WO2011139066A2 - Device and method for transmitting downlink control information in a wireless communication system - Google Patents

Device and method for transmitting downlink control information in a wireless communication system Download PDF

Info

Publication number
WO2011139066A2
WO2011139066A2 PCT/KR2011/003290 KR2011003290W WO2011139066A2 WO 2011139066 A2 WO2011139066 A2 WO 2011139066A2 KR 2011003290 W KR2011003290 W KR 2011003290W WO 2011139066 A2 WO2011139066 A2 WO 2011139066A2
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
control information
resource
resource allocation
information
Prior art date
Application number
PCT/KR2011/003290
Other languages
French (fr)
Korean (ko)
Other versions
WO2011139066A3 (en
Inventor
홍성권
서성진
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100076121A external-priority patent/KR20110122046A/en
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Priority to US13/696,024 priority Critical patent/US20130051356A1/en
Publication of WO2011139066A2 publication Critical patent/WO2011139066A2/en
Publication of WO2011139066A3 publication Critical patent/WO2011139066A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to wireless communication, and more particularly, to an apparatus and method for transmitting downlink control information in a wireless communication system.
  • the base station can know the downlink channel state by the terminal informs the base station of a well-known control signal such as a channel quality indicator (CQI).
  • CQI channel quality indicator
  • the base station may perform frequency selective scheduling by receiving a downlink channel state from each terminal.
  • the base station needs to know the uplink channel state.
  • the uplink reference signal is a signal known between both the base station and the terminal and is also called a pilot.
  • the uplink reference signal includes a demodulation reference signal and a sounding reference signal (SRS).
  • the demodulation reference signal is used for channel estimation for data demodulation, and the sounding reference signal is used for user scheduling in uplink.
  • the terminal sends a sounding reference signal through the uplink channel, and the base station determines uplink channel state from the sounding reference signal and performs uplink scheduling.
  • the uplink control signal includes an acknowledgment (ACK) / not-acknowledgement (NACK) signal for performing a hybrid automatic repeat request (HARQ), a channel quality indicator (CQI) indicating downlink channel quality, a precoding matrix index (PMI), There are various types such as RI (Rank Indicator).
  • ACK acknowledgment
  • NACK not-acknowledgement
  • HARQ hybrid automatic repeat request
  • CQI channel quality indicator
  • PMI precoding matrix index
  • RI Rank Indicator
  • 1 is an example of an uplink subframe structure for transmitting a sounding reference signal to which the present invention is applied.
  • an uplink subframe includes two slots on a time axis, and each slot includes seven single carrier-frequency division multiple access (SC-FDMA) symbols.
  • the uplink subframe includes a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH) on the frequency axis.
  • the PUCCH in the SC-FDMA symbol interval in which the sounding reference signal is transmitted is punctured.
  • the UE transmits data using 13 SC-FDMA symbols and performs a preprocessing process such as rate matching for the last one SC-FDMA symbol and transmits a sounding reference signal.
  • the 14th SC-FDMA symbol is determined to transmit a sounding reference signal, this is just an example, and the position and number of SF-FDMA symbols may be determined differently.
  • the sounding reference signal may be transmitted in the entire PUSCH or may be transmitted in only part of the PUSCH.
  • A-SRS aperiodic sounding reference signal
  • the base station should instruct the terminal to transmit the sounding reference signal or inform the information related to the transmission of the sounding reference signal.
  • downlink control information must be added to handle other new procedures or new information required with the appearance of a new system. To do this, keep the format compatible with the existing system, but consider adding new fields.
  • the format of the downlink control information of the existing LTE is very limited, and there is little room for adding a new field.
  • this causes a problem of a burden of blind decoding of the UE. Therefore, even if new downlink control information to be applied to a new system is added, there is a need for an apparatus and a method for transmitting downlink control information to minimize and change the structure of an existing system.
  • An object of the present invention is to provide an apparatus and method for transmitting downlink control information in a wireless communication system.
  • Another technical problem of the present invention is to provide a new control channel configuration method for uplink scheduling information in a wireless communication system.
  • Another technical problem of the present invention is to provide a method for transmitting an uplink signal in a wireless communication system.
  • Another technical problem of the present invention is to provide a method of configuring resource allocation information for discontinuous resource allocation in a wireless communication system.
  • a method for transmitting downlink control information by a base station includes configuring downlink control information including a resource allocation field indicating a resource indication value of a specific range, and converting the downlink control information into a physical downlink control channel: Transmitting to the terminal on the PDCCH).
  • the resource indication value of the specific range may indicate that the downlink control information includes configuration information for transmission of an uplink signal.
  • a method for receiving downlink control information by a terminal includes receiving downlink control information including a resource allocation field indicating a resource indication value of a specific range from a base station on a PDCCH, and using the format of the downlink control information based on the resource indication value of the specific range ( interpreting a format), and decoding the downlink control information according to the interpreted format.
  • an apparatus for transmitting downlink control information includes a downlink control information configuration unit constituting downlink control information based on a resource indication value of a specific range represented by a resource allocation field, a control channel configuration unit constituting a PDCCH to transmit the downlink control information, and And a control channel transmitter for transmitting the downlink control information to the terminal on the PDCCH.
  • the downlink control information may include information indicating the transmission of an uplink signal by the terminal.
  • an apparatus for receiving downlink control information includes a control channel receiver for receiving downlink control information from a base station on a PDCCH, a control channel decoder for extracting the downlink control information by performing blind decoding on the control channel, and the downlink
  • the resource allocation field is separated from a plurality of fields included in the control information, the format of the downlink control information is determined by using the resource indication value indicated by the resource allocation field, and an analysis method suitable for the determined format is used.
  • a downlink control information analyzer for analyzing the downlink control information.
  • a method of transmitting downlink control information may include configuring information about an uplink signal or information about a downlink signal using a specific range selected from a full range of resource indication values represented by a resource allocation field. Transmitting downlink control information including information about the downlink signal or information about the downlink signal to the terminal, and receiving the uplink signal from the terminal based on the information on the uplink signal, or the downlink And transmitting the downlink signal to the terminal based on the information about the signal.
  • the information on the uplink signal is resource allocation information indicating allocation of a resource block for transmission of an uplink signal, and the selected specific range may indicate a resource block allocated according to a non-contiguous allocation scheme. have.
  • the configuring of the information on the uplink signal or the information on the downlink signal may be performed on the information on the uplink signal or the downlink signal by using the redundant bits included in the selected specific range and the downlink control information. It includes organizing information.
  • the configuring of the information on the uplink signal or the information on the downlink signal may include: adapting a variable setting of the purpose according to the selected specific range, the redundant bits included in the downlink control information, and the redundant bits. It may include configuring information about the uplink signal or information about the downlink signal using the red field.
  • the adaptive field may indicate whether frequency hopping is applied to the uplink transmission.
  • the adaptive field and the resource allocation field may represent the resource indication value.
  • the information on the uplink signal is resource allocation information indicating an allocation of a resource block group for transmitting an uplink signal, and the selected specific range may indicate a resource block allocated according to a discontinuous allocation method. Can be.
  • the information about the uplink signal is resource allocation information indicating a resource block allocated for transmission of an uplink signal, and the allocated resource block is divided into a resource block of a first part and a resource block of a second part.
  • a non-contiguous allocation scheme may be applied to the resource block of the first portion, and a continuous allocation scheme may be applied to the resource block of the second portion.
  • the resource block of the first part is a predetermined number of resource blocks constituting a start part and an end part of the allocated resource block
  • the resource block of the second part is the start part and the end part of the allocated resource block. It may be the remainder except a predetermined number of resource blocks constituting a.
  • the information on the uplink signal is resource allocation information indicating a resource block group allocated for transmission of an uplink signal, and the allocated resource block group is divided into resource block groups of a first part and resource block groups of a second part.
  • the non-contiguous allocation scheme may be applied to the resource block group of the first portion, and the continuous allocation scheme may be applied to the resource block group of the second portion.
  • the resource block group of the first portion is a predetermined number of resource block groups constituting a start portion and an end portion of the allocated resource block group
  • the resource block group of the second portion is the start of the allocated resource block group. It may be the rest except for a predetermined number of resource block groups constituting the end portion and the end portion.
  • the information on the uplink signal is resource allocation information indicating allocation of a resource block for transmission of an uplink signal, and the selected specific range may indicate a resource block allocated according to a discontinuous allocation method.
  • the configuring of the information on the uplink signal may include configuring the information on the uplink signal using the selected specific range and the redundant bits included in the downlink control information.
  • the configuring of the information on the uplink signal may include the uplink using the selected specific range, the redundant bits included in the downlink control information, and the adaptive field whose use is variably set according to the redundant bits. And configuring information about the link signal.
  • the adaptive field may indicate whether frequency hopping is applied to the uplink transmission.
  • the adaptive field and the resource allocation field may represent the resource indication value.
  • the information on the uplink signal is resource allocation information indicating allocation of a resource block group for transmission of an uplink signal, and the selected specific range may indicate a resource block allocated according to a discontinuous allocation method.
  • the information about the uplink signal is resource allocation information indicating a resource block allocated for transmission of an uplink signal, and the allocated resource block is divided into a resource block of a first part and a resource block of a second part.
  • a non-contiguous allocation scheme may be applied to the resource block of the first portion, and a continuous allocation scheme may be applied to the resource block of the second portion.
  • the resource block of the first part is a predetermined number of resource blocks constituting a start part and an end part of the allocated resource block
  • the resource block of the second part is the start part and the end part of the allocated resource block. It may be the remainder except a predetermined number of resource blocks constituting a.
  • the information on the uplink signal is resource allocation information indicating a resource block group allocated for transmission of an uplink signal, and the allocated resource block group is divided into resource block groups of a first part and resource block groups of a second part.
  • the non-contiguous allocation scheme may be applied to the resource block group of the first portion, and the continuous allocation scheme may be applied to the resource block group of the second portion.
  • the resource block group of the first portion is a predetermined number of resource block groups constituting a start portion and an end portion of the allocated resource block group
  • the resource block group of the second portion is the start of the allocated resource block group. It may be the rest except for a predetermined number of resource block groups constituting the end portion and the end portion.
  • a method for receiving downlink control information includes receiving downlink control information including information about an uplink signal from a base station, and transmitting the uplink signal to the base station based on the information about the uplink signal.
  • the information on the uplink signal is configured using a specific range selected from all resource indication values represented by the resource allocation field.
  • an apparatus for transmitting downlink control information includes a downlink control information constructing unit constituting a field of downlink control information using a specific range selected from resource indication values represented by a resource allocation field, and the downlink control information according to the configured field. And a control unit for configuring a control channel to be transmitted, and a transmission unit for transmitting the downlink control information to the terminal through the control channel.
  • the downlink control information includes information instructing transmission of an uplink signal by the terminal.
  • an apparatus for transmitting downlink control information includes a downlink control information constructing unit constituting a field of downlink control information using a specific range selected from resource indication values represented by a resource allocation field, and the downlink control information according to the configured field. And a control channel transmitter configured to configure a control channel to be transmitted, and a control channel transmitter configured to transmit the downlink control information to the terminal through the control channel.
  • the downlink control information includes information instructing transmission of an uplink signal by the terminal.
  • a new control channel can be configured without.
  • 1 is an example of an uplink subframe structure for transmitting a sounding reference signal.
  • FIG. 2 shows a wireless communication system to which the present invention is applied.
  • FIG. 3 shows a structure of a radio frame to which the present invention is applied.
  • FIG. 4 shows a structure of a downlink subframe to which the present invention is applied.
  • FIG. 5 is an exemplary diagram illustrating a resource grid for one downlink slot to which the present invention is applied.
  • FIG. 6 is an example of a resource allocation method to which the present invention is applied. This is type 0 resource allocation.
  • FIG. 9 is a block diagram illustrating a DCI transmitter and a DCI receiver according to an embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a method of transmitting DCI according to an embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a DCI transmission method by a base station according to an embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a DCI reception method by a terminal according to an embodiment of the present invention.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
  • FIG. 2 shows a wireless communication system to which the present invention is applied.
  • the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data.
  • the wireless communication system 10 includes at least one base station (BS) 11.
  • Each base station 11 provides a communication service for a particular geographic area or frequency area (generally called a cell) 15a, 15b, 15c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the mobile station (MS) 12 may be fixed or mobile, and may include a user equipment (UE), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • the base station 11 generally refers to a fixed station communicating with the terminal 12, and includes an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and a femto eNB. ), Home eNB (HeNB), relay, etc. may be called other terms.
  • the cell should be interpreted in a comprehensive sense of a part of the area covered by the base station 11 and encompasses various coverage areas such as megacells, macrocells, microcells, picocells and femtocells.
  • downlink refers to a communication or communication path from the base station 11 to the terminal 12
  • uplink refers to a communication or communication path from the terminal 12 to the base station 11.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-TDMA OFDM-FDMA
  • OFDM-TDMA OFDM-
  • FIG. 3 shows a structure of a radio frame to which the present invention is applied.
  • a radio frame includes 10 subframes, and one subframe includes two slots.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be referred to as an SC-FDMA symbol or a symbol period according to a multiple access scheme.
  • the RB includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 4 shows a structure of a downlink subframe to which the present invention is applied.
  • the subframe includes two slots.
  • the preceding two or three OFDM symbols of the first slot in the subframe are control regions to which a PDCCH (Physical Downlink Control Channel (PDCCH)) is allocated, and the remaining OFDM symbols are data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated. do.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the downlink control channel includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for an uplink HARQ (Hybrid Automatic Repeat Request). That is, the ACK / NACK signal for the uplink data transmitted by the terminal is transmitted on the PHICH.
  • PDCCH is a resource allocation and transmission format of downlink shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, random access response transmitted on PDSCH Resource allocation of a higher layer control message, a set of transmit power control commands for individual UEs in a certain UE group, and activation of a Voice over Internet Protocol (VoIP).
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • paging information on PCH system information on DL-SCH
  • random access response transmitted on PDSCH Resource allocation of a higher layer control message a set of transmit power control commands for individual UEs in a certain UE group
  • VoIP Voice over Internet Protocol
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • DCI downlink control information
  • Table 1 shows DCI according to DCI format.
  • Table 1 DCI format Explanation 0 Used for scheduling of PUSCH (Uplink Grant) One Used for scheduling one PDSCH codeword 1A Used for simple scheduling of one PDSCH codeword and a random access procedure initiated by a PDCCH command 1B Used for simple scheduling of one PDSCH codeword using precoding information 1C Used for brief scheduling of one PDSCH codeword and notification of MCCH changes 1D Used for simple scheduling of one PDSCH codeword containing precoding and power offset information 2 Used for PDSCH scheduling for UE configured in spatial multiplexing mode 2A Used for PDSCH scheduling of UE configured in long delay CDD mode 3 Used to transmit TPC commands for PUCCH and PUSCH with power adjustment of 2 bits 3A Used to transmit TPC commands for PUCCH and PUSCH with single bit power adjustment
  • DCI format 0 indicates uplink resource allocation information
  • DCI formats 1 to 2 indicate downlink resource allocation information
  • DCI formats 3 and 3A indicate uplink transmit power control (TPC) commands for arbitrary UE groups.
  • TPC transmit power control
  • Each field of the DCI is sequentially mapped to an information bit. For example, if DCI is mapped to information bits having a total length of 44 bits, the resource allocation field may be mapped to 10th to 23rd bits of the information bits.
  • DCI includes uplink resource allocation information and downlink resource allocation information.
  • the uplink resource allocation information may be referred to as an uplink grant, and the downlink resource allocation information may be referred to as a downlink grant.
  • Table 2 shows DCI of format 0 which is uplink resource allocation information (or uplink grant).
  • the flag is an indicator for distinguishing DCI 0 from DCI 1A as 1-bit information.
  • the hopping flag is 1-bit information and indicates whether frequency hopping is applied or not when the terminal performs uplink transmission. For example, if the hopping flag is 1, frequency hopping is applied during uplink transmission, and if hopping flag is 0, frequency hopping is not applied during uplink transmission.
  • Resource block assignment and hopping resource allocation is also called a resource allocation field.
  • the resource allocation field indicates the physical location or amount of resources allocated to the terminal.
  • the uplink grant includes a surplus bit or a padding bit to keep the total number of bits constant.
  • the uplink grant is 27 bits (excluding the CIF field and the CRC field). If the length of the bit determined as the blind decoding input is 28 bits, the base station adds an extra bit of 1 bit to the uplink grant during scheduling so that the total number of bits of the uplink grant is 28 bits. At this time, since the surplus bits do not contain special information, all of them may be set to zero. Of course, the number of surplus bits may be less than two, or may be large.
  • the physical resource structure is described first.
  • FIG. 5 is an exemplary diagram illustrating a resource grid for one downlink slot to which the present invention is applied.
  • a downlink slot includes a plurality of OFDM symbols in a time domain.
  • one downlink slot includes 7 OFDMA symbols, and one resource block (RB) exemplarily includes 12 subcarriers in the frequency domain, but is not limited thereto.
  • RB resource block
  • Each element on the resource grid is called a resource element (RE), and one resource block includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell.
  • the bandwidths considered in LTE are 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, which are 6, 15, 25, 50, 75, and 100, respectively.
  • At least one resource block corresponding to each band may be bundled to form a resource block group (RBG). For example, two adjacent resource blocks may constitute one resource block group.
  • the total number of available resource blocks varies according to a given bandwidth.
  • the difference in the total number of resource blocks means that the size of information indicating resource allocation is different.
  • the number of cases in which resource blocks are allocated may vary depending on the resource allocation method.
  • a resource block may be allocated using a bitmap format (type 0).
  • resource blocks may be allocated at predetermined intervals or periods (type 1).
  • resource blocks may be allocated as contiguous constant length regions (type 2).
  • the resource block allocated to the terminal is indicated by the resource allocation field, and the bit request amount of the resource allocation field varies according to each type of resource allocation scheme and the total number of resource blocks for each bandwidth.
  • a description of a resource block may be replaced with a resource block group.
  • FIG. 6 is an example of a resource allocation method to which the present invention is applied. This is type 0 resource allocation.
  • the type 0 resource allocation scheme is a scheme in which all resource blocks of the system are allocated to the UE in units of clusters grouped into at least one consecutive resource block. At least one resource block is spaced between clusters. This is also referred to as non-contiguous resource allocation.
  • four clusters are allocated to the terminal. The first cluster includes one resource block, the second cluster includes three resource blocks, the third cluster includes two resource blocks, and the fourth cluster includes one resource block.
  • resource allocation in which two clusters are allocated to one terminal is called a double cluster, and resource allocation in which three or more clusters are allocated is called unlimited non-contiguous resource allocation. Depending on how many clusters you allocate, your system's throughput will vary.
  • each resource block may be represented by a bitmap.
  • Each bit is mapped to each resource block. For example, if the bit is 1, the corresponding resource block is allocated to the terminal. If the bit is 0, the corresponding resource block is not allocated to the terminal.
  • FIG. 6 illustrates a case where the bitmap is 010011100110100.
  • the required amount of bits is required for the number of resource blocks. That is, the required amount of bits is when the number of resource blocks is n, Becomes here, Is the minimum integer greater than or equal to x.
  • resource blocks are allocated in a periodic form, and resource allocation may be expressed in a form having a period of P and distributed at regular intervals for all resource blocks.
  • the number of bits needed to represent type 1 resource allocation is + to be. here, Is the size of the resource block subset with period P and 1 is the offset. This can represent resource allocation in specific cases. In general, when type 0 and type 1 are used together, a division bit for distinguishing type 0 and type 1 may be added.
  • FIG. 8 is another example of a resource allocation method to which the present invention is applied. This is a type 2 resource allocation method.
  • At least one adjacent resource block may be bundled and allocated. This is expressed as an offset from the start of all RBs and the number of adjacent RBs.
  • FIG. 8 is a case where the offset is 2 and the number of resource blocks is 10.
  • FIG. Type 2 represents Contiguous Resource Allocation
  • Type 0 and Type 1 represent Non-contiguous Resource Allocation. Therefore, when the number of resource blocks is large, the number of bits of the resource allocation field required to express the resource allocation of type 2 is smaller than that of type 0 or type 1.
  • n resource blocks are allocated by Type 2, the number of cases of all resource allocation is determined by Equation 1.
  • the resource allocation field included in the uplink grant must be able to represent both continuous resource allocation and non-contiguous resource allocation.
  • the number of bits of the resource allocation field is limited to express the number of all cases according to the continuous resource allocation and the discontinuous resource allocation, the number of bits of the resource allocation field must be increased.
  • Increasing the number of bits of the resource allocation field eventually results in a modification to the uplink grant structure, which may be inefficient because it imposes a burden on the blind decoding of the UE. Therefore, using the surplus bits included in the DCI but not used for resource allocation enables efficient use of limited resources while maintaining the structure of the conventional uplink grant.
  • a resource allocation field that selectively indicates continuous resource allocation and non-contiguous resource allocation is called a hybrid resource allocation field.
  • the mixed resource allocation field may indicate contiguous resource allocation or may indicate discontinuous resource allocation. Whether the mixed resource allocation field indicates contiguous resource allocation or nonconsecutive resource allocation can be distinguished by a surplus bit.
  • the mixed resource allocation field included in the uplink grant may indicate continuous resource allocation or discontinuous resource allocation.
  • the surplus bit is 1, the mixed resource allocation field may indicate discontinuous resource allocation. That is, whether one mixed resource allocation field indicates continuous or discontinuous resource allocation is determined by the surplus bits. For example, suppose the resource allocation field is 4 bits and its value is 0001. If the surplus bit is zero, the value 0001 of the mixed resource allocation field indicates one case of continuous or discontinuous resource allocation. On the contrary, if the surplus bit is 1, the value 0001 of the mixed resource allocation field indicates one case of non-contiguous resource allocation. In this way, even if the same resource allocation field value, the indication may vary depending on the surplus bits.
  • the mixed resource allocation field indicates continuous or discontinuous resource allocation, and when the surplus bit is 1, the mixed resource allocation field indicates nonconsecutive resource allocation. do.
  • the same number of resource blocks may be different from the number of cases that are allocated consecutively and the number of cases that are allocated continuously.
  • a number of cases where n resource blocks are allocated contiguously and a number of cases where the resource blocks are continuously allocated may be a> b. Fewer cases mean that fewer bits are needed.
  • a relatively small number of bits can represent all cases of continuous resource allocation.
  • relatively more bits are needed to represent the number of cases in all cases of non-contiguous resource allocation.
  • the base station allocates 100 resource blocks using a 13-bit mixed resource allocation field.
  • the remaining 3141 cases are used for non-contiguous resource allocations, except for the number of all cases of consecutive resource allocations that the mixed resource allocation field can indicate.
  • the range of 0 to 5049 of the values of the mixed resource allocation field corresponds to continuous resource allocation
  • the range of 5050 to 8290 of the values of the mixed resource allocation field corresponds to non-contiguous resource allocation. If the bit is 0, the mixed resource allocation field may indicate continuous resource allocation or may indicate non-consecutive resource allocation according to the range of the value of the mixed resource allocation field.
  • adding an additional information bit to the existing uplink grant is a modification of the existing structure, which is not preferable because of the burden of blind decoding of the terminal. Therefore, when information bits which are not used in a specific situation are used as bits in an uplink grant, it is possible to efficiently use limited radio resources while maintaining the structure of the uplink grant.
  • a hopping flag included in an uplink grant may be used to express non-contiguous resource allocation.
  • frequency hopping may not be applied during uplink transmission.
  • the hopping flag of the uplink grant indicates frequency hopping of uplink transmission
  • frequency hopping is not applied.
  • the terminal performs uplink transmission without frequency hopping regardless of the indication of the hopping flag included in the uplink grant. That is, when discontinuous resource allocation, the hopping flag has no meaning, and occupies only one bit of space in the uplink grant.
  • the hopping flag is substantially the same as the surplus bits.
  • an information field used for another second use is called an adaptive field.
  • the hopping flag is an example of an adaptive field.
  • the hopping flag is used to indicate whether frequency hopping is applied in uplink transmission when the mixed resource allocation field indicates continuous resource allocation.
  • the hopping flag is used to extend the number of cases indicative of discontinuous resource allocation.
  • the above example is an example in which uplink resources are allocated in units of resource blocks. If the uplink resources are allocated in units of resource block groups, the number of non-consecutive resource allocations is further reduced. Accordingly, the number of all cases of non-consecutive resource allocation may be left as an indication range of limited resource allocation.
  • a DCI format for transmitting new control information may be determined in various ways.
  • the remaining information bits of the existing DCI format may be used for new control information or a new field may be added at all.
  • a new DCI format for new control information can be introduced.
  • adding a new field to the existing DCI format substantially changes the existing DCI format, which increases the complexity of blind decoding, which is the process of extracting the DCI format from the PDCCH.
  • Blind decoding defines a decoding start point in a region of a given PDCCH, decodes all possible DCI formats in a given transmission mode, and decodes a user from C-RNTI information masked in CRC. That's the way.
  • the complexity of blind decoding increases.
  • different sizes of DCI formats mean that the number of DCI formats to be decoded increases.
  • the mixed resource allocation field may indicate resource allocation in a total of 2 k cases.
  • the value of the mixed resource allocation field indicating each case is referred to as a resource indication value (hereinafter referred to as RIV) or code point.
  • RIV resource indication value
  • the entire range of resource indication values is an integer of 0 to 2 10 -1. If the mixed resource allocation field is 0000000111, the resource indication value is 8.
  • the minimum number of bits of the mixed resource allocation field required to represent all of the 5050 cases is 13 bits according to Equation 2 above.
  • the entire range of resource indication values has a range of 0 to 8191 which is wider than the first indication range.
  • the second indication range remaining in the entire range of resource indication values except for the first indication range is 5050 to 8191.
  • Equation 3 The equation for obtaining the size of the resource indication value belonging to the second indication range is shown in Equation 3.
  • the first indication range may be used as an uplink grant which is the original purpose
  • the second indication range indicates that the DCI is related to transmission of an uplink signal for another use, for example, or semi-persistent scheduling (semi- It may be used for indicating that the information relates to persistent scheduling (SPS).
  • SPS persistent scheduling
  • the base station may form a DCI of a substantially identical format or a substantially new DCI by defining a mixed resource allocation field of the DCI as a new field.
  • the DCI field may be maintained as it is, but only information indicating that the UE takes a specific action may be added.
  • the terminal performs blind decoding on the DCI format.
  • the UE determines whether the resource indication value is the first indication range or the second indication range, and if the resource indication value is within the first indication range, the UE can recognize that the resource indication value is the DCI in the same manner as the existing DCI format. If it is in the second indication range, it can be recognized that the DCI of the new format.
  • the UE does not have a burden of blind decoding the DCI of the new format, and resource efficiency may be increased by using a resource indication value of a range not used in the resource allocation field to be transmitted anyway.
  • the resource indication value corresponding to the second indication range may indicate information other than resource allocation.
  • the resource indication value belonging to the first indication range indicates allocation of a resource block, but the resource indication value belonging to the second indication range indicates new information for transmitting an uplink signal of the terminal or a downlink signal for the terminal.
  • Information may be indicated for transmission of the.
  • the resource indication value of the mixed resource allocation field in the DCI is the second indication range
  • the resource indication value is information about the DCI setting of an aperiodic sounding reference signal (hereinafter referred to as ASRS) (hereinafter referred to as ASRS configuration information).
  • ASRS aperiodic sounding reference signal
  • Information about the transmission setting of the channel state information (Channel State Information CSI), information about the ACK / NACK transmission setting and the like.
  • the UE may recognize that the corresponding DCI includes information on the transmission setting of the ASRS configuration information or the channel state information or information on the ACK / NACK transmission configuration.
  • the base station may transmit information on the downlink signal, for example, a precoding matrix indicator (PMI), a rank indicator (RI), and resource allocation information using the second indication range.
  • PMI precoding matrix indicator
  • RI rank indicator
  • the ASRS configuration information includes various fields necessary for the transmission of the ASRS as shown in Table 4.
  • Table 4 SRS Information Element Number of bits Nyon SRS activation One Interpreting the DCI Format Transmission bandwidth 2 Four SRS Bandwidths per Operating Band Frequency position 3 or 5 Bandwidth start position (applies 3 bits for bands less than 5 MHz) Transmission comb One 2 comb SRS cyclic shift 3 8 cyclic shift SRS Configuration Index I SRS 9 Configuration of Subframes Assigned for SRS Transmission Duration 0 One-shot transfer or same period SRS Bandwidth Configuration 0 Already known by one-shot transmission or SIB CRC (UE ID) UE ID masked to CRC Sum 35 or 37
  • the SRS Activation field is 1 bit information and indicates whether the corresponding DCI is a format related to transmission of the ASRS.
  • the frequency position field is a parameter that determines the start position of an uplink bandwidth with respect to the ASRS.
  • the Transmission Comb field is a parameter that defines an UpPTS section belonging to a special subframe in the TDD system.
  • the SRS Configuration Index field is a parameter that determines the position and offset of a subframe in which the ASRS is transmitted.
  • the cyclic shift field is a parameter for generating a sequence for transmission of the ASRS. The amount of information in the new field is limited by the range that can be represented by the resource indication value of the second indication range.
  • the resource indication value corresponding to the second indication range keeps the field of the existing DCI format the same.
  • the DCI may be triggered to trigger a specific action of the terminal.
  • the specific action may be that the terminal transmits an uplink signal to the base station, for example, may be a non-periodic sounding reference signal, or the base station may transmit a downlink signal to the terminal. . Therefore, as a result of the determination by the terminal, if the resource indication value is any value within the second indication range, the terminal not only can obtain the resource information allocated to itself, but also transmit the aperiodic sounding reference signal to the base station. can do. However, if the fields of the existing DCI format are the same, the resource indication value of the second indication range should also indicate resource allocation information of the terminal.
  • the total range of resource indication values for allocating 100 resource blocks is 0 to 8191, which may represent 8192 cases.
  • the number of cases of the second indication range is 1st. It is less than the indicated range. That is, it is impossible to express all the numbers of resource allocation of the first indication range as the second indication range. Therefore, in order to express the resource allocation field as the second indication range, resource blocks are allocated in units of resource block groups. If the total number of resource blocks is n and the number of resource blocks constituting one resource block group is r, the number m of resource block groups may be expressed as in Equation (4).
  • Equation 5 the number of cases that can be expressed when allocating to a resource block group is expressed by Equation 5.
  • the resource indication value corresponding to the second indication range may be used to express discontinuous resource allocation.
  • an additional hopping flag which is an adaptive field, is additionally used.
  • the lacking part is used to express discontinuous resource allocation up to the second indication range of the mixed resource allocation field when the surplus bit is zero.
  • the number of cases of expressing discontinuous resource allocation may be calculated as in Equation 6 below.
  • v is an indication range representing the entire non-contiguous resource allocation
  • x is the number of bits of the non-contiguous resource allocation field
  • y is the number of bits of the adaptive field
  • z is the second indication range of the continuous resource allocation field.
  • the indication range by the combination of the resource allocation field, the adaptive field, and the redundant bits can express not only the continuous resource allocation but also the non-contiguous resource allocation state. Even if the ⁇ redundant bit, hopping flag ⁇ combination is ⁇ 0, 0, or 1 ⁇ , the resource allocation instruction range 0 ⁇ 5049 corresponds to continuous resource allocation, and 5050 ⁇ 8190 is doubled according to the hopping flag to discontinuous resource allocation. Corresponds. Therefore, even when the surplus bit is 0, the mixed resource allocation field may indicate continuous resource allocation or may indicate non-consecutive resource allocation according to the range of the value of the mixed resource allocation field.
  • the above example is an example in which the uplink resources are allocated in units of resource blocks. If the uplink resources are allocated in units of resource block groups, the uplink resources are discontinuous according to calculations such as Equations 4 and 5 above. The number of cases of resource allocation is further reduced. Accordingly, the number of all cases of non-consecutive resource allocation may be left as an indication range of limited resource allocation.
  • the form of transmitting control signals is defined in the LTE standard. It fits well with the design aspect.
  • the DCI transmitter may be part of the base station, and the DCI receiver may be part of the terminal.
  • the DCI transmitting apparatus 900 includes a DCI configuring unit 910, a control channel configuring unit 920, and a control channel transmitting unit 930.
  • the DCI configuration unit 910 determines the DCI format and configures the DCI to include necessary fields.
  • the DCI configuration unit 910 determines the DCI format as 0, and when the transmission of the downlink grant is required, the DCI format is determined as 1A.
  • the DCI configuration unit 910 configures the DCI to include necessary fields by adjusting the resource indication value to fall within the second indication range.
  • the resource indication value is R
  • the range of R is 0 ⁇ R ⁇ X.
  • X is the maximum resource indication value.
  • the first indication range of the resource indication value is 0 ⁇ R ⁇ C
  • the second indication range is C ⁇ R ⁇ X.
  • the DCI configuration unit 910 adjusts the resource indication value to fall within the second indication range as follows. For example, since DCI of format 0 is an uplink grant, the DCI configuration unit 910 extracts a partial region of information bits related to DCI, and adds a conversion value C such that a resource indication value falls within a second indication range. Insert into the resource allocation field of the uplink grant. For example, since the conversion value C is the maximum value of the first indication range and is 5050 based on the 20 MHz bandwidth and the type 2 resource allocation method, the DCI configuration unit 910 adds 5050 to the resource indication value if the resource indication value is 1024. The indication value is adjusted to 6074, so as to fall within the second indication range.
  • the extracted partial region may be a partial contiguous region of the information bits related to the DCI or may be a form in which bits distributed throughout are combined.
  • the resource indication value corresponding to the second indication range may be in the form of triggering a specific action of the DCI while maintaining the same field of the existing DCI format.
  • the DCI configuration unit 910 configures the DCI so that the extracted partial region and the remaining region are equal to the size of the uplink grant.
  • the control channel configuration unit 920 configures a physical channel to which the DCI configured by the DCI configuration unit 910 is transmitted, that is, a PDCCH.
  • the control channel transmitter 930 transmits the DCI to the DCI receiver 1000 through the PDCCH.
  • the DCI receiver 1000 includes a DCI analyzer 1010, a control channel decoder 1020, a control channel receiver 1030, and a response signal transmitter 1040.
  • the control channel receiver 1030 receives the DCI from the DCI transmitter 900.
  • the control channel decoding unit 1020 decodes the PDCCH carrying the DCI by a blind decoding method and extracts the DCI.
  • the DCI analyzing unit 1010 decomposes the mixed resource allocation field and the other fields in the extracted DCI, determines whether the resource indication value of the mixed resource allocation field is greater than or less than C, and extracts the result from the determination result. Confirm the format and field of the DCI. As an example. As a result of the determination, when the resource indication value is smaller than C, the DCI analyzer 1010 determines the format of the extracted DCI as a general DCI (ie, an uplink grant). In this case, the response signal transmitter 1040 transmits uplink data to the DCI transmitter 900 by using the resource indicated by the uplink grant.
  • a general DCI ie, an uplink grant
  • the DCI analyzing unit 1010 determines the format of the extracted DCI as a new DCI.
  • the field is interpreted according to the new DCI format in which the field is configured by subtracting C from the resource indication value. If the new DCI is for transmission of the ASRS, the DCI analyzer 1010 instructs the response signal transmitter 1040 to generate and transmit an ASRS according to the field of the new DCI.
  • FIG. 10 is a flowchart illustrating a method of transmitting DCI according to an embodiment of the present invention.
  • the base station adjusts the resource indication value of the second indication range to configure a field of DCI (S100).
  • the base station adjusts the resource indication value of the second indication range to configure a field of the DCI is as follows.
  • the base station extracts a partial region of the DCI and adjusts it to belong to the second indication range by adding an integer C value to the resource indication value.
  • the base station inserts the adjusted resource indication value into the resource allocation area of the uplink grant and configures the DCI to be equal to the size of the uplink grant.
  • the DCI may include the fields of Table 2 or Table 4.
  • the base station configures a control channel for transmitting the DCI (S110).
  • the control channel is a PDCCH.
  • the base station transmits the DCI to the terminal through the PDCCH (S120).
  • the terminal receives the DCI by blind decoding, extracts a resource allocation field of the DCI, and determines a format of the DCI by using a resource indication value of the resource allocation field. If the DCI is a new DCI format, the UE processes the new DCI in a manner suitable for the new DCI format, performs a procedure required by the new DCI, and transmits a response signal to the base station (S130). For example, if the procedure required by the new DCI is transmission of an ASRS, the terminal transmits the ASRS to the base station.
  • FIG. 11 is a flowchart illustrating a DCI transmission method by a base station according to an embodiment of the present invention.
  • the base station sets a new DCI format (S200).
  • the new DCI format relates to various configuration information related to transmission of uplink control information of a terminal. For example, it includes ASRS, CSI transmission setting information, transmission setting information of ACK / NACK information, and the like.
  • the base station decomposes the entire field of the existing DCI into a resource allocation field and the remaining fields (S210).
  • the resource indication value of the resource allocation field is Y.
  • the base station adds the conversion value C to the resource allocation field to obtain the converted resource indication value X, and then combines the resource allocation field according to the converted resource indication value X and the remaining fields again (S220).
  • This is to configure a new DCI by converting an existing resource indication value.
  • the base station configures a PDCCH for a new DCI according to the converted resource indication value (S230), and transmits the new DCI to the UE through the PDCCH (S240).
  • FIG. 12 is a flowchart illustrating a DCI reception method by a terminal according to an embodiment of the present invention.
  • the terminal receives a DCI by performing blind decoding on the PDCCH (S300).
  • the terminal decomposes the entire field of the received DCI into a resource allocation field and the remaining fields (S310).
  • the terminal compares the resource indication value X of the resource allocation field with the converted value C (S320). If the resource indication value X is greater than or equal to the conversion value C, the terminal obtains the converted resource indication value Y minus the conversion value C from the resource indication value X, and obtains the obtained resource indication value Y and the remaining fields. Combine again (S330).
  • the terminal interprets the new DCI according to the obtained resource indication value Y in a new DCI format analysis method (S340).
  • step S320 if the resource indication value X is smaller than the conversion value C, the terminal interprets the entire field according to the existing DCI format (S350).

