WO2011138887A1 - Optical film, method for producing optical film, polarizing plate, and liquid crystal display device - Google Patents

Optical film, method for producing optical film, polarizing plate, and liquid crystal display device Download PDF

Info

Publication number
WO2011138887A1
WO2011138887A1 PCT/JP2011/058587 JP2011058587W WO2011138887A1 WO 2011138887 A1 WO2011138887 A1 WO 2011138887A1 JP 2011058587 W JP2011058587 W JP 2011058587W WO 2011138887 A1 WO2011138887 A1 WO 2011138887A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
film
resin
cellulose ester
acrylic resin
Prior art date
Application number
PCT/JP2011/058587
Other languages
French (fr)
Japanese (ja)
Inventor
隆 建部
直輝 高橋
瀧本 正高
伸夫 久保
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2011138887A1 publication Critical patent/WO2011138887A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to an optical film, an optical film manufacturing method, a polarizing plate, and a liquid crystal display device.
  • a liquid crystal display device is composed of a liquid crystal cell in which a transparent electrode, a transparent electrode, a liquid crystal layer, a color filter and the like are sandwiched between glass plates, and two polarizing plates provided on both sides thereof. Is configured by sandwiching a polarizer (also referred to as a polarizing film or a polarizing film) between two optical films (polarizing plate protective film).
  • a polarizer also referred to as a polarizing film or a polarizing film
  • a cellulose ester film is usually used as the polarizing plate protective film.
  • Cellulose ester film is excellent in optical isotropy and excellent in polarizer obtained by dyeing polyvinyl alcohol resin film generally used as polarizer with iodine or dichroic dye.
  • the cellulose ester film can be bonded with water glue without using a pressure-sensitive adhesive at the time of bonding to the polarizer. It is widely adopted because it can be bonded.
  • a technique for providing a function as an optical film such as an optical compensation film as well as a polarizing plate protective film by giving the cellulose ester film specific optical characteristics by stretching treatment or the like has also been adopted. ing.
  • liquid crystal display devices have diversified. For example, it can be used as a large display installed on a street or in a store, or used as an advertising display in a public place using a display device called digital signage.
  • a display device called digital signage a display device used as an advertising display in a public place using a display device called digital signage.
  • liquid crystal display devices expands to outdoor use, stability against severe environmental fluctuations is strongly demanded for polarizing plates used there.
  • Cellulose ester film has a relatively small photoelastic coefficient compared to polycarbonate and other resins used as a general retardation film, but it is a compound produced by compressive stress and tensile stress generated when exposed to severe environmental fluctuations. This is thought to be because the change in optical characteristics due to refraction cannot be sufficiently suppressed.
  • acrylic resin such as polymethylmethacrylate
  • acrylic resin such as polymethylmethacrylate
  • it shows excellent transparency, high dimensional stability, and low hygroscopicity.
  • heat resistance and hard and brittle properties are problematic.
  • the adhesiveness to a polarizer is low, it was necessary to adhere
  • both cellulose ester resin films and acrylic resin films can be obtained by using an optical film obtained by forming an acrylic resin having a specific molecular weight and a specific cellulose ester resin into a compatible state. It has been proposed that the above-mentioned problem be solved (see, for example, Patent Document 1). According to the technique of Patent Document 1, an acrylic resin and a cellulose ester resin, which were conventionally difficult to mix, could be made into a highly transparent film without causing haze, but the temperature change from high heat to low heat over a long period of time. It has been found that when exposed to a more severe environment that is repeated many times, haze that was not initially seen may occur and transparency may be reduced.
  • the object of the present invention is excellent in environmental resistance, high transparency over a long period of time, and when used as a protective film for a polarizing plate, it has excellent adhesion to a polarizer and weak saponification conditions.
  • it is to provide an optical film in which film peeling or film floating from the polarizer does not occur and a method for producing the same, and to provide a polarizing plate and a liquid crystal display device using such an optical film.
  • an additive having a relatively low molecular weight obtained by polymerization of a monomer or copolymerization of a vinyl monomer having an amide bond and an arbitrary vinyl monomer while maintaining the original functions such as environmental resistance and transparency, The present inventors have found that the adhesiveness with a polarizer can be improved and have reached the present invention.
  • the present invention has the following forms.
  • the acrylic resin (A) is represented by the following general formula (1), and the weight average molecular weight Mw is 80000 to 1000000
  • an additive (C) obtained by polymerization of a vinyl monomer having an amide bond or copolymerization of a vinyl monomer having an amide bond and an arbitrary vinyl monomer is added in an amount of 1 to 30 with respect to the total mass of the optical film.
  • An optical film comprising: mass%, wherein the additive has a weight average molecular weight Mw of 1,000 to 55,000.
  • optical film as described in 4 above which contains the acrylic resin (A) and the cellulose ester resin (B) in a mass ratio of 80:20 to 50:50.
  • Polarized light obtained by bonding the optical film according to any one of 1 to 5 above to at least one surface of a polarizer obtained by dyeing a polyvinyl alcohol resin film with iodine or a dichroic dye. Board.
  • a liquid crystal display device wherein the polarizing plate described in 6 or 7 is provided on at least one surface of a liquid crystal cell.
  • Optical film containing acrylic resin (A) and cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70, and containing additive (C) in an amount of 1 to 30% by mass relative to the total mass of the optical film A manufacturing method of Heating and melting the resin composition containing the acrylic resin (A), the cellulose ester resin (B) and the additive (C), and casting the film to produce an optical film
  • the acrylic resin (A) is represented by the following general formula (1), and the weight average molecular weight Mw is 80000 to 1000000
  • the additive (C) is an additive obtained by polymerization of a vinyl monomer having an amide bond or copolymerization of a vinyl monomer having an amide bond and an arbitrary vinyl monomer, and the weight average of the additive (C) A method for producing an optical film, wherein the molecular weight Mw is 1000 to 55000.
  • the present invention has excellent environmental resistance, high transparency over a long period of time, and when used as a protective film for a polarizing plate, it has excellent adhesion to a polarizer and weak saponification conditions. Even in this case, an optical film in which film peeling or film floating from the polarizer does not occur can be obtained.
  • cellulose ester resins may be mixed with impurities having a desired degree of substitution or low molecular weight polymers as impurities during the synthesis process, and when such impurities are mixed with acrylic resins, they precipitate as foreign matters.
  • the mechanism by which such an effect is obtained is not clear, it is presumed that the low molecular weight polymer added as an additive prevents such impurities from growing as foreign matter.
  • the optical film of the present invention is an optical film containing an acrylic resin (A) and a cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70,
  • the acrylic resin (A) is represented by the following general formula (1), and the weight average molecular weight Mw is 80000 to 1000000,
  • an additive (C) obtained by polymerization of a vinyl monomer having an amide bond or copolymerization of a vinyl monomer having an amide bond and an arbitrary vinyl monomer is added in an amount of 1 to 30 with respect to the total mass of the optical film.
  • the additive is characterized in that the additive has a weight average molecular weight Mw of 1000 to 55000.
  • the acrylic resin (A) according to the present invention is represented by the following general formula (1), and has a weight average molecular weight Mw of 80000 to 1000000.
  • X is a vinyl monomer having at least one amide group copolymerizable with MMA, and X may be one type or two or more types, and one monomer unit may have a plurality of functional groups.
  • Specific monomers for X include acrylamide, N-methylacrylamide, N-butylacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, acryloylmorpholine, N-hydroxyethylacrylamide, acryloylpyrrolidine, acryloylpiperidine, Methacrylamide, N-methylmethacrylamide, N-butylmethacrylamide, N, N-dimethylmethacrylamide, N, N-diethylmethacrylamide, methacryloylmorpholine, N-hydroxyethylmethacrylamide, methacryloylpyrrolidine, methacryloylpiperidine, N-vinyl Examples include formamide, N-vinylacetamide, N-vinylpyrrolidone and the like.
  • acryloylmorpholine and N-vinylpyrrolidone are used.
  • Q is 1 ⁇ q ⁇ 50 and is appropriately selected depending on the properties of the monomer, but preferably 5 ⁇ q ⁇ 30.
  • X may be a plurality of monomers.
  • the monomer X contributes to the improvement of heat resistance because the functional group contains oxygen atoms and nitrogen atoms in the structure and is polarized, which may increase the interaction and entanglement of the materials constituting the film. I guess it contributes.
  • the functional group is non-dissociable, it is considered that it is physically stable without acid generation due to decomposition over time.
  • the weight average molecular weight is high, it is satisfactory for self-supporting properties as an optical film.
  • Y in the acrylic resin (A) according to the present invention represents a monomer unit copolymerizable with MMA and X.
  • Y examples include acrylic monomers other than MMA, methacrylic monomers, olefins, acrylonitrile, styrene, vinyl acetate, and the like, as described in International Publication No. 2009/047924, JP2009-1744, JP2009-179731, and the like. These monomers are mentioned. Y may be two or more.
  • Y can be used as needed and is most preferably not used.
  • the acrylic resin (A) according to the present invention has a weight average molecular weight (Mw) of 80000 or more from the viewpoint of improving transparency particularly when it is compatible with the cellulose ester resin (B).
  • the weight average molecular weight (Mw) of the acrylic resin (A) is more preferably in the range of 80,000 to 600,000, and most preferably in the range of 100,000 to 400,000.
  • the upper limit value of the weight average molecular weight (Mw) of the acrylic resin (A) is preferably 1000000 or less from the viewpoint of production.
  • the weight average molecular weight of the acrylic resin (A) according to the present invention can be measured by gel permeation chromatography.
  • the measurement conditions are as follows.
  • any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization.
  • polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • acrylic resins can be used as the acrylic resin according to the present invention.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned.
  • Two or more acrylic resins can be used in combination.
  • the cellulose ester resin (B) according to the present invention has a total acyl group substitution degree (T) of 2.0 to 3 from the viewpoint of transparency particularly when it is improved in brittleness and is compatible with the acrylic resin (A).
  • T total acyl group substitution degree
  • the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3.0
  • the substitution degree of the acyl group having 3 to 7 carbon atoms is 2.0 to 3.0. preferable.
  • the cellulose ester resin (B) according to the present invention is a cellulose ester resin substituted with an acyl group having 3 to 7 carbon atoms. Specifically, propionyl, butyryl and the like are preferably used. Is preferably used.
  • the acrylic ester When the total substitution degree of the acyl group of the cellulose ester resin (B) is less than 2.0, that is, when the residual degree of the hydroxyl groups at the 2, 3, and 6 positions of the cellulose ester molecule is more than 1.0, the acrylic ester When the resin (A) is not sufficiently compatible with the resin (A) and used as an optical film, haze becomes a problem.
  • the substitution degree of the acyl group having 2 carbon atoms that is, the acetyl group is high
  • the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.
  • it is less than 2 the compatibility is lowered and the haze is increased.
  • the acyl substitution degree of the cellulose ester resin (B) according to the present invention is such that the total substitution degree (T) is 2.0 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3.0. If it is 3.0, there is no problem, but the total degree of substitution of acyl groups other than those having 3 to 7 carbon atoms, that is, acetyl groups or acyl groups having 8 or more carbon atoms, is preferably 1.3 or less. .
  • the total substitution degree (T) of the acyl group of the cellulose ester resin (B) is more preferably in the range of 2.5 to 3.0.
  • the cellulose ester resin (B) according to the present invention is preferably at least one selected from cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and cellulose butyrate, Those having an acyl group having 3 or 4 carbon atoms as a substituent are preferred.
  • particularly preferable cellulose ester resins are cellulose acetate propionate and cellulose propionate.
  • the portion not substituted with an acyl group usually exists as a hydroxyl group. These can be synthesized by known methods.
  • substitution degree of the acetyl group and the substitution degree of other acyl groups were determined by the method prescribed in ASTM-D817-96.
  • the weight average molecular weight (Mw) of the cellulose ester resin (B) according to the present invention is 75,000 or more, particularly from the viewpoint of improving compatibility with the acrylic resin (A) and brittleness, and is in the range of 75,000 to 300,000. Preferably, it is more preferably in the range of 100,000 to 240,000, particularly preferably 160000 to 240000.
  • the weight average molecular weight (Mw) of the cellulose ester resin is less than 75,000, the effect of improving heat resistance and brittleness decreases. Moreover, when it exceeds 300,000, a viscosity becomes high and film formation becomes difficult.
  • two or more kinds of cellulose ester resins can be mixed and used.
  • the weight average molecular weight of the cellulose ester resin (B) according to the present invention can be measured by the GPC.
  • the acrylic resin (A) and the cellulose ester resin (B) are contained in a compatible state at a mass ratio of 95: 5 to 30:70, more preferably 90:10 to 40: 60, particularly preferably a mass ratio of 80:20 to 50:50.
  • the mass ratio of the acrylic resin (A) and the cellulose ester resin (B) is more than 95: 5
  • the effect of the cellulose ester resin (B) cannot be sufficiently obtained, and the mass ratio is
  • the amount of acrylic resin is less than 30:70, the photoelastic coefficient is increased.
  • the acrylic resin (A) and the cellulose ester resin (B) are preferably contained in a compatible state.
  • the physical properties and quality required for an optical film are achieved by supplementing each other by dissolving different resins.
  • Whether the acrylic resin (A) and the cellulose ester resin (B) are in a compatible state can be determined by, for example, the glass transition temperature Tg.
  • the two resins have different glass transition temperatures
  • there are two or more glass transition temperatures for each resin because there is a glass transition temperature for each resin.
  • the glass transition temperature specific to each resin disappears and becomes one glass transition temperature, which is the glass transition temperature of the compatible resin.
  • the glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min.
  • the point glass transition temperature (Tmg) is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min.
  • the point glass transition temperature (Tmg) The point glass transition temperature (Tmg).
  • the weight average molecular weight (Mw) of the acrylic resin (A), the weight average molecular weight (Mw) of the cellulose ester resin (B), and the degree of substitution are different in solubility in the solvent of both resins. It is obtained by measuring each after use.
  • the resin may be separated by combining two or more of these solvent combinations.
  • the dissolved resin and the resin remaining as an insoluble matter are filtered off, and the solution containing the extract can be separated by an operation of evaporating the solvent and drying.
  • fractionated resins can be identified by general structural analysis of polymers.
  • the optical film of the present invention contains a resin other than the acrylic resin (A) and the cellulose ester resin (B), it can be separated by the same method.
  • the weight average molecular weights (Mw) of the compatible resins are different, the high molecular weight substances are eluted earlier by gel permeation chromatography (GPC), and the lower molecular weight substances are eluted after a longer time. Therefore, it can be easily fractionated and the molecular weight can be measured.
  • GPC gel permeation chromatography
  • the molecular weight of the compatible resin is measured by GPC, and at the same time, the resin solution eluted every time is separated, the solvent is distilled off, and the dried resin is different by quantitatively analyzing the structure. By detecting the resin composition for each molecular weight fraction, it is possible to identify each compatible resin.
  • the total mass of the acrylic resin (A) and the cellulose ester resin (B) in the optical film of the present invention is preferably 55% by mass or more of the optical film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
  • the optical film of the present invention was obtained by polymerizing a vinyl monomer having an amide bond with the acrylic resin (A) or cellulose ester resin (B) or copolymerizing a vinyl monomer having an amide bond and an arbitrary vinyl monomer.
  • Additive (C) (hereinafter simply referred to as vinyl polymer (C) having an amide bond) is contained in an amount of 1 to 30% by mass based on the total mass of the optical film, and the additive has a weight average molecular weight Mw of 1000 to 55000. It is characterized by being.
  • the vinyl polymer (C) having an amide bond in the present invention is any polymer that can be copolymerized with a polymer of a vinyl monomer having an amide bond in a side chain (hereinafter also referred to as a polymer) or a vinyl monomer having an amide bond in a side chain.
  • a copolymer with a vinyl monomer hereinafter also referred to as a copolymer).
  • Examples of the vinyl monomer having an amide bond include N-vinylpyrrolidone, N-vinyl-2-methylpyrrolidone, acryloylmorpholine, acryloyl-2-methylmorpholine, and vinylacetamide. A mixture of two or more kinds of these vinyl monomers having an amide bond can also be used.
  • vinyl monomers having an arbitrary functional group such as (meth) acrylate and acrylonitrile.
  • the copolymerization ratio of the vinyl monomer having an amide bond is preferably 20 to 100% of the total vinyl monomers constituting the polymer.
  • a vinyl polymer having an amide bond in the side chain, or a vinyl copolymer is made of azobisisobutyronitrile (AIBN) alone or together with other vinyl monomers capable of copolymerization having an amide bond.
  • AIBN azobisisobutyronitrile
  • polymerization is carried out by a conventional method in the presence of a solvent if necessary.
  • the weight average molecular weight of the vinyl polymer having an amide bond in the side chain is 1000 to 55000, preferably 2000 to 10,000. If it is 1000 or less, a problem occurs in bleed-out, and if it exceeds 55000, transparency deteriorates.
  • the vinyl polymer (C) having an amide bond in the side chain according to the present invention is 1 to 30% by mass and preferably 1 to 10% by mass with respect to the total mass of the optical film.
  • a preferred resin is a low molecular acrylic resin obtained by polymerizing an ethylenically unsaturated monomer described in paragraphs (0072) to (0123) of JP 2010-32655 A (weight average molecular weight Mw is 500 or more and 30000 or less). Polymer).
  • Mw is 2000 to 30000. If it is 1000 or less, a problem occurs in bleed-out, and if it exceeds 30000, the transparency deteriorates.
  • the low molecular acrylic resin and the vinyl polymer having an amide bond are 0 to 15% by mass, preferably 0 to 10% by mass, based on the total mass of the optical film.
  • the optical film of this invention may contain the acrylic particle (D) which is a multilayer structure acrylic type granular composite.
  • Examples of such a commercial product of a multilayer structure acrylic granular composite include, for example, “Metablene W-341” manufactured by Mitsubishi Rayon Co., “Kaneace” manufactured by Kaneka Chemical Co., Ltd., “Paraloid” manufactured by Kureha Chemical Co., Ltd. Examples include “Acryloid” manufactured by Rohm and Haas, “Staffroid” manufactured by Gantz Kasei Kogyo, Chemisnow MR-2G, MS-300X (manufactured by Soken Chemical Co., Ltd.), and "Parapet SA” manufactured by Kuraray. These can be used alone or in combination of two or more.
  • the optical film of the present invention preferably contains 0 to 30% by mass of acrylic particles (D) with respect to the total mass of the resin constituting the film, and is contained in the range of 1.0 to 15% by mass. More preferably.
  • the optical film of the present invention includes a retardation control agent for controlling retardation, a plasticizer for imparting processability to the film, an antioxidant for preventing deterioration of the film, and an ultraviolet ray for imparting an ultraviolet absorbing function. It is preferable to contain additives such as fine particles (matting agent) that impart slipperiness to the absorbent and film.
  • polyester polyol of glycol and dibasic acid examples include a dehydration condensation reaction between a glycol having an average carbon number of 2 to 3.5 and a dibasic acid having an average carbon number of 4 to 5.5, or the glycol. It is preferably one produced by a conventional method by addition of a dibasic anhydride having an average carbon number of 4 to 5.5 and a dehydration condensation reaction.
  • an aromatic terminal polyester represented by the following general formula (I) can be used.
  • B is a benzene monocarboxylic acid residue
  • G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms
  • A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms
  • n represents an integer of 1 or more.
  • aromatic terminal polyester used in the present invention include paragraphs (0183) to (0186) of JP-A 2010-32655.
  • the content of the aromatic terminal polyester used in the present invention is preferably 0 to 20% by mass, more preferably 1 to 11% by mass in the optical film.
  • the optical film of the present invention can contain a polyhydric alcohol ester compound.
  • Examples of the polyhydric alcohol ester compound include paragraphs (0218) to (0170) of JP-A 2010-32655.
  • a sugar ester compound in which at least one pyranose structure or furanose structure is 1 to 12 and all or a part of the OH groups of the structure is esterified is used. It is preferable.
  • sugar ester compound used in the present invention examples include glucose, galactose, mannose, fructose, xylose, arabinose, lactose, sucrose, cellobiose, cellotriose, maltotriose, raffinose, etc. What has is preferable.
  • An example is sucrose.
  • the sugar ester compound used in the present invention is one in which part or all of the hydroxyl groups of the sugar compound are esterified or a mixture thereof.
  • sugar ester compound examples include paragraphs (0060) to (0070) of JP 2010-32655 A.
  • a plasticizer In the optical film of the present invention, a plasticizer, a retardation control agent, an antioxidant, an ultraviolet absorber, matte particles, and the like can be used in combination.
  • plasticizer examples include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy.
  • phosphate plasticizers triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc.
  • phthalate ester plasticizers diethyl phthalate, dimethoxy Ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate and the like can be used.
  • polyester-based and phthalate-based plasticizers are preferably used.
  • Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate, but are slightly inferior in plasticizing effect and compatibility.
  • the polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol.
  • Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.
  • glycol examples include glycols such as ethylene, propylene, 1,3-butylene, 1,4-butylene, 1,6-hexamethylene, neopentylene, diethylene, triethylene, and dipropylene. These divalent carboxylic acids and glycols may be used alone or in combination.
  • the ester plasticizer may be any of ester, oligoester and polyester types, and the molecular weight is preferably in the range of 100 to 10000, but preferably in the range of 600 to 3000, the plasticizing effect is large.
  • the viscosity of the plasticizer has a correlation with the molecular structure and molecular weight, but in the case of an adipic acid plasticizer, the range of 200 to 5000 mPa ⁇ s (25 ° C.) is preferable because of compatibility and plasticization efficiency. Furthermore, some polyester plasticizers may be used in combination.
  • the plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the composition containing an acrylic resin. If the added amount of the plasticizer exceeds 30 parts by mass, the surface becomes sticky, which is not preferable for practical use.
  • These plasticizers may be used alone or in combination of two or more.
  • ⁇ Other phase difference control agents> Other than the above retardation control agent, those containing bisphenol A in the molecule are preferred. A compound in which ethylene oxide or propylene oxide is added to both ends of bisphenol A can be used.
  • BP series such as New Paul BP-2P, BP-3P, BP-23P, BP-5P, BPE-20 (F), BPE-20NK, BPE-20T, BPE-40, BPE-60, BPE-100
  • BPE series manufactured by Sanyo Chemical Co., Ltd.
  • BPX series manufactured by Adeka Co., Ltd.
  • Adeka Polyether BPX-11, BPX-33, BPX-55 Adeka Polyether BPX-11, BPX-33, BPX-55.
  • Diallyl bisphenol A dimethallyl bisphenol A, tetrabromobisphenol A in which bisphenol A is substituted with bromine, oligomers and polymers obtained by polymerizing this, bisphenol A bis (diphenyl phosphate) substituted with diphenyl phosphate, etc. Can be used.
  • Polycarbonate obtained by polymerizing bisphenol A polyarylate obtained by polymerizing bisphenol A with a dibasic acid such as terephthalic acid, and an epoxy oligomer or polymer polymerized with an epoxy-containing monomer can also be used.
  • Modiper CL130D or L440-G obtained by graft polymerization of bisphenol A and styrene or styrene acrylic can also be used.
  • Antioxidant> in this invention, what is generally known can be used as an antioxidant.
  • lactone, sulfur, phenol, double bond, hindered amine, and phosphorus compounds can be preferably used.
  • the phenolic compound preferably has a 2,6-dialkylphenol structure.
  • BASF Japan Ltd. “Irganox 1076”, “Irganox 1010”, and ADEKA “ADEKA STAB AO-50” are trade names. What is marketed is preferable.
  • the above phosphorus compounds are, for example, from Sumitomo Chemical Co., Ltd., “Sumilizer GP”, ADEKA Co., Ltd., “ADK STAB PEP-24G”, “ADK STAB PEP-36” and “ADK STAB 3010”, “BASF Japan Co., Ltd.” IRGAFOS P-EPQ ", commercially available from Sakai Chemical Industry Co., Ltd. under the trade name" GSY-P101 "is preferred.
  • the hindered amine compound is preferably commercially available from BASF Japan KK under the trade names of “Tinuvin 144” and “Tinvin 770”, and from ADEKA Corporation as “ADK STAB LA-52”.
  • the above-mentioned sulfur compounds are preferably those commercially available from Sumitomo Chemical Co., Ltd. under the trade names “Sumilizer TPL-R” and “Sumilizer TP-D”.
  • the above-mentioned double bond compound is preferably commercially available from Sumitomo Chemical Co., Ltd. under the trade names of “Sumilizer GM” and “Sumilizer GS”.
  • the amount of these antioxidants and the like to be added is appropriately determined in accordance with the process for recycling and use, but generally 0.05 to 20% by mass, preferably with respect to the resin as the main raw material of the film Is added in the range of 0.1 to 1% by mass.
  • antioxidants can obtain a synergistic effect by using several different types of compounds in combination rather than using only one kind.
  • the combined use of lactone, phosphorus, phenol and double bond compounds is preferred.
  • a colorant means a dye or a pigment.
  • the colorant refers to a colorant having an effect of making the color tone of a liquid crystal screen a blue tone, adjusting a yellow index, and reducing haze.
  • dyes and pigments can be used as the colorant, but anthraquinone dyes, azo dyes, phthalocyanine pigments and the like are effective.
  • UV absorber used in the present invention is not particularly limited, for example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders Examples include the body. It is good also as a polymer type ultraviolet absorber.
  • ⁇ Matting agent> it is preferable to add a matting agent in order to impart film slipperiness.
  • the matting agent used in the present invention may be either an inorganic compound or an organic compound as long as it does not impair the transparency of the obtained film and has heat resistance during melting. These matting agents can be used alone or in combination of two or more.
  • High transparency and slipperiness can be achieved at the same time by using particles having different particle sizes and shapes (for example, needle shape and spherical shape).
  • silicon dioxide is particularly preferably used since it has a refractive index close to that of cellulose ester and is excellent in transparency (haze).
  • silicon dioxide examples include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (manufactured by Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP- 30, Seahoster KEP-50 (above, manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), Nip Seal E220A (manufactured by Nippon Silica Kogyo), Admafine SO (manufactured by Admatechs), etc. Goods etc. can be preferably used.
  • the shape of the particles can be used without particular limitation, such as indefinite shape, needle shape, flat shape, spherical shape, etc. However, the use of spherical particles is preferable because the transparency of the resulting film can be improved.
  • the particle size is preferably smaller than the wavelength of visible light, and more preferably 1 ⁇ 2 or less of the wavelength of visible light. . If the size of the particles is too small, the slipperiness may not be improved, so the range of 80 nm to 180 nm is particularly preferable.
  • the particle size means the size of the aggregate when the particle is an aggregate of primary particles. Moreover, when a particle is not spherical, it means the diameter of a circle corresponding to the projected area.
  • a hydrogen bonding solvent can be added for the purpose of reducing the melt viscosity.
  • Hydrogen-bonding solvent refers to J.I. N. As described in Israel Ativili, “Intermolecular Forces and Surface Forces” (Takeshi Kondo, Hiroyuki Oshima, Maglow Hill Publishing, 1991) and electrically negative atoms (oxygen, nitrogen, fluorine, chlorine)
  • the hydrogen bonding solvent used in the melt casting method performed in the present invention is desirably low in volatility or non-volatile when used as a melting step or film.
  • the melting temperature of the cellulose ester resin composition can be lowered by the addition of a hydrogen-bonding solvent or the same melting temperature than the glass transition temperature of the cellulose ester resin used alone.
  • the melt viscosity of the cellulose ester resin composition containing a hydrogen bonding solvent can be lowered than that of the cellulose ester resin.
  • haze value As an index for judging the transparency of the optical film in the present invention, haze value (turbidity) is used.
  • the haze value is required to be 1.0% or less, and 0.5% or less. More preferably.
  • the total light transmittance is preferably 90% or more, and more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%.
  • the optical film of the present invention containing the acrylic resin (A) and the cellulose ester resin (B), high transparency can be obtained, but when using acrylic particles for the purpose of improving another physical property, By reducing the difference in refractive index between the resin (acrylic resin (A) and cellulose ester resin (B)) and acrylic particles (D), an increase in haze value can be prevented.
  • the optical film of the present invention preferably has a defect with a diameter of 5 ⁇ m or more in the film plane of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less.
  • the diameter of the defect indicates the diameter when the defect is circular, and when it is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
  • the range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object. If the defect is a change in surface shape, such as transfer of a roll flaw or an abrasion, the size is confirmed by observing the defect with the reflected light of a differential interference microscope.
  • the film When the number of defects is more than 1/10 cm square, for example, when a tension is applied to the film during processing in a later process, the film may be broken with the defect as a starting point and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
  • ⁇ Retardation> For the retardation, a 35 mm ⁇ 35 mm sample was cut from the produced optical film, conditioned for 2 hours at 25 ° C. and 55% RH, and measured from the vertical direction at 590 nm with an automatic birefringence meter (KOBRA WR, Oji Scientific Instruments). Ro and Rth at each wavelength were calculated from the measured values and the extrapolated values of the retardation values measured in the same manner while tilting the film surface.
  • KOBRA WR automatic birefringence meter
  • the optical film of the present invention has an in-plane retardation value Ro (590) defined by the following formula (I) in the range of 0 to 100 nm, and a retardation in the thickness direction defined by the following formula (II). It is preferable to adjust so that the value Rth (590) is in the range of ⁇ 100 to 100 nm.
  • Ro (590) (nx ⁇ ny) ⁇ d (nm)
  • Rth (590) ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d (nm)
  • Ro (590) represents the in-plane retardation value in the film at a measurement wavelength of 590 nm
  • Rth (590) represents the retardation value in the thickness direction in the film at 590 nm.
  • D represents the thickness (nm) of the optical film
  • nx represents the maximum refractive index in the plane of the film at 590 nm, and is also referred to as the refractive index in the slow axis direction.
  • ny represents the refractive index in the direction perpendicular to the slow axis in the film plane at 590 nm, and
  • nz represents the refractive index of the film in the thickness direction at 590 nm.
  • the in-plane retardation value Ro (590) is preferably in the range of 0 to 250 nm.
  • the retardation value Rth (590) in the thickness direction is preferably in the range of ⁇ 50 to 50 nm.
  • the composition of the acrylic resin and the cellulose ester resin is adjusted within a mass ratio of 95: 5 to 30:70, and the ratio of each resin is adjusted. This is done by adjusting the amount to be added.
  • the retardation value can be set to a desired value.
  • the viewing angle of the liquid crystal display device using the optical film of the present invention can be widened, and the front contrast can be improved.
  • Front contrast (brightness of white display measured from normal direction of display device) / (brightness of black display measured from normal direction of display device)
  • the viewing angle is an angle at which a certain level of contrast can be maintained when the viewing direction of the liquid crystal display device is tilted from the normal direction.
  • Uniformity in the slow axis direction is also important, and the angle is preferably ⁇ 5 to + 5 ° with respect to the film width direction, more preferably in the range of ⁇ 1 to + 1 °, particularly ⁇ 0.
  • a range of 5 to + 0.5 ° is preferable, and a range of ⁇ 0.1 to + 0.1 ° is particularly preferable.
  • the height from the top of the adjacent mountain to the bottom of the valley is 300 nm or more, and there is no streak continuous in the longitudinal direction with an inclination of 300 nm / mm or more.
  • the shape of the streaks was measured using a surface roughness meter. Specifically, using a SV-3100S4 manufactured by Mitutoyo, a stylus (diamond needle) with a tip shape of 60 ° cone and a tip curvature radius of 2 ⁇ m was used. The film is scanned in the width direction of the film at a measurement speed of 1.0 mm / sec while applying a load of 0.75 mN, and a cross-sectional curve is measured with a Z-axis (thickness direction) resolution of 0.001 ⁇ m.
  • the height of the streak reads the vertical distance (H) from the top of the mountain to the bottom of the valley.
  • the slope of the streak is obtained by reading the horizontal distance (L) from the top of the mountain to the bottom of the valley and dividing the vertical distance (H) by the horizontal distance (L).
  • the thickness of the optical film of the present invention is preferably 20 ⁇ m or more and 150 ⁇ m or less. More preferably, it is 30 ⁇ m or more and 80 ⁇ m or less.
  • the optical film of the present invention can be particularly preferably used as a polarizing plate protective film for a large-sized liquid crystal display device or a liquid crystal display device for outdoor use as long as the above physical properties are satisfied.
  • the optical film of the present invention can be produced by a solution casting method or a melt casting method, but is preferably produced by a melt casting extrusion film forming method from the viewpoint of flatness and thinning.
  • optical film manufacturing method is an example, and the present invention is not limited to this.
  • FIG. 1 is a diagram schematically showing the steps of a melt casting film forming method preferable for the present invention.
  • the manufacturing method of the optical film by this invention is the 1st cooling from the casting die 4 using the extruder 1 after mixing film materials, such as an acrylic resin (A) and a cellulose-ester resin (B). It is melt extruded on the roll 5 and circumscribed to the first cooling roll 5, and is further circumscribed by a total of three cooling rolls, the second cooling roll 7 and the third cooling roll 8, in order to cool and solidify the film 10. To do. Next, after the film 10 peeled off by the peeling roll 9 is gripped at both ends of the film by the stretching device 12 and stretched in the width direction, it is wound up by the winding device 16. In addition, a touch roll 6 is provided that clamps the molten film on the surface of the first cooling roll 5 in order to correct the flatness. The touch roll 6 has an elastic surface and forms a nip with the first cooling roll 5.
  • film materials such as an acrylic resin (A) and a cellulose-ester resin (B). It is melt extruded on the roll 5 and circumscribed to the
  • a mixture of acrylic resin (A), cellulose ester (including cellulose ester resin (B)), vinyl polymer (C) having an amide bond, plasticizer and other additives used for melt extrusion is usually kneaded in advance. It is preferable to pelletize.
  • Pelletization may be performed by a known method. For example, dry acrylic resin (A), dry cellulose ester resin (B), vinyl polymer (C) having a dry amide bond, a plasticizer, and other additives are fed into an extruder. It can be supplied by kneading using a single-screw or twin-screw extruder, extruding into a strand from a die, water-cooling or air-cooling, and cutting.
  • cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
  • Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders.
  • a small amount of an additive such as an antioxidant is preferably mixed in advance in order to mix uniformly.
  • antioxidants may be performed by mixing solids or, if necessary, an antioxidant is dissolved in a solvent, and an acrylic resin (A), a cellulose ester resin (B), or a vinyl polymer having an amide bond. (C) may be impregnated and mixed, or may be mixed by spraying.
  • a vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
  • the extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
  • a line for introducing the acrylic resin (A) from the molten mixture to the casting die and a line for introducing the cellulose tellur resin (B) from the molten mixture to the casting die are provided side by side. Laminated.
  • the pellets produced are extruded using a single-screw or twin-screw type extruder, the melting temperature Tm when being extruded is about 200 to 300 ° C., filtered through a leaf disk type filter or the like to remove foreign matters, and then the T-die The film is coextruded into a film, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
  • Tm is the temperature of the die exit portion of the extruder.
  • defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
  • the inner surface that comes into contact with the molten resin is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy.
  • a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
  • the cooling roll used in the present invention is a roll having a structure in which a heat medium or a refrigerant body whose temperature can be controlled is flowed with a highly rigid metal roll, and its size is not limited,
  • the film may be of a size sufficient to cool the melt-extruded film, and the diameter of the cooling roll is usually about 100 mm to 1 m.
  • the surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the surface hardness or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
  • the surface roughness of the cooling roll surface is preferably 0.1 ⁇ m or less in terms of Ra, and more preferably 0.05 ⁇ m or less.
  • the smoother the roll surface the smoother the surface of the resulting film.
  • the surface processed is further polished to have the above-described surface roughness.
  • Examples of the elastic touch roll used in the present invention include JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97-028950, JP-A-11-235747, As described in JP-A-2002-36332, JP-A-2005-172940 and JP-A-2005-280217, a thin-film metal sleeve-covered silicon rubber roll can be used.
  • the film obtained as described above is further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll.
  • the sharpness of the streaks becomes gentle by stretching and can be highly corrected.
  • the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
  • the stretching method a known roll stretching machine or tenter can be preferably used.
  • the optical film is a retardation film that also serves as a polarizing plate protective film
  • the slow axis of the optical film becomes the width direction by stretching in the width direction.
  • the draw ratio is 1.1 to 3.0 times, preferably 1.2 to 1.5 times
  • the draw temperature is usually Tg to Tg + 50 ° C. of the resin constituting the film, preferably Tg to Tg + 40 ° C. Performed in the temperature range.
  • the stretching is preferably performed under a uniform temperature distribution controlled in the width direction.
  • the temperature is preferably within ⁇ 2 ° C, more preferably within ⁇ 1 ° C, and particularly preferably within ⁇ 0.5 ° C.
  • the film may be contracted in the longitudinal direction or the width direction for the purpose of reducing the retardation of the optical film produced by the above method and reducing the dimensional change rate.
  • the amount of the solvent contained is 0.01% by mass or less when wound up as a roll film.
  • the amount of the solvent can be measured by the following method.
  • the return material can be used in the production process.
  • the return material is a product obtained by finely pulverizing the optical film, which is generated when the optical film is formed, and is obtained by cutting off both sides of the film, or by using an optical film original that has been speculated out due to scratches, etc. .
  • the optical film of the present invention is preferably a long film. Specifically, the optical film has a thickness of about 100 m to 10000 m and is usually provided in a roll shape.
  • the width of the optical film is preferably 1.3 to 4 m, and more preferably 1.4 to 3 m.
  • the film thickness of the optical film of the present invention is not particularly limited, but when used for a polarizing plate protective film described later, it is preferably 20 to 200 ⁇ m, more preferably 25 to 100 ⁇ m, and 30 to 80 ⁇ m. It is particularly preferred.
  • the optical film of the present invention includes a hard coat layer, an antistatic layer, a back coat layer, a slippery layer, an adhesive layer, a barrier layer, an antiglare layer, an antireflection layer, an optical compensation layer and the like before or after stretching.
  • a functional layer may be applied.
  • the optical film of the present invention can be used for a polarizing plate and a liquid crystal display device using the polarizing plate.
  • the polarizing plate is characterized in that it is a polarizing plate in which the optical film of the present invention is bonded to at least one surface of a polarizer.
  • the liquid crystal display device of the present invention is characterized in that the polarizing plate according to the present invention is bonded to at least one liquid crystal cell surface via an adhesive layer.
  • the polarizing plate can be produced by a general method.
  • the optical film of the present invention is preferably bonded to at least one surface of a polarizer prepared by subjecting the polarizer side of the optical film to alkali saponification treatment and immersion drawing in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution.
  • the optical film of the present invention may be used, or another polarizing plate protective film may be used.
  • commercially available cellulose ester films for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC4UA, KC6UA, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, C4, R4 -4, KC4HR-1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
  • a preferred embodiment of the present invention is a polarizing plate in which the optical film of the present invention is bonded to one surface of a polarizer and a cellulose ester film having a thickness of 20 ⁇ m to 75 ⁇ m is bonded to the other surface.
  • a polarizer which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass.
  • a typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol.
  • iodine is dyed on a system film and one in which dichroic dye is dyed.
  • the polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
  • a pressure-sensitive adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 ⁇ 10 4 Pa to 1.0 ⁇ 10 9 Pa in at least a part of the pressure-sensitive adhesive layer is used. It is preferable to use a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded.
  • urethane adhesives examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • anaerobic pressure-sensitive adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-component instantaneous pressure-sensitive adhesives.
  • the above-mentioned pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use.
  • the pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solvent type.
  • concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
  • polarizing plate bonded with the optical film of the present invention into a liquid crystal display device, it is possible to produce various liquid crystal display devices with excellent visibility, but particularly outdoors such as large liquid crystal display devices and digital signage. It is preferably used for a liquid crystal display device for use.
  • the polarizing plate of the present invention is bonded to a liquid crystal cell via the adhesive layer or the like.
  • the polarizing plate of the present invention includes various types such as a reflective type, a transmissive type, a transflective type LCD, a TN type, an STN type, an OCB type, a HAN type, a VA type (PVA type, MVA type), and an IPS type (including an FFS type). It is preferably used in a drive type LCD.
  • a VA type PVA type, MVA type
  • IPS type including an FFS type
  • Example 1 ⁇ Material synthesis> (Acrylic resin (A)) Acrylic resins A1 to A29 in Table 1 were produced by a known method.
  • ACMO is acryloylmorpholine
  • MACMO is methacryloylmorpholine
  • AAm is acrylamide
  • VP is N-vinylpyrrolidone
  • DMAAm is N, N-dimethylacrylamide
  • HEAAm is N-hydroxyethylacrylamide
  • VFAAm is N-vinyl.
  • Formamide and ACPIPE are acryloylpiperidine
  • HEMA is 2-hydroxyethyl methacrylate
  • HPMA 2-hydroxypropyl methacrylate.
  • ac acetyl group
  • pr propionyl group
  • bt butyryl group
  • pen pentyl group
  • hep heptyl group
  • bz benzoyl group
  • oct octyl group
  • ph phenyl group.
  • Vinyl polymers C1 to C11 having an amide bond shown in Table 3 were prepared by a known method.
  • VP is N-vinylpyrrolidone
  • VAc is vinyl acetate
  • MMA is methyl methacrylate
  • HEMA is 2-hydroxyethyl methacrylate.
  • Cellulose ester resin (B): CE1 (cellulose acetate propionate: acyl group total substitution degree 2.75, acetyl group substitution degree 0.19, propionyl group substitution degree 2.56, Mw 200000, dried at 100 ° C.
  • the obtained pellets were dried by circulating 70 ° C.
  • dehumidified air for 5 hours or more. While maintaining the temperature of 100 ° C., it was introduced into a single-screw extruder in the next step. A small amount of the pellet was taken out and the water content was measured and found to be 120 ppm.
  • the above pellets were melt extruded from a T die onto a first cooling roll having a surface temperature of 90 ° C. at a melting temperature of 240 ° C. using a single screw extruder to obtain a 120 ⁇ m cast film. At this time, the film was pressed on the first cooling roll with an elastic touch roll having a 2 mm thick metal surface.
  • the obtained film was stretched 60% in the transport direction at 175 ° C. by a stretching machine using a difference in peripheral speed of the roll.
  • a tenter having a preheating zone, a stretching zone, a holding zone, and a cooling zone (there is also a neutral zone for ensuring thermal insulation between the zones), and is 70 ° C at 175 ° C in the width direction.
  • the film was cooled to 30 ° C., then released from the clip, and the clip gripping part was cut off to obtain an optical film sample 1 having a film thickness of 40 ⁇ m and a film width of 2500 mm.
  • a film was produced according to the production method of the optical film 1 described in Example 1 of International Publication No. 2009/047924, and this was designated as film 83.
  • this film is placed in a thermostatic chamber, first treated in an environment of ⁇ 35 ° C. for 30 minutes, and then immediately set in an environment of 95 ° C. From the time when the temperature in the thermostatic bath reaches 95 ° C. The treatment was performed for 30 minutes. After that, set the temperature to -35 ° C again and perform the treatment for 30 minutes when the same environment is reached. Thereafter, the treatment at -35 ° C and the treatment at 95 ° C are regarded as one cycle, and the durability is evaluated for a total of 100 cycles. Went.
  • the film sample was conditioned for 24 hours in an atmosphere of 23 ° C. and 55% RH, and then the haze was measured by the same method as described above, and the difference in haze between before and after endurance ( ⁇ %) was calculated.
  • the produced polarizing plate is cut into a square of 5 cm ⁇ 5 cm, left in an atmosphere of 23 ° C. and 55% RH for 24 hours, and then peeled off from the corner at the interface between the polarizer and the film. Observed. This operation was performed with 10 polarizing plates for one type of sample, and the number of polarizing plates in which peeling was observed between the polarizer and the film was counted and evaluated as follows.
  • Polarizer adhesion is practically at the level of ⁇ ⁇ to ⁇ Preferably there is.
  • Tables 4, 5, and 6 show the details of the optical film sample contents and the results of the above evaluation.
  • the optical film of the present invention is excellent in film durability haze, polarizing plate adhesion, and Rth environmental fluctuation. Furthermore, it was found that the optical film of the present invention is also excellent in contamination suitability such as foreign matter.
  • Example 2 ⁇ Production of liquid crystal display device>
  • the direction of bonding of the polarizing plate is such that the absorption axis of the polarizing plate previously bonded and the absorption axis of the prepared polarizing plates 1 to 83 are directed in the same direction, respectively.
  • Liquid crystal display devices 1 to 83 were produced.
  • the liquid crystal display device equipped with the polarizing plate bonded with the optical film of the present invention was clear and high in contrast, and had good visibility even after long-term use. Had.

