WO2011138861A1 - Capacitor discharge type internal-combustion engine ignition device - Google Patents

Capacitor discharge type internal-combustion engine ignition device Download PDF

Info

Publication number
WO2011138861A1
WO2011138861A1 PCT/JP2011/002494 JP2011002494W WO2011138861A1 WO 2011138861 A1 WO2011138861 A1 WO 2011138861A1 JP 2011002494 W JP2011002494 W JP 2011002494W WO 2011138861 A1 WO2011138861 A1 WO 2011138861A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
voltage
coil
exciter coil
circuit
Prior art date
Application number
PCT/JP2011/002494
Other languages
French (fr)
Japanese (ja)
Inventor
一智 西田
賢太郎 谷口
旭洋 柿島
正幸 杉山
明 下山
靖一 波多野
啓 平松
Original Assignee
本田技研工業株式会社
国産電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社, 国産電機株式会社 filed Critical 本田技研工業株式会社
Publication of WO2011138861A1 publication Critical patent/WO2011138861A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P1/00Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
    • F02P1/08Layout of circuits
    • F02P1/086Layout of circuits for generating sparks by discharging a capacitor into a coil circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P11/00Safety means for electric spark ignition, not otherwise provided for
    • F02P11/02Preventing damage to engines or engine-driven gearing
    • F02P11/025Shortening the ignition when the engine is stopped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/055Layout of circuits with protective means to prevent damage to the circuit, e.g. semiconductor devices or the ignition coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression

Definitions

  • the present invention relates to a capacitor discharge type internal combustion engine ignition device that charges an ignition capacitor with the output of a magnet generator attached to the engine.
  • this type of ignition device is provided in a magnet generator driven by an internal combustion engine, and an exciter coil 1 that induces an AC voltage in synchronization with the rotation of the engine, and a primary An ignition coil 2 having a coil 2a and a secondary coil 2b, an ignition capacitor 3 provided on the primary side of the ignition coil, and a half cycle induced voltage of one polarity of the exciter coil 1 between the diode 4 and the ignition coil 2
  • a thyristor 5 as an ignition switch for discharging through 2a, and an ignition control unit 6 for giving an ignition signal Vi to the thyristor 5 at the ignition timing of the engine are provided.
  • a spark plug 7 attached to the cylinder of the engine is connected to the secondary coil 2b of the ignition coil 2.
  • FIG. 9 shows the configuration of the capacitor discharge
  • This DC power supply unit that supplies a constant DC voltage to the ignition control unit 6 as a power supply voltage is required.
  • This DC power supply unit is constituted by a battery and a power supply circuit that converts the voltage of the battery into a constant DC voltage, or an exciter coil and a constant DC voltage by converting the rectified output of the exciter coil to a constant voltage. And a power supply circuit that outputs a voltage.
  • the ignition capacitor 3 is charged with the half-cycle output voltage of one polarity of the exciter coil 1 at a timing before the ignition timing of the engine.
  • the thyristor (ignition switch) 5 is turned on to discharge the charge of the ignition capacitor 3 through the primary coil 2a of the ignition coil.
  • a high voltage is induced in the primary coil 2a, and this voltage is further boosted at the boost ratio between the primary and secondary of the ignition coil.
  • a high voltage for ignition is induced in the secondary coil 2b of the ignition coil. Since the high voltage for ignition is applied to the spark plug 7 attached to the cylinder of the engine, a spark discharge is generated at the spark plug 7 and the engine is ignited.
  • the ignition device In order to stop the internal combustion engine ignited by the capacitor discharge ignition device, it is necessary to stop the operation of the ignition device.
  • the ignition device that operates the ignition control unit by supplying a power supply voltage from a DC power source unit that uses a battery as a power source and operates the ignition control unit, the ignition operation is stopped by opening the key switch. Can do.
  • a key switch is not provided, so that the ignition operation is stopped. It is necessary to devise something.
  • an engine stop switch that is kept off during engine operation and is turned on when the engine is stopped is used to short out some of the components of the ignition device. To stop the ignition operation.
  • the engine stop switch used in this method is called a short-circuit stop type engine stop switch.
  • an engine stop switch that is kept on during engine operation and is turned off when the engine is stopped is inserted in a circuit constituting the ignition device, and the engine stop switch is turned off. The ignition operation is stopped by releasing a part of the circuit of the ignition device in the state.
  • the engine stop switch used in this method is called an open stop type engine stop switch.
  • an engine stop switch contains switch components such as a fixed contact and a movable contact in an insulating resin case, and is attached to the insulating case in such a way that operation parts such as push buttons and knobs can be operated from the outside.
  • the case is attached to a location where the engine as a drive source is easy to operate. Since the engine stop switch case is exposed to the outside, if the engine stop switch is exposed to the wind while the air is dry or if the operator's clothing rubs the switch case, May be charged and surge voltage or surge current (hereinafter referred to as surge) may enter the ignition device through the contact of the engine stop switch.
  • surge surge voltage or surge current
  • the engine stop switch When a short-circuit stop type engine stop switch is used, the engine stop switch is kept off during engine operation. There is a possibility that a surge may intrude, and the ignition control unit malfunctions due to this surge, causing the ignition device to operate abnormally, or the potential of the exciter coil 1 may rise to cause dielectric breakdown.
  • the gate of the thyristor 5 constituting the ignition switch is ignited.
  • a circuit for providing a trigger signal from the exciter coil 1 to the gate of the thyristor 5 through the resistor 8 and the diode 9 is provided, and an open stop type engine stop is provided between the anode of the diode 9 and the ground.
  • the switch 10 is connected.
  • surge absorbing elements 11 are connected to both ends of the engine stop switch 10.
  • the engine stop switch 10 is kept on during operation of the engine to prevent a trigger signal from being applied to the thyristor 5 from the exciter coil 1 through the resistor 8 and the diode 9. To do. Thus, only the ignition signal Vi output from the ignition control unit 6 is given to the thyristor 5 so that the engine ignition operation can be performed without any trouble.
  • a trigger signal is given from the exciter coil 1 to the thyristor 5 by turning off the engine stop switch 10.
  • the exciter coil generates a voltage with a polarity for charging the ignition capacitor 3, and at the same time, the thyristor 5 is turned on to short-circuit the output of the exciter coil. Operation stops.
  • An object of the present invention is to ensure that a normal ignition operation during operation of an engine is ensured, and to reliably stop the engine when necessary, and to turn off the engine in order to stop the engine.
  • An object of the present invention is to provide an ignition device for a capacitor discharge internal combustion engine in which when a surge intrudes through, the surge is applied to an ignition switch and an ignition control unit to prevent them from being damaged. .
  • the present invention relates to an exciter coil that induces an alternating voltage in synchronization with the rotation of an internal combustion engine, an ignition coil, an ignition capacitor provided on the primary side of the ignition coil, and induction of a half cycle of one polarity of the exciter coil.
  • Capacitor discharge comprising a charging circuit for charging the ignition capacitor with a voltage, and an ignition switch that is turned on at the ignition timing of the internal combustion engine and discharges the charge accumulated in the ignition capacitor through the primary coil of the ignition coil This is applied to an internal combustion engine ignition device.
  • the charging current is allowed to flow from the exciter coil to the ignition capacitor when it is inserted in the middle of the charging circuit and is in the on state, and flows from the exciter coil to the ignition capacitor when it is in the off state.
  • An engine stop switch that cuts off the charging current and a constant voltage circuit that performs control to limit the voltage of the one polarity induced in the exciter coil to a control value or less using a preset constant voltage value as a control value are provided. It is done.
  • the ignition capacitor when the engine is operated, the ignition capacitor can be charged by holding the engine stop switch in the ON state, so that the ignition operation can be performed without any trouble. Also, when it is necessary to stop the engine, it is possible to prevent the ignition capacitor from being charged by turning off the engine stop switch, so that the ignition operation is stopped and the engine is immediately stopped. Can do.
  • the engine stop switch when the engine stop switch is inserted into the circuit for charging the ignition capacitor with the output of the exciter coil, the engine stop switch is turned off while the charging current is flowing from the exciter coil to the ignition capacitor. Then, a high-polarity voltage that continues to flow the charging current that has flown until then is induced in the exciter coil, and this high voltage is applied to the engine stop switch. If a high voltage is allowed to be applied to the engine stop switch, it is necessary to use an expensive engine stop switch with a high withstand voltage, and the cost is unavoidable. If an arc is generated between the contact points of the engine stop switch due to the high voltage induced in the exciter coil when the engine stop switch is opened, these components are also applied to the charging circuit and ignition switch. May be damaged.
  • the constant polarity control (voltage used to charge the ignition capacitor) induced in the exciter coil is limited to a certain control value or less.
  • a voltage circuit is provided. By providing such a constant voltage circuit, it is possible to prevent high voltage from being induced in the exciter coil when the engine stop switch is turned off. The element can be prevented from being damaged.
  • one end of the exciter coil is grounded through a current feedback diode with the anode facing ground, and the charging circuit applies the induced voltage of one polarity half cycle of the exciter coil to the other end of the exciter coil.
  • the ignition capacitor is configured to be charged by being applied to the ignition capacitor through a rectifying diode with the anode directed to the side.
  • the engine stop switch is preferably inserted between the other end of the exciter coil and the anode of the rectifying diode.
  • the constant voltage circuit is connected in parallel to the voltage detection circuit for detecting the voltage at both ends of the exciter coil, and the exciter coil generates an induced voltage of the one polarity.
  • An exciter short-circuit switch that is turned on when a trigger signal is applied while the exciter coil is generating an induced voltage of the one polarity and detected by a voltage detection circuit
  • an exciter short-circuit switch trigger circuit for providing a trigger signal to the exciter short-circuit switch when the measured voltage reaches the control value.
  • the engine stop switch is inserted into a circuit for supplying a charging current to the ignition capacitor with the output of the exciter coil, and the ignition capacitor is charged by charging the ignition capacitor through the engine stop switch that is in an ON state when the engine is operating.
  • the engine stop switch is turned off to prevent the ignition capacitor from being charged, so that the ignition operation is stopped. It is possible to reliably stop the engine when necessary while guaranteeing a proper ignition operation.
  • the surge current is passed through the engine stop switch due to static electricity or the like. This prevents the surge from entering the control terminal of the ignition switch and the ignition control section even if it enters, thus eliminating the need to connect a surge absorbing element in parallel to the engine stop switch. Can do. Therefore, when a surge enters through the engine stop switch, it can be prevented that the engine stop switch is short-circuited and the engine cannot be stopped.
  • a constant voltage circuit for performing control to limit the voltage of one polarity induced in the exciter coil to a certain control value or less, and when the engine stop switch is turned off, a high voltage is applied to the exciter coil.
  • the engine stop switch is turned off, it is possible to prevent an overvoltage from being applied from the exciter coil to the ignition device component, thereby damaging the component.
  • the reliability of the capacitor discharge type internal combustion engine ignition device including the switch can be improved.
  • FIG. 1 is a block diagram schematically showing a configuration of an embodiment of an ignition device for a capacitor discharge internal combustion engine according to the present invention.
  • FIG. FIG. 2 is a circuit diagram showing an example of a specific configuration of the capacitor discharge type internal combustion engine ignition device shown in FIG. 1. It is the front view which showed roughly the structure of the magnet generator used by embodiment of FIG.1 and FIG.2.
  • FIG. 4 is a waveform diagram showing a waveform when no AC voltage is obtained from an exciter coil provided in the magnet generator shown in FIG. 3.
  • FIG. 3 is a waveform diagram schematically showing waveforms during operation of an output voltage of a half cycle of one polarity of the exciter coil of the ignition device shown in FIG. 2.
  • FIG. 2 is a circuit diagram showing an example of a specific configuration of the capacitor discharge type internal combustion engine ignition device shown in FIG. 1. It is the front view which showed roughly the structure of the magnet generator used by embodiment of FIG.1 and FIG.2.
  • FIG. 4 is a waveform diagram showing a wave
  • FIG. 3 is a waveform diagram schematically showing voltage waveforms at both ends of an ignition capacitor of the ignition device shown in FIG. 2.
  • (A) And (B) is a wave form diagram for demonstrating operation
  • FIG. 1 schematically shows a configuration per cylinder of an embodiment of an ignition device according to the present invention.
  • 1 is an exciter coil made up of a power generation coil provided in a magnet generator driven by an internal combustion engine
  • 2 is an ignition coil having a primary coil 2a and a secondary coil 2b
  • 3 is on the primary side of the ignition coil 2.
  • An ignition capacitor is provided.
  • Reference numeral 4 denotes a rectifying diode that supplies a half-cycle voltage of one polarity of the exciter coil 1 to the ignition capacitor 3
  • reference numeral 5 denotes an on-state when the ignition signal Vi is applied to turn on the charge of the ignition capacitor 3.
  • the magnet generator used in the present embodiment is fixed in an iron flywheel 100 formed in a cup shape or a disc shape, and a recess 101 provided on the outer periphery of the flywheel 100.
  • An exciter coil 1 is disposed on an iron core 105 having a magnet rotor 103 having a permanent magnet 102 magnetized in the radial direction of the flywheel and magnetic pole portions 105a and 105b facing the magnetic poles of the magnet rotor 103 via a gap.
  • a stator 106 wound around.
  • the magnet rotor 103 is attached to the internal combustion engine by fitting a boss portion 100a provided at the axial center portion of the flywheel 100 to a crankshaft of an internal combustion engine (not shown) and fixing it to the crankshaft.
  • the stator 106 is attached to the internal combustion engine by fixing the iron core 105 to a stator attachment portion provided in an engine case or cover.
  • the illustrated exciter coil 1 has a positive half-cycle voltage (hereinafter referred to as positive voltage) V1 and a positive polarity as shown in FIG. 4 while the crankshaft of the internal combustion engine rotates.
  • a positive voltage (a voltage of one cycle half cycle) V1 is used for charging the ignition capacitor, and the first and second negative voltages (of the other polarity) are used.
  • Half-cycle voltage) V21 and V22 are used as signal voltages for obtaining engine speed information and crank angle information.
  • one end of the primary coil 2a and secondary coil 2b of the ignition coil 2 is grounded, and the non-ground side terminal of the secondary coil 2b is connected to the non-ground side terminal of the spark plug 7. ing.
  • One end of the ignition capacitor 3 is connected to the non-ground side terminal of the primary coil 2 a, and the other end of the capacitor 3 is connected to the cathode of the diode 4.
  • the exciter coil 1 is connected between one end and the ground and the exciter coil.
  • the engine stop switch 10 is a switch that is kept on when the engine is operated and is turned off when operated by the driver when the engine is stopped.
  • a charging current can flow from the exciter coil 1 to the ignition capacitor 3, so that the ignition capacitor 3 is charged each time the exciter coil 1 generates the positive voltage V1.
  • the ignition operation of the engine is normally performed and the operation of the engine is maintained.
  • the engine stop switch 10 is turned off, the charging current cannot flow from the exciter coil 1 to the ignition capacitor 3, and the ignition capacitor 3 is not charged. No longer done and the engine is shut down.
  • the type of switch used as the engine stop switch 10 is not particularly limited. However, in order to prevent the engine stop switch 10 from being held in the off state even after the engine has stopped, it is a momentary type.
  • An engine stop switch such as a pushbutton switch or rocker switch, that is turned off only while force is applied to the operation unit and returns to the on state when the force applied to the operation unit is removed. It is preferably used as 10.
  • a constant voltage circuit 22 is also connected between the other end of the exciter coil 1 and the ground.
  • This constant voltage circuit is a circuit that performs control to limit one polarity voltage (positive voltage) V1 induced in the exciter coil 1 to a control value or less using a preset constant voltage value as a control value.
  • the constant voltage circuit 22 is connected in parallel to the exciter coil 1 to detect a voltage at both ends of the exciter coil 1, and the exciter coil 1 generates an induced voltage V1 having one polarity.
  • An exciter short-circuit switch that is turned on when a trigger signal is applied in the state and maintains the on state while the exciter coil 1 generates an induced voltage of one polarity, and is detected by a voltage detection circuit.
  • An exciter short-circuit switch trigger circuit that gives a trigger signal to the exciter short-circuit switch when the voltage reaches the control value.
  • the half-cycle voltage (positive voltage) V1 of one polarity induced in the exciter coil 1 falls to the zero level when it rises to the control value, and thereafter the polarity of one polarity
  • the waveform which maintains the state of a zero level until the period of a half cycle of this is completed is shown.
  • the waveform shaping circuit 23 is a first signal S21 having a waveform that can be recognized by the microprocessor constituting the ignition control unit 6 with respect to the first and second negative voltages V21 and V22 (see FIG. 4) generated by the exciter coil 1.
  • the second signal S22 is converted into the second signal S22, and the signals S21 and S22 are supplied to the ignition control unit 6.
  • the crank angle position at which the exciter coil generates the positive voltage V1 and the negative voltages V21, V22 it is arbitrary how to set the crank angle position at which the exciter coil generates the positive voltage V1 and the negative voltages V21, V22.
  • the piston of the engine is at the top dead center.
  • the first negative polarity voltage V21 is generated at a position sufficiently advanced from the crank angle position (top dead center position) at which the crank angle position is reached, and the crank angle position (generally set near the top dead center position)
  • the positional relationship between the rotor 103 and the stator 105 of the magnet generator is set so that the second negative voltage V22 is generated at a crank angle position suitable as an ignition position at the start of the engine).
  • the crank angle position where the negative voltage V21 is generated is used as the reference crank angle position at which the ignition timing measurement is started.
  • the power supply circuit 24 converts the first and second negative voltages V21 and V22 generated by the exciter coil 1 into a DC voltage Vcc having a certain level, and this DC voltage is a microprocessor constituting the ignition control unit 6.
  • the power supply voltage is supplied as a power supply voltage to the power supply terminals of the waveform shaping circuit 23.
  • the power supply circuit 24 controls the charging of the power supply capacitor so that the power supply capacitor charged by the first and second negative voltages generated by the exciter coil 1 and the voltage Vcc across the power supply capacitor are kept constant. And a circuit.
  • the current that flows from the exciter coil 1 into the power supply circuit 24 and charges the power supply capacitor is fed back to the exciter coil 1 through the diode 21.
  • a power supply circuit having a known configuration conventionally used in a batteryless capacitor discharge ignition device can be used.
  • the exciter coil 1-engine stop switch 10-diode 4-ignition capacitor 3-ignition coil primary coil 2a-diode 20-exciter coil 1 closed circuit makes one cycle of the exciter coil 1 half cycle.
  • a charging circuit is configured to charge the ignition capacitor 3 to one polarity with the induced voltage.
  • a diode 25 in the opposite direction to the thyristor 5 is connected in parallel to the thyristor 5 constituting the ignition switch. This diode 25 is provided in order to extend the duration of the discharge of the ignition capacitor 3 at the time of ignition and to increase the duration of the spark.
  • the ignition control unit 6 includes, for example, a rotation speed calculation means for calculating the rotation speed of the engine from the generation intervals of the first and second signals S21 and S22 obtained from the waveform shaping circuit, and an ignition timing at the calculated rotation speed.
  • Ignition timing determination means for determining, and ignition timer measurement time calculation means for calculating a time for the ignition timer to measure between the time when the first signal S21 is generated and the ignition timing in order to detect the determined ignition timing
  • an ignition signal generating means for generating an ignition signal Vi for giving an ignition signal to the thyristor 5 when the measurement of the measurement time calculated by the ignition timer is completed, and at an optimal ignition timing at each rotational speed of the engine.
  • the timing for giving an ignition signal to the thyristor 5 is controlled.
  • a batteryless capacitor discharge type internal combustion engine ignition device is configured by the above-described units.
  • the engine stop switch 10 is held in the on state when the internal combustion engine is operated. In this state, when the exciter coil 1 generates the positive voltage V1, the charging current flows from the exciter coil 1 through the engine stop switch 10, the diode 4, the ignition capacitor 3, the primary coil 2a of the ignition coil, and the diode 20. Flows and the ignition capacitor 3 is charged to the polarity shown in the figure. In the present embodiment, since the constant voltage circuit 22 that limits the positive voltage output from the exciter coil 1 to a predetermined control value or less is provided, the ignition capacitor 3 is charged to a constant voltage value every time. Is done.
  • the thyristor 5 When the ignition control unit 6 detects an ignition timing of the engine and gives an ignition signal to the thyristor 5, the thyristor 5 is turned on, so that the charge accumulated in the ignition capacitor 3 is transferred between the thyristor 5 and the ignition coil 2. Discharge occurs through the primary coil 2a, and an ignition high voltage is induced in the secondary coil 2b of the ignition coil. Since this high voltage is applied to the spark plug 7, spark discharge occurs in the spark plug 7, and the engine is ignited.
  • the control value of the constant voltage circuit 22 is necessary to make the peak value of the high voltage for ignition induced in the secondary coil of the ignition coil 2 equal to or higher than the minimum value necessary for causing spark discharge in the spark plug. It is set to a value that is higher than the lower limit value of the charging voltage value of the ignition capacitor 3 and is equal to or lower than the withstand voltage value of the element to which the positive voltage of the exciter coil 1 is applied. In the embodiment shown in FIG.
  • elements to which the positive polarity voltage of the exciter coil 1 is applied are the engine stop switch 10, the thyristor 5, the diodes 4, 21, and 25.
  • the control value is usually set to an appropriate value in the range of 200 to 200 tens of volts.
  • the engine stop switch 10 When stopping the engine, the engine stop switch 10 is turned off. When the engine stop switch 10 is turned off, the ignition capacitor 3 is not charged, so the ignition operation is not performed and the engine is immediately stopped.
  • the ignition capacitor can be charged by holding the engine stop switch 10 in the on state when the engine is operated, so that the ignition operation is performed without any problem. be able to.
  • the ignition stop capacitor 10 can be prevented from being charged by turning off the engine stop switch 10, the ignition operation can be stopped and the engine can be stopped.
  • the constant voltage circuit 22 functions to limit the positive induced voltage of the exciter coil to a certain value or less. Therefore, the exciter coil is turned off when the engine stop switch 10 is turned off. 1 can prevent an excessive voltage from being induced. Therefore, when the engine stop switch 10 is turned off, an overvoltage is applied from the exciter coil 1 to the components of the charging circuit, the elements such as the thyristor 5, and the like can be prevented from being damaged. Further, according to the present embodiment, it is not necessary to use an expensive element having a high withstand voltage performance as an element to which the induced voltage of the exciter coil is applied, so that the cost of the ignition device can be reduced.
  • the constant voltage circuit 22 shown in FIG. 2 includes a voltage dividing circuit composed of a series circuit of resistors R1 and R2 connected between the other end (terminal on the ignition capacitor side) of the exciter coil 1 and the ground, and an exciter.
  • a thyristor Th1 connected between the other end of the coil 1 and the ground with the cathode facing the ground side, a connection point between the resistors R1 and R2 and the gate of the thyristor Th1, and an anode on the gate side of the thyristor Th1.
  • a Zener diode ZD1 connected in the direction.
  • a voltage detection circuit that detects the voltage across the exciter coil 1 is configured by a voltage dividing circuit composed of a series circuit of resistors R1 and R2, and is parallel to the exciter coil 1 by a thyristor Th1.
  • the exciter coil 1 is turned on when a trigger signal is given in a state where the exciter coil 1 generates an induced voltage of one polarity (positive polarity in the present embodiment), and the exciter coil 1 has one polarity.
  • An exciter short-circuiting switch is configured that maintains an ON state while generating an induced voltage.
  • the Zener diode ZD1 constitutes an exciter short-circuit switch trigger circuit that gives a trigger signal to the exciter short-circuit switch when the voltage detected by the voltage detection circuit reaches the control value.
  • the positive voltage V1 induced in the exciter coil 1 is determined by the voltage dividing ratio of the voltage dividing circuit (voltage detection circuit) composed of the resistors R1 and R2 and the zener voltage of the zener diode ZD1.
  • Vs voltage dividing ratio
  • the Zener diode ZD1 is turned on and a trigger signal is given to the thyristor Th1.
  • the thyristor Th1 is turned on and the exciter coil 1 is short-circuited for the remaining period of the half cycle in which the positive voltage is generated. Therefore, the positive voltage V1 induced by the exciter coil 1 is limited to a certain control value Vs or less. Is done.
  • FIG. 5 shows a state in which the positive voltage V1 induced in the exciter coil 1 is limited to the control value Vs or less by the control operation of the constant voltage circuit 22.
  • the positive voltage V1 induced in the exciter coil 1 is higher than the control value Vs as shown by the broken line in FIG.
  • the constant voltage circuit 22 is provided, it is limited to the control value Vs or less.
  • FIG. 6 shows the voltage Vc across the ignition capacitor 3 charged by the positive voltage V1 of the exciter coil 1. The voltage at both ends of the ignition capacitor 3 rises to the control value Vs as the positive voltage of the exciter coil 1 rises, and then remains equal to the control value Vs until the ignition timing t1.
  • the thyristor Thi When an ignition signal is given to the thyristor Thi at the ignition timing, the thyristor Thi is turned on to discharge the charge of the ignition capacitor 3 through the primary coil of the ignition coil, so that the voltage Vc across the ignition capacitor 3 is It falls to zero at the ignition timing t1.
  • the waveform after the ignition timing of the voltage across the ignition capacitor 3 actually shows a vibration waveform transiently, the detailed illustration thereof is omitted in FIG.
  • a diode Da having an anode connected to one end of the exciter coil 1, a parallel circuit of a resistor Ra and a capacitor Ca having one end connected to the cathode of the diode Da, and a resistor.
  • An NPN transistor TRa whose base is connected to the other end of the parallel circuit of Ra and capacitor Ca through a resistor Rb and whose emitter is grounded, and a resistor connected between the collector of the transistor TRa and the output terminal of the power supply circuit 24 The signal voltage obtained between the collector and emitter of the transistor TRa is input to the ignition control unit 6.
  • the capacitor Ca is charged between the resistor Rb and the base emitter of the transistor TRa by the first and second negative voltages V21 and V22 generated by the exciter coil 1,
  • the electric charge accumulated in the capacitor Ca is discharged through the resistor Ra with a constant time constant. Therefore, at both ends of the capacitor Ca, as indicated by the wavy line in FIG. 7A, a threshold value indicating a waveform that decreases to a predetermined level after rising to a predetermined level every time the negative voltage V21 rises.
  • a voltage Va is obtained. Since the transistor TRa is turned on when the negative voltages V21 and V22 exceed the threshold voltage Va and the base current flows, the transistor TRa has a collector-emitter as shown in FIG.
  • a signal voltage indicating a zero level is obtained only during a period in which the negative voltages V21 and V22 exceed the threshold voltage Va.
  • the microprocessor constituting the ignition control unit 6 recognizes the fall of the signal voltage that occurs when the negative voltage V21 exceeds the threshold voltage Va as the first signal S21, and the negative voltage V22 reduces the voltage Va. The falling edge of the signal voltage that occurs when exceeding is recognized as the second signal S22.
  • the first signal S21 is generated at a crank angle position sufficiently advanced with respect to the top dead center position
  • the second signal S22 is generated at a crank angle position set near the top dead center position.
  • the ignition control unit 6 calculates the engine rotation speed from the time ta when the first signal S21 is generated to the time tb when the second signal S22 is generated, and the ignition of the engine is calculated with respect to the calculated rotation speed. Calculate the time.
  • the ignition timing control unit 6 also calculates a time to be measured by the ignition timer in order to detect the already calculated ignition timing (ignition timing calculated before one rotation) when the first signal S21 is generated. Then, the calculated time is set in the ignition timer and the measurement is started. When the measurement of the time when the ignition timer is set is completed, an ignition signal is given to the thyristor 5.
  • the negative voltage generated by the exciter coil 1 is used as a signal for obtaining information on the engine speed and crank angle position.
  • the engine speed information and crank angle position information are obtained.
  • the present invention can also be applied to a case where a signal generator for generating a signal for the purpose is provided separately.
  • FIG. 8 shows an embodiment in which a signal generator for generating a signal including engine rotation information is provided in addition to the exciter coil.
  • a signal generator 30 that generates a pulse signal at a preset crank angle position is provided, and the output of the signal generator 30 is the waveform shaping circuit 23.
  • the signal generator 30 generates a first pulse signal at a position sufficiently advanced from the top dead center position of the piston of the engine, and a second pulse signal at a crank angle position set near the top dead center position. Is generated.
  • the waveform shaping circuit 23 converts the first and second pulse signals generated by the signal generator 30 into signals that can be recognized by the microprocessor and supplies them to the ignition control unit 6.
  • Other configurations are the same as those of the embodiment shown in FIG.
  • the rotor is provided with an exciter coil in a magnet generator having a three-pole magnet field.
  • a signal is generated separately from the exciter coil.
  • an exciter coil can be provided in a magnet generator including a rotor having a magnet field having an arbitrary number of poles.
  • the ignition timing is controlled by the ignition control unit 6 including a microprocessor.
  • an ignition signal for determining the ignition timing of the engine is given to the thyristor (ignition switch) 5 without using the microprocessor.
  • the present invention can also be applied to a configuration.
  • the engine stop switch 10 is inserted between the other end of the exciter coil 1 and the anode of the rectifying diode 4.
  • the engine stop switch 10 charges the ignition capacitor with the output of the exciter coil 1. What is necessary is just to insert in the middle of a charging circuit, and the insertion position of the engine stop switch 10 is not limited to said example.
  • the present invention is widely applied to an ignition device for a capacitor discharge type internal combustion engine having an engine stop switch that is turned off when the engine is stopped and in which a surge may enter through the engine stop switch in the off state. can do.