Abstract

The present invention relates to a device and method for transmitting downlink control information in a wireless communication system. As such, the present description provides a method for transmitting downlink control information by means of a base station. The disclosed method comprises the steps of: configuring downlink control information comprising a resource allocation field displaying resource indicating values in a specific range; and transmitting the downlink control information to a terminal over a physical downlink control channel. According to the present invention, resource indicating values that are not being used in a resource allocation field can be utilized to configure new downlink control information and formats, or the same can be used in the transmission of new data such that it is possible to achieve compatibility with the control information and formats of existing systems, and a new control channel can be configured without any great increase in complexity.

Description

무선통신 시스템에서 하향링크 제어정보의 전송장치 및 방법Apparatus and method for transmitting downlink control information in wireless communication system
본 발명은 무선통신에 관한 것으로서, 보다 상세하게는 무선통신 시스템에서 하향링크 제어정보의 전송장치 및 방법에 관한 것이다. The present invention relates to wireless communication, and more particularly, to an apparatus and method for transmitting downlink control information in a wireless communication system.
일반적으로, 기지국은 단말이 CQI(Channel Qualtiy Indicator)등과 같이 잘 알려진 제어신호를 기지국으로 알려줌으로써 하향링크 채널 상태를 알 수 있다. 기지국은 각 단말로부터 하향링크 채널 상태를 수신하여 주파수 선택적 스케줄링(frequency selective scheduling)을 수행할 수 있다. 그런데, 상향링크 채널에 관하여도 주파수 선택적 스케줄링을 수행하기 위해서는 기지국이 상향링크 채널 상태를 알 필요가 있다.In general, the base station can know the downlink channel state by the terminal informs the base station of a well-known control signal such as a channel quality indicator (CQI). The base station may perform frequency selective scheduling by receiving a downlink channel state from each terminal. However, in order to perform frequency selective scheduling on the uplink channel, the base station needs to know the uplink channel state.
상향링크 기준신호는 기지국과 단말 양자간에 알려진 신호로, 파일럿(pilot)이라고도 한다. 상향링크 기준신호에는 복조 기준신호(demodulation reference signal)과 사운딩 기준신호(sounding reference signal; SRS)가 있다. 복조 기준신호는 데이터 복조를 위한 채널 추정에 사용되고, 사운딩 기준신호는 상향링크에서의 사용자 스케줄링에 사용된다. 단말은 상향링크 채널로 사운딩 기준신호를 보내고, 기지국은 사운딩 기준신호로부터 상향링크의 채널 상태를 파악한 후 상향링크 스케줄링을 수행한다.The uplink reference signal is a signal known between both the base station and the terminal and is also called a pilot. The uplink reference signal includes a demodulation reference signal and a sounding reference signal (SRS). The demodulation reference signal is used for channel estimation for data demodulation, and the sounding reference signal is used for user scheduling in uplink. The terminal sends a sounding reference signal through the uplink channel, and the base station determines uplink channel state from the sounding reference signal and performs uplink scheduling.
한편, 사운딩 기준신호뿐만 아니라 데이터 또는 다양한 상향링크 제어 정보가 상향링크 제어채널을 통해 전송된다. 상향링크 제어신호로는 HARQ(hybrid automatic repeat request)를 수행하기 위한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호, 하향링크 채널 품질을 가리키는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등 여러 가지 종류가 있다.Meanwhile, data or various uplink control information as well as a sounding reference signal are transmitted through the uplink control channel. The uplink control signal includes an acknowledgment (ACK) / not-acknowledgement (NACK) signal for performing a hybrid automatic repeat request (HARQ), a channel quality indicator (CQI) indicating downlink channel quality, a precoding matrix index (PMI), There are various types such as RI (Rank Indicator).
도 1은 본 발명이 적용되는 사운딩 기준신호를 전송하는 상향링크 서브프레임 구조의 일 예이다.1 is an example of an uplink subframe structure for transmitting a sounding reference signal to which the present invention is applied.
도 1을 참조하면, 상향링크 서브프레임은 시간축상에서 2개의 슬롯을 포함하며, 각 슬롯은 7개의 SC-FDMA(Single Carrier-Frequency Division Multiple Access) 심벌(symbol)을 포함한다. 상향링크 서브프레임은 주파수축상에서 PUCCH(Physical Uplink Control Channel)와 PUSCH(Physical Uplink Shared Channel)를 포함한다. 사운딩 기준신호가 전송되는 SC-FDMA 심벌구간에서의 PUCCH는 천공(puncturing)된다. 이때, 단말은 13개의 SC-FDMA 심벌을 이용하여 데이터를 전송하고, 나머지 마지막 1개의 SC-FDMA 심벌에 대해 비율정합(rate matching)과 같은 전처리과정을 취하여 사운딩 기준신호를 전송한다. 14번째 SC-FDMA 심벌이 사운딩 기준신호를 전송하는 것으로 정해져 있으나, 이는 예시일 뿐 SF-FDMA 심벌의 위치와 개수는 얼마든지 달리 정해질 수 있다. 사운딩 기준신호는 PUSCH의 전체에서 전송될 수도 있고, PUSCH의 일부에서만 전송될 수 있다.Referring to FIG. 1, an uplink subframe includes two slots on a time axis, and each slot includes seven single carrier-frequency division multiple access (SC-FDMA) symbols. The uplink subframe includes a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH) on the frequency axis. The PUCCH in the SC-FDMA symbol interval in which the sounding reference signal is transmitted is punctured. In this case, the UE transmits data using 13 SC-FDMA symbols and performs a preprocessing process such as rate matching for the last one SC-FDMA symbol and transmits a sounding reference signal. Although the 14th SC-FDMA symbol is determined to transmit a sounding reference signal, this is just an example, and the position and number of SF-FDMA symbols may be determined differently. The sounding reference signal may be transmitted in the entire PUSCH or may be transmitted in only part of the PUSCH.
LTE-A(Advanced)에서 고려되는 새로운 방식중의 하나로 비주기(aperiodic) 사운딩 기준신호(A-SRS)를 들 수 있다. 비주기 사운딩 기준신호에 있어서, 단말은 비주기적으로 사운딩 기준신호를 전송할 수 있으므로, 주기적으로 사운딩 기준신호를 전송하는 경우에 비해 자원이 효율적으로 사용될 수 있다. 비주기 사운딩 기준신호의 전송과 관련하여, 기지국은 단말로 사운딩 기준신호의 전송을 지시하거나, 사운딩 기준신호의 전송에 관련된 정보를 알려주어야 한다. One of the new schemes considered in LTE-A (Advanced) is an aperiodic sounding reference signal (A-SRS). In the aperiodic sounding reference signal, since the terminal may transmit the sounding reference signal aperiodically, the resource may be used more efficiently than when the sounding reference signal is periodically transmitted. In relation to the transmission of the aperiodic sounding reference signal, the base station should instruct the terminal to transmit the sounding reference signal or inform the information related to the transmission of the sounding reference signal.
비주기 사운딩 기준신호를 특정한 예로 들었으나, 새로운 시스템의 등장과 함께 요구되는 다른 새로운 절차나 새로운 정보를 다루기 위해서는 하향링크 제어정보가 필수적으로 추가되어야 한다. 이를 위해 기존의 시스템과 호환가능한 포맷을 유지하되 새로운 필드(field)의 추가를 고려해야 한다. 그러나, 기존 LTE의 하향링크 제어정보의 포맷(format)은 매우 제한적이며, 새로운 필드의 추가의 여지가 낮다. 그리고, 만약 새로운 필드를 추가하더라도 이는 단말의 블라인드 디코딩(blind decoding)의 부담이 가중시키는 문제가 있다. 따라서, 새로운 시스템에 적용할 새로운 하향링크 제어정보가 추가되더라도 기존의 시스템의 구조에 변경을 최소화하고 호환가능하도록 하는 하향링크 제어정보의 전송장치 및 방법이 요구된다.Although the aperiodic sounding reference signal is taken as a specific example, downlink control information must be added to handle other new procedures or new information required with the appearance of a new system. To do this, keep the format compatible with the existing system, but consider adding new fields. However, the format of the downlink control information of the existing LTE is very limited, and there is little room for adding a new field. In addition, even if a new field is added, this causes a problem of a burden of blind decoding of the UE. Therefore, even if new downlink control information to be applied to a new system is added, there is a need for an apparatus and a method for transmitting downlink control information to minimize and change the structure of an existing system.
본 발명의 기술적 과제는 무선통신 시스템에서 하향링크 제어정보의 전송장치 및 방법을 제공함에 있다. An object of the present invention is to provide an apparatus and method for transmitting downlink control information in a wireless communication system.
본 발명의 다른 기술적 과제는 무선통신 시스템에서 상향링크 스케줄링 정보를 위한 새로운 제어채널 구성방법을 제공함에 있다. Another technical problem of the present invention is to provide a new control channel configuration method for uplink scheduling information in a wireless communication system.
본 발명의 또 다른 기술적 과제는 무선통신 시스템에서 상향링크 신호의 전송방법을 제공함에 있다.Another technical problem of the present invention is to provide a method for transmitting an uplink signal in a wireless communication system.
본 발명의 또 다른 기술적 과제는 무선통신 시스템에서 비연속적 자원할당을 위한 자원할당정보의 구성방법을 제공함에 있다.Another technical problem of the present invention is to provide a method of configuring resource allocation information for discontinuous resource allocation in a wireless communication system.
본 발명의 일 양태에 따르면, 기지국에 의한 하향링크 제어정보의 전송방법을 제공한다. 상기 방법은 특정범위의 자원지시값(Resource Indication Value)을 표시하는 자원할당필드를 포함하는 하향링크 제어정보를 구성하는 단계, 및 상기 하향링크 제어정보를 물리하향링크 제어채널(physical downlink control channel: PDCCH)상으로 단말에게 전송하는 단계를 포함한다. According to an aspect of the present invention, a method for transmitting downlink control information by a base station is provided. The method includes configuring downlink control information including a resource allocation field indicating a resource indication value of a specific range, and converting the downlink control information into a physical downlink control channel: Transmitting to the terminal on the PDCCH).
상기 특정범위의 자원지시값은 상기 하향링크 제어정보가 상향링크 신호의 전송을 위한 구성정보를 포함함을 나타낼 수 있다. The resource indication value of the specific range may indicate that the downlink control information includes configuration information for transmission of an uplink signal.
본 발명의 다른 양태에 따르면, 단말에 의한 하향링크 제어정보의 수신방법을 제공한다. 상기 방법은 특정범위의 자원지시값을 표시하는 자원할당필드를 포함하는 하향링크 제어정보를 PDCCH상으로 기지국으로부터 수신하는 단계, 상기 특정범위의 자원지시값을 기반으로 상기 하향링크 제어정보의 포맷(format)을 해석하는 단계, 및 상기 해석된 포맷에 따라 상기 하향링크 제어정보를 복호화하는 단계를 포함한다. According to another aspect of the present invention, a method for receiving downlink control information by a terminal is provided. The method includes receiving downlink control information including a resource allocation field indicating a resource indication value of a specific range from a base station on a PDCCH, and using the format of the downlink control information based on the resource indication value of the specific range ( interpreting a format), and decoding the downlink control information according to the interpreted format.
본 발명의 또 다른 양태에 따르면, 하향링크 제어정보를 전송하는 장치를 제공한다. 상기 장치는 자원할당필드에 의해 표현되는 특정범위의 자원지시값을 기반으로 하향링크 제어정보를 구성하는 하향링크 제어정보 구성부, 상기 하향링크 제어정보를 전송할 PDCCH를 구성하는 제어채널 구성부, 및 상기 하향링크 제어정보를 상기 PDCCH상으로 단말로 전송하는 제어채널 전송부를 포함한다. According to another aspect of the present invention, an apparatus for transmitting downlink control information is provided. The apparatus includes a downlink control information configuration unit constituting downlink control information based on a resource indication value of a specific range represented by a resource allocation field, a control channel configuration unit constituting a PDCCH to transmit the downlink control information, and And a control channel transmitter for transmitting the downlink control information to the terminal on the PDCCH.
상기 하향링크 제어정보는 상기 단말에 의한 상향링크 신호의 전송을 지시하는 정보를 포함할 수 있다. The downlink control information may include information indicating the transmission of an uplink signal by the terminal.
본 발명의 또 다른 양태에 따르면, 하향링크 제어정보를 수신하는 장치를 제공한다. 상기 장치는 하향링크 제어정보를 PDCCH상으로 기지국으로부터 수신하는 제어채널 수신부, 상기 제어채널에 대해 블라인드 디코딩(blind decoding)을 수행하여 상기 하향링크 제어정보를 추출하는 제어채널 디코딩부, 및 상기 하향링크 제어정보에 포함되는 복수의 필드들로부터 자원할당필드를 분리하고, 상기 자원할당필드가 나타내는 자원지시값을 이용하여 상기 하향링크 제어정보의 포맷을 확정하며, 상기 확정된 포맷에 적합한 해석방식에 의해 상기 하향링크 제어정보를 해석하는 하향링크 제어정보 해석부를 포함한다. According to another aspect of the present invention, there is provided an apparatus for receiving downlink control information. The apparatus includes a control channel receiver for receiving downlink control information from a base station on a PDCCH, a control channel decoder for extracting the downlink control information by performing blind decoding on the control channel, and the downlink The resource allocation field is separated from a plurality of fields included in the control information, the format of the downlink control information is determined by using the resource indication value indicated by the resource allocation field, and an analysis method suitable for the determined format is used. And a downlink control information analyzer for analyzing the downlink control information.
본 발명의 또 다른 양태에 따르면, 하향링크 제어정보의 전송방법을 제공한다. 상기 방법은 자원할당필드에 의해 표현되는 자원지시값(Resource Indication Value)의 전체범위 중 선택된 특정범위를 이용하여 상향링크 신호에 관한 정보 또는 하향링크 신호에 관한 정보를 구성하는 단계, 상기 상향링크 신호에 관한 정보 또는 상기 하향링크 신호에 관한 정보를 포함하는 하향링크 제어정보를 단말로 전송하는 단계, 및 상기 상향링크 신호에 관한 정보에 기초하여 상기 상향링크 신호를 상기 단말로부터 수신하거나, 상기 하향링크 신호에 관한 정보에 기초하여 상기 하향링크 신호를 상기 단말로 전송하는 단계를 포함한다.According to another aspect of the present invention, a method of transmitting downlink control information is provided. The method may include configuring information about an uplink signal or information about a downlink signal using a specific range selected from a full range of resource indication values represented by a resource allocation field. Transmitting downlink control information including information about the downlink signal or information about the downlink signal to the terminal, and receiving the uplink signal from the terminal based on the information on the uplink signal, or the downlink And transmitting the downlink signal to the terminal based on the information about the signal.
상기 상향링크 신호에 관한 정보는 상향링크 신호의 전송을 위한 자원블록의 할당을 나타내는 자원할당정보이고, 상기 선택된 특정범위는 비연속적(non-contiguous) 할당방식에 따라 할당되는 자원블록을 지시할 수 있다. The information on the uplink signal is resource allocation information indicating allocation of a resource block for transmission of an uplink signal, and the selected specific range may indicate a resource block allocated according to a non-contiguous allocation scheme. have.
상기 상향링크 신호에 관한 정보 또는 하향링크 신호에 관한 정보를 구성하는 단계는, 상기 선택된 특정범위 및 상기 하향링크 제어정보에 포함되는 잉여비트를 이용하여 상기 상향링크 신호에 관한 정보 또는 하향링크 신호에 관한 정보를 구성함을 포함한다. The configuring of the information on the uplink signal or the information on the downlink signal may be performed on the information on the uplink signal or the downlink signal by using the redundant bits included in the selected specific range and the downlink control information. It includes organizing information.
상기 상향링크 신호에 관한 정보 또는 하향링크 신호에 관한 정보를 구성하는 단계는, 상기 선택된 특정범위, 상기 하향링크 제어정보에 포함되는 잉여비트, 및 상기 잉여비트에 따라 그 용도가 가변적으로 설정되는 적응적 필드를 이용하여 상기 상향링크 신호에 관한 정보 또는 하향링크 신호에 관한 정보를 구성함을 포함할 수 있다. The configuring of the information on the uplink signal or the information on the downlink signal may include: adapting a variable setting of the purpose according to the selected specific range, the redundant bits included in the downlink control information, and the redundant bits. It may include configuring information about the uplink signal or information about the downlink signal using the red field.
상기 잉여비트가 상기 상향링크 신호의 전송을 위한 자원블록의 할당이 연속적(contiguous)으로 이루어짐을 지시하는 경우, 상기 적응적 필드는 상기 상향링크 전송에 주파수 도약이 적용되는지 여부를 지시할 수 있다. When the excess bit indicates that allocation of a resource block for transmission of the uplink signal is contiguous, the adaptive field may indicate whether frequency hopping is applied to the uplink transmission.
상기 잉여비트가 상기 상향링크 신호의 전송을 위한 자원블록의 할당이 비연속적으로 이루어짐을 지시하는 경우, 상기 적응적 필드와 상기 자원할당필드는 상기 자원지시값을 표현할 수 있다. When the surplus bit indicates that the allocation of the resource block for the transmission of the uplink signal is performed discontinuously, the adaptive field and the resource allocation field may represent the resource indication value.
상기 상향링크 신호에 관한 정보는 상향링크 신호의 전송을 위한 자원블록그룹(Resource Block Group)의 할당을 나타내는 자원할당정보이고, 상기 선택된 특정범위는 비연속적 할당방식에 따라 할당되는 자원블록을 지시할 수 있다. The information on the uplink signal is resource allocation information indicating an allocation of a resource block group for transmitting an uplink signal, and the selected specific range may indicate a resource block allocated according to a discontinuous allocation method. Can be.
상기 상향링크 신호에 관한 정보는 상향링크 신호의 전송을 위해 할당되는 자원블록을 나타내는 자원할당정보이고, 상기 할당되는 자원블록은 제1 부분의 자원블록과 제2 부분의 자원블록으로 구분되며, 상기 제1 부분의 자원블록에는 비연속적 할당방식이 적용되고, 상기 제2 부분의 자원블록에는 연속적 할당방식이 적용될 수 있다. The information about the uplink signal is resource allocation information indicating a resource block allocated for transmission of an uplink signal, and the allocated resource block is divided into a resource block of a first part and a resource block of a second part. A non-contiguous allocation scheme may be applied to the resource block of the first portion, and a continuous allocation scheme may be applied to the resource block of the second portion.
상기 제1 부분의 자원블록은 상기 할당되는 자원블록의 시작부분과 끝부분을 구성하는 소정개수의 자원블록이고, 상기 제2 부분의 자원블록은 상기 할당되는 자원블록에서 상기 시작부분과 상기 끝부분을 구성하는 소정개수의 자원블록을 제외한 나머지일 수 있다. The resource block of the first part is a predetermined number of resource blocks constituting a start part and an end part of the allocated resource block, and the resource block of the second part is the start part and the end part of the allocated resource block. It may be the remainder except a predetermined number of resource blocks constituting a.
상기 상향링크 신호에 관한 정보는 상향링크 신호의 전송을 위해 할당되는 자원블록그룹을 나타내는 자원할당정보이고, 상기 할당되는 자원블록그룹은 제1 부분의 자원블록그룹과 제2 부분의 자원블록그룹으로 구분되며, 상기 제1 부분의 자원블록그룹에는 비연속적 할당방식이 적용되고, 상기 제2 부분의 자원블록그룹에는 연속적 할당방식이 적용될 수 있다. The information on the uplink signal is resource allocation information indicating a resource block group allocated for transmission of an uplink signal, and the allocated resource block group is divided into resource block groups of a first part and resource block groups of a second part. The non-contiguous allocation scheme may be applied to the resource block group of the first portion, and the continuous allocation scheme may be applied to the resource block group of the second portion.
상기 제1 부분의 자원블록그룹은 상기 할당되는 자원블록그룹의 시작부분과 끝부분을 구성하는 소정개수의 자원블록그룹이고, 상기 제2 부분의 자원블록그룹은 상기 할당되는 자원블록그룹에서 상기 시작부분과 상기 끝부분을 구성하는 소정개수의 자원블록그룹을 제외한 나머지일 수 있다. The resource block group of the first portion is a predetermined number of resource block groups constituting a start portion and an end portion of the allocated resource block group, and the resource block group of the second portion is the start of the allocated resource block group. It may be the rest except for a predetermined number of resource block groups constituting the end portion and the end portion.
상기 상향링크 신호에 관한 정보는 상향링크 신호의 전송을 위한 자원블록의 할당을 나타내는 자원할당정보이고, 상기 선택된 특정범위는 비연속적 할당방식에 따라 할당되는 자원블록을 지시할 수 있다. The information on the uplink signal is resource allocation information indicating allocation of a resource block for transmission of an uplink signal, and the selected specific range may indicate a resource block allocated according to a discontinuous allocation method.
상기 상향링크 신호에 관한 정보를 구성하는 단계는, 상기 선택된 특정범위 및 상기 하향링크 제어정보에 포함되는 잉여비트를 이용하여 상기 상향링크 신호에 관한 정보를 구성함을 포함할 수 있다. The configuring of the information on the uplink signal may include configuring the information on the uplink signal using the selected specific range and the redundant bits included in the downlink control information.
상기 상향링크 신호에 관한 정보를 구성하는 단계는, 상기 선택된 특정범위, 상기 하향링크 제어정보에 포함되는 잉여비트, 및 상기 잉여비트에 따라 그 용도가 가변적으로 설정되는 적응적 필드를 이용하여 상기 상향링크 신호에 관한 정보를 구성함을 포함할 수 있다. The configuring of the information on the uplink signal may include the uplink using the selected specific range, the redundant bits included in the downlink control information, and the adaptive field whose use is variably set according to the redundant bits. And configuring information about the link signal.