Abstract

Disclosed is an optical film containing an acrylic resin (A) and a cellulose ester resin (B) in a proportion by mass of 95:5 - 30:70. The acrylic resin (A) is represented by general formula (1) and has a weight average molecular weight Mw of 80,000 - 1,000,000. The optical film is characterized by containing 1 - 30% of the total mass of the optical film by mass of an additive agent (C) obtained by polymerization of a vinyl monomer having amide bonds, or copolymerization of a vinyl monomer having amide bonds and a random vinyl monomer and by this additive agent having a weight average molecular weight Mw of 1000 - 55,000. General formula (1): -(MMA)p-(X)q-(Y)r-

Description

光学フィルム、光学フィルムの製造方法、偏光板、及び液晶表示装置Optical film, method for producing optical film, polarizing plate, and liquid crystal display device
 本発明は、光学フィルム、光学フィルムの製造方法、偏光板、及び液晶表示装置に関する。 The present invention relates to an optical film, an optical film manufacturing method, a polarizing plate, and a liquid crystal display device.
 液晶表示装置は、液晶テレビやパソコンの液晶ディスプレイ等の用途で、需要が拡大している。通常、液晶表示装置は、透明電極、透明電極、液晶層、カラーフィルター等をガラス板で挟み込んだ液晶セルと、その両側に設けられた2枚の偏光板で構成されており、それぞれの偏光板は、偏光子(偏光膜、偏光フィルムともいう)を2枚の光学フィルム(偏光板保護フィルム)で挟まれて構成されている。 Demand for liquid crystal display devices is expanding for applications such as liquid crystal televisions and personal computer liquid crystal displays. In general, a liquid crystal display device is composed of a liquid crystal cell in which a transparent electrode, a transparent electrode, a liquid crystal layer, a color filter and the like are sandwiched between glass plates, and two polarizing plates provided on both sides thereof. Is configured by sandwiching a polarizer (also referred to as a polarizing film or a polarizing film) between two optical films (polarizing plate protective film).
 この偏光板保護フィルムとしては、通常、セルロースエステルフィルムが用いられている。セルロースエステルフィルムは、光学的な等方性に優れるとともに、偏光子として一般的に用いられているポリビニルアルコール樹脂フィルムをヨウ素または二色性染料により染色させることで得られた偏光子に対して優れた接着性を示し、セルロースエステルフィルムをアルカリ溶液で処理することで、偏光子との接着の際に粘着剤を使用することなく、水糊で接着させることが可能であることからロールトゥロールでの接着が可能となるため、広く採用されている。また、近年においては、セルロースエステルフィルムに延伸処理等により特定の光学特性を持たせることで単に偏光板保護フィルムとしてだけではなく、光学補償フィルム等の光学フィルムとしての機能を持たせる技術も採用されている。 As the polarizing plate protective film, a cellulose ester film is usually used. Cellulose ester film is excellent in optical isotropy and excellent in polarizer obtained by dyeing polyvinyl alcohol resin film generally used as polarizer with iodine or dichroic dye. By using a roll-to-roll, the cellulose ester film can be bonded with water glue without using a pressure-sensitive adhesive at the time of bonding to the polarizer. It is widely adopted because it can be bonded. Further, in recent years, a technique for providing a function as an optical film such as an optical compensation film as well as a polarizing plate protective film by giving the cellulose ester film specific optical characteristics by stretching treatment or the like has also been adopted. ing.
 一方、近年の技術の進歩により、液晶表示装置の大型化が加速するとともに、液晶表示装置の用途が多様化している。例えば、街頭や店頭に設置される大型ディスプレイとしての利用や、デジタルサイネージと呼ばれる表示機器を用いた公共の場における広告用ディスプレイへの利用等が挙げられる。このように液晶表示装置の用途が屋外用途へ拡大するに伴い、そこに用いられる偏光板に対しても厳しい環境変動に対する安定性が強く求められている。しかしながら、そのような非常に厳しい環境下におかれた場合、セルロースエステルフィルムの光学性能が変動してしまう問題が発生する場合がある。セルロースエステルフィルムは一般的な位相差フィルムとして用いられるポリカーボネート等の樹脂に比較すれば比較的光弾性係数は小さいものの、激しい環境変動に晒された場合に発生する圧縮応力や引っ張り応力により発生する複屈折に起因する光学特性の変化を十分に抑制することができないためと考えられる。 On the other hand, due to recent technological advances, the enlargement of liquid crystal display devices has accelerated, and the applications of liquid crystal display devices have diversified. For example, it can be used as a large display installed on a street or in a store, or used as an advertising display in a public place using a display device called digital signage. Thus, as the use of liquid crystal display devices expands to outdoor use, stability against severe environmental fluctuations is strongly demanded for polarizing plates used there. However, when placed in such a very severe environment, there may be a problem that the optical performance of the cellulose ester film varies. Cellulose ester film has a relatively small photoelastic coefficient compared to polycarbonate and other resins used as a general retardation film, but it is a compound produced by compressive stress and tensile stress generated when exposed to severe environmental fluctuations. This is thought to be because the change in optical characteristics due to refraction cannot be sufficiently suppressed.
 優れた透明性を示し、寸法安定性が高く、低吸湿性に優れることから光学フィルムに適した樹脂としてポリメチルメタクリレート等のアクリル樹脂を採用することが考えられるが、アクリル樹脂フィルムを偏光板保護フィルムとして採用した場合には、耐熱性や硬脆い特性が問題となる。また、偏光子への接着性が低いため、粘着剤を用いて接着する必要があり実用には課題があった。 It is possible to use acrylic resin such as polymethylmethacrylate as a resin suitable for optical film because it shows excellent transparency, high dimensional stability, and low hygroscopicity. When it is employed as a film, heat resistance and hard and brittle properties are problematic. Moreover, since the adhesiveness to a polarizer is low, it was necessary to adhere | attach using an adhesive, and there existed a subject in practical use.
 このような課題に対して、特定の分子量を有するアクリル樹脂と特定のセルロースエステル樹脂を相溶状態として製膜することで得られた光学フィルムを用いることで、セルロースエステル樹脂フィルム及びアクリル樹脂フィルム双方の課題を解消したフィルムとすることが提案されている(例えば、特許文献1参照。)。特許文献1の技術によれば、従来は混ざりにくかったアクリル樹脂とセルロースエステル樹脂をヘーズを発生させることなく、透明性の高いフィルムとすることができたが、長期にわたり高熱から低熱への温度変化が何度も繰り返されるような更に厳しい環境に晒された場合に、当初は見られなかったヘーズが発生し、透明性が低下する場合があることが判明した。 For such problems, both cellulose ester resin films and acrylic resin films can be obtained by using an optical film obtained by forming an acrylic resin having a specific molecular weight and a specific cellulose ester resin into a compatible state. It has been proposed that the above-mentioned problem be solved (see, for example, Patent Document 1). According to the technique of Patent Document 1, an acrylic resin and a cellulose ester resin, which were conventionally difficult to mix, could be made into a highly transparent film without causing haze, but the temperature change from high heat to low heat over a long period of time. It has been found that when exposed to a more severe environment that is repeated many times, haze that was not initially seen may occur and transparency may be reduced.
 そこで、本発明者らが更に検討した結果、メチルメタクリレートモノマーとアミド結合を有する特定のアクリル樹脂にセルロースエステル樹脂を混合させることでこのような課題を低減することができることを見出した。このようなアクリル樹脂は、セルロースエステル樹脂と相溶性の高い可塑剤として用いられることができることが知られていたものの上述の効果が得られることについては知られていなかった(例えば、特許文献2参照。)。 Therefore, as a result of further studies by the present inventors, it has been found that such problems can be reduced by mixing a cellulose ester resin with a specific acrylic resin having a methyl methacrylate monomer and an amide bond. Such an acrylic resin has been known to be able to be used as a plasticizer highly compatible with a cellulose ester resin, but it has not been known that the above-mentioned effects can be obtained (for example, see Patent Document 2). .)
 このようなアクリル樹脂とセルロースエステル樹脂を混合させたフィルムを用いることで、偏光子への接着性に優れ、環境変動による光学特性の変化の小さい偏光板保護フィルム用の光学フィルムが得られると考えられる。ところが、近年の偏光板製造のさらなる高速化や光学フィルムに求められる光学性能の多様化に伴い新たな課題が発生した。上述のように偏光板製造においては、光学フィルムに対してアルカリ溶液によるケン化処理を施すことで偏光子への接着性を高めた後に、偏光子への接着が行われる。偏光板製造の高速化に対応するため、ケン化処理における処理時間が短縮化されたり、光学フィルムの多様化に伴い光学フィルムに添加される添加剤の溶出を抑制するために、ケン化処理用のアルカリ溶液の濃度を低下させてケン化処理が行われたり、さらには偏光子の劣化を抑制するために、偏光板の乾燥が低温で行われる場合に、上述のフィルムでは、偏光子への密着性が十分に得られず、光学フィルムの偏光子からの膜剥がれや、膜浮きという課題が発生する場合があることが判明した。 It is thought that by using a film in which such an acrylic resin and a cellulose ester resin are mixed, an optical film for a polarizing plate protective film having excellent adhesion to a polarizer and small changes in optical properties due to environmental fluctuations can be obtained. It is done. However, new problems have arisen with the recent increase in the speed of polarizing plate production and the diversification of optical performance required for optical films. As described above, in the production of a polarizing plate, the optical film is subjected to a saponification treatment with an alkaline solution to enhance the adhesion to the polarizer, and then the adhesion to the polarizer is performed. For saponification treatment in order to reduce the processing time in saponification treatment and to suppress the elution of additives added to the optical film due to diversification of optical films in order to cope with higher speed of polarizing plate production When the polarizing plate is dried at a low temperature in order to reduce the concentration of the alkaline solution of the saponification treatment and further to suppress the deterioration of the polarizer, It has been found that sufficient adhesion may not be obtained, and problems such as film peeling from the polarizer of the optical film and film floating may occur.
国際公開第2009/047924号パンフレットInternational Publication No. 2009/047924 Pamphlet 特許4138984号公報Japanese Patent No. 4138984
 従って、本発明の目的は、耐環境性に優れ、長期にわたり透明性が高く、偏光板の保護フィルムとして用いられた場合には、偏光子への接着性に優れて、ケン化条件が弱い場合でも偏光子からの膜剥がれや膜浮きが発生しない光学フィルム及びその製造方法を提供することであり、このような光学フィルムを用いた偏光板及び液晶表示装置を提供することである。 Accordingly, the object of the present invention is excellent in environmental resistance, high transparency over a long period of time, and when used as a protective film for a polarizing plate, it has excellent adhesion to a polarizer and weak saponification conditions. However, it is to provide an optical film in which film peeling or film floating from the polarizer does not occur and a method for producing the same, and to provide a polarizing plate and a liquid crystal display device using such an optical film.
 本発明者らはこのような現状に鑑み、さらなる検討を重ねた結果、メチルメタクリレートモノマーとアミド結合を有する特定のアクリル樹脂にセルロースエステル樹脂を混合させた光学フィルムに、更に、アミド結合を有するビニルモノマーの重合又はアミド結合を有するビニルモノマーと任意のビニルモノマーとの共重合により得られた、分子量の比較的小さい添加剤を加えることで、耐環境性や透明性といった本来の機能を保ちつつ、偏光子との接着性を高めることができることを見出し、本発明に至った。 In view of the present situation, the present inventors have made further studies, and as a result, an optical film obtained by mixing a cellulose ester resin with a specific acrylic resin having a methyl methacrylate monomer and an amide bond, and further a vinyl having an amide bond. By adding an additive having a relatively low molecular weight obtained by polymerization of a monomer or copolymerization of a vinyl monomer having an amide bond and an arbitrary vinyl monomer, while maintaining the original functions such as environmental resistance and transparency, The present inventors have found that the adhesiveness with a polarizer can be improved and have reached the present invention.
 すなわち、本発明は下記の形態を有する。 That is, the present invention has the following forms.
 1.アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5~30:70の質量比で含有する光学フィルムであって、
 該アクリル樹脂(A)が下記一般式(1)で表され、重量平均分子量Mwが80000以上1000000以下であり、
 前記光学フィルムは、アミド結合を有するビニルモノマーの重合又はアミド結合を有するビニルモノマーと任意のビニルモノマーとの共重合により得られた添加剤(C)を光学フィルムの総質量に対して1~30質量%含有し、該添加剤の重量平均分子量Mwが1000~55000であることを特徴とする光学フィルム。
1. An optical film containing an acrylic resin (A) and a cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70,
The acrylic resin (A) is represented by the following general formula (1), and the weight average molecular weight Mw is 80000 to 1000000,
In the optical film, an additive (C) obtained by polymerization of a vinyl monomer having an amide bond or copolymerization of a vinyl monomer having an amide bond and an arbitrary vinyl monomer is added in an amount of 1 to 30 with respect to the total mass of the optical film. An optical film comprising: mass%, wherein the additive has a weight average molecular weight Mw of 1,000 to 55,000.
 一般式(1)
 -(MMA)p-(X)q-(Y)r-
(但し、MMAはメチルメタクリレートを、Xはアミド結合を有するMMAと共重合可能なモノマー単位を、YはMMA及びXのいずれかと共重合可能なモノマー単位を表し、p、q、rはモル%であり、50≦p≦99、1≦q≦50、p+q+r=100である。)
 2.前記セルロースエステル樹脂(B)のアシル基の総置換度(T)が2.0以上3.0以下であり、炭素数が3以上7以下のアシル基の置換度が1.2以上3.0以下であり、該セルロースエステル樹脂(B)の重量平均分子量Mwが75000以上300000以下であることを特徴とする前記1に記載の光学フィルム。
General formula (1)
-(MMA) p- (X) q- (Y) r-
(However, MMA represents methyl methacrylate, X represents a monomer unit copolymerizable with MMA having an amide bond, Y represents a monomer unit copolymerizable with either MMA or X, and p, q, and r are mol%. And 50 ≦ p ≦ 99, 1 ≦ q ≦ 50, and p + q + r = 100.)
2. The total substitution degree (T) of the acyl group of the cellulose ester resin (B) is 2.0 or more and 3.0 or less, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 or more and 3.0. 2. The optical film as described in 1 above, wherein the cellulose ester resin (B) has a weight average molecular weight Mw of from 75,000 to 300,000.
 3.前記アクリル樹脂(A)を構成する前記アミド結合を有するMMAと共重合可能なモノマー単位Xが、N-ビニルピロリドンまたはアクリロイルモルホリンであることを特徴とする前記1または2に記載の光学フィルム。 3. 3. The optical film as described in 1 or 2 above, wherein the monomer unit X copolymerizable with the MMA having the amide bond constituting the acrylic resin (A) is N-vinylpyrrolidone or acryloylmorpholine.
 4.前記アクリル樹脂(A)とセルロースエステル樹脂(B)を90:10~40:60の質量比で含有することを特徴とする前記1~3のいずれか1項に記載の光学フィルム。 4. 4. The optical film as described in any one of 1 to 3 above, wherein the acrylic resin (A) and the cellulose ester resin (B) are contained in a mass ratio of 90:10 to 40:60.
 5.前記アクリル樹脂(A)とセルロースエステル樹脂(B)を80:20~50:50の質量比で含有することを特徴とする前記4に記載の光学フィルム。 5. 5. The optical film as described in 4 above, which contains the acrylic resin (A) and the cellulose ester resin (B) in a mass ratio of 80:20 to 50:50.
 6.ポリビニルアルコール樹脂フィルムがヨウ素または二色性染料により染色されてなる偏光子の少なくとも一方の面に前記1~5のいずれか1項に記載の光学フィルムが貼合されてなることを特徴とする偏光板。 6. 6. Polarized light obtained by bonding the optical film according to any one of 1 to 5 above to at least one surface of a polarizer obtained by dyeing a polyvinyl alcohol resin film with iodine or a dichroic dye. Board.
 7.前記偏光子の一方の面に前記光学フィルムが貼合され、他方の面に厚さ20μm以上75μm以下のセルロースエステルフィルムが貼合されてなることを特徴とする前記6に記載の偏光板。 7. 7. The polarizing plate according to 6, wherein the optical film is bonded to one surface of the polarizer, and a cellulose ester film having a thickness of 20 μm to 75 μm is bonded to the other surface.
 8.液晶セルの少なくとも一方の面に前記6または7に記載の偏光板が設けられることを特徴とする液晶表示装置。 8. 8. A liquid crystal display device, wherein the polarizing plate described in 6 or 7 is provided on at least one surface of a liquid crystal cell.
 9.アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5~30:70の質量比で含有し、添加剤(C)を光学フィルムの総質量に対して1~30質量%含有する光学フィルムの製造方法であって、
 前記アクリル樹脂(A)、前記セルロースエステル樹脂(B)及び前記添加剤(C)を含有する樹脂組成物を加熱溶融し、流延成膜することで光学フィルムを製造する工程を有し、
 該アクリル樹脂(A)が下記一般式(1)で表され、重量平均分子量Mwが80000以上1000000以下であり、
 前記添加剤(C)は、アミド結合を有するビニルモノマーの重合又はアミド結合を有するビニルモノマーと任意のビニルモノマーとの共重合により得られた添加剤であり、該添加剤(C)の重量平均分子量Mwが1000~55000であることを特徴とする光学フィルムの製造方法。
9. Optical film containing acrylic resin (A) and cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70, and containing additive (C) in an amount of 1 to 30% by mass relative to the total mass of the optical film A manufacturing method of
Heating and melting the resin composition containing the acrylic resin (A), the cellulose ester resin (B) and the additive (C), and casting the film to produce an optical film,
The acrylic resin (A) is represented by the following general formula (1), and the weight average molecular weight Mw is 80000 to 1000000,
The additive (C) is an additive obtained by polymerization of a vinyl monomer having an amide bond or copolymerization of a vinyl monomer having an amide bond and an arbitrary vinyl monomer, and the weight average of the additive (C) A method for producing an optical film, wherein the molecular weight Mw is 1000 to 55000.
 一般式(1)
 -(MMA)p-(X)q-(Y)r-
(但し、MMAはメチルメタクリレートを、Xはアミド結合を有するMMAと共重合可能なモノマー単位を、YはMMA及びXのいずれかと共重合可能なモノマー単位を表し、p、q、rはモル%であり、50≦p≦99、1≦q≦50、p+q+r=100である。)
General formula (1)
-(MMA) p- (X) q- (Y) r-
(However, MMA represents methyl methacrylate, X represents a monomer unit copolymerizable with MMA having an amide bond, Y represents a monomer unit copolymerizable with either MMA or X, and p, q, and r are mol%. And 50 ≦ p ≦ 99, 1 ≦ q ≦ 50, and p + q + r = 100.)
 本発明の上記態様によれば、耐環境性に優れ、長期にわたり透明性が高く、偏光板の保護フィルムとして用いられた場合には、偏光子への接着性に優れて、ケン化条件が弱い場合でも偏光子からの膜剥がれや膜浮きが発生しない光学フィルムが得られる。更に、セルロースエステル樹脂は、合成の過程で不純物として、所望の置換度と異なるものや、低分子量の重合体が混ざる場合があり、このような不純物がアクリル樹脂と混合された際に異物として析出し、透明性を損なう問題となる場合があるが、このような異物の発生も本発明の構成によれば抑制できることがわかった。このような効果が得られるメカニズムは定かではないが、添加剤として加えられた低分子量の重合体がこのような不純物を取り込むことで異物として成長することを防いでいるものと推測される。 According to the above aspect of the present invention, it has excellent environmental resistance, high transparency over a long period of time, and when used as a protective film for a polarizing plate, it has excellent adhesion to a polarizer and weak saponification conditions. Even in this case, an optical film in which film peeling or film floating from the polarizer does not occur can be obtained. In addition, cellulose ester resins may be mixed with impurities having a desired degree of substitution or low molecular weight polymers as impurities during the synthesis process, and when such impurities are mixed with acrylic resins, they precipitate as foreign matters. However, it may be a problem that the transparency is impaired, but it has been found that the occurrence of such foreign matters can be suppressed according to the configuration of the present invention. Although the mechanism by which such an effect is obtained is not clear, it is presumed that the low molecular weight polymer added as an additive prevents such impurities from growing as foreign matter.
本発明に好ましい溶融流延製膜方法の工程を模式的に示した図である。It is the figure which showed typically the process of the melt casting film forming method preferable for this invention.
 以下本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, modes for carrying out the present invention will be described in detail, but the present invention is not limited to these.
 <本発明の光学フィルム>
 本発明の光学フィルムは、アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5~30:70の質量比で含有する光学フィルムであって、
該アクリル樹脂(A)が下記一般式(1)で表され、重量平均分子量Mwが80000以上1000000以下であり、
前記光学フィルムは、アミド結合を有するビニルモノマーの重合又はアミド結合を有するビニルモノマーと任意のビニルモノマーとの共重合により得られた添加剤(C)を光学フィルムの総質量に対して1~30質量%含有し、該添加剤の重量平均分子量Mwが1000~55000であることを特徴とする。
<Optical film of the present invention>
The optical film of the present invention is an optical film containing an acrylic resin (A) and a cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70,
The acrylic resin (A) is represented by the following general formula (1), and the weight average molecular weight Mw is 80000 to 1000000,
In the optical film, an additive (C) obtained by polymerization of a vinyl monomer having an amide bond or copolymerization of a vinyl monomer having an amide bond and an arbitrary vinyl monomer is added in an amount of 1 to 30 with respect to the total mass of the optical film. The additive is characterized in that the additive has a weight average molecular weight Mw of 1000 to 55000.
 一般式(1)
 -(MMA)p-(X)q-(Y)r-
(但し、MMAはメチルメタクリレートを、Xはアミド結合を有するMMAと共重合可能なモノマー単位を、YはMMA及びXのいずれかと共重合可能なモノマー単位を表し、p、q、rはモル%であり、50≦p≦99、1≦q≦50、p+q+r=100である。)
 <アクリル樹脂(A)>
 本発明に用いられるアクリル樹脂には、メタクリル樹脂も含まれる。
General formula (1)
-(MMA) p- (X) q- (Y) r-
(However, MMA represents methyl methacrylate, X represents a monomer unit copolymerizable with MMA having an amide bond, Y represents a monomer unit copolymerizable with either MMA or X, and p, q, and r are mol%. And 50 ≦ p ≦ 99, 1 ≦ q ≦ 50, and p + q + r = 100.)
<Acrylic resin (A)>
The acrylic resin used in the present invention includes a methacrylic resin.
 本発明に係るアクリル樹脂(A)は、下記一般式(1)で表され、重量平均分子量Mwが80000以上1000000以下であることを特徴とする。 The acrylic resin (A) according to the present invention is represented by the following general formula (1), and has a weight average molecular weight Mw of 80000 to 1000000.
 一般式(1)
 -(MMA)p-(X)q-(Y)r-
 MMAはメチルメタクリレートを、Xはアミド基を少なくとも一種有するMMAと共重合可能なモノマー単位を、YはMMA、Xと共重合可能なモノマー単位を表す。p、q、rはモル%であり、50≦p≦99、1≦q≦50、p+q+r=100である。
General formula (1)
-(MMA) p- (X) q- (Y) r-
MMA represents methyl methacrylate, X represents a monomer unit copolymerizable with MMA having at least one amide group, and Y represents a monomer unit copolymerizable with MMA and X. p, q, and r are mol%, and are 50 <= p <= 99, 1 <= q <= 50, and p + q + r = 100.
 Xは、MMAと共重合可能なアミド基を少なくとも一種有するビニルモノマーであり、Xは一種でも2種以上でもよく、1モノマー単位中に複数の官能基を有していてもよい。 X is a vinyl monomer having at least one amide group copolymerizable with MMA, and X may be one type or two or more types, and one monomer unit may have a plurality of functional groups.
 Xの具体的なモノマーとしては、アクリルアミド、N-メチルアクリルアミド、N-ブチルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、アクリロイルモルホリン、N-ヒドロキシエチルアクリルアミド、アクリロイルピロリジン、アクリロイルピペリジン、メタクリルアミド、N-メチルメタクリルアミド、N-ブチルメタクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルメタクリルアミド、メタクリロイルモルホリン、N-ヒドロキシエチルメタクリルアミド、メタクリロイルピロリジン、メタクリロイルピペリジン、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等が挙げられる。 Specific monomers for X include acrylamide, N-methylacrylamide, N-butylacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, acryloylmorpholine, N-hydroxyethylacrylamide, acryloylpyrrolidine, acryloylpiperidine, Methacrylamide, N-methylmethacrylamide, N-butylmethacrylamide, N, N-dimethylmethacrylamide, N, N-diethylmethacrylamide, methacryloylmorpholine, N-hydroxyethylmethacrylamide, methacryloylpyrrolidine, methacryloylpiperidine, N-vinyl Examples include formamide, N-vinylacetamide, N-vinylpyrrolidone and the like.
