WO2011138820A1 - Object detector - Google Patents

Object detector Download PDF

Info

Publication number
WO2011138820A1
WO2011138820A1 PCT/JP2010/003143 JP2010003143W WO2011138820A1 WO 2011138820 A1 WO2011138820 A1 WO 2011138820A1 JP 2010003143 W JP2010003143 W JP 2010003143W WO 2011138820 A1 WO2011138820 A1 WO 2011138820A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
host vehicle
angle
vertical position
vehicle
Prior art date
Application number
PCT/JP2010/003143
Other languages
French (fr)
Japanese (ja)
Inventor
和田陽介
小池伸
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/003143 priority Critical patent/WO2011138820A1/en
Publication of WO2011138820A1 publication Critical patent/WO2011138820A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • the present invention relates to an object detection device, and more particularly to an object detection device that is mounted on a vehicle and detects an object around the vehicle.
  • an object detection device that detects an object existing around a host vehicle has been developed for the purpose of, for example, predicting the danger of a collision between the host vehicle and an obstacle.
  • Patent Document 1 An example of the object detection apparatus as described above is disclosed in Patent Document 1.
  • the vehicle obstacle detection device disclosed in Patent Document 1 detects the position of the detected object in the vertical and horizontal directions. When the height of the detected object is within a predetermined range, the object is recognized as an obstacle such as a preceding vehicle.
  • FIG. 26 is a diagram illustrating a state in which a conventional vehicle obstacle detection device mounted on an inclined vehicle detects an object.
  • the region where the obstacle detection device for a vehicle can detect an object is also directed upward compared to the normal time.
  • a region where the vehicle obstacle detection device can detect an object is indicated by hatching in FIG.
  • the vehicle obstacle detection device detects an object such as a sign 91 that is not normally detected.
  • the vehicle obstacle detection device may erroneously recognize an object such as a signboard 90 or the like that does not actually have a risk of colliding with the host vehicle 800 as an obstacle.
  • FIG. 27 is a diagram illustrating a state in which a conventional vehicle obstacle detection device mounted on a vehicle traveling on a road with a changed slope detects an object.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an object detection apparatus capable of detecting an object more accurately than in the past.
  • the present invention adopts the following configuration. That is, the first aspect of the present invention is an object detection device that detects an object existing around a host vehicle, and detects position information that detects at least vertical position information of the object existing on the road surface of the host vehicle.
  • An object identification unit for identifying at least whether the object detected by the position detection unit is an obstacle that may collide with the own vehicle, a road surface of a road on which the own vehicle travels, and position detection
  • An angle calculation unit that calculates a relative pitch angle formed by the detection axis of the unit based on the vertical position information of the object, and an object identification unit that corrects the setting of the position detection unit according to the relative pitch angle It is an object detection apparatus provided with the setting change part which suppresses misidentification.
  • the second aspect is characterized in that, in the first aspect, the angle calculation unit calculates a relative pitch angle according to a displacement amount of the vertical position of the object with respect to a predetermined reference position.
  • the third aspect further includes a storage unit that stores the current and past position information of the current object detected by the position detection unit in the second aspect, and the angle calculation unit is configured to store the current and past stored in the storage unit.
  • An average position of the upper and lower positions of the past object is calculated, and a relative pitch angle is calculated according to a displacement amount of the average position with respect to the reference position.
  • the fourth aspect further includes a condition determination unit that determines whether or not a condition for accurately detecting the vertical position of the object is satisfied for a predetermined time in the third aspect. When it is determined that the condition is satisfied for a predetermined time, the pitch angle is calculated based on the vertical position information of the object detected within the predetermined time.
  • a fifth aspect further includes a host vehicle acceleration / deceleration detection unit that detects acceleration / deceleration of the host vehicle, and a rudder angle detection unit that detects a rudder angle of the host vehicle, and the condition determination unit includes: Judging that the acceleration / deceleration of the own vehicle is equal to or less than a predetermined threshold and that the rudder angle of the own vehicle is equal to or less than a predetermined threshold as conditions for accurately detecting the vertical position of the object It is characterized by.
  • a preceding vehicle determination unit that determines whether or not the object detected by the position detection unit is a preceding vehicle that travels ahead of the host vehicle, and an acceleration / deceleration of the preceding vehicle.
  • a preceding vehicle acceleration / deceleration calculation unit for calculating, and the condition determination unit is configured such that the acceleration / deceleration of the host vehicle and the preceding vehicle are both equal to or less than a predetermined threshold value, and the steering angle of the host vehicle is predetermined It is determined that it is below the threshold as a condition for accurately detecting the vertical position of the object, and the angle calculation unit is detected within the predetermined time when it is determined that the condition is satisfied for a predetermined time.
  • the pitch angle is calculated based on the vertical position information of the preceding vehicle.
  • the object identifying unit determines whether or not the object is a roadside object disposed on a destination road surface
  • the angle calculating unit includes a roadside Based on the current and past vertical positions of the object, a movement vector indicating a relative movement direction of the roadside object with respect to the host vehicle is calculated, and an angle formed by the movement vector and the detection axis of the position detection unit is used as a pitch angle. It is characterized by calculating.
  • whether or not the storage unit that stores the vertical position information of the current and past objects detected by the position detection unit, and whether or not the road gradient of the destination has changed.
  • a gradient determination unit that determines based on the vertical position information of the current and past objects detected by the position detection unit, and the angle calculation unit determines that the destination road gradient has not changed by the gradient determination unit In this case, the posture angle in the pitch direction with respect to the horizontal plane of the vehicle body of the host vehicle is calculated based on the pitch angle.
  • a storage unit that stores current and past position information detected by the position detection unit, and a road gradient of a traveling destination are changed.
  • a gradient determination unit that determines whether or not the current road is detected based on the vertical position information of the current and past objects, and the angle calculation unit changes the road gradient of the travel destination by the gradient determination unit. If it is determined that the vehicle is traveling, the gradient angle of the road ahead is calculated based on the pitch angle.
  • the object identification unit determines whether or not the object detected by the position detection unit is a preceding vehicle traveling in front of the host vehicle
  • the angle calculation unit calculates a relative pitch angle with the vehicle body of the host vehicle based on the vertical position information of the current and past preceding vehicles stored in the storage unit.
  • An eleventh aspect further includes, in the tenth aspect, a vertical position change amount calculation unit that calculates a change amount per unit time of the vertical position of the preceding vehicle based on the vertical position information of the current and past preceding vehicles.
  • the slope determination unit determines that the road gradient of the destination vehicle has changed when the amount of change per unit time of the vertical position of the preceding vehicle is equal to or greater than a predetermined threshold, and the vertical position of the preceding vehicle When the amount of change per unit time is less than a predetermined threshold, it is determined that the road gradient of the destination has not changed.
  • the object identifying unit determines whether or not the object is a roadside object arranged on a destination road, and the object is a roadside object.
  • the angle calculation unit calculates a relative pitch angle with the vehicle body of the host vehicle based on current and past roadside object vertical position information stored in the storage unit. To do.
  • the object identification unit further determines whether or not the roadside object is a belt-like belt-like roadside object extending at a certain height along the destination road surface.
  • the position detection unit determines that the object is a belt-like roadside object
  • the position detection unit detects the vertical position of the belt-like roadside object in front of the vehicle by a predetermined distance. If the difference value between the upper and lower positions is equal to or greater than a predetermined threshold, it is determined that the road gradient of the destination is changing, and if the difference value is less than the predetermined threshold, the road gradient of the destination Is determined not to have changed.
  • the object identifying unit identifies that the object is an obstacle when the vertical position of the object is present in a predetermined region in the vertical direction. It is characterized by that.
  • the object identification unit is configured such that when the vertical position of the object exists in a region that is greater than or equal to the lower end of the vehicle body of the host vehicle and less than the upper end of the vehicle body of the host vehicle, It is characterized by identifying it as a thing.
  • the object identifying unit identifies that the object is a step on the road surface when the vertical position of the object is present in a region below the lower end of the vehicle body of the host vehicle. Is located in a region above the upper end of the vehicle body of the host vehicle, the object is identified as an elevated object arranged at a position away from the road surface.
  • the position detection unit irradiates a detection wave in the detection axis direction and receives a reflected wave of the detection wave from the object.
  • a radar device that detects a position, and the setting changing unit rotates the detection axis of the radar device in a direction in which the pitch angle decreases to change the detection area of the object by the radar device, thereby making an erroneous determination by the object identifying unit. It is characterized by suppressing.
  • the setting of the position detection unit can be changed according to the relative pitch angle formed by the road surface of the destination road of the host vehicle and the detection axis of the position detection unit.
  • the position detection unit is a radar device
  • the detection area of the radar can be changed according to the pitch angle. Therefore, the position of the object can be accurately detected. Therefore, it can suppress misjudging whether the detected object is an obstruction.
  • the relative pitch angle can be calculated based on the detected vertical position information of the object. Therefore, there is no need to mount a sensor or the like for calculating the pitch angle on the host vehicle. Therefore, it is possible to configure an object detection device that can change the setting of the position detection unit as described above at low cost.
  • the relative pitch angle formed by the road surface of the destination road of the host vehicle and the detection axis of the position detection unit is determined according to the amount of displacement of the vertical position of the detected object with respect to the predetermined reference position. It can be easily detected.
  • the pitch angle can be calculated based on the average value of the vertical positions of the objects detected a plurality of times during a predetermined time. Therefore, even if the object may not be temporarily detected accurately due to noise or the like, the pitch angle can be accurately calculated by using the average value.
  • the pitch angle can be calculated based only on the vertical position information of the object detected in a situation where the position of the object can be accurately detected. Therefore, the calculation accuracy of the pitch angle can be improved.
  • the fifth aspect it is possible to determine whether or not the position of the object can be accurately detected by a simple process on the condition that the host vehicle is traveling straight at a constant speed.
  • the pitch angle can be calculated with high accuracy based on the position information of the preceding vehicle.
  • the pitch angle can be calculated based on the movement vector of the roadside object. Therefore, the pitch angle can be calculated using any roadside object.
  • the eighth aspect it is possible to determine whether or not the road gradient of the destination is changing without using another device such as a navigation device. Also, when the road gradient of the destination has not changed, the attitude angle in the pitch direction with respect to the horizontal plane of the vehicle body of the host vehicle can be calculated based on the information obtained from the position detection unit. That is, it is not necessary to separately install hardware such as a gyro sensor in the host vehicle in order to detect the attitude angle of the host vehicle.
  • the ninth aspect it is possible to determine whether or not the road gradient of the destination of the host vehicle has changed without using a device such as a camera or a navigation device. Further, when the road gradient of the destination of the host vehicle has changed, the gradient angle of the destination road can be calculated based on the information obtained from the position detection unit. That is, it is not necessary to separately install hardware such as a camera and a navigation device in the own vehicle in order to detect the road gradient.
  • the tenth aspect it is possible to calculate the attitude angle of the host vehicle or the slope angle of the road on which the host vehicle is traveling based on the position information of the preceding vehicle traveling ahead of the host vehicle.
  • whether or not the road gradient of the destination of the host vehicle is changing is determined by a simple process according to the amount of change per unit time of the vertical position information of the preceding vehicle. Can do.
  • the attitude angle of the host vehicle or the gradient angle of the destination road of the host vehicle based on the position information of the roadside objects arranged on the road on which the host vehicle travels.
  • whether or not the road gradient of the traveling destination of the host vehicle has changed is determined by a simple process according to the vertical position information detected at different times of the strip-shaped roadside object such as a guardrail, for example. can do.
  • whether or not the detected object is an obstacle that may collide with the vehicle can be determined by a simple process.
  • whether or not the detected object is an obstacle that may collide with the vehicle can be determined according to the size of the vehicle body of the host vehicle.
  • the detected object can be distinguished and identified in more detail.
  • the object detection device can be configured using a radar device mounted on a vehicle.
  • FIG. 1 is a block diagram showing an example of the configuration of an object detection apparatus according to the present invention.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of the obstacle detection ECU according to the first embodiment.
  • FIG. 3 is a flowchart illustrating an example of processing executed by the obstacle detection ECU according to the first embodiment.
  • FIG. 4 is a flowchart illustrating an example of the detected object identification process executed by the object identification unit according to the first embodiment.
  • FIG. 5 is a diagram illustrating definitions of threshold values Rth1 and Rth2 used when identifying a detected object.
  • FIG. 6 is a flowchart illustrating an example of the condition determination process A executed by the condition determination unit according to the first embodiment.
  • FIG. 7 is a flowchart illustrating an example of an angle calculation process A executed by the angle calculation unit according to the first embodiment.
  • FIG. 8 is a diagram showing the definitions of the preceding vehicle position reference position Pk, the average preceding vehicle vertical position PzA, and the preceding vehicle vertical displacement amount Ph1.
  • FIG. 9 is a diagram illustrating a state in which the preceding vehicle 200 is detected by the radar device 10 while the vehicle body of the host vehicle 100 is kept horizontal.
  • FIG. 10 is a diagram showing the detection position M1 of the preceding vehicle detected on the detection surface SA when the body of the host vehicle 100 is kept horizontal.
  • FIG. 11 is a diagram illustrating a state in which the preceding vehicle 200 is detected by the radar device 10 with the vehicle body of the host vehicle 100 tilted.
  • FIG. 12 is a diagram illustrating how the direction of the detection axis of the radar apparatus is changed.
  • FIG. 13 is a diagram illustrating a state in which the guard rail 300 is detected by the radar apparatus 10 in a state where the vehicle body of the host vehicle 100 is tilted.
  • FIG. 14 is a flowchart illustrating an example of a condition determination process B executed by the condition determination unit according to the second embodiment.
  • FIG. 15 is a flowchart illustrating an example of an angle calculation process B executed by the angle calculation unit according to the second embodiment.
  • FIG. 16 is a diagram illustrating definitions of the guardrail position reference position Gk, the average guardrail vertical position GzA, and the guardrail vertical displacement amount Gh1.