상기 잉여비트가 상기 상향링크 신호의 전송을 위한 자원블록의 할당이 연속적(contiguous)으로 이루어짐을 지시하는 경우, 상기 적응적 필드는 상기 상향링크 전송에 주파수 도약이 적용되는지 여부를 지시할 수 있다. When the surplus bits indicate that allocation of resource blocks for transmission of the uplink signal is contiguous, the adaptive field may indicate whether frequency hopping is applied to the uplink transmission.
상기 잉여비트가 상기 상향링크 신호의 전송을 위한 자원블록의 할당이 비연속적으로 이루어짐을 지시하는 경우, 상기 적응적 필드와 상기 자원할당필드는 상기 자원지시값을 표현할 수 있다. When the surplus bit indicates that the allocation of the resource block for the transmission of the uplink signal is performed discontinuously, the adaptive field and the resource allocation field may represent the resource indication value.
상기 상향링크 신호에 관한 정보는 상향링크 신호의 전송을 위한 자원블록그룹의 할당을 나타내는 자원할당정보이고, 상기 선택된 특정범위는 비연속적 할당방식에 따라 할당되는 자원블록을 지시할 수 있다. The information on the uplink signal is resource allocation information indicating allocation of a resource block group for transmission of an uplink signal, and the selected specific range may indicate a resource block allocated according to a discontinuous allocation method.
상기 상향링크 신호에 관한 정보는 상향링크 신호의 전송을 위해 할당되는 자원블록을 나타내는 자원할당정보이고, 상기 할당되는 자원블록은 제1 부분의 자원블록과 제2 부분의 자원블록으로 구분되며, 상기 제1 부분의 자원블록에는 비연속적 할당방식이 적용되고, 상기 제2 부분의 자원블록에는 연속적 할당방식이 적용될 수 있다. The information about the uplink signal is resource allocation information indicating a resource block allocated for transmission of an uplink signal, and the allocated resource block is divided into a resource block of a first part and a resource block of a second part. A non-contiguous allocation scheme may be applied to the resource block of the first portion, and a continuous allocation scheme may be applied to the resource block of the second portion.
상기 제1 부분의 자원블록은 상기 할당되는 자원블록의 시작부분과 끝부분을 구성하는 소정개수의 자원블록이고, 상기 제2 부분의 자원블록은 상기 할당되는 자원블록에서 상기 시작부분과 상기 끝부분을 구성하는 소정개수의 자원블록을 제외한 나머지일 수 있다. The resource block of the first part is a predetermined number of resource blocks constituting a start part and an end part of the allocated resource block, and the resource block of the second part is the start part and the end part of the allocated resource block. It may be the remainder except a predetermined number of resource blocks constituting a.
상기 상향링크 신호에 관한 정보는 상향링크 신호의 전송을 위해 할당되는 자원블록그룹을 나타내는 자원할당정보이고, 상기 할당되는 자원블록그룹은 제1 부분의 자원블록그룹과 제2 부분의 자원블록그룹으로 구분되며, 상기 제1 부분의 자원블록그룹에는 비연속적 할당방식이 적용되고, 상기 제2 부분의 자원블록그룹에는 연속적 할당방식이 적용될 수 있다. The information on the uplink signal is resource allocation information indicating a resource block group allocated for transmission of an uplink signal, and the allocated resource block group is divided into resource block groups of a first part and resource block groups of a second part. The non-contiguous allocation scheme may be applied to the resource block group of the first portion, and the continuous allocation scheme may be applied to the resource block group of the second portion.
상기 제1 부분의 자원블록그룹은 상기 할당되는 자원블록그룹의 시작부분과 끝부분을 구성하는 소정개수의 자원블록그룹이고, 상기 제2 부분의 자원블록그룹은 상기 할당되는 자원블록그룹에서 상기 시작부분과 상기 끝부분을 구성하는 소정개수의 자원블록그룹을 제외한 나머지일 수 있다. The resource block group of the first portion is a predetermined number of resource block groups constituting a start portion and an end portion of the allocated resource block group, and the resource block group of the second portion is the start of the allocated resource block group. It may be the rest except for a predetermined number of resource block groups constituting the end portion and the end portion.
본 발명의 또 다른 양태에 따르면, 하향링크 제어정보의 수신방법을 제공한다. 상기 방법은 상향링크 신호에 관한 정보를 포함하는 하향링크 제어정보를 기지국으로부터 수신하는 단계, 및 상기 상향링크 신호에 관한 정보에 기초하여 상기 상향링크 신호를 상기 기지국으로 전송하는 단계를 포함한다. 상기 상향링크 신호에 관한 정보는 자원할당필드에 의해 표현되는 모든 자원지시값 중 선택된 특정범위를 이용하여 구성된다.According to another aspect of the present invention, a method for receiving downlink control information is provided. The method includes receiving downlink control information including information about an uplink signal from a base station, and transmitting the uplink signal to the base station based on the information about the uplink signal. The information on the uplink signal is configured using a specific range selected from all resource indication values represented by the resource allocation field.
본 발명의 또 다른 양태에 따르면, 하향링크 제어정보를 전송하는 장치를 제공한다. 상기 장치는 자원할당필드에 의해 표현되는 자원지시값 중 선택된 특정범위를 이용하여 하향링크 제어정보의 필드(field)를 구성하는 하향링크 제어정보 구성부, 상기 구성된 필드에 따른 상기 하향링크 제어정보를 전송할 제어채널을 구성하는 제어채널 구성부, 및 상기 하향링크 제어정보를 상기 제어채널을 통해 단말로 전송하는 전송부를 포함한다. 상기 하향링크 제어정보는 상기 단말에 의한 상향링크 신호의 전송을 지시하는 정보를 포함한다.According to another aspect of the present invention, an apparatus for transmitting downlink control information is provided. The apparatus includes a downlink control information constructing unit constituting a field of downlink control information using a specific range selected from resource indication values represented by a resource allocation field, and the downlink control information according to the configured field. And a control unit for configuring a control channel to be transmitted, and a transmission unit for transmitting the downlink control information to the terminal through the control channel. The downlink control information includes information instructing transmission of an uplink signal by the terminal.
본 발명의 또 다른 양태에 따르면, 하향링크 제어정보를 전송하는 장치를 제공한다. 상기 장치는 자원할당필드에 의해 표현되는 자원지시값 중 선택된 특정범위를 이용하여 하향링크 제어정보의 필드(field)를 구성하는 하향링크 제어정보 구성부, 상기 구성된 필드에 따른 상기 하향링크 제어정보를 전송할 제어채널을 구성하는 제어채널 구성부, 및 상기 하향링크 제어정보를 상기 제어채널을 통해 단말로 전송하는 제어채널 전송부를 포함한다. 상기 하향링크 제어정보는 상기 단말에 의한 상향링크 신호의 전송을 지시하는 정보를 포함한다. According to another aspect of the present invention, an apparatus for transmitting downlink control information is provided. The apparatus includes a downlink control information constructing unit constituting a field of downlink control information using a specific range selected from resource indication values represented by a resource allocation field, and the downlink control information according to the configured field. And a control channel transmitter configured to configure a control channel to be transmitted, and a control channel transmitter configured to transmit the downlink control information to the terminal through the control channel. The downlink control information includes information instructing transmission of an uplink signal by the terminal.
자원할당필드에서 사용되지 않는 자원지시값을 이용하여 새로운 하향링크 제어정보의 포맷을 구성하거나, 새로운 정보를 전송하는데 사용하므로, 기존의 시스템의 제어정보의 포맷과 호환이 가능하고, 큰 복잡도의 증가 없이 새로운 제어채널을 구성할 수 있다.It is possible to compose a format of new downlink control information or to transmit new information by using a resource indication value not used in the resource allocation field, so that it is compatible with the format of control information of an existing system and increases the complexity. A new control channel can be configured without.
도 1은 사운딩 기준신호를 전송하는 상향링크 서브프레임 구조의 일 예이다.1 is an example of an uplink subframe structure for transmitting a sounding reference signal.
도 2는 본 발명이 적용되는 무선통신 시스템을 나타낸다. 2 shows a wireless communication system to which the present invention is applied.
도 3은 본 발명이 적용되는 무선 프레임의 구조를 나타낸다. 3 shows a structure of a radio frame to which the present invention is applied.
도 4는 본 발명이 적용되는 하향링크 서브프레임의 구조를 나타낸다. 4 shows a structure of a downlink subframe to which the present invention is applied.
도 5는 본 발명이 적용되는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.5 is an exemplary diagram illustrating a resource grid for one downlink slot to which the present invention is applied.
도 6은 본 발명이 적용되는 자원할당 방식의 일 예이다. 이는 타입0의 자원할당방식이다. 6 is an example of a resource allocation method to which the present invention is applied. This is type 0 resource allocation.
도 7은 본 발명이 적용되는 자원할당 방식의 다른 예이다.7 is another example of a resource allocation method to which the present invention is applied.
도 8은 본 발명이 적용되는 자원할당 방식의 또 다른 예이다.8 is another example of a resource allocation method to which the present invention is applied.
도 9는 본 발명의 일 예에 따른 DCI 전송장치 및 DCI 수신장치를 나타내는 블록도이다.9 is a block diagram illustrating a DCI transmitter and a DCI receiver according to an embodiment of the present invention.
도 10은 본 발명의 일 예에 따른 DCI의 전송방법을 나타내는 흐름도이다.10 is a flowchart illustrating a method of transmitting DCI according to an embodiment of the present invention.
도 11은 본 발명의 일 예에 따른 기지국에 의한 DCI 전송방법을 설명하는 순서도이다.11 is a flowchart illustrating a DCI transmission method by a base station according to an embodiment of the present invention.
도 12는 본 발명의 일 예에 따른 단말에 의한 DCI 수신방법을 설명하는 순서도이다.12 is a flowchart illustrating a DCI reception method by a terminal according to an embodiment of the present invention.
이하, 본 명세서에서는 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.
또한, 본 명세서의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the component of this specification, terms, such as 1st, 2nd, A, B, (a), (b), can be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be "connected", "coupled" or "connected".
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다. In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
도 2는 본 발명이 적용되는 무선통신 시스템을 나타낸다. 2 shows a wireless communication system to which the present invention is applied.
도 2를 참조하면, 무선통신 시스템(10)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신 시스템(10)은 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역 또는 주파수 영역(일반적으로 셀(cell)이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. Referring to FIG. 2, the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data. The wireless communication system 10 includes at least one base station (BS) 11. Each base station 11 provides a communication service for a particular geographic area or frequency area (generally called a cell) 15a, 15b, 15c. The cell can in turn be divided into a number of regions (called sectors).
단말(12; mobile station, MS)은 고정되거나 이동성을 가질 수 있으며, UE(user equipment), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(femto eNB), 가내 기지국(Home eNB: HeNB), 릴레이(relay)등 다른 용어로 불릴 수 있다. 셀은 기지국(11)이 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.The mobile station (MS) 12 may be fixed or mobile, and may include a user equipment (UE), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms. The base station 11 generally refers to a fixed station communicating with the terminal 12, and includes an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and a femto eNB. ), Home eNB (HeNB), relay, etc. may be called other terms. The cell should be interpreted in a comprehensive sense of a part of the area covered by the base station 11 and encompasses various coverage areas such as megacells, macrocells, microcells, picocells and femtocells.
이하에서 하향링크(downlink)는 기지국(11)에서 단말(12)로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말(12)에서 기지국(11)으로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다. 무선통신 시스템(10)에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.Hereinafter, downlink refers to a communication or communication path from the base station 11 to the terminal 12, and uplink refers to a communication or communication path from the terminal 12 to the base station 11. . In downlink, the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12. In uplink, the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11. There is no limitation on the multiple access scheme applied to the wireless communication system 10. Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), OFDM-FDMA, OFDM-TDMA For example, various multiple access schemes such as OFDM-CDMA may be used. The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme transmitted using different times or a frequency division duplex (FDD) scheme transmitted using different frequencies.
도 3은 본 발명이 적용되는 무선 프레임의 구조를 나타낸다. 3 shows a structure of a radio frame to which the present invention is applied.
도 3을 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)을 포함하고, 하나의 서브프레임은 2개의 슬롯(slot)을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. Referring to FIG. 3, a radio frame includes 10 subframes, and one subframe includes two slots. The time taken for one subframe to be transmitted is called a transmission time interval (TTI). For example, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 다수의 자원 블록(resource block: RB)을 포함한다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 SC-FDMA 심벌 또는 심벌 구간이라고 할 수 있다. RB는 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파를 포함한다.One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain. The OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be referred to as an SC-FDMA symbol or a symbol period according to a multiple access scheme. The RB includes a plurality of consecutive subcarriers in one slot in resource allocation units.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심벌의 수는 다양하게 변경될 수 있다. The structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may be variously changed.
도 4는 본 발명이 적용되는 하향링크 서브프레임의 구조를 나타낸다. 4 shows a structure of a downlink subframe to which the present invention is applied.
도 4를 참조하면, 서브 프레임은 2개의 슬롯을 포함한다. 서브 프레임내의 첫번째 슬롯의 앞선 2 또는 3 OFDM 심벌들은 PDCCH(Physical Downlink Control Channel: PDCCH)가 할당되는 제어영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다. Referring to FIG. 4, the subframe includes two slots. The preceding two or three OFDM symbols of the first slot in the subframe are control regions to which a PDCCH (Physical Downlink Control Channel (PDCCH)) is allocated, and the remaining OFDM symbols are data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated. do.
하향링크 제어채널에는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다. PCFICH는 서브프레임의 첫번째 OFDM 심벌에서 전송되고, 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 정보를 나른다. PHICH는 상향링크 HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. 즉, 단말이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다. The downlink control channel includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like. The PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe. The PHICH carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for an uplink HARQ (Hybrid Automatic Repeat Request). That is, the ACK / NACK signal for the uplink data transmitted by the terminal is transmitted on the PHICH.
이제 하향링크 물리채널인 PDCCH에 대해 기술한다. Now, a PDCCH which is a downlink physical channel will be described.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷, UL-SCH(Uplink Shared Channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(Voice over Internet Protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다. PDCCH is a resource allocation and transmission format of downlink shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, random access response transmitted on PDSCH Resource allocation of a higher layer control message, a set of transmit power control commands for individual UEs in a certain UE group, and activation of a Voice over Internet Protocol (VoIP). A plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs. The PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs). CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel. The CCE corresponds to a plurality of resource element groups. The format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information; 이하 DCI)라고 한다. DCI는 그 포맷(format)에 따라 사용용도가 다르고, DCI내에서 정의되는 필드(field)도 다르다. 표 1은 DCI 포맷에 따른 DCI를 나타낸다.Control information transmitted through the PDCCH is referred to as downlink control information (DCI). DCI has different uses according to its format, and fields defined in DCI are also different. Table 1 shows DCI according to DCI format.
표 1
DCI 포맷 설명
0 PUSCH(상향링크 그랜트)의 스케줄링에 사용됨
1 1개의 PDSCH 부호어(codeword)의 스케줄링에 사용됨
1A 1개의 PDSCH 부호어의 간략한 스케줄링 및 PDCCH 명령에 의해 초기화되는 랜덤 액세스 절차에 사용됨
1B 프리코딩 정보를 이용한 1개의 PDSCH 부호어의 간략한 스케줄링에 사용됨
1C 1개의 PDSCH 부호어의 간략한 스키줄링 및 MCCH 변경의 통지를 위해 사용됨
1D 프리코딩 및 전력 오프셋 정보를 포함하는 1개의 PDSCH 부호어의 간략한 스케줄링에 사용됨
2 공간 다중화 모드로 구성되는 단말에 대한 PDSCH 스케줄링에 사용됨
2A 긴지연(large delay)의 CDD 모드로 구성된 단말의 PDSCH 스케줄링에 사용됨
3 2비트의 전력 조정을 포함하는 PUCCH와 PUSCH를 위한 TPC 명령의 전송에 사용됨
3A 단일 비트 전력 조정을 포함하는 PUCCH와 PUSCH를 위한 TPC 명령의 전송에 사용됨
Table 1
DCI format Explanation
0 Used for scheduling of PUSCH (Uplink Grant)
One Used for scheduling one PDSCH codeword
1A Used for simple scheduling of one PDSCH codeword and a random access procedure initiated by a PDCCH command
1B Used for simple scheduling of one PDSCH codeword using precoding information
1C Used for brief scheduling of one PDSCH codeword and notification of MCCH changes
1D Used for simple scheduling of one PDSCH codeword containing precoding and power offset information
2 Used for PDSCH scheduling for UE configured in spatial multiplexing mode
2A Used for PDSCH scheduling of UE configured in long delay CDD mode
3 Used to transmit TPC commands for PUCCH and PUSCH with power adjustment of 2 bits
3A Used to transmit TPC commands for PUCCH and PUSCH with single bit power adjustment
DCI 포맷 0은 상향링크 자원 할당 정보를 가리키고, DCI 포맷 1~2는 하향링크 자원 할당 정보를 가리키고, DCI 포맷 3, 3A는 임의의 UE 그룹들에 대한 상향링크 TPC(transmit power control) 명령을 가리킨다. DCI의 각 필드는 정보비트(information bit)에 순차적으로 맵핑된다. 예를 들어, DCI가 총 44비트 길이의 정보비트에 맵핑된다고 하면, 자원할당필드는 정보비트의 10 번째 비트 내지 23 번째 비트에 맵핑될 수 있다. DCI format 0 indicates uplink resource allocation information, DCI formats 1 to 2 indicate downlink resource allocation information, and DCI formats 3 and 3A indicate uplink transmit power control (TPC) commands for arbitrary UE groups. . Each field of the DCI is sequentially mapped to an information bit. For example, if DCI is mapped to information bits having a total length of 44 bits, the resource allocation field may be mapped to 10th to 23rd bits of the information bits.
DCI는 상향링크 자원할당정보와 하향링크 자원할당정보를 포함한다. 상향링크 자원할당정보는 상향링크 그랜트(uplink grant)라 불릴 수 있고, 하향링크 자원할당정보는 하향링크 그랜트(downlink grant)라 불릴 수 있다. DCI includes uplink resource allocation information and downlink resource allocation information. The uplink resource allocation information may be referred to as an uplink grant, and the downlink resource allocation information may be referred to as a downlink grant.
표 2는 상향링크 자원할당정보(또는 상향링크 그랜트)인 포맷 0의 DCI를 나타낸다. Table 2 shows DCI of format 0 which is uplink resource allocation information (or uplink grant).
표 2
Figure PCTKR2011003290-appb-T000001
TABLE 2
Figure PCTKR2011003290-appb-T000001
플래그(Flag)는 1비트 정보로서 DCI 0과 DCI 1A를 구별하는 지시자이다. 호핑 플래그(hopping flag)는 1비트 정보로서, 단말이 상향링크 전송을 수행할 때 주파수 도약이 적용되는지, 적용되지 않는지를 지시한다. 예를 들어, 호핑 플래그가 1이면 상향링크 전송시 주파수 도약을 적용하고, 0이면 상향링크 전송시 주파수 도약을 적용하지 않음을 나타낸다. The flag is an indicator for distinguishing DCI 0 from DCI 1A as 1-bit information. The hopping flag is 1-bit information and indicates whether frequency hopping is applied or not when the terminal performs uplink transmission. For example, if the hopping flag is 1, frequency hopping is applied during uplink transmission, and if hopping flag is 0, frequency hopping is not applied during uplink transmission.
자원블록할당 및 호핑 자원할당(Resource block assignment and hopping resource allocation)은 자원할당필드(resource allocation field)라 불리기도 한다. 자원할당필드는 단말에 할당되는 자원의 물리적인 위치 또는 양을 지시한다. 상기 표 2에 표시되지는 않았으나, 상향링크 그랜트는 전체비트의 개수를 일정하게 유지하기 위한 잉여비트 또는 패딩비트(padding bit)를 포함한다. DCI는 여러가지 포맷이 있는데, 잉여비트를 이용하여 서로 다른 포맷의 제어정보라 하더라도 비트의 길이를 동일하게 조절할 수 있으며, 이로써 단말이 블라인드 디코딩을 원활히 수행할 수 있다. Resource block assignment and hopping resource allocation is also called a resource allocation field. The resource allocation field indicates the physical location or amount of resources allocated to the terminal. Although not shown in Table 2, the uplink grant includes a surplus bit or a padding bit to keep the total number of bits constant. There are various formats of DCI. Even if the control information of the different formats is used by using the surplus bits, the length of the bits can be adjusted to be the same, and thus the UE can smoothly perform blind decoding.