 好ましくは、アクリロイルモルホリン、N-ビニルピロリドン、が挙げられる。 Preferably, acryloylmorpholine and N-vinylpyrrolidone are used.
 これらのモノマーは市販のものをそのまま使用することができる。 These monomers are commercially available.
 qは、1≦q≦50であり、モノマーの性質により適宜選択されるが、好ましくは5≦q≦30である。また、Xは複数のモノマーであってもよい。 Q is 1 ≦ q ≦ 50 and is appropriately selected depending on the properties of the monomer, but preferably 5 ≦ q ≦ 30. X may be a plurality of monomers.
 モノマーXが耐熱性の改善に寄与するのは、その官能基に酸素原子や窒素原子が構造に含まれ分極していることから、フィルムを構成する材料同士の相互作用と絡み合いが増加することが寄与していると推測している。 The monomer X contributes to the improvement of heat resistance because the functional group contains oxygen atoms and nitrogen atoms in the structure and is polarized, which may increase the interaction and entanglement of the materials constituting the film. I guess it contributes.
 また官能基が非解離性であることから、経時での分解による酸発生もなく、物理的にも安定しているものと考えている。 Also, since the functional group is non-dissociable, it is considered that it is physically stable without acid generation due to decomposition over time.
 さらに重量平均分子量が高いことから、光学フィルムとしての自立性も満足するものである。 Furthermore, since the weight average molecular weight is high, it is satisfactory for self-supporting properties as an optical film.
 本発明に係るアクリル樹脂(A)におけるYはMMA、Xと共重合可能なモノマー単位を表す。 Y in the acrylic resin (A) according to the present invention represents a monomer unit copolymerizable with MMA and X.
 Yとしては、MMA以外のアクリルモノマー、メタクリルモノマー、オレフィン、アクリロニトリル、スチレン、酢酸ビニル等、国際公開第2009/047924号パンフレット、特開2009-1744号公報、特開2009-179731号公報等に記載のモノマーが挙げられる。Yは2種以上であってもよい。 Examples of Y include acrylic monomers other than MMA, methacrylic monomers, olefins, acrylonitrile, styrene, vinyl acetate, and the like, as described in International Publication No. 2009/047924, JP2009-1744, JP2009-179731, and the like. These monomers are mentioned. Y may be two or more.
 Yは必要に応じて使用できるものであり、使用しないことが最も好ましい。 Y can be used as needed and is most preferably not used.
 本発明に係るアクリル樹脂(A)は、特にセルロースエステル樹脂(B)と相溶した際の透明性の改善の観点で、重量平均分子量(Mw)が80000以上である。 The acrylic resin (A) according to the present invention has a weight average molecular weight (Mw) of 80000 or more from the viewpoint of improving transparency particularly when it is compatible with the cellulose ester resin (B).
 アクリル樹脂(A)の重量平均分子量(Mw)は、80000~600000の範囲内であることが更に好ましく、100000~400000の範囲であることが最も好ましい。 The weight average molecular weight (Mw) of the acrylic resin (A) is more preferably in the range of 80,000 to 600,000, and most preferably in the range of 100,000 to 400,000.
 アクリル樹脂(A)の重量平均分子量(Mw)の上限値は、製造上の観点から1000000以下とされることが好ましい形態である。 The upper limit value of the weight average molecular weight (Mw) of the acrylic resin (A) is preferably 1000000 or less from the viewpoint of production.
 本発明に係るアクリル樹脂(A)の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は以下の通りである。 The weight average molecular weight of the acrylic resin (A) according to the present invention can be measured by gel permeation chromatography. The measurement conditions are as follows.
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=2,800,000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 2,800,000-500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.
 本発明におけるアクリル樹脂(A)の製造方法としては、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系およびアゾ系のものを用いることができ、また、レドックス系とすることもできる。 As the method for producing the acrylic resin (A) in the present invention, any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used. Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used.
 重合温度については、懸濁または乳化重合では30~100℃、塊状または溶液重合では80~160℃で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。 The polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization. In order to control the reduced viscosity of the obtained copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
 本発明に係るアクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。アクリル樹脂は2種以上を併用することもできる。 Commercially available acrylic resins can be used as the acrylic resin according to the present invention. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. . Two or more acrylic resins can be used in combination.
 <セルロースエステル樹脂(B)>
 本発明に係るセルロースエステル樹脂(B)は、特に脆性の改善やアクリル樹脂(A)と相溶させたときに透明性の観点から、アシル基の総置換度(T)が2.0~3.0、炭素数が3~7のアシル基の置換度が1.2~3.0であり、炭素数3~7のアシル基の置換度は、2.0~3.0であることが好ましい。
<Cellulose ester resin (B)>
The cellulose ester resin (B) according to the present invention has a total acyl group substitution degree (T) of 2.0 to 3 from the viewpoint of transparency particularly when it is improved in brittleness and is compatible with the acrylic resin (A). 0.0, the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 2.0 to 3.0. preferable.
 即ち、本発明に係るセルロースエステル樹脂(B)は炭素数が3~7のアシル基により置換されたセルロースエステル樹脂であり、具体的には、プロピオニル、ブチリル等が好ましく用いられるが、特にプロピオニル基が好ましく用いられる。 That is, the cellulose ester resin (B) according to the present invention is a cellulose ester resin substituted with an acyl group having 3 to 7 carbon atoms. Specifically, propionyl, butyryl and the like are preferably used. Is preferably used.
 セルロースエステル樹脂(B)の、アシル基の総置換度が2.0を下回る場合、即ち、セルロースエステル分子の2,3,6位の水酸基の残度が1.0を上回る場合には、アクリル樹脂(A)と十分に相溶せず光学フィルムとして用いる場合にヘーズが問題となる。 When the total substitution degree of the acyl group of the cellulose ester resin (B) is less than 2.0, that is, when the residual degree of the hydroxyl groups at the 2, 3, and 6 positions of the cellulose ester molecule is more than 1.0, the acrylic ester When the resin (A) is not sufficiently compatible with the resin (A) and used as an optical film, haze becomes a problem.
 また、アシル基の総置換度が2.0以上であっても、炭素数が3~7のアシル基の置換度が1.2を下回る場合は、やはり十分な相溶性が得られない。 Even if the total substitution degree of the acyl group is 2.0 or more, if the substitution degree of the acyl group having 3 to 7 carbon atoms is less than 1.2, sufficient compatibility cannot be obtained.
 例えば、アシル基の総置換度が2.0以上の場合であっても、炭素数2のアシル基、即ちアセチル基の置換度が高く、炭素数3~7のアシル基の置換度が1.2を下回る場合は、相溶性が低下しヘーズが上昇する。 For example, even when the total substitution degree of the acyl group is 2.0 or more, the substitution degree of the acyl group having 2 carbon atoms, that is, the acetyl group is high, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1. When it is less than 2, the compatibility is lowered and the haze is increased.
 また、アシル基の総置換度が2.0以上の場合であっても、炭素数8以上のアシル基の置換度が高く、炭素数3~7のアシル基の置換度が1.2を下回る場合は、脆性が劣化し、所望の特性が得られない。 Even when the total substitution degree of the acyl group is 2.0 or more, the substitution degree of the acyl group having 8 or more carbon atoms is high, and the substitution degree of the acyl group having 3 to 7 carbon atoms is less than 1.2. In such a case, the brittleness deteriorates and desired characteristics cannot be obtained.
 本発明に係るセルロースエステル樹脂(B)のアシル置換度は、総置換度(T)が2.0~3.0であり、炭素数が3~7のアシル基の置換度が1.2~3.0であれば問題ないが、炭素数が3~7以外のアシル基、即ち、アセチル基や炭素数が8以上のアシル基の置換度の総計が1.3以下とされることが好ましい。 The acyl substitution degree of the cellulose ester resin (B) according to the present invention is such that the total substitution degree (T) is 2.0 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3.0. If it is 3.0, there is no problem, but the total degree of substitution of acyl groups other than those having 3 to 7 carbon atoms, that is, acetyl groups or acyl groups having 8 or more carbon atoms, is preferably 1.3 or less. .
 また、セルロースエステル樹脂(B)のアシル基の総置換度(T)は、2.5~3.0の範囲であることが更に好ましい。 Further, the total substitution degree (T) of the acyl group of the cellulose ester resin (B) is more preferably in the range of 2.5 to 3.0.
 本発明に係るセルロースエステル樹脂(B)としては、特にセルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、セルロースプロピオネート、セルロースブチレートから選ばれる少なくとも一種であることが好ましく、即ち、炭素原子数3または4のアシル基を置換基として有するものが好ましい。 The cellulose ester resin (B) according to the present invention is preferably at least one selected from cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and cellulose butyrate, Those having an acyl group having 3 or 4 carbon atoms as a substituent are preferred.
 これらの中で特に好ましいセルロースエステル樹脂は、セルロースアセテートプロピオネートやセルロースプロピオネートである。 Among these, particularly preferable cellulose ester resins are cellulose acetate propionate and cellulose propionate.
 アシル基で置換されていない部分は通常水酸基として存在しているものである。これらは公知の方法で合成することができる。 The portion not substituted with an acyl group usually exists as a hydroxyl group. These can be synthesized by known methods.
 なお、アセチル基の置換度や他のアシル基の置換度は、ASTM-D817-96に規定の方法により求めたものである。 Incidentally, the substitution degree of the acetyl group and the substitution degree of other acyl groups were determined by the method prescribed in ASTM-D817-96.
 本発明に係るセルロースエステル樹脂(B)の重量平均分子量(Mw)は、特にアクリル樹脂(A)との相溶性、脆性の改善の観点から75000以上であり、75000~300000の範囲であることが好ましく、100000~240000の範囲内であることが更に好ましく、160000~240000のものが特に好ましい。 The weight average molecular weight (Mw) of the cellulose ester resin (B) according to the present invention is 75,000 or more, particularly from the viewpoint of improving compatibility with the acrylic resin (A) and brittleness, and is in the range of 75,000 to 300,000. Preferably, it is more preferably in the range of 100,000 to 240,000, particularly preferably 160000 to 240000.
 セルロースエステル樹脂の重量平均分子量(Mw)が75000を下回る場合は、耐熱性や脆性の改善効果が落ちてくる。また、300000を超える場合は、粘度が高くなり製膜が難しくなる。 When the weight average molecular weight (Mw) of the cellulose ester resin is less than 75,000, the effect of improving heat resistance and brittleness decreases. Moreover, when it exceeds 300,000, a viscosity becomes high and film formation becomes difficult.
 本発明では2種以上のセルロースエステル樹脂を混合して用いることもできる。 In the present invention, two or more kinds of cellulose ester resins can be mixed and used.
 本発明に係るセルロースエステル樹脂(B)の重量平均分子量は、上記GPCによって測定することができる。 The weight average molecular weight of the cellulose ester resin (B) according to the present invention can be measured by the GPC.
 <アクリル樹脂(A)とセルロースエステル樹脂(B)>
 本発明の光学フィルムにおいて、アクリル樹脂(A)とセルロースエステル樹脂(B)は、95:5~30:70の質量比で相溶状態で含有されるが、より好ましくは90:10~40:60であり、特に好ましくは80:20~50:50の質量比である。
<Acrylic resin (A) and cellulose ester resin (B)>
In the optical film of the present invention, the acrylic resin (A) and the cellulose ester resin (B) are contained in a compatible state at a mass ratio of 95: 5 to 30:70, more preferably 90:10 to 40: 60, particularly preferably a mass ratio of 80:20 to 50:50.
 アクリル樹脂(A)とセルロースエステル樹脂(B)の質量比が、95:5よりもアクリル樹脂(A)が多くなると、セルロースエステル樹脂(B)による効果が十分に得られず、同質量比が30:70よりもアクリル樹脂が少なくなると、光弾性係数が大きくなってしまう。 If the mass ratio of the acrylic resin (A) and the cellulose ester resin (B) is more than 95: 5, the effect of the cellulose ester resin (B) cannot be sufficiently obtained, and the mass ratio is When the amount of acrylic resin is less than 30:70, the photoelastic coefficient is increased.
 本発明の光学フィルムにおいては、アクリル樹脂(A)とセルロースエステル樹脂(B)が相溶状態で含有されることが好ましい。光学フィルムとして必要とされる物性や品質を、異なる樹脂を相溶させることで相互に補うことにより達成している。 In the optical film of the present invention, the acrylic resin (A) and the cellulose ester resin (B) are preferably contained in a compatible state. The physical properties and quality required for an optical film are achieved by supplementing each other by dissolving different resins.
 アクリル樹脂(A)とセルロースエステル樹脂(B)が相溶状態となっているかどうかは、例えばガラス転移温度Tgにより判断することが可能である。 Whether the acrylic resin (A) and the cellulose ester resin (B) are in a compatible state can be determined by, for example, the glass transition temperature Tg.
 例えば、両者の樹脂のガラス転移温度が異なる場合、両者の樹脂を混合したときは、各々の樹脂のガラス転移温度が存在するため混合物のガラス転移温度は2つ以上存在するが、両者の樹脂が相溶したときは、各々の樹脂固有のガラス転移温度が消失し、1つのガラス転移温度となって相溶した樹脂のガラス転移温度となる。 For example, when the two resins have different glass transition temperatures, when the two resins are mixed, there are two or more glass transition temperatures for each resin because there is a glass transition temperature for each resin. When they are compatible, the glass transition temperature specific to each resin disappears and becomes one glass transition temperature, which is the glass transition temperature of the compatible resin.
 なお、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)とする。 The glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min. The point glass transition temperature (Tmg).
 本発明の光学フィルムにおけるアクリル樹脂(A)の重量平均分子量(Mw)やセルロースエステル樹脂(B)の重量平均分子量(Mw)や置換度は、両者の樹脂の溶媒に対して溶解性の差を用いて、分別した後に、それぞれ測定することにより得られる。 In the optical film of the present invention, the weight average molecular weight (Mw) of the acrylic resin (A), the weight average molecular weight (Mw) of the cellulose ester resin (B), and the degree of substitution are different in solubility in the solvent of both resins. It is obtained by measuring each after use.
 樹脂を分別する際には、いずれか一方にのみ溶解する溶媒中に相溶された樹脂を添加することで、溶解する樹脂を抽出して分別することができ、このとき加熱操作や環流を行ってもよい。 When fractionating the resin, it is possible to extract and separate the soluble resin by adding a compatible resin in a solvent that is soluble only in either one. At this time, heating operation or reflux is performed. May be.
 これらの溶媒の組み合わせを2工程以上組み合わせて、樹脂を分別してもよい。溶解した樹脂と、不溶物として残った樹脂を濾別し、抽出物を含む溶液については、溶媒を蒸発させて乾燥させる操作によって樹脂を分別することができる。 The resin may be separated by combining two or more of these solvent combinations. The dissolved resin and the resin remaining as an insoluble matter are filtered off, and the solution containing the extract can be separated by an operation of evaporating the solvent and drying.
 これらの分別した樹脂は、高分子の一般の構造解析によって特定することができる。本発明の光学フィルムが、アクリル樹脂(A)やセルロースエステル樹脂(B)以外の樹脂を含有する場合も同様の方法で分別することができる。 These fractionated resins can be identified by general structural analysis of polymers. When the optical film of the present invention contains a resin other than the acrylic resin (A) and the cellulose ester resin (B), it can be separated by the same method.
 また、相溶された樹脂の重量平均分子量(Mw)がそれぞれ異なる場合は、ゲルパーミエーションクロマトグラフィー(GPC)によって、高分子量物は早期に溶離され、低分子量物であるほど長い時間を経て溶離されるために、容易に分別可能であるとともに分子量を測定することも可能である。 If the weight average molecular weights (Mw) of the compatible resins are different, the high molecular weight substances are eluted earlier by gel permeation chromatography (GPC), and the lower molecular weight substances are eluted after a longer time. Therefore, it can be easily fractionated and the molecular weight can be measured.
 また、相溶した樹脂をGPCによって分子量測定を行うと同時に、時間毎に溶離された樹脂溶液を分取して溶媒を留去し乾燥した樹脂を、構造解析を定量的に行うことで、異なる分子量の分画毎の樹脂組成を検出することで、相溶されている樹脂をそれぞれ特定することができる。 In addition, the molecular weight of the compatible resin is measured by GPC, and at the same time, the resin solution eluted every time is separated, the solvent is distilled off, and the dried resin is different by quantitatively analyzing the structure. By detecting the resin composition for each molecular weight fraction, it is possible to identify each compatible resin.
 事前に溶媒への溶解性の差で分取した樹脂を、各々GPCによって分子量分布を測定することで、相溶されていた樹脂をそれぞれ検出することもできる。 It is also possible to detect each of the compatible resins by measuring the molecular weight distribution of each of the resins separated in advance by the difference in solubility in a solvent by GPC.
 本発明の光学フィルムにおけるアクリル樹脂(A)とセルロースエステル樹脂(B)の総質量は、光学フィルムの55質量%以上であることが好ましく、さらに好ましくは60質量%以上であり、特に好ましくは、70質量%以上である。 The total mass of the acrylic resin (A) and the cellulose ester resin (B) in the optical film of the present invention is preferably 55% by mass or more of the optical film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
 <添加剤(C)>
 本発明の光学フィルムは、前記アクリル樹脂(A)、セルロースエステル樹脂(B)に、アミド結合を有するビニルモノマーの重合又はアミド結合を有するビニルモノマーと任意のビニルモノマーとの共重合により得られた添加剤(C)(以下、簡単にアミド結合を有するビニルポリマー(C)という)を光学フィルムの総質量に対して1~30質量%含有し、該添加剤の重量平均分子量Mwが1000~55000であることを特徴とする。
<Additive (C)>
The optical film of the present invention was obtained by polymerizing a vinyl monomer having an amide bond with the acrylic resin (A) or cellulose ester resin (B) or copolymerizing a vinyl monomer having an amide bond and an arbitrary vinyl monomer. Additive (C) (hereinafter simply referred to as vinyl polymer (C) having an amide bond) is contained in an amount of 1 to 30% by mass based on the total mass of the optical film, and the additive has a weight average molecular weight Mw of 1000 to 55000. It is characterized by being.
 本発明におけるアミド結合を有するビニルポリマー(C)とは、側鎖にアミド結合を有するビニルモノマーのポリマー(以下、重合体ともいう)または側鎖にアミド結合を有するビニルモノマーと共重合可能な任意のビニルモノマーとのコポリマー(以下、共重合体ともいう)である。 The vinyl polymer (C) having an amide bond in the present invention is any polymer that can be copolymerized with a polymer of a vinyl monomer having an amide bond in a side chain (hereinafter also referred to as a polymer) or a vinyl monomer having an amide bond in a side chain. A copolymer with a vinyl monomer (hereinafter also referred to as a copolymer).
 アミド結合を有するビニルモノマーとしては、例えば、N-ビニルピロリドン、N-ビニル-2-メチルピロリドン、アクリロイルモルホリン、アクリロイル-2-メチルモルホリン、ビニルアセトアミド等が挙げられる。これらのアミド結合を有するビニルモノマーは、2種以上の混合物も用いることができる。 Examples of the vinyl monomer having an amide bond include N-vinylpyrrolidone, N-vinyl-2-methylpyrrolidone, acryloylmorpholine, acryloyl-2-methylmorpholine, and vinylacetamide. A mixture of two or more kinds of these vinyl monomers having an amide bond can also be used.
 また、これらのアミド結合を有する官能基を持つビニルモノマーと共重合可能なビニルモノマーとしては、例えば、エチレン、プロピレン、スチレン、酢酸ビニル、ビニルアルコール(但し、共重合後加水分解してビニルアルコールになる。)、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、アクリロニトリルなど任意の官能基を有するビニルモノマーが挙げられる。 Examples of vinyl monomers that can be copolymerized with vinyl monomers having a functional group having an amide bond include, for example, ethylene, propylene, styrene, vinyl acetate, and vinyl alcohol. ), (Meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl Examples thereof include vinyl monomers having an arbitrary functional group such as (meth) acrylate and acrylonitrile.
 これらは、2種以上の混合物を用いることができる。これらの内、酢酸ビニル、2-エチルヘキシルアクリレート、2-ヒドロキシエチルメタクリレート、アクリル酸ブチルが好ましい。そして、その共重合比率は、アミド結合を有するビニルモノマーが、ポリマーを構成するビニルモノマー全体の20~100%が好ましい。 These can be used as a mixture of two or more. Of these, vinyl acetate, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate, and butyl acrylate are preferred. The copolymerization ratio of the vinyl monomer having an amide bond is preferably 20 to 100% of the total vinyl monomers constituting the polymer.
 側鎖にアミド結合を有するビニルポリマー、またはビニル共重合ポリマーの製造は、アミド結合を有するビニルモノマーを単独で、または共重合可能な他のビニルモノマーと共に、アゾビスイソブチロニトリル(AIBN)のようなラジカル重合開始剤を使用して、必要であれば溶媒の存在下に、常法により重合される。 The production of a vinyl polymer having an amide bond in the side chain, or a vinyl copolymer, is made of azobisisobutyronitrile (AIBN) alone or together with other vinyl monomers capable of copolymerization having an amide bond. Using such a radical polymerization initiator, polymerization is carried out by a conventional method in the presence of a solvent if necessary.
 側鎖にアミド結合を有するビニルポリマーの重量平均分子量は、1000~55000であり、好ましくは、2000~10000である。1000以下ではブリードアウトに問題が生じ、55000を超えると透明性が悪くなる。 The weight average molecular weight of the vinyl polymer having an amide bond in the side chain is 1000 to 55000, preferably 2000 to 10,000. If it is 1000 or less, a problem occurs in bleed-out, and if it exceeds 55000, transparency deteriorates.
 本発明に係る側鎖にアミド結合を有するビニルポリマー(C)は、光学フィルムの全質量に対して1~30質量%であり、1~10質量%であることが好ましい。 The vinyl polymer (C) having an amide bond in the side chain according to the present invention is 1 to 30% by mass and preferably 1 to 10% by mass with respect to the total mass of the optical film.
 <その他の添加樹脂>
 本発明の光学フィルムには、アクリル樹脂(A)とセルロースエステル樹脂(B)以外の樹脂を用いる際には、本発明の光学フィルムの機能を損なわない範囲で添加量を調整することが好ましい。
<Other additive resins>
When the resin other than the acrylic resin (A) and the cellulose ester resin (B) is used for the optical film of the present invention, it is preferable to adjust the addition amount within a range that does not impair the function of the optical film of the present invention.
 好ましい樹脂としては、特開2010-32655号明細書段落(0072)~(0123)に記載のエチレン性不飽和モノマーを重合して得られた低分子アクリル樹脂(重量平均分子量Mwが500以上30000以下である重合体)を挙げることができる。 A preferred resin is a low molecular acrylic resin obtained by polymerizing an ethylenically unsaturated monomer described in paragraphs (0072) to (0123) of JP 2010-32655 A (weight average molecular weight Mw is 500 or more and 30000 or less). Polymer).
 特に好ましくは、Mwが2000~30000である。1000以下ではブリードアウトに問題が生じ、30000を超えると透明性が悪くなる。 Particularly preferably, Mw is 2000 to 30000. If it is 1000 or less, a problem occurs in bleed-out, and if it exceeds 30000, the transparency deteriorates.
 また、特許第4138954号公報記載のアミド結合を有するビニルポリマーも使用することができる。 Also, a vinyl polymer having an amide bond described in Japanese Patent No. 4138654 can be used.
 上記低分子アクリル樹脂、アミド結合を有するビニルポリマーは、光学フィルムの全質量に対して0~15質量%であり、0~10質量%であることが好ましい。 The low molecular acrylic resin and the vinyl polymer having an amide bond are 0 to 15% by mass, preferably 0 to 10% by mass, based on the total mass of the optical film.
 <アクリル粒子(D)>
 本発明の光学フィルムは、多層構造アクリル系粒状複合体であるアクリル粒子(D)を含有してもよい。
<Acrylic particles (D)>
The optical film of this invention may contain the acrylic particle (D) which is a multilayer structure acrylic type granular composite.