  • FIG. 17 is a flowchart illustrating an example of the condition determination process C executed by the condition determination unit 135 according to the third embodiment.
  • FIG. 18 is an example of an angle calculation process C executed by the angle calculation unit 136 according to the third embodiment.
  • FIG. 19 is a diagram illustrating a roadside object movement vector VeQ.
  • FIG. 20 is a diagram illustrating the relationship between the relative pitch angle ⁇ and the gradient angle ⁇ when there is a gradient change in the destination road.
  • FIG. 21 is a flowchart illustrating an example of the condition determination process D executed by the condition determination unit 135 according to the fourth embodiment.
  • FIG. 22 is a flowchart illustrating an example of an angle calculation process D executed by the angle calculation unit 136 according to the fourth embodiment.
  • FIG. 23 is a diagram illustrating a state in which the position of a guardrail arranged along a road with a gradient change is detected.
  • FIG. 24 is a flowchart illustrating an example of the condition determination process E executed by the condition determination unit 135 according to the fifth embodiment.
  • FIG. 25 is a flowchart illustrating an example of an angle calculation process E executed by the angle calculation unit 136 according to the fifth embodiment.
  • FIG. 26 is a diagram illustrating a state in which a conventional vehicle obstacle detection device mounted on an inclined vehicle detects an object.
  • FIG. 27 is a diagram illustrating a state in which a conventional vehicle obstacle detection device mounted on a vehicle traveling on a road with a changed slope detects an object.
  • the object detection apparatus according to the present invention is an apparatus that is mounted on the host vehicle 100 and detects objects around the host vehicle 100.
  • FIG. 1 is a block diagram showing an example of the configuration of the object detection apparatus according to the present invention.
  • the object detection device 1 includes a radar device 10, an acceleration sensor 11, a rudder angle sensor 12, and an obstacle detection ECU 13.
  • the object detection device 1 is electrically connected to each of the collision determination ECU 40 and the vehicle control device 50 mounted on the host vehicle 100.
  • the radar device 10 is a device that detects position information of objects around the host vehicle 100 and the velocity Vm of the objects. For example, the radar device 10 irradiates a detection wave signal such as an electromagnetic wave or an ultrasonic wave around the host vehicle 100. Then, the position information of the object is detected based on the reflected wave of the detected wave signal reflected by the object (hereinafter referred to as a reflected wave signal).
  • the radar device 10 is typically an FM-CW radar device that transmits and receives electromagnetic waves in the millimeter wavelength band.
  • the radar device 10 is mounted on the front end of the host vehicle 100.
  • the detection axis J of the radar device 10 is set so as to extend in the front-rear direction of the host vehicle 100 (see FIG. 9).
  • the detection axis J is an axis indicating the direction in which the radar apparatus 10 emits the detection wave. In each drawing shown below, a region where the radar device 10 detects an object is illustrated by dot hatching.
  • an object detected by the radar device 10 is referred to as a detected object.
  • the radar device 10 detects the position of the detected object in an XYZ coordinate system with the radar device 10 as the origin.
  • the radar apparatus 10 uses the direction along the detection axis J as the X-axis component, the vertical direction relative to the X-axis as the Z-axis component (see FIG. 5), and the left-right direction as the Y-axis component. Is detected.
  • the radar device 10 is electrically connected to the obstacle detection ECU 13.
  • the radar apparatus 10 transmits the detected position information of the detected object to the obstacle detection ECU 13.
  • the radar device 10 corresponds to the position detection unit described in the claims.
  • the acceleration sensor 11 is a sensor that detects acceleration / deceleration of the host vehicle 100 (hereinafter referred to as host vehicle acceleration / deceleration ACs).
  • the acceleration sensor 11 is an acceleration sensor such as a mechanical type, an optical type, or a semiconductor type.
  • the acceleration sensor 11 may detect the own vehicle acceleration / deceleration ACs using any conventionally known method.
  • the acceleration sensor 11 is electrically connected to the obstacle detection ECU 13. Then, the acceleration sensor 11 transmits data indicating the detected own vehicle acceleration / deceleration ACs to the obstacle detection ECU 13.
  • the acceleration sensor 11 corresponds to the own vehicle acceleration detection unit described in the claims.
  • the steering angle sensor 12 is a sensor that detects the steering angle ⁇ of the host vehicle 100.
  • the rudder angle sensor 12 may detect the rudder angle ⁇ using any conventionally known method.
  • the steering angle sensor 12 is electrically connected to the obstacle detection ECU 13. Then, the steering angle sensor 12 transmits data indicating the detected steering angle ⁇ to the obstacle detection ECU 13.
  • the rudder angle sensor 12 corresponds to the rudder angle detector described in the claims.
  • the obstacle detection ECU 13 is typically a control device including an information processing device such as a CPU (Central Processing Unit), a storage device such as a memory, an interface circuit, and the like.
  • the obstacle detection ECU 13 is electrically connected to the collision determination ECU 40 and the vehicle control device 50, respectively.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of the obstacle detection ECU according to the first embodiment.
  • the obstacle detection ECU 13 functionally includes a storage unit 131, an object identification unit 132, a preceding vehicle acceleration / deceleration calculation unit 133, a gradient determination unit 134, a condition determination unit 135, an angle calculation unit 136, and A setting change unit 137 is provided.
  • the obstacle detection ECU 13 functionally stores, for example, a storage unit 131, an object identification unit 132, and a preceding vehicle acceleration / deceleration calculation unit by causing the CPU to execute a control program stored in advance in a memory or the like included in the obstacle detection ECU 13. 133, the gradient determination unit 134, the condition determination unit 135, the angle calculation unit 136, and the setting change unit 137 operate.
  • the storage unit 131 is a functional unit that stores information related to the detected object detected by the radar device 10. Specifically, the storage unit 131 stores the position coordinates of the detected object received from the radar device 10 and the velocity Vm.
  • the object identifying unit 132 is a functional unit that identifies whether or not the detected object is an obstacle based on the vertical position information (Z coordinate) of the detected object stored in the storage unit 131.
  • the object identifying unit 132 further identifies whether the detected object is an elevated object, a step, a preceding vehicle, a roadside object, or a guardrail based on the vertical position information (Z coordinate).
  • the object identification unit 132 instructs the storage unit 131 to store information on the detected object in association with the identification result. Further, the object identification unit 132 outputs position information of the detected object identified as an obstacle to the collision determination ECU. Details of processing executed by the object identification unit 132 according to the first embodiment will be described later with reference to FIG.
  • the preceding vehicle acceleration / deceleration calculation unit 133 is a functional unit that calculates the acceleration / deceleration of the preceding vehicle 200 (hereinafter referred to as the preceding vehicle acceleration / deceleration ACm). For example, the preceding vehicle acceleration / deceleration calculation unit 133 calculates the preceding vehicle acceleration / deceleration ACm by differentiating the speed Vm of the preceding vehicle 200 stored in the storage unit 131 with respect to time. Note that the above processing is an example, and the preceding vehicle acceleration / deceleration calculation unit 133 may calculate the preceding vehicle acceleration / deceleration ACm using any conventionally known method.
  • the gradient determination unit 134 determines whether or not the road gradient of the destination of the host vehicle 100 is changing based on the vertical position information (Z coordinate) of the detected object stored in the storage unit 131. In the first embodiment, the gradient determining unit 134 is based on the current and past vertical positions of the preceding vehicle 200 stored in the storage unit 131 (hereinafter referred to as the preceding vehicle vertical position Pz). It is determined whether or not the road gradient of the destination 100 has changed.
  • the condition determination unit 135 determines whether a condition for accurately detecting the vertical position of the object is satisfied for a predetermined time. In the first embodiment, the condition determination unit 135 determines whether or not a condition for accurately detecting the vertical position of the preceding vehicle 200 is satisfied for a predetermined time, based on the storage unit 131 and the object identification unit 132. The determination is based on information acquired from the preceding vehicle acceleration / deceleration calculation unit 133, the gradient determination unit 134, the acceleration sensor 11, and the rudder angle sensor 12. Details of processing executed by the condition determination unit 135 according to the first embodiment will be described later with reference to FIG.
  • the angle calculation unit 136 uses the relative pitch angle ⁇ (see FIG. 11) formed by the detection axis J of the radar device 10 and the road surface of the road on which the host vehicle 100 travels, the determination result of the condition determination unit 135, and the storage unit 131. Is calculated based on the preceding vehicle up-and-down position Pz. Further, the angle calculation unit 136 according to the first embodiment calculates the attitude angle ⁇ in the pitch direction of the host vehicle 100 based on the relative pitch angle. Then, the angle calculation unit 136 outputs the calculated attitude angle ⁇ to the vehicle control device 50. Details of the processing executed by the angle calculation unit 136 according to the first embodiment will be described later with reference to FIG.
  • the setting change unit 137 is a functional unit that changes the setting of the radar device 10. For example, the setting change unit 137 changes the position of the detection axis J of the radar device 10 according to the relative pitch angle ⁇ . Specifically, the setting changing unit 137 moves the detection axis J of the radar apparatus 10 so that the relative pitch angle ⁇ is small.
  • the collision determination ECU 40 is typically a control device including an information processing device such as a CPU, a storage device such as a memory, and an interface circuit.
  • the collision determination ECU 40 acquires obstacle position information from the obstacle detection ECU 13. Then, the collision determination ECU 40 determines whether or not there is a high risk that the obstacle and the host vehicle 100 will collide. When the collision determination ECU 40 determines that there is a high risk of the obstacle and the host vehicle 100 colliding, the collision determination ECU 40 activates the vehicle control device 50 to urge avoidance of the collision.
  • the vehicle control device 50 is a control device such as a brake control device, a steering control device, an alarm device, and a suspension control device.
  • a brake control device such as a brake control device, a steering control device, an alarm device, and a suspension control device.
  • Each of the brake control device, the steering control device, and the alarm device controls the traveling of the host vehicle 100 so as to avoid the collision between the obstacle and the host vehicle 100 or issues an alarm according to an instruction from the collision determination ECU 40. Or emit.
  • the suspension control device controls the suspension in accordance with the value of the posture angle ⁇ received from the angle calculation unit, and performs control so that the posture of the host vehicle 100 is kept horizontal.
  • FIG. 3 is a flowchart illustrating an example of processing executed by the obstacle detection ECU according to the first embodiment.
  • Obstacle detection ECU13 starts the process of the flowchart of FIG. 3, for example, when the IG power supply of the own vehicle 100 is set to an ON state.
  • the obstacle detection ECU 13 executes the process of step A1.
  • step A1 the storage unit 131 initializes the stored data relating to the detected object.
  • the IG power supply is set to the on-state, that is, by initializing the data relating to the detected object once stored at the time of starting the engine, it is not affected by the data of the detected object detected during the previous run. Values such as the relative pitch angle ⁇ can be accurately calculated in the following processing.
  • step A2 the radar apparatus 10 detects the position information of the detected object and the velocity Vm of the object. Further, the storage unit 131 stores the position information of the detected object stored by the radar device 10 and the velocity Vm of the object.
  • FIG. 4 is a flowchart illustrating an example of the detected object identification process executed by the object identification unit according to the first embodiment.
  • the object identification unit 132 When the object identification unit 132 starts the detected object identification process shown in FIG. 4, it first determines whether or not the detected object exists in the region R2 (step A301).
  • the region R2 is a region where the Z coordinate is not less than a predetermined threshold Rth1 and less than Rth2 in the XYZ coordinate system indicating the position of the detected object.
  • FIG. 5 is a diagram illustrating definitions of threshold values Rth1 and Rth2 used when identifying a detected object.
  • the threshold value Rth1 is preferably set in advance to a value indicating the lower end position of the vehicle body of the host vehicle 100.
  • the threshold value Rth2 is preferably set in advance to a value indicating the upper end position of the vehicle body of the host vehicle 100.
  • the object identification unit 132 exists in the region R2 where the detected object is equal to or higher than the lower end of the vehicle body of the host vehicle 100 and lower than the upper end of the vehicle body of the host vehicle 100. It can be determined whether or not. If the object identification unit 132 determines that the detected object exists in the region R2 (Yes in step A301), the object identification unit 132 identifies the detected object as an obstacle that may collide with the host vehicle 100, and stores the identification result. 131 (step A302). Further, the object identification unit 132 outputs data stored in the storage unit 131 regarding the detected object identified as an obstacle to the collision determination ECU 40.
  • step A302 the object identification unit 132 advances the process to step A306.
  • the object identification unit 132 determines that the detected object does not exist in the region R2 (No in Step A301)
  • the object identifying unit 132 identifies the detected object as not an obstacle and advances the process to Step A303.
  • step A303 the object identification unit 132 determines whether the detected object exists in the region R1.
  • the region R1 is a region that is less than the threshold value Rth1 in the XYZ coordinate system that indicates the position of the detected object. That is, the object identification unit 132 determines whether or not the detected object is present in the region R1 below the lower end of the vehicle body of the host vehicle 100.
  • the object identification unit 132 determines that the detected object is present in the region R1 (Yes in Step A303)
  • the object identification unit 132 identifies that the detected object is a step and stores the identification result in the storage unit 131 (Step A304).
  • the object identification unit 132 determines that the detected object does not exist in the region R1 (No in Step A303), the detected object exists in the region R3 above the upper end of the vehicle body of the host vehicle 100. Conceivable. Therefore, in such a case, the object identification unit 132 identifies the detected object as an elevated object that is installed above and away from the road on which the host vehicle 100 travels (step A305). Then, the object identification unit 132 stores the identification result in the storage unit 131. And the object identification part 132 will complete
  • the object identifying unit 132 determines whether the detected object is a preceding vehicle. Specifically, the object identification unit 132 determines whether or not the movement locus of the detected object is similar to the movement locus of the host vehicle 100 (step A306). More specifically, the object identification unit 132 maps the movement locus of the detected object on a virtual map from the current and past position information of the detected object stored in the storage unit 131. Similarly, the object identification unit 132 maps the movement trajectory of the host vehicle 100 on the map. Then, the object identification unit 132 determines whether or not the shape of the movement locus of the detected object is similar to the shape of the movement locus of the host vehicle 100.