예를 들어, 상기 표 2에서, FDD 20MHz의 대역에서 자원할당필드가 13비트라 하면, 상향링크 그랜트는 총 27비트(CIF필드와 CRC필드는 제외)이다. 만약, 블라인드 디코딩의 입력으로 정해진 비트의 길이가 28비트라 하면, 기지국은 스케줄링시 1비트의 잉여비트를 상향링크 그랜트에 추가하여 상향링크 그랜트의 총 비트수가 28비트가 될 수 있도록 한다. 이 때, 잉여비트는 특별한 정보를 담고 있지 않으므로, 모두 0으로 셋팅될 수 있다. 물론, 잉여비트의 개수는 2보다 적을 수도 있고, 클 수도 있다. For example, in Table 2, if the resource allocation field is 13 bits in the FDD 20MHz band, the uplink grant is 27 bits (excluding the CIF field and the CRC field). If the length of the bit determined as the blind decoding input is 28 bits, the base station adds an extra bit of 1 bit to the uplink grant during scheduling so that the total number of bits of the uplink grant is 28 bits. At this time, since the surplus bits do not contain special information, all of them may be set to zero. Of course, the number of surplus bits may be less than two, or may be large.
자원할당과 관련하여, 먼저 물리적인 자원구조에 관하여 설명된다.Regarding resource allocation, the physical resource structure is described first.
도 5는 본 발명이 적용되는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.5 is an exemplary diagram illustrating a resource grid for one downlink slot to which the present invention is applied.
도 5를 참조하면, 하향링크 슬롯은 시간 영역(time domain)에서 복수의 OFDM 심벌을 포함한다. 여기서, 하나의 하향링크 슬롯은 7 OFDMA 심벌을 포함하고, 하나의 자원블록(Resource Block; RB)은 주파수 영역에서 12 부반송파를 포함하는 것을 예시적으로 기술하나, 이에 제한되는 것은 아니다. Referring to FIG. 5, a downlink slot includes a plurality of OFDM symbols in a time domain. Here, one downlink slot includes 7 OFDMA symbols, and one resource block (RB) exemplarily includes 12 subcarriers in the frequency domain, but is not limited thereto.
자원 그리드 상의 각 요소(element)를 자원요소(resource element: RE)라 하며, 하나의 자원블록은 12×7개의 자원요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록의 수 NDL은 셀에서 설정되는 하향링크 전송 대역폭에 종속한다. LTE에서 고려되는 대역폭은 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz이고 이를 자원블록의 개수로 표현하면 각각 6, 15, 25, 50, 75, 100이다. 각 대역에 해당하는 적어도 하나 이상의 자원블록이 묶여서 자원블록그룹(Resource Block Group; RBG)을 구성할 수 있다. 예를 들어, 인접한 2개의 자원블록이 하나의 자원블록그룹을 구성할 수 있다. Each element on the resource grid is called a resource element (RE), and one resource block includes 12 × 7 resource elements. The number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell. The bandwidths considered in LTE are 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, which are 6, 15, 25, 50, 75, and 100, respectively. At least one resource block corresponding to each band may be bundled to form a resource block group (RBG). For example, two adjacent resource blocks may constitute one resource block group.
LTE에서 각 대역폭별 총 자원블록의 개수 및 하나의 자원블록그룹을 구성하는 자원블록의 개수는 표 3과 같다.In LTE, the total number of resource blocks for each bandwidth and the number of resource blocks constituting one resource block group are shown in Table 3.
표 3
대역폭 총 자원블록의 개수 하나의 자원블록그룹에 속하는 자원블록의 개수 총 자원블록그룹의 개수
1.4MHz 6 1 6
3MHz 15 2 8
5MHz 25 2 13
10MHz 50 3 17
15MHz 75 4 19
20MHz 100 4 25
TABLE 3
Bandwidth Total number of resource blocks The number of resource blocks belonging to one resource block group Total number of resource block groups
1.4 MHz 6 One 6
3 MHz 15 2 8
5 MHz 25 2 13
10 MHz 50 3 17
15 MHz 75 4 19
20 MHz 100 4 25
표 3을 참조하면, 주어진 대역폭에 따라 사용가능한 총 자원블록의 개수가 다르다. 총 자원블록의 개수가 다르다는 것은 자원할당을 지시하는 정보의 크기가 달라짐을 의미한다. 이외에도, 자원블록을 할당하는 경우의 수는 자원할당 방식에 따라 다를 수 있다. 자원할당 방식의 일 예로서, 자원블록은 비트맵 형식을 이용하여 할당될 수 있다(타입0). 자원할당 방식의 다른 예로서, 자원블록은 소정 간격 또는 주기로 할당될 수 있다(타입1). 자원할당 방식의 또 다른 예로서, 자원블록은 연속된 일정길이의 영역으로서 할당될 수 있다(타입2). 자원할당필드에 의해 단말에 할당되는 자원블록이 지시되며, 자원할당필드의 비트요구량은 각 타입의 자원할당 방식에 따라, 그리고 대역폭별 총 자원블록의 개수에 따라 다르다. Referring to Table 3, the total number of available resource blocks varies according to a given bandwidth. The difference in the total number of resource blocks means that the size of information indicating resource allocation is different. In addition, the number of cases in which resource blocks are allocated may vary depending on the resource allocation method. As an example of a resource allocation scheme, a resource block may be allocated using a bitmap format (type 0). As another example of the resource allocation scheme, resource blocks may be allocated at predetermined intervals or periods (type 1). As another example of a resource allocation scheme, resource blocks may be allocated as contiguous constant length regions (type 2). The resource block allocated to the terminal is indicated by the resource allocation field, and the bit request amount of the resource allocation field varies according to each type of resource allocation scheme and the total number of resource blocks for each bandwidth.
이하에서 각 타입의 자원할당 방식에 관하여 설명된다. 이후의 기술에서 자원블록에 대한 기술은 자원블록그룹으로 대체될 수 있다.Hereinafter, each type of resource allocation scheme will be described. In the following description, a description of a resource block may be replaced with a resource block group.
도 6은 본 발명이 적용되는 자원할당 방식의 일 예이다. 이는 타입0의 자원할당방식이다. 6 is an example of a resource allocation method to which the present invention is applied. This is type 0 resource allocation.
도 6을 참조하면, 타입 0의 자원할당방식은 시스템의 전체 자원블록에 대해, 적어도 하나의 연속적인 자원블록으로 묶인 클러스터(cluster) 단위로 단말에 할당하는 방식이다. 클러스터간에는 적어도 하나의 자원블록만큼 이격된다. 이를 비연속적 자원할당(Non-contiguous Resource Allocation)이라고도 한다. 도 6에서는 총 4개의 클러스터가 단말에 할당된다. 1번째 클러스터는 1개의 자원블록, 2번째 클러스터는 3개의 자원블록, 3번째 클러스터는 2개의 자원블록, 4번째 클러스터는 1개의 자원블록을 각각 포함한다. 특히, 하나의 단말에 2개의 클러스터가 할당되는 자원할당을 이중 클러스터(double cluster)라 하고, 3개 이상의 클러스터가 할당되는 자원할당을 무제한 비연속적 자원할당(Unlimited Non-contiguous Resource Allocation)이라 한다. 몇 개의 클러스터를 할당하는지에 따라 시스템의 수율(throughput)이 달라질 수 있다. Referring to FIG. 6, the type 0 resource allocation scheme is a scheme in which all resource blocks of the system are allocated to the UE in units of clusters grouped into at least one consecutive resource block. At least one resource block is spaced between clusters. This is also referred to as non-contiguous resource allocation. In FIG. 6, four clusters are allocated to the terminal. The first cluster includes one resource block, the second cluster includes three resource blocks, the third cluster includes two resource blocks, and the fourth cluster includes one resource block. In particular, resource allocation in which two clusters are allocated to one terminal is called a double cluster, and resource allocation in which three or more clusters are allocated is called unlimited non-contiguous resource allocation. Depending on how many clusters you allocate, your system's throughput will vary.
각 자원블록의 할당 또는 비할당은 비트맵으로 표현될 수 있다. 각 비트는 각 자원블록에 맵핑된다. 예를 들어, 비트가 1이면 해당 자원블록이 단말에 할당되는 것이고, 비트가 0이면 해당 자원블록이 단말에 할당되지 않는 것이다. 예를 들어, 도 6은 비트맵이 010011100110100인 경우이다. 타입 0과 같이 비트맵 형식으로 단말에 대한 자원할당을 나타내는 경우, 필요한 비트양은 자원블록의 개수만큼이 요구된다. 즉, 필요한 비트양은 자원블록의 개수가 n일 때,
Figure PCTKR2011003290-appb-I000001
이 된다. 여기서,
Figure PCTKR2011003290-appb-I000002
는 x보다 크거나 같은 최소 정수를 의미한다.
The allocation or unassignment of each resource block may be represented by a bitmap. Each bit is mapped to each resource block. For example, if the bit is 1, the corresponding resource block is allocated to the terminal. If the bit is 0, the corresponding resource block is not allocated to the terminal. For example, FIG. 6 illustrates a case where the bitmap is 010011100110100. In the case of indicating resource allocation for a terminal in a bitmap format as in type 0, the required amount of bits is required for the number of resource blocks. That is, the required amount of bits is when the number of resource blocks is n,
Figure PCTKR2011003290-appb-I000001
Becomes here,
Figure PCTKR2011003290-appb-I000002
Is the minimum integer greater than or equal to x.
도 7은 자원할당 방식의 다른 예이다. 이는 타입1의 자원할당방식이다. 7 is another example of a resource allocation method. This is a type 1 resource allocation method.
도 7을 참조하면, 자원블록은 주기적인 형태로 할당되는데, P의 주기를 가지며 전체 자원블록에 대해 일정한 간격으로 분포하는 형식으로 자원할당이 표현될 수 있다. 예를 들어, 도 7은 주기 P=2인 경우이다. 타입1의 자원할당방식을 표현하기 위해 필요한 비트수는
Figure PCTKR2011003290-appb-I000003
+
Figure PCTKR2011003290-appb-I000004
이다. 여기서,
Figure PCTKR2011003290-appb-I000005
는 주기 P를 가지는 자원블록 서브셋(subset)의 크기이고, 1은 오프셋(offset)이다. 이로써 특정한 경우의 자원할당을 나타낼 수 있다. 일반적으로 타입 0와 타입 1이 같이 사용될 경우, 타입 0와 타입 1을 구분하기 위한 구분비트(differentiation bit)가 추가될 수 있다.
Referring to FIG. 7, resource blocks are allocated in a periodic form, and resource allocation may be expressed in a form having a period of P and distributed at regular intervals for all resource blocks. For example, FIG. 7 is a case where the period P = 2. The number of bits needed to represent type 1 resource allocation is
Figure PCTKR2011003290-appb-I000003
+
Figure PCTKR2011003290-appb-I000004
to be. here,
Figure PCTKR2011003290-appb-I000005
Is the size of the resource block subset with period P and 1 is the offset. This can represent resource allocation in specific cases. In general, when type 0 and type 1 are used together, a division bit for distinguishing type 0 and type 1 may be added.
도 8은 본 발명이 적용되는 자원할당 방식의 또 다른 예이다. 이는 타입2의 자원할당방식이다. 8 is another example of a resource allocation method to which the present invention is applied. This is a type 2 resource allocation method.
도 8을 참조하면, 인접한 적어도 하나의 자원블록이 묶여서 할당될 수 있다. 이것은 전체 자원블록의 시작점에서의 오프셋, 인접한 자원블록의 개수로 표현된다. 예를 들어, 도 8은 오프셋이 2이고, 자원블록의 개수가 10인 경우이다. 타입 2는 타입 0과 타입 1이 비연속적 자원할당(Non-contiguous Resource Allocation)을 나타내는데 반하여, 연속적 자원할당(Contiguous Resource Allocation)을 나타낸다. 따라서 자원블록의 개수가 많은 경우 타입 2의 자원할당을 표현하는데 필요한 자원할당필드의 비트수는 타입 0 또는 타입 1에 비해 작다. n개의 자원블록을 타입 2에 의해 할당하는 경우, 모든 자원할당의 경우의 수는 수학식 1에 의해 결정된다. Referring to FIG. 8, at least one adjacent resource block may be bundled and allocated. This is expressed as an offset from the start of all RBs and the number of adjacent RBs. For example, FIG. 8 is a case where the offset is 2 and the number of resource blocks is 10. FIG. Type 2 represents Contiguous Resource Allocation, whereas Type 0 and Type 1 represent Non-contiguous Resource Allocation. Therefore, when the number of resource blocks is large, the number of bits of the resource allocation field required to express the resource allocation of type 2 is smaller than that of type 0 or type 1. When n resource blocks are allocated by Type 2, the number of cases of all resource allocation is determined by Equation 1.
수학식 1
Figure PCTKR2011003290-appb-M000001
Equation 1
Figure PCTKR2011003290-appb-M000001
따라서, 필요한 자원할당필드의 비트수는 수학식 2에 의해 결정된다. Therefore, the number of bits of the required resource allocation field is determined by equation (2).
수학식 2
Figure PCTKR2011003290-appb-M000002
Equation 2
Figure PCTKR2011003290-appb-M000002
상향링크 그랜트에 포함된 자원할당필드는 연속적 자원할당과 비연속적 자원할당을 모두 표현할 수 있어야 한다. 그러나, 자원할당필드의 비트수는 연속적 자원할당과 비연속적 자원할당에 따른 모든 경우의 수를 표현하기에는 한계가 있기 때문에, 자원할당필드의 비트수를 증가시켜야 한다. 자원할당필드의 비트수를 증가시키는 것은 결국 상향링크 그랜트 구조에 변형을 가져오는데, 이는 단말의 블라인드 디코딩에 부담을 주므로 비효율적일 수 있다. 따라서, DCI에 포함되지만 사용되지 않는 잉여비트를 자원할당에 이용하면 종래 상향링크 그랜트의 구조를 그대로 유지하면서 한정된 자원을 효율적으로 이용할 수 있다. The resource allocation field included in the uplink grant must be able to represent both continuous resource allocation and non-contiguous resource allocation. However, since the number of bits of the resource allocation field is limited to express the number of all cases according to the continuous resource allocation and the discontinuous resource allocation, the number of bits of the resource allocation field must be increased. Increasing the number of bits of the resource allocation field eventually results in a modification to the uplink grant structure, which may be inefficient because it imposes a burden on the blind decoding of the UE. Therefore, using the surplus bits included in the DCI but not used for resource allocation enables efficient use of limited resources while maintaining the structure of the conventional uplink grant.
이하에서, 연속적 자원할당과 비연속적 자원할당을 선택적으로 나타내는 자원할당필드를 혼합(hybrid) 자원할당필드라 한다. 혼합 자원할당필드는 연속적 자원할당을 지시할 수도 있고, 비연속적 자원할당을 지시할 수도 있다. 혼합 자원할당필드가 연속적 자원할당을 지시하는지 또는 비연속적 자원할당을 지시하는지는 잉여비트에 의해 구별될 수 있다. Hereinafter, a resource allocation field that selectively indicates continuous resource allocation and non-contiguous resource allocation is called a hybrid resource allocation field. The mixed resource allocation field may indicate contiguous resource allocation or may indicate discontinuous resource allocation. Whether the mixed resource allocation field indicates contiguous resource allocation or nonconsecutive resource allocation can be distinguished by a surplus bit.
예를 들어, 잉여비트가 1비트라 하자. 만약, 잉여비트가 0이면 상향링크 그랜트에 포함된 혼합 자원할당필드가 연속적 자원할당이나 비연속적 자원할당을 지시하고, 잉여비트가 1이면 혼합 자원할당필드는 비연속적 자원할당을 지시할 수 있다. 즉, 하나의 혼합 자원할당필드가 연속적 또는 비연속적 자원할당을 나타내는지는 잉여비트에 의해 결정된다. 예를 들어, 자원할당필드가 4비트로서, 그 값이 0001이라 하자. 만약 잉여비트가 0이면 혼합 자원할당필드의 값 0001은 연속적 또는 비연속적 자원할당의 한가지 경우를 지시한다. 반대로, 잉여비트가 1이면 혼합 자원할당필드의 값 0001은 비연속적 자원할당의 한가지 경우를 지시한다. 이와 같이, 동일한 자원할당필드값이라 하더라도, 잉여비트에 따라 그 지시하는 바가 달라질 수 있다. 물론 이는 예시일 뿐이며, 잉여비트가 지시하는 바는 반대로 바뀔 수도 있다. 다만, 설명의 일관성을 위해 이하에서 잉여비트가 0이면 혼합 자원할당필드는 연속적 또는 비연속적 자원할당을 지시하고, 잉여비트가 1이면 혼합 자원할당필드는 비연속적 자원할당을 지시하는 것으로 가정하여 설명한다. For example, suppose the surplus bit is one bit. If the surplus bit is 0, the mixed resource allocation field included in the uplink grant may indicate continuous resource allocation or discontinuous resource allocation. If the surplus bit is 1, the mixed resource allocation field may indicate discontinuous resource allocation. That is, whether one mixed resource allocation field indicates continuous or discontinuous resource allocation is determined by the surplus bits. For example, suppose the resource allocation field is 4 bits and its value is 0001. If the surplus bit is zero, the value 0001 of the mixed resource allocation field indicates one case of continuous or discontinuous resource allocation. On the contrary, if the surplus bit is 1, the value 0001 of the mixed resource allocation field indicates one case of non-contiguous resource allocation. In this way, even if the same resource allocation field value, the indication may vary depending on the surplus bits. This is, of course, merely an example and the redundancy bits may be reversed. However, for the sake of consistency of description, the following description assumes that if the surplus bit is 0, the mixed resource allocation field indicates continuous or discontinuous resource allocation, and when the surplus bit is 1, the mixed resource allocation field indicates nonconsecutive resource allocation. do.
한편, 동일한 수의 자원블록이라 하더라도 비연속적으로 할당되는 경우의 수와 연속적으로 할당되는 경우의 수가 다를 수 있다. 예를 들어, n개의 자원블록이 비연속적으로 할당되는 경우의 수가 a개, 연속적으로 할당되는 경우의 수가 b개일 때, a>b일 수 있다. 경우의 수가 적다는 것은 필요한 비트수도 적다는 것을 의미한다. 연속적 자원할당의 경우 오프셋(offset)과 길이(length) 이렇게 2가지 요소만으로 표현될 수 있으므로 상대적으로 적은 비트수라 하더라도 연속적 자원할당의 모든 경우의 수를 표현할 수 있다. 이에 반해, 비연속적 자원할당의 모든 경우의 수를 표현하려면 상대적으로 더 많은 비트수가 필요하다. On the other hand, even the same number of resource blocks may be different from the number of cases that are allocated consecutively and the number of cases that are allocated continuously. For example, when a number of cases where n resource blocks are allocated contiguously and a number of cases where the resource blocks are continuously allocated may be a> b. Fewer cases mean that fewer bits are needed. In the case of continuous resource allocation, since only two elements, offset and length, can be expressed, even a relatively small number of bits can represent all cases of continuous resource allocation. In contrast, relatively more bits are needed to represent the number of cases in all cases of non-contiguous resource allocation.
예를 들어, 기지국은 13비트의 혼합 자원할당필드를 이용하여 100개의 자원블록을 할당한다고 가정하자. 13비트이면 총 213=8192가지의 경우의 수(또는 부호점(code point))를 표현할 수 있다. For example, assume that the base station allocates 100 resource blocks using a 13-bit mixed resource allocation field. 13 bits can represent a total of 2 13 = 8192 cases (or code points).
먼저, 잉여비트=1인 경우(즉, 혼합 자원할당필드가 비연속적 자원할당을 지시하는 경우)를 고려하자. 만약 100개의 자원블록을 비연속적 자원할당으로 할당할 경우 19000가지의 경우의 수가 존재한다면, 13비트의 혼합 자원할당필드는 8192가지 경우의 수만 표현할 수 있으므로, 나머지 19000-8192=10808가지의 경우는 표현할 수 없다. 따라서, 비연속적 자원할당을 위해 10808가지 경우를 더 표현할 수 있는 추가적인 자원이 요구된다. First, consider the case where the surplus bit = 1 (that is, when the mixed resource allocation field indicates non-contiguous resource allocation). If 100 resource blocks are allocated as non-contiguous resource allocation, if there are 19000 cases, the 13-bit mixed resource allocation field can represent only 8192 cases, and the remaining 19000-8192 = 10808 cases. Can not express. Thus, additional resources are needed to further represent 10808 cases for non-contiguous resource allocation.
다음으로, 잉여비트=0인 경우(즉, 혼합 자원할당필드가 연속적 또는 비연속적 자원할당을 지시하는 경우)를 고려하자. 만약 100개의 자원블록을 연속적 자원할당으로 할당할 경우 5050가지의 경우의 수가 존재한다면, 혼합 자원할당필드는 5050가지 경우를 표현하고도 8191-5050=3141가지 경우(마지막 한 개의 부호점은 SPS를 위한 사용으로 제외)를 더 표현할 수 있다. Next, consider the case where the surplus bit = 0 (i.e., when the mixed resource allocation field indicates continuous or discontinuous resource allocation). If 100 resource blocks are allocated in consecutive resource allocation, if there are 5050 cases, the mixed resource allocation field represents 5050 cases and 8191-5050 = 3141 cases (the last one code point indicates SPS). Can be used for more purposes).
자원의 효율적인 사용을 위해, 혼합 자원할당필드가 지시할 수 있는 연속적 자원할당의 모든 경우의 수를 제외하고 남는 3141가지 경우의 수를 비연속적 자원할당에 사용한다. 예를 들어, 혼합 자원할당필드의 값들 중 0~5049까지의 범위는 연속적 자원할당에 대응하고, 혼합 자원할당필드의 값들 중 5050~8190까지의 범위는 비연속적 자원할당에 대응한다.즉, 잉여비트가 0이면 혼합 자원할당필드의 값의 범위에 따라 혼합 자원할당필드가 연속적 자원할당을 지시할 수도 있고, 비연속적 자원할당을 지시할 수도 있다. For efficient use of resources, the remaining 3141 cases are used for non-contiguous resource allocations, except for the number of all cases of consecutive resource allocations that the mixed resource allocation field can indicate. For example, the range of 0 to 5049 of the values of the mixed resource allocation field corresponds to continuous resource allocation, and the range of 5050 to 8290 of the values of the mixed resource allocation field corresponds to non-contiguous resource allocation. If the bit is 0, the mixed resource allocation field may indicate continuous resource allocation or may indicate non-consecutive resource allocation according to the range of the value of the mixed resource allocation field.
비연속적 자원할당을 위해 추가적으로 필요한 10808가지 경우의 수에서, 혼합 자원할당필드의 남는 3141가지 경우의 수를 제외하면, 7667가지의 경우의 수를 더 표현할 수 있는 추가적인 자원이 요구된다. For the additional 10808 cases needed for non-contiguous resource allocations, except for the remaining 3141 cases of the mixed resource allocation field, additional resources are needed to further represent the number of 7667 cases.
그러나, 전술된 바와 같이, 추가적인 정보비트를 기존의 상향링크 그랜트에 추가하는 것은 기존 구조의 변형을 가져오고, 이는 단말의 블라인드 디코딩의 부담을 주므로 바람직하지 않다. 따라서, 상향링크 그랜트에 있는 비트로서, 특정한 상황에서 사용되지 않는 정보비트를 사용하면, 상향링크 그랜트의 구조를 유지하면서 한정된 무선자원을 효율적으로 사용할 수 있다. 혼합 자원할당필드와 함께 비연속적 자원할당을 표현하기 위해 상향링크 그랜트에 포함된 호핑 플래그를 사용할 수 있다. However, as described above, adding an additional information bit to the existing uplink grant is a modification of the existing structure, which is not preferable because of the burden of blind decoding of the terminal. Therefore, when information bits which are not used in a specific situation are used as bits in an uplink grant, it is possible to efficiently use limited radio resources while maintaining the structure of the uplink grant. In addition to the mixed resource allocation field, a hopping flag included in an uplink grant may be used to express non-contiguous resource allocation.