 このような多層構造アクリル系粒状複合体の市販品の例としては、例えば、三菱レイヨン社製“メタブレンW-341”、鐘淵化学工業社製“カネエース”、呉羽化学工業社製“パラロイド”、ロームアンドハース社製“アクリロイド”、ガンツ化成工業社製“スタフィロイド”、ケミスノーMR-2G、MS-300X(綜研化学(株)製)およびクラレ社製“パラペットSA”などが挙げられ、これらは、単独ないし2種以上を用いることができる。 Examples of such a commercial product of a multilayer structure acrylic granular composite include, for example, “Metablene W-341” manufactured by Mitsubishi Rayon Co., “Kaneace” manufactured by Kaneka Chemical Co., Ltd., “Paraloid” manufactured by Kureha Chemical Co., Ltd. Examples include "Acryloid" manufactured by Rohm and Haas, "Staffroid" manufactured by Gantz Kasei Kogyo, Chemisnow MR-2G, MS-300X (manufactured by Soken Chemical Co., Ltd.), and "Parapet SA" manufactured by Kuraray. These can be used alone or in combination of two or more.
 本発明の光学フィルムにおいて、該フィルムを構成する樹脂の総質量に対して、0~30質量%のアクリル粒子(D)を含有することが好ましく、1.0~15質量%の範囲で含有することがさらに好ましい。 The optical film of the present invention preferably contains 0 to 30% by mass of acrylic particles (D) with respect to the total mass of the resin constituting the film, and is contained in the range of 1.0 to 15% by mass. More preferably.
 <その他の添加剤>
 本発明の光学フィルムには、リターデーションを制御することを目的とした位相差制御剤、フィルムに加工性を付与する可塑剤、フィルムの劣化を防止する酸化防止剤、紫外線吸収機能を付与する紫外線吸収剤、フィルムに滑り性を付与する微粒子(マット剤)等の添加剤を含有させることが好ましい。
<Other additives>
The optical film of the present invention includes a retardation control agent for controlling retardation, a plasticizer for imparting processability to the film, an antioxidant for preventing deterioration of the film, and an ultraviolet ray for imparting an ultraviolet absorbing function. It is preferable to contain additives such as fine particles (matting agent) that impart slipperiness to the absorbent and film.
 〈グリコールと二塩基酸のポリエステルポリオール〉
 本発明において使用され得るポリエステルポリオールとしては、炭素数の平均が2~3.5であるグリコールと炭素数の平均が4~5.5である二塩基酸との脱水縮合反応、又は該グリコールと炭素数の平均が4~5.5である無水二塩基酸の付加及び脱水縮合反応による常法により製造されるものであることが好ましい。
<Polyester polyol of glycol and dibasic acid>
Examples of the polyester polyol that can be used in the present invention include a dehydration condensation reaction between a glycol having an average carbon number of 2 to 3.5 and a dibasic acid having an average carbon number of 4 to 5.5, or the glycol. It is preferably one produced by a conventional method by addition of a dibasic anhydride having an average carbon number of 4 to 5.5 and a dehydration condensation reaction.
 〈芳香族ジカルボン酸とアルキレングリコールのポリエステル〉
 本発明に用いられる位相差制御剤として、下記一般式(I)で表される芳香族末端ポリエステルを用いることができる。
<Polyester of aromatic dicarboxylic acid and alkylene glycol>
As the retardation control agent used in the present invention, an aromatic terminal polyester represented by the following general formula (I) can be used.
 一般式(I) B-(G-A)n-G-B
(式中、Bはベンゼンモノカルボン酸残基、Gは炭素数2~12のアルキレングリコール残基または炭素数6~12のアリールグリコール残基または炭素数が4~12のオキシアルキレングリコール残基、Aは炭素数4~12のアルキレンジカルボン酸残基または炭素数6~12のアリールジカルボン酸残基を表し、またnは1以上の整数を表す。)
 一般式(I)中、Bで示されるベンゼンモノカルボン酸残基とGで示されるアルキレングリコール残基またはオキシアルキレングリコール残基またはアリールグリコール残基、Aで示されるアルキレンジカルボン酸残基またはアリールジカルボン酸残基とから構成されるものであり、通常のポリエステルと同様の反応により得られる。
Formula (I) B- (GA) nGB
(Wherein B is a benzene monocarboxylic acid residue, G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms, A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms, and n represents an integer of 1 or more.)
In the general formula (I), a benzene monocarboxylic acid residue represented by B and an alkylene glycol residue, oxyalkylene glycol residue or aryl glycol residue represented by G, an alkylene dicarboxylic acid residue or aryl dicarboxylic group represented by A It is composed of an acid residue and can be obtained by a reaction similar to that of ordinary polyester.
 本発明に用いられる芳香族末端ポリエステルの具体的な化合物としては、特開2010-32655号明細書段落(0183)~(0186)を挙げることができる。 Specific examples of the aromatic terminal polyester used in the present invention include paragraphs (0183) to (0186) of JP-A 2010-32655.
 本発明に用いられる芳香族末端ポリエステルの含有量は、光学フィルム中に0~20質量%含有することが好ましく、特に1~11質量%含有することが好ましい。 The content of the aromatic terminal polyester used in the present invention is preferably 0 to 20% by mass, more preferably 1 to 11% by mass in the optical film.
 〈多価アルコールエステル系化合物〉
 本発明の光学フィルムには、多価アルコールエステル系化合物を含有させることができる。
<Polyhydric ester compound>
The optical film of the present invention can contain a polyhydric alcohol ester compound.
 多価アルコールエステル系化合物としては、特開2010-32655号明細書段落(0218)~(0170)を挙げることができる。 Examples of the polyhydric alcohol ester compound include paragraphs (0218) to (0170) of JP-A 2010-32655.
 〈糖エステル化合物〉
 本発明に用いられる糖エステル化合物しては、ピラノース構造またはフラノース構造の少なくとも1種を1個以上12個以下有しその構造のOH基のすべてもしくは一部をエステル化した糖エステル化合物を使用することが好ましい。
<Sugar ester compound>
As the sugar ester compound used in the present invention, a sugar ester compound in which at least one pyranose structure or furanose structure is 1 to 12 and all or a part of the OH groups of the structure is esterified is used. It is preferable.
 本発明に用いられる糖エステル化合物としては、グルコース、ガラクトース、マンノース、フルクトース、キシロース、アラビノース、ラクトース、スクロース、セロビオース、セロトリオース、マルトトリオース、ラフィノースなどが挙げられるが、特にフラノース構造とピラノース構造を両方有するものが好ましい。例としてはスクロースが挙げられる。 Examples of the sugar ester compound used in the present invention include glucose, galactose, mannose, fructose, xylose, arabinose, lactose, sucrose, cellobiose, cellotriose, maltotriose, raffinose, etc. What has is preferable. An example is sucrose.
 本発明に用いられる糖エステル化合物は、糖化合物の有する水酸基の一部または全部がエステル化されているものまたはその混合物である。 The sugar ester compound used in the present invention is one in which part or all of the hydroxyl groups of the sugar compound are esterified or a mixture thereof.
 糖エステル化合物の具体的化合物としては、特開2010-32655号明細書段落(0060)~(0070)を挙げることができる。 Specific examples of the sugar ester compound include paragraphs (0060) to (0070) of JP 2010-32655 A.
 〈その他の添加剤〉
 本発明の光学フィルムにおいては、可塑剤、位相差制御剤、酸化防止剤、紫外線吸収剤、マット粒子等を併用することも可能である。
<Other additives>
In the optical film of the present invention, a plasticizer, a retardation control agent, an antioxidant, an ultraviolet absorber, matte particles, and the like can be used in combination.
 可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、あるいはエポキシ系等が挙げられる。 Examples of the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy.
 リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート等を用いることができる。 For phosphate plasticizers, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc. For phthalate ester plasticizers, diethyl phthalate, dimethoxy Ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate and the like can be used.
 この中で、ポリエステル系とフタル酸エステル系の可塑剤が好ましく用いられる。ポリエステル系可塑剤は、フタル酸ジオクチルなどのフタル酸エステル系の可塑剤に比べて非移行性や耐抽出性に優れるが、可塑化効果や相溶性にはやや劣る。 Of these, polyester-based and phthalate-based plasticizers are preferably used. Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate, but are slightly inferior in plasticizing effect and compatibility.
 従って、用途に応じてこれらの可塑剤を選択、あるいは併用することによって、広範囲の用途に適用できる。 Therefore, it can be applied to a wide range of uses by selecting or using these plasticizers according to the use.
 ポリエステル系可塑剤は、一価ないし四価のカルボン酸と一価ないし六価のアルコールとの反応物であるが、主に二価カルボン酸とグリコールとを反応させて得られたものが用いられる。代表的な二価カルボン酸としては、グルタル酸、イタコン酸、アジピン酸、フタル酸、アゼライン酸、セバシン酸などが挙げられる。 The polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol. . Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.
 特に、アジピン酸、フタル酸などを用いると可塑化特性に優れたものが得られる。グリコールとしてはエチレン、プロピレン、1,3-ブチレン、1,4-ブチレン、1,6-ヘキサメチレン、ネオペンチレン、ジエチレン、トリエチレン、ジプロピレンなどのグリコールが挙げられる。これらの二価カルボン酸およびグリコールはそれぞれ単独で、あるいは混合して使用してもよい。 In particular, when adipic acid, phthalic acid, or the like is used, those having excellent plasticizing properties can be obtained. Examples of the glycol include glycols such as ethylene, propylene, 1,3-butylene, 1,4-butylene, 1,6-hexamethylene, neopentylene, diethylene, triethylene, and dipropylene. These divalent carboxylic acids and glycols may be used alone or in combination.
 このエステル系の可塑剤はエステル、オリゴエステル、ポリエステルの型のいずれでもよく、分子量は100~10000の範囲が良いが、好ましくは600~3000の範囲が可塑化効果が大きい。 The ester plasticizer may be any of ester, oligoester and polyester types, and the molecular weight is preferably in the range of 100 to 10000, but preferably in the range of 600 to 3000, the plasticizing effect is large.
 また、可塑剤の粘度は分子構造や分子量と相関があるが、アジピン酸系可塑剤の場合相溶性、可塑化効率の関係から200~5000mPa・s(25℃)の範囲が良い。さらに、いくつかのポリエステル系可塑剤を併用してもかまわない。 Also, the viscosity of the plasticizer has a correlation with the molecular structure and molecular weight, but in the case of an adipic acid plasticizer, the range of 200 to 5000 mPa · s (25 ° C.) is preferable because of compatibility and plasticization efficiency. Furthermore, some polyester plasticizers may be used in combination.
 可塑剤はアクリル樹脂を含有する組成物100質量部に対して、0.5~30質量部を添加するのが好ましい。可塑剤の添加量が30質量部を越えると、表面がべとつくので、実用上好ましくない。またこれらの可塑剤は単独或いは2種以上混合して用いることもできる。 The plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the composition containing an acrylic resin. If the added amount of the plasticizer exceeds 30 parts by mass, the surface becomes sticky, which is not preferable for practical use. These plasticizers may be used alone or in combination of two or more.
 〈その他の位相差制御剤〉
 上記位相差制御剤以外としては、分子内にビスフェノールAを含有しているものが好ましい。ビスフェノールAの両端にエチレンオキサイド、プロピレンオキサイドを付加した化合物などを用いることができる。
<Other phase difference control agents>
Other than the above retardation control agent, those containing bisphenol A in the molecule are preferred. A compound in which ethylene oxide or propylene oxide is added to both ends of bisphenol A can be used.
 例えばニューポールBP-2P、BP-3P、BP-23P、BP-5PなどのBPシリーズ、BPE-20(F)、BPE-20NK、BPE-20T、BPE-40、BPE-60、BPE-100、BPE-180などのBPEシリーズ(三洋化成(株)製)などやアデカポリエーテルBPX-11、BPX-33、BPX-55などのBPXシリーズ((株)アデカ製)がある。 For example, BP series such as New Paul BP-2P, BP-3P, BP-23P, BP-5P, BPE-20 (F), BPE-20NK, BPE-20T, BPE-40, BPE-60, BPE-100, There are BPE series (manufactured by Sanyo Chemical Co., Ltd.) such as BPE-180, and BPX series (manufactured by Adeka Co., Ltd.) such as Adeka Polyether BPX-11, BPX-33, BPX-55.
 ジアリルビスフェノールA、ジメタリルビスフェノールAや、ビスフェノールAを臭素などで置換したテトラブロモビスフェーノールAやこれを重合したオリゴマーやポリマー、ジフェニルフォスフェイトなどで置換したビスフェノールAビス(ジフェニルフォスフェイト)なども用いることができる。 Diallyl bisphenol A, dimethallyl bisphenol A, tetrabromobisphenol A in which bisphenol A is substituted with bromine, oligomers and polymers obtained by polymerizing this, bisphenol A bis (diphenyl phosphate) substituted with diphenyl phosphate, etc. Can be used.
 ビスフェノールAを重合したポリカーボネートやビスフェノールAをテレフタル酸などの二塩基酸と重合したポリアリレート、エポキシを含有するモノマーと重合したエポキシオリゴマーやポリマーなども用いることができる。 Polycarbonate obtained by polymerizing bisphenol A, polyarylate obtained by polymerizing bisphenol A with a dibasic acid such as terephthalic acid, and an epoxy oligomer or polymer polymerized with an epoxy-containing monomer can also be used.
 ビスフェノールAとスチレンやスチレンアクリルなどをグラフト重合させたモディパーCL130DやL440-Gなども用いることができる。 Modiper CL130D or L440-G obtained by graft polymerization of bisphenol A and styrene or styrene acrylic can also be used.
 またトリアジン構造をもつものも好ましい。特開2001-166144号公報等に記載の化合物を使用することができる。 Also preferred are those having a triazine structure. The compounds described in JP-A-2001-166144 can be used.
 〈酸化防止剤〉
 本発明では、酸化防止剤としては、通常知られているものを使用することができる。特に、ラクトン系、イオウ系、フェノール系、二重結合系、ヒンダードアミン系、リン系化合物のものを好ましく用いることができる。
<Antioxidant>
In this invention, what is generally known can be used as an antioxidant. In particular, lactone, sulfur, phenol, double bond, hindered amine, and phosphorus compounds can be preferably used.
 例えば、BASFジャパン株式会社から、“IrgafosXP40”、“IrgafosXP60”という商品名で市販されているものを含むものが好ましい。 For example, those including those commercially available from BASF Japan under the trade names “IrgafosXP40” and “IrgafosXP60” are preferable.
 上記フェノール系化合物としては、2,6-ジアルキルフェノールの構造を有するものが好ましく、例えば、BASFジャパン株式会社、“Irganox1076”、“Irganox1010”、(株)ADEKA“アデカスタブAO-50”という商品名で市販されているものが好ましい。 The phenolic compound preferably has a 2,6-dialkylphenol structure. For example, BASF Japan Ltd., “Irganox 1076”, “Irganox 1010”, and ADEKA “ADEKA STAB AO-50” are trade names. What is marketed is preferable.
 上記リン系化合物は、例えば、住友化学株式会社から、“SumilizerGP”、株式会社ADEKAから“ADK STAB PEP-24G”、“ADK STAB PEP-36”および“ADK STAB 3010”、BASFジャパン株式会社から“IRGAFOS P-EPQ”、堺化学工業株式会社から“GSY-P101”という商品名で市販されているものが好ましい。 The above phosphorus compounds are, for example, from Sumitomo Chemical Co., Ltd., “Sumilizer GP”, ADEKA Co., Ltd., “ADK STAB PEP-24G”, “ADK STAB PEP-36” and “ADK STAB 3010”, “BASF Japan Co., Ltd.” IRGAFOS P-EPQ ", commercially available from Sakai Chemical Industry Co., Ltd. under the trade name" GSY-P101 "is preferred.
 上記ヒンダードアミン系化合物は、例えば、BASFジャパン株式会社から、“Tinuvin144”および“Tinuvin770”、株式会社ADEKAから“ADK STAB LA-52”という商品名で市販されているものが好ましい。 The hindered amine compound is preferably commercially available from BASF Japan KK under the trade names of “Tinuvin 144” and “Tinvin 770”, and from ADEKA Corporation as “ADK STAB LA-52”.
 上記イオウ系化合物は、例えば、住友化学株式会社から、”Sumilizer TPL-R”および“Sumilizer TP-D”という商品名で市販されているものが好ましい。 The above-mentioned sulfur compounds are preferably those commercially available from Sumitomo Chemical Co., Ltd. under the trade names “Sumilizer TPL-R” and “Sumilizer TP-D”.
 上記二重結合系化合物は、住友化学株式会社から、“Sumilizer GM”および“Sumilizer GS”という商品名で市販されているものが好ましい。 The above-mentioned double bond compound is preferably commercially available from Sumitomo Chemical Co., Ltd. under the trade names of “Sumilizer GM” and “Sumilizer GS”.
 さらに、酸捕捉剤として米国特許第4,137,201号明細書に記載されているような、エポキシ基を有する化合物を含有させることも可能である。 Furthermore, it is possible to contain a compound having an epoxy group as described in US Pat. No. 4,137,201 as an acid scavenger.
 これらの酸化防止剤等は、再生使用される際の工程に合わせて適宜添加する量が決められるが、一般には、フィルムの主原料である樹脂に対して、0.05~20質量%、好ましくは0.1~1質量%の範囲で添加される。 The amount of these antioxidants and the like to be added is appropriately determined in accordance with the process for recycling and use, but generally 0.05 to 20% by mass, preferably with respect to the resin as the main raw material of the film Is added in the range of 0.1 to 1% by mass.
 これらの酸化防止剤は、一種のみを用いるよりも数種の異なった系の化合物を併用することで相乗効果を得ることができる。例えば、ラクトン系、リン系、フェノール系および二重結合系化合物の併用は好ましい。 These antioxidants can obtain a synergistic effect by using several different types of compounds in combination rather than using only one kind. For example, the combined use of lactone, phosphorus, phenol and double bond compounds is preferred.
 〈着色剤〉
 本発明においては、着色剤を使用することが好ましい。着色剤と言うのは染料や顔料を意味するが、本発明では、液晶画面の色調を青色調にする効果またはイエローインデックスの調整、ヘーズの低減を有するものを指す。
<Colorant>
In the present invention, it is preferable to use a colorant. The colorant means a dye or a pigment. In the present invention, the colorant refers to a colorant having an effect of making the color tone of a liquid crystal screen a blue tone, adjusting a yellow index, and reducing haze.
 着色剤としては各種の染料、顔料が使用可能だが、アントラキノン染料、アゾ染料、フタロシアニン顔料などが有効である。 Various dyes and pigments can be used as the colorant, but anthraquinone dyes, azo dyes, phthalocyanine pigments and the like are effective.
 〈紫外線吸収剤〉
 本発明に用いられる紫外線吸収剤は特に限定されないが、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。高分子型の紫外線吸収剤としてもよい。
<Ultraviolet absorber>
Although the ultraviolet absorber used in the present invention is not particularly limited, for example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders Examples include the body. It is good also as a polymer type ultraviolet absorber.
 〈マット剤〉
 本発明では、フィルムの滑り性を付与するためにマット剤を添加することが好ましい。
<Matting agent>
In the present invention, it is preferable to add a matting agent in order to impart film slipperiness.
 本発明で用いられるマット剤としては、得られるフィルムの透明性を損なうことがなく、溶融時の耐熱性があれば無機化合物または有機化合物どちらでもよい。これらのマット剤は、単独でも二種以上併用しても使用できる。 The matting agent used in the present invention may be either an inorganic compound or an organic compound as long as it does not impair the transparency of the obtained film and has heat resistance during melting. These matting agents can be used alone or in combination of two or more.
 粒径や形状(例えば針状と球状など)の異なる粒子を併用することで高度に透明性と滑り性を両立させることもできる。 High transparency and slipperiness can be achieved at the same time by using particles having different particle sizes and shapes (for example, needle shape and spherical shape).
 これらの中でも、セルロースエステルと屈折率が近いので透明性(ヘーズ)に優れる二酸化珪素が特に好ましく用いられる。 Among these, silicon dioxide is particularly preferably used since it has a refractive index close to that of cellulose ester and is excellent in transparency (haze).
 二酸化珪素の具体例としては、アエロジル200V、アエロジルR972V、アエロジルR972、R974、R812、200、300、R202、OX50、TT600、NAX50(以上日本アエロジル(株)製)、シーホスターKEP-10、シーホスターKEP-30、シーホスターKEP-50(以上、株式会社日本触媒製)、サイロホービック100(富士シリシア製)、ニップシールE220A(日本シリカ工業製)、アドマファインSO(アドマテックス製)等の商品名を有する市販品などが好ましく使用できる。 Specific examples of silicon dioxide include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (manufactured by Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP- 30, Seahoster KEP-50 (above, manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), Nip Seal E220A (manufactured by Nippon Silica Kogyo), Admafine SO (manufactured by Admatechs), etc. Goods etc. can be preferably used.
 粒子の形状としては、不定形、針状、扁平、球状等特に制限なく使用できるが、特に球状の粒子を用いると得られるフィルムの透明性が良好にできるので好ましい。 The shape of the particles can be used without particular limitation, such as indefinite shape, needle shape, flat shape, spherical shape, etc. However, the use of spherical particles is preferable because the transparency of the resulting film can be improved.
 粒子の大きさは、可視光の波長に近いと光が散乱し、透明性が悪くなるので、可視光の波長より小さいことが好ましく、さらに可視光の波長の1/2以下であることが好ましい。粒子の大きさが小さすぎると滑り性が改善されない場合があるので、80nmから180nmの範囲であることが特に好ましい。 When the particle size is close to the wavelength of visible light, light is scattered and the transparency is deteriorated. Therefore, the particle size is preferably smaller than the wavelength of visible light, and more preferably ½ or less of the wavelength of visible light. . If the size of the particles is too small, the slipperiness may not be improved, so the range of 80 nm to 180 nm is particularly preferable.
 なお、粒子の大きさとは、粒子が1次粒子の凝集体の場合は凝集体の大きさを意味する。また、粒子が球状でない場合は、その投影面積に相当する円の直径を意味する。 The particle size means the size of the aggregate when the particle is an aggregate of primary particles. Moreover, when a particle is not spherical, it means the diameter of a circle corresponding to the projected area.
 〈粘度低下剤〉
 本発明において、溶融粘度を低減する目的として、水素結合性溶媒を添加することができる。
<Viscosity reducing agent>
In the present invention, a hydrogen bonding solvent can be added for the purpose of reducing the melt viscosity.
 水素結合性溶媒とは、J.N.イスラエルアチビリ著、「分子間力と表面力」(近藤保、大島広行訳、マグロウヒル出版、1991年)に記載されるように、電気的に陰性な原子(酸素、窒素、フッ素、塩素)と電気的に陰性な原子と共有結合した水素原子間に生ずる、水素原子媒介「結合」を生ずることができるような有機溶媒、すなわち、結合モーメントが大きく、かつ水素を含む結合、例えば、O-H(酸素水素結合)、N-H(窒素水素結合)、F-H(フッ素水素結合)を含むことで近接した分子同士が配列できるような有機溶媒をいう。 Hydrogen-bonding solvent refers to J.I. N. As described in Israel Ativili, “Intermolecular Forces and Surface Forces” (Takeshi Kondo, Hiroyuki Oshima, Maglow Hill Publishing, 1991) and electrically negative atoms (oxygen, nitrogen, fluorine, chlorine) An organic solvent capable of producing a hydrogen atom-mediated “bond” that occurs between an electronegative atom and a covalently bonded hydrogen atom, that is, a bond having a large bonding moment and containing hydrogen, such as OH (Oxygen hydrogen bond), N—H (nitrogen hydrogen bond), FH (fluorine hydrogen bond), and an organic solvent that can arrange adjacent molecules.
 これらは、セルロースエステル樹脂の分子間水素結合の一部を、上述の水素結合性をもつ溶媒に置き換えることで、粘度を低減させることができる。 These can reduce the viscosity by substituting a part of intermolecular hydrogen bonds of the cellulose ester resin with the above-mentioned solvent having hydrogen bonding properties.
 本発明で行う溶融流延法において用いる水素結合性溶媒は、溶融工程あるいはフィルムとして用いるときに揮発性が低い、あるいは不揮発性であることが望ましい。本発明で行う溶融流延法においては、用いるセルロースエステル樹脂単独のガラス転移温度よりも、水素結合性溶媒の添加によりセルロースエステル樹脂組成物の溶融温度を低下することができる、または同じ溶融温度においてセルロースエステル樹脂よりも水素結合性溶媒を含むセルロースエステル樹脂組成物の溶融粘度を低下することができる。 The hydrogen bonding solvent used in the melt casting method performed in the present invention is desirably low in volatility or non-volatile when used as a melting step or film. In the melt casting method performed in the present invention, the melting temperature of the cellulose ester resin composition can be lowered by the addition of a hydrogen-bonding solvent or the same melting temperature than the glass transition temperature of the cellulose ester resin used alone. The melt viscosity of the cellulose ester resin composition containing a hydrogen bonding solvent can be lowered than that of the cellulose ester resin.
 (光学フィルムの物性)
 以下、本発明の光学フィルムの物性等についての特徴について説明する。
(Physical properties of optical film)
Hereinafter, the characteristics of the optical film according to the present invention will be described.
 〈透明性〉
 本発明における光学フィルムの透明性を判断する指標としては、ヘーズ値(濁度)を用いる。
<transparency>
As an index for judging the transparency of the optical film in the present invention, haze value (turbidity) is used.
 特に屋外で用いられる液晶表示装置においては、明るい場所でも十分な輝度や高いコントラストが得られることが求められる為、ヘーズ値は1.0%以下であることが必要とされ、0.5%以下であることがさらに好ましい。 In particular, liquid crystal display devices used outdoors are required to have sufficient brightness and high contrast even in a bright place. Therefore, the haze value is required to be 1.0% or less, and 0.5% or less. More preferably.
 また、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。 Further, the total light transmittance is preferably 90% or more, and more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%.