Abstract

In a capacitor discharge type internal-combustion engine, the risks of malfunction and trouble due to a surge intruding via an engine stop switch can be eliminated. A capacitor discharge type internal-combustion engine ignition device comprises: an ignition capacitor provided on the primary side of an ignition coil; a charging circuit for charging the ignition capacitor using the output voltage of an exciter coil; and an ignition switch for discharging the charge stored on the ignition capacitor via the primary coil of the ignition coil. In the capacitor discharge type internal-combustion engine ignition device, an engine stop switch is inserted into the charging circuit, and a constant-voltage circuit that performs an operation for limiting the induced voltage of the exciter coil to a certain value or less is connected to both ends of the exciter coil.

Description

コンデンサ放電式内燃機関用点火装置Ignition system for capacitor discharge internal combustion engine
 本発明は、機関に取り付けられた磁石発電機の出力で点火用コンデンサの充電を行うコンデンサ放電式の内燃機関用点火装置に関するものである。 The present invention relates to a capacitor discharge type internal combustion engine ignition device that charges an ignition capacitor with the output of a magnet generator attached to the engine.
 この種の点火装置は、例えば図9に示されているように、内燃機関により駆動される磁石発電機内に設けられて、機関の回転に同期して交流電圧を誘起するエキサイタコイル1と、一次コイル2a及び二次コイル2bを有する点火コイル2と、点火コイルの一次側に設けられた点火用コンデンサ3と、エキサイタコイル1の一方の極性の半サイクルの誘起電圧でダイオード4と点火コイル2の1次コイル2aとを通して点火用コンデンサ3を図示の極性に充電する充電回路と、点火信号Viが与えられた時にオン状態になって点火用コンデンサ3に蓄積された電荷を点火コイルの1次コイル2aを通して放電させる点火用スイッチとしてのサイリスタ5と、機関の点火時期にサイリスタ5に点火信号Viを与える点火制御部6とを備えている。点火コイル2の2次コイル2bには、機関の気筒に取り付けられた点火プラグ7が接続される。図9は、特許文献1に示されたコンデンサ放電式の点火装置の構成をほぼそのまま示している。 For example, as shown in FIG. 9, this type of ignition device is provided in a magnet generator driven by an internal combustion engine, and an exciter coil 1 that induces an AC voltage in synchronization with the rotation of the engine, and a primary An ignition coil 2 having a coil 2a and a secondary coil 2b, an ignition capacitor 3 provided on the primary side of the ignition coil, and a half cycle induced voltage of one polarity of the exciter coil 1 between the diode 4 and the ignition coil 2 A charging circuit for charging the ignition capacitor 3 with the polarity shown in the figure through the primary coil 2a, and the charge stored in the ignition capacitor 3 when turned on when the ignition signal Vi is applied to the primary coil of the ignition coil A thyristor 5 as an ignition switch for discharging through 2a, and an ignition control unit 6 for giving an ignition signal Vi to the thyristor 5 at the ignition timing of the engine are provided.A spark plug 7 attached to the cylinder of the engine is connected to the secondary coil 2b of the ignition coil 2. FIG. 9 shows the configuration of the capacitor discharge ignition device disclosed in Patent Document 1 almost as it is.
 この種の点火装置においては、点火制御部6を動作させるために、点火制御部6に一定の直流電圧を電源電圧として供給する直流電源部を必要とする。この直流電源部は、バッテリと、このバッテリの電圧を一定の直流電圧に変換する電源回路とにより構成されるか、または、エキサイタコイルと、このエキサイタコイルの整流出力を定電圧化して一定の直流電圧を出力する電源回路とにより構成される。 In this type of ignition device, in order to operate the ignition control unit 6, a DC power supply unit that supplies a constant DC voltage to the ignition control unit 6 as a power supply voltage is required. This DC power supply unit is constituted by a battery and a power supply circuit that converts the voltage of the battery into a constant DC voltage, or an exciter coil and a constant DC voltage by converting the rectified output of the exciter coil to a constant voltage. And a power supply circuit that outputs a voltage.
 図9に示したようなコンデンサ放電式の点火装置においては、機関の点火時期よりも前のタイミングでエキサイタコイル1の一方の極性の半サイクルの出力電圧で点火用コンデンサ3を充電した後、機関の点火時期にサイリスタ(点火用スイッチ)5をオン状態にして点火用コンデンサ3の電荷を点火コイルの一次コイル2aを通して放電させる。点火用コンデンサの電荷を点火コイルの一次コイル2aを通して放電させると、一次コイル2aに高い電圧が誘起し、この電圧が点火コイルの1次、2次間の昇圧比で更に昇圧されることにより、点火コイルの二次コイル2bに点火用の高電圧が誘起する。この点火用高電圧は機関の気筒に取り付けられた点火プラグ7に印加されるため、点火プラグ7で火花放電が生じて機関が点火される。 In the capacitor discharge type ignition device as shown in FIG. 9, the ignition capacitor 3 is charged with the half-cycle output voltage of one polarity of the exciter coil 1 at a timing before the ignition timing of the engine. At the ignition timing, the thyristor (ignition switch) 5 is turned on to discharge the charge of the ignition capacitor 3 through the primary coil 2a of the ignition coil. When the charge of the ignition capacitor is discharged through the primary coil 2a of the ignition coil, a high voltage is induced in the primary coil 2a, and this voltage is further boosted at the boost ratio between the primary and secondary of the ignition coil. A high voltage for ignition is induced in the secondary coil 2b of the ignition coil. Since the high voltage for ignition is applied to the spark plug 7 attached to the cylinder of the engine, a spark discharge is generated at the spark plug 7 and the engine is ignited.
 コンデンサ放電式の点火装置により点火される内燃機関を停止するためには、点火装置の動作を停止させる必要がある。バッテリを電源とする直流電源部から点火制御部に電源電圧を与えて、該点火制御部を動作させる点火装置においては、キースイッチが設けられるため、キースイッチを開くことにより点火動作を停止させることができる。しかしながら、バッテリを用いずに、エキサイタコイルの整流出力を定電圧化して得た直流電圧を点火制御部の電源電圧とする場合には、キースイッチが設けられないため、点火動作を停止するために何らかの工夫をする必要がある。 In order to stop the internal combustion engine ignited by the capacitor discharge ignition device, it is necessary to stop the operation of the ignition device. In the ignition device that operates the ignition control unit by supplying a power supply voltage from a DC power source unit that uses a battery as a power source and operates the ignition control unit, the ignition operation is stopped by opening the key switch. Can do. However, when the DC voltage obtained by making the rectified output of the exciter coil constant without using a battery is used as the power supply voltage of the ignition control unit, a key switch is not provided, so that the ignition operation is stopped. It is necessary to devise something.
 バッテリレスのコンデンサ放電式点火装置の点火動作を停止させる方法としては、2つの方法が知られている。一つの方法では、機関の運転中オフ状態に保たれ、機関を停止する際にオン状態にされる機関停止スイッチを用いて、この機関停止スイッチにより点火装置の構成要素の一部を短絡することにより点火動作を停止させる。この方法に用いる機関停止スイッチを、短絡停止型の機関停止スイッチと呼ぶ。他の方法では、機関の運転中オン状態に保持され、機関を停止する際にオフ状態にされる機関停止スイッチを、点火装置を構成する回路に挿入しておいて、この機関停止スイッチをオフ状態にして点火装置の回路の一部を切り離すことにより、点火動作を停止させる。この方法に用いる機関停止用スイッチを、開放停止型の機関停止スイッチと呼ぶ。 There are two known methods for stopping the ignition operation of a batteryless capacitor discharge ignition device. In one method, an engine stop switch that is kept off during engine operation and is turned on when the engine is stopped is used to short out some of the components of the ignition device. To stop the ignition operation. The engine stop switch used in this method is called a short-circuit stop type engine stop switch. In another method, an engine stop switch that is kept on during engine operation and is turned off when the engine is stopped is inserted in a circuit constituting the ignition device, and the engine stop switch is turned off. The ignition operation is stopped by releasing a part of the circuit of the ignition device in the state. The engine stop switch used in this method is called an open stop type engine stop switch.
 通常、機関停止スイッチは、固定接点及び可動接点等のスイッチの構成要素を絶縁樹脂製のケース内に収容して、押しボタンやノブ等の操作部を外部から操作可能な状態で絶縁ケースに取り付けた構造を有し、そのケースが、機関を駆動源とする装置の操作しやすい箇所に取り付けられる。機関停止スイッチのケースは外部に露呈されているため、大気が乾燥している状態で機関停止スイッチが風にさらされたり、作業者の衣服がスイッチのケースをこすったりすると、スイッチのケースに静電気が帯電して、機関停止スイッチの接点を通して点火装置内にサージ電圧やサージ電流(以下サージという。)が侵入することがある。 Normally, an engine stop switch contains switch components such as a fixed contact and a movable contact in an insulating resin case, and is attached to the insulating case in such a way that operation parts such as push buttons and knobs can be operated from the outside. The case is attached to a location where the engine as a drive source is easy to operate. Since the engine stop switch case is exposed to the outside, if the engine stop switch is exposed to the wind while the air is dry or if the operator's clothing rubs the switch case, May be charged and surge voltage or surge current (hereinafter referred to as surge) may enter the ignition device through the contact of the engine stop switch.
 短絡停止型の機関停止スイッチを用いた場合には、機関の運転中、機関停止スイッチがオフ状態に保持されるため、機関停止スイッチのケースが帯電したときに、当該スイッチの接点を通して点火装置内にサージが侵入することがあり、このサージにより点火制御部が誤動作をして点火装置が異常な動作をしたり、エキサイタコイル1の電位が上昇して絶縁破壊が生じたりするおそれがある。 When a short-circuit stop type engine stop switch is used, the engine stop switch is kept off during engine operation. There is a possibility that a surge may intrude, and the ignition control unit malfunctions due to this surge, causing the ignition device to operate abnormally, or the potential of the exciter coil 1 may rise to cause dielectric breakdown.
 上記のような問題が生じるのを防ぐため、特許文献1に示されたコンデンサ放電式の点火装置においては、図9に示されているように、点火用スイッチを構成するサイリスタ5のゲートに点火信号を与える点火制御部6とは別に、エキサイタコイル1から抵抗8とダイオオード9とを通してサイリスタ5のゲートにトリガ信号を与える回路を設けるとともに、ダイオード9のアノードとアース間に開放停止型の機関停止スイッチ10を接続している。機関停止スイッチ10がオフ状態にあるときに、サージが侵入するのを防ぐため、機関停止スイッチ10の両端には、サージ吸収素子11が接続されている。 In order to prevent the above problem from occurring, in the capacitor discharge type ignition device disclosed in Patent Document 1, as shown in FIG. 9, the gate of the thyristor 5 constituting the ignition switch is ignited. In addition to the ignition control unit 6 for providing a signal, a circuit for providing a trigger signal from the exciter coil 1 to the gate of the thyristor 5 through the resistor 8 and the diode 9 is provided, and an open stop type engine stop is provided between the anode of the diode 9 and the ground. The switch 10 is connected. In order to prevent a surge from entering when the engine stop switch 10 is in the OFF state, surge absorbing elements 11 are connected to both ends of the engine stop switch 10.
 特許文献1に示された点火装置では、機関の運転中機関停止スイッチ10をオン状態に保つことにより、エキサイタコイル1側から抵抗8とダイオード9とを通してサイリスタ5にトリガ信号が与えられるのを阻止する。これにより、点火制御部6から出力される点火信号Viのみをサイリスタ5に与えて機関の点火動作を支障なく行わせる。 In the ignition device disclosed in Patent Document 1, the engine stop switch 10 is kept on during operation of the engine to prevent a trigger signal from being applied to the thyristor 5 from the exciter coil 1 through the resistor 8 and the diode 9. To do. Thus, only the ignition signal Vi output from the ignition control unit 6 is given to the thyristor 5 so that the engine ignition operation can be performed without any trouble.
 機関を停止する際には、機関停止スイッチ10をオフ状態にすることにより、エキサイタコイル1からサイリスタ5にトリガ信号を与える。この状態では、エキサイタコイルが点火用コンデンサ3を充電する極性の電圧を発生すると同時にサイリスタ5がオン状態になってエキサイタコイルの出力を短絡するため、点火用コンデンサ3の充電が行われなくなり、点火動作が停止する。このように構成すると、機関の運転中に機関停止スイッチ10の接点を通してサージが侵入したときに、そのサージを、オン状態にある機関停止スイッチ10を通してアースに逃がすことができるため、機関の運転中に点火制御部6にサージが侵入したり、エキサイタコイル1にサージが侵入したりするのを防ぐことができる。 When stopping the engine, a trigger signal is given from the exciter coil 1 to the thyristor 5 by turning off the engine stop switch 10. In this state, the exciter coil generates a voltage with a polarity for charging the ignition capacitor 3, and at the same time, the thyristor 5 is turned on to short-circuit the output of the exciter coil. Operation stops. With this configuration, when a surge enters through the contact of the engine stop switch 10 during the operation of the engine, the surge can be released to the ground through the engine stop switch 10 in the on state. Thus, it is possible to prevent a surge from entering the ignition control unit 6 and a surge from entering the exciter coil 1.
 しかしながら、特許文献1に示された点火装置のように、サイリスタのトリガ回路に開放停止型の機関停止スイッチ10を接続した場合には、機関停止スイッチ10がオフ状態にされた際に、該機関停止スイッチを通して、サイリスタ5のゲート回路や点火制御部6にサージが侵入して、サイリスタ5や点火制御部6が破損するおそれがある。そのため、特許文献1に示された点火装置のように、サイリスタ5のトリガ回路に開放停止型の機関停止スイッチ10を接続した場合には、サイリスタ5や点火制御部6をサージから保護するための対策を講じておく必要がある。特許文献1に示された点火装置においては、機関停止スイッチ10の両端にサージ吸収素子11を接続して、機関停止スイッチ10のオフ時に侵入するサージをサージ吸収素子11により吸収するようにしている。 However, when the open / stop engine stop switch 10 is connected to the trigger circuit of the thyristor as in the ignition device disclosed in Patent Document 1, the engine stop switch 10 is turned off when the engine stop switch 10 is turned off. A surge may enter the gate circuit of the thyristor 5 and the ignition control unit 6 through the stop switch, and the thyristor 5 and the ignition control unit 6 may be damaged. Therefore, when an open / stop engine stop switch 10 is connected to the trigger circuit of the thyristor 5 as in the ignition device disclosed in Patent Document 1, the thyristor 5 and the ignition control unit 6 are protected from surges. It is necessary to take measures. In the ignition device disclosed in Patent Document 1, surge absorbing elements 11 are connected to both ends of the engine stop switch 10 so that surges entering when the engine stop switch 10 is turned off are absorbed by the surge absorbing element 11. .
特開2008-75502号公報(図2)Japanese Patent Laying-Open No. 2008-75502 (FIG. 2)
 上記のように、特許文献1に示された点火装置においては、機関停止スイッチ10がオフ状態にされたときに、機関停止スイッチ10を通してサイリスタ5のゲートや点火制御部6にサージが侵入するのを防ぐために、機関停止スイッチ10の両端にサージ吸収素子11を接続する必要がある。しかしながら、機関停止スイッチ10の両端にサージ吸収素子11を接続した場合には、サージ吸収素子11が破損して、機関停止スイッチ10を短絡する状態になったときに、機関停止スイッチ10に対して並列に電流通路が形成されるため、機関停止スイッチ10が機能しなくなって機関を停止させることができなくなるという問題が生じる。 As described above, in the ignition device disclosed in Patent Document 1, when the engine stop switch 10 is turned off, a surge enters the gate of the thyristor 5 and the ignition control unit 6 through the engine stop switch 10. In order to prevent this, it is necessary to connect the surge absorbing element 11 to both ends of the engine stop switch 10. However, when the surge absorbing element 11 is connected to both ends of the engine stop switch 10, the surge absorbing element 11 is damaged and the engine stop switch 10 is short-circuited. Since the current paths are formed in parallel, there arises a problem that the engine stop switch 10 does not function and the engine cannot be stopped.
 本発明の目的は、機関の運転時の正常な点火動作を保証しつつ、必要時に確実に機関を停止させることができるようにするとともに、機関を停止するためにオフ状態にされた機関停止スイッチを通してサージが侵入したときに、該サージが点火用スイッチや点火制御部に印加されて、これらが破損するのを防ぐことができるようにしたコンデンサ放電式内燃機関用点火装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to ensure that a normal ignition operation during operation of an engine is ensured, and to reliably stop the engine when necessary, and to turn off the engine in order to stop the engine. An object of the present invention is to provide an ignition device for a capacitor discharge internal combustion engine in which when a surge intrudes through, the surge is applied to an ignition switch and an ignition control unit to prevent them from being damaged. .
 本発明は、内燃機関の回転に同期して交流電圧を誘起するエキサイタコイルと、点火コイルと、点火コイルの一次側に設けられた点火用コンデンサと、エキサイタコイルの一方の極性の半サイクルの誘起電圧で点火用コンデンサを充電する充電回路と、内燃機関の点火時期にオン状態にされて点火用コンデンサに蓄積された電荷を点火コイルの1次コイルを通して放電させる点火用スイッチとを備えたコンデンサ放電式内燃機関用点火装置に適用される。 The present invention relates to an exciter coil that induces an alternating voltage in synchronization with the rotation of an internal combustion engine, an ignition coil, an ignition capacitor provided on the primary side of the ignition coil, and induction of a half cycle of one polarity of the exciter coil. Capacitor discharge comprising a charging circuit for charging the ignition capacitor with a voltage, and an ignition switch that is turned on at the ignition timing of the internal combustion engine and discharges the charge accumulated in the ignition capacitor through the primary coil of the ignition coil This is applied to an internal combustion engine ignition device.