  • Step A306 the object identification unit 132 determines that the movement trajectory of the detected object is similar to the movement trajectory of the host vehicle 100 (Yes in Step A306), the object identification unit 132 identifies the detected object as a preceding vehicle and stores the identification result in the storage unit 131. (Step A307).
  • the object identification unit 132 completes the process of step A307, the object identification unit 132 completes the detected object identification process and advances the process to step A4 of FIG.
  • the object identification unit 132 determines that the movement locus of the detected object is not similar to the movement locus of the host vehicle 100 (No in step A306), that is, if it is determined that the detected object is not a preceding vehicle, the detected object is It is determined whether it is a roadside object. Specifically, the object identification unit 132 determines whether or not the detected object is stationary at the front side of the host vehicle 100 based on the position information stored in the storage unit 131 (step A308). If the object identification unit 132 determines that the detected object is not stationary at the front side of the host vehicle 100 (No in Step A308), the object identification unit 132 completes the detected object identification process and advances the process to Step A4 in FIG.
  • the object identification unit 132 determines that the detected object is stationary at the front side of the host vehicle 100 (Yes in Step A308), the object identification unit 132 identifies the detected object as a roadside object and stores the identification result. The information is stored in the unit 131 (step A309).
  • the object identification unit 132 indicates whether or not the detected object identified as a roadside object is extended in the traveling direction of the host vehicle 100 in the position information stored in the storage unit 131. Based on the determination (step A310). Specifically, it is determined whether or not the length of the detected object in the X-axis direction is greater than or equal to a predetermined threshold value.
  • the object identification unit 132 determines that the detected object identified as the roadside object is extended in the traveling direction of the host vehicle 100, the object identification unit 132 identifies that the detected object is a guardrail, and stores the identification result in the storage unit 131. Store (step A311). On the other hand, when the object identification unit 132 determines that the detected object identified as the roadside object is not extended in the traveling direction of the host vehicle 100, the object identification unit 132 completes the detected object identification process and proceeds to step A4 in FIG. .
  • an object can be easily identified based on the vertical position information of the detected object.
  • step A306 the object identification unit 132 determines in step A306 whether the movement locus of the detected object is similar to the movement locus of the host vehicle 100 using a conventionally known method. I do not care.
  • the object identifying unit 132 is not limited to the process shown in step A306 above, and may determine whether the detected object is a preceding vehicle using any conventionally known method.
  • step A308 the object identification unit 132 may determine whether the detected object is stationary in front of the host vehicle 100 using a conventionally known method.
  • the object identification unit 132 is not limited to the above-described detection object identification process, and the detection object may be identified in more detail using any conventionally known method.
  • step A4 the condition determination unit 135 executes a condition determination process.
  • FIG. 6 is a flowchart illustrating an example of the condition determination process A executed by the condition determination unit according to the first embodiment.
  • the condition determination unit 135 determines whether or not all of the following conditions from Step A40 to Step A45 are satisfied.
  • the condition determination unit 135 determines whether or not the preceding vehicle 200 is currently detected based on the identification result by the object detection unit 132 stored in the storage unit 131 (step A40). Next, the condition determination unit 135 determines whether or not the host vehicle 100 is traveling at a constant speed (step A41). Specifically, the condition determination unit 135 determines whether the host vehicle 100 is traveling at a constant speed depending on whether or not the host vehicle acceleration / deceleration ACs acquired from the acceleration sensor 11 is equal to or less than a predetermined threshold ACsth. Judge whether or not. Next, the condition determination unit 135 determines whether or not the host vehicle 100 is traveling straight ahead (in step A42).
  • condition determination unit 135 determines whether or not the host vehicle 100 is traveling straight depending on whether or not the rudder angle ⁇ acquired from the rudder angle sensor 12 is less than a predetermined threshold ⁇ th. judge. Next, the condition determination unit 135 determines whether or not the preceding vehicle 200 is traveling at a constant speed (step A43). Specifically, first, the preceding vehicle acceleration / deceleration calculation unit 133 calculates the preceding vehicle acceleration / deceleration ACm.
  • the preceding vehicle 200 is traveling at a constant speed depending on whether or not the preceding vehicle acceleration / deceleration ACm acquired from the preceding vehicle acceleration / deceleration calculating unit 133 by the condition determining unit 135 is equal to or less than a predetermined threshold ACmth. It is determined whether or not.
  • the condition determination unit 135 determines whether or not the preceding vehicle 200 is traveling straight ahead (step A44). Specifically, the condition determination unit 135 determines whether or not the amount of change per hour of the lateral position (Y coordinate) of the preceding vehicle 200 stored in the storage unit 131 is less than a predetermined threshold. It is determined whether the preceding vehicle 200 is traveling straight ahead.
  • step A45 the gradient determination unit 134 determines whether there is no change in the road surface gradient of the traveling destination of the host vehicle 100. It is considered that when the preceding vehicle 200 starts running on a sloped road surface, the vertical position of the preceding vehicle 200 starts to fluctuate rapidly. Therefore, the gradient determination unit 134 first reads the value of the vertical position Pz of the current and past preceding vehicles 200 from the storage unit 131. Then, the amount of change per unit time of the vertical position Pz of the preceding vehicle 200 is calculated as the preceding vehicle vertical speed ⁇ Pz.
  • the gradient determination unit 134 determines that there is no change in the road surface gradient of the traveling destination of the host vehicle 100.
  • the preceding vehicle vertical speed ⁇ Pz is greater than a predetermined threshold value ⁇ Pzth, it is determined that there is a change in the road surface gradient of the traveling destination of the host vehicle 100. That is, the gradient determination unit 134 determines whether or not the following expression (1) is satisfied.
  • the condition determination unit 135 acquires the determination result by the gradient determination unit 134 and determines whether or not the road surface gradient of the traveling destination of the host vehicle 100 has changed. ⁇ Pz ⁇ ⁇ Pzth (1)
  • the condition determination unit 135 sets the accurate detection condition flag to ON (step A46).
  • the accurate detection condition flag is set to OFF (Step A47).
  • the accurate detection condition flag is a flag indicating that the vertical position of the detected object can be accurately detected when the flag is on.
  • the on / off state of the accurate detection condition flag is stored in the storage device of the obstacle detection ECU 13.
  • step A5 the condition determination unit 135 determines whether or not a predetermined time has elapsed since the accurate detection condition flag was set to ON. Specifically, the condition determination unit 135 measures the elapsed time T from the time when the accurate detection condition flag is set to ON. Then, the condition determination unit 135 determines whether or not the elapsed time T is equal to or greater than a predetermined threshold Tth. If the condition determination unit 135 determines that a predetermined time has elapsed since the accurate detection condition flag was set to ON (Yes in step A5), the process proceeds to step A6. On the other hand, if the condition determination unit 135 determines that the predetermined time has not elapsed since the accurate detection condition flag is set to ON (No in step A5), the process proceeds to step A8.
  • the angle calculation process shown below is executed, and the relative pitch angle ⁇ and the attitude angle are ⁇ is calculated. Therefore, it is possible to prevent the relative pitch angle ⁇ and the attitude angle ⁇ from being calculated based on the vertical position information of the preceding vehicle 200 detected in error.
  • the condition that the host vehicle 100 is traveling at a constant speed and the preceding vehicle 200 is traveling at a constant speed makes it possible to obtain only the vertical position information Pz of the preceding vehicle 200 with higher accuracy. Based on this, the relative pitch angle ⁇ and the posture angle ⁇ can be calculated. Therefore, it is possible to prevent the setting of the radar apparatus 10 from being changed based on the relative pitch angle ⁇ and the attitude angle ⁇ calculated in error.
  • step A6 the angle calculation unit 136 executes an angle calculation process.
  • the angle calculation unit 136 according to the first embodiment executes an angle calculation process A shown in FIG.
  • FIG. 7 is a flowchart illustrating an example of an angle calculation process A executed by the angle calculation unit according to the first embodiment.
  • the angle calculation unit 136 first calculates the average preceding vehicle vertical position PzA (step A61).
  • the average preceding vehicle up / down position PzA is an average value of the up / down positions Pz of the preceding vehicle 200 detected at a plurality of times from the time when the accurate detection condition flag is set to ON.
  • the angle calculation unit 136 calculates the preceding vehicle vertical displacement amount Ph1 (step A62).
  • the preceding vehicle up / down displacement amount Ph1 is a displacement amount of the average preceding vehicle up / down position PzA with respect to the preceding vehicle position reference position Pk predetermined in the XYZ coordinate system indicating the position of the detected object as shown in FIG.
  • FIG. 8 is a diagram showing the definitions of the preceding vehicle position reference position Pk, the average preceding vehicle up / down position PzA, and the preceding vehicle up / down displacement amount Ph1.
  • the preceding vehicle position reference position Pk is detected when the preceding vehicle 200 is detected when the radar device 10 detects the preceding vehicle 200 with the body of the host vehicle 100 kept horizontal.
  • FIG. 9 is a diagram illustrating a state in which the preceding vehicle 200 is detected by the radar device 10 while the vehicle body of the host vehicle 100 is kept horizontal.
  • the Z coordinate (the preceding vehicle vertical position Pz) of the detection position M1 of the radar apparatus 10 is As shown in FIG. 10, it is substantially the same value as the preceding vehicle position reference position Pk.
  • FIG. 10 is a diagram showing the detection position M1 of the preceding vehicle 200 detected on the detection surface SA when the body of the host vehicle 100 is kept horizontal.
  • the angle calculation unit 136 calculates the relative pitch angle ⁇ formed by the detection axis J of the radar device 10 and the road surface on which the host vehicle 100 travels according to the preceding vehicle vertical displacement amount Ph1 (step A63).
  • a case is assumed where the front end of the vehicle body of the host vehicle 100 is directed upward, for example, as shown in FIG.
  • FIG. 11 is a diagram illustrating a state in which the preceding vehicle 200 is detected by the radar device 10 with the vehicle body of the host vehicle 100 tilted.
  • the detection axis J of the radar apparatus 10 also faces upward together with the vehicle body of the host vehicle 100.
  • the detection position M2 of the preceding vehicle 200 is detected by the radar device 10 at a position shifted downward from the preceding vehicle position reference position Pk by the preceding vehicle vertical displacement amount Ph1.
  • the angle calculation unit 136 can calculate the relative pitch angle ⁇ according to the preceding vehicle vertical displacement amount Ph1.
  • the angle calculation unit 136 stores in advance a data table indicating the correlation between the relative pitch angle ⁇ and the preceding vehicle vertical displacement amount Ph1. Then, the angle calculation unit 136 calculates the relative pitch angle ⁇ corresponding to the preceding vehicle vertical displacement amount Ph1 with reference to the data table.
  • the relative pitch angle ⁇ is calculated by a simple process for obtaining the vertical position shift (preceding vehicle vertical displacement amount Ph1) of the preceding vehicle 200 with respect to the preceding vehicle position reference position Pk. It is possible. Also, when the vertical displacement amount Ph1 of the preceding vehicle is calculated based on the average value of the vertical position Pz of the preceding vehicle 200 detected at a plurality of different time points, the vertical position Pz is temporarily erroneously detected due to noise or the like. Even if there is, it is possible to accurately calculate the relative pitch angle ⁇ while suppressing the influence of such erroneous detection.
  • the angle calculation unit 136 calculates the posture angle ⁇ based on the relative pitch angle ⁇ (step A64). As shown in FIG. 11, when the host vehicle 100 is traveling on a flat road surface having no change in gradient, the relative pitch angle ⁇ is considered to be a value corresponding to the posture angle of the host vehicle 100 in the pitch direction. It is done.
  • the relative pitch angle ⁇ is calculated. Therefore, the angle calculation unit 136 can calculate the posture angle ⁇ based on the relative pitch angle ⁇ .
  • the angle calculation unit 136 calculates the pitch angle with respect to the horizontal plane of the vehicle body of the host vehicle 100 as the posture angle ⁇ by subtracting the offset angle ⁇ from the relative pitch angle ⁇ .
  • the angle calculation unit 136 calculates the value of the relative pitch angle ⁇ as it is as the value of the posture angle ⁇ .
  • the angle calculation unit 136 outputs the calculated value of the posture angle ⁇ to the vehicle control device 50.
  • the relative pitch angle ⁇ and the attitude angle ⁇ can be calculated based on the detected vertical position information of the preceding vehicle 200. Therefore, it is not necessary to install hardware such as a gyro sensor in the own vehicle in order to calculate the relative pitch angle ⁇ and the attitude angle ⁇ . That is, the relative pitch angle ⁇ and the posture angle ⁇ can be detected with an inexpensive configuration. Further, according to the object detection device 1 according to the first embodiment, the posture angle ⁇ can be calculated even in a situation where there is no roadside object such as a guardrail around the host vehicle 100.
  • the setting changing unit 137 changes the setting of the radar device 10 according to the value of the relative pitch angle ⁇ calculated by the angle calculating unit 136 (step A7). Specifically, as shown in FIG. 12, the setting change unit 137 moves the position of the detection axis J of the radar apparatus 10 so that the value of the relative pitch angle ⁇ becomes small.
  • FIG. 12 is a diagram illustrating how the direction of the detection axis J of the radar apparatus 10 is changed. More preferably, the setting change unit 137 moves the position of the detection axis J of the radar apparatus 10 so that the value of the relative pitch angle ⁇ is zero. It should be noted that any conventionally known method may be used as the method by which the radar apparatus 10 moves the detection axis J.
  • the radar apparatus 10 may virtually move the position of the detection axis J by a calculation such as phase shifting the received reflected wave signal according to the relative pitch angle ⁇ . Further, the radar apparatus 10 may physically move the position of the detection axis J by physically changing the angle and arrangement of the receiving antenna that receives the reflected wave signal with an actuator.