 アクリル樹脂(A)とセルロースエステル樹脂(B)を含有する本発明の光学フィルムによれば、高い透明性を得ることができるが、別の物性を改善する目的でアクリル粒子を使用する場合は、樹脂(アクリル樹脂(A)とセルロースエステル樹脂(B))とアクリル粒子(D)との屈折率差を小さくすることで、ヘーズ値の上昇を防ぐことができる。 According to the optical film of the present invention containing the acrylic resin (A) and the cellulose ester resin (B), high transparency can be obtained, but when using acrylic particles for the purpose of improving another physical property, By reducing the difference in refractive index between the resin (acrylic resin (A) and cellulose ester resin (B)) and acrylic particles (D), an increase in haze value can be prevented.
 また、本発明の光学フィルムは、フィルム面内の直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。さらに好ましくは0.5個/10cm四方以下、一層好ましくは0.1個/10cm四方以下である。 In addition, the optical film of the present invention preferably has a defect with a diameter of 5 μm or more in the film plane of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less.
 ここで欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。 Here, the diameter of the defect indicates the diameter when the defect is circular, and when it is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ロール傷の転写や擦り傷など、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。 The range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object. If the defect is a change in surface shape, such as transfer of a roll flaw or an abrasion, the size is confirmed by observing the defect with the reflected light of a differential interference microscope.
 なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。 In addition, when observing with reflected light, if the size of the defect is not clear, aluminum or platinum is vapor-deposited on the surface for observation.
 かかる欠点頻度にて表される品位に優れたフィルムを生産性よく得るには、ポリマー溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。 In order to obtain a film having excellent quality expressed by such a defect frequency with high productivity, it is necessary to filter the polymer solution with high precision immediately before casting, to increase the cleanliness around the casting machine, It is effective to set drying conditions after rolling stepwise and to dry efficiently while suppressing foaming.
 欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時などでフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。 When the number of defects is more than 1/10 cm square, for example, when a tension is applied to the film during processing in a later process, the film may be broken with the defect as a starting point and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
 〈リターデーション〉
 リターデーションは作製した光学フィルムから試料35mm×35mmを切り出し、25℃,55%RHで2時間調湿し、自動複屈折計(KOBRA WR、王子計測(株))で、590nmにおける垂直方向から測定した値とフィルム面を傾けながら同様に測定したリターデーション値の外挿値より各波長におけるRo、Rthを算出した。
<Retardation>
For the retardation, a 35 mm × 35 mm sample was cut from the produced optical film, conditioned for 2 hours at 25 ° C. and 55% RH, and measured from the vertical direction at 590 nm with an automatic birefringence meter (KOBRA WR, Oji Scientific Instruments). Ro and Rth at each wavelength were calculated from the measured values and the extrapolated values of the retardation values measured in the same manner while tilting the film surface.
 本発明の光学フィルムは、下記式(I)により定義される面内リターデーション値Ro(590)が0~100nmの範囲内であり、下記式(II)により定義される厚さ方向のリターデーション値Rth(590)が-100~100nmの範囲内であるように調整することが好ましい。
式(I):Ro(590)=(nx-ny)×d(nm)
式(II):Rth(590)={(nx+ny)/2-nz}×d(nm)
〔上式中、Ro(590)は測定波長590nmにおけるフィルム内の面内リターデーション値を表し、Rth(590)は590nmにおけるフィルム内の厚さ方向のリターデーション値を表す。
The optical film of the present invention has an in-plane retardation value Ro (590) defined by the following formula (I) in the range of 0 to 100 nm, and a retardation in the thickness direction defined by the following formula (II). It is preferable to adjust so that the value Rth (590) is in the range of −100 to 100 nm.
Formula (I): Ro (590) = (nx−ny) × d (nm)
Formula (II): Rth (590) = {(nx + ny) / 2−nz} × d (nm)
[In the above formula, Ro (590) represents the in-plane retardation value in the film at a measurement wavelength of 590 nm, and Rth (590) represents the retardation value in the thickness direction in the film at 590 nm.
 また、dは光学フィルムの厚さ(nm)を表し、nxは590nmにおけるフィルムの面内の最大の屈折率を表し、遅相軸方向の屈折率ともいう。nyは590nmにおけるフィルム面内で遅相軸に直角な方向の屈折率を表し、nzは590nmにおける厚み方向におけるフィルムの屈折率を表す。〕
 面内リターデーション値Ro(590)は、好ましくは、0~250nmの範囲内である。
D represents the thickness (nm) of the optical film, nx represents the maximum refractive index in the plane of the film at 590 nm, and is also referred to as the refractive index in the slow axis direction. ny represents the refractive index in the direction perpendicular to the slow axis in the film plane at 590 nm, and nz represents the refractive index of the film in the thickness direction at 590 nm. ]
The in-plane retardation value Ro (590) is preferably in the range of 0 to 250 nm.
 一方、厚さ方向のリターデーション値Rth(590)については、好ましくは、-50~50nmの範囲内である。 On the other hand, the retardation value Rth (590) in the thickness direction is preferably in the range of −50 to 50 nm.
 所望のリターデーションは組成をアクリル樹脂とセルロースエステル樹脂を95:5~30:70の質量比の範囲内でそれぞれの樹脂の比率を調整し、場合に応じて、位相差制御剤の組み合わせとその添加する量を調整することで行う。 For the desired retardation, the composition of the acrylic resin and the cellulose ester resin is adjusted within a mass ratio of 95: 5 to 30:70, and the ratio of each resin is adjusted. This is done by adjusting the amount to be added.
 さらに、このフィルムの組成に応じて、延伸の温度(それぞれの区画の温度の組み合わせ)、倍率、延伸する速度、延伸する順序、延伸する時のフィルムの残留溶媒量などを調整、制御することでリターデーション値を所望の値にすることができる。 Furthermore, by adjusting and controlling the stretching temperature (combination of the temperatures of the respective sections), the magnification, the stretching speed, the stretching order, the residual solvent amount of the film when stretching, and the like according to the composition of the film. The retardation value can be set to a desired value.
 リターデーションをこのような範囲に調整することにより本発明の光学フィルムを使用した液晶表示装置の視野角を広げ、正面コントラストを改善することができる。 By adjusting the retardation to such a range, the viewing angle of the liquid crystal display device using the optical film of the present invention can be widened, and the front contrast can be improved.
 正面コントラスト=(表示装置の法線方向から測定した白表示の輝度)/(表示装置の法線方向から測定した黒表示の輝度)
 視野角は液晶表示装置の観察方向を法線方向から傾けていった場合に一定レベルのコントラストを維持できる角度のことである。
Front contrast = (brightness of white display measured from normal direction of display device) / (brightness of black display measured from normal direction of display device)
The viewing angle is an angle at which a certain level of contrast can be maintained when the viewing direction of the liquid crystal display device is tilted from the normal direction.
 遅相軸方向の均一性も重要であり、フィルム巾方向に対して、角度が-5~+5°であることが好ましく、さらに-1~+1°の範囲にあることが好ましく、特に-0.5~+0.5°の範囲にあることが好ましく、特に-0.1~+0.1°の範囲にあることが好ましい。これらのばらつきは延伸条件を最適化することで達成できる。 Uniformity in the slow axis direction is also important, and the angle is preferably −5 to + 5 ° with respect to the film width direction, more preferably in the range of −1 to + 1 °, particularly −0. A range of 5 to + 0.5 ° is preferable, and a range of −0.1 to + 0.1 ° is particularly preferable. These variations can be achieved by optimizing the stretching conditions.
 本発明の光学フィルムは、隣接する山の頂点から谷の底点までの高さが300nm以上であり、傾きが300nm/mm以上の長手方向に連続するスジがないことが好ましい。 In the optical film of the present invention, it is preferable that the height from the top of the adjacent mountain to the bottom of the valley is 300 nm or more, and there is no streak continuous in the longitudinal direction with an inclination of 300 nm / mm or more.
 スジの形状は、表面粗さ計を用いて測定したもので、具体的には、ミツトヨ製SV-3100S4を使用して、先端形状が円錐60°、先端曲率半径2μmの触針(ダイヤモンド針)に測定力0.75mNの加重をかけながら、測定速度1.0mm/secでフィルムの巾方向に走査し、Z軸(厚み方向)分解能0.001μmとして断面曲線を測定する。 The shape of the streaks was measured using a surface roughness meter. Specifically, using a SV-3100S4 manufactured by Mitutoyo, a stylus (diamond needle) with a tip shape of 60 ° cone and a tip curvature radius of 2 μm was used. The film is scanned in the width direction of the film at a measurement speed of 1.0 mm / sec while applying a load of 0.75 mN, and a cross-sectional curve is measured with a Z-axis (thickness direction) resolution of 0.001 μm.
 この曲線から、スジの高さは、山の頂点から谷の底点までの垂直距離(H)を読み取る。スジの傾きは、山の頂点から谷の底点までの水平距離(L)を読み取り、垂直距離(H)を水平距離(L)で除して求める。 From this curve, the height of the streak reads the vertical distance (H) from the top of the mountain to the bottom of the valley. The slope of the streak is obtained by reading the horizontal distance (L) from the top of the mountain to the bottom of the valley and dividing the vertical distance (H) by the horizontal distance (L).
 また本発明の光学フィルムの厚みは、20μm以上150μm以下であることが好ましい。より好ましくは30μm以上80μm以下である。 The thickness of the optical film of the present invention is preferably 20 μm or more and 150 μm or less. More preferably, it is 30 μm or more and 80 μm or less.
 本発明の光学フィルムは、上記のような物性を満たしていれば、大型の液晶表示装置や屋外用途の液晶表示装置用の偏光板保護フィルムとして特に好ましく用いることができる。 The optical film of the present invention can be particularly preferably used as a polarizing plate protective film for a large-sized liquid crystal display device or a liquid crystal display device for outdoor use as long as the above physical properties are satisfied.
 <光学フィルムの製造方法>
 本発明の光学フィルムは、溶液流延法、または溶融流延法で製造することができるが、平面性、薄膜化の観点から、溶融流延押出製膜方法によって製造することが好ましい。
<Method for producing optical film>
The optical film of the present invention can be produced by a solution casting method or a melt casting method, but is preferably produced by a melt casting extrusion film forming method from the viewpoint of flatness and thinning.
 下記光学フィルムの製造方法は一例であり、本発明はこれに限定されるものではない。 The following optical film manufacturing method is an example, and the present invention is not limited to this.
 <溶融流延押出製膜方法による光学フィルムの製造方法>
 本発明の光学フィルムの製造方法は、少なくとも、アクリル樹脂(A)、セルロースエステル樹脂(B)、及びアミド結合を有するビニルポリマー(C)を溶融してダイから共押出しし冷却ロール上に流延する光学フィルムの製造方法である。
<Method for producing optical film by melt casting extrusion film forming method>
In the method for producing an optical film of the present invention, at least an acrylic resin (A), a cellulose ester resin (B), and a vinyl polymer (C) having an amide bond are melted and coextruded from a die and cast onto a cooling roll. This is a method for producing an optical film.
 図1は、本発明に好ましい溶融流延製膜方法の工程を模式的に示した図である。 FIG. 1 is a diagram schematically showing the steps of a melt casting film forming method preferable for the present invention.
 図1において、本発明による光学フィルムの製造方法は、アクリル樹脂(A)、セルロースエステル樹脂(B)等のフィルム材料を混合した後、押出し機1を用いて、流延ダイ4から第1冷却ロール5上に溶融押し出し、第1冷却ロール5に外接させるとともに、更に、第2冷却ロール7、第3冷却ロール8の合計3本の冷却ロールに順に外接させて、冷却固化してフィルム10とする。次いで、剥離ロール9によって剥離したフィルム10を、次いで延伸装置12によりフィルムの両端部を把持して幅方向に延伸した後、巻取り装置16により巻き取る。また、平面性を矯正するために溶融フィルムを第1冷却ロール5表面に挟圧するタッチロール6が設けられている。このタッチロール6は表面が弾性を有し、第1冷却ロール5との間でニップを形成している。 In FIG. 1, the manufacturing method of the optical film by this invention is the 1st cooling from the casting die 4 using the extruder 1 after mixing film materials, such as an acrylic resin (A) and a cellulose-ester resin (B). It is melt extruded on the roll 5 and circumscribed to the first cooling roll 5, and is further circumscribed by a total of three cooling rolls, the second cooling roll 7 and the third cooling roll 8, in order to cool and solidify the film 10. To do. Next, after the film 10 peeled off by the peeling roll 9 is gripped at both ends of the film by the stretching device 12 and stretched in the width direction, it is wound up by the winding device 16. In addition, a touch roll 6 is provided that clamps the molten film on the surface of the first cooling roll 5 in order to correct the flatness. The touch roll 6 has an elastic surface and forms a nip with the first cooling roll 5.
 以下、製造方法の全体について述べる。 Hereinafter, the whole manufacturing method will be described.
 〈溶融ペレット製造工程〉
 溶融押出に用いるアクリル樹脂(A)、セルロースエステル(セルロースエステル樹脂(B)も含む)、アミド結合を有するビニルポリマー(C)、可塑剤およびその他の添加剤の混合物は、通常あらかじめ混錬してペレット化しておくことが好ましい。
<Melted pellet manufacturing process>
A mixture of acrylic resin (A), cellulose ester (including cellulose ester resin (B)), vinyl polymer (C) having an amide bond, plasticizer and other additives used for melt extrusion is usually kneaded in advance. It is preferable to pelletize.
 ペレット化は、公知の方法でよく、例えば、乾燥アクリル樹脂(A)、乾燥セルロースエステル樹脂(B)、乾燥アミド結合を有するビニルポリマー(C)や可塑剤、その他添加剤をフィーダーで押出機に供給し1軸や2軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングすることでできる。 Pelletization may be performed by a known method. For example, dry acrylic resin (A), dry cellulose ester resin (B), vinyl polymer (C) having a dry amide bond, a plasticizer, and other additives are fed into an extruder. It can be supplied by kneading using a single-screw or twin-screw extruder, extruding into a strand from a die, water-cooling or air-cooling, and cutting.
 原材料は、押出する前に乾燥しておくことが原材料の分解を防止する上で重要である。特にセルロースエステルは吸湿しやすいので、除湿熱風乾燥機や真空乾燥機で70~140℃で3時間以上乾燥し、水分率を200ppm以下、さらに100ppm以下にしておくことが好ましい。 It is important to dry the raw material before extruding to prevent the raw material from being decomposed. In particular, since cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
 添加剤は、押出機に供給押出機合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。 Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders. A small amount of an additive such as an antioxidant is preferably mixed in advance in order to mix uniformly.
 酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、アクリル樹脂(A)、セルロースエステル樹脂(B)、アミド結合を有するビニルポリマー(C)に含浸させて混合してもよく、あるいは噴霧して混合してもよい。 Mixing of antioxidants may be performed by mixing solids or, if necessary, an antioxidant is dissolved in a solvent, and an acrylic resin (A), a cellulose ester resin (B), or a vinyl polymer having an amide bond. (C) may be impregnated and mixed, or may be mixed by spraying.
 真空ナウターミキサーなどが乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口など空気と触れる場合は、除湿空気や除湿したNガスなどの雰囲気下にすることが好ましい。 A vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
 押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。ペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
 〈溶融混合物をダイから冷却ロールへ押し出す工程〉
 アクリル樹脂(A)を溶融混合物としてから流延ダイまで導入するラインと、セルローステル樹脂(B)を溶融混合物としてから流延ダイまで導入するラインとは併設され、各溶融混合物が流延ダイにおいて積層される。
<Process for extruding molten mixture from die to cooling roll>
A line for introducing the acrylic resin (A) from the molten mixture to the casting die and a line for introducing the cellulose tellur resin (B) from the molten mixture to the casting die are provided side by side. Laminated.
 まず、作製したペレットを1軸や2軸タイプの押出機を用いて、押し出す際の溶融温度Tmを200~300℃程度とし、リーフディスクタイプのフィルターなどでろ過し異物を除去した後、Tダイからフィルム状に共押出し、冷却ロール上で固化し、弾性タッチロールと押圧しながら流延する。 First, the pellets produced are extruded using a single-screw or twin-screw type extruder, the melting temperature Tm when being extruded is about 200 to 300 ° C., filtered through a leaf disk type filter or the like to remove foreign matters, and then the T-die The film is coextruded into a film, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
 供給ホッパーから押出機へ導入する際は真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。なお、Tmは、押出機のダイ出口部分の温度である。 When introducing into the extruder from the supply hopper, it is preferable to prevent oxidative decomposition or the like under vacuum, reduced pressure, or inert gas atmosphere. Tm is the temperature of the die exit portion of the extruder.
 ダイに傷や可塑剤の凝結物等の異物が付着するとスジ状の欠陥が発生する場合がある。このような欠陥のことをダイラインとも呼ぶが、ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力無いものを用いることが好ましい。 ∙ If foreign matter such as scratches or plasticizer aggregates adheres to the die, streaky defects may occur. Such defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
 押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。 The inner surface that comes into contact with the molten resin, such as an extruder or a die, is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy. Specifically, a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
 本発明に用いられる冷却ロールには特に制限はないが、高剛性の金属ロールで内部に温度制御可能な熱媒体または冷媒体が流れるような構造を備えるロールであり、大きさは限定されないが、溶融押し出されたフィルムを冷却するのに十分な大きさであればよく、通常冷却ロールの直径は100mmから1m程度である。 Although there is no particular limitation on the cooling roll used in the present invention, it is a roll having a structure in which a heat medium or a refrigerant body whose temperature can be controlled is flowed with a highly rigid metal roll, and its size is not limited, The film may be of a size sufficient to cool the melt-extruded film, and the diameter of the cooling roll is usually about 100 mm to 1 m.
 冷却ロールの表面材質は、炭素鋼、ステンレス、アルミニウム、チタンなどが挙げられる。さらに表面の硬度をあげたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。 The surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the surface hardness or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
 冷却ロール表面の表面粗さは、Raで0.1μm以下とすることが好ましく、さらに0.05μm以下とすることが好ましい。ロール表面が平滑であるほど、得られるフィルムの表面も平滑にできるのである。もちろん表面加工した表面はさらに研磨し上述した表面粗さとすることが好ましい。 The surface roughness of the cooling roll surface is preferably 0.1 μm or less in terms of Ra, and more preferably 0.05 μm or less. The smoother the roll surface, the smoother the surface of the resulting film. Of course, it is preferable that the surface processed is further polished to have the above-described surface roughness.
 本発明に用いられる弾性タッチロールとしては、特開平03-124425号、特開平08-224772号、特開平07-100960号、特開平10-272676号、WO97-028950、特開平11-235747号、特開2002-36332号、特開2005-172940号や特開2005-280217号に記載されているような表面が薄膜金属スリーブ被覆シリコンゴムロールを使用することができる。 Examples of the elastic touch roll used in the present invention include JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97-028950, JP-A-11-235747, As described in JP-A-2002-36332, JP-A-2005-172940 and JP-A-2005-280217, a thin-film metal sleeve-covered silicon rubber roll can be used.
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.
 〈延伸工程〉
 本発明では、上記のようにして得られたフィルムは冷却ロールに接する工程を通過後、さらに少なくとも1方向に1.01~3.0倍延伸することが好ましい。延伸によりスジの鋭さが緩やかになり高度に矯正することができるのである。
<Extension process>
In the present invention, it is preferable that the film obtained as described above is further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll. The sharpness of the streaks becomes gentle by stretching and can be highly corrected.
 好ましくは縦(フィルム搬送方向)、横(巾方向)両方向にそれぞれ1.1~2.0倍延伸することが好ましい。 Preferably, the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
 延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。特に光学フィルムが、偏光板保護フィルムを兼ねる位相差フィルムの場合は、延伸方向を巾方向とすることで偏光フィルムとの積層がロール形態でできるので好ましい。 As the stretching method, a known roll stretching machine or tenter can be preferably used. In particular, in the case where the optical film is a retardation film that also serves as a polarizing plate protective film, it is preferable to stack the polarizing film in a roll form by setting the stretching direction to the width direction.
 巾方向に延伸することで光学フィルムの遅相軸は巾方向になる。 The slow axis of the optical film becomes the width direction by stretching in the width direction.
 通常、延伸倍率は1.1~3.0倍、好ましくは1.2~1.5倍であり、延伸温度は通常、フィルムを構成する樹脂のTg~Tg+50℃、好ましくはTg~Tg+40℃の温度範囲で行われる。 Usually, the draw ratio is 1.1 to 3.0 times, preferably 1.2 to 1.5 times, and the draw temperature is usually Tg to Tg + 50 ° C. of the resin constituting the film, preferably Tg to Tg + 40 ° C. Performed in the temperature range.
 延伸は、幅手方向で制御された均一な温度分布下で行うことが好ましい。好ましくは±2℃以内、さらに好ましくは±1℃以内、特に好ましくは±0.5℃以内である。 The stretching is preferably performed under a uniform temperature distribution controlled in the width direction. The temperature is preferably within ± 2 ° C, more preferably within ± 1 ° C, and particularly preferably within ± 0.5 ° C.
 上記の方法で作製した光学フィルムのリターデーション調整や寸法変化率を小さくする目的で、フィルムを長手方向や幅手方向に収縮させてもよい。 The film may be contracted in the longitudinal direction or the width direction for the purpose of reducing the retardation of the optical film produced by the above method and reducing the dimensional change rate.
 長手方向に収縮するには、例えば、巾延伸を一時クリップアウトさせて長手方向に弛緩させる、または横延伸機の隣り合うクリップの間隔を徐々に狭くすることによりフィルムを収縮させるという方法がある。 In order to shrink in the longitudinal direction, for example, there is a method in which the film is shrunk by temporarily clipping out the width stretching and relaxing in the longitudinal direction, or by gradually narrowing the interval between adjacent clips of the transverse stretching machine.
 本発明の光学フィルムは、溶融流延共押出製膜方法によって作製することから、ロール状フィルムとして巻き取った時点で、含有している溶媒量が0.01質量%以下である。含有溶媒量は、下記の方法によって測定することができる。 Since the optical film of the present invention is produced by the melt casting coextrusion film forming method, the amount of the solvent contained is 0.01% by mass or less when wound up as a roll film. The amount of the solvent can be measured by the following method.
 〈含有溶媒量〉
 各試料を20mlの密閉ガラス容器に入れ、下記ヘッドスペース加熱条件にて処理したあと、下記ガスクロマトグラフィーにて予め使用した溶媒について検量線を作成し測定を行った。含有溶媒量は、光学フィルムの全体の質量に対する質量部で表した。
機器:HP社 5890SERIES II
カラム:J&W社 DB-WAX(内径0.32mm、長さ30m)
検出:FID
GC昇温条件:40℃で5分間保持したあと、80℃/分で100℃まで昇温
ヘッドスペース加熱条件:120℃で20min
 本発明の光学フィルムは返材を製造過程において用いることもできる。返材とは、光学フィルムを細かく粉砕した物で、光学フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトした光学フィルム原反が使用される。
<Contained solvent amount>