그 원리를 설명하면 다음과 같다. 타입 0 또는 타입 1과 같은 비연속적 자원할당에서, 상향링크 전송시 주파수 도약(frequency hopping)은 적용되지 않을 수 있다. 이 경우, 상향링크 그랜트의 호핑 플래그가 상향링크 전송의 주파수 도약을 지시하더라도, 주파수 도약은 적용되지 않는다. 예를 들어, 비연속적 자원할당이 주어지면, 단말은 상향링크 그랜트에 포함된 호핑 플래그의 지시와 무관하게, 주파수 도약없는 상향링크 전송을 수행한다. 즉, 비연속적 자원할당시 호핑 플래그는 그 존재의미가 없고, 상향링크 그랜트에서 1비트의 공간을 차지할 뿐이다. 따라서, 호핑 플래그는 실질적으로 잉여비트와 다름이 없다. The principle is explained as follows. In discontinuous resource allocation, such as type 0 or type 1, frequency hopping may not be applied during uplink transmission. In this case, even if the hopping flag of the uplink grant indicates frequency hopping of uplink transmission, frequency hopping is not applied. For example, given non-contiguous resource allocation, the terminal performs uplink transmission without frequency hopping regardless of the indication of the hopping flag included in the uplink grant. That is, when discontinuous resource allocation, the hopping flag has no meaning, and occupies only one bit of space in the uplink grant. Thus, the hopping flag is substantially the same as the surplus bits.
따라서, 호핑 플래그는 잉여비트가 1일 때의 혼합 자원할당필드와 더불어 비연속적 자원할당을 표현하는데 사용될 수 있다. 혼합 자원할당필드가 13비트라면, 호핑 플래그가 1비트이므로, 혼합 자원할당필드가 실질적으로 총 14비트로 확장되는 효과가 있다. 따라서, 표현할 수 있는 비연속적 자원할당의 경우의 수가 2배로 늘어나는 효과가 있다. 상기 예에서, 호핑 플래그와 잉여비트가 1일 때의 혼합 자원할당필드의 조합에 의해 214=16384가지의 경우의 수가 존재한다. 그리고, 추가적으로 잉여비트가 0일 때의 혼합 자원할당필드 값들 중 연속적 자원할당을 표현하고 남는 3141가지 경우의 수는, 1비트의 호핑 플래그에 의해 3141*2=6282개로 확장된다. 결국 비연속적 자원할당을 표현할 수 있는 경우의 수가 16384+6282=22666개로 확장되는 효과가 있다.Thus, the hopping flag can be used to represent non-contiguous resource allocation along with the mixed resource allocation field when the surplus bit is one. If the mixed resource allocation field is 13 bits, since the hopping flag is 1 bit, the mixed resource allocation field is effectively extended to a total of 14 bits. Therefore, the number of cases of non-contiguous resource allocation that can be expressed is doubled. In the above example, there are 2 14 = 16384 cases in number due to the combination of the hopping flag and the mixed resource allocation field when the surplus bit is one. In addition, the number of 3141 cases remaining after expressing continuous resource allocation among mixed resource allocation field values when the surplus bit is 0 is extended to 3141 * 2 = 6282 by a 1-bit hopping flag. As a result, the number of cases where non-contiguous resource allocation can be expressed is extended to 16384 + 6282 = 22666.
이와 같이 제1 용도로서 사용되던 필드가 특별한 상황에서는 적응적으로 다른 제2 용도(비연속적 자원할당의 표현용도)로 사용되는 정보필드를 적응적 필드(adaptive field)라 한다. 호핑 플래그는 적응적 필드의 일 예이다. As described above, when a field used as a first use is specially used, an information field used for another second use (expression of discontinuous resource allocation) is called an adaptive field. The hopping flag is an example of an adaptive field.
호핑 플래그는 혼합 자원할당필드가 연속적 자원할당을 지시하는 경우, 상향링크 전송시 주파수 도약이 적용되는지를 지시하는 용도로 사용된다. 그리고, 혼합 자원할당필드가 비연속적 자원할당를 지시하는 경우에는, 호핑 플래그는 비연속적 자원할당을 표현하는 경우의 수를 확장하는 용도로 사용된다. The hopping flag is used to indicate whether frequency hopping is applied in uplink transmission when the mixed resource allocation field indicates continuous resource allocation. When the mixed resource allocation field indicates discontinuous resource allocation, the hopping flag is used to extend the number of cases indicative of discontinuous resource allocation.
상기의 예는 상향링크 자원이 자원블록 단위로 할당되는 경우의 예를 든 것으로서, 만약 상향링크 자원이 자원블록그룹단위로 할당되는 경우에는 비연속적 자원할당의 경우의 수가 더 줄어들게 된다. 따라서, 한정된 자원할당의 지시범위로서 비연속적 자원할당의 모든 경우의 수를 다 표현하고도 남을 수 있다. The above example is an example in which uplink resources are allocated in units of resource blocks. If the uplink resources are allocated in units of resource block groups, the number of non-consecutive resource allocations is further reduced. Accordingly, the number of all cases of non-consecutive resource allocation may be left as an indication range of limited resource allocation.
각 타입의 자원할당방식에 있어서, 새로운 제어정보를 전송하기 위한 DCI 포맷은 다양하게 결정될 수 있다. 일 예로서, 기존의 DCI 포맷의 남는 정보비트를 새로운 제어정보를 위해 이용하거나, 아예 새로운 필드를 추가할 수 있다. 다른 예로서, 새로운 제어정보를 위한 새로운 DCI 포맷을 도입할 수 있다. 그러나, 기존 DCI 포맷에 새로운 필드를 추가하는 것은 실질적으로는 기존 DCI 포맷을 변화시키는 것이고 이것은 DCI 포맷을 PDCCH로부터 추출하는 과정인 블라인드 디코딩의 복잡도를 증가시킨다. In each type of resource allocation scheme, a DCI format for transmitting new control information may be determined in various ways. As an example, the remaining information bits of the existing DCI format may be used for new control information or a new field may be added at all. As another example, a new DCI format for new control information can be introduced. However, adding a new field to the existing DCI format substantially changes the existing DCI format, which increases the complexity of blind decoding, which is the process of extracting the DCI format from the PDCCH.
블라인드 디코딩은 정해진 PDCCH의 영역에 일정한 복호시작점을 정의하고 주어진 전송모드(transmission mode)에서 가능한 모든 DCI 포맷에 대해 복호를 수행하고 CRC에 매스킹(masking)된 C-RNTI정보로부터 사용자를 구분하는 복호방식이다. 복호되어야 할 DCI 포맷의 개수가 증가함에 따라 블라인드 디코딩의 복잡도가 증가한다. 또한, DCI 포맷의 크기가 다르다는 것은 복호되어야 할 DCI 포맷의 개수가 증가함을 의미한다. 단말의 블라인드 디코딩 부담을 줄이기 위해서, 기존의 DCI형식을 유지하되, 사용되지 않는 필드를 이용하거나 기존의 필드를 활용하는 방안이 필요하다. Blind decoding defines a decoding start point in a region of a given PDCCH, decodes all possible DCI formats in a given transmission mode, and decodes a user from C-RNTI information masked in CRC. That's the way. As the number of DCI formats to be decoded increases, the complexity of blind decoding increases. In addition, different sizes of DCI formats mean that the number of DCI formats to be decoded increases. In order to reduce the blind decoding burden of the UE, it is necessary to maintain the existing DCI format, but to use an unused field or a conventional field.
혼합 자원할당필드가 k개의 정보비트, a0 내지 ak-1에 맵핑된다고 할 때, 혼합 자원할당필드는 총 2k 경우의 자원할당을 지시할 수 있다. 여기서, 각 경우를 지시하는 혼합 자원할당필드의 값을 자원지시값(Resource Indication Value; 이하 RIV) 또는 부호점(code point)이라 한다. 예를 들어, 혼합 자원할당필드가 10개의 정보비트에 맵핑된다고 할 때, 자원지시값의 전체범위는 0 ~ 210-1인 정수이다. 만약 혼합 자원할당필드가 0000000111이면, 자원지시값은 8이다. When a mixed resource allocation field is mapped to k information bits, a 0 to a k-1 , the mixed resource allocation field may indicate resource allocation in a total of 2 k cases. Here, the value of the mixed resource allocation field indicating each case is referred to as a resource indication value (hereinafter referred to as RIV) or code point. For example, when a mixed resource allocation field is mapped to 10 information bits, the entire range of resource indication values is an integer of 0 to 2 10 -1. If the mixed resource allocation field is 0000000111, the resource indication value is 8.
자원지시값은 자원블록의 개수, 그리고 자원할당방식에 따라 값의 범위가 결정된다. 예를 들어, 기지국이 20MHz 대역폭에 해당하는 100개의 자원블록을 타입2에 의해 단말에 할당하는 경우, 상기 수학식 1에 의해 총 101C2=5050 개의 경우의 수가 얻어진다. 따라서, 자원지시값은 제1 자원범위인 0 ~ 5049 중 어느 값을 가지면 된다. 여기서, 5050개의 경우의 수를 모두 나타내기 위해 필요한 혼합 자원할당필드의 최소 비트수는 상기 수학식 2에 따르면 13비트이다. 그런데, 13비트가 나타내는 최대 자원지시값은 213=8192이므로, 자원지시값의 전체범위는 제1 지시범위보다 넓은 0 ~ 8191의 범위를 가진다. 자원지시값의 전체범위에서 제1 지시범위를 제외하고도 남는 제2 지시범위는 5050 ~ 8191이다. The resource indication value is determined by the number of resource blocks and the resource allocation method. For example, when the base station allocates 100 resource blocks corresponding to a 20 MHz bandwidth to the terminal by Type 2, a total of 101 C 2 = 5050 cases are obtained by Equation 1 above. Therefore, the resource indication value may have any value from 0 to 5049, which is the first resource range. Here, the minimum number of bits of the mixed resource allocation field required to represent all of the 5050 cases is 13 bits according to Equation 2 above. However, since the maximum resource indication value indicated by 13 bits is 2 13 = 8192, the entire range of resource indication values has a range of 0 to 8191 which is wider than the first indication range. The second indication range remaining in the entire range of resource indication values except for the first indication range is 5050 to 8191.
제2 지시범위에 속하는 자원지시값의 크기를 구하는 식은 수학식 3과 같다.The equation for obtaining the size of the resource indication value belonging to the second indication range is shown in Equation 3.
수학식 3
Figure PCTKR2011003290-appb-M000003
Equation 3
Figure PCTKR2011003290-appb-M000003
여기서, a는 자원할당필드의 비트수이고, n은 주어진 대역폭에 해당하는 자원블록의 개수이다. 또한, K는 제2 지시범위에서도 추가적으로 배제되는 자원지시값의 범위를 나타낸다. 예를 들어, 8191의 자원지시값이 SPS로 사용되는 것으로 고정되면, K=1이다. Here, a is the number of bits of the resource allocation field, and n is the number of resource blocks corresponding to the given bandwidth. Also, K indicates a range of resource indication values that are additionally excluded from the second indication range. For example, if the resource indication value of 8191 is fixed to be used as the SPS, then K = 1.
제1 지시범위는 원래의 용도인 상향링크 그랜트로 이용될 수 있고, 제2 지시범위는 다른 용도, 예를 들어 해당 DCI가 상향링크 신호의 전송에 관한 것임을 지시하거나, 반-지속적 스케줄링(semi-persistent scheduling; SPS)에 관한 것임을 지시하는 용도로 이용될 수 있다. 이 방법에 의하면 DCI 포맷을 변경하거나 DCI에 관한 정보비트를 추가하지 않고도 실질적으로 새로운 필드를 추가하는 효과를 얻을 수 있다. 예를 들어, 자원지시값이 5070이면, 이는 제2 지시범위에 속하므로 단말은 해당 DCI가 비주기적 사운딩 기준신호의 전송을 지시하는 것임을 알 수 있다. 또 다른 예로서, 자원지시값이 8191(즉, 1111111111111)이면, 단말은 해당 DCI가 SPS를 위한 것임을 알 수 있다. The first indication range may be used as an uplink grant which is the original purpose, and the second indication range indicates that the DCI is related to transmission of an uplink signal for another use, for example, or semi-persistent scheduling (semi- It may be used for indicating that the information relates to persistent scheduling (SPS). According to this method, it is possible to substantially add a new field without changing the DCI format or adding information bits related to the DCI. For example, if the resource indication value is 5070, since it belongs to the second indication range, the UE may know that the corresponding DCI indicates transmission of an aperiodic sounding reference signal. As another example, if the resource indication value is 8191 (ie, 1111111111111), the UE may know that the corresponding DCI is for the SPS.
제2 지시범위에 해당하는 자원지시값을 효율적으로 활용하면, 기지국은 DCI의 혼합 자원할당필드를 새로운 필드로 정의하여 형식적으로는 동일한 포맷의 DCI이나 실질적으로 새로운 DCI를 만들 수 있다. 또는 DCI 필드를 그대로 유지하되 단말이 특정한 행동(action)을 취하도록 지시하는 정보만을 추가할 수도 있다. 단말은 DCI 포맷에 대해 블라인드 디코딩을 수행한다. 디코딩의 결과, 단말은 자원지시값이 제1 지시범위인지 혹은 제2 지시범위인지를 판단하여, 만약 자원지시값이 제1 지시범위에 속하면 기존의 DCI 포맷과 동일한 방식의 DCI임을 인지할 수 있고, 만약 제2 지시범위에 속하면 새로운 포맷의 DCI임을 인지할 수 있다. 이로써, 단말은 새로운 포맷의 DCI를 블라인드 디코딩해야하는 부담이 없고, 어차피 전송될 자원할당필드내에서 사용되지 않는 범위의 자원지시값을 이용하므로 자원효율이 증대될 수 있다. If the resource indication value corresponding to the second indication range is effectively utilized, the base station may form a DCI of a substantially identical format or a substantially new DCI by defining a mixed resource allocation field of the DCI as a new field. Alternatively, the DCI field may be maintained as it is, but only information indicating that the UE takes a specific action may be added. The terminal performs blind decoding on the DCI format. As a result of decoding, the UE determines whether the resource indication value is the first indication range or the second indication range, and if the resource indication value is within the first indication range, the UE can recognize that the resource indication value is the DCI in the same manner as the existing DCI format. If it is in the second indication range, it can be recognized that the DCI of the new format. As a result, the UE does not have a burden of blind decoding the DCI of the new format, and resource efficiency may be increased by using a resource indication value of a range not used in the resource allocation field to be transmitted anyway.
이제, 제2 지시범위에 해당하는 자원지시값을 이용하여 DCI를 전송하는 방법에 관하여 설명된다. Now, a method of transmitting DCI using the resource indication value corresponding to the second indication range will be described.
일 예로서, 제2 지시범위에 해당하는 자원지시값은 자원할당이 아닌 다른 정보를 지시할 수 있다. 예를 들어, 제1 지시범위에 속하는 자원지시값은 자원블록의 할당을 지시하나, 제2 지시범위에 속하는 자원지시값은 단말의 상향링크 신호의 전송을 위한 새로운 정보 또는 단말에 대한 하향링크 신호의 전송을 위한 정보를 지시할 수 있다. For example, the resource indication value corresponding to the second indication range may indicate information other than resource allocation. For example, the resource indication value belonging to the first indication range indicates allocation of a resource block, but the resource indication value belonging to the second indication range indicates new information for transmitting an uplink signal of the terminal or a downlink signal for the terminal. Information may be indicated for transmission of the.
예를 들어, DCI내 혼합 자원할당필드의 자원지시값이 제2 지시범위이면, 상기 자원지시값은 상기 DCI가 비주기적 사운딩 기준신호(이하 ASRS)의 설정에 관한 정보(이하 ASRS 설정정보), 채널상태정보(Channel State Informationl CSI)의 전송 설정에 관한 정보, ACK/NACK 전송 설정에 관한 정보등을 포함함을 나타낼 수 있다. 단말은 자원지시값이 제2 지시범위에 속하는지를 판단하면, 해당 DCI가 ASRS의 설정정보나 채널상태정보의 전송설정에 관한 정보 또는 ACK/NACK 전송 설정에 관한 정보를 포함하는 것임을 인지할 수 있다. 또는 기지국은 제2 지시범위를 이용하여 하향링크 신호에 관한 정보, 예를 들어, PMI(Precoding Matrix Indicator), RI(Rank Indicator), 자원할당정보등을 전송할 수 있다. For example, if the resource indication value of the mixed resource allocation field in the DCI is the second indication range, the resource indication value is information about the DCI setting of an aperiodic sounding reference signal (hereinafter referred to as ASRS) (hereinafter referred to as ASRS configuration information). , Information about the transmission setting of the channel state information (Channel State Information CSI), information about the ACK / NACK transmission setting and the like. When the UE determines whether the resource indication value falls within the second indication range, the UE may recognize that the corresponding DCI includes information on the transmission setting of the ASRS configuration information or the channel state information or information on the ACK / NACK transmission configuration. . Alternatively, the base station may transmit information on the downlink signal, for example, a precoding matrix indicator (PMI), a rank indicator (RI), and resource allocation information using the second indication range.
ASRS 설정정보는 표 4와 같이 ASRS의 전송에 필요한 여러가지 필드를 포함한다.The ASRS configuration information includes various fields necessary for the transmission of the ASRS as shown in Table 4.
표 4
SRS 정보요소 비트수 니용
SRS 활성화 1 DCI 포맷의 해석
전송 대역폭 2 운용 대역마다 4개의 SRS 대역폭
주파수 위치 3 또는 5 대역폭 시작 위치(5MHz보다 작은 대역에 대해 3비트 적용)
전송컴브 1 2 컴브
SRS 순환 쉬프트 3 8 순환 쉬프트
SRS 구성 인덱스 ISRS 9 SRS 전송을 위해 할당된 서브프레임들의 구성
기간(duration) 0 1회(one-shot) 전송 또는 동일한 기간
SRS 대역폭 구성 0 1회(one-shot) 전송 또는 SIB에 의해 이미 알려짐
CRC (UE ID) CRC에 매스킹(masked)된 UE ID
합계 35 or 37
Table 4
SRS Information Element Number of bits Nyon
SRS activation One Interpreting the DCI Format
Transmission bandwidth
2 Four SRS Bandwidths per Operating Band
Frequency position 3 or 5 Bandwidth start position (applies 3 bits for bands less than 5 MHz)
Transmission comb One 2 comb
SRS cyclic shift 3 8 cyclic shift
SRS Configuration Index I SRS 9 Configuration of Subframes Assigned for SRS Transmission
Duration
0 One-shot transfer or same period
SRS Bandwidth Configuration 0 Already known by one-shot transmission or SIB
CRC (UE ID) UE ID masked to CRC
Sum 35 or 37
표 4를 참조하면, SRS 활성화(Activation) 필드는 1비트 정보로서 해당 DCI가 ASRS의 전송에 관련된 포맷인지 아닌지를 지시한다. 주파수 위치(Frequency Position) 필드는 ASRS에 관한 상향링크 대역폭의 시작위치를 결정하는 파라미터이다. 전송컴브(Transmission Comb)필드는 TDD 시스템에 있어서 특별 서브프레임에 속하는 UpPTS구간을 정의하는 파라미터이다. SRS 설정 인덱스(Configuration Index)필드는 ASRS가 전송되는 서브프레임의 위치와 오프셋(offset)등을 결정하는 파라미터이다. 순환 시프트(Cyclic Shift)필드는 ASRS의 전송을 위한 시퀀스(sequence)를 생성하는 파라미터이다. 새로운 필드의 정보량은 제2 지시범위의 자원지시값으로 표현가능한 범위에 의해 한정된다. Referring to Table 4, the SRS Activation field is 1 bit information and indicates whether the corresponding DCI is a format related to transmission of the ASRS. The frequency position field is a parameter that determines the start position of an uplink bandwidth with respect to the ASRS. The Transmission Comb field is a parameter that defines an UpPTS section belonging to a special subframe in the TDD system. The SRS Configuration Index field is a parameter that determines the position and offset of a subframe in which the ASRS is transmitted. The cyclic shift field is a parameter for generating a sequence for transmission of the ASRS. The amount of information in the new field is limited by the range that can be represented by the resource indication value of the second indication range.
다른 예로서, 제2 지시범위에 해당하는 자원지시값은 기존의 DCI 포맷의 필드를 동일하게 유지한다. 다만, DCI를 단말의 특정 작용(specific action)을 트리거(trigger)하도록 할 수 있다. 여기서, 상기 특정 작용은 단말이 상향링크 신호를 기지국으로 전송하는 것일 수 있으며, 일 예로서 비주기적 사운딩 기준신호를 전송하는 것이거나, 기지국이 하향링크 신호를 단말로 전송하는 것을 의미할 수 있다. 따라서, 단말이 판단한 결과, 자원지시값이 제2 지시범위내의 어느 하나의 값이면, 단말은 자신에게 할당되는 자원정보를 얻을 수 있을 뿐만 아니라, 비주기적 사운딩 기준신호를 기지국으로 전송해야함을 인지할 수 있다. 다만, 기존의 DCI 포맷의 필드가 동일하게 유지되는 경우, 제2 지시범위의 자원지시값은 단말의 자원할당정보도 지시할 수 있어야 한다. As another example, the resource indication value corresponding to the second indication range keeps the field of the existing DCI format the same. However, the DCI may be triggered to trigger a specific action of the terminal. In this case, the specific action may be that the terminal transmits an uplink signal to the base station, for example, may be a non-periodic sounding reference signal, or the base station may transmit a downlink signal to the terminal. . Therefore, as a result of the determination by the terminal, if the resource indication value is any value within the second indication range, the terminal not only can obtain the resource information allocated to itself, but also transmit the aperiodic sounding reference signal to the base station. can do. However, if the fields of the existing DCI format are the same, the resource indication value of the second indication range should also indicate resource allocation information of the terminal.
20MHz의 대역폭을 타입2에 의해 할당하는 경우에, 100개의 자원블록을 할당하기 위한 자원지시값의 전체 범위는 0 ~ 8191로서 모두 8192가지의 경우의 수를 나타낼 수 있다. 그런데, 제1 지시범위는 0 ~ 5049로서 총 5050가지의 경우의 수를 나타내고, 제2 지시범위는 5050 ~ 8191로서 총 3142개의 경우의 수를 나타내므로, 제2 지시범위의 경우의 수가 제1 지시범위보다 적다. 즉, 제2 지시범위로써 제1 지시범위의 자원할당의 경우의 수를 모두 표현할 수 없다. 따라서, 제2 지시범위로써 자원할당필드를 표현하기 위해서, 자원블록을 자원블록그룹단위로 할당한다. 전체 자원블록의 수가 n이고, 하나의 자원블록그룹을 구성하는 자원블록의 수를 r이라 하면, 자원블록그룹의 수 m은 수학식 4와 같이 표현될 수 있다.In the case of allocating a bandwidth of 20 MHz by Type 2, the total range of resource indication values for allocating 100 resource blocks is 0 to 8191, which may represent 8192 cases. However, since the first indication range is 0 to 5049 and the number of 5050 cases in total, and the second indication range is 5050 to 8191 and the number of 3142 cases in total, the number of cases of the second indication range is 1st. It is less than the indicated range. That is, it is impossible to express all the numbers of resource allocation of the first indication range as the second indication range. Therefore, in order to express the resource allocation field as the second indication range, resource blocks are allocated in units of resource block groups. If the total number of resource blocks is n and the number of resource blocks constituting one resource block group is r, the number m of resource block groups may be expressed as in Equation (4).
수학식 4
Figure PCTKR2011003290-appb-M000004
Equation 4
Figure PCTKR2011003290-appb-M000004