 本発明においては、充電回路の途中に挿入されてオン状態にあるときにエキサイタコイルから点火用コンデンサに充電電流が流れるのを許容し、オフ状態にされたときにエキサイタコイルから点火用コンデンサに流れる充電電流を遮断する機関停止スイッチと、予め設定された一定の電圧値を制御値として、エキサイタコイルに誘起する前記一方の極性の電圧を制御値以下に制限する制御を行う定電圧回路とが設けられる。 In the present invention, the charging current is allowed to flow from the exciter coil to the ignition capacitor when it is inserted in the middle of the charging circuit and is in the on state, and flows from the exciter coil to the ignition capacitor when it is in the off state. An engine stop switch that cuts off the charging current and a constant voltage circuit that performs control to limit the voltage of the one polarity induced in the exciter coil to a control value or less using a preset constant voltage value as a control value are provided. It is done.
 上記のように構成すると、機関を運転する際には、機関停止スイッチをオン状態に保持することにより点火用コンデンサを充電することができるため、点火動作を支障なく行わせることができる。また機関を停止させる必要が生じたときには、機関停止スイッチをオフ状態にすることにより、点火用コンデンサが充電されるのを阻止することができるため、点火動作を停止させて機関を直ちに停止させることができる。 With the above configuration, when the engine is operated, the ignition capacitor can be charged by holding the engine stop switch in the ON state, so that the ignition operation can be performed without any trouble. Also, when it is necessary to stop the engine, it is possible to prevent the ignition capacitor from being charged by turning off the engine stop switch, so that the ignition operation is stopped and the engine is immediately stopped. Can do.
 上記のように、エキサイタコイルの出力で点火用コンデンサに充電電流を流す回路に機関停止スイッチを挿入しておくと、機関停止スイッチがオフ状態にされたときに静電気等により機関停止スイッチを通してサージが侵入したとしても、該サージが点火用スイッチの制御端子や点火制御部に侵入することはないため、機関停止スイッチに対して並列にサージ吸収素子を接続しておく必要がない。したがって、サージ吸収素子の破損により機関停止スイッチが短絡された状態になって機関を停止させることができなくなる事態が生じるのを防ぐことができ、信頼性を向上させることができる。 As described above, if an engine stop switch is inserted into a circuit that allows the charging current to flow to the ignition capacitor with the output of the exciter coil, a surge will occur through the engine stop switch due to static electricity or the like when the engine stop switch is turned off. Even if it enters, the surge does not enter the control terminal of the ignition switch or the ignition control unit, so it is not necessary to connect a surge absorbing element in parallel to the engine stop switch. Therefore, it is possible to prevent a situation in which the engine stop switch is short-circuited due to breakage of the surge absorbing element and the engine cannot be stopped, and reliability can be improved.
 上記のように、エキサイタコイルの出力で点火用コンデンサを充電する回路に機関停止スイッチを挿入した場合、エキサイタコイルから点火用コンデンサに充電電流が流れている状態で機関停止スイッチがオフ状態にされると、それまで流れていた充電電流を流し続けようとする極性の高い電圧がエキサイタコイルに誘起し、この高電圧が機関停止スイッチに印加される。機関停止スイッチに高電圧が印加されるのを許容しておくと、機関停止スイッチとして耐電圧が高い高価なものを用いる必要があり、コストが高くなるのを避けられない。また機関停止スイッチが開いた際にエキサイタコイルに誘起する高電圧により、機関停止スイッチの接点間にアークが生じると、充電回路や点火用スイッチにも高電圧が印加されるため、これらの構成要素が破損するおそれもある。 As described above, when the engine stop switch is inserted into the circuit for charging the ignition capacitor with the output of the exciter coil, the engine stop switch is turned off while the charging current is flowing from the exciter coil to the ignition capacitor. Then, a high-polarity voltage that continues to flow the charging current that has flown until then is induced in the exciter coil, and this high voltage is applied to the engine stop switch. If a high voltage is allowed to be applied to the engine stop switch, it is necessary to use an expensive engine stop switch with a high withstand voltage, and the cost is unavoidable. If an arc is generated between the contact points of the engine stop switch due to the high voltage induced in the exciter coil when the engine stop switch is opened, these components are also applied to the charging circuit and ignition switch. May be damaged.
 このような問題が生じるのを防ぐため、本発明では、エキサイタコイルに誘起する一方の極性の電圧(点火用コンデンサを充電するために用いる電圧)を一定の制御値以下に制限する制御を行う定電圧回路を設けている。このような定電圧回路を設けておくと、機関停止スイッチをオフ状態にした際にエキサイタコイルに高電圧が誘起するのを防ぐことができるため、機関停止スイッチが破損したり、点火装置の構成要素が破損したりするのを防ぐことができる。 In order to prevent such a problem from occurring, in the present invention, the constant polarity control (voltage used to charge the ignition capacitor) induced in the exciter coil is limited to a certain control value or less. A voltage circuit is provided. By providing such a constant voltage circuit, it is possible to prevent high voltage from being induced in the exciter coil when the engine stop switch is turned off. The element can be prevented from being damaged.
 本発明の好ましい態様では、エキサイタコイルの一端が、アノードを接地側に向けた電流帰還用ダイオードを通して接地され、充電回路は、エキサイタコイルの一方の極性の半サイクルの誘起電圧をエキサイタコイルの他端側にアノードを向けた整流用ダイオードを通して点火用コンデンサに印加して点火用コンデンサを充電するように構成される。この場合、機関停止スイッチは、エキサイタコイルの他端と整流用ダイオードのアノードとの間に挿入するのが好ましい。 In a preferred embodiment of the invention, one end of the exciter coil is grounded through a current feedback diode with the anode facing ground, and the charging circuit applies the induced voltage of one polarity half cycle of the exciter coil to the other end of the exciter coil. The ignition capacitor is configured to be charged by being applied to the ignition capacitor through a rectifying diode with the anode directed to the side. In this case, the engine stop switch is preferably inserted between the other end of the exciter coil and the anode of the rectifying diode.
 本発明の好ましい態様では、上記定電圧回路が、エキサイタコイルの両端の電圧を検出する電圧検出回路と、エキサイタコイルに対して並列に接続されてエキサイタコイルが前記一方の極性の誘起電圧を発生している状態でトリガ信号が与えられたときにオン状態になって、エキサイタコイルが前記一方の極性の誘起電圧を発生している間オン状態を保持するエキサイタ短絡用スイッチと、電圧検出回路により検出された電圧が前記制御値に達したときにエキサイタ短絡用スイッチにトリガ信号を与えるエキサイタ短絡用スイッチトリガ回路とを備えている。 In a preferred aspect of the present invention, the constant voltage circuit is connected in parallel to the voltage detection circuit for detecting the voltage at both ends of the exciter coil, and the exciter coil generates an induced voltage of the one polarity. An exciter short-circuit switch that is turned on when a trigger signal is applied while the exciter coil is generating an induced voltage of the one polarity and detected by a voltage detection circuit And an exciter short-circuit switch trigger circuit for providing a trigger signal to the exciter short-circuit switch when the measured voltage reaches the control value.
 本発明によれば、エキサイタコイルの出力で点火用コンデンサに充電電流を流す回路に機関停止スイッチを挿入して、機関の運転時にはオン状態にある機関停止スイッチを通して点火用コンデンサを充電することにより点火動作を支障なく行なわせ、機関を停止する際には、機関停止スイッチをオフ状態にして点火用コンデンサの充電を阻止することにより、点火動作を停止させるようにしたので、機関の運転時の正常な点火動作を保証しつつ、必要時に機関を確実に停止させることができる。 According to the present invention, the engine stop switch is inserted into a circuit for supplying a charging current to the ignition capacitor with the output of the exciter coil, and the ignition capacitor is charged by charging the ignition capacitor through the engine stop switch that is in an ON state when the engine is operating. When stopping the engine without any trouble, the engine stop switch is turned off to prevent the ignition capacitor from being charged, so that the ignition operation is stopped. It is possible to reliably stop the engine when necessary while guaranteeing a proper ignition operation.
 また本発明によれば、エキサイタコイルの出力で点火用コンデンサに充電電流を流す回路に機関停止スイッチを挿入して、機関停止スイッチがオフ状態にされたときに静電気等により機関停止スイッチを通してサージ電流が侵入したとしても、点火用スイッチの制御端子や点火制御部にサージが侵入することがないようにしたので、機関停止スイッチに対して並列にサージ吸収素子を接続しておく必要性をなくすことができる。したがって、機関停止スイッチを通してサージが侵入した時に、該機関停止スイッチが短絡された状態になって機関を停止させることができなくなるのを防ぐことができる。 Further, according to the present invention, when an engine stop switch is inserted into a circuit for supplying a charging current to the ignition capacitor with the output of the exciter coil, when the engine stop switch is turned off, the surge current is passed through the engine stop switch due to static electricity or the like. This prevents the surge from entering the control terminal of the ignition switch and the ignition control section even if it enters, thus eliminating the need to connect a surge absorbing element in parallel to the engine stop switch. Can do. Therefore, when a surge enters through the engine stop switch, it can be prevented that the engine stop switch is short-circuited and the engine cannot be stopped.
 また本発明においては、エキサイタコイルに誘起する一方の極性の電圧を一定の制御値以下に制限する制御を行う定電圧回路を設けて、機関停止スイッチをオフ状態にした際にエキサイタコイルに高電圧が誘起するのを防ぐようにしたので、機関停止スイッチをオフ状態にした際にエキサイタコイルから点火装置の構成要素に過電圧が印加されて該構成要素が破損するのを防ぐことができ、機関停止スイッチを備えたコンデンサ放電式内燃機関用点火装置の信頼性を高めることができる。 Further, in the present invention, a constant voltage circuit is provided for performing control to limit the voltage of one polarity induced in the exciter coil to a certain control value or less, and when the engine stop switch is turned off, a high voltage is applied to the exciter coil. When the engine stop switch is turned off, it is possible to prevent an overvoltage from being applied from the exciter coil to the ignition device component, thereby damaging the component. The reliability of the capacitor discharge type internal combustion engine ignition device including the switch can be improved.
本発明に係わるコンデンサ放電式内燃機関用点火装置の一実施形態の構成を概略的に示したブロック図である。1 is a block diagram schematically showing a configuration of an embodiment of an ignition device for a capacitor discharge internal combustion engine according to the present invention. FIG. 図1に示したコンデンサ放電式内燃機関用点火装置の具体的な構成の一例を示した回路図である。FIG. 2 is a circuit diagram showing an example of a specific configuration of the capacitor discharge type internal combustion engine ignition device shown in FIG. 1. 図1及び図2の実施形態で用いる磁石発電機の構成を概略的に示した正面図である。It is the front view which showed roughly the structure of the magnet generator used by embodiment of FIG.1 and FIG.2. 図3に示した磁石発電機内に設けられたエキサイタコイルから得られる交流電圧の無負荷時の波形を示した波形図である。FIG. 4 is a waveform diagram showing a waveform when no AC voltage is obtained from an exciter coil provided in the magnet generator shown in FIG. 3. 図2に示した点火装置のエキサイタコイルの一方の極性の半サイクルの出力電圧の動作時の波形を模式的に示した波形図である。FIG. 3 is a waveform diagram schematically showing waveforms during operation of an output voltage of a half cycle of one polarity of the exciter coil of the ignition device shown in FIG. 2. 図2に示した点火装置の点火用コンデンサの両端の電圧波形を模式的に示した波形図である。FIG. 3 is a waveform diagram schematically showing voltage waveforms at both ends of an ignition capacitor of the ignition device shown in FIG. 2. (A)及び(B)は図2に示した点火装置の波形整形回路の動作を説明するための波形図である。(A) And (B) is a wave form diagram for demonstrating operation | movement of the waveform shaping circuit of the ignition device shown in FIG. 本発明に係わる点火装置の他の実施形態の構成を示した回路図である。It is the circuit diagram which showed the structure of other embodiment of the ignition device concerning this invention. 従来の点火装置の構成を示した回路図である。It is the circuit diagram which showed the structure of the conventional ignition device.
 以下図面を参照して、本発明の実施形態につき詳細に説明する。図1は本発明に係わる点火装置の一実施形態の単気筒当たりの構成を概略的に示したものである。同図において、1は内燃機関により駆動される磁石発電機内に設けられた発電コイルからなるエキサイタコイル、2は一次コイル2a及び二次コイル2bを有する点火コイル、3は点火コイル2の一次側に設けられた点火用コンデンサである。また4は、エキサイタコイル1の一方の極性の半サイクルの電圧を点火用コンデンサ3に供給する整流用ダイオード、5は点火信号Viが与えられたときにオン状態になって点火用コンデンサ3の電荷を点火コイル2の一次コイル2aを通して放電させる点火用スイッチとしてのサイリスタ、6は内燃機関の点火時期にサイリスタ5のゲートに点火信号Viを与える点火制御部、7は図示しない内燃機関の気筒に取り付けられて、点火コイル2の二次コイル2bに接続された点火プラグである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows a configuration per cylinder of an embodiment of an ignition device according to the present invention. In the figure, 1 is an exciter coil made up of a power generation coil provided in a magnet generator driven by an internal combustion engine, 2 is an ignition coil having a primary coil 2a and a secondary coil 2b, and 3 is on the primary side of the ignition coil 2. An ignition capacitor is provided. Reference numeral 4 denotes a rectifying diode that supplies a half-cycle voltage of one polarity of the exciter coil 1 to the ignition capacitor 3, and reference numeral 5 denotes an on-state when the ignition signal Vi is applied to turn on the charge of the ignition capacitor 3. A thyristor as an ignition switch for discharging the gas through the primary coil 2a of the ignition coil 2, an ignition control unit 6 for giving an ignition signal Vi to the gate of the thyristor 5 at the ignition timing of the internal combustion engine, and 7 attached to a cylinder of the internal combustion engine (not shown) And a spark plug connected to the secondary coil 2 b of the ignition coil 2.
 本実施形態で用いる磁石発電機は、図3に示したように、カップ状または円板状に形成された鉄製のフライホイール100と、フライホイール100の外周に設けられた凹部101内に固定されてフライホイールの径方向に着磁された永久磁石102とを備えた磁石回転子103と、磁石回転子103の磁極にギャップを介して対向する磁極部105a,105bを有する鉄心105にエキサイタコイル1を巻回した固定子106とからなっている。磁石回転子103は、フライホイール100の軸心部に設けられたボス部100aを図示しない内燃機関のクランク軸に嵌合させて該クランク軸に固定することにより、内燃機関に取り付けられる。また固定子106は、鉄心105を機関のケースやカバーなどに設けられた固定子取付部に固定することにより内燃機関に取り付けられる。 As shown in FIG. 3, the magnet generator used in the present embodiment is fixed in an iron flywheel 100 formed in a cup shape or a disc shape, and a recess 101 provided on the outer periphery of the flywheel 100. An exciter coil 1 is disposed on an iron core 105 having a magnet rotor 103 having a permanent magnet 102 magnetized in the radial direction of the flywheel and magnetic pole portions 105a and 105b facing the magnetic poles of the magnet rotor 103 via a gap. And a stator 106 wound around. The magnet rotor 103 is attached to the internal combustion engine by fitting a boss portion 100a provided at the axial center portion of the flywheel 100 to a crankshaft of an internal combustion engine (not shown) and fixing it to the crankshaft. The stator 106 is attached to the internal combustion engine by fixing the iron core 105 to a stator attachment portion provided in an engine case or cover.
 図3に示された磁石発電機においては、永久磁石102の外周側の磁極(図示の例ではN極)と、凹部101の周方向の両端にそれぞれ隣接する領域に導出された2つの磁極(図示の例ではS極)とにより、3極の磁石界磁が構成されている。図示のエキサイタコイル1は、内燃機関のクランク軸が回転する間に、図4に示したように、1山の正極性の半サイクルの電圧(以下正極性電圧という。)V1と、この正極性の半サイクルの電圧V1の前後にそれぞれ発生する第1及び第2の負極性の半サイクルの電圧(以下第1及び第2の負極性電圧という。)V21及びV22とからなる交流電圧を出力する。本実施形態では、これらの電圧のうち、正極性電圧(一方の極性の半サイクルの電圧)V1を点火用コンデンサを充電するために用い、第1及び第2の負極性電圧(他方の極性の半サイクルの電圧)V21及びV22を、機関の回転速度情報やクランク角情報を得るための信号電圧として用いる。 In the magnet generator shown in FIG. 3, the magnetic pole on the outer peripheral side of the permanent magnet 102 (N pole in the illustrated example) and the two magnetic poles led out to the regions adjacent to both ends in the circumferential direction of the recess 101 ( A three-pole magnet field is constituted by S poles in the illustrated example. The illustrated exciter coil 1 has a positive half-cycle voltage (hereinafter referred to as positive voltage) V1 and a positive polarity as shown in FIG. 4 while the crankshaft of the internal combustion engine rotates. AC voltage composed of first and second negative half-cycle voltages (hereinafter referred to as first and second negative voltages) V21 and V22, respectively, generated before and after the half-cycle voltage V1. . In the present embodiment, among these voltages, a positive voltage (a voltage of one cycle half cycle) V1 is used for charging the ignition capacitor, and the first and second negative voltages (of the other polarity) are used. Half-cycle voltage) V21 and V22 are used as signal voltages for obtaining engine speed information and crank angle information.
 図1に示した点火装置においては、点火コイル2の一次コイル2a及び二次コイル2bの一端が接地され、二次コイル2bの非接地側の端子が点火プラグ7の非接地側端子に接続されている。また一次コイル2aの非接地側の端子に点火用コンデンサ3の一端が接続され、コンデンサ3の他端がダイオード4のカソードに接続されている。エキサイタコイルに誘起する負極性電圧V21及びV22を点火制御を行う際に必要な機関の回転情報を得るための信号電圧として用いることを可能にするため、エキサイタコイル1の一端と接地間及びエキサイタコイル1の他端と接地間にそれぞれアノードを接地側に向けた電流帰還用ダイオード20及び21が接続され、エキサイタコイル1の他端と整流用ダイオード4のアノードとの間に機関停止スイッチ10が挿入されている。 In the ignition device shown in FIG. 1, one end of the primary coil 2a and secondary coil 2b of the ignition coil 2 is grounded, and the non-ground side terminal of the secondary coil 2b is connected to the non-ground side terminal of the spark plug 7. ing. One end of the ignition capacitor 3 is connected to the non-ground side terminal of the primary coil 2 a, and the other end of the capacitor 3 is connected to the cathode of the diode 4. In order to make it possible to use the negative voltages V21 and V22 induced in the exciter coil as signal voltages for obtaining engine rotation information necessary for performing ignition control, the exciter coil 1 is connected between one end and the ground and the exciter coil. Current feedback diodes 20 and 21 having an anode directed to the ground side are connected between the other end of 1 and the ground, and an engine stop switch 10 is inserted between the other end of the exciter coil 1 and the anode of the rectifying diode 4. Has been.