Each sample was placed in a 20 ml sealed glass container, treated under the following headspace heating conditions, and then a calibration curve was prepared and measured for the solvent used in advance by the following gas chromatography. The amount of solvent contained was expressed in parts by mass relative to the total mass of the optical film.
Equipment: HP 5890SERIES II
Column: J-W DB-WAX (inner diameter 0.32 mm, length 30 m)
Detection: FID
GC temperature rising condition: held at 40 ° C. for 5 minutes, then heated to 80 ° C./min to 100 ° C. Headspace heating condition: 120 ° C. for 20 min
In the optical film of the present invention, the return material can be used in the production process. The return material is a product obtained by finely pulverizing the optical film, which is generated when the optical film is formed, and is obtained by cutting off both sides of the film, or by using an optical film original that has been speculated out due to scratches, etc. .
 本発明の光学フィルムは、長尺フィルムであることが好ましく、具体的には、100m~10000m程度のものを示し、通常、ロール状で提供される形態のものである。 The optical film of the present invention is preferably a long film. Specifically, the optical film has a thickness of about 100 m to 10000 m and is usually provided in a roll shape.
 また、光学フィルムの幅は1.3~4mであることが好ましく、1.4~3mであることがより好ましい。 In addition, the width of the optical film is preferably 1.3 to 4 m, and more preferably 1.4 to 3 m.
 本発明の光学フィルムの膜厚に特に制限はないが、後述する偏光板保護フィルムに使用する場合は20~200μmであることが好ましく、25~100μmであることがより好ましく、30~80μmであることが特に好ましい。 The film thickness of the optical film of the present invention is not particularly limited, but when used for a polarizing plate protective film described later, it is preferably 20 to 200 μm, more preferably 25 to 100 μm, and 30 to 80 μm. It is particularly preferred.
 <機能性層>
 本発明の光学フィルムには、延伸の前または後でハードコート層、帯電防止層、バックコート層、易滑性層、接着層、バリアー層、防眩層、反射防止層、光学補償層等の機能性層を塗設してもよい。
<Functional layer>
The optical film of the present invention includes a hard coat layer, an antistatic layer, a back coat layer, a slippery layer, an adhesive layer, a barrier layer, an antiglare layer, an antireflection layer, an optical compensation layer and the like before or after stretching. A functional layer may be applied.
 <偏光板>
 本発明の光学フィルムは、偏光板、それを用いた液晶表示装置に使用することができる。
<Polarizing plate>
The optical film of the present invention can be used for a polarizing plate and a liquid crystal display device using the polarizing plate.
 偏光板は、前記本発明の光学フィルムを、偏光子の少なくとも一方の面に貼合した偏光板であることが特徴である。本発明の液晶表示装置は、少なくとも一方の液晶セル面に、本発明に係る偏光板が、粘着層を介して貼り合わされたものであることが特徴である。 The polarizing plate is characterized in that it is a polarizing plate in which the optical film of the present invention is bonded to at least one surface of a polarizer. The liquid crystal display device of the present invention is characterized in that the polarizing plate according to the present invention is bonded to at least one liquid crystal cell surface via an adhesive layer.
 偏光板は一般的な方法で作製することができる。本発明の光学フィルムの偏光子側をアルカリ鹸化処理し、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。 The polarizing plate can be produced by a general method. The optical film of the present invention is preferably bonded to at least one surface of a polarizer prepared by subjecting the polarizer side of the optical film to alkali saponification treatment and immersion drawing in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution.
 もう一方の面には本発明の光学フィルムを用いても、別の偏光板保護フィルムを用いてもよい。例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC4UA、KC6UA、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC8UE、KC4UE、KC4FR-3、KC4FR-4、KC4HR-1、KC8UY-HA、KC8UX-RHA、以上コニカミノルタオプト(株)製)等が好ましく用いられる。 On the other side, the optical film of the present invention may be used, or another polarizing plate protective film may be used. For example, commercially available cellulose ester films (for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC4UA, KC6UA, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, C4, R4 -4, KC4HR-1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
 本発明の好ましい態様としては、偏光子の一方の面に本発明の光学フィルムが貼合され、他方の面に厚さ20μm以上75μm以下のセルロースエステルフィルムが貼合されてなる偏光板である。 A preferred embodiment of the present invention is a polarizing plate in which the optical film of the present invention is bonded to one surface of a polarizer and a cellulose ester film having a thickness of 20 μm to 75 μm is bonded to the other surface.
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。 A polarizer, which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass. A typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed.
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。 The polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
 上記粘着層に用いられる粘着剤としては、粘着層の少なくとも一部分において25℃での貯蔵弾性率が1.0×10Pa~1.0×10Paの範囲である粘着剤が用いられていることが好ましく、粘着剤を塗布し、貼り合わせた後に種々の化学反応により高分子量体または架橋構造を形成する硬化型粘着剤が好適に用いられる。 As the pressure-sensitive adhesive used in the pressure-sensitive adhesive layer, a pressure-sensitive adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 × 10 4 Pa to 1.0 × 10 9 Pa in at least a part of the pressure-sensitive adhesive layer is used. It is preferable to use a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded.
 具体例としては、例えば、ウレタン系粘着剤、エポキシ系粘着剤、水性高分子-イソシアネート系粘着剤、熱硬化型アクリル粘着剤等の硬化型粘着剤、湿気硬化ウレタン粘着剤、ポリエーテルメタクリレート型、エステル系メタクリレート型、酸化型ポリエーテルメタクリレート等の嫌気性粘着剤、シアノアクリレート系の瞬間粘着剤、アクリレートとペルオキシド系の2液型瞬間粘着剤等が挙げられる。 Specific examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types, Examples include anaerobic pressure-sensitive adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-component instantaneous pressure-sensitive adhesives.
 上記粘着剤としては1液型であっても良いし、使用前に2液以上を混合して使用する型であっても良い。 The above-mentioned pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use.
 また上記粘着剤は有機溶剤を媒体とする溶剤系であってもよいし、水を主成分とする媒体であるエマルジョン型、コロイド分散液型、水溶液型などの水系であってもよいし、無溶剤型であってもよい。上記粘着剤液の濃度は、粘着後の膜厚、塗布方法、塗布条件等により適宜決定されれば良く、通常は0.1~50質量%である。 The pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solvent type. The concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
 <液晶表示装置>
 本発明の光学フィルムを貼合した偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することができるが、特に大型の液晶表示装置やデジタルサイネージ等の屋外用途の液晶表示装置に好ましく用いられる。本発明の偏光板は、前記粘着層等を介して液晶セルに貼合する。
<Liquid crystal display device>
By incorporating the polarizing plate bonded with the optical film of the present invention into a liquid crystal display device, it is possible to produce various liquid crystal display devices with excellent visibility, but particularly outdoors such as large liquid crystal display devices and digital signage. It is preferably used for a liquid crystal display device for use. The polarizing plate of the present invention is bonded to a liquid crystal cell via the adhesive layer or the like.
 本発明の偏光板は反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型(FFS方式も含む)等の各種駆動方式のLCDで好ましく用いられる。特にVA型の画面が30型以上、特に30型~54型の大画面の表示装置では、画面周辺部での白抜け等もなく、その効果が長期間維持される。 The polarizing plate of the present invention includes various types such as a reflective type, a transmissive type, a transflective type LCD, a TN type, an STN type, an OCB type, a HAN type, a VA type (PVA type, MVA type), and an IPS type (including an FFS type). It is preferably used in a drive type LCD. In particular, in a large-screen display device with a VA screen of 30 or more, particularly 30 to 54, there is no white spot at the periphery of the screen and the effect is maintained for a long time.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1
 <材料の合成>
 (アクリル樹脂(A))
 表1のアクリル樹脂A1~29を公知の方法によって作製した。表中ACMOは、アクリロイルモルホリン、MACMOは、メタクリロイルモルホリン、AAmはアクリルアミド、VPはN-ビニルピロリドン、DMAAmは、N,N-ジメチルアクリルアミド、HEAAmは、N-ヒドロキシエチルアクリルアミド、VFAAmは、N-ビニルホルムアミド、ACPIPEは、アクリロイルピペリジン、HEMAは、2-ヒドロキシエチルメタクリレート、HPMAは2-ヒドロキシプロピルメタクリレートである。
Example 1
<Material synthesis>
(Acrylic resin (A))
Acrylic resins A1 to A29 in Table 1 were produced by a known method. In the table, ACMO is acryloylmorpholine, MACMO is methacryloylmorpholine, AAm is acrylamide, VP is N-vinylpyrrolidone, DMAAm is N, N-dimethylacrylamide, HEAAm is N-hydroxyethylacrylamide, and VFAAm is N-vinyl. Formamide and ACPIPE are acryloylpiperidine, HEMA is 2-hydroxyethyl methacrylate, and HPMA is 2-hydroxypropyl methacrylate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (セルロースエステル樹脂(B))
 表2に、実施例に用いるセルロースエステル樹脂CE1~CE30の詳細について記載する。
(Cellulose ester resin (B))
Table 2 describes the details of the cellulose ester resins CE1 to CE30 used in the examples.
 表中、ac:アセチル基、pr:プロピオニル基、bt:ブチリル基、pen:ペンチル基、hep:ヘプチル基、bz:ベンゾイル基、oct:オクチル基、ph:フェニル基を各々表す。 In the table, ac: acetyl group, pr: propionyl group, bt: butyryl group, pen: pentyl group, hep: heptyl group, bz: benzoyl group, oct: octyl group, ph: phenyl group.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (アミド結合を有するビニルポリマー(C))
 表3のアミド結合を有するビニルポリマーC1~C11を公知の方法によって作製した。表中のVPはN-ビニルピロリドン、VAcは酢酸ビニル、MMAはメチルメタクリレート、HEMAは2-ヒドロキシエチルメタクリレートである。
(Vinyl polymer having amide bond (C))
Vinyl polymers C1 to C11 having an amide bond shown in Table 3 were prepared by a known method. In the table, VP is N-vinylpyrrolidone, VAc is vinyl acetate, MMA is methyl methacrylate, and HEMA is 2-hydroxyethyl methacrylate.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <光学フィルムの作製>
 (光学フィルム1の作製)
 下記素材を真空ナウターミキサーで80℃、1Torrで3時間混合しながら更に乾燥し、得られた混合物を、2軸式押し出し機を用いて235℃で溶融混合しペレット化した。
<Production of optical film>
(Preparation of optical film 1)
The following materials were further dried while being mixed at 80 ° C. and 1 Torr for 3 hours with a vacuum nauter mixer, and the resulting mixture was melt-mixed at 235 ° C. using a twin-screw extruder and pelletized.
 アクリル樹脂(A):A5(90℃で3時間乾燥し水分率1000ppm)                           65質量部
 セルロースエステル樹脂(B):CE1(セルロースアセテートプロピオネート:アシル基総置換度2.75、アセチル基置換度0.19、プロピオニル基置換度2.56、Mw=200000、100℃で3時間乾燥し水分率500ppm)                    35質量部
 アミド結合を有するビニルポリマー(C):C3    3.5質量部
 Tinuvin928(BASFジャパン(株)製)  1.1質量部
 GSY-P101(堺化学工業(株)製)      0.25質量部
 Irganox1010(BASFジャパン(株)製) 0.5質量部
 SumilizerGS(住友化学(株)製)    0.24質量部
 アエロジルNAX50(日本アエロジル(株)製)   0.2質量部
 シーホスターKEP-30((株)日本触媒製)   0.02質量部
 得られたペレットを、70℃の除湿空気を5時間以上循環させて乾燥を行い、100℃の温度を保ったまま、次工程の1軸押出機に導入した。このときのペレットを少量取りだし、水分量を測定したところ120ppmであった。
Acrylic resin (A): A5 (dried at 90 ° C. for 3 hours and water content 1000 ppm) 65 parts by weight Cellulose ester resin (B): CE1 (cellulose acetate propionate: acyl group total substitution degree 2.75, acetyl group substitution degree 0.19, propionyl group substitution degree 2.56, Mw = 200000, dried at 100 ° C. for 3 hours and water content 500 ppm) 35 parts by weight Vinyl polymer having amide bond (C): C3 3.5 parts by weight Tinuvin 928 (BASF Japan) 1.1 parts by mass GSY-P101 (manufactured by Sakai Chemical Industry Co., Ltd.) 0.25 parts by mass Irganox 1010 (manufactured by BASF Japan Ltd.) 0.5 parts by mass Sumilizer GS (manufactured by Sumitomo Chemical Co., Ltd.) 0.24 parts by mass Aerosil NAX50 (Japan) 0.2 parts by weight Seahoster KEP-30 (manufactured by Nippon Shokubai Co., Ltd.) 0.02 parts by weight The obtained pellets were dried by circulating 70 ° C. dehumidified air for 5 hours or more. While maintaining the temperature of 100 ° C., it was introduced into a single-screw extruder in the next step. A small amount of the pellet was taken out and the water content was measured and found to be 120 ppm.
 フィルムの製膜は、図1に示す製造装置で行った。 Film formation was performed with the manufacturing apparatus shown in FIG.
 上記ペレットを、1軸押出機を用いてTダイから表面温度が90℃の第1冷却ロール上に溶融温度240℃でフィルム状に溶融押し出し、120μmのキャストフィルムを得た。この際第1冷却ロール上でフィルムを2mm厚の金属表面を有する弾性タッチロールで押圧した。 The above pellets were melt extruded from a T die onto a first cooling roll having a surface temperature of 90 ° C. at a melting temperature of 240 ° C. using a single screw extruder to obtain a 120 μm cast film. At this time, the film was pressed on the first cooling roll with an elastic touch roll having a 2 mm thick metal surface.
 得られたフィルムをまずロール周速差を利用した延伸機によって175℃で搬送方向に60%延伸した。次に予熱ゾーン、延伸ゾーン、保持ゾーン、冷却ゾーン(各ゾーン間には各ゾーン間の断熱を確実にするためのニュートラルゾーンも有する)を有するテンターに導入し、幅手方向に175℃で70%延伸した後、30℃まで冷却し、その後クリップから開放し、クリップ把持部を裁ち落として、膜厚40μm、フィルム幅2500mmの光学フィルム試料1を得た。 First, the obtained film was stretched 60% in the transport direction at 175 ° C. by a stretching machine using a difference in peripheral speed of the roll. Next, it is introduced into a tenter having a preheating zone, a stretching zone, a holding zone, and a cooling zone (there is also a neutral zone for ensuring thermal insulation between the zones), and is 70 ° C at 175 ° C in the width direction. The film was cooled to 30 ° C., then released from the clip, and the clip gripping part was cut off to obtain an optical film sample 1 having a film thickness of 40 μm and a film width of 2500 mm.
 (光学フィルム2~80の作製)
 上記光学フィルム1の作製と同様にして、表4、5、6記載のようにアクリル樹脂(A)とセルロースエステル樹脂(B)、アミド結合を有するビニルポリマー(C)の種類と量を変更し、混合して光学フィルム試料2~80を作製した。この際、溶融温度は溶融粘度が1000Pa・sになる温度として樹脂混合物ごとに設定した。
(Preparation of optical films 2 to 80)
As in the production of the optical film 1, the types and amounts of the acrylic resin (A), the cellulose ester resin (B), and the vinyl polymer (C) having an amide bond are changed as shown in Tables 4, 5, and 6. The optical film samples 2 to 80 were prepared by mixing. At this time, the melting temperature was set for each resin mixture as a temperature at which the melt viscosity became 1000 Pa · s.
 (光学フィルム81~83の作製)
 特許第4138984号公報の実施例1及び3に記載の方法にて、セルロース誘導体組成物1及び3を作製した。この樹脂組成物を、上記方法と同様にて光学フィルム81、82を作製した。
(Preparation of optical films 81 to 83)
Cellulose derivative compositions 1 and 3 were prepared by the methods described in Examples 1 and 3 of Japanese Patent No. 4138984. Optical films 81 and 82 were produced from this resin composition in the same manner as described above.
 また、国際公開第2009/047924号パンフレットの実施例1に記載の光学フィルム1の作製方法に従いフィルムを作製して、これをフィルム83とした。 Also, a film was produced according to the production method of the optical film 1 described in Example 1 of International Publication No. 2009/047924, and this was designated as film 83.
 《光学フィルムの評価》
 <各種測定方法>
 (フィルム耐久ヘーズ)
 上記作製した各々のフィルム試料について、フィルム試料1枚を23℃,55%RHの雰囲気下で24時間調湿度したあと、JIS K-7136に従って、ヘーズメーター(NDH2000型、日本電色工業(株)製)を使用して測定した。
<< Evaluation of optical film >>
<Various measurement methods>
(Film endurance haze)
For each of the produced film samples, one film sample was conditioned for 24 hours in an atmosphere of 23 ° C. and 55% RH, and then the haze meter (NDH2000 type, Nippon Denshoku Industries Co., Ltd.) according to JIS K-7136. ).
 次にこのフィルムを恒温槽に入れ、先ず-35℃の環境下にて30分間処理し、その後すぐに95℃の環境下に設定して、恒温槽内の温度が95℃になった時点から30分間処理を行った。その後、再び-35℃の設定にして、同環境下になった時点で30分間処理を行い、以降、-35℃での処理と95℃での処理を1サイクルとして、計100サイクルの耐久評価を行った。 Next, this film is placed in a thermostatic chamber, first treated in an environment of −35 ° C. for 30 minutes, and then immediately set in an environment of 95 ° C. From the time when the temperature in the thermostatic bath reaches 95 ° C. The treatment was performed for 30 minutes. After that, set the temperature to -35 ° C again and perform the treatment for 30 minutes when the same environment is reached. Thereafter, the treatment at -35 ° C and the treatment at 95 ° C are regarded as one cycle, and the durability is evaluated for a total of 100 cycles. Went.
 最後に、このフィルム試料を23℃,55%RHの雰囲気下で24時間調湿度したあと、上記と同様の方法にてヘーズを測定し、耐久後と耐久前でのヘーズの差(Δ%)を算出した。 Finally, the film sample was conditioned for 24 hours in an atmosphere of 23 ° C. and 55% RH, and then the haze was measured by the same method as described above, and the difference in haze between before and after endurance (Δ%) Was calculated.
 (偏光板密着性)
 厚さ120μmの長尺ロールポリビニルアルコールフィルムを、沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で5倍に搬送方向に延伸して偏光子を作製した。
(Polarizer adhesion)
A 120 μm-thick long roll polyvinyl alcohol film was immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched 5 times in the transport direction at 50 ° C. to prepare a polarizer.
 次に、この偏光子の両面にポリビニルアルコール系接着剤を塗布し、偏光子の片面に1.5NのKOH溶液で40℃60秒のけん化条件でアルカリけん化処理した上記作製した光学フィルム1を、もう一方の面に同様のけん化処理を行ったKC6UY(コニカミノルタオプト(株)製)を積層しロール機で貼り合わせ、その後60℃の乾燥工程で120秒乾燥を行い偏光板1を作製した。同様にして、光学フィルム2~83を用いて偏光板2~83をそれぞれ作製した。 Next, the above-prepared optical film 1 applied with a polyvinyl alcohol-based adhesive on both sides of the polarizer and subjected to alkali saponification treatment with a 1.5N KOH solution at 40 ° C. for 60 seconds on one side of the polarizer, KC6UY (manufactured by Konica Minolta Opto Co., Ltd.) that had been subjected to the same saponification treatment was laminated on the other surface, bonded together with a roll machine, and then dried at 60 ° C. for 120 seconds to produce polarizing plate 1. Similarly, polarizing plates 2 to 83 were produced using optical films 2 to 83, respectively.
 作製した偏光板を5cm×5cmの大きさの正方形に断裁し、23℃、55%RHの雰囲気下に24時間放置し、その後、角の部分から偏光子とフィルムの界面で剥がしてその様子を観察した。この作業を1種類のサンプルについて10枚の偏光板で行い、偏光子とフィルムの間で剥がれが見られた偏光板の枚数を数え以下のように評価を行った。 The produced polarizing plate is cut into a square of 5 cm × 5 cm, left in an atmosphere of 23 ° C. and 55% RH for 24 hours, and then peeled off from the corner at the interface between the polarizer and the film. Observed. This operation was performed with 10 polarizing plates for one type of sample, and the number of polarizing plates in which peeling was observed between the polarizer and the film was counted and evaluated as follows.
 ○ :剥がれが見られない
 ○△:1~2枚剥がれた
 △ :3~4枚剥がれた
 △×:5~6枚以上
 × :7枚以上
 偏光子密着性は実用上○△~○レベルであることが好ましい。
○: No peeling ○ △: 1 to 2 sheets peeled △: 3 to 4 sheets peeled △ ×: 5 to 6 sheets or more ×: 7 sheets or more Polarizer adhesion is practically at the level of ○ △ to ○ Preferably there is.
 (Rth環境変動)
 作製した光学フィルムから試料35mm×35mmを切り出し、23℃80%RHで24時間調湿し、自動複屈折計(KOBRA WR、王子計測(株))で、590nmにおける垂直方向から測定した値とフィルム面を傾けながらRthを測定した。
(Rth environmental fluctuation)
A sample of 35 mm × 35 mm was cut out from the produced optical film, conditioned at 23 ° C. and 80% RH for 24 hours, and measured with an automatic birefringence meter (KOBRA WR, Oji Scientific Co., Ltd.) from the vertical direction at 590 nm and film Rth was measured while tilting the surface.
 次に、23℃20%RHで24時間調湿したあと同様に測定を行い、23℃80%RHでのRthと、23℃20%RHでのRth値の差を算出した。 Next, after the humidity was adjusted at 23 ° C. and 20% RH for 24 hours, the same measurement was performed, and the difference between Rth at 23 ° C. and 80% RH and Rth value at 23 ° C. and 20% RH was calculated.
 (コンタミ適性)
 上記作製した各々のフィルム試料について、試料100mm×100mmの範囲を市販の反射型光学顕微鏡を用いて反射モードにてフィルム表面に存在する30~100μmの異物、粒状物の個数をカウントし、10カ所の観察を行って、その平均値を1m当たりの個数に換算して算出した。
(Contamination aptitude)
For each of the above prepared film samples, the number of foreign substances and granular materials of 30 to 100 μm existing on the film surface was counted in the reflection mode using a commercially available reflection type optical microscope in the range of 100 mm × 100 mm. The average value was converted into the number per 1 m 2 and calculated.
 光学フィルム試料内容の詳細、及び上記評価の結果を表4、5、6に示す。 Tables 4, 5, and 6 show the details of the optical film sample contents and the results of the above evaluation.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上表より、本発明の光学フィルムは、フィルム耐久ヘーズ、偏光板密着性、Rth環境変動に優れることが分かる。更に本発明の光学フィルムは、異物等のコンタミ適性にも優れることが分かった。 From the above table, it can be seen that the optical film of the present invention is excellent in film durability haze, polarizing plate adhesion, and Rth environmental fluctuation. Furthermore, it was found that the optical film of the present invention is also excellent in contamination suitability such as foreign matter.
 実施例2
 <液晶表示装置の作製>
 日立製液晶テレビWooo32 H-90の予め貼合されていた両面の偏光板を剥がして、上記作製した偏光板1~83をそれぞれ液晶セルのガラス面の両面に貼合した。
Example 2
<Production of liquid crystal display device>
The polarizing plates on both sides of Hitachi LCD TV Woo32 H-90, which were previously bonded, were peeled off, and the above-prepared polarizing plates 1 to 83 were bonded to both sides of the glass surface of the liquid crystal cell.
 その際、その偏光板の貼合の向きは、予め貼合されていた偏光板の吸収軸と上記作製した偏光板1~83の吸収軸とが同一の方向に向くように行い、それぞれ対応する液晶表示装置1~83を各々作製した。 At that time, the direction of bonding of the polarizing plate is such that the absorption axis of the polarizing plate previously bonded and the absorption axis of the prepared polarizing plates 1 to 83 are directed in the same direction, respectively. Liquid crystal display devices 1 to 83 were produced.
 作製した液晶表示装置の視認性を評価したところ、本発明の光学フィルムを貼合した偏光板を装着した液晶表示装置は、クリアでコントラストも高く、また長時間の使用においても良好な視認性を有していた。 When the visibility of the produced liquid crystal display device was evaluated, the liquid crystal display device equipped with the polarizing plate bonded with the optical film of the present invention was clear and high in contrast, and had good visibility even after long-term use. Had.
 1 押出し機
 2 フィルター
 3 スタチックミキサー
 4 流延ダイ
 5 回転支持体(第1冷却ロール)
 6 挟圧回転体(タッチロール)
 7 回転支持体(第2冷却ロール)
 8 回転支持体(第3冷却ロール)
 9、11、13、14、15 搬送ロール
 10 光学フィルム
 12 延伸装置
 16 巻取り装置
DESCRIPTION OF SYMBOLS 1 Extruder 2 Filter 3 Static mixer 4 Casting die 5 Rotating support body (1st cooling roll)
6 Nipping pressure rotating body (touch roll)
7 Rotating support (second cooling roll)
8 Rotating support (3rd cooling roll)
9, 11, 13, 14, 15 Transport roll 10 Optical film 12 Stretching device 16 Winding device