따라서, 자원블록그룹으로 할당할 때 표현가능한 경우의 수는 수학식 5와 같다.Therefore, the number of cases that can be expressed when allocating to a resource block group is expressed by Equation 5.
수학식 5
Figure PCTKR2011003290-appb-M000005
Equation 5
Figure PCTKR2011003290-appb-M000005
예를 들어, 상기 표 3에서 20MHz의 대역폭의 100개의 자원블록에 있어서, 2개의 자원블록을 하나의 자원블록그룹으로 할당하면, 총 50개의 자원블록그룹을 할당하는 것이다. 따라서, 수학식 5에 따라 51C2=1275 가지의 경우의 수를 얻을 수 있고, 이는 제2 지시범위에 포함될 수 있는 양이다. For example, in 100 resource blocks having a bandwidth of 20 MHz in Table 3, when two resource blocks are allocated to one resource block group, a total of 50 resource block groups are allocated. Accordingly, according to Equation 5, the number of 51 C 2 = 1275 cases can be obtained, which is an amount that can be included in the second indication range.
또 다른 예로서, 제2 지시범위에 해당하는 자원지시값은 비연속적 자원할당을 표현하는데 사용될 수 있다. 예를 들어, 잉여비트가 1인 경우의 혼합 자원할당필드가 비연속적 자원할당을 모두 표현하기에 부족한 경우, 적응적 필드인 호핑 플래그를 추가적으로 이용한다. 그럼에도 불구하고 부족한 부분은 잉여비트가 0인 경우의 혼합 자원할당필드의 제2 지시범위까지 비연속적 자원할당을 표현하는데 사용한다. 이 경우, 비연속적 자원할당을 표현하는 경우의 수는 아래의 수학식 6과 같이 계산될 수 있다. As another example, the resource indication value corresponding to the second indication range may be used to express discontinuous resource allocation. For example, when the mixed resource allocation field when the surplus bit is 1 is insufficient to express all non-contiguous resource allocations, an additional hopping flag, which is an adaptive field, is additionally used. Nevertheless, the lacking part is used to express discontinuous resource allocation up to the second indication range of the mixed resource allocation field when the surplus bit is zero. In this case, the number of cases of expressing discontinuous resource allocation may be calculated as in Equation 6 below.
수학식 6
Figure PCTKR2011003290-appb-M000006
Equation 6
Figure PCTKR2011003290-appb-M000006
여기서, v는 비연속적 자원할당 전체를 표현하는 지시범위이고, x는 비연속적 자원할당필드의 비트수이며, y는 적응적 필드의 비트수이고, z는 연속적 자원할당필드의 제2 지시범위이다. 예를 들어, x=13이고, y=1이면, v=214+3141*21=22666이다. 비연속적 자원할당을 표현하는 각 요소의 예는 아래의 표 5와 같다. Here, v is an indication range representing the entire non-contiguous resource allocation, x is the number of bits of the non-contiguous resource allocation field, y is the number of bits of the adaptive field, and z is the second indication range of the continuous resource allocation field. . For example, if x = 13 and y = 1, then v = 2 14 + 3141 * 2 1 = 22666. Examples of each element expressing discontinuous resource allocation are shown in Table 5 below.
표 5
할당방식 잉여비트(1비트) 호핑 플래그(1비트) 자원할당의 지시범위 자원지시값의 총 개수
연속적 자원할당 0 호핑여부(0 또는 1) 0~5049 5050
비연속적 자원할당 1 자원할당에 포함 0~16383 22666
0 0 16384~16384+3141-1
0 1 16384+3141~16384+3141*2-1
Table 5
Allocation Method Redundant bit (1 bit) Hopping flag (1 bit) Scope of indication of resource allocation Total number of resource indicators
Continuous resource allocation 0 Hopping (0 or 1) 0-5049 5050
Non-continuous resource allocation One Include in Resource Allocation 0 ~ 16383 22666
0 0 16384 ~ 16384 + 3141-1
0 One 16384 + 3141 ~ 16384 + 3141 * 2-1
표 5를 참조하면, 자원할당필드, 적응적 필드 및 잉여비트의 조합에 의한 지시범위는 연속적 자원할당뿐만 아니라 비연속적 자원할당상태를 모두 표현할 수 있게 된다. {잉여비트, 호핑 플래그} 조합이 {0, 0 또는 1}이라도, 자원할당의 지시범위 0~5049까지는 연속적 자원할당에 대응하고, 5050~8190까지는 호핑 플래그에 따라 2배로 늘어나 비연속적 자원할당에 대응한다. 따라서, 잉여비트가 0인 경우라도, 혼합 자원할당필드의 값의 범위에 따라 혼합 자원할당필드가 연속적 자원할당을 지시할 수도 있고, 비연속적 자원할당을 지시할 수도 있다. Referring to Table 5, the indication range by the combination of the resource allocation field, the adaptive field, and the redundant bits can express not only the continuous resource allocation but also the non-contiguous resource allocation state. Even if the {redundant bit, hopping flag} combination is {0, 0, or 1}, the resource allocation instruction range 0 ~ 5049 corresponds to continuous resource allocation, and 5050 ~ 8190 is doubled according to the hopping flag to discontinuous resource allocation. Corresponds. Therefore, even when the surplus bit is 0, the mixed resource allocation field may indicate continuous resource allocation or may indicate non-consecutive resource allocation according to the range of the value of the mixed resource allocation field.
상기의 예는 상향링크 자원이 자원블록 단위로 할당되는 경우의 예를 든 것으로서, 만약 상향링크 자원이 자원블록그룹단위로 할당되는 경우에는 상기 수학식 4 및 수학식 5와 같은 계산에 따라 비연속적 자원할당상태의 경우의 수가 더 줄어들게 된다. 따라서, 한정된 자원할당의 지시범위로서 비연속적 자원할당의 모든 경우의 수를 다 표현하고도 남을 수 있다. The above example is an example in which the uplink resources are allocated in units of resource blocks. If the uplink resources are allocated in units of resource block groups, the uplink resources are discontinuous according to calculations such as Equations 4 and 5 above. The number of cases of resource allocation is further reduced. Accordingly, the number of all cases of non-consecutive resource allocation may be left as an indication range of limited resource allocation.
또 다른 예로서, 비연속적 자원할당과 연속적 자원할당을 동시에 적용하는 다중 자원할당방식이 있다. 이는 자원할당상태를 표현하는 경우의 수를 줄이기 위한 방안으로서, 자원할당이 시작 또는 끝나는 자원블록(또는 자원블록그룹)에 대해서는 연속적인 자원할당을 적용하고, 그 외에는 비연속적 자원할당을 적용한다. 즉, 자원할당이 시작되는 일정부분의 인덱스의 자원블록(또는 자원블록그룹)과, 자원할당이 끝나는 일정부분의 인덱스의 자원블록(또는 자원블록그룹)이 포함되는 비연속적인 자원할당을 적용하지 않고, 나머지 인덱스에 해당하는 자원블록(또는 자원블록그룹)에 대해서는 비연속적인 자원할당을 적용한다. 예를 들어, 시작부분의 10% 인덱스와 끝부분의 10% 인덱스는 연속적인 자원할당을 적용하고, 중간의 80% 인덱스에 대해서만 비연속적인 자원할당을 적용한다.As another example, there is a multiple resource allocation method that simultaneously applies discontinuous resource allocation and continuous resource allocation. This is a method for reducing the number of cases in which resource allocation states are expressed, and continuous resource allocation is applied to resource blocks (or resource block groups) at which resource allocation starts or ends, and non-consecutive resource allocation is otherwise applied. That is, do not apply non-contiguous resource allocation that includes resource blocks (or resource block groups) of a portion of an index where resource allocation begins and resource blocks (or resource block groups) of a portion of the index where resource allocation ends. Instead, non-contiguous resource allocation is applied to resource blocks (or resource block groups) corresponding to the remaining indexes. For example, the 10% index at the beginning and the 10% index at the end apply contiguous resource allocation, and apply non-contiguous resource allocation only to the middle 80% index.
비연속적인 자원할당이 양쪽 끝에서 이루어질 때 RF적인 규격을 만족하기 어려운 상황이 발생하고, 양쪽 끝에서는 LTE규격에서 제어신호를 전송하는 형태를 규정하고 있는 점을 고려할 때, 다중 자원할당방식은 시스템 설계적인 측면에 잘 부합한다. Considering the situation where it is difficult to satisfy the RF standard when non-consecutive resource allocation is made at both ends, and at both ends, the form of transmitting control signals is defined in the LTE standard. It fits well with the design aspect.
도 9는 본 발명의 일 예에 따른 DCI 전송장치 및 DCI 수신장치를 나타내는 블록도이다. DCI 전송장치는 기지국의 일부이고, DCI 수신장치는 단말의 일부일 수 있다.9 is a block diagram illustrating a DCI transmitter and a DCI receiver according to an embodiment of the present invention. The DCI transmitter may be part of the base station, and the DCI receiver may be part of the terminal.
도 9를 참조하면, DCI 전송장치(900)는 DCI 구성부(910), 제어채널 구성부(920) 및 제어채널 전송부(930)를 포함한다. Referring to FIG. 9, the DCI transmitting apparatus 900 includes a DCI configuring unit 910, a control channel configuring unit 920, and a control channel transmitting unit 930.
DCI 구성부(910)는 DCI 포맷을 결정하고, 필요한 필드를 포함하도록 DCI를 구성한다. 상향링크 그랜트의 전송이 필요한 경우, DCI 구성부(910)는 DCI 포맷을 0으로 결정하고, 하향링크 그랜트의 전송이 필요한 경우, DCI 포맷을 1A로 결정한다. 결정된 DCI 포맷에 따라, DCI 구성부(910)는 자원지시값이 제2 지시범위에 속하도록 조정하여 필요한 필드를 포함하도록 DCI를 구성한다. 여기서, 자원지시값을 R이라 할 때, R의 범위는 0≤R≤X이다. X는 최대 자원지시값이다. 자원지시값의 제1 지시범위는 0≤R<C 이고, 제2 지시범위는 C≤R≤X이다. The DCI configuration unit 910 determines the DCI format and configures the DCI to include necessary fields. When the transmission of the uplink grant is required, the DCI configuration unit 910 determines the DCI format as 0, and when the transmission of the downlink grant is required, the DCI format is determined as 1A. According to the determined DCI format, the DCI configuration unit 910 configures the DCI to include necessary fields by adjusting the resource indication value to fall within the second indication range. Here, when the resource indication value is R, the range of R is 0 ≦ R ≦ X. X is the maximum resource indication value. The first indication range of the resource indication value is 0 ≦ R <C, and the second indication range is C ≦ R ≦ X.
DCI 구성부(910)가 자원지시값을 제2 지시범위에 속하도록 조정하는 방법은 다음과 같다. 예를 들어, 포맷 0의 DCI는 상향링크 그랜트이므로, DCI 구성부(910)는 DCI에 관한 정보비트의 일부영역을 추출하여 자원지시값이 제2 지시범위에 속하도록 변환값 C를 더하고, 이를 상향링크 그랜트의 자원할당필드에 삽입한다. 예를 들어, 변환값 C는 제1 지시범위의 최대값이며, 20MHz 대역폭, 타입2 자원할당방식을 기준으로 5050이므로, DCI 구성부(910)는 자원지시값이 1024이면 여기에 5050을 더하여 자원지시값이 6074가 되도록 조정하여, 제2 지시범위에 속하도록 한다. The DCI configuration unit 910 adjusts the resource indication value to fall within the second indication range as follows. For example, since DCI of format 0 is an uplink grant, the DCI configuration unit 910 extracts a partial region of information bits related to DCI, and adds a conversion value C such that a resource indication value falls within a second indication range. Insert into the resource allocation field of the uplink grant. For example, since the conversion value C is the maximum value of the first indication range and is 5050 based on the 20 MHz bandwidth and the type 2 resource allocation method, the DCI configuration unit 910 adds 5050 to the resource indication value if the resource indication value is 1024. The indication value is adjusted to 6074, so as to fall within the second indication range.
상기 추출되는 일부영역은 상기 DCI에 관한 정보비트의 일부 연속된 영역일 수 있고 전체적으로 분포된 비트가 결합된 형태일 수도 있다. 또한, 제2 지시범위에 해당하는 자원지시값은 기존의 DCI 포맷의 필드를 동일하게 유지하면서, DCI를 단말의 특정 작용을 트리거하는 형태일 수도 있다. DCI 구성부(910)는 상기 추출된 일부영역과 나머지 영역을 합쳐 상향링크 그랜트의 크기와 같도록 DCI를 구성한다. The extracted partial region may be a partial contiguous region of the information bits related to the DCI or may be a form in which bits distributed throughout are combined. In addition, the resource indication value corresponding to the second indication range may be in the form of triggering a specific action of the DCI while maintaining the same field of the existing DCI format. The DCI configuration unit 910 configures the DCI so that the extracted partial region and the remaining region are equal to the size of the uplink grant.
제어채널 구성부(920)는 DCI 구성부(910)에 의해 구성되는 DCI가 전송될 물리채널, 즉 PDCCH를 구성한다.The control channel configuration unit 920 configures a physical channel to which the DCI configured by the DCI configuration unit 910 is transmitted, that is, a PDCCH.
제어채널 전송부(930)는 상기 PDCCH를 통해 상기 DCI를 DCI 수신장치(1000)로 전송한다.The control channel transmitter 930 transmits the DCI to the DCI receiver 1000 through the PDCCH.
DCI 수신장치(1000)는 DCI 해석부(1010), 제어채널 디코딩부(1020), 제어채널 수신부(1030) 및 응답신호 전송부(1040)를 포함한다.The DCI receiver 1000 includes a DCI analyzer 1010, a control channel decoder 1020, a control channel receiver 1030, and a response signal transmitter 1040.
제어채널 수신부(1030)는 상기 DCI 전송장치(900)로부터 상기 DCI를 수신한다. 제어채널 디코딩부(1020)는 상기 DCI를 나른 PDCCH를 블라인드 디코딩방식에 의해 디코딩하고, 상기 DCI를 추출한다.The control channel receiver 1030 receives the DCI from the DCI transmitter 900. The control channel decoding unit 1020 decodes the PDCCH carrying the DCI by a blind decoding method and extracts the DCI.
DCI 해석부(1010)는 상기 추출된 DCI에서, 혼합 자원할당필드와 그외의 필드를 분해하고, 혼합 자원할당필드의 자원지시값이 C보다 큰지 작은지 판단하며, 상기 판단의 결과로부터 상기 추출된 DCI의 포맷 및 필드를 확정한다. 일 예로서. 상기 판단의 결과, 상기 자원지시값이 C보다 작은 경우, DCI 해석부(1010)는 상기 추출된 DCI의 포맷을 일반적인 DCI(즉, 상향링크 그랜트)로 확정한다. 이 경우, 응답신호 전송부(1040)는 상향링크 그랜트에 의해 지시되는 자원을 이용하여 상향링크 데이터를 DCI 전송장치(900)로 전송한다.The DCI analyzing unit 1010 decomposes the mixed resource allocation field and the other fields in the extracted DCI, determines whether the resource indication value of the mixed resource allocation field is greater than or less than C, and extracts the result from the determination result. Confirm the format and field of the DCI. As an example. As a result of the determination, when the resource indication value is smaller than C, the DCI analyzer 1010 determines the format of the extracted DCI as a general DCI (ie, an uplink grant). In this case, the response signal transmitter 1040 transmits uplink data to the DCI transmitter 900 by using the resource indicated by the uplink grant.
다른 예로서, 상기 판단의 결과, 상기 자원지시값이 C보다 크거나 같은 경우, DCI 해석부(1010)는 상기 추출된 DCI의 포맷을 새로운 DCI로 확정한다. 그리고, 상기 자원지시값에서 C를 뺀 나머지값으로 필드를 구성한 상기 새로운 DCI 포맷에 따라 필드를 해석한다. 만약, 상기 새로운 DCI가 ASRS의 전송을 위한 것이면, DCI 해석부(1010)는 응답신호 전송부(1040)가 상기 새로운 DCI의 필드에 따라 ASRS를 생성하고 전송하도록 지시한다. As another example, when the resource indication value is greater than or equal to C as a result of the determination, the DCI analyzing unit 1010 determines the format of the extracted DCI as a new DCI. The field is interpreted according to the new DCI format in which the field is configured by subtracting C from the resource indication value. If the new DCI is for transmission of the ASRS, the DCI analyzer 1010 instructs the response signal transmitter 1040 to generate and transmit an ASRS according to the field of the new DCI.
제2 지시범위를 여러 개의 소범위로 나누면 새로운 DCI 포맷이 1개 이상 존재할 수 있다. 이 때 C는 각 소범위의 시작을 나타내는 여러가지 값 즉, C1(=C), C2, … ,CM의 M개의 값이 될 수 있다. 이와 같이 제2 지시범위를 여러 소범위로 나눌 때 각 C1(=C), C2, … ,CM에 해당하는 새로운 DCI포맷에 관한 정보비트의 길이는 각 소범위내에 있는 정수의 개수에 따라 줄어들게 된다.When the second indication range is divided into several subranges, one or more new DCI formats may exist. Where C is a number of values representing the beginning of each subrange, that is, C 1 (= C), C 2 ,... Can be M values of C M. Thus, when dividing the second indication range into several subranges, each C 1 (= C), C 2 ,... The length of the information bits for the new DCI format corresponding to C M is reduced by the number of integers in each subrange.
도 10은 본 발명의 일 예에 따른 DCI의 전송방법을 나타내는 흐름도이다.10 is a flowchart illustrating a method of transmitting DCI according to an embodiment of the present invention.
도 10을 참조하면, 기지국은 제2 지시범위의 자원지시값을 조정하여 DCI의 필드를 구성한다(S100). 기지국이 제2 지시범위의 자원지시값을 조정하여 DCI의 필드를 구성하는 방법은 다음과 같다. 기지국은 상기 DCI의 일부영역을 추출하여 자원지시값에 정수 C값을 더하여 제2 지시범위에 속하도록 조정한다. 기지국은 조정된 자원지시값을 상향링크 그랜트의 자원할당영역에 삽입하여 상향링크 그랜트의 크기와 같도록 DCI를 구성한다. 상기 DCI는 표 2 또는 표 4의 필드를 포함할 수 있다. Referring to FIG. 10, the base station adjusts the resource indication value of the second indication range to configure a field of DCI (S100). The base station adjusts the resource indication value of the second indication range to configure a field of the DCI is as follows. The base station extracts a partial region of the DCI and adjusts it to belong to the second indication range by adding an integer C value to the resource indication value. The base station inserts the adjusted resource indication value into the resource allocation area of the uplink grant and configures the DCI to be equal to the size of the uplink grant. The DCI may include the fields of Table 2 or Table 4.
기지국은 상기 DCI를 전송할 제어채널을 구성한다(S110). 여기서, 상기 제어채널은 PDCCH이다. 기지국은 단말로 상기 PDCCH를 통해 상기 DCI를 전송한다(S120).The base station configures a control channel for transmitting the DCI (S110). Here, the control channel is a PDCCH. The base station transmits the DCI to the terminal through the PDCCH (S120).
단말은 블라인드 디코딩에 의해 상기 DCI를 수신하고, 상기 DCI의 자원할당필드를 추출하여, 상기 자원할당필드의 자원지시값을 이용하여 상기 DCI의 포맷을 확정한다. 만약, 상기 DCI가 새로운 DCI 포맷인 경우, 단말은 새로운 DCI 포맷에 적합한 방식으로 상기 새로운 DCI를 처리하고, 상기 새로운 DCI가 요구하는 절차를 수행하고, 응답 신호를 기지국으로 전송한다(S130). 예를 들어, 상기 새로운 DCI가 요구하는 절차가 ASRS의 전송이면, 단말은 ASRS를 기지국으로 전송한다.The terminal receives the DCI by blind decoding, extracts a resource allocation field of the DCI, and determines a format of the DCI by using a resource indication value of the resource allocation field. If the DCI is a new DCI format, the UE processes the new DCI in a manner suitable for the new DCI format, performs a procedure required by the new DCI, and transmits a response signal to the base station (S130). For example, if the procedure required by the new DCI is transmission of an ASRS, the terminal transmits the ASRS to the base station.
도 11은 본 발명의 일 예에 따른 기지국에 의한 DCI 전송방법을 설명하는 순서도이다.11 is a flowchart illustrating a DCI transmission method by a base station according to an embodiment of the present invention.
도 11을 참조하면, 기지국은 새로운 DCI 형식을 설정한다(S200). 상기 새로운 DCI 형식은 단말의 상향링크 제어정보의 전송과 관련된 여러가지 설정정보에 관한 것이다. 예를 들어, ASRS, CSI 전송설정정보, ACK/NACK 정보의 전송설정정보등을 포함한다. Referring to FIG. 11, the base station sets a new DCI format (S200). The new DCI format relates to various configuration information related to transmission of uplink control information of a terminal. For example, it includes ASRS, CSI transmission setting information, transmission setting information of ACK / NACK information, and the like.
기지국은 상기 새로운 DCI 형식을 구성하기 위해, 기존 DCI의 전체 필드를 자원할당필드와 나머지 필드로 분해한다(S210). 자원할당필드의 자원지시값은 Y이다. 기지국은 자원할당필드에 변환값 C를 더하여, 변환된 자원지시값 X를 구한 후, 상기 변환된 자원지시값 X에 따른 자원할당필드와 상기 나머지 필드를 다시 결합한다(S220). 이는 기존 자원지시값을 변환시킴으로서 새로운 DCI를 구성하기 위함이다. 기지국은 상기 변환된 자원지시값에 따른 새로운 DCI를 위한 PDCCH를 구성하고(S230), 상기 PDCCH를 통해 상기 새로운 DCI를 단말로 전송한다(S240).In order to configure the new DCI format, the base station decomposes the entire field of the existing DCI into a resource allocation field and the remaining fields (S210). The resource indication value of the resource allocation field is Y. The base station adds the conversion value C to the resource allocation field to obtain the converted resource indication value X, and then combines the resource allocation field according to the converted resource indication value X and the remaining fields again (S220). This is to configure a new DCI by converting an existing resource indication value. The base station configures a PDCCH for a new DCI according to the converted resource indication value (S230), and transmits the new DCI to the UE through the PDCCH (S240).
도 12는 본 발명의 일 예에 따른 단말에 의한 DCI 수신방법을 설명하는 순서도이다.12 is a flowchart illustrating a DCI reception method by a terminal according to an embodiment of the present invention.
도 12를 참조하면, 단말은 PDCCH에 대해 블라인드 디코딩을 수행하여 DCI를 수신한다(S300). 단말은 상기 수신한 DCI의 전체필드를 자원할당필드와 나머지 필드로 분해한다(S310). 단말은 상기 자원할당필드의 자원지시값 X를 변환값 C와 비교한다(S320). 만약 상기 자원지시값 X가 상기 변환값 C보다 크거나 같은 경우, 단말은 상기 자원지시값 X에서 상기 변환값 C를 뺀 변환된 자원지시값 Y을 구하고, 상기 구해진 자원지시값 Y와 상기 나머지 필드를 다시 결합한다(S330). 단말은 상기 구해진 자원지시값 Y에 따른 새로운 DCI를 새로운 DCI 형식의 해석방식으로 해석한다(S340). Referring to FIG. 12, the terminal receives a DCI by performing blind decoding on the PDCCH (S300). The terminal decomposes the entire field of the received DCI into a resource allocation field and the remaining fields (S310). The terminal compares the resource indication value X of the resource allocation field with the converted value C (S320). If the resource indication value X is greater than or equal to the conversion value C, the terminal obtains the converted resource indication value Y minus the conversion value C from the resource indication value X, and obtains the obtained resource indication value Y and the remaining fields. Combine again (S330). The terminal interprets the new DCI according to the obtained resource indication value Y in a new DCI format analysis method (S340).
다시 단계 S320에서, 만약 상기 자원지시값 X가 상기 변환값 C보다 작은 경우, 단말은 상기 전체필드를 기존의 DCI형식에 따라 해석한다(S350). In step S320, if the resource indication value X is smaller than the conversion value C, the terminal interprets the entire field according to the existing DCI format (S350).
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (20)