  • the setting change unit 137 advances the process to step A8.
  • step A8 the obstacle detection ECU 13 determines whether or not the IG power source of the host vehicle 100 is set to an off state.
  • the obstacle detection ECU 13 determines that the IG power supply of the host vehicle 100 is maintained in the ON state
  • the obstacle detection ECU 13 returns the process to step A2 and repeatedly executes the processes from step A2 to step A7.
  • the obstacle detection ECU 13 ends the process of the flowchart of FIG.
  • the direction of the detection axis J of the radar device 10 can be corrected according to the relative pitch angle ⁇ . More specifically, by changing the direction of the detection axis J so that the relative pitch angle ⁇ becomes 0, the detection axis J is controlled to be always parallel to the road surface. Therefore, the height of the detected object from the road surface can be accurately detected. In addition, it is difficult to detect erroneously that an elevated object such as a signboard disposed above and away from the road surface exists at a low position. Then, since the position information of the detected object thus accurately detected is used to identify what kind of object the detected object is, the object detecting device 1 can accurately identify the object. it can.
  • the setting change unit 137 may omit the processing from step A4 to step A8.
  • the object detection device 1 may be configured not to include the acceleration sensor 11 and the steering angle sensor 12.
  • the setting change unit 137 may perform arbitrary setting change processing according to the relative pitch angle ⁇ for the setting of the radar device 10 without being limited to the above-described processing.
  • the setting change unit 137 may change the reception sensitivity of the reflected wave signal in the radar apparatus 10 according to the relative pitch angle ⁇ . More specifically, the setting changing unit 137 may decrease the reception sensitivity of the reflected wave signal from a relatively upper region in the object detection region of the radar apparatus 10 as the relative pitch angle ⁇ is larger.
  • the setting change unit 137 may change the transmission intensity of the detection wave signal emitted by the radar apparatus 10 according to the relative pitch angle ⁇ . More specifically, the setting change unit 137 may decrease the transmission intensity of the detection wave signal transmitted to a relatively upper region in the object detection region of the radar apparatus 10 as the relative pitch angle ⁇ is larger. .
  • the object identifying unit 132 may identify a plurality of different preceding vehicles, and the angle calculating unit 136 may calculate the relative pitch angle ⁇ and the posture angle ⁇ based on the vertical position information of each of the plurality of different preceding vehicles. Absent. For example, an average value of the relative pitch angles ⁇ obtained for each of a plurality of different preceding vehicles may be calculated as the relative pitch angle ⁇ .
  • FIG. 13 is a diagram illustrating a state where the guard rail 300 is detected by the radar device 10 in a state where the vehicle body of the host vehicle 100 is tilted.
  • an object detection device according to the second embodiment will be described.
  • the configuration of the object detection apparatus according to the second embodiment is the same as that of the first embodiment (see FIGS. 1 and 2). Further, the obstacle detection ECU 13 according to the second embodiment executes the process in the same procedure as the flowchart of FIG. 3, but the condition determination process executed by the condition determination unit 135 in step A4 and the angle calculation unit in step A6. The angle calculation process executed by 136 is different. Hereinafter, processing executed by the condition determination unit 135 and the angle calculation unit 136 according to the second embodiment will be described.
  • FIG. 14 is a flowchart illustrating an example of condition determination processing B executed by the condition determination unit 135 according to the second embodiment.
  • the condition determination unit 135 determines whether or not all of the following conditions from Step B40 to Step B43 are satisfied.
  • condition determination unit 135 determines whether or not the guardrail 300 is currently detected based on the identification result by the object detection unit 132 stored in the storage unit 131 (step B40). Next, the condition determination unit 135 determines whether or not the host vehicle 100 is traveling at a constant speed in the same manner as in step A41 (step B41). Next, the condition determining unit 135 determines whether or not the host vehicle 100 is traveling straight ahead in the same manner as in step A42 (step B42).
  • the gradient determination unit 134 determines whether there is a change in the road surface gradient of the traveling destination of the host vehicle 100.
  • the gradient determination unit 134 first acquires the vertical position of the guard rail 300 at a position away from the host vehicle 100 by a predetermined distance. More specifically, the gradient determining unit 134 reads from the storage unit 131 the Z coordinate of the guardrail 300 (hereinafter referred to as the guardrail vertical position Gz) at the position where the X coordinate is L1. It is assumed that the guardrail vertical position Gz is detected and stored in advance in step A2.
  • a change amount per unit time of the guard rail vertical position Gz is calculated as a guard rail vertical change amount ⁇ Gz. Then, when the guardrail up / down change amount ⁇ Gz is equal to or less than a predetermined threshold value ⁇ Gzth, the gradient determination unit 134 determines that there is no change in the gradient of the destination road of the host vehicle 100. On the other hand, when the guard rail up / down change amount ⁇ Gz is larger than a predetermined threshold value ⁇ Gzth, it is determined that there is a change in the road gradient of the traveling destination of the host vehicle 100. That is, the gradient determination unit 134 determines whether or not the following expression (2) is satisfied. ⁇ Gz ⁇ ⁇ Gzth (2)
  • step B44 If all the conditions from step B40 to step B43 are satisfied (all from step B40 to step B43 is Yes), the condition determination unit 135 sets the accurate detection condition flag to ON (step B44). On the other hand, when any of the conditions from Step B40 to Step B43 is not satisfied (No in any one of Step B40 to Step B43), the accurate detection condition flag is set to OFF (Step B45). When the process of step B44 or step B45 is completed, the condition determining unit 135 advances the process to step A5 of FIG.
  • the angle calculation process B described below is performed when there is no change in the gradient of the road on which the host vehicle 100 travels and the guardrail 300 is continuously detected for a predetermined time. Is executed.
  • FIG. 15 is a flowchart illustrating an example of an angle calculation process B executed by the angle calculation unit 136 according to the second embodiment.
  • the angle calculation unit 136 first calculates the average guardrail vertical position GzA (step B61).
  • the average guardrail vertical position GzA is an average value of the guardrail vertical position Gz detected from the time when the accurate detection condition flag is set to ON until the present time.
  • the angle calculation unit 136 reads the value of the guardrail vertical position Gz detected at the plurality of times from the storage unit 131, and calculates the average value of these values as the average guardrail vertical position GzA.
  • the angle calculation unit 136 calculates a guard rail vertical displacement amount Gh1 (step B62).
  • the guard rail vertical displacement amount Gh1 is a displacement amount of the average guard rail vertical position GzA with respect to the guard rail position reference position Gk that is predetermined in the XYZ coordinate system indicating the position of the detected object.
  • FIG. 16 is a diagram illustrating definitions of the guardrail position reference position Gk, the average guardrail vertical position GzA, and the guardrail vertical displacement amount Gh1.
  • the guardrail position reference position Gk is a value indicating the vertical position (Z coordinate) of the guardrail 300 that will be detected when the guardrail 300 is detected by the radar apparatus 10 with the body of the host vehicle 100 kept horizontal. is there.
  • the guardrail position reference position Gk is arbitrarily determined by experiments or the like.
  • the angle calculation unit 136 calculates the relative pitch angle ⁇ formed by the detection axis J of the radar device 10 and the road surface on which the host vehicle 100 travels according to the guard rail vertical displacement amount Gh1 (step B63).
  • the detection axis J of the radar apparatus 10 also faces upward. Therefore, the detection position M3 of the guard rail 300 is detected by the radar device 10 as a position shifted downward from the guard rail position reference position Gk by the guard rail vertical displacement amount Gh1.
  • the angle calculation unit 136 can calculate the relative pitch angle ⁇ according to the guard rail vertical displacement amount Gh1. More specifically, the angle calculation unit 136 stores in advance a data table indicating the correlation between the relative pitch angle ⁇ and the guard rail vertical displacement amount Gh1, for example. Then, the angle calculation unit 136 calculates the relative pitch angle ⁇ corresponding to the guardrail vertical displacement amount Gh1 with reference to the data table.
  • step B64 the angle calculation unit 136 calculates the posture angle ⁇ based on the relative pitch angle ⁇ in the same manner as in step A64 (step B64).
  • step B64 the angle calculation unit 136 completes the process of step B64, the process proceeds to step A7 of FIG.
  • the relative pitch angle ⁇ and the posture angle ⁇ can be calculated based on the detected vertical position information of the guard rail 300. Therefore, it is not necessary to install hardware such as a gyro sensor in the own vehicle in order to calculate the relative pitch angle ⁇ and the attitude angle ⁇ . That is, the relative pitch angle ⁇ and the posture angle ⁇ can be detected with an inexpensive configuration.
  • the posture angle ⁇ can be calculated even in a situation where no preceding vehicle exists in front of the host vehicle 100.
  • the direction of the detection axis J of the radar apparatus 10 can be corrected according to the relative pitch angle ⁇ , as in the first embodiment. Therefore, it is possible to accurately detect the position of the detected object and accurately identify what kind of object the detected object is.
  • the angle calculation unit 136 may calculate the relative pitch angle based not only on the positions separated by the distance L1 but also on the vertical positions of the guard rails 300 at different locations.
  • the angle calculation unit 136 has been described with respect to an example in which the relative angle pitch ⁇ is calculated based on the vertical position information of a roadside object extending along a road such as a guard rail.
  • the relative pitch angle ⁇ may be calculated based on the change over time of the position information of an arbitrary roadside object.
  • the configuration of the object detection apparatus according to the third embodiment is the same as that of the first and second embodiments (see FIGS. 1 and 2). Further, the obstacle detection ECU 13 according to the third embodiment executes the process in the same procedure as the flowchart of FIG. 3, but the condition determination process executed by the condition determination unit 135 in step A4 and the angle calculation unit in step A6. The angle calculation process executed by 136 is different. Hereinafter, processing executed by the condition determination unit 135 and the angle calculation unit 136 according to the third embodiment will be described.
  • FIG. 17 is a flowchart illustrating an example of the condition determination process C executed by the condition determination unit 135 according to the third embodiment. Note that, in the process of the condition determination process C shown in FIG. 17, the same process as the condition determination process B shown in FIG. When the condition determination process C is started, the condition determination unit 135 determines whether or not all of the following conditions from Step C40 and Step B41 to Step B43 are satisfied.
  • the condition determination unit 135 determines whether or not the roadside object detected last time is still detected based on the identification result by the object detection unit 132 stored in the storage unit 131 (step C40). Next, it is determined whether the conditions from step B41 to step B43 are satisfied in the same manner as in the second embodiment. If all the conditions of Step C40 and Step B41 to Step B43 are satisfied (Yes in Step C40 and Step B41 to Step B43), the condition determination unit 135 sets the accurate detection condition flag to ON (Step B44). On the other hand, when any of the conditions from Step B40 to Step B43 is not satisfied (No in any one of Step C40 and Step B41 to Step B43), the accurate detection condition flag is set to OFF (Step B45). When the process of step B46 or step B47 is completed, the condition determining unit 135 advances the process to step A5 of FIG.
  • FIG. 18 is a flowchart illustrating an example of an angle calculation process C executed by the angle calculation unit 136 according to the third embodiment.
  • condition determination process C the following angle calculation is performed when there is no change in the gradient of the road on which the host vehicle 100 is traveling and the same roadside object is continuously detected for a predetermined time. Process C is executed.
  • the angle calculation unit 136 first calculates the roadside object movement vector VeQ (step C61).
  • the roadside object movement vector VeQ is vector information indicating a change in position information of the roadside object detected by the radar apparatus 10.
  • the angle calculation unit 136 calculates the roadside object movement vector VeQ for the guard rail pole 400 detected as a roadside object.
  • the angle calculation unit 136 stores the relative detection position Q1 of the pole 400 with respect to the host vehicle 100 at the current time T1, and the relative detection position Q2 of the pole 400 with respect to the host vehicle 100 at the past time T2. And is mapped on the XZ plane as shown in FIG. Then, a vector on the XZ plane connecting the detection position Q1 and the point is calculated as a roadside object movement vector VeQ.
  • FIG. 19 is a diagram illustrating the roadside object movement vector VeQ.
  • the angle calculation unit 136 calculates the relative pitch angle ⁇ formed by the detection axis J of the radar device 10 and the road surface on which the host vehicle 100 travels according to the positional relationship between the roadside object movement vector VeQ and the detection axis J. (Step C62). Specifically, the angle formed by the roadside object movement vector VeQ and the detection axis J is calculated as the relative pitch angle ⁇ . As shown in FIG. 19, when the host vehicle 100 is traveling on a flat road surface without a change in slope, the detected pole 400 relatively approaches the host vehicle 100 as the host vehicle 100 travels. . Here, it is assumed that the posture of the host vehicle 100 is directed upward and the detection axis J of the radar apparatus 10 is also directed upward.
  • the vertical position Qz1 of the pole 400 at the current time T1 detected by the radar device 10 is the past time T2.
  • the vertical position Qz2 of the pole 400 it is detected as moving upward. That is, the vertical position of the roadside object changes with time according to the relative pitch angle ⁇ indicating the direction of the detection axis J. Therefore, the relative pitch angle ⁇ can be calculated by the roadside object movement vector VeQ indicating the change in the vertical position of the roadside object.
  • the relative pitch angle ⁇ can be calculated based on the detected vertical position information of the pole 400. Therefore, there is no need to mount a sensor or the like for calculating the pitch angle on the host vehicle.
  • the angle calculation unit 136 calculates the posture angle ⁇ based on the relative pitch angle ⁇ in the same manner as in Step B64 (Step C63).
  • the relative pitch angle ⁇ is not limited to a roadside object that forms a belt-like shape along a road such as a guardrail, but a roadside object of any form.
  • the attitude angle ⁇ can be calculated.
  • the posture angle ⁇ can be calculated even in a situation where no preceding vehicle exists in front of the host vehicle 100.
  • the direction of the detection axis J of the radar apparatus 10 can be corrected according to the relative pitch angle ⁇ , as in the first embodiment. Therefore, it is possible to accurately detect the position of the detected object and accurately identify the detected object.