 機関停止スイッチ10は、機関を運転する際にオン状態に保持され、機関を停止する際に運転者により操作されてオフ状態にされるスイッチである。機関停止スイッチ10がオン状態にあるときには、エキサイタコイル1から点火用コンデンサ3に充電電流が流れることができるため、エキサイタコイル1が正極性電圧V1を発生する毎に点火用コンデンサ3が充電されて、機関の点火動作が正常に行なわれ、機関の運転が維持される。これに対し、機関停止スイッチ10がオフ状態にされたときには、エキサイタコイル1から点火用コンデンサ3に充電電流が流れることができなくなって、点火用コンデンサ3の充電が行なわれなくなるため、点火動作が行なわれなくなって、機関が停止させられる。 The engine stop switch 10 is a switch that is kept on when the engine is operated and is turned off when operated by the driver when the engine is stopped. When the engine stop switch 10 is in the ON state, a charging current can flow from the exciter coil 1 to the ignition capacitor 3, so that the ignition capacitor 3 is charged each time the exciter coil 1 generates the positive voltage V1. The ignition operation of the engine is normally performed and the operation of the engine is maintained. On the other hand, when the engine stop switch 10 is turned off, the charging current cannot flow from the exciter coil 1 to the ignition capacitor 3, and the ignition capacitor 3 is not charged. No longer done and the engine is shut down.
 本発明において、機関停止スイッチ10として用いるスイッチの形式は特に限定しないが、機関が停止した後も機関停止スイッチ10がオフ状態になったままの状態に保持されるのを防ぐためには、モメンタリー型の押ボタンスイッチやロッカースイッチのように、操作部に力を加えている間だけオフ状態になり、操作部に加えていた力を除去したときにオン状態に復帰する形式のスイッチを機関停止スイッチ10として用いるのが好ましい。 In the present invention, the type of switch used as the engine stop switch 10 is not particularly limited. However, in order to prevent the engine stop switch 10 from being held in the off state even after the engine has stopped, it is a momentary type. An engine stop switch, such as a pushbutton switch or rocker switch, that is turned off only while force is applied to the operation unit and returns to the on state when the force applied to the operation unit is removed. It is preferably used as 10.
 本実施形態ではまた、エキサイタコイル1の他端と接地間に定電圧回路22が接続されている。この定電圧回路は、予め設定された一定の電圧値を制御値として、エキサイタコイル1に誘起する一方の極性の電圧(正極性電圧)V1を制御値以下に制限する制御を行う回路である。 In this embodiment, a constant voltage circuit 22 is also connected between the other end of the exciter coil 1 and the ground. This constant voltage circuit is a circuit that performs control to limit one polarity voltage (positive voltage) V1 induced in the exciter coil 1 to a control value or less using a preset constant voltage value as a control value.
 定電圧回路22は、例えば、エキサイタコイル1の両端の電圧を検出する電圧検出回路と、エキサイタコイル1に対して並列に接続されてエキサイタコイル1が一方の極性の誘起電圧V1を発生している状態でトリガ信号が与えられたときにオン状態になって、エキサイタコイル1が一方の極性の誘起電圧を発生している間そのオン状態を保持するエキサイタ短絡用スイッチと、電圧検出回路により検出された電圧が制御値に達したときにエキサイタ短絡用スイッチにトリガ信号を与えるエキサイタ短絡用スイッチトリガ回路とにより構成することができる。定電圧回路22をこのように構成した場合、エキサイタコイル1に誘起する一方の極性の半サイクルの電圧(正極性電圧)V1は、制御値まで立ち上がったところで零レベルまで立ち下がり、以後一方の極性の半サイクルの期間が終了するまで零レベルの状態を維持する波形を示す。 For example, the constant voltage circuit 22 is connected in parallel to the exciter coil 1 to detect a voltage at both ends of the exciter coil 1, and the exciter coil 1 generates an induced voltage V1 having one polarity. An exciter short-circuit switch that is turned on when a trigger signal is applied in the state and maintains the on state while the exciter coil 1 generates an induced voltage of one polarity, and is detected by a voltage detection circuit. An exciter short-circuit switch trigger circuit that gives a trigger signal to the exciter short-circuit switch when the voltage reaches the control value. When the constant voltage circuit 22 is configured in this way, the half-cycle voltage (positive voltage) V1 of one polarity induced in the exciter coil 1 falls to the zero level when it rises to the control value, and thereafter the polarity of one polarity The waveform which maintains the state of a zero level until the period of a half cycle of this is completed is shown.
 図1に示した点火装置ではまた、エキサイタコイル1の一端が波形整形回路23の入力端子と電源回路24の入力端子とに接続されている。波形整形回路23は、エキサイタコイル1が発生する第1及び第2の負極性電圧V21及びV22(図4参照)を点火制御部6を構成するマイクロプロセッサが認識し得る波形の第1の信号S21及び第2の信号S22に変換して、これらの信号S21及びS22を点火制御部6に与える。 In the ignition device shown in FIG. 1, one end of the exciter coil 1 is connected to the input terminal of the waveform shaping circuit 23 and the input terminal of the power supply circuit 24. The waveform shaping circuit 23 is a first signal S21 having a waveform that can be recognized by the microprocessor constituting the ignition control unit 6 with respect to the first and second negative voltages V21 and V22 (see FIG. 4) generated by the exciter coil 1. The second signal S22 is converted into the second signal S22, and the signals S21 and S22 are supplied to the ignition control unit 6.
 本実施形態のように、エキサイタコイル1が発生する正極性電圧V1を点火用コンデンサの充電用電圧として用い、負極性電圧V21,V22を点火時期の制御に用いる信号電圧として用いる場合には、点火時期の制御を行うのに適したクランク角位置でエキサイタコイル1が正極性電圧V1と負極性電圧V21及びV22とを発生するように、磁石発電機の回転子103と固定子105との位置関係が設定される。 When the positive voltage V1 generated by the exciter coil 1 is used as the charging voltage for the ignition capacitor and the negative voltages V21 and V22 are used as signal voltages for controlling the ignition timing as in the present embodiment, Positional relationship between the rotor 103 and the stator 105 of the magnet generator so that the exciter coil 1 generates a positive voltage V1 and negative voltages V21 and V22 at a crank angle position suitable for timing control. Is set.
 本発明において、エキサイタコイルが正極性電圧V1及び負極性電圧V21,V22を発生するクランク角位置をどのように設定するかは任意であるが、本実施形態では、機関のピストンが上死点に達したときのクランク角位置(上死点位置という。)よりも十分に進角した位置で第1の負極性電圧V21が発生し、上死点位置付近に設定されたクランク角位置(一般には機関の始動時の点火位置として適したクランク角位置)で第2の負極性電圧V22が発生するように、磁石発電機の回転子103と固定子105との位置関係が設定されているものとする。本実施形態では、負極性電圧V21が発生するクランク角位置を、点火時期の計測を開始する基準クランク角位置として用いる。 In the present invention, it is arbitrary how to set the crank angle position at which the exciter coil generates the positive voltage V1 and the negative voltages V21, V22. In this embodiment, the piston of the engine is at the top dead center. The first negative polarity voltage V21 is generated at a position sufficiently advanced from the crank angle position (top dead center position) at which the crank angle position is reached, and the crank angle position (generally set near the top dead center position) The positional relationship between the rotor 103 and the stator 105 of the magnet generator is set so that the second negative voltage V22 is generated at a crank angle position suitable as an ignition position at the start of the engine). To do. In the present embodiment, the crank angle position where the negative voltage V21 is generated is used as the reference crank angle position at which the ignition timing measurement is started.
 電源回路24は、エキサイタコイル1が発生する第1及び第2の負極性電圧V21及びV22を一定のレベルを有する直流電圧Vccに変換して、この直流電圧を点火制御部6を構成するマイクロプロセッサの電源端子や、波形整形回路23の電源端子に電源電圧として与える回路である。電源回路24は例えば、エキサイタコイル1が発生する第1及び第2の負極性電圧により充電される電源コンデンサと、この電源コンデンサの両端の電圧Vccを一定に保つように電源コンデンサの充電を制御する回路とにより構成することができる。エキサイタコイル1から電源回路24に流入して電源コンデンサを充電する電流は、ダイオード21を通してエキサイタコイル1に帰還する。電源回路24としては、バッテリレスのコンデンサ放電式点火装置に従来から用いられている周知の構成を有するものを用いることができる。 The power supply circuit 24 converts the first and second negative voltages V21 and V22 generated by the exciter coil 1 into a DC voltage Vcc having a certain level, and this DC voltage is a microprocessor constituting the ignition control unit 6. The power supply voltage is supplied as a power supply voltage to the power supply terminals of the waveform shaping circuit 23. For example, the power supply circuit 24 controls the charging of the power supply capacitor so that the power supply capacitor charged by the first and second negative voltages generated by the exciter coil 1 and the voltage Vcc across the power supply capacitor are kept constant. And a circuit. The current that flows from the exciter coil 1 into the power supply circuit 24 and charges the power supply capacitor is fed back to the exciter coil 1 through the diode 21. As the power supply circuit 24, a power supply circuit having a known configuration conventionally used in a batteryless capacitor discharge ignition device can be used.
 本実施形態では、エキサイタコイル1-機関停止スイッチ10-ダイオード4-点火用コンデンサ3-点火コイルの一次コイル2a-ダイオード20-エキサイタコイル1の閉回路により、エキサイタコイル1の一方の極性の半サイクルの誘起電圧で点火用コンデンサ3を一方の極性に充電する充電回路が構成されている。また本実施形態では、点火用スイッチを構成するサイリスタ5に対して並列に、該サイリスタ5と逆方向のダイオード25が接続されている。このダイオード25は、点火時に点火用コンデンサ3の放電の持続時間を延ばして、火花の持続時間を長くするために設けられている。 In this embodiment, the exciter coil 1-engine stop switch 10-diode 4-ignition capacitor 3-ignition coil primary coil 2a-diode 20-exciter coil 1 closed circuit makes one cycle of the exciter coil 1 half cycle. A charging circuit is configured to charge the ignition capacitor 3 to one polarity with the induced voltage. In the present embodiment, a diode 25 in the opposite direction to the thyristor 5 is connected in parallel to the thyristor 5 constituting the ignition switch. This diode 25 is provided in order to extend the duration of the discharge of the ignition capacitor 3 at the time of ignition and to increase the duration of the spark.
 点火制御部6は、例えば、波形整形回路から得られる第1及び第2の信号S21及びS22の発生間隔から機関の回転速度を演算する回転速度演算手段と、演算された回転速度における点火時期を決定する点火時期決定手段と、決定された点火時期を検出するために、第1の信号S21が発生した時刻から点火時期までの間に点火タイマに計測させる時間を演算する点火タイマ計測時間演算手段と、点火タイマが演算された計測時間の計測を完了した時にサイリスタ5に点火信号を与える点火信号Viを発生する点火信号発生手段とを備えていて、機関の各回転速度において最適の点火時期に機関を点火するべく、サイリスタ5に点火信号を与える時期を制御する。上記の各部により、バッテリレスのコンデンサ放電式内燃機関用点火装置が構成されている。 The ignition control unit 6 includes, for example, a rotation speed calculation means for calculating the rotation speed of the engine from the generation intervals of the first and second signals S21 and S22 obtained from the waveform shaping circuit, and an ignition timing at the calculated rotation speed. Ignition timing determination means for determining, and ignition timer measurement time calculation means for calculating a time for the ignition timer to measure between the time when the first signal S21 is generated and the ignition timing in order to detect the determined ignition timing And an ignition signal generating means for generating an ignition signal Vi for giving an ignition signal to the thyristor 5 when the measurement of the measurement time calculated by the ignition timer is completed, and at an optimal ignition timing at each rotational speed of the engine. In order to ignite the engine, the timing for giving an ignition signal to the thyristor 5 is controlled. A batteryless capacitor discharge type internal combustion engine ignition device is configured by the above-described units.
 図1に示した点火装置においては、内燃機関を運転する際に機関停止スイッチ10がオン状態に保持される。この状態で、エキサイタコイル1が正極性電圧V1を発生すると、エキサイタコイル1から機関停止スイッチ10と、ダイオード4と、点火用コンデンサ3と、点火コイルの一次コイル2aと、ダイオード20とを通して充電電流が流れて、点火用コンデンサ3が図示の極性に充電される。本実施形態においては、エキサイタコイル1が出力する正極性電圧を予め定めた一定の制御値以下に制限する定電圧回路22が設けられているため、点火用コンデンサ3は毎回一定の電圧値まで充電される。点火制御部6が、機関の点火時期を検出したときにサイリスタ5に点火信号を与えると、サイリスタ5がオン状態になるため、点火用コンデンサ3に蓄積された電荷がサイリスタ5と点火コイル2の一次コイル2aとを通して放電し、点火コイルの二次コイル2bに点火用高電圧が誘起する。この高電圧は点火プラグ7に印加されるため、点火プラグ7で火花放電が生じ、機関が点火される。 In the ignition device shown in FIG. 1, the engine stop switch 10 is held in the on state when the internal combustion engine is operated. In this state, when the exciter coil 1 generates the positive voltage V1, the charging current flows from the exciter coil 1 through the engine stop switch 10, the diode 4, the ignition capacitor 3, the primary coil 2a of the ignition coil, and the diode 20. Flows and the ignition capacitor 3 is charged to the polarity shown in the figure. In the present embodiment, since the constant voltage circuit 22 that limits the positive voltage output from the exciter coil 1 to a predetermined control value or less is provided, the ignition capacitor 3 is charged to a constant voltage value every time. Is done. When the ignition control unit 6 detects an ignition timing of the engine and gives an ignition signal to the thyristor 5, the thyristor 5 is turned on, so that the charge accumulated in the ignition capacitor 3 is transferred between the thyristor 5 and the ignition coil 2. Discharge occurs through the primary coil 2a, and an ignition high voltage is induced in the secondary coil 2b of the ignition coil. Since this high voltage is applied to the spark plug 7, spark discharge occurs in the spark plug 7, and the engine is ignited.
 コンデンサ放電式の点火装置では,点火用コンデンサ3の充電電圧が不足すると、点火コイル2の二次コイル2bに誘起する点火用高電圧が低くなり、所期の点火性能を得ることができなくなる。したがって、定電圧回路22の制御値は、点火コイル2の二次コイルに誘起する点火用高電圧の波高値を、点火プラグで火花放電を生じさせるために必要な最低値以上とするために必要とされる点火用コンデンサ3の充電電圧値の下限値よりも高く、かつエキサイタコイル1の正極性電圧が印加される素子の耐電圧値以下の値に設定する。図1に示された実施形態において、エキサイタコイル1の正極性電圧が印加される素子は、機関停止スイッチ10、サイリスタ5、ダイオード4,21及び25等である。上記制御値は、通常は200~200数十ボルトの範囲の適当な値に設定される。 In the capacitor discharge type ignition device, if the charging voltage of the ignition capacitor 3 is insufficient, the ignition high voltage induced in the secondary coil 2b of the ignition coil 2 becomes low, and the desired ignition performance cannot be obtained. Therefore, the control value of the constant voltage circuit 22 is necessary to make the peak value of the high voltage for ignition induced in the secondary coil of the ignition coil 2 equal to or higher than the minimum value necessary for causing spark discharge in the spark plug. It is set to a value that is higher than the lower limit value of the charging voltage value of the ignition capacitor 3 and is equal to or lower than the withstand voltage value of the element to which the positive voltage of the exciter coil 1 is applied. In the embodiment shown in FIG. 1, elements to which the positive polarity voltage of the exciter coil 1 is applied are the engine stop switch 10, the thyristor 5, the diodes 4, 21, and 25. The control value is usually set to an appropriate value in the range of 200 to 200 tens of volts.
 機関を停止する際には、機関停止スイッチ10をオフ状態にする。機関停止スイッチ10をオフ状態にすると、点火用コンデンサ3の充電が行われなくなるため、点火動作が行われなくなり、機関は直ちに停止する。 When stopping the engine, the engine stop switch 10 is turned off. When the engine stop switch 10 is turned off, the ignition capacitor 3 is not charged, so the ignition operation is not performed and the engine is immediately stopped.
 上記のように、本実施形態の点火装置においては、機関を運転する際に機関停止スイッチ10をオン状態に保持することにより点火用コンデンサを充電することができるため、点火動作を支障なく行わせることができる。また機関停止スイッチ10をオフ状態にすることにより、点火用コンデンサが充電されるのを阻止することができるため、点火動作を停止させて機関を停止させることができる。 As described above, in the ignition device of the present embodiment, the ignition capacitor can be charged by holding the engine stop switch 10 in the on state when the engine is operated, so that the ignition operation is performed without any problem. be able to. In addition, since the ignition stop capacitor 10 can be prevented from being charged by turning off the engine stop switch 10, the ignition operation can be stopped and the engine can be stopped.