  1. 기지국에 의한 하향링크 제어정보의 전송방법에 있어서,In the method of transmitting downlink control information by a base station,
    특정범위의 자원지시값(Resource Indication Value)을 표시하는 자원할당필드를 포함하는 하향링크 제어정보를 구성하는 단계; 및Constructing downlink control information including a resource allocation field indicating a resource indication value of a specific range; And
    상기 하향링크 제어정보를 물리하향링크 제어채널(physical downlink control channel: PDCCH)상으로 단말에게 전송하는 단계를 포함하되,And transmitting the downlink control information to a terminal on a physical downlink control channel (PDCCH).
    상기 특정범위의 자원지시값은 상기 하향링크 제어정보가 상향링크 신호의 전송을 위한 구성정보를 포함함을 나타냄을 특징으로 하는, 하향링크 제어정보의 전송방법.The resource indication value of the specific range is characterized in that the downlink control information includes configuration information for transmission of the uplink signal, downlink control information transmission method.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 상향링크 신호는 상향링크 채널의 상태를 측정하기 위한 기준신호인 사운딩 기준신호(sounding reference signal; SRS)인, 하향링크 제어정보의 전송방법.The uplink signal is a sounding reference signal (SRS), which is a reference signal for measuring a state of an uplink channel, downlink control information transmission method.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 사운딩 기준신호를 상기 단말로부터 비주기적으로(aperiodically) 수신하는 단계를 더 포함함을 특징으로 하는, 하향링크 제어정보의 전송방법.And aperiodically receiving the sounding reference signal from the terminal.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 특정범위의 자원지시값은 연속적(contiguous) 자원할당 및 비연속적(non-contiguous) 자원할당 중 적어도 하나에 의해 상기 단말에 대해 자원블록을 할당함을 특징으로 하는, 하향링크 제어정보의 전송방법.The resource indication value of the specific range is characterized in that the resource block is allocated to the terminal by at least one of a contiguous resource allocation and a non-contiguous resource allocation, downlink control information transmission method .
  5. 제 1 항에 있어서,The method of claim 1,
    상기 하향링크 제어정보는 잉여비트 및 호핑 플래그(hopping flag)를 더 포함하고, 상기 자원할당필드는 상기 잉여비트 및 상기 호핑 플래그 중 적어도 하나와 결합하여 상기 단말에 대한 자원블록의 비연속적 할당을 지시함을 특징으로 하는, 하향링크 제어정보의 전송방법.The downlink control information further includes a surplus bit and a hopping flag, and the resource allocation field is combined with at least one of the surplus bit and the hopping flag to indicate discontinuous allocation of a resource block to the terminal. The downlink control information transmission method, characterized in that.
  6. 단말에 의한 하향링크 제어정보의 수신방법에 있어서,In the method for receiving downlink control information by a terminal,
    특정범위의 자원지시값을 표시하는 자원할당필드를 포함하는 하향링크 제어정보를 PDCCH상으로 기지국으로부터 수신하는 단계; 및Receiving downlink control information including a resource allocation field indicating a resource indication value of a specific range from a base station on a PDCCH; And
    상기 특정범위의 자원지시값을 기반으로 상기 하향링크 제어정보의 포맷(format)을 해석하는 단계; 및Interpreting a format of the downlink control information based on the resource indication value of the specific range; And
    상기 해석된 포맷에 따라 상기 하향링크 제어정보를 복호화하는 단계를 포함함을 특징으로 하는, 하향링크 제어정보의 수신방법.And decoding the downlink control information according to the interpreted format.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 특정범위의 자원지시값은 상기 하향링크 제어정보가 상향링크 신호의 전송을 위한 구성정보를 포함함을 나타내고, The resource indication value of the specific range indicates that the downlink control information includes configuration information for transmission of an uplink signal.
    상기 상향링크 신호는 상향링크 채널의 상태를 측정하기 위한 기준신호인 사운딩 기준신호임을 특징으로 하는, 하향링크 제어정보의 수신방법.The uplink signal is a sounding reference signal, which is a reference signal for measuring a state of an uplink channel, receiving method of downlink control information.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 구성정보에 기반하여 상기 사운딩 기준신호를 상기 기지국으로 전송하는 단계를 더 포함함을 특징으로 하는, 하향링크 제어정보의 수신방법.And transmitting the sounding reference signal to the base station based on the configuration information.
  9. 제 6 항에 있어서,The method of claim 6,
    상기 특정범위의 자원지시값은 연속적 자원할당 및 비연속적 자원할당 중 적어도 하나에 의해 단말에 대해 자원블록을 할당함을 특징으로 하는, 하향링크 제어정보의 수신방법.The resource indication value of the specific range is characterized in that the resource block is allocated to the terminal by at least one of continuous resource allocation and non-contiguous resource allocation, downlink control information receiving method.
  10. 제 6 항에 있어서,The method of claim 6,
    상기 하향링크 제어정보는 잉여비트 및 호핑 플래그를 더 포함하고, 상기 자원할당필드는 상기 잉여비트 및 상기 호핑 플래그 중 적어도 하나와 결합하여 단말에 대한 자원블록의 비연속적 할당을 지시함을 특징으로 하는, 하향링크 제어정보의 수신방법. The downlink control information further includes a surplus bit and a hopping flag, and the resource allocation field indicates non-contiguous allocation of a resource block to a terminal in combination with at least one of the surplus bit and the hopping flag. , Receiving downlink control information.
  11. 하향링크 제어정보를 전송하는 장치에 있어서,An apparatus for transmitting downlink control information,
    자원할당필드에 의해 표현되는 특정범위의 자원지시값을 기반으로 하향링크 제어정보를 구성하는 하향링크 제어정보 구성부;A downlink control information configuring unit for configuring downlink control information based on a resource indication value of a specific range represented by a resource allocation field;
    상기 하향링크 제어정보를 전송할 PDCCH를 구성하는 제어채널 구성부; 및A control channel configuration unit constituting a PDCCH to transmit the downlink control information; And
    상기 하향링크 제어정보를 상기 PDCCH상으로 단말로 전송하는 제어채널 전송부를 포함하되,A control channel transmitter for transmitting the downlink control information to the terminal on the PDCCH,
    상기 하향링크 제어정보는 상기 단말에 의한 상향링크 신호의 전송을 지시하는 정보를 포함하는 하향링크 제어정보의 전송장치.The downlink control information is a device for transmitting downlink control information including information indicating the transmission of the uplink signal by the terminal.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 상향링크 신호는 상향링크 채널의 상태를 측정하기 위한 기준신호인 사운딩 기준신호임을 특징으로 하는, 하향링크 제어정보의 전송장치.The uplink signal is a sounding reference signal, which is a reference signal for measuring a state of an uplink channel, apparatus for transmitting downlink control information.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 하향링크 제어정보 구성부는 상기 자원할당필드를 상기 하향링크 제어정보에 관한 정보비트(information bit)의 특정 영역에 맵핑하고, 상기 선택된 특정범위를 조정함으로써 상기 하향링크 제어정보의 포맷을 변경함을 특징으로 하는, 하향링크 제어정보의 전송장치.The downlink control information configuring unit changes the format of the downlink control information by mapping the resource allocation field to a specific region of information bits related to the downlink control information and adjusting the selected specific range. Characterized in that, downlink control information transmission device.
  14. 제 11 항에 있어서,The method of claim 11,
    상기 특정범위의 자원지시값은 연속적(contiguous) 자원할당 및 비연속적(non-contiguous) 자원할당 중 적어도 하나에 의해 상기 단말에 대해 자원블록을 할당함을 특징으로 하는, 하향링크 제어정보의 전송장치.The apparatus for transmitting downlink control information is characterized in that the resource indication value of the specific range is allocated to the terminal by at least one of contiguous resource allocation and non-contiguous resource allocation. .
  15. 제 11 항에 있어서,The method of claim 11,
    상기 하향링크 제어정보 구성부는 잉여비트 및 호핑 플래그를 더 포함하도록 상기 하향링크 제어정보를 구성하고, 상기 잉여비트 및 상기 호핑 플래그 중 적어도 하나와 상기 자원할당필드를 결합하여 상기 단말에 대한 자원블록의 비연속적 할당을 지시함을 특징으로 하는, 하향링크 제어정보의 전송장치. The downlink control information configuration unit configures the downlink control information to further include a redundant bit and a hopping flag, and combines the resource allocation field with at least one of the redundant bit and the hopping flag to form a resource block for the terminal. An apparatus for transmitting downlink control information, characterized by indicating discontinuous allocation.
  16. 하향링크 제어정보를 수신하는 장치에 있어서,In the apparatus for receiving downlink control information,
    하향링크 제어정보를 PDCCH상으로 기지국으로부터 수신하는 제어채널 수신부; A control channel receiver for receiving downlink control information from the base station on the PDCCH;
    상기 제어채널에 대해 블라인드 디코딩(blind decoding)을 수행하여 상기 하향링크 제어정보를 추출하는 제어채널 디코딩부; 및A control channel decoding unit for extracting the downlink control information by performing blind decoding on the control channel; And
    상기 하향링크 제어정보에 포함되는 복수의 필드들로부터 자원할당필드를 분리하고, 상기 자원할당필드가 나타내는 자원지시값을 이용하여 상기 하향링크 제어정보의 포맷을 확정하며, 상기 확정된 포맷에 적합한 해석방식에 의해 상기 하향링크 제어정보를 해석하는 하향링크 제어정보 해석부를 포함함을 특징으로 하는 하향링크 제어정보의 수신장치.The resource allocation field is separated from a plurality of fields included in the downlink control information, the format of the downlink control information is determined using the resource indication value indicated by the resource allocation field, and the analysis is appropriate for the determined format. And a downlink control information analyzer for analyzing the downlink control information by a method.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 특정범위의 자원지시값은 상기 하향링크 제어정보가 상향링크 신호의 전송을 위한 구성정보를 포함함을 나타내고, The resource indication value of the specific range indicates that the downlink control information includes configuration information for transmission of an uplink signal.
    상기 상향링크 신호는 상향링크 채널의 상태를 측정하기 위한 기준신호인 사운딩 기준신호임을 특징으로 하는, 하향링크 제어정보의 수신장치.The uplink signal is a sounding reference signal, which is a reference signal for measuring a state of an uplink channel, apparatus for receiving downlink control information.
  18. 제 17 항에 있어서,The method of claim 17,
    상기 구성정보에 기반하여 상기 사운딩 기준신호를 상기 기지국으로 전송하는 응답신호 전송부를 더 포함함을 특징으로 하는, 하향링크 제어정보의 수신장치.And a response signal transmitter for transmitting the sounding reference signal to the base station based on the configuration information.
  19. 제 16 항에 있어서,The method of claim 16,
    상기 특정범위의 자원지시값은 연속적 자원할당 및 비연속적 자원할당 중 적어도 하나에 의해 단말에 대해 자원블록을 할당함을 특징으로 하는, 하향링크 제어정보의 수신장치.The resource indication value of the specific range is characterized in that the resource block is allocated to the terminal by at least one of continuous resource allocation and non-contiguous resource allocation, the apparatus for receiving downlink control information.
  20. 제 16 항에 있어서,The method of claim 16,
    상기 하향링크 제어정보는 잉여비트 및 호핑 플래그를 더 포함하고, 상기 자원할당필드는 상기 잉여비트 및 상기 호핑 플래그 중 적어도 하나와 결합하여 단말에 대한 자원블록의 비연속적 할당을 지시함을 특징으로 하는, 하향링크 제어정보의 수신장치. The downlink control information further includes a surplus bit and a hopping flag, and the resource allocation field indicates non-contiguous allocation of a resource block to a terminal in combination with at least one of the surplus bit and the hopping flag. , Receiving device for downlink control information.
PCT/KR2011/003290 2010-05-03 2011-05-03 Device and method for transmitting downlink control information in a wireless communication system WO2011139066A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/696,024 US20130051356A1 (en) 2010-05-03 2011-05-03 Device and method for transmitting downlink control information in a wireless communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100041606 2010-05-03
KR10-2010-0041606 2010-05-03
KR1020100076121A KR20110122046A (en) 2010-05-03 2010-08-06 Apparatus and method of transmitting downlink control information in wireless communication system
KR10-2010-0076121 2010-08-06

Publications (2)

Publication Number Publication Date
WO2011139066A2 true WO2011139066A2 (en) 2011-11-10
WO2011139066A3 WO2011139066A3 (en) 2012-03-01

Family

ID=44904208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003290 WO2011139066A2 (en) 2010-05-03 2011-05-03 Device and method for transmitting downlink control information in a wireless communication system

Country Status (1)

Country Link
WO (1) WO2011139066A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497589A (en) * 2011-12-16 2013-06-19 Renesas Mobile Corp Resource Allocation in a Wireless Communication System
CN110583066A (en) * 2017-05-05 2019-12-17 中兴通讯股份有限公司 System and method for allocating resource blocks
WO2021217378A1 (en) * 2020-04-27 2021-11-04 Oppo广东移动通信有限公司 Wireless communication method, terminal device and network device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201825A1 (en) * 2008-02-11 2009-08-13 Zukang Shen Partial CQI Feedback in Wireless Networks
US20090274100A1 (en) * 2008-05-05 2009-11-05 Qualcomm Incorporated Uplink resource management in a wireless communication system
US20100034312A1 (en) * 2008-07-29 2010-02-11 Tarik Muharemovic Reference Signal Resource Allocation for Single User MIMO

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201825A1 (en) * 2008-02-11 2009-08-13 Zukang Shen Partial CQI Feedback in Wireless Networks
US20090274100A1 (en) * 2008-05-05 2009-11-05 Qualcomm Incorporated Uplink resource management in a wireless communication system
US20100034312A1 (en) * 2008-07-29 2010-02-11 Tarik Muharemovic Reference Signal Resource Allocation for Single User MIMO

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497589A (en) * 2011-12-16 2013-06-19 Renesas Mobile Corp Resource Allocation in a Wireless Communication System
CN110583066A (en) * 2017-05-05 2019-12-17 中兴通讯股份有限公司 System and method for allocating resource blocks
CN110583066B (en) * 2017-05-05 2023-04-18 中兴通讯股份有限公司 System and method for allocating resource blocks
WO2021217378A1 (en) * 2020-04-27 2021-11-04 Oppo广东移动通信有限公司 Wireless communication method, terminal device and network device

Also Published As

Publication number Publication date
WO2011139066A3 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
WO2012177073A2 (en) Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station
WO2017010798A1 (en) Method and user equipment for receiving downlink signal, and method and base station for transmitting downlink signal
WO2019009665A1 (en) Method and apparatus for handling multiple numerologies in wireless communication system
WO2011078631A2 (en) Method and apparatus for controlling uplink transmission power in a multi-carrier wireless communication system
WO2014062041A1 (en) Method and device for monitoring downlink control channel in wireless communication system
WO2018226054A1 (en) Resource allocation-related signaling method in wireless communication system and device using same
WO2016021983A1 (en) Wireless communication method and apparatus in wireless communication system supporting device to device communication
WO2016053047A1 (en) Method and user equipment for transmitting uplink signal, and method and user equipment for receiving uplink signal
WO2012169753A2 (en) Method for transmitting uplink control information and user equipment, and method for receiving uplink control information and base station
WO2014163302A1 (en) Receiving method and user device in small-scale cell
WO2013012190A2 (en) Method and apparatus for limiting a downlink subframe in a tdd mode
WO2011010863A2 (en) Apparatus and method for transmitting channel state information in a wireless communication system
WO2011162543A2 (en) Method and device for transmitting and receiving uplink control information in wireless communication system that supports multiple carriers
WO2011145823A2 (en) Method and device for configuring a carrier indication field for a multi-carrier
WO2012112008A2 (en) Mobile communication system and channel transmission/reception method thereof
WO2010101409A2 (en) Method and apparatus for reporting channel state in multi-carrier system
WO2013147528A1 (en) Method and device for transmitting data for half-duplex device
WO2018221882A1 (en) Method for transmitting and receiving random access channel in wireless communication system, and device therefor
WO2013147532A1 (en) Method for measuring channel using tracking reference signal in wireless communication system and device using same
WO2014163407A1 (en) Method and apparatus for transmitting channel state information in wireless communication system
KR20110122046A (en) Apparatus and method of transmitting downlink control information in wireless communication system
WO2012096488A2 (en) Transmission method for control data in a communication system and a base station therefor, and a processing method for control data and a terminal therefor
WO2011013971A2 (en) Uplink transmission method and apparatus in wireless communication system
WO2016126033A1 (en) Method for allocating resource by considering inter-device interference in full-duplex wireless communication system and apparatus therefor
WO2019083278A1 (en) Method and device for performing random access procedure in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777547

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13696024

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777547

Country of ref document: EP

Kind code of ref document: A2