  • the angle calculation unit 136 is not limited to the pole 400 of the guardrail 300, and may execute the process of FIG. 18 based on the position information of an arbitrary roadside object stored in the storage unit 131. Moreover, the process of the said step C61 is an example, and the angle calculation part 136 may calculate the roadside object movement vector VeQ using the conventionally well-known arbitrary methods.
  • the angle calculation unit 136 may calculate the slope angle ⁇ of the destination road.
  • FIG. 20 is a diagram illustrating the relationship between the relative pitch angle ⁇ and the gradient angle ⁇ when there is a gradient change in the destination road.
  • the configuration of the object detection apparatus according to the fourth embodiment is the same as that of the first embodiment (see FIGS. 1 and 2), but the processing executed by the obstacle detection ECU 13 is different. Further, the obstacle detection ECU 13 according to the fourth embodiment executes the process in the same procedure as the flowchart of FIG. 3, but the condition determination process executed by the condition determination unit 135 in step A4 and the angle calculation unit in step A6. The angle calculation process executed by 136 is different.
  • processing executed by the condition determination unit 135 and the angle calculation unit 136 according to the third embodiment will be described.
  • processing executed by the condition determination unit 135 and the angle calculation unit 136 according to the fourth embodiment will be described.
  • FIG. 21 is a flowchart illustrating an example of the condition determination process D executed by the condition determination unit 135 according to the fourth embodiment. Note that, in the condition determination process D shown in FIG. 21, steps that perform the same process as the condition determination process A shown in FIG. 6 are given the same reference numerals, and detailed description thereof is omitted.
  • the condition determination unit 135 determines whether or not all of the following conditions from Step A40 to Step A44 and Step D45 are satisfied.
  • step D45 the gradient determination unit 134 determines whether there is a change in the road surface gradient of the traveling destination of the host vehicle 100. Specifically, the gradient determination unit 134 calculates the preceding vehicle vertical speed ⁇ Pz in the same manner as in the process of step A45 described above. Then, when the preceding vehicle vertical speed ⁇ Pz is equal to or less than a predetermined threshold value ⁇ Pzth, the gradient determination unit 134 determines that the road surface gradient of the traveling destination of the host vehicle 100 has changed. On the other hand, when the preceding vehicle vertical speed ⁇ Pz is greater than a predetermined threshold value ⁇ Pzth, it is determined that there is no change in the road surface gradient of the traveling destination of the host vehicle 100. That is, the gradient determination unit 134 determines whether or not the following expression (3) is satisfied. ⁇ Pz> ⁇ Pzth (3)
  • step A40 to step A44 and step D45 When all the conditions from step A40 to step A44 and step D45 are satisfied (all from step A40 to step A44 and step D45 are all Yes), the condition determination unit 135 sets the accurate detection condition flag to ON ( Step A46). On the other hand, if any of the conditions from Step A40 to Step A45 is not satisfied (No in any one of Step A40 to Step A44 and Step D45), the accurate detection condition flag is set to OFF (Step A47). When the process of step A46 or step A47 is completed, the condition determination unit 135 advances the process to step A5 of FIG.
  • condition determination process D when the road gradient of the destination of the host vehicle 100 is changing and the preceding vehicle 200 is continuously detected for a predetermined time, the following angle calculation is performed. Process D is executed.
  • FIG. 22 is a flowchart illustrating an example of an angle calculation process D executed by the angle calculation unit 136 according to the fourth embodiment.
  • the angle calculation unit 136 calculates the preceding vehicle vertical displacement amount Ph2 (step D61).
  • the preceding vehicle up / down displacement amount Ph2 is a displacement amount of the current preceding vehicle up / down position Pz with respect to the preceding vehicle position reference position Pk.
  • the angle calculation unit 136 calculates the relative pitch angle ⁇ according to the preceding vehicle vertical displacement amount Ph2 (step D62). For example, the angle calculation unit 136 stores in advance a data table indicating the correlation between the relative pitch angle ⁇ and the preceding vehicle vertical displacement amount Ph2. Then, the angle calculation unit 136 calculates the relative pitch angle ⁇ corresponding to the preceding vehicle vertical displacement amount Ph2 with reference to the data table.
  • the angle calculation unit 136 calculates the gradient angle ⁇ based on the relative pitch angle ⁇ (step D63). As shown in FIG. 20, the relative pitch angle ⁇ is considered to be a value corresponding to the gradient of the road on which the host vehicle 100 travels. Therefore, the angle calculation unit 136 calculates the value of the relative pitch angle ⁇ as it is as the value of the gradient angle ⁇ . When the radar apparatus 10 is mounted so as to be inclined by the offset angle ⁇ with respect to the vehicle body of the host vehicle 100 as described above, the angle calculation unit 136 subtracts the offset angle ⁇ from the relative pitch angle ⁇ . Thus, the pitch angle with respect to the horizontal plane of the vehicle body of the host vehicle 100 may be calculated as the gradient angle ⁇ . When the angle calculation unit 136 completes the process of step D64, the process proceeds to step A7 of FIG.
  • the relative pitch angle ⁇ and the gradient angle ⁇ can be calculated based on the detected vertical position information of the preceding vehicle 200. Therefore, it is not necessary to install hardware such as a navigation device in the host vehicle in order to calculate the relative pitch angle ⁇ and the gradient angle ⁇ . That is, the relative pitch angle ⁇ and the gradient angle ⁇ can be detected with an inexpensive configuration.
  • the gradient angle ⁇ can be calculated even in a situation where there is no roadside object such as a guardrail around the host vehicle 100.
  • the direction of the detection axis J of the radar device 10 can be corrected according to the relative pitch angle ⁇ , as in the first embodiment. Therefore, it is possible to accurately detect the position of the detected object and accurately identify the detected object.
  • FIG. 23 is a diagram illustrating a state in which the position of a guardrail arranged along a road with a gradient change is detected.
  • the configuration of the object detection apparatus according to the fifth embodiment is the same as that of the first embodiment (see FIGS. 1 and 2), but the processing executed by the obstacle detection ECU 13 is different. Further, the obstacle detection ECU 13 according to the fifth embodiment executes the process in the same procedure as the flowchart of FIG. 3, but the condition determination process executed by the condition determination unit 135 in step A4 and the angle calculation unit in step A6. The angle calculation process executed by 136 is different.
  • processing executed by the condition determination unit 135 and the angle calculation unit 136 according to the fifth embodiment will be described.
  • processing executed by the condition determination unit 135 and the angle calculation unit 136 according to the fifth embodiment will be described.
  • FIG. 24 is a flowchart illustrating an example of the condition determination process E executed by the condition determination unit 135 according to the fifth embodiment. Note that, in the condition determination process E shown in FIG. 24, steps that perform the same process as the condition determination process B shown in FIG. 14 are given the same reference numerals, and detailed description thereof is omitted.
  • the condition determination unit 135 determines whether or not all of the following conditions from Step B40 to Step B42 and Step E43 are satisfied.
  • condition determination unit 135 determines whether or not the guardrail 300 is currently detected (step B40). Next, the condition determination unit 135 determines whether or not the host vehicle 100 is traveling at a constant speed (step B41). Next, the condition determination unit 135 determines whether or not the host vehicle 100 is traveling straight ahead (step B42).
  • the gradient determination unit 134 determines whether or not there is a change in the road surface gradient of the traveling destination of the host vehicle 100. Specifically, the gradient determination unit 134 calculates the guardrail up / down change amount ⁇ Gz in the same manner as the process of Step B43 described above. When the guard rail up / down change amount ⁇ Gz is larger than a predetermined threshold value ⁇ Gzth, it is determined that there is a change in the road surface gradient of the traveling destination of the host vehicle 100. On the other hand, when the preceding vehicle vertical speed ⁇ Gz is equal to or lower than a predetermined threshold value ⁇ Gzth, the gradient determination unit 134 determines that there is no change in the road surface gradient of the traveling destination of the host vehicle 100.
  • the gradient determination unit 134 determines whether or not the following expression (4) is satisfied.
  • the condition determination unit 135 acquires the determination result by the gradient determination unit 134 and determines whether or not the road surface gradient of the traveling destination of the host vehicle 100 has changed. ⁇ Gz> ⁇ Gzth (4)
  • the condition determination unit 135 sets the accurate detection condition flag to ON ( Step B44).
  • the accurate detection condition flag is set to OFF ( Step B45).
  • condition determination process E when the road gradient of the traveling destination of the host vehicle 100 is changed and the guardrail 300 is continuously detected for a predetermined time, the angle calculation process E shown below is performed. Is executed.
  • FIG. 25 is a flowchart illustrating an example of an angle calculation process E executed by the angle calculation unit 136 according to the fifth embodiment.
  • the angle calculation unit 136 calculates the guard rail vertical displacement amount Gh2 (step E61).
  • the guard rail vertical displacement amount Gh2 is a displacement amount of the current guard rail vertical position Gzn with respect to the guard rail position reference position Gk. It is assumed that the current guardrail vertical position Gzn is detected in the process of step A2 and stored in the storage unit 131.
  • the angle calculation unit 136 reads the value of the current guardrail vertical position Gzn from the storage unit 131 and calculates the displacement amount Gh2 from the guardrail reference position Gk.
  • the angle calculation unit 136 calculates the relative pitch angle ⁇ according to the guard rail vertical displacement amount Gh2 (step E62). For example, the angle calculation unit 136 previously stores a data table indicating the correlation between the relative pitch angle ⁇ and the guardrail vertical displacement amount Gh2. Then, the angle calculation unit 136 calculates the relative pitch angle ⁇ corresponding to the guardrail vertical displacement amount Gh2 with reference to the data table.
  • step E63 the angle calculation unit 136 calculates the gradient angle ⁇ based on the relative pitch angle ⁇ in the same manner as in step D63 (step E63).
  • step E64 the process proceeds to step A7 of FIG.
  • the relative pitch angle ⁇ and the gradient angle ⁇ can be calculated based on the detected vertical position information of the guard rail 300. Therefore, it is not necessary to install hardware such as a navigation device in the host vehicle in order to calculate the relative pitch angle ⁇ and the gradient angle ⁇ . That is, the relative pitch angle ⁇ and the gradient angle ⁇ can be detected with an inexpensive configuration.
  • the object detection device according to the fifth embodiment it is possible to calculate the gradient angle ⁇ even in a situation where there is no preceding vehicle ahead of the host vehicle 100.
  • the direction of the detection axis J of the radar apparatus 10 can be corrected according to the relative pitch angle ⁇ , as in the first embodiment. Therefore, it is possible to accurately detect the position of the detected object and accurately identify what kind of object the detected object is.
  • the object detection device includes the radar device 10 as a position detection unit.
  • the object detection device may include a camera that images the front of the host vehicle 100 as a position detection unit.
  • the detection axis J represents the optical axis of the camera.
  • the radar apparatus 10 may detect the position of the road surface on which the host vehicle 100 travels, and detect the position of the detected object using the road surface position as the origin of the Z axis.
  • the object detection apparatus according to the present invention is useful as an object detection apparatus that can detect an object more accurately than in the past.
  • Object detection device 10 Radar device (position detection unit) 11 Accelerometer (Vehicle acceleration / deceleration detector) 12 Rudder angle sensor (steering angle detector) 13 Obstacle detection ECU 131 storage unit 132 object identification unit 133 preceding vehicle acceleration / deceleration calculation unit 134 gradient determination unit 135 condition determination unit 136 angle calculation unit 137 setting change unit 40 collision determination ECU 50 Vehicle control device 91, 92 Signboard 100, 800 Own vehicle 200 Preceding vehicle 300, 301 Guardrail 400 Pole

Abstract

Provided is an object detector which is capable of detecting objects more accurately than conventional ones. The object detector detects an object that is present around a vehicle on which the detector is mounted. The object detector is characterized by including: a position detecting section for detecting at least the information on the vertical position of an object that is present on the road surface ahead of the vehicle; an object distinguishing section for distinguishing at least whether the object detected by the position detecting section is an obstacle which has the potential for colliding with the vehicle; an angle calculating section for calculating the relative pitch angle formed between the road surface of the road ahead of the vehicle and the axial detection line of the position detecting section on the basis of the information on the vertical position of the object; and a setting modifying section for correcting the setting of the position detecting section in accordance with the relative pitch angle to thereby prevent an erroneous distinction by the object distinguishing section.

Description

物体検出装置Object detection device
 本発明は、物体検出装置に関し、より特定的には、車両に搭載され、当該車両周囲の物体を検出する物体検出装置に関する。 The present invention relates to an object detection device, and more particularly to an object detection device that is mounted on a vehicle and detects an object around the vehicle.
 従来、例えば、自車両と障害物との衝突の危険を予測すること等を目的として、自車両の周囲に存在する物体を検出する物体検出装置が開発されている。 2. Description of the Related Art Conventionally, an object detection device that detects an object existing around a host vehicle has been developed for the purpose of, for example, predicting the danger of a collision between the host vehicle and an obstacle.
 上記のような物体検出装置の一例が、特許文献1に開示されている。特許文献1に開示される車両用障害物検出装置は、検出物の上下左右方向の位置を検出する。そして、検出物の高さが所定の範囲内である場合、当該物体を先行車等の障害物として認識する。 An example of the object detection apparatus as described above is disclosed in Patent Document 1. The vehicle obstacle detection device disclosed in Patent Document 1 detects the position of the detected object in the vertical and horizontal directions. When the height of the detected object is within a predetermined range, the object is recognized as an obstacle such as a preceding vehicle.
特開平13-038142号公報Japanese Patent Laid-Open No. 13-038142
 しかしながら、上記特許文献1のような車両用障害物検出装置では、当該装置を搭載する車両の姿勢が変化した場合や、道路の勾配が変化した場合に、物体が障害物であるか否かを正確に認識できない虞があった。 However, in the vehicle obstacle detection device as in Patent Document 1 described above, it is determined whether or not an object is an obstacle when the posture of the vehicle on which the device is mounted changes or when the road gradient changes. There was a possibility that it could not be recognized correctly.