 上記のように、機関停止スイッチ10を点火用コンデンサ3の充電回路に挿入すると、機関停止スイッチ10がオフ状態にされたときに静電気等により機関停止スイッチを通してサージ電流が侵入したとしても、サイリスタ5のゲート(点火用スイッチの制御端子)や点火制御部6にサージが侵入するおそれがないため、機関停止スイッチ10に対して並列にサージ吸収素子を接続しておく必要がない。したがって、サージ吸収素子が破壊されて短絡状態になったときに、機関停止スイッチ10が短絡された状態になって機関を停止させることができなくなる事態が生じるのを防ぐことができ、信頼性を向上させることができる。 As described above, when the engine stop switch 10 is inserted into the charging circuit of the ignition capacitor 3, even if a surge current enters through the engine stop switch due to static electricity or the like when the engine stop switch 10 is turned off, the thyristor 5 Therefore, it is not necessary to connect a surge absorbing element in parallel to the engine stop switch 10 because there is no possibility that a surge enters the gate (control terminal of the ignition switch) or the ignition control unit 6. Therefore, when the surge absorbing element is destroyed and short-circuited, it is possible to prevent a situation where the engine stop switch 10 is short-circuited and the engine cannot be stopped, and reliability is improved. Can be improved.
 エキサイタコイル1から点火用コンデンサ3に充電電流が流れている状態で機関停止スイッチ10がオフ状態にされたときには、それまで流れていた充電電流を流し続けようとする極性の高い電圧がエキサイタコイル1に誘起しようとするが、本実施形態では、定電圧回路22がエキサイタコイルの正極性の誘起電圧を一定値以下に制限する働きをするため、機関停止スイッチ10をオフ状態にした際にエキサイタコイル1に過大な電圧が誘起するのを防ぐことができる。したがって、機関停止スイッチ10がオフ状態にされたときにエキサイタコイル1から充電回路の構成要素やサイリスタ5等の素子に過電圧が印加されて、これらの素子が破損するのを防ぐことができる。また本実施形態によれば、エキサイタコイルの誘起電圧が印加される素子として高い耐電圧性能を有する高価な素子を用いる必要がなくなるため、点火装置のコストの低減を図ることができる。 When the engine stop switch 10 is turned off while the charging current is flowing from the exciter coil 1 to the ignition capacitor 3, a high polarity voltage that continues to flow the charging current that has flown until then is generated in the exciter coil 1. However, in this embodiment, the constant voltage circuit 22 functions to limit the positive induced voltage of the exciter coil to a certain value or less. Therefore, the exciter coil is turned off when the engine stop switch 10 is turned off. 1 can prevent an excessive voltage from being induced. Therefore, when the engine stop switch 10 is turned off, an overvoltage is applied from the exciter coil 1 to the components of the charging circuit, the elements such as the thyristor 5, and the like can be prevented from being damaged. Further, according to the present embodiment, it is not necessary to use an expensive element having a high withstand voltage performance as an element to which the induced voltage of the exciter coil is applied, so that the cost of the ignition device can be reduced.
 図2を参照すると、図1に示された点火装置の定電圧回路22と、波形整形回路23の具体的構成の一例が示されている。図2に示された定電圧回路22は、エキサイタコイル1の他端(点火用コンデンサ側の端子)と接地間に接続された抵抗器R1及びR2の直列回路からなる分圧回路と、同じくエキサイタコイル1の他端と接地間にカソードを接地側に向けて接続されたサイリスタTh1と、抵抗器R1とR2との接続点とサイリスタTh1のゲートとの間に、アノードをサイリスタTh1のゲート側に向けて接続されたツェナーダイオードZD1とにより構成されている。 Referring to FIG. 2, an example of a specific configuration of the constant voltage circuit 22 and the waveform shaping circuit 23 of the ignition device shown in FIG. 1 is shown. The constant voltage circuit 22 shown in FIG. 2 includes a voltage dividing circuit composed of a series circuit of resistors R1 and R2 connected between the other end (terminal on the ignition capacitor side) of the exciter coil 1 and the ground, and an exciter. A thyristor Th1 connected between the other end of the coil 1 and the ground with the cathode facing the ground side, a connection point between the resistors R1 and R2 and the gate of the thyristor Th1, and an anode on the gate side of the thyristor Th1. And a Zener diode ZD1 connected in the direction.
 本実施形態では、抵抗器R1とR2との直列回路からなる分圧回路により、エキサイタコイル1の両端の電圧を検出する電圧検出回路が構成され、サイリスタTh1により、エキサイタコイル1に対して並列に接続されてエキサイタコイル1が一方の極性(本実施形態では正極性)の誘起電圧を発生している状態でトリガ信号が与えられたときにオン状態になって、エキサイタコイル1が一方の極性の誘起電圧を発生している間オン状態を保持するエキサイタ短絡用スイッチが構成されている。またツェナーダイオードZD1により、電圧検出回路により検出された電圧が制御値に達したときにエキサイタ短絡用スイッチにトリガ信号を与えるエキサイタ短絡用スイッチトリガ回路が構成されている。 In the present embodiment, a voltage detection circuit that detects the voltage across the exciter coil 1 is configured by a voltage dividing circuit composed of a series circuit of resistors R1 and R2, and is parallel to the exciter coil 1 by a thyristor Th1. The exciter coil 1 is turned on when a trigger signal is given in a state where the exciter coil 1 generates an induced voltage of one polarity (positive polarity in the present embodiment), and the exciter coil 1 has one polarity. An exciter short-circuiting switch is configured that maintains an ON state while generating an induced voltage. The Zener diode ZD1 constitutes an exciter short-circuit switch trigger circuit that gives a trigger signal to the exciter short-circuit switch when the voltage detected by the voltage detection circuit reaches the control value.
 本実施形態の定電圧回路22においては、エキサイタコイル1に誘起する正極性電圧V1が、抵抗器R1とR2とからなる分圧回路(電圧検出回路)の分圧比とツェナーダイオードZD1のツェナー電圧とにより決まる一定の制御値Vsを超えたときに、ツェナーダイオードZD1がオン状態になってサイリスタTh1にトリガ信号が与えられる。これによりサイリスタTh1がオン状態になって、正極性電圧が発生する半サイクルの残りの期間エキサイタコイル1を短絡するため、エキサイタコイル1が誘起する正極性電圧V1は一定の制御値Vs以下に制限される。 In the constant voltage circuit 22 of the present embodiment, the positive voltage V1 induced in the exciter coil 1 is determined by the voltage dividing ratio of the voltage dividing circuit (voltage detection circuit) composed of the resistors R1 and R2 and the zener voltage of the zener diode ZD1. When a certain control value Vs determined by the above is exceeded, the Zener diode ZD1 is turned on and a trigger signal is given to the thyristor Th1. As a result, the thyristor Th1 is turned on and the exciter coil 1 is short-circuited for the remaining period of the half cycle in which the positive voltage is generated. Therefore, the positive voltage V1 induced by the exciter coil 1 is limited to a certain control value Vs or less. Is done.
 図5は、定電圧回路22の制御動作によりエキサイタコイル1に誘起する正極性電圧V1が制御値Vs以下に制限される様子を示している。図5に示した例では、定電圧回路22が設けられていない場合に、同図に破線で示したように、エキサイタコイル1に誘起する正極性電圧V1が制御値Vsよりも高いピーク値Vpまで上昇するが、定電圧回路22が設けられている場合には、制御値Vs以下に制限される。図6は、このエキサイタコイル1の正極性電圧V1により充電される点火用コンデンサ3の両端の電圧Vcを示している。点火用コンデンサ3の両端の電圧は、エキサイタコイル1の正極性電圧の上昇に伴って制御値Vsまで上昇した後、点火時期t1まで制御値Vsに等しい値を保つ。点火時期にサイリスタThiに点火信号が与えられると、サイリスタThiがオン状態になって点火用コンデンサ3の電荷を点火コイルの1次コイルとを通して放電させるため、点火用コンデンサ3の両端の電圧Vcは点火時期t1において零に立ち下がる。点火用コンデンサ3の両端の電圧の点火時期以降の波形は、実際には過渡的に振動波形を示すが、図5においては、その詳細な図示を省略している。 FIG. 5 shows a state in which the positive voltage V1 induced in the exciter coil 1 is limited to the control value Vs or less by the control operation of the constant voltage circuit 22. In the example shown in FIG. 5, when the constant voltage circuit 22 is not provided, the positive voltage V1 induced in the exciter coil 1 is higher than the control value Vs as shown by the broken line in FIG. However, when the constant voltage circuit 22 is provided, it is limited to the control value Vs or less. FIG. 6 shows the voltage Vc across the ignition capacitor 3 charged by the positive voltage V1 of the exciter coil 1. The voltage at both ends of the ignition capacitor 3 rises to the control value Vs as the positive voltage of the exciter coil 1 rises, and then remains equal to the control value Vs until the ignition timing t1. When an ignition signal is given to the thyristor Thi at the ignition timing, the thyristor Thi is turned on to discharge the charge of the ignition capacitor 3 through the primary coil of the ignition coil, so that the voltage Vc across the ignition capacitor 3 is It falls to zero at the ignition timing t1. Although the waveform after the ignition timing of the voltage across the ignition capacitor 3 actually shows a vibration waveform transiently, the detailed illustration thereof is omitted in FIG.
 図2に示した波形整形回路23は、アノードがエキサイタコイル1の一端に接続されたダイオードDaと、ダイオードDaのカソードに一端が接続された抵抗器RaとコンデンサCaとの並列回路と、抵抗器RaとコンデンサCaとの並列回路の他端に抵抗器Rbを通してベースが接続され、エミッタが接地されたNPNトランジスタTRaと、トランジスタTRaのコレクタと電源回路24の出力端子との間に接続された抵抗器Rcとにより構成され、トランジスタTRaのコレクタエミッタ間に得られる信号電圧が点火制御部6に入力されている。 2 includes a diode Da having an anode connected to one end of the exciter coil 1, a parallel circuit of a resistor Ra and a capacitor Ca having one end connected to the cathode of the diode Da, and a resistor. An NPN transistor TRa whose base is connected to the other end of the parallel circuit of Ra and capacitor Ca through a resistor Rb and whose emitter is grounded, and a resistor connected between the collector of the transistor TRa and the output terminal of the power supply circuit 24 The signal voltage obtained between the collector and emitter of the transistor TRa is input to the ignition control unit 6.
 図2に示された波形整形回路23においては、エキサイタコイル1が発生する第1及び第2の負極性電圧V21及びV22によりコンデンサCaが抵抗器RbとトランジスタTRaのベースエミッタ間とを通して充電され、コンデンサCaに蓄積された電荷は、抵抗器Raを通して一定の時定数で放電していく。したがって、コンデンサCaの両端には、図7(A)に波線で示したように、負極性電圧V21が立ち上がる毎に所定レベルまで立ち上がった後一定の傾きで低下していく波形を示すしきい値電圧Vaが得られる。トランジスタTRaは、負極性電圧V21及びV22がしきい値電圧Vaを超えている期間のみベース電流が流れてオン状態になるため、トランジスタTRaのコレクタエミッタ間には、図7(B)に示すように、負極性電圧V21及びV22がそれぞれしきい値電圧Vaを超えている期間の間だけ零レベルを示す信号電圧が得られる。点火制御部6を構成するマイクロプロセッサは、負極性電圧V21がしきい値電圧Vaを超えた時に発生する信号電圧の立ち下がりを第1の信号S21として認識し、負極性電圧V22が電圧Vaを超えた時に発生する信号電圧の立ち下がりを第2の信号S22として認識する。 In the waveform shaping circuit 23 shown in FIG. 2, the capacitor Ca is charged between the resistor Rb and the base emitter of the transistor TRa by the first and second negative voltages V21 and V22 generated by the exciter coil 1, The electric charge accumulated in the capacitor Ca is discharged through the resistor Ra with a constant time constant. Therefore, at both ends of the capacitor Ca, as indicated by the wavy line in FIG. 7A, a threshold value indicating a waveform that decreases to a predetermined level after rising to a predetermined level every time the negative voltage V21 rises. A voltage Va is obtained. Since the transistor TRa is turned on when the negative voltages V21 and V22 exceed the threshold voltage Va and the base current flows, the transistor TRa has a collector-emitter as shown in FIG. 7B. In addition, a signal voltage indicating a zero level is obtained only during a period in which the negative voltages V21 and V22 exceed the threshold voltage Va. The microprocessor constituting the ignition control unit 6 recognizes the fall of the signal voltage that occurs when the negative voltage V21 exceeds the threshold voltage Va as the first signal S21, and the negative voltage V22 reduces the voltage Va. The falling edge of the signal voltage that occurs when exceeding is recognized as the second signal S22.
 本実施形態では、上死点位置に対して十分に進角したクランク角位置で第1の信号S21が発生し、上死点位置付近に設定されたクランク角位置で第2の信号S22が発生する。点火制御部6は、第1の信号S21が発生する時刻taから第2の信号S22が発生する時刻tbまでの時間から機関の回転速度を演算し、演算された回転速度に対して機関の点火時期を演算する。点火時期制御部6はまた、第1の信号S21が発生した時に、既に演算されている点火時期(1回転前に演算された点火時期)を検出するために点火タイマに計測させる時間を演算して、演算した時間を点火タイマにセットしてその計測を開始させ、点火タイマがセットされた時間の計測を完了したときにサイリスタ5に点火信号を与える。 In the present embodiment, the first signal S21 is generated at a crank angle position sufficiently advanced with respect to the top dead center position, and the second signal S22 is generated at a crank angle position set near the top dead center position. To do. The ignition control unit 6 calculates the engine rotation speed from the time ta when the first signal S21 is generated to the time tb when the second signal S22 is generated, and the ignition of the engine is calculated with respect to the calculated rotation speed. Calculate the time. The ignition timing control unit 6 also calculates a time to be measured by the ignition timer in order to detect the already calculated ignition timing (ignition timing calculated before one rotation) when the first signal S21 is generated. Then, the calculated time is set in the ignition timer and the measurement is started. When the measurement of the time when the ignition timer is set is completed, an ignition signal is given to the thyristor 5.
 上記の実施形態では、エキサイタコイル1が発生する負極性電圧を、機関の回転速度やクランク角位置の情報を得るための信号として用いるとしたが、機関の回転速度情報やクランク角位置情報を得るための信号を発生する信号発生器を別個に設ける場合にも本発明を適用することができる。 In the above embodiment, the negative voltage generated by the exciter coil 1 is used as a signal for obtaining information on the engine speed and crank angle position. However, the engine speed information and crank angle position information are obtained. The present invention can also be applied to a case where a signal generator for generating a signal for the purpose is provided separately.
 図8は、エキサイタコイルの他に機関の回転情報を含む信号を発生する信号発生器を設ける場合の実施形態を示している。本実施形態においては、エキサイタコイル1を設ける磁石発電機の他に、予め設定されたクランク角位置でパルス信号を発生する信号発生器30が設けられ、信号発生器30の出力が波形整形回路23を通して点火制御部6に与えられている。信号発生器30は、機関のピストンの上死点位置よりも十分に進角した位置で第1のパルス信号を発生し、上死点位置付近に設定されたクランク角位置で第2のパルス信号を発生する。波形整形回路23は信号発生器30が発生する第1及び第2のパルス信号をマイクロプロセッサが認識し得る信号に変換して点火制御部6に与える。その他の構成は図1に示した実施形態と同様である。 FIG. 8 shows an embodiment in which a signal generator for generating a signal including engine rotation information is provided in addition to the exciter coil. In the present embodiment, in addition to the magnet generator provided with the exciter coil 1, a signal generator 30 that generates a pulse signal at a preset crank angle position is provided, and the output of the signal generator 30 is the waveform shaping circuit 23. Is provided to the ignition control unit 6. The signal generator 30 generates a first pulse signal at a position sufficiently advanced from the top dead center position of the piston of the engine, and a second pulse signal at a crank angle position set near the top dead center position. Is generated. The waveform shaping circuit 23 converts the first and second pulse signals generated by the signal generator 30 into signals that can be recognized by the microprocessor and supplies them to the ignition control unit 6. Other configurations are the same as those of the embodiment shown in FIG.
 上記の実施形態では、図3に示したように、回転子が3極の磁石界磁を有する磁石発電機にエキサイタコイルを設けるとしたが、図8に示すようにエキサイタコイルと別個に信号発生器30を設ける場合には、任意の極数の磁石界磁を有する回転子を備えた磁石発電機内にエキサイタコイルを設けることができる。 In the above embodiment, as shown in FIG. 3, the rotor is provided with an exciter coil in a magnet generator having a three-pole magnet field. However, as shown in FIG. 8, a signal is generated separately from the exciter coil. When the generator 30 is provided, an exciter coil can be provided in a magnet generator including a rotor having a magnet field having an arbitrary number of poles.
 上記の各実施形態では、マイクロプロセッサを備えた点火制御部6により点火時期を制御するとしたが、マイクロプロセッサを用いないで機関の点火時期を決定する点火信号をサイリスタ(点火用スイッチ)5に与える構成をとる場合にも本発明を適用することができるのはもちろんである。 In each of the above embodiments, the ignition timing is controlled by the ignition control unit 6 including a microprocessor. However, an ignition signal for determining the ignition timing of the engine is given to the thyristor (ignition switch) 5 without using the microprocessor. Of course, the present invention can also be applied to a configuration.
 上記の各実施形態では、エキサイタコイル1の他端と整流用ダイオード4のアノードとの間に機関停止スイッチ10を挿入したが、機関停止スイッチ10はエキサイタコイル1の出力で点火用コンデンサを充電する充電回路の途中に挿入されればよく、機関停止スイッチ10の挿入位置は上記の例に限定されない。 In each of the above embodiments, the engine stop switch 10 is inserted between the other end of the exciter coil 1 and the anode of the rectifying diode 4. The engine stop switch 10 charges the ignition capacitor with the output of the exciter coil 1. What is necessary is just to insert in the middle of a charging circuit, and the insertion position of the engine stop switch 10 is not limited to said example.
 本発明は、機関を停止する際にオフ状態にされる機関停止スイッチを備えていて、オフ状態にある機関停止スイッチを通してサージが侵入するおそれがあるコンデンサ放電式の内燃機関用点火装置に広く適用することができる。 The present invention is widely applied to an ignition device for a capacitor discharge type internal combustion engine having an engine stop switch that is turned off when the engine is stopped and in which a surge may enter through the engine stop switch in the off state. can do.
 1 エキサイタコイル
 2 点火コイル
 2a 一次コイル
 2b 二次コイル
 3 点火用コンデンサ
 4 整流用ダイオード
 5 サイリスタ(点火用スイッチ)
 6 点火制御部
 7 点火プラグ
 10 機関停止スイッチ
 22 定電圧回路
 23 波形整形回路
 24 電源回路
1 Exciter Coil 2 Ignition Coil 2a Primary Coil 2b Secondary Coil 3 Ignition Capacitor 4 Rectifier Diode 5 Thyristor (Ignition Switch)
6 Ignition control unit 7 Spark plug 10 Engine stop switch 22 Constant voltage circuit 23 Waveform shaping circuit 24 Power supply circuit