Claims (9)

  1.  アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5~30:70の質量比で含有する光学フィルムであって、
     該アクリル樹脂(A)が下記一般式(1)で表され、重量平均分子量Mwが80000以上1000000以下であり、
     前記光学フィルムは、アミド結合を有するビニルモノマーの重合又はアミド結合を有するビニルモノマーと任意のビニルモノマーとの共重合により得られた添加剤(C)を光学フィルムの総質量に対して1~30質量%含有し、該添加剤の重量平均分子量Mwが1000~55000であることを特徴とする光学フィルム。
     一般式(1)
     -(MMA)p-(X)q-(Y)r-
    (但し、MMAはメチルメタクリレートを、Xはアミド結合を有するMMAと共重合可能なモノマー単位を、YはMMA及びXのいずれかと共重合可能なモノマー単位を表し、p、q、rはモル%であり、50≦p≦99、1≦q≦50、p+q+r=100である。)
    An optical film containing an acrylic resin (A) and a cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70,
    The acrylic resin (A) is represented by the following general formula (1), and the weight average molecular weight Mw is 80000 to 1000000,
    In the optical film, an additive (C) obtained by polymerization of a vinyl monomer having an amide bond or copolymerization of a vinyl monomer having an amide bond and an arbitrary vinyl monomer is added in an amount of 1 to 30 with respect to the total mass of the optical film. An optical film comprising: mass%, wherein the additive has a weight average molecular weight Mw of 1,000 to 55,000.
    General formula (1)
    -(MMA) p- (X) q- (Y) r-
    (However, MMA represents methyl methacrylate, X represents a monomer unit copolymerizable with MMA having an amide bond, Y represents a monomer unit copolymerizable with either MMA or X, and p, q, and r are mol%. And 50 ≦ p ≦ 99, 1 ≦ q ≦ 50, and p + q + r = 100.)
  2.  前記セルロースエステル樹脂(B)のアシル基の総置換度(T)が2.0以上3.0以下であり、炭素数が3以上7以下のアシル基の置換度が1.2以上3.0以下であり、該セルロースエステル樹脂(B)の重量平均分子量Mwが75000以上300000以下であることを特徴とする請求項1に記載の光学フィルム。 The total substitution degree (T) of the acyl group of the cellulose ester resin (B) is 2.0 or more and 3.0 or less, and the substitution degree of the acyl group having 3 or more and 7 or less carbon atoms is 1.2 or more and 3.0. The optical film according to claim 1, wherein the cellulose ester resin (B) has a weight average molecular weight Mw of 75,000 or more and 300,000 or less.
  3.  前記アクリル樹脂(A)を構成する前記アミド結合を有するMMAと共重合可能なモノマー単位Xが、N-ビニルピロリドンまたはアクリロイルモルホリンであることを特徴とする請求項1または2に記載の光学フィルム。 3. The optical film according to claim 1, wherein the monomer unit X copolymerizable with MMA having the amide bond constituting the acrylic resin (A) is N-vinylpyrrolidone or acryloylmorpholine.
  4.  前記アクリル樹脂(A)とセルロースエステル樹脂(B)を90:10~40:60の質量比で含有することを特徴とする請求項1~3のいずれか1項に記載の光学フィルム。 4. The optical film according to claim 1, wherein the acrylic resin (A) and the cellulose ester resin (B) are contained in a mass ratio of 90:10 to 40:60.
  5.  前記アクリル樹脂(A)とセルロースエステル樹脂(B)を80:20~50:50の質量比で含有することを特徴とする請求項4に記載の光学フィルム。 The optical film according to claim 4, wherein the acrylic resin (A) and the cellulose ester resin (B) are contained in a mass ratio of 80:20 to 50:50.
  6.  ポリビニルアルコール樹脂フィルムがヨウ素または二色性染料により染色されてなる偏光子の少なくとも一方の面に請求項1~5のいずれか1項に記載の光学フィルムが貼合されてなることを特徴とする偏光板。 The optical film according to any one of claims 1 to 5 is bonded to at least one surface of a polarizer obtained by dyeing a polyvinyl alcohol resin film with iodine or a dichroic dye. Polarizer.
  7.  前記偏光子の一方の面に前記光学フィルムが貼合され、他方の面に厚さ20μm以上75μm以下のセルロースエステルフィルムが貼合されてなることを特徴とする請求項6に記載の偏光板。 The polarizing plate according to claim 6, wherein the optical film is bonded to one surface of the polarizer, and a cellulose ester film having a thickness of 20 μm to 75 μm is bonded to the other surface.
  8.  液晶セルの少なくとも一方の面に請求項6または7に記載の偏光板が設けられることを特徴とする液晶表示装置。 A liquid crystal display device, wherein the polarizing plate according to claim 6 or 7 is provided on at least one surface of the liquid crystal cell.
  9.  アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5~30:70の質量比で含有し、添加剤(C)を光学フィルムの総質量に対して1~30質量%含有する光学フィルムの製造方法であって、
     前記アクリル樹脂(A)、前記セルロースエステル樹脂(B)及び前記添加剤(C)を含有する樹脂組成物を加熱溶融し、流延成膜することで光学フィルムを製造する工程を有し、
     該アクリル樹脂(A)が下記一般式(1)で表され、重量平均分子量Mwが80,000以上1000,000以下であり、
     前記添加剤(C)は、アミド結合を有するビニルモノマーの重合又はアミド結合を有するビニルモノマーと任意のビニルモノマーとの共重合により得られた添加剤であり、該添加剤(C)の重量平均分子量Mwが1000~55000であることを特徴とする光学フィルムの製造方法。
     一般式(1)
     -(MMA)p-(X)q-(Y)r-
    (但し、MMAはメチルメタクリレートを、Xはアミド結合を有するMMAと共重合可能なモノマー単位を、YはMMA及びXのいずれかと共重合可能なモノマー単位を表し、p、q、rはモル%であり、50≦p≦99、1≦q≦50、p+q+r=100である。)
    Optical film containing acrylic resin (A) and cellulose ester resin (B) in a mass ratio of 95: 5 to 30:70, and containing additive (C) in an amount of 1 to 30% by mass relative to the total mass of the optical film A manufacturing method of
    Heating and melting the resin composition containing the acrylic resin (A), the cellulose ester resin (B) and the additive (C), and casting the film to produce an optical film,
    The acrylic resin (A) is represented by the following general formula (1), and the weight average molecular weight Mw is from 80,000 to 1,000,000,
    The additive (C) is an additive obtained by polymerization of a vinyl monomer having an amide bond or copolymerization of a vinyl monomer having an amide bond and an arbitrary vinyl monomer, and the weight average of the additive (C) A method for producing an optical film, wherein the molecular weight Mw is 1000 to 55000.
    General formula (1)
    -(MMA) p- (X) q- (Y) r-
    (However, MMA represents methyl methacrylate, X represents a monomer unit copolymerizable with MMA having an amide bond, Y represents a monomer unit copolymerizable with either MMA or X, and p, q, and r are mol%. And 50 ≦ p ≦ 99, 1 ≦ q ≦ 50, and p + q + r = 100.)
PCT/JP2011/058587 2010-05-06 2011-04-05 Optical film, method for producing optical film, polarizing plate, and liquid crystal display device WO2011138887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010106097 2010-05-06
JP2010-106097 2010-05-06