 例えば、図26に示すように、トランクに重い荷物が積載されるなどして、上述車両用障害物検出装置を搭載する自車両800のピッチ方向の姿勢角が通常時に比べて上方向を向いている場合を想定する。なお、図26は、傾斜した車両に搭載された従来の車両用障害物検出装置が物体を検出する様子を示す図である。このような場合、車両用障害物検出装置が物体を検出可能な領域も通常時に比べて上方向へ向けられる。なお、車両用障害物検出装置が物体を検出可能な領域は、図26においてハッチングにて示す。このような場合、車両用障害物検出装置が、通常時には検出されない看板91等の物体を検出する。そして、車両用障害物検出装置は、実際には自車両800と衝突する危険性が無い看板90等の物体を障害物として誤認識してしまう虞があった。 For example, as shown in FIG. 26, a heavy load is loaded on the trunk, so that the posture angle in the pitch direction of the own vehicle 800 on which the above-described vehicle obstacle detection device is mounted is directed upward as compared with the normal time. Assuming that FIG. 26 is a diagram illustrating a state in which a conventional vehicle obstacle detection device mounted on an inclined vehicle detects an object. In such a case, the region where the obstacle detection device for a vehicle can detect an object is also directed upward compared to the normal time. A region where the vehicle obstacle detection device can detect an object is indicated by hatching in FIG. In such a case, the vehicle obstacle detection device detects an object such as a sign 91 that is not normally detected. Then, the vehicle obstacle detection device may erroneously recognize an object such as a signboard 90 or the like that does not actually have a risk of colliding with the host vehicle 800 as an obstacle.
 また、図27に示すように、車両の進行先の道路の勾配が変化している場合などにおいても、車両用障害物検出装置が、実際には自車両800と衝突する危険性が無い看板92等の物体を障害物として誤認識してしまう虞があった。なお、図27は、勾配が変化した道路を進行する車両に搭載された従来の車両用障害物検出装置が物体を検出する様子を示す図である。 In addition, as shown in FIG. 27, even when the slope of the road on which the vehicle travels is changing, the signboard 92 that does not actually cause the vehicle obstacle detection device to collide with the host vehicle 800. There is a risk of misrecognizing such an object as an obstacle. FIG. 27 is a diagram illustrating a state in which a conventional vehicle obstacle detection device mounted on a vehicle traveling on a road with a changed slope detects an object.
 本発明は上記の課題を鑑みて成されたものであり、従来に比して物体を正確に検出可能な物体検出装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide an object detection apparatus capable of detecting an object more accurately than in the past.
 上記の課題を解決するため、本発明は以下の構成を採用した。すなわち、本発明の第1の局面は、自車両周囲に存在する物体を検出する物体検出装置であって、自車両の進行先の路面上に存在する物体の少なくとも上下位置情報を検出する位置検出部と、位置検出部により検出された物体が自車両と衝突する可能性のある障害物であるか否かを少なくとも識別する物体識別部と、自車両の進行先の道路の路面と、位置検出部の検出軸線とが成す相対的なピッチ角を物体の上下位置情報に基づいて算出する角度算出部と、位置検出部の設定を相対的なピッチ角に応じて補正することによって物体識別部による誤識別を抑制する設定変更部とを備えることを特徴とする物体検出装置である。 In order to solve the above problems, the present invention adopts the following configuration. That is, the first aspect of the present invention is an object detection device that detects an object existing around a host vehicle, and detects position information that detects at least vertical position information of the object existing on the road surface of the host vehicle. , An object identification unit for identifying at least whether the object detected by the position detection unit is an obstacle that may collide with the own vehicle, a road surface of a road on which the own vehicle travels, and position detection An angle calculation unit that calculates a relative pitch angle formed by the detection axis of the unit based on the vertical position information of the object, and an object identification unit that corrects the setting of the position detection unit according to the relative pitch angle It is an object detection apparatus provided with the setting change part which suppresses misidentification.
 第2の局面は、第1の局面において、角度算出部は、相対的なピッチ角を予め定められた基準位置に対する物体の上下位置の変位量に応じて算出することを特徴とする。 The second aspect is characterized in that, in the first aspect, the angle calculation unit calculates a relative pitch angle according to a displacement amount of the vertical position of the object with respect to a predetermined reference position.
 第3の局面は、第2の局面において、位置検出部により検出された現在および過去の物体の上下位置情報を記憶する記憶部をさらに備え、角度算出部は、記憶部に記憶された現在および過去の物体の上下位置の平均位置を算出し、相対的なピッチ角を基準位置に対する当該平均位置の変位量に応じて算出することを特徴とする。 The third aspect further includes a storage unit that stores the current and past position information of the current object detected by the position detection unit in the second aspect, and the angle calculation unit is configured to store the current and past stored in the storage unit. An average position of the upper and lower positions of the past object is calculated, and a relative pitch angle is calculated according to a displacement amount of the average position with respect to the reference position.
 第4の局面は、第3の局面において、物体の上下位置を正確に検出するための条件が所定時間の間満たされたか否か判定する条件判定部をさらに備え、角度算出部は、条件が所定時間の間満たされたと判定された場合に、当該所定時間内に検出された物体の上下位置情報に基づいてピッチ角を算出することを特徴とする。 The fourth aspect further includes a condition determination unit that determines whether or not a condition for accurately detecting the vertical position of the object is satisfied for a predetermined time in the third aspect. When it is determined that the condition is satisfied for a predetermined time, the pitch angle is calculated based on the vertical position information of the object detected within the predetermined time.
 第5の局面は、第4の局面において、自車両の加減速度を検出する自車加減速度検出部と、自車両の舵角を検出する舵角検出部とをさらに備え、条件判定部は、自車両の加減速度が予め定められた閾値以下であり、且つ、自車両の舵角が予め定められた閾値以下であることを、物体の上下位置を正確に検出するための条件として判定することを特徴とする。 In a fourth aspect, a fifth aspect further includes a host vehicle acceleration / deceleration detection unit that detects acceleration / deceleration of the host vehicle, and a rudder angle detection unit that detects a rudder angle of the host vehicle, and the condition determination unit includes: Judging that the acceleration / deceleration of the own vehicle is equal to or less than a predetermined threshold and that the rudder angle of the own vehicle is equal to or less than a predetermined threshold as conditions for accurately detecting the vertical position of the object It is characterized by.
 第6の局面は、第4の局面において、位置検出部により検出された物体が自車両の前方を走行する先行車であるか否かを判定する先行車判定部と、先行車の加減速度を算出する先行車加減速度算出部とをさらに備え、条件判定部は、自車両および先行車の加減速度が何れも予め定められた閾値以下であり、且つ、自車両の舵角が予め定められた閾値以下であることを、物体の上下位置を正確に検出するための条件として判定し、角度算出部は、条件が所定時間の間満たされたと判定された場合に、当該所定時間内に検出された先行車の上下位置情報に基づいてピッチ角を算出することを特徴とする。 In a fourth aspect, according to the fourth aspect, a preceding vehicle determination unit that determines whether or not the object detected by the position detection unit is a preceding vehicle that travels ahead of the host vehicle, and an acceleration / deceleration of the preceding vehicle. A preceding vehicle acceleration / deceleration calculation unit for calculating, and the condition determination unit is configured such that the acceleration / deceleration of the host vehicle and the preceding vehicle are both equal to or less than a predetermined threshold value, and the steering angle of the host vehicle is predetermined It is determined that it is below the threshold as a condition for accurately detecting the vertical position of the object, and the angle calculation unit is detected within the predetermined time when it is determined that the condition is satisfied for a predetermined time. The pitch angle is calculated based on the vertical position information of the preceding vehicle.
 第7の局面は、第1乃至2の何れか1つの局面において、物体識別部は、物体が進行先の路面に配置された路側物であるか否かを判別し、角度算出部は、路側物の現在および過去の上下位置に基づいて、当該路側物の自車両に対する相対的な移動方向を示す移動ベクトルを算出し、当該移動ベクトルと位置検出部の検出軸線とが成す角度をピッチ角として算出することを特徴とする。 According to a seventh aspect, in any one of the first and second aspects, the object identifying unit determines whether or not the object is a roadside object disposed on a destination road surface, and the angle calculating unit includes a roadside Based on the current and past vertical positions of the object, a movement vector indicating a relative movement direction of the roadside object with respect to the host vehicle is calculated, and an angle formed by the movement vector and the detection axis of the position detection unit is used as a pitch angle. It is characterized by calculating.
 第8の局面は、第1乃至7の局面において、位置検出部により検出された現在および過去の物体の上下位置情報を記憶する記憶部と、進行先の道路勾配が変化しているか否かを位置検出部によって検出された現在および過去の物体の上下位置情報に基づいて判定する勾配判定部とをさらに備え、角度算出部は、勾配判定部によって進行先の道路勾配が変化していないと判定された場合、ピッチ角に基づいて自車両の車体の水平面に対するピッチ方向の姿勢角を算出することを特徴とする。 In an eighth aspect, in the first to seventh aspects, whether or not the storage unit that stores the vertical position information of the current and past objects detected by the position detection unit, and whether or not the road gradient of the destination has changed. A gradient determination unit that determines based on the vertical position information of the current and past objects detected by the position detection unit, and the angle calculation unit determines that the destination road gradient has not changed by the gradient determination unit In this case, the posture angle in the pitch direction with respect to the horizontal plane of the vehicle body of the host vehicle is calculated based on the pitch angle.
 第9の局面は、第1または8の何れか1つの局面において、位置検出部により検出された現在および過去の物体の上下位置情報を記憶する記憶部と、進行先の道路勾配が変化しているか否かを位置検出部によって検出された現在および過去の物体の上下位置情報に基づいて判定する勾配判定部とをさらに備え、角度算出部は、勾配判定部によって進行先の道路勾配が変化していると判定された場合、進行先の道路の勾配角をピッチ角に基づいて算出することを特徴とする。 In the ninth aspect, in any one of the first and eighth aspects, a storage unit that stores current and past position information detected by the position detection unit, and a road gradient of a traveling destination are changed. A gradient determination unit that determines whether or not the current road is detected based on the vertical position information of the current and past objects, and the angle calculation unit changes the road gradient of the travel destination by the gradient determination unit. If it is determined that the vehicle is traveling, the gradient angle of the road ahead is calculated based on the pitch angle.
 第10の局面は、第8乃至9の何れか1つの局面において、物体識別部は、位置検出部により検出された物体が自車両の前方を走行する先行車であるか否かを判定し、角度算出部は、自車両の車体との相対的なピッチ角を記憶部に記憶された現在および過去の先行車の上下位置情報に基づいて算出することを特徴とする。 In a tenth aspect according to any one of the eighth to ninth aspects, the object identification unit determines whether or not the object detected by the position detection unit is a preceding vehicle traveling in front of the host vehicle, The angle calculation unit calculates a relative pitch angle with the vehicle body of the host vehicle based on the vertical position information of the current and past preceding vehicles stored in the storage unit.
 第11の局面は、第10の局面において、先行車の上下位置の単位時間当たりの変化量を現在および過去の先行車の上下位置情報に基づいて算出する上下位置変化量算出部とをさらに備え、勾配判定部は、当該先行車の上下位置の単位時間当たりの変化量が予め定められた閾値以上である場合、進行先の道路勾配が変化していると判定し、当該先行車の上下位置の単位時間当たりの変化量が予め定められた閾値未満である場合、進行先の道路勾配が変化していないと判定することを特徴とする。 An eleventh aspect further includes, in the tenth aspect, a vertical position change amount calculation unit that calculates a change amount per unit time of the vertical position of the preceding vehicle based on the vertical position information of the current and past preceding vehicles. The slope determination unit determines that the road gradient of the destination vehicle has changed when the amount of change per unit time of the vertical position of the preceding vehicle is equal to or greater than a predetermined threshold, and the vertical position of the preceding vehicle When the amount of change per unit time is less than a predetermined threshold, it is determined that the road gradient of the destination has not changed.
 第12の局面は、第8乃至9の何れか1つの局面において、物体識別部は、物体が進行先の道路に配置された路側物であるか否かを判別し、当該物体が路側物であるか否かを判定し、角度算出部は、自車両の車体との相対的なピッチ角を記憶部に記憶された現在および過去の路側物の上下位置情報に基づいて算出することを特徴とする。 In a twelfth aspect according to any one of the eighth to ninth aspects, the object identifying unit determines whether or not the object is a roadside object arranged on a destination road, and the object is a roadside object. The angle calculation unit calculates a relative pitch angle with the vehicle body of the host vehicle based on current and past roadside object vertical position information stored in the storage unit. To do.
 第13の局面は、第12の局面において、物体識別部は、路側物が、進行先の路面に沿って一定の高さで延設された帯状の帯状路側物であるか否かをさらに判別し、位置検出部は、物体が帯状路側物であると判別された場合、自車両を基準として所定距離前方における帯状路側物の上下位置を検出し、勾配判定部は、現時点の上下位置と過去の上下位置との差分値が予め定められた閾値以上である場合、進行先の道路勾配が変化していると判定し、差分値が予め定められた閾値未満である場合、進行先の道路勾配が変化していないと判定することを特徴とする。 In a thirteenth aspect based on the twelfth aspect, the object identification unit further determines whether or not the roadside object is a belt-like belt-like roadside object extending at a certain height along the destination road surface. When the position detection unit determines that the object is a belt-like roadside object, the position detection unit detects the vertical position of the belt-like roadside object in front of the vehicle by a predetermined distance. If the difference value between the upper and lower positions is equal to or greater than a predetermined threshold, it is determined that the road gradient of the destination is changing, and if the difference value is less than the predetermined threshold, the road gradient of the destination Is determined not to have changed.
 第14の局面は、第1乃至13の何れか1つの局面において、物体識別部は、物体の上下位置が上下方向の所定の領域内に存在する場合、当該物体が障害物であると識別することを特徴とする。 In a fourteenth aspect according to any one of the first to thirteenth aspects, the object identifying unit identifies that the object is an obstacle when the vertical position of the object is present in a predetermined region in the vertical direction. It is characterized by that.
 第15の局面は、第14の局面において、物体識別部は、物体の上下位置が自車両の車体の下端以上、且つ、自車両の車体の上端未満の領域に存在する場合、当該物体が障害物であると識別することを特徴とする。 According to a fifteenth aspect, in the fourteenth aspect, the object identification unit is configured such that when the vertical position of the object exists in a region that is greater than or equal to the lower end of the vehicle body of the host vehicle and less than the upper end of the vehicle body of the host vehicle, It is characterized by identifying it as a thing.
 第16の局面は、第15の局面において、物体識別部は、物体の上下位置が自車両の車体の下端以下の領域に存在する場合、当該物体が路面上の段差であると識別し、物体の上下位置が自車両の車体の上端以上の領域に存在する場合、当該物体が路面から離れた位置に配置された高架物であると識別することを特徴とする。 In a sixteenth aspect, in the fifteenth aspect, the object identifying unit identifies that the object is a step on the road surface when the vertical position of the object is present in a region below the lower end of the vehicle body of the host vehicle. Is located in a region above the upper end of the vehicle body of the host vehicle, the object is identified as an elevated object arranged at a position away from the road surface.
 第17の局面は、第1乃至16の何れか1つの局面において、位置検出部は、検出軸線方向へ検出波を照射し、物体からの当該検出波の反射波を受信することによって当該物体の位置を検出するレーダー装置であり、設定変更部は、レーダー装置の検出軸線をピッチ角が小さくなる方向へ回転移動させて当該レーダー装置による物体の検出領域を変更することによって物体識別部による誤判別を抑制することを特徴とする。 According to a seventeenth aspect, in any one of the first to sixteenth aspects, the position detection unit irradiates a detection wave in the detection axis direction and receives a reflected wave of the detection wave from the object. A radar device that detects a position, and the setting changing unit rotates the detection axis of the radar device in a direction in which the pitch angle decreases to change the detection area of the object by the radar device, thereby making an erroneous determination by the object identifying unit. It is characterized by suppressing.
 第1の局面によれば、自車両の進行先の道路の路面と、位置検出部の検出軸線とが成す相対的なピッチ角に応じて、位置検出部の設定を変更することができる。例えば、位置検出部がレーダー装置である場合には、当該レーダーの検出領域を上記ピッチ角に応じて変更することができる。したがって、物体の位置を正確に検出することができる。故に、検出した物体が障害物か否かを誤判定することを抑制することができる。また、検出された物体の上下位置情報に基づいて上記相対的なピッチ角を算出可能である。そのため、当該ピッチ角を算出するためのセンサ等を自車両に搭載する必要がない。したがって、上記のような位置検出部の設定を変更可能な物体検出装置を低コストで構成することが可能である。 According to the first aspect, the setting of the position detection unit can be changed according to the relative pitch angle formed by the road surface of the destination road of the host vehicle and the detection axis of the position detection unit. For example, when the position detection unit is a radar device, the detection area of the radar can be changed according to the pitch angle. Therefore, the position of the object can be accurately detected. Therefore, it can suppress misjudging whether the detected object is an obstruction. The relative pitch angle can be calculated based on the detected vertical position information of the object. Therefore, there is no need to mount a sensor or the like for calculating the pitch angle on the host vehicle. Therefore, it is possible to configure an object detection device that can change the setting of the position detection unit as described above at low cost.
 第2の局面によれば、自車両の進行先の道路の路面と位置検出部の検出軸線とが成す相対的なピッチ角を、所定の基準位置に対する検出物の上下位置の変位量に応じて容易に検出することができる。 According to the second aspect, the relative pitch angle formed by the road surface of the destination road of the host vehicle and the detection axis of the position detection unit is determined according to the amount of displacement of the vertical position of the detected object with respect to the predetermined reference position. It can be easily detected.
 第3の局面によれば、所定時間の間に複数回検出した物体の上下位置の平均値に基づいて上記ピッチ角を算出することができる。したがって、ノイズ等により一時的に物体を正確に検出できなかった場合があったとしても、当該平均値を用いることによって、上記ピッチ角を正確に算出することができる。 According to the third aspect, the pitch angle can be calculated based on the average value of the vertical positions of the objects detected a plurality of times during a predetermined time. Therefore, even if the object may not be temporarily detected accurately due to noise or the like, the pitch angle can be accurately calculated by using the average value.
 第4の局面によれば、物体の位置を正確に検出可能な状況において検出された物体の上下位置情報にのみ基づいて上記ピッチ角を算出することができる。したがって、当該ピッチ角の算出精度を向上することができる。 According to the fourth aspect, the pitch angle can be calculated based only on the vertical position information of the object detected in a situation where the position of the object can be accurately detected. Therefore, the calculation accuracy of the pitch angle can be improved.
 第5の局面によれば、自車両が一定の速度で直進していることを条件として、物体の位置を正確に検出可能な状況であるか否かを簡単な処理で判定することができる。 According to the fifth aspect, it is possible to determine whether or not the position of the object can be accurately detected by a simple process on the condition that the host vehicle is traveling straight at a constant speed.
 第6の局面によれば、先行車が一定の速度で走行していることを条件として、物体の位置を正確に検出可能な状況であるか否かを判定することができる。したがって、先行車の位置情報に基づいて上記ピッチ角を高い精度で算出することができる。 According to the sixth aspect, it is possible to determine whether or not the position of the object can be accurately detected on the condition that the preceding vehicle is traveling at a constant speed. Therefore, the pitch angle can be calculated with high accuracy based on the position information of the preceding vehicle.
 第7の局面によれば、路側物の移動ベクトルに基づいて上記ピッチ角を算出することができる。したがって、任意の路側物を利用して上記ピッチ角を算出することができる。 According to the seventh aspect, the pitch angle can be calculated based on the movement vector of the roadside object. Therefore, the pitch angle can be calculated using any roadside object.
 第8の局面によれば、進行先の道路勾配が変化しているか否かを、ナビゲーション装置等の他のデバイスを用いることなく判別することができる。また、進行先の道路勾配が変化していない場合、自車両の車体の水平面に対するピッチ方向の姿勢角を位置検出部から得られた情報に基づいて算出することができる。すなわち、自車両の姿勢角を検出するために、ジャイロセンサ等のハードウェアを自車両に別途搭載する必要がない。 According to the eighth aspect, it is possible to determine whether or not the road gradient of the destination is changing without using another device such as a navigation device. Also, when the road gradient of the destination has not changed, the attitude angle in the pitch direction with respect to the horizontal plane of the vehicle body of the host vehicle can be calculated based on the information obtained from the position detection unit. That is, it is not necessary to separately install hardware such as a gyro sensor in the host vehicle in order to detect the attitude angle of the host vehicle.
 第9の局面によれば、自車両の進行先の道路勾配が変化しているか否かを、カメラやナビゲーション装置等のデバイスを用いることなく判別することができる。また、自車両の進行先の道路勾配が変化している場合、当該進行先の道路の勾配角を位置検出部から得られた情報に基づいて算出することができる。すなわち、道路の勾配を検出するために、カメラやナビゲーション装置等のハードウェアを自車両に別途搭載する必要がない。 According to the ninth aspect, it is possible to determine whether or not the road gradient of the destination of the host vehicle has changed without using a device such as a camera or a navigation device. Further, when the road gradient of the destination of the host vehicle has changed, the gradient angle of the destination road can be calculated based on the information obtained from the position detection unit. That is, it is not necessary to separately install hardware such as a camera and a navigation device in the own vehicle in order to detect the road gradient.
 第10の局面によれば、自車両の前方を走行する先行車の位置情報に基づいて自車両の姿勢角、または自車両の進行先の道路の勾配角を算出することができる。 According to the tenth aspect, it is possible to calculate the attitude angle of the host vehicle or the slope angle of the road on which the host vehicle is traveling based on the position information of the preceding vehicle traveling ahead of the host vehicle.
 第11の局面によれば、自車両の進行先の道路勾配が変化しているか否かを、先行車の上下位置情報の単位時間当たりの変化量の大小に応じた簡単な処理で判定することができる。 According to the eleventh aspect, whether or not the road gradient of the destination of the host vehicle is changing is determined by a simple process according to the amount of change per unit time of the vertical position information of the preceding vehicle. Can do.
 第12の局面によれば、自車両の走行する道路に配置された路側物の位置情報に基づいて自車両の姿勢角、または自車両の進行先の道路の勾配角を算出することができる。 According to the twelfth aspect, it is possible to calculate the attitude angle of the host vehicle or the gradient angle of the destination road of the host vehicle based on the position information of the roadside objects arranged on the road on which the host vehicle travels.
 第13の局面によれば、自車両の進行先の道路勾配が変化しているか否かを、例えばガードレール等の帯状路側物の異なる時点に検出された上下位置情報に応じた簡単な処理で判定することができる。 According to the thirteenth aspect, whether or not the road gradient of the traveling destination of the host vehicle has changed is determined by a simple process according to the vertical position information detected at different times of the strip-shaped roadside object such as a guardrail, for example. can do.
 第14の局面によれば、検出された物体が車両に衝突する危険性がある障害物であるか否かを簡単な処理で判定することができる。 According to the fourteenth aspect, whether or not the detected object is an obstacle that may collide with the vehicle can be determined by a simple process.
 第15の局面によれば、検出された物体が車両に衝突する危険性がある障害物であるか否かを自車両の車体の大きさに応じて判定することができる。 According to the fifteenth aspect, whether or not the detected object is an obstacle that may collide with the vehicle can be determined according to the size of the vehicle body of the host vehicle.
 第16の局面によれば、検出された物体をより詳細に区別して識別することができる。 According to the sixteenth aspect, the detected object can be distinguished and identified in more detail.
 第17の局面によれば、車両に搭載されるレーダー装置を利用して本発明に係る物体検出装置を構成することができる。また、レーダー装置の軸線方向を変更する簡単な処理で障害物の誤判別を抑制することができる。 According to the seventeenth aspect, the object detection device according to the present invention can be configured using a radar device mounted on a vehicle. In addition, it is possible to suppress erroneous discrimination of obstacles by a simple process of changing the axis direction of the radar device.
図1は、本発明に係る物体検出装置の構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of an object detection apparatus according to the present invention. 図2は、第1の実施形態に係る障害物検出ECUの機能構成の一例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of a functional configuration of the obstacle detection ECU according to the first embodiment. 図3は、第1の実施形態に係る障害物検出ECUが実行する処理の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of processing executed by the obstacle detection ECU according to the first embodiment. 図4は、第1の実施形態に係る物体識別部が実行する検出物識別処理の一例を示すフローチャートである。FIG. 4 is a flowchart illustrating an example of the detected object identification process executed by the object identification unit according to the first embodiment. 図5は、検出物を識別する際に用いる閾値Rth1、Rth2の定義を示す図である。FIG. 5 is a diagram illustrating definitions of threshold values Rth1 and Rth2 used when identifying a detected object. 図6は、第1の実施形態に係る条件判定部が実行する条件判定処理Aの一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of the condition determination process A executed by the condition determination unit according to the first embodiment. 図7は、第1の実施形態に係る角度算出部が実行する角度算出処理Aの一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of an angle calculation process A executed by the angle calculation unit according to the first embodiment. 図8は、先行車位置基準位置Pk、平均先行車上下位置PzA、および先行車上下変位量Ph1の定義を示す図である。FIG. 8 is a diagram showing the definitions of the preceding vehicle position reference position Pk, the average preceding vehicle vertical position PzA, and the preceding vehicle vertical displacement amount Ph1. 図9は、自車両100の車体が水平を保った状態でレーダー装置10によって先行車200が検出される様子を示す図である。FIG. 9 is a diagram illustrating a state in which the preceding vehicle 200 is detected by the radar device 10 while the vehicle body of the host vehicle 100 is kept horizontal. 図10は、自車両100の車体が水平を保った状態で検出された先行車の検出位置M1を検出面SA上に示す図である。FIG. 10 is a diagram showing the detection position M1 of the preceding vehicle detected on the detection surface SA when the body of the host vehicle 100 is kept horizontal. 図11は、自車両100の車体が傾斜した状態でレーダー装置10によって先行車200が検出される様子を示す図である。FIG. 11 is a diagram illustrating a state in which the preceding vehicle 200 is detected by the radar device 10 with the vehicle body of the host vehicle 100 tilted. 図12は、レーダー装置の検出軸線の方向が変更される様子を示す図である。FIG. 12 is a diagram illustrating how the direction of the detection axis of the radar apparatus is changed. 図13は、自車両100の車体が傾斜した状態でレーダー装置10によってガードレール300が検出される様子を示す図である。FIG. 13 is a diagram illustrating a state in which the guard rail 300 is detected by the radar apparatus 10 in a state where the vehicle body of the host vehicle 100 is tilted. 図14は、第2の実施形態に係る条件判定部が実行する条件判定処理Bの一例を示すフローチャートである。FIG. 14 is a flowchart illustrating an example of a condition determination process B executed by the condition determination unit according to the second embodiment. 図15は、第2の実施形態に係る角度算出部が実行する角度算出処理Bの一例を示すフローチャートである。FIG. 15 is a flowchart illustrating an example of an angle calculation process B executed by the angle calculation unit according to the second embodiment. 図16は、ガードレール位置基準位置Gk、平均ガードレール上下位置GzA、およびガードレール上下変位量Gh1の定義を示す図である。FIG. 16 is a diagram illustrating definitions of the guardrail position reference position Gk, the average guardrail vertical position GzA, and the guardrail vertical displacement amount Gh1. 図17は、第3の実施形態に係る条件判定部135が実行する条件判定処理Cの一例を示すフローチャートである。FIG. 17 is a flowchart illustrating an example of the condition determination process C executed by the condition determination unit 135 according to the third embodiment. 図18は、第3の実施形態に係る角度算出部136が実行する角度算出処理Cの一例である。FIG. 18 is an example of an angle calculation process C executed by the angle calculation unit 136 according to the third embodiment. 図19は、路側物移動ベクトルVeQを示す図である。FIG. 19 is a diagram illustrating a roadside object movement vector VeQ. 図20は、進行先の道路に勾配変化がある場合における相対ピッチ角θと勾配角φの関係を示す図である。FIG. 20 is a diagram illustrating the relationship between the relative pitch angle θ and the gradient angle φ when there is a gradient change in the destination road. 図21は、第4の実施形態に係る条件判定部135が実行する条件判定処理Dの一例を示すフローチャートである。FIG. 21 is a flowchart illustrating an example of the condition determination process D executed by the condition determination unit 135 according to the fourth embodiment. 図22は、第4の実施形態に係る角度算出部136が実行する角度算出処理Dの一例を示すフローチャートである。FIG. 22 is a flowchart illustrating an example of an angle calculation process D executed by the angle calculation unit 136 according to the fourth embodiment. 図23は、勾配変化のある道路に沿って配置されたガードレールの位置が検出される様子を示す図である。FIG. 23 is a diagram illustrating a state in which the position of a guardrail arranged along a road with a gradient change is detected. 図24は、第5の実施形態に係る条件判定部135が実行する条件判定処理Eの一例を示すフローチャートである。FIG. 24 is a flowchart illustrating an example of the condition determination process E executed by the condition determination unit 135 according to the fifth embodiment. 図25は、第5の実施形態に係る角度算出部136が実行する角度算出処理Eの一例を示すフローチャートである。FIG. 25 is a flowchart illustrating an example of an angle calculation process E executed by the angle calculation unit 136 according to the fifth embodiment. 図26は、傾斜した車両に搭載された従来の車両用障害物検出装置が物体を検出する様子を示す図である。FIG. 26 is a diagram illustrating a state in which a conventional vehicle obstacle detection device mounted on an inclined vehicle detects an object. 図27は、勾配が変化した道路を進行する車両に搭載された従来の車両用障害物検出装置が物体を検出する様子を示す図である。FIG. 27 is a diagram illustrating a state in which a conventional vehicle obstacle detection device mounted on a vehicle traveling on a road with a changed slope detects an object.
 <第1の実施形態>
 以下、本発明の実施形態に係る物体検出装置について説明する。本発明に係る物体検出装置は、自車両100に搭載され、当該自車両100周囲の物体を検出する装置である。
<First Embodiment>
Hereinafter, an object detection apparatus according to an embodiment of the present invention will be described. The object detection apparatus according to the present invention is an apparatus that is mounted on the host vehicle 100 and detects objects around the host vehicle 100.
 先ず、図1を参照して物体検出装置1のハードウェア構成について説明する。なお、図1は、本発明に係る物体検出装置の構成の一例を示すブロック図である。図1に示すように、物体検出装置1は、レーダー装置10、加速度センサ11、舵角センサ12、および障害物検出ECU13を備える。また、物体検出装置1は、自車両100に搭載される衝突判定ECU40、および車両制御装置50の各々と電気的に接続される。 First, the hardware configuration of the object detection apparatus 1 will be described with reference to FIG. FIG. 1 is a block diagram showing an example of the configuration of the object detection apparatus according to the present invention. As shown in FIG. 1, the object detection device 1 includes a radar device 10, an acceleration sensor 11, a rudder angle sensor 12, and an obstacle detection ECU 13. The object detection device 1 is electrically connected to each of the collision determination ECU 40 and the vehicle control device 50 mounted on the host vehicle 100.
 レーダー装置10は、自車両100の周囲の物体の位置情報、および当該物体の速度Vmを検出する装置である。レーダー装置10は、例えば、電磁波や、超音波等の検出波信号を自車両100の周囲に照射する。そして、物体に反射された当該検出波信号の反射波(以下、反射波信号と呼称する。)に基づいて当該物体の位置情報を検出する。レーダー装置10は、典型的にはミリ波長帯の電磁波を送受信するFM-CW方式のレーダー装置である。レーダー装置10は、自車両100の前端に搭載される。そして、レーダー装置10の検出軸線Jは自車両100の前後方向に延びるよう設定される(図9参照)。なお、検出軸線Jは、レーダー装置10が検出波を照射する方向を示す軸線である。以下に示す各図面ではレーダー装置10が物体を検出する領域をドットハッチングで例示する。また、以下では、レーダー装置10により検出された物体を検出物と呼称する。レーダー装置10は、例えば、検出物の位置を、レーダー装置10を原点とするXYZ座標系で検出する。なお、レーダー装置10は、検出軸線Jに沿った方向をX軸成分とし、当該X軸に対して上下方向をZ軸成分とし(図5参照)、左右方向をY軸成分として検出物の位置を検出する。レーダー装置10は、障害物検出ECU13と電気的に接続される。そして、レーダー装置10は、検出した検出物の位置情報を障害物検出ECU13へ送信する。なお、レーダー装置10は、請求の範囲に記載の位置検出部に相当する。 The radar device 10 is a device that detects position information of objects around the host vehicle 100 and the velocity Vm of the objects. For example, the radar device 10 irradiates a detection wave signal such as an electromagnetic wave or an ultrasonic wave around the host vehicle 100. Then, the position information of the object is detected based on the reflected wave of the detected wave signal reflected by the object (hereinafter referred to as a reflected wave signal). The radar device 10 is typically an FM-CW radar device that transmits and receives electromagnetic waves in the millimeter wavelength band. The radar device 10 is mounted on the front end of the host vehicle 100. The detection axis J of the radar device 10 is set so as to extend in the front-rear direction of the host vehicle 100 (see FIG. 9). The detection axis J is an axis indicating the direction in which the radar apparatus 10 emits the detection wave. In each drawing shown below, a region where the radar device 10 detects an object is illustrated by dot hatching. Hereinafter, an object detected by the radar device 10 is referred to as a detected object. For example, the radar device 10 detects the position of the detected object in an XYZ coordinate system with the radar device 10 as the origin. The radar apparatus 10 uses the direction along the detection axis J as the X-axis component, the vertical direction relative to the X-axis as the Z-axis component (see FIG. 5), and the left-right direction as the Y-axis component. Is detected. The radar device 10 is electrically connected to the obstacle detection ECU 13. The radar apparatus 10 transmits the detected position information of the detected object to the obstacle detection ECU 13. The radar device 10 corresponds to the position detection unit described in the claims.
 加速度センサ11は、自車両100の加減速度(以下、自車加減速度ACsと呼称する)を検出するセンサである。加速度センサ11は、機械式、光学式、半導体式等の加速度センサである。加速度センサ11は、従来周知の任意の手法を用いて自車加減速度ACsを検出して良い。加速度センサ11は、障害物検出ECU13と電気的に接続される。そして、加速度センサ11は、検出した自車加減速度ACsを示すデータを障害物検出ECU13へ送信する。なお、加速度センサ11は、請求の範囲に記載の自車加速度検出部に相当する。 The acceleration sensor 11 is a sensor that detects acceleration / deceleration of the host vehicle 100 (hereinafter referred to as host vehicle acceleration / deceleration ACs). The acceleration sensor 11 is an acceleration sensor such as a mechanical type, an optical type, or a semiconductor type. The acceleration sensor 11 may detect the own vehicle acceleration / deceleration ACs using any conventionally known method. The acceleration sensor 11 is electrically connected to the obstacle detection ECU 13. Then, the acceleration sensor 11 transmits data indicating the detected own vehicle acceleration / deceleration ACs to the obstacle detection ECU 13. The acceleration sensor 11 corresponds to the own vehicle acceleration detection unit described in the claims.
 舵角センサ12は、自車両100の舵角ωを検出するセンサである。舵角センサ12は、従来周知の任意の手法を用いて舵角ωを検出して良い。舵角センサ12は、障害物検出ECU13と電気的に接続される。そして、舵角センサ12は、検出した舵角ωを示すデータを障害物検出ECU13へ送信する。なお、舵角センサ12は、請求の範囲に記載の舵角検出部に相当する。 The steering angle sensor 12 is a sensor that detects the steering angle ω of the host vehicle 100. The rudder angle sensor 12 may detect the rudder angle ω using any conventionally known method. The steering angle sensor 12 is electrically connected to the obstacle detection ECU 13. Then, the steering angle sensor 12 transmits data indicating the detected steering angle ω to the obstacle detection ECU 13. The rudder angle sensor 12 corresponds to the rudder angle detector described in the claims.
 障害物検出ECU13は、典型的には、CPU(Central Processing Unit:中央処理装置)などの情報処理装置、メモリなどの記憶装置、およびインターフェース回路などを備える制御装置である。障害物検出ECU13は、衝突判定ECU40、および車両制御装置50と各々電気的に接続される。 The obstacle detection ECU 13 is typically a control device including an information processing device such as a CPU (Central Processing Unit), a storage device such as a memory, an interface circuit, and the like. The obstacle detection ECU 13 is electrically connected to the collision determination ECU 40 and the vehicle control device 50, respectively.
 以下、図2を参照して、障害物検出ECU13の機能構成について説明する。図2は、第1の実施形態に係る障害物検出ECUの機能構成の一例を示すブロック図である。図2に示すように、障害物検出ECU13は、機能的に、記憶部131、物体識別部132、先行車加減速度算出部133、勾配判定部134、条件判定部135、角度算出部136、および設定変更部137を備える。障害物検出ECU13は、例えば、障害物検出ECU13が具備するメモリ等に予め格納された制御プログラムをCPUに実行させることにより、機能的に記憶部131、物体識別部132、先行車加減速度算出部133、勾配判定部134、条件判定部135、角度算出部136、および設定変更部137として動作する。 Hereinafter, the functional configuration of the obstacle detection ECU 13 will be described with reference to FIG. FIG. 2 is a block diagram illustrating an example of a functional configuration of the obstacle detection ECU according to the first embodiment. As shown in FIG. 2, the obstacle detection ECU 13 functionally includes a storage unit 131, an object identification unit 132, a preceding vehicle acceleration / deceleration calculation unit 133, a gradient determination unit 134, a condition determination unit 135, an angle calculation unit 136, and A setting change unit 137 is provided. The obstacle detection ECU 13 functionally stores, for example, a storage unit 131, an object identification unit 132, and a preceding vehicle acceleration / deceleration calculation unit by causing the CPU to execute a control program stored in advance in a memory or the like included in the obstacle detection ECU 13. 133, the gradient determination unit 134, the condition determination unit 135, the angle calculation unit 136, and the setting change unit 137 operate.
 記憶部131は、レーダー装置10が検出した検出物に関する情報を記憶する機能部である。具体的には、記憶部131は、レーダー装置10から受信した検出物の位置座標、および速度Vmを記憶する。 The storage unit 131 is a functional unit that stores information related to the detected object detected by the radar device 10. Specifically, the storage unit 131 stores the position coordinates of the detected object received from the radar device 10 and the velocity Vm.
 物体識別部132は、検出物が障害物であるか否かを記憶部131に記憶された検出物の上下位置情報(Z座標)に基づいて識別する機能部である。物体識別部132は、さらに、検出物が高架物、段差、先行車、路側物、またはガードレールの何れであるかを上下位置情報(Z座標)に基づいて識別する。また、物体識別部132は、検出物に関する情報を上記識別結果と対応付けて記憶するよう記憶部131へ指示する。また、物体識別部132は、障害物であると識別した検出物の位置情報を衝突判定ECUへ出力する。なお、第1の実施形態に係る物体識別部132が実行する処理の詳細については後述図4において説明する。 The object identifying unit 132 is a functional unit that identifies whether or not the detected object is an obstacle based on the vertical position information (Z coordinate) of the detected object stored in the storage unit 131. The object identifying unit 132 further identifies whether the detected object is an elevated object, a step, a preceding vehicle, a roadside object, or a guardrail based on the vertical position information (Z coordinate). In addition, the object identification unit 132 instructs the storage unit 131 to store information on the detected object in association with the identification result. Further, the object identification unit 132 outputs position information of the detected object identified as an obstacle to the collision determination ECU. Details of processing executed by the object identification unit 132 according to the first embodiment will be described later with reference to FIG.
 先行車加減速度算出部133は、先行車200の加減速度(以下、先行車加減速度ACmと呼称する)を算出する機能部である。先行車加減速度算出部133は、例えば、記憶部131に記憶された先行車200の速度Vmを時間微分することによって先行車加減速度ACmを算出する。なお、上記の処理は一例であり、先行車加減速度算出部133は、従来周知の任意の手法を用いて先行車加減速度ACmを算出して良い。 The preceding vehicle acceleration / deceleration calculation unit 133 is a functional unit that calculates the acceleration / deceleration of the preceding vehicle 200 (hereinafter referred to as the preceding vehicle acceleration / deceleration ACm). For example, the preceding vehicle acceleration / deceleration calculation unit 133 calculates the preceding vehicle acceleration / deceleration ACm by differentiating the speed Vm of the preceding vehicle 200 stored in the storage unit 131 with respect to time. Note that the above processing is an example, and the preceding vehicle acceleration / deceleration calculation unit 133 may calculate the preceding vehicle acceleration / deceleration ACm using any conventionally known method.
 勾配判定部134は、自車両100の進行先の道路勾配が変化しているか否かを記憶部131に記憶された検出物の上下位置情報(Z座標)に基づいて判定する。なお、第1の実施形態においては、勾配判定部134は、記憶部131に記憶された先行車200の現在および過去の上下位置(以下、先行車上下位置Pzと呼称する)に基づいて自車両100の進行先の道路勾配が変化しているか否かを判定する。 The gradient determination unit 134 determines whether or not the road gradient of the destination of the host vehicle 100 is changing based on the vertical position information (Z coordinate) of the detected object stored in the storage unit 131. In the first embodiment, