 其特征在于: 所述烟道内腔中由上 至下间隔设有多个隔板, 隔板一端固定在烟道内腔壁上, 另一端与烟道侧壁有间距而 形成缺口, 且相邻两隔板的缺口方向相反。
5、根据权利要求 4所述的预热装置, 其特征在于: 位于最外层的两条烟道外壁分 别与所述预热室纵向内侧壁固定连接; 中间烟道的两端分别与预热室横向两端内壁固 接。
6、 根据权利要求 5所述的预热装置, 其特征在于: 预热室下端设烟气进口, 烟气 进口的一侧设有多条烟气分管, 每条烟气分管与相对应的一条烟道下部连通; 预热室 的上端设烟气出口, 烟气出口的一侧设有多条烟气分管, 每条烟气分管与相对应的一 条烟道上部连通, 每条烟道的烟气进口与烟气出口均为独立连通。
7、根据权利要求 6所述的预热装置, 其特征在于: 所述锥形布料器内设有多块呈 梯形状的布料板, 均匀分布于该锥形布料器中; 所述布料板左右两侧的斜边分别与所 述锥形布料器前、 后端的两斜壁固接 ·, 所述布料板的底边和与其相对应的所述烟道顶 端纵向的一侧边焊接固定, 在所述烟道顶端纵向的另一侧边向上垂直焊接有一与所述 布料板斜面相接的挡料板。
8、根据权利要求 7所述的预热装置, 其特征在于: 所述布料板的表面为放射状的 凸棱; 其材质为耐磨钢板。
9、 根据权利要求 8所述的预热装置, 其特征在于: 所述锥形料斗、 锥形布料器与 长方体预热室的侧壁均为双层钢板构成, 在双层钢板之间设有保温层。
10、 一种全氧燃烧玻璃熔窑烟气余热预热玻璃配合料的方法, 利用权利要求 1 ^9 任一所述的预热装置, 包括用全氧燃烧玻璃熔窑排出的高温烟气, 对由多种原料混合 配制的玻璃配合料实施预热工序; 具体步骤如下:
1 ) 玻璃配合料在进入预热工序前, 先进行粒化, 粒化料的颗粒度为 5〜30mm;
2 ) 将全氧燃烧玻璃熔窑的高温烟气用空气稀释, 将该高温烟气冷却至 90CTC以 下;
3 ) 将步骤 1 ) 的粒化料经脱水、 干燥后, 送入所述预热装置的锥形料斗; 同时, 将步骤 2 ) 冷却后的高温烟气通过烟气入口输送至所述预热装置中;. 所述高温烟气通 过所述预热装置时, 以辐射方式向所述粒化料传导热量,对所述粒化料实施间接预热, 玻璃配合料预热温度达到 400°C以上后, 送入下道工序。
PCT/CN2010/000654 2010-05-10 2010-05-10 一种利用全氧燃烧玻璃熔窑的烟气余热预热玻璃配合料的方法及装置 WO2011140671A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000654 WO2011140671A1 (zh) 2010-05-10 2010-05-10 一种利用全氧燃烧玻璃熔窑的烟气余热预热玻璃配合料的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000654 WO2011140671A1 (zh) 2010-05-10 2010-05-10 一种利用全氧燃烧玻璃熔窑的烟气余热预热玻璃配合料的方法及装置

Publications (1)

Publication Number Publication Date
WO2011140671A1 true WO2011140671A1 (zh) 2011-11-17

Family

ID=44913813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000654 WO2011140671A1 (zh) 2010-05-10 2010-05-10 一种利用全氧燃烧玻璃熔窑的烟气余热预热玻璃配合料的方法及装置

Country Status (1)

Country Link
WO (1) WO2011140671A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104230144A (zh) * 2014-09-20 2014-12-24 闻喜县宏业玻璃制品有限公司 玻璃工业窑炉全密闭热量循环节能环保型加料系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353726A (en) * 1981-04-17 1982-10-12 Owens-Illinois, Inc. Method and apparatus for preheating pulverous materials prior to their introduction into a melting furnace
CN101328005A (zh) * 2008-07-16 2008-12-24 中国建材国际工程有限公司 玻璃配合料的预热方法及装置
CN201338983Y (zh) * 2008-11-13 2009-11-04 中国新型建筑材料工业杭州设计研究院 全氧燃烧熔窑玻璃配合料烟气预热设备
CN101830628A (zh) * 2010-05-10 2010-09-15 秦皇岛玻璃工业研究设计院 一种全氧燃烧玻璃熔窑烟气余热预热配合料的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353726A (en) * 1981-04-17 1982-10-12 Owens-Illinois, Inc. Method and apparatus for preheating pulverous materials prior to their introduction into a melting furnace
CN101328005A (zh) * 2008-07-16 2008-12-24 中国建材国际工程有限公司 玻璃配合料的预热方法及装置
CN201338983Y (zh) * 2008-11-13 2009-11-04 中国新型建筑材料工业杭州设计研究院 全氧燃烧熔窑玻璃配合料烟气预热设备
CN101830628A (zh) * 2010-05-10 2010-09-15 秦皇岛玻璃工业研究设计院 一种全氧燃烧玻璃熔窑烟气余热预热配合料的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104230144A (zh) * 2014-09-20 2014-12-24 闻喜县宏业玻璃制品有限公司 玻璃工业窑炉全密闭热量循环节能环保型加料系统

Similar Documents

Publication Publication Date Title
CN102676187B (zh) 一种气体热载体低温热解炉及气体热载体低温热解方法
CN101585524B (zh) 一种罐式炭素煅烧炉挥发份和预热空气通道结构
CN201083461Y (zh) 蓄热式板坯加热炉
CN103224234B (zh) 一种循环利用高温烟气生产活性炭的工艺
CN102506420B (zh) 粉煤灰流化床燃烧脱碳装置
CN201313819Y (zh) 煅烧炉挥发份和预热空气通道结构
CN101830628B (zh) 一种全氧燃烧玻璃熔窑烟气余热预热配合料的方法及装置
CN201459366U (zh) 一种用于生产无纺棉的热成型设备
CN203007148U (zh) 一种低热值燃料石灰窑
CN102218525A (zh) 连铸中间包高效节能烘烤装置
CN106186741B (zh) 活性石灰套筒竖窑
CN104891831B (zh) 节能环保活性石灰焙烧竖窑
CN202119244U (zh) 用于烧制陶瓷蓄热体的隧道窑
CN105066606A (zh) 一种尾热烘干的旋转窑
US10144873B2 (en) External gas heating device of coal pyrolyzing furnace
WO2011140671A1 (zh) 一种利用全氧燃烧玻璃熔窑的烟气余热预热玻璃配合料的方法及装置
CN101520278A (zh) 一种陶瓷窑炉急冷方式及余热利用方法和装置
CN104561515A (zh) 连续式板坯加热炉及其加热方法
CN110671931A (zh) 转底炉热废气循环的利用系统及方法
CN202595039U (zh) 一种气体热载体低温热解炉
CN202705042U (zh) 罐式炭素煅烧炉
CN204963590U (zh) 一种瓷砖生产线窑炉急冷段余热回收利用装置
CN204401072U (zh) 连续式板坯加热炉
CN110068143B (zh) 一种分体式热风炉
CN210314351U (zh) 一种五氧化二钒熔片炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851178

Country of ref document: EP

Kind code of ref document: A1