Claims (4)

  1.  内燃機関の回転に同期して交流電圧を誘起するエキサイタコイルと、点火コイルと、前記点火コイルの一次側に設けられた点火用コンデンサと、前記エキサイタコイルの一方の極性の半サイクルの誘起電圧で前記点火用コンデンサを充電する充電回路と、前記内燃機関の点火時期にオン状態にされて前記点火用コンデンサに蓄積された電荷を前記点火コイルの1次コイルを通して放電させる点火用スイッチとを備えたコンデンサ放電式内燃機関用点火装置であって、
     前記充電回路の途中に挿入されてオン状態にあるときに前記エキサイタコイルから点火用コンデンサに充電電流が流れるのを許容し、オフ状態にされたときに前記エキサイタコイルから点火用コンデンサに流れる充電電流が流れるのを阻止する機関停止スイッチと、 予め設定された一定の電圧値を制御値として、前記エキサイタコイルに誘起する前記一方の極性の電圧を前記制御値以下に制限する制御を行う定電圧回路と、
     を具備してなるコンデンサ放電式内燃機関用点火装置。
    An exciter coil that induces an alternating voltage in synchronization with the rotation of the internal combustion engine, an ignition coil, an ignition capacitor provided on the primary side of the ignition coil, and an induced voltage of a half cycle of one polarity of the exciter coil A charging circuit that charges the ignition capacitor; and an ignition switch that is turned on at the ignition timing of the internal combustion engine and discharges the charge accumulated in the ignition capacitor through a primary coil of the ignition coil. An ignition device for a capacitor discharge internal combustion engine,
    Charging current flowing from the exciter coil to the ignition capacitor when inserted in the middle of the charging circuit and allowing the charging current to flow from the exciter coil to the ignition capacitor when turned off. An engine stop switch for preventing the flow of the electric current, and a constant voltage circuit for controlling the voltage of the one polarity induced in the exciter coil to be equal to or less than the control value by using a preset constant voltage value as a control value When,
    An ignition device for a capacitor discharge type internal combustion engine comprising:
  2.  前記エキサイタコイルの一端は、アノードを接地側に向けた電流帰還用ダイオードを通して接地され、
     前記充電回路は、前記エキサイタコイルの前記一方の極性の半サイクルの誘起電圧を、前記エキサイタコイルの他端側にアノードを向けた整流用ダイオードを通して前記点火用コンデンサに印加して前記点火用コンデンサを充電するように構成され、
     前記機関停止スイッチは、前記エキサイタコイルの他端と前記整流用ダイオードのアノードとの間に挿入されている請求項1に記載のコンデンサ放電式内燃機関用点火装置。
    One end of the exciter coil is grounded through a current feedback diode with the anode directed to the ground side,
    The charging circuit applies the induced voltage of the half cycle of the one polarity of the exciter coil to the ignition capacitor through a rectifying diode having an anode directed to the other end of the exciter coil. Configured to charge,
    The ignition device for a capacitor discharge internal combustion engine according to claim 1, wherein the engine stop switch is inserted between the other end of the exciter coil and an anode of the rectifying diode.
  3.  前記定電圧回路は、前記エキサイタコイルの両端の電圧を検出する電圧検出回路と、前記エキサイタコイルに対して並列に接続されて前記エキサイタコイルが前記一方の極性の誘起電圧を発生している状態でトリガ信号が与えられたときにオン状態になって、前記エキサイタコイルが前記一方の極性の誘起電圧を発生している間オン状態を保持するエキサイタ短絡用スイッチと、前記電圧検出回路により検出された電圧が前記制御値に達したときに前記エキサイタ短絡用スイッチにトリガ信号を与えるエキサイタ短絡用スイッチトリガ回路とを具備してなる請求項1に記載のコンデンサ放電式内燃機関用点火装置。 The constant voltage circuit is connected in parallel to the exciter coil to detect a voltage at both ends of the exciter coil, and the exciter coil generates an induced voltage of the one polarity. An exciter short-circuiting switch that is turned on when a trigger signal is applied and maintains the on state while the exciter coil generates the induced voltage of the one polarity, and is detected by the voltage detection circuit 2. The ignition apparatus for a capacitor discharge internal combustion engine according to claim 1, further comprising an exciter short-circuit switch trigger circuit that provides a trigger signal to the exciter short-circuit switch when a voltage reaches the control value. 3.
  4.  前記定電圧回路は、前記エキサイタコイルの両端の電圧を検出する電圧検出回路と、前記エキサイタコイルに対して並列に接続されて前記エキサイタコイルが前記一方の極性の誘起電圧を発生している状態でトリガ信号が与えられたときにオン状態になって、前記エキサイタコイルが前記一方の極性の誘起電圧を発生している間オン状態を保持するエキサイタ短絡用スイッチと、前記電圧検出回路により検出された電圧が前記制御値に達したときに前記エキサイタ短絡用スイッチにトリガ信号を与えるエキサイタ短絡用スイッチトリガ回路とを具備してなる請求項2に記載のコンデンサ放電式内燃機関用点火装置。 The constant voltage circuit is connected in parallel to the exciter coil to detect a voltage at both ends of the exciter coil, and the exciter coil generates an induced voltage of the one polarity. An exciter short-circuiting switch that is turned on when a trigger signal is applied and maintains the on state while the exciter coil generates the induced voltage of the one polarity, and is detected by the voltage detection circuit The ignition apparatus for a capacitor discharge internal combustion engine according to claim 2, further comprising: an exciter short-circuit switch trigger circuit that gives a trigger signal to the exciter short-circuit switch when the voltage reaches the control value.
PCT/JP2011/002494 2010-05-07 2011-04-28 Capacitor discharge type internal-combustion engine ignition device WO2011138861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-107341 2010-05-07
JP2010107341A JP2011236763A (en) 2010-05-07 2010-05-07 Capacitor discharge type internal combustion engine ignition device

Publications (1)

Publication Number Publication Date
WO2011138861A1 true WO2011138861A1 (en) 2011-11-10

Family

ID=44903716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002494 WO2011138861A1 (en) 2010-05-07 2011-04-28 Capacitor discharge type internal-combustion engine ignition device

Country Status (2)

Country Link
JP (1) JP2011236763A (en)
WO (1) WO2011138861A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218333U (en) * 1975-07-25 1977-02-09
JPS58156175U (en) * 1982-04-13 1983-10-18 三菱電機株式会社 Ignition system for internal combustion engines
JPS62142862A (en) * 1985-12-17 1987-06-26 Yamaha Motor Co Ltd Display device for state of engine stop switch
JPH032415U (en) * 1989-05-24 1991-01-11
JPH10148172A (en) * 1996-11-18 1998-06-02 Honda Motor Co Ltd Ignition control system
JPH10176643A (en) * 1996-12-13 1998-06-30 Shindengen Electric Mfg Co Ltd Condenser charge/discharge ignition system
JPH11153078A (en) * 1997-11-20 1999-06-08 Kokusan Denki Co Ltd Ignition device for capacitor discharge type internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218333U (en) * 1975-07-25 1977-02-09
JPS58156175U (en) * 1982-04-13 1983-10-18 三菱電機株式会社 Ignition system for internal combustion engines
JPS62142862A (en) * 1985-12-17 1987-06-26 Yamaha Motor Co Ltd Display device for state of engine stop switch
JPH032415U (en) * 1989-05-24 1991-01-11
JPH10148172A (en) * 1996-11-18 1998-06-02 Honda Motor Co Ltd Ignition control system
JPH10176643A (en) * 1996-12-13 1998-06-30 Shindengen Electric Mfg Co Ltd Condenser charge/discharge ignition system
JPH11153078A (en) * 1997-11-20 1999-06-08 Kokusan Denki Co Ltd Ignition device for capacitor discharge type internal combustion engine

Also Published As

Publication number Publication date
JP2011236763A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5901718B1 (en) Internal combustion engine control device
JP5644724B2 (en) Control device for internal combustion engine
JPH07103112A (en) Electrical equipment starting load reduction control device for battery-less vehicle
JP2007120374A (en) Capacitor discharge type internal combustion engine ignition device
US7688073B2 (en) Diagnosis device of capacitor discharge ignition device for engine
US11692502B2 (en) Engine ignition method and engine ignition device
WO2011138861A1 (en) Capacitor discharge type internal-combustion engine ignition device
JP6412572B2 (en) Ignition device for internal combustion engine
JP6127591B2 (en) Ignition control device for internal combustion engine
JP2007198220A (en) Non-contact ignition device of internal combustion engine
JP4214828B2 (en) Ignition device for internal combustion engine
JP4538831B2 (en) Ignition operation control method and ignition operation control device in lower limit speed range of ignition device for internal combustion engine
CN103856131B (en) voltage regulator control circuit for automobile generator
JP6707370B2 (en) Internal combustion engine operating mode setting device
JP3211511B2 (en) Ignition device for internal combustion engine
JP6463917B2 (en) Non-contact ignition control device for internal combustion engine
JP4092564B2 (en) Ignition device for internal combustion engine
JP4412058B2 (en) Ignition system for capacitor discharge internal combustion engine
JP3974045B2 (en) Ignition system for capacitor discharge internal combustion engine
CA2195793C (en) Ignition system for internal combustion engines
JP5092171B2 (en) Non-contact ignition device for internal combustion engine
JP2004176625A (en) Igniter for internal combustion engine
JP3371386B2 (en) Contactless ignition device for internal combustion engine
JP2005220870A (en) Ignitor for internal combustion engine
JP5136743B2 (en) Non-contact ignition control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777382

Country of ref document: EP

Kind code of ref document: A1