WO2011139381A2 - Self-aligning conveyor belt system - Google Patents

Self-aligning conveyor belt system Download PDF

Info

Publication number
WO2011139381A2
WO2011139381A2 PCT/US2011/000803 US2011000803W WO2011139381A2 WO 2011139381 A2 WO2011139381 A2 WO 2011139381A2 US 2011000803 W US2011000803 W US 2011000803W WO 2011139381 A2 WO2011139381 A2 WO 2011139381A2
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor belt
conveyor
arrangement
base
belt cover
Prior art date
Application number
PCT/US2011/000803
Other languages
French (fr)
Other versions
WO2011139381A3 (en
Inventor
Susan J. Osborn
Eric D. Erikson
Robert Carlton
Original Assignee
Osborn Susan J
Erikson Eric D
Robert Carlton
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osborn Susan J, Erikson Eric D, Robert Carlton filed Critical Osborn Susan J
Priority to EP11777714.4A priority Critical patent/EP2566790B1/en
Priority to CA2835090A priority patent/CA2835090C/en
Priority to BR112012028285-9A priority patent/BR112012028285B1/en
Priority to US13/696,065 priority patent/US8985312B2/en
Priority to US13/293,117 priority patent/US9296563B2/en
Publication of WO2011139381A2 publication Critical patent/WO2011139381A2/en
Publication of WO2011139381A3 publication Critical patent/WO2011139381A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers
    • B65G15/32Belts or like endless load-carriers made of rubber or plastics
    • B65G15/34Belts or like endless load-carriers made of rubber or plastics with reinforcing layers, e.g. of fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers
    • B65G15/32Belts or like endless load-carriers made of rubber or plastics
    • B65G15/34Belts or like endless load-carriers made of rubber or plastics with reinforcing layers, e.g. of fabric
    • B65G15/36Belts or like endless load-carriers made of rubber or plastics with reinforcing layers, e.g. of fabric the layers incorporating ropes, chains, or rolled steel sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G23/00Driving gear for endless conveyors; Belt- or chain-tensioning arrangements
    • B65G23/02Belt- or chain-engaging elements
    • B65G23/14Endless driving elements extending parallel to belt or chain
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F11/00Indicating arrangements for variable information in which the complete information is permanently attached to a movable support which brings it to the display position
    • G09F11/24Indicating arrangements for variable information in which the complete information is permanently attached to a movable support which brings it to the display position the advertising or display material forming part of a moving band, e.g. in the form of perforations, prints, or transparencies
    • G09F11/26Indicating arrangements for variable information in which the complete information is permanently attached to a movable support which brings it to the display position the advertising or display material forming part of a moving band, e.g. in the form of perforations, prints, or transparencies of an endless band
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/22Advertising or display means on roads, walls or similar surfaces, e.g. illuminated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2207/00Indexing codes relating to constructional details, configuration and additional features of a handling device, e.g. Conveyors
    • B65G2207/04Advertising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2207/00Indexing codes relating to constructional details, configuration and additional features of a handling device, e.g. Conveyors
    • B65G2207/26Hygienic features, e.g. easy to sanitize
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • This invention relates generally to conveyor systems, and more particularly, to a conveyor system of the type that employs a conveyor belt cover that in some embodiments has antimicrobial properties and displays a printed decorative feature or message.
  • preprinted static cling sheets are adhered to the checkout conveyor belt by electrostatic attraction. It is well-known, however that electrostatic attraction is unreliable. The quality of the adhesion is inherently weak, in no small measure is a function of ambient temperature and humidity, and is attacked by the need to stretch when traveling over pulleys. Ultimately, abrasion caused by products being placed on the checkout conveyor belt during the checkout procedure will cause lifting of the static cling sheets, particularly at the leading edges, resulting in buckling, binding, and total separation. The separated static cling sheets can collect under the checkout conveyor belt requiring at least partial disassembly of the checkout stand to effect clearing.
  • a cover is arranged to surround the entire checkout conveyor belt, and is releasably attached thereto.
  • Plural attachments of the cover to the checkout conveyor belt in this known arrangement are made as perimeter and width attachment components.
  • Numerous problems are present in the practice of the known arrangement. For example, the cover will buckle and tend to deviate laterally (i.e., transverse to the direction of conveyance) . Nevertheless, even when the cover is installed to achieve adequate initial alignment, stretching and distortion of the cover on the belt will result from the cover being loaded, and from being driven about the support rollers, ultimately resulting in axial deviation that in relatively short order will require the checkout stand to be shut down for repair or replacement of the cover.
  • Such covers must be produced to exacting standards to improve the likelihood that replacement covers track with the moving checkout conveyor belt. However, as stated, shear forces ultimately will separate the cover from the checkout conveyor belt, and in instances where strong adhesives are used, damage to the checkout conveyor belt will result.
  • this invention provides, in accordance with a first aspect thereof, a conveyor arrangement of the type having a plurality of conveyor rollers.
  • the conveyor arrangement is provided with a base conveyor belt arranged to be urged endlessly around the plurality of conveyor rollers.
  • a conveyor belt cover formed of an endless loop of material and arranged in frictional communication over the base conveyor belt.
  • the conveyor belt cover is formed of a single ply polyester fabric material carcass.
  • the conveyor belt cover has incorporated therein a monofilament woven into the weft of the fabric material carcass, the weft being in a direction transverse to the direction in which the base conveyor belt is urged endlessly around the plurality of conveyor rollers.
  • the conveyor belt cover has a structural rigidity characteristic greater than 140 p/cm 2 in the weft direction, as determined in accordance with DIN 53362. These characteristics of the conveyor belt cover facilitate a self-aligning feature of the inventive conveyor belt cover.
  • the conveyor belt cover has an inner surface for forming the frictional communication with the base conveyor belt, and an outer surface for communicating with articles to be conveyed.
  • the conveyor belt cover is installed to a tensile force of approximately between 1 and 1.5 pounds/inch of width, which corresponds to an overall elongation of approximately ⁇ 0.1%.
  • the frictional communication between the inner surface of the conveyor belt cover and the base conveyor belt corresponds to a maximum dynamic coefficient of friction of approximately between -0.47 and -0.52.
  • a message, which may constitute advertising material, is printed on the outer surface of the conveyor belt cover.
  • an antimicrobial material disposed on the outer surface of the conveyor belt cover.
  • the antimicrobial material is, in an advantageous embodiment of the invention, formed of a selectable combination of silver and silver oxide nanoparticles embedded in a polymeric film.
  • the antimicrobial material further comprises zinc oxide particles embedded in the polymeric film.
  • the polymeric film includes a polymer selected from the group consisting of a polyurethane, a vinyl, an acrylic, a polyester, a melamine, a polyolefin, a polycarbonate, and an epoxy, and has a thickness of approximately -0.5 mil.
  • the polymeric film is initially ( . e. , prior to being installed onto the fabric material carcass) in a liquid state, and includes a solvent selected from the group consisting of water, methyl ethyl ketone, methyl isobutyl ketone, acetone toluene, ethyl acetate, methyl acetate, propel acetate, n-methyl 1 -2 pyrrolidone, tetrahydrofuran, glycol, and glycol ethers.
  • a solvent selected from the group consisting of water, methyl ethyl ketone, methyl isobutyl ketone, acetone toluene, ethyl acetate, methyl acetate, propel acetate, n-methyl 1 -2 pyrrolidone, tetrahydrofuran, glycol, and glycol ethers.
  • the base conveyor belt is provided with an antimicrobial material disposed on an outer surface thereof. Additionally, in some embodiments, a message is printed on the outer surface.
  • a conveyor arrangement of the type having a plurality of conveyor rollers.
  • the conveyor arrangement is provided with a base conveyor belt arranged to be urged endlessly around the plurality of conveyor rollers, the base belt having an inner surface that communicates with the conveyor rollers, and an outer surface.
  • a layer of antimicrobial material is deposited on the outer surface of the base conveyor belt.
  • a conveyor belt cover formed of an endless loop of fabric material and arranged in frictional communication with the layer of antimicrobial material on the base conveyor belt. Also, in a still further embodiment, a layer of antimicrobial material is deposited on the conveyor belt cover. The antimicrobial material on the base conveyor belt has, in one embodiment, a thickness of approximately 0.5 mil.
  • the conveyor belt cover has incorporated therein a monofilament weft that increases structural rigidity.
  • the weft is disposed in a direction transverse to the direction in which the base conveyor belt is urged endlessly around the plurality of conveyor rollers.
  • a message is printed on the conveyor belt cover in some embodiments of the invention. Also, in other embodiments, a message is printed on the outer surface of the base conveyor belt.
  • a conveyor arrangement of the type having a plurality of conveyor rollers.
  • the conveyor arrangement includes a base conveyor belt arranged that is urged endlessly around the plurality of conveyor rollers, and has a conveyance surface that travels in a substantially axial direction of conveyance.
  • a conveyor belt cover formed of an endless loop of fabric material and arranged in frictional communication over the base conveyor belt. The conveyor belt cover is displaceable with respect to the base conveyor belt in an axial direction.
  • the conveyor belt cover is displaceable with respect to the base conveyor belt in a transaxial direction.
  • Such transaxial displaceability enables a self-alignment feature of the invention.
  • Self-alignment is facilitated by configuring the conveyor belt cover to have a structural rigidity characteristic that is greater than approximately -140 p/cm 2 , as determined in accordance with DIN 53362 in the weft direction.
  • the frictional communication between an inner surface of the conveyor belt cover and the base conveyor belt corresponds to a maximum dynamic coefficient of friction of approximately between ⁇ 0.47 and ⁇ 0.52.
  • the conveyor belt cover has, in an advantageous embodiment of this still further aspect of the invention, a layer of antimicrobial material deposited on an outer surface thereof. Additionally, in other embodiments, the base conveyor belt has a further layer of antimicrobial material deposited on its outer surface. In still further embodiments, there is provided a message printed on the outer surface of the base conveyor belt.
  • Fig. 1 is a simplified schematic representation of a conveyor arrangement constructed in accordance with the principles of the invention, that is useful in the context of a retail checkout conveyor;
  • Fig. 2 is an enlargement of a portion of the embodiment of Fig. 1 ;
  • Fig. 3 is a simplified schematic representation of a conveyor arrangement constructed in accordance with the principles of the invention, that is useful in the context of a retail checkout conveyor, and further showing the preliminary steps in the installation of a cover over a base conveyor belt;
  • Fig. 4 is an enlargement of a portion of the embodiment of Fig. 3;
  • Fig. 5 is an enlarged simplified representation of the attachment between the leading and trailing edges of the cover applied over the base conveyor belt, in a specific illustrative embodiment of the invention
  • Fig. 6 is an enlarged cross-sectional representation of a fabric material that is useful as a cover over the base conveyor belt;
  • Fig. 7 is a simplified schematic top plan representation of a retail check stand embodiment of the invention that is useful in describing a self-alignment aspect of the present invention.
  • Fig. 1 is a simplified schematic representation of a conveyor arrangement 100 constructed in accordance with the principles of the invention, that is useful in the context of a retail checkout conveyor.
  • Checkout conveyors are used in checkstands in retail locations, and are the pedestals (not shown in this figure) on which retail customers (not shown) place items (not shown) that they desire to purchase.
  • the items desired to be purchased are, after being placed on conveyor arrangement 100, conveyed to the cash register operator (not shown) by a conveyor belt, as will be described below.
  • conveyor arrangement 100 is arranged to have a base conveyor belt 110 with a belt cover 112 thereover disposed over rollers 115 and 117.
  • the top portion 114 of base conveyor belt 110 is supported by a slider bed 119.
  • base conveyor belt 1 10 and belt cover 112 travel in the directions of two-headed arrow 120 over slider bed 1 19.
  • belt cover 112 is made into an endless loop that surrounds base conveyor belt 110 by attachment of its trailing and leading edges (not specifically designated in this figure).
  • a specific illustrative embodiment of this attachment is represented in Fig. 2, discussed below.
  • belt cover 112 is formed of a PVC coated fabric material.
  • the belt cover serves as a protective coat over base conveyor belt 110 that can be replaced several times within the period of the useful life of base conveyor belt 110.
  • belt cover 112 is provided with printed art and/or text on one side.
  • a polymeric coating (not specifically designated) that is applied to a thickness of approximately -0.5 mil.
  • the coating has enhanced abrasion resistant properties.
  • belt cover 112 is provided with a non-degrading antimicrobial material (not shown) that has been embedded in an applied coating (not shown in this figure).
  • the antimicrobial is, in one embodiment, combined with the polymer prior to application, and comprises a silver (AU) anode particle of approximately between 4 and 6 nanometers.
  • the belt cover after installation, travels on the outside of, and substantially concurrently with, base conveyor belt 110. It is an aspect of the present invention that once installed, belt cover 112 is not attached to base conveyor belt 110, and the rotation of belt cover 1 12 will be the result of a friction communication between the external surface of base conveyor belt 110 and the internal surface of belt cover 112. However, for each revolution of base conveyor belt 110 around rollers 115 and 117, belt cover 112 must travel a longer distance, that is responsive to the effective increased roller diameter as a result of the thickness of base conveyor belt 1 10. In addition, the longer distance of travel of belt cover 1 12 is responsive to the weight of the articles (not shown) placed on conveyor arrangement 100 by the customer (not shown).
  • the tensile force applied to belt cover 1 12 is approximately between 1 pound/inch and 1.5 pounds/inch. This tensile force is achieved during the installation process, when the cover is tensioned until an elongation of approximately 0.1% is exhibited by belt cover 1 12.
  • the maximum dynamic coefficient of friction between the base conveyor belt 1 10 and belt cover 1 12 is approximately between -0.47 and ⁇ 0.52. This range of friction is achieved between the bare exposed polyester carcass of belt cover 1 12 and the polymeric coating (not specifically designated) of base conveyor belt 1 10.
  • the flexural rigidity of belt cover 1 12 is greater than approximately -140 p/cm 2 in the weft direction, as determined in accordance with DIN 53362.
  • the flexural rigidity in the weft direction is approximately -1.405 times that of the warp direction. As will be described below, this structural rigidity is achieved by use of a monofilament weft in the single ply polyester fabric material carcass of belt cover 1 12.
  • Fig. 2 is an enlargement of a portion of the embodiment of conveyor arrangement 100 shown in Fig. 1 , and further illustrates in greater detail the attachment of the trailing and leading edges of belt cover 1 12 to form an endless cover that surrounds base conveyor belt 1 10. Elements of structure that have previously been discussed are similarly designated.
  • trailing edge 1 12b of belt cover 1 12 is attached, in this embodiment of the invention, to leading edge 1 12a of belt cover 1 12 by a single-sided adhesive tape 122 on the upper surface and a further single-sided adhesive tape 124 on the underside, juxtaposed with base conveyor belt 1 10.
  • single-sided adhesive tapes 122 and 124 are formed of pressure sensitive satin acetate woven tape that permanently adheres the two edges from the bottom of the belt cover, and a top layer of the same material.
  • at least single-sided adhesive tape 122 is printed on the top side with information desired to be conveyed to an observer (not shown).
  • Single- sided adhesive tape 122 permanently adheres to the top of the belt cover and covers the seam created by the leading and trailing edges of the belt cover.
  • Fig. 3 is a simplified schematic representation of conveyor arrangement 100, and further shows the preliminary steps in the installation of belt cover 1 12 over base conveyor belt 1 10. Elements of structure that have previously been discussed are similarly designated. There is shown deposited on base conveyor belt 1 10 a roll of fabric material 1 13 that will form belt cover 1 12 once it has been installed on base conveyor belt 1 10. First, leading edge 1 12a (not specifically designated in this figure) is taped to base conveyor belt 1 10, as shown in Fig. 4.
  • Fig. 4 is an enlargement of a portion of the embodiment of Fig. 3, and shows leading edge 1 12a to be attached temporarily to base conveyor belt 1 10 with removable single-sided adhesive tape 132.
  • conveyor arrangement 100 is operated so that leading edge 1 12a is urged in the direction of arrow 130.
  • trailing edge 1 12b is attached, in this further embodiment, to leading edge 1 12a as shown in Fig. 5.
  • Fig. 5 is an enlarged simplified representation of an alternative form of attachment between leading edge 1 12a and trailing edge 1 12b of belt cover 1 12 applied over base conveyor belt 1 10, in a further specific illustrative embodiment of the invention. Elements of structure that have previously been discussed are similarly designated.
  • a strip of dual-sided adhesive tape 136 is installed over the outer surface of leading edge 122a of belt cover 1 12. Trailing edge 1 12b is adhered on its underside to the exposed side of dual-sided adhesive tape 136 in an overlap fashion.
  • dual-sided adhesive tape 136 is approximately one inch wide and extends the entire width of belt cover 1 12. The resulting seam is covered with a strip of single-sided adhesive tape 138 to form a permanent adhesion.
  • single-sided adhesive tape 138 is approximately two inches wide, and extends the entire width (not shown in this figure) of belt cover 1 12 (see, e.g., Fig. 7).
  • the flexing and tensile forces applied to single-sided adhesive tape strips 122 and 124 in Fig. 2 are, in the embodiment of Fig. 5, applied as shear forces to dual-sided adhesive tape 136.
  • Fig. 6 is an enlarged, not to scale, cross-sectional simplified schematic representation of a fabric material that is useful as belt cover 1 12 disposed over the base conveyor belt (not shown in this figure) in a specific illustrative embodiment of the invention.
  • conveyor belt cover 1 12 is formed of a fabric material carcass 150 that contains monofilament fibers 152 woven therein.
  • This figure is a cross- sectional side view looking into the weft. Conveyor belt cover 1 12 travels in the directions of arrow 120, as hereinabove described.
  • This embodiment of conveyor belt cover ⁇ 2 has a PVC coating 155 disposed over material carcass 150.
  • a coating 157 in which are embedded non-degrading antimicrobial nanoparticles 159.
  • the non-degrading antimicrobial nanoparticles were mixed into the coating while it was in a liquid state prior to being applied to the fabric material carcass.
  • the antimicrobial nanoparticles include silver anode particles of approximately between 4 and 6 nanometers in diameter.
  • polyurethane coating 157 has a thickness of approximately -0.0005"; PVC coating 155 has a thickness of approximately -0.012"; and fabric material carcass 150 is a single ply material having a thickness of approximately -0.031 ".
  • the weft monofilament yarn has a cross-sectional diameter of approximately -0.3 mm (-0.012"), and the warp yarn has a linear density of approximately -1000 denier (-1 100 decitex). There are approximately -142 weft yarns per 10 cm, and -106 warp yarns per 10 cm.
  • PVC coating 155 has a hardness characteristic of approximately durometer -75.
  • An electrostatically conductive thread (not shown) can optionally be woven into the weft or warp of fabric material carcass 150.
  • Other characteristics of the combination of materials used in belt cover 1 12 are that the top surface (not specifically designated) has a satin finish (not shown in this figure); no coating is applied to under surface 160 of fabric material carcass 150 in order to achieve a desired maximum dry coefficient of friction with the base conveyor belt of approximately between -0.47 and -0.52, as hereinabove set forth; and that the fabric material has a weight characteristic in this illustrative embodiment of approximately -0.015812 lbs/in-ft.
  • the ability of the specific conveyor belt cover herein described to become elongated in response to the application of tensile force is approximately -0.4% at 12 lbs/in; -0.7% at 24 lbs/in; and -2.0% at 45 lbs/in.
  • Fig. 7 is a simplified schematic top plan representation of a retail check stand 170 embodiment of the invention that is useful in describing the self-alignment aspect of the present invention. Elements of structure that have previously been discussed are similarly designated.
  • retail check stand 170 has belt cover 1 12 overlying a base conveyor belt (not shown in this figure).
  • Belt cover 1 12 is disposed between side rails 172 and 174.
  • Side rail 172 has an inner rail surface 173
  • side rail 174 has an inner rail surface 175.
  • belt cover 1 12 is arranged to convey articles (not shown) in the direction of arrow 180, substantially along axis 181. Persons of skill in the art will understand, however, that the principles of this aspect of the invention are applicable in a bidirectional embodiment of the invention (not shown).
  • a misalignment occurs when belt cover 112 travels off of axis, illustratively in the direction of arrow 182, which is shown to be directed in a direction that is transverse to axis 181. Such misalignment will cause belt cover 1 12 to communicate with inner rail surface 175. As a result of the physical characteristics of belt cover 1 12, as hereinabove described, belt cover 1 12 is urged back to alignment (i.e., in the direction of arrow 184), without buckling or wrinkling.
  • belt cover 1 12 communicates frictionally with the base conveyor belt (not shown in this figure), and therefore is displaceable in all directions with respect to the base conveyor belt.
  • the self-alignment characteristic of the present invention is effected by permitting belt cover 112 to be multidirectionally displaceable over the base conveyor belt. More specifically, the conveyor belt cover is displaceable with respect to the base conveyor belt not only in the axial direction (/. e. , in the direction of conveyance), but also transaxially, and has adequate structural rigidity to be urged back into alignment, as herein described, without excessive distortion.
  • FIG. 7 The specific illustrative embodiment of the invention represented in this Fig. 7 additionally shows that indicia (not specifically designated) is installed on belt cover 1 12.
  • the indicia is generically represented as "YOUR MESSAGE HERE.”
  • any personal or commercial material, including advertising and graphics, are included within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Belt Conveyors (AREA)

Abstract

A conveyor has a belt arranged to be urged around conveyor rollers, and a belt cover formed of an endless loop of fabric material and is in frictional communication over the belt. The belt cover is formed of a polyester carcass that has a monofilament weft that is transverse to the direction of travel, and maintains alignment with the belt. The belt cover is installed to a tensile force of between 1 and 1.5 pounds/inch, corresponding to an overall elongation of approximately 0.1%, which allows frictional communication between cover and belt for load transmission without binding. The communication between the belt cover and the belt has a coefficient of friction of -0.50. A message is printed on the belt cover. In addition, an antimicrobial material is disposed on the belt cover, and is formed of silver nanoparticles embedded in a polyurethane film having a thickness of -0.5 mil.

Description

Self-Aligning Conveyor Belt System
Relationship to Other Application
This application claims the benefit of the filing date of United States Provisional Patent Application Serial Number Serial No. 61/343,857 filed May 5, 2010, Conf. No. 5334 (Foreign Filing License Granted) in the names of the same inventors as herein. The disclosure in the identified United States Provisional Patent Application is incorporated herein by reference.
Background of the Invention
FIELD OF THE INVENTION
This invention relates generally to conveyor systems, and more particularly, to a conveyor system of the type that employs a conveyor belt cover that in some embodiments has antimicrobial properties and displays a printed decorative feature or message.
DESCRIPTION OF THE PRIOR ART
The desire for incorporating advertising and other messages or indicia onto conveyor systems has long been recognized. The prior art has numerous times addressed the need to enhance conveyors, particularly at retail check-out stands, with decorative and advertising elements that increase visual appeal or stimulate sales of products and services.
Many of the prior art efforts directed toward achieving a suitable display of information at retail checkout locations involve the application of indicia on the checkout conveyor belt. In some such instances, printing is performed directly on the checkout conveyor belt, and in other prior art approaches preprinted material is adhered or otherwise attached to the checkout conveyor belt.
In one known arrangement, preprinted static cling sheets are adhered to the checkout conveyor belt by electrostatic attraction. It is well-known, however that electrostatic attraction is unreliable. The quality of the adhesion is inherently weak, in no small measure is a function of ambient temperature and humidity, and is attacked by the need to stretch when traveling over pulleys. Ultimately, abrasion caused by products being placed on the checkout conveyor belt during the checkout procedure will cause lifting of the static cling sheets, particularly at the leading edges, resulting in buckling, binding, and total separation. The separated static cling sheets can collect under the checkout conveyor belt requiring at least partial disassembly of the checkout stand to effect clearing.
In another known arrangement, a cover is arranged to surround the entire checkout conveyor belt, and is releasably attached thereto. Plural attachments of the cover to the checkout conveyor belt in this known arrangement are made as perimeter and width attachment components. Numerous problems are present in the practice of the known arrangement. For example, the cover will buckle and tend to deviate laterally (i.e., transverse to the direction of conveyance) . Nevertheless, even when the cover is installed to achieve adequate initial alignment, stretching and distortion of the cover on the belt will result from the cover being loaded, and from being driven about the support rollers, ultimately resulting in axial deviation that in relatively short order will require the checkout stand to be shut down for repair or replacement of the cover. Such covers must be produced to exacting standards to improve the likelihood that replacement covers track with the moving checkout conveyor belt. However, as stated, shear forces ultimately will separate the cover from the checkout conveyor belt, and in instances where strong adhesives are used, damage to the checkout conveyor belt will result.
An obvious problem with known arrangements that use permanent print directly on the checkout conveyor belt is that the elevated cost of the base belt and the need for installation by skilled individuals prohibit frequent change of the message. In addition, some known methods of applying indicia to a checkout conveyor belt require formation of recesses in the surface of the belt that accommodates the indicia, and such recesses are not only costly to achieve, but also form crevices where bacteria and other microbes accumulate and grow. Efforts have been made in the art to cover the indicia with transparent plastic, but this renders the checkout conveyor belt thicker, less flexible, and more costly. It is a further problem with known checkout conveyor arrangements that consumer articles placed thereon, such as meat packages and liquids, will be deposited on the conveyor, providing nutrition to colonies of bacteria and other microbes. Customers are fully aware of such spills on the conveyor, and are often adverse to permitting the foodstuffs that they intend to purchase from communicating directly with the conveyor. Such customers would be comforted by an effective antimicrobial feature in the checkout conveyor.
It is, therefore, an object of this invention to provide a system for stimulating sales of products or services at retail checkout locations.
It is another object of this invention to provide a system for installing indicia on a checkout conveyor belt wherein the message thereon is simply and inexpensively changeable at frequent intervals that are significantly shorter than the life of the checkout conveyor belt.
It is also an object of this invention to provide a system for installing indicia on a checkout conveyor belt that does not have crevices where bacteria will accumulate.
It is a further object of this invention to provide a system for installing indicia on a checkout conveyor belt that does not require modification of the base checkout conveyor belt.
It is an additional object of this invention to provide a low cost cover for a base conveyor belt that also has relatively low cost of maintenance due to the elimination of the need for alignment adjustment.
It is a still further object of this invention to provide a system for installing indicia on a checkout conveyor belt that does not require adhesion to the base checkout conveyor belt, and that readily can be removed without impacting the utility of the base checkout conveyor belt.
It is yet a further object of this invention to provide a system for installing indicia on a checkout conveyor belt that covers the base checkout conveyor belt substantially entirely, is sufficiently flexible so as not to impose significant loading on the belt drive system, but is sufficiently rigid so as not to curl or bind at the axial edges. It is yet another object of this invention to provide a cover system for a base conveyor belt wherein the conveyor belt cover aligns itself axially in the direction of conveyance, particularly after having temporarily been subjected to loading.
It is also another object of this invention to provide a system for installing indicia on a checkout conveyor belt whereby the installation does not require removal, modification, or replacement of the base checkout conveyor belt.
It is yet an additional object of this invention to provide a system for installing indicia on a checkout conveyor belt whereby the installation can quickly be achieved by persons of limited mechanical skills.
It is still another object of this invention to provide an antimicrobial feature to a conveyor arrangement.
Summary of the Invention
The foregoing and other objects are achieved by this invention which provides, in accordance with a first aspect thereof, a conveyor arrangement of the type having a plurality of conveyor rollers. The conveyor arrangement is provided with a base conveyor belt arranged to be urged endlessly around the plurality of conveyor rollers. In addition, there is provided a conveyor belt cover formed of an endless loop of material and arranged in frictional communication over the base conveyor belt.
In one embodiment of the invention, the conveyor belt cover is formed of a single ply polyester fabric material carcass. In a further embodiment, the conveyor belt cover has incorporated therein a monofilament woven into the weft of the fabric material carcass, the weft being in a direction transverse to the direction in which the base conveyor belt is urged endlessly around the plurality of conveyor rollers.
In an advantageous embodiment of the invention, the conveyor belt cover has a structural rigidity characteristic greater than 140 p/cm2 in the weft direction, as determined in accordance with DIN 53362. These characteristics of the conveyor belt cover facilitate a self-aligning feature of the inventive conveyor belt cover.
In operation, the conveyor belt cover has an inner surface for forming the frictional communication with the base conveyor belt, and an outer surface for communicating with articles to be conveyed. The conveyor belt cover is installed to a tensile force of approximately between 1 and 1.5 pounds/inch of width, which corresponds to an overall elongation of approximately ~0.1%. The frictional communication between the inner surface of the conveyor belt cover and the base conveyor belt corresponds to a maximum dynamic coefficient of friction of approximately between -0.47 and -0.52. A message, which may constitute advertising material, is printed on the outer surface of the conveyor belt cover.
In a further embodiment of the invention, there is provided an antimicrobial material disposed on the outer surface of the conveyor belt cover. The antimicrobial material is, in an advantageous embodiment of the invention, formed of a selectable combination of silver and silver oxide nanoparticles embedded in a polymeric film. In other embodiments, the antimicrobial material further comprises zinc oxide particles embedded in the polymeric film. The polymeric film includes a polymer selected from the group consisting of a polyurethane, a vinyl, an acrylic, a polyester, a melamine, a polyolefin, a polycarbonate, and an epoxy, and has a thickness of approximately -0.5 mil.
In one embodiment of the invention, the polymeric film is initially ( . e. , prior to being installed onto the fabric material carcass) in a liquid state, and includes a solvent selected from the group consisting of water, methyl ethyl ketone, methyl isobutyl ketone, acetone toluene, ethyl acetate, methyl acetate, propel acetate, n-methyl 1 -2 pyrrolidone, tetrahydrofuran, glycol, and glycol ethers.
In a still further embodiment, the base conveyor belt is provided with an antimicrobial material disposed on an outer surface thereof. Additionally, in some embodiments, a message is printed on the outer surface.
In accordance with a further aspect of the invention, there is provided a conveyor arrangement of the type having a plurality of conveyor rollers. The conveyor arrangement is provided with a base conveyor belt arranged to be urged endlessly around the plurality of conveyor rollers, the base belt having an inner surface that communicates with the conveyor rollers, and an outer surface. A layer of antimicrobial material is deposited on the outer surface of the base conveyor belt.
In one embodiment of this further aspect of the invention, there is further provided a conveyor belt cover formed of an endless loop of fabric material and arranged in frictional communication with the layer of antimicrobial material on the base conveyor belt. Also, in a still further embodiment, a layer of antimicrobial material is deposited on the conveyor belt cover. The antimicrobial material on the base conveyor belt has, in one embodiment, a thickness of approximately 0.5 mil.
In a highly advantageous embodiment of the invention, the conveyor belt cover has incorporated therein a monofilament weft that increases structural rigidity. The weft is disposed in a direction transverse to the direction in which the base conveyor belt is urged endlessly around the plurality of conveyor rollers. As previously noted, a message is printed on the conveyor belt cover in some embodiments of the invention. Also, in other embodiments, a message is printed on the outer surface of the base conveyor belt.
In accordance with a still further aspect of the invention, there is provided a conveyor arrangement of the type having a plurality of conveyor rollers. The conveyor arrangement includes a base conveyor belt arranged that is urged endlessly around the plurality of conveyor rollers, and has a conveyance surface that travels in a substantially axial direction of conveyance. There is additionally provided a conveyor belt cover formed of an endless loop of fabric material and arranged in frictional communication over the base conveyor belt. The conveyor belt cover is displaceable with respect to the base conveyor belt in an axial direction.
In a highly advantageous embodiment of this still further aspect of the invention, the conveyor belt cover is displaceable with respect to the base conveyor belt in a transaxial direction. Such transaxial displaceability enables a self-alignment feature of the invention. Self-alignment is facilitated by configuring the conveyor belt cover to have a structural rigidity characteristic that is greater than approximately -140 p/cm2, as determined in accordance with DIN 53362 in the weft direction. Preferably, the frictional communication between an inner surface of the conveyor belt cover and the base conveyor belt corresponds to a maximum dynamic coefficient of friction of approximately between ~0.47 and ~0.52.
The conveyor belt cover has, in an advantageous embodiment of this still further aspect of the invention, a layer of antimicrobial material deposited on an outer surface thereof. Additionally, in other embodiments, the base conveyor belt has a further layer of antimicrobial material deposited on its outer surface. In still further embodiments, there is provided a message printed on the outer surface of the base conveyor belt. Brief Description of the Drawing
Comprehension of the invention is facilitated by reading the following detailed description, in conjunction with the annexed drawing, in which:
Fig. 1 is a simplified schematic representation of a conveyor arrangement constructed in accordance with the principles of the invention, that is useful in the context of a retail checkout conveyor;
Fig. 2 is an enlargement of a portion of the embodiment of Fig. 1 ;
Fig. 3 is a simplified schematic representation of a conveyor arrangement constructed in accordance with the principles of the invention, that is useful in the context of a retail checkout conveyor, and further showing the preliminary steps in the installation of a cover over a base conveyor belt;
Fig. 4 is an enlargement of a portion of the embodiment of Fig. 3;
Fig. 5 is an enlarged simplified representation of the attachment between the leading and trailing edges of the cover applied over the base conveyor belt, in a specific illustrative embodiment of the invention;
Fig. 6 is an enlarged cross-sectional representation of a fabric material that is useful as a cover over the base conveyor belt; and
Fig. 7 is a simplified schematic top plan representation of a retail check stand embodiment of the invention that is useful in describing a self-alignment aspect of the present invention.
Detailed Description
Fig. 1 is a simplified schematic representation of a conveyor arrangement 100 constructed in accordance with the principles of the invention, that is useful in the context of a retail checkout conveyor. Checkout conveyors are used in checkstands in retail locations, and are the pedestals (not shown in this figure) on which retail customers (not shown) place items (not shown) that they desire to purchase. The items desired to be purchased are, after being placed on conveyor arrangement 100, conveyed to the cash register operator (not shown) by a conveyor belt, as will be described below.
As shown in Fig. 1, conveyor arrangement 100 is arranged to have a base conveyor belt 110 with a belt cover 112 thereover disposed over rollers 115 and 117. The top portion 114 of base conveyor belt 110 is supported by a slider bed 119. In response to actuation of one or both of rollers 115 and 117, base conveyor belt 1 10 and belt cover 112 travel in the directions of two-headed arrow 120 over slider bed 1 19.
In this embodiment of the invention, belt cover 112 is made into an endless loop that surrounds base conveyor belt 110 by attachment of its trailing and leading edges (not specifically designated in this figure). A specific illustrative embodiment of this attachment is represented in Fig. 2, discussed below.
In one embodiment of the invention, belt cover 112 is formed of a PVC coated fabric material. In some embodiments, the belt cover serves as a protective coat over base conveyor belt 110 that can be replaced several times within the period of the useful life of base conveyor belt 110. In a highly advantageous embodiment, belt cover 112 is provided with printed art and/or text on one side. In a further embodiment of the present aspect of the invention, there is provided a polymeric coating (not specifically designated) that is applied to a thickness of approximately -0.5 mil. In some embodiments of the invention, the coating has enhanced abrasion resistant properties.
In a further specific illustrative embodiment of the invention, belt cover 112 is provided with a non-degrading antimicrobial material (not shown) that has been embedded in an applied coating (not shown in this figure). The antimicrobial is, in one embodiment, combined with the polymer prior to application, and comprises a silver (AU) anode particle of approximately between 4 and 6 nanometers.
The belt cover, after installation, travels on the outside of, and substantially concurrently with, base conveyor belt 110. It is an aspect of the present invention that once installed, belt cover 112 is not attached to base conveyor belt 110, and the rotation of belt cover 1 12 will be the result of a friction communication between the external surface of base conveyor belt 110 and the internal surface of belt cover 112. However, for each revolution of base conveyor belt 110 around rollers 115 and 117, belt cover 112 must travel a longer distance, that is responsive to the effective increased roller diameter as a result of the thickness of base conveyor belt 1 10. In addition, the longer distance of travel of belt cover 1 12 is responsive to the weight of the articles (not shown) placed on conveyor arrangement 100 by the customer (not shown).
In a specific illustrative embodiment of the invention, the tensile force applied to belt cover 1 12 is approximately between 1 pound/inch and 1.5 pounds/inch. This tensile force is achieved during the installation process, when the cover is tensioned until an elongation of approximately 0.1% is exhibited by belt cover 1 12. The maximum dynamic coefficient of friction between the base conveyor belt 1 10 and belt cover 1 12 is approximately between -0.47 and ~0.52. This range of friction is achieved between the bare exposed polyester carcass of belt cover 1 12 and the polymeric coating (not specifically designated) of base conveyor belt 1 10. In addition, in an advantageous embodiment of the invention, the flexural rigidity of belt cover 1 12 is greater than approximately -140 p/cm2 in the weft direction, as determined in accordance with DIN 53362. The flexural rigidity in the weft direction is approximately -1.405 times that of the warp direction. As will be described below, this structural rigidity is achieved by use of a monofilament weft in the single ply polyester fabric material carcass of belt cover 1 12.
Fig. 2 is an enlargement of a portion of the embodiment of conveyor arrangement 100 shown in Fig. 1 , and further illustrates in greater detail the attachment of the trailing and leading edges of belt cover 1 12 to form an endless cover that surrounds base conveyor belt 1 10. Elements of structure that have previously been discussed are similarly designated. As shown in this figure, trailing edge 1 12b of belt cover 1 12 is attached, in this embodiment of the invention, to leading edge 1 12a of belt cover 1 12 by a single-sided adhesive tape 122 on the upper surface and a further single-sided adhesive tape 124 on the underside, juxtaposed with base conveyor belt 1 10. In the practice of a specific illustrative embodiment of the invention, single-sided adhesive tapes 122 and 124 are formed of pressure sensitive satin acetate woven tape that permanently adheres the two edges from the bottom of the belt cover, and a top layer of the same material. In one embodiment of the invention, at least single-sided adhesive tape 122 is printed on the top side with information desired to be conveyed to an observer (not shown). Single- sided adhesive tape 122 permanently adheres to the top of the belt cover and covers the seam created by the leading and trailing edges of the belt cover.
Fig. 3 is a simplified schematic representation of conveyor arrangement 100, and further shows the preliminary steps in the installation of belt cover 1 12 over base conveyor belt 1 10. Elements of structure that have previously been discussed are similarly designated. There is shown deposited on base conveyor belt 1 10 a roll of fabric material 1 13 that will form belt cover 1 12 once it has been installed on base conveyor belt 1 10. First, leading edge 1 12a (not specifically designated in this figure) is taped to base conveyor belt 1 10, as shown in Fig. 4.
Fig. 4 is an enlargement of a portion of the embodiment of Fig. 3, and shows leading edge 1 12a to be attached temporarily to base conveyor belt 1 10 with removable single-sided adhesive tape 132. As shown in Figs. 3 and 4, conveyor arrangement 100 is operated so that leading edge 1 12a is urged in the direction of arrow 130. Referring once again to Fig. 3 , after leading edge 122a has traveled around rollers 1 15 and 1 17, and returned to top surface 1 14 (Fig. 4), trailing edge 1 12b is attached, in this further embodiment, to leading edge 1 12a as shown in Fig. 5.
Fig. 5 is an enlarged simplified representation of an alternative form of attachment between leading edge 1 12a and trailing edge 1 12b of belt cover 1 12 applied over base conveyor belt 1 10, in a further specific illustrative embodiment of the invention. Elements of structure that have previously been discussed are similarly designated. As shown in this figure, a strip of dual-sided adhesive tape 136 is installed over the outer surface of leading edge 122a of belt cover 1 12. Trailing edge 1 12b is adhered on its underside to the exposed side of dual-sided adhesive tape 136 in an overlap fashion. In one embodiment of the invention, dual-sided adhesive tape 136 is approximately one inch wide and extends the entire width of belt cover 1 12. The resulting seam is covered with a strip of single-sided adhesive tape 138 to form a permanent adhesion. In one embodiment, single-sided adhesive tape 138 is approximately two inches wide, and extends the entire width (not shown in this figure) of belt cover 1 12 (see, e.g., Fig. 7). The flexing and tensile forces applied to single-sided adhesive tape strips 122 and 124 in Fig. 2 are, in the embodiment of Fig. 5, applied as shear forces to dual-sided adhesive tape 136.
Fig. 6 is an enlarged, not to scale, cross-sectional simplified schematic representation of a fabric material that is useful as belt cover 1 12 disposed over the base conveyor belt (not shown in this figure) in a specific illustrative embodiment of the invention. As shown in this figure, conveyor belt cover 1 12 is formed of a fabric material carcass 150 that contains monofilament fibers 152 woven therein. This figure is a cross- sectional side view looking into the weft. Conveyor belt cover 1 12 travels in the directions of arrow 120, as hereinabove described.
This embodiment of conveyor belt cover Π2 has a PVC coating 155 disposed over material carcass 150. In addition, there is provided a coating 157 in which are embedded non-degrading antimicrobial nanoparticles 159. The non-degrading antimicrobial nanoparticles were mixed into the coating while it was in a liquid state prior to being applied to the fabric material carcass. In a highly advantageous embodiment of the invention, the antimicrobial nanoparticles include silver anode particles of approximately between 4 and 6 nanometers in diameter.
In a specific illustrative embodiment of the invention, polyurethane coating 157 has a thickness of approximately -0.0005"; PVC coating 155 has a thickness of approximately -0.012"; and fabric material carcass 150 is a single ply material having a thickness of approximately -0.031 ". The weft monofilament yarn has a cross-sectional diameter of approximately -0.3 mm (-0.012"), and the warp yarn has a linear density of approximately -1000 denier (-1 100 decitex). There are approximately -142 weft yarns per 10 cm, and -106 warp yarns per 10 cm.
In one embodiment of the invention, PVC coating 155 has a hardness characteristic of approximately durometer -75. An electrostatically conductive thread (not shown) can optionally be woven into the weft or warp of fabric material carcass 150. Other characteristics of the combination of materials used in belt cover 1 12 are that the top surface (not specifically designated) has a satin finish (not shown in this figure); no coating is applied to under surface 160 of fabric material carcass 150 in order to achieve a desired maximum dry coefficient of friction with the base conveyor belt of approximately between -0.47 and -0.52, as hereinabove set forth; and that the fabric material has a weight characteristic in this illustrative embodiment of approximately -0.015812 lbs/in-ft.
In one embodiment, the ability of the specific conveyor belt cover herein described to become elongated in response to the application of tensile force is approximately -0.4% at 12 lbs/in; -0.7% at 24 lbs/in; and -2.0% at 45 lbs/in.
Fig. 7 is a simplified schematic top plan representation of a retail check stand 170 embodiment of the invention that is useful in describing the self-alignment aspect of the present invention. Elements of structure that have previously been discussed are similarly designated. As shown in this figure, retail check stand 170 has belt cover 1 12 overlying a base conveyor belt (not shown in this figure). Belt cover 1 12 is disposed between side rails 172 and 174. Side rail 172 has an inner rail surface 173, and side rail 174 has an inner rail surface 175. In this specific illustrative embodiment of the invention, belt cover 1 12 is arranged to convey articles (not shown) in the direction of arrow 180, substantially along axis 181. Persons of skill in the art will understand, however, that the principles of this aspect of the invention are applicable in a bidirectional embodiment of the invention (not shown).
A misalignment occurs when belt cover 112 travels off of axis, illustratively in the direction of arrow 182, which is shown to be directed in a direction that is transverse to axis 181. Such misalignment will cause belt cover 1 12 to communicate with inner rail surface 175. As a result of the physical characteristics of belt cover 1 12, as hereinabove described, belt cover 1 12 is urged back to alignment (i.e., in the direction of arrow 184), without buckling or wrinkling. Similarly, misalignment resulting from travel of belt cover 112 in the direction of arrow 186, which also is directed transverse to the axis of conveyance, will cause the belt cover to communicate with inner rail surface 173, and consequently to be urged into realignment in the direction of arrow 188.
As noted, belt cover 1 12 communicates frictionally with the base conveyor belt (not shown in this figure), and therefore is displaceable in all directions with respect to the base conveyor belt. The self-alignment characteristic of the present invention is effected by permitting belt cover 112 to be multidirectionally displaceable over the base conveyor belt. More specifically, the conveyor belt cover is displaceable with respect to the base conveyor belt not only in the axial direction (/. e. , in the direction of conveyance), but also transaxially, and has adequate structural rigidity to be urged back into alignment, as herein described, without excessive distortion.
The specific illustrative embodiment of the invention represented in this Fig. 7 additionally shows that indicia (not specifically designated) is installed on belt cover 1 12. In this embodiment, the indicia is generically represented as "YOUR MESSAGE HERE." However, any personal or commercial material, including advertising and graphics, are included within the scope of the invention.
Although the invention has been described in terms of specific embodiments and applications, persons skilled in the art may, in light of this teaching, generate additional embodiments without exceeding the scope or departing from the spirit of the invention described and claimed herein. Accordingly, it is to be understood that the drawing and description in this disclosure are proffered to facilitate comprehension of the invention, and should not be construed to limit the scope thereof.

Claims

What is claimed is:
1. A conveyor arrangement of the type having a plurality of conveyor rollers, the conveyor arrangement comprising:
a base conveyor belt arranged to be urged endlessly around the plurality of conveyor rollers; and
a conveyor belt cover formed of an endless loop of fabric material and arranged in fnctional communication over said base conveyor belt.
2. The conveyor arrangement of claim 1 , wherein said conveyor belt cover is formed of a single ply polyester fabric material carcass.
3. The conveyor arrangement of claim 1 , wherein the conveyor belt cover has incorporated therein a monofilament weft, the weft being in a direction transverse to the direction in which said base conveyor belt is urged endlessly around the plurality of conveyor rollers.
4. The conveyor arrangement of claim 3 , wherein the conveyor belt cover has a structural rigidity characteristic greater than 140 p/cm2 as determined in accordance with DIN 53362 in the weft direction.
5. The conveyor arrangement of claim 1 , wherein said conveyor belt cover has an inner surface for forming the fnctional communication with said base conveyor belt, and an outer surface for communicating with articles to be conveyed.
6. The conveyor arrangement of claim 5, wherein said conveyor belt cover is installed to a tensile force of approximately between 1 and 1.5 pounds/inch.
7. The conveyor arrangement of claim 6, wherein the tensile force applied to said conveyor belt cover corresponds to an elongation of approximately 0.1%.
8. The conveyor arrangement of claim 5, wherein the fnctional communication between the inner surface of said conveyor belt cover and said base conveyor belt corresponds to a maximum coefficient of friction of approximately between -0.47 and -0.52, and preferable approximately -0.50.
9. The conveyor arrangement of claim 5, wherein there is further provided a message printed on the outer surface of said conveyor belt cover.
10. The conveyor arrangement of claim 5, wherein there is further provided an antimicrobial material disposed on the outer surface of said conveyor belt cover.
1 1. The conveyor arrangement of claim 10, wherein said antimicrobial material comprises a selectable combination of silver and silver oxide nanoparticles embedded in a polymeric film.
12. The conveyor arrangement of claim 1 1, wherein said antimicrobial material further comprises zinc oxide particles embedded in said polymeric film.
13. The conveyor arrangement of claim 1 1, wherein said polymeric film includes a polymer selected from the group consisting of a polyurethane, a vinyl, an acrylic, a polyester, a melamine, a polyolefin, a polycarbonate, and an epoxy.
14. The conveyor arrangement of claim 13, wherein said polymeric film has a thickness of approximately ~0.5 mil.
15. The conveyor arrangement of claim 1 1 , wherein said polymeric film is initially in a liquid state, and includes a solvent selected from the group consisting of water, methyl ethyl ketone, methyl isobutyl ketone, acetone toluene, ethyl acetate, methyl acetate, propel acetate, n-methyl 1-2 pyrrolidone, tetrahydrofuran, glycol, and glycol ethers.
16. The conveyor arrangement of claim 1 , wherein said base conveyor belt is provided with an antimicrobial material disposed on an outer surface of said base conveyor belt.
17. The conveyor arrangement of claim 1 , wherein said base conveyor belt is provided with a message printed on an outer surface thereof.
18. A conveyor arrangement of the type having a plurality of conveyor rollers, the conveyor arrangement comprising:
a base conveyor belt arranged to be urged endlessly around the plurality of conveyor rollers, said base belt having an inner surface that communicates with the conveyor rollers, and an outer surface; and
a layer of antimicrobial material deposited on the outer surface of said base conveyor belt.
19. The conveyor arrangement of claim 18, wherein there is further provided a conveyor belt cover formed of an endless loop of fabric material and arranged in frictional communication with the layer of antimicrobial material on said base conveyor belt.
20. The conveyor arrangement of claim 19, wherein there is further provided a layer of antimicrobial material deposited on said conveyor belt cover.
21. The conveyor arrangement of claim 20, wherein said layer of antimicrobial material on said base conveyor belt has a thickness of approximately -0.5 mil.
22. The conveyor arrangement of claim 19, wherein said conveyor belt cover has incorporated therein a monofilament weft, the weft being in a direction transverse to the direction in which said base conveyor belt is urged endlessly around the plurality of conveyor rollers.
23. The conveyor arrangement of claim 19, wherein there is further provided a message printed on said conveyor belt cover.
24. The conveyor arrangement of claim 18, wherein there is further provided a message printed on the outer surface of said base conveyor belt.
25. A conveyor arrangement of the type having a plurality of conveyor rollers, the conveyor arrangement comprising:
a base conveyor belt arranged to be urged endlessly around the plurality of conveyor rollers, said base conveyor belt having a conveyance surface that travels in a substantially axial direction of conveyance; and
a conveyor belt cover formed of an endless loop of fabric material and arranged in frictional communication over said base conveyor belt, said conveyor belt cover being displaceable with respect to said base conveyor belt in an axial direction.
26. The conveyor arrangement of claim 25, wherein said conveyor belt cover is displaceable with respect to said base conveyor belt in a transaxial direction.
27. The conveyor arrangement of claim 25, wherein said conveyor belt cover has a layer of antimicrobial material deposited on an outer surface thereof.
28. The conveyor arrangement of claim 25, wherein said base conveyor belt has a layer of antimicrobial material deposited on an outer surface thereof.
29. The conveyor arrangement of claim 25, wherein said conveyor belt cover has a structural rigidity characteristic greater than 140 p/cm2 as determined in accordance with DIN 53362 in the weft direction.
30. The conveyor arrangement of claim 25, wherein the frictional communication between an inner surface of said conveyor belt cover and said base conveyor belt corresponds to a maximum coefficient of friction of approximately between -0.47 and -0.52, and preferable approximately -0.50.
31. The conveyor arrangement of claim 25, wherein there is further provided a message printed on an outer surface of said base conveyor belt.
32. The conveyor arrangement of claim 25, wherein there is further provided a message printed on an outer surface of said conveyor belt cover.
PCT/US2011/000803 2010-05-05 2011-05-05 Self-aligning conveyor belt system WO2011139381A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11777714.4A EP2566790B1 (en) 2010-05-05 2011-05-05 Self-aligning conveyor belt system
CA2835090A CA2835090C (en) 2010-05-05 2011-05-05 Self-aligning conveyor belt system
BR112012028285-9A BR112012028285B1 (en) 2010-05-05 2011-05-05 CARRIER PROVISION
US13/696,065 US8985312B2 (en) 2010-05-05 2011-05-05 Self-aligning conveyor belt cover system
US13/293,117 US9296563B2 (en) 2010-05-05 2011-11-09 Coupling arrangement for self-aligning conveyor belt cover

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34385710P 2010-05-05 2010-05-05
US61/343,857 2010-05-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/293,117 Continuation US9296563B2 (en) 2010-05-05 2011-11-09 Coupling arrangement for self-aligning conveyor belt cover
US13/293,117 Continuation-In-Part US9296563B2 (en) 2010-05-05 2011-11-09 Coupling arrangement for self-aligning conveyor belt cover

Publications (2)

Publication Number Publication Date
WO2011139381A2 true WO2011139381A2 (en) 2011-11-10
WO2011139381A3 WO2011139381A3 (en) 2012-01-19

Family

ID=44904288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/000803 WO2011139381A2 (en) 2010-05-05 2011-05-05 Self-aligning conveyor belt system

Country Status (5)

Country Link
US (2) US8985312B2 (en)
EP (1) EP2566790B1 (en)
BR (1) BR112012028285B1 (en)
CA (1) CA2835090C (en)
WO (1) WO2011139381A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825234B2 (en) * 2012-09-11 2015-12-02 横浜ゴム株式会社 Steel cord and conveyor belt for rubber reinforcement
US9564942B2 (en) * 2014-11-04 2017-02-07 Skiva Technologies, Inc. Picture changing assembly for mobile phone cases
WO2017209023A1 (en) * 2016-05-30 2017-12-07 キヤノン株式会社 Porous material belt, method for producing same, and inkjet recording device
WO2017209021A1 (en) * 2016-05-30 2017-12-07 キヤノン株式会社 Porous material belt, method for producing same, and inkjet recording device
CN107671222A (en) * 2017-11-23 2018-02-09 江阴方圆环锻法兰有限公司 Full-automatic ring forging pipeline
US10807802B1 (en) * 2019-10-15 2020-10-20 Volta Belting Technology Ltd. Conveyor belt fastener system and method
CN111873504B (en) * 2020-07-29 2021-12-17 日志动力传送系统(上海)有限公司 Original belt of conveyer belt and joint fastening method thereof
US20230166916A1 (en) * 2021-11-26 2023-06-01 Mol Belting Systems, Inc. Antimicrobial Checkstand Conveyor Belt and Method of Making and Maintaining Same and Engaging Shoppers Using the Checkstand Conveyor Belt as an Advertising Platform

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB280082A (en) 1927-02-28 1927-11-10 Gordon Richard Kyle Improvements in belt conveyors

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB291627A (en) * 1927-06-25 1928-06-07 George William Bousfield Improved method of and means for driving conveyor belts
NL6400686A (en) * 1964-01-29 1965-07-30
US4034617A (en) * 1976-01-23 1977-07-12 American Biltrite Inc. Stepped belting splice
DE2756363A1 (en) * 1977-12-17 1979-06-21 Peter Ludwig Ingenieurbuero Fu BELT CONVEYOR WITH INTERMEDIATE DRIVE
US4823941A (en) * 1985-11-20 1989-04-25 Alex Mindich High speed tubular belt conveyor and system and method for making
CH676701A5 (en) * 1988-09-08 1991-02-28 Habasit Ag
US4942958A (en) * 1989-02-07 1990-07-24 Marttila Erik A Belt-drive conveyor system for refuse
JPH0336108A (en) * 1989-06-30 1991-02-15 Keiichi Isotani Prevention of uneven movement of endless band in conveyer
DE4128664C1 (en) * 1991-08-29 1992-10-29 Promotex Werbetechnik Gmbh, 4030 Ratingen, De
US5308725A (en) * 1992-09-29 1994-05-03 Xerox Corporation Flexible belt supported by flexible substrate carrier sleeve
US5596828A (en) * 1994-04-20 1997-01-28 Smallwood; Paul Endless belt display device
US5358094A (en) * 1994-05-13 1994-10-25 Molinaro Joseph J Conveyor belt with advertisements
US5906269A (en) * 1994-08-12 1999-05-25 Habasit Globe, Inc. Conveyor belting and method of manufacture
NO303097B1 (en) * 1996-10-02 1998-05-25 Christian Vonholm Procedure for conveying information / advertising on a conveyor belt
US6216852B1 (en) * 1998-12-22 2001-04-17 Joy Mm Delaware, Inc. Conveyor belt with heavier lower reinforcing layer
CA2435544C (en) * 2001-02-02 2010-04-06 Habasit Ag Conveyor belt with a polymer surface coating containing an antimicrobial additive
BR8101688U (en) * 2001-07-06 2003-07-01 Quattro Promocoees Com E Repre Medium mat
US6648127B2 (en) * 2002-02-28 2003-11-18 Joseph J. Molinaro Conveyor belt with advertising and method of making same
DE20203581U1 (en) * 2002-03-06 2003-07-17 Fredenhagen GmbH & Co. KG, 63069 Offenbach Arrangement for driving of rubber or plastic belt has driving second belt running between conveyor belt and deflection pulley and has frictional engagement with conveyor belt
US6910293B1 (en) * 2003-07-02 2005-06-28 Stephen Armstrong Advertising panel for conveyor
CN101115653A (en) * 2004-12-17 2008-01-30 布兰顿·斯蒂尔·约翰斯顿 Conveyor belt cover
US20080164127A1 (en) * 2007-01-10 2008-07-10 J.H. Fenner & Co. Ltd Needled felt and monofilament fabric conveyor belt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB280082A (en) 1927-02-28 1927-11-10 Gordon Richard Kyle Improvements in belt conveyors

Also Published As

Publication number Publication date
US9296563B2 (en) 2016-03-29
US20130175143A1 (en) 2013-07-11
EP2566790A2 (en) 2013-03-13
EP2566790A4 (en) 2017-11-29
EP2566790B1 (en) 2021-04-28
BR112012028285A2 (en) 2016-11-01
WO2011139381A3 (en) 2012-01-19
BR112012028285B1 (en) 2020-10-06
US8985312B2 (en) 2015-03-24
CA2835090A1 (en) 2011-11-10
US20120125741A1 (en) 2012-05-24
CA2835090C (en) 2017-01-17

Similar Documents

Publication Publication Date Title
US8985312B2 (en) Self-aligning conveyor belt cover system
US5358094A (en) Conveyor belt with advertisements
US4979591A (en) Conveyor belt
US5165526A (en) Conveyor system with panels containing visual information
US6775937B2 (en) Railing advertising - surface, system and method
US20110308919A1 (en) Method For The Installation And Removal Of A Conveyor Belt
US6648127B2 (en) Conveyor belt with advertising and method of making same
US20150000819A1 (en) Method Of Making A Pad Of Labels And Labels For Use On Store Shelves In A Retail Environment
US6044961A (en) Apparatus for displaying advertising information on conveyor panels
US5330044A (en) Conveyor with platform containing indicia
US20040247843A1 (en) Method of applying a protective film, optionally including advertising or other visible material, to the surface of a handrail for an escalator or moving walkway
US6910293B1 (en) Advertising panel for conveyor
US20120090159A1 (en) Method For The Installation And Removal Of A Conveyor Belt
US20060156598A1 (en) Conveyor belt cover
JP4187535B2 (en) Handrail with continuous display sheet
WO2017173517A1 (en) Conveyor belt with advertising information carrier
CA2684826A1 (en) Conveyor assembly carrying advertising and checkout station incorporating the same
AU2003217824A1 (en) Conveyor belt with advertising, method and apparatus for making same
US20140008186A1 (en) System and methods for content display
US20070267272A1 (en) Slat
US20040088896A1 (en) Railing advertising - surface, system and method
AU7732098A (en) Method and device for displaying indicia
US20110274864A1 (en) Magnetic label stock material
ITBL990002U1 (en) PLASTICIZED BELT FOR PROMOTIONAL SURFACE PARTICULARLY FOR CASH CONVEYORS.
TH33481A (en) Billboard on conveyor belt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777714

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011777714

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012028285

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 13696065

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2835090

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 112012028285

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121105