Publications (1)

Publication Number Publication Date
WO2011138887A1 true WO2011138887A1 (en) 2011-11-10

Family

ID=44903739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058587 WO2011138887A1 (en) 2010-05-06 2011-04-05 Optical film, method for producing optical film, polarizing plate, and liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2011138887A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127571A (en) * 2011-12-19 2013-06-27 Konica Minolta Advanced Layers Inc Polarizing-plate protective film, and polarizing plate using the same
WO2018199161A1 (en) * 2017-04-28 2018-11-01 株式会社クラレ Thermoplastic resin multilayer film, method for manufacturing same, and laminate
WO2019203230A1 (en) * 2018-04-16 2019-10-24 株式会社クラレ Laminated sheet, manufacturing method therefor, and display with protective cover

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212224A (en) * 1999-01-20 2000-08-02 Daicel Chem Ind Ltd Amido-containing vinyl polymer, plasticizer comprising the same, and cellulose derivative resin composition
WO2009047924A1 (en) * 2007-10-13 2009-04-16 Konica Minolta Opto, Inc. Optical film
JP2009262533A (en) * 2008-04-04 2009-11-12 Konica Minolta Opto Inc Manufacturing process of optical film, optical film, polarizing plate and display apparatus
JP2009271510A (en) * 2008-04-11 2009-11-19 Konica Minolta Opto Inc Cellulose ester film, optical film, polarizing plate, liquid crystal display, and melt-cast film forming method of the cellulose ester film
JP2010024424A (en) * 2008-06-20 2010-02-04 Fujifilm Corp Cellulose ester film, polarizing plate and crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212224A (en) * 1999-01-20 2000-08-02 Daicel Chem Ind Ltd Amido-containing vinyl polymer, plasticizer comprising the same, and cellulose derivative resin composition
WO2009047924A1 (en) * 2007-10-13 2009-04-16 Konica Minolta Opto, Inc. Optical film
JP2009262533A (en) * 2008-04-04 2009-11-12 Konica Minolta Opto Inc Manufacturing process of optical film, optical film, polarizing plate and display apparatus
JP2009271510A (en) * 2008-04-11 2009-11-19 Konica Minolta Opto Inc Cellulose ester film, optical film, polarizing plate, liquid crystal display, and melt-cast film forming method of the cellulose ester film
JP2010024424A (en) * 2008-06-20 2010-02-04 Fujifilm Corp Cellulose ester film, polarizing plate and crystal display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127571A (en) * 2011-12-19 2013-06-27 Konica Minolta Advanced Layers Inc Polarizing-plate protective film, and polarizing plate using the same
WO2018199161A1 (en) * 2017-04-28 2018-11-01 株式会社クラレ Thermoplastic resin multilayer film, method for manufacturing same, and laminate
KR20190140462A (en) * 2017-04-28 2019-12-19 주식회사 쿠라레 Thermoplastic multilayer film, its manufacturing method and laminated body
JPWO2018199161A1 (en) * 2017-04-28 2020-03-12 株式会社クラレ Thermoplastic resin multilayer film, method for producing the same, and laminate
EP3616910A4 (en) * 2017-04-28 2021-01-27 Kuraray Co., Ltd. Thermoplastic resin multilayer film, method for manufacturing same, and laminate
JP7038702B2 (en) 2017-04-28 2022-03-18 株式会社クラレ Thermoplastic resin multilayer film and its manufacturing method and laminate
KR102527436B1 (en) 2017-04-28 2023-05-02 주식회사 쿠라레 Thermoplastic resin multilayer film, manufacturing method and laminate
WO2019203230A1 (en) * 2018-04-16 2019-10-24 株式会社クラレ Laminated sheet, manufacturing method therefor, and display with protective cover

Similar Documents

Publication Publication Date Title
WO2010119730A1 (en) Optical element
JP5754445B2 (en) Optical film, polarizing plate using the same, and liquid crystal display device
JP5397382B2 (en) Optical film, optical film manufacturing method, polarizing plate, and liquid crystal display device
JP5671832B2 (en) Optical film, polarizing plate using the same, and liquid crystal display device
JP5200876B2 (en) Optical film, polarizing plate and liquid crystal display device using the same
JPWO2008050603A1 (en) IPS type liquid crystal display device and method of manufacturing IPS type liquid crystal display device
WO2011138887A1 (en) Optical film, method for producing optical film, polarizing plate, and liquid crystal display device
JP5533857B2 (en) Optical film, polarizing plate and liquid crystal display device using the same
JP2011248094A (en) Optical film
WO2012023331A1 (en) Optical film, polarizing plate, and liquid crystal display device
JP5760844B2 (en) Optical film
JP5549397B2 (en) Optical film, polarizing plate using the same, and liquid crystal display device
WO2011055603A1 (en) Optical film, polarizing plate, and liquid crystal display device
JP5590116B2 (en) Optical film, polarizing plate, and liquid crystal display device
JP2011241264A (en) Optical film and method for producing optical film
WO2011138913A1 (en) Polarizing plate, method for producing same, and liquid crystal display device
JP5691865B2 (en) Optical film and method for producing optical film
JP5381924B2 (en) Optical film
JP2013024963A (en) Optical film, manufacturing method thereof, and polarizing plate
JP2014132042A (en) Production method of resin composition, optical film, polarizing plate, and liquid crystal display device
WO2012144016A1 (en) Optical film, polarizing plate and liquid crystal display device
WO2010050287A1 (en) Optical film, process for producing the optical film, and polarizing plate and liquid crystal display device using the optical film
KR101571920B1 (en) Optical film, polarizing plate, liquid crystal display device, and method for producing optical film
JP2012118091A (en) Scattering film, polarizing plate, liquid crystal display device and production method of scattering film
WO2010119732A1 (en) Polarizer protective film, polarizing plate using same and method for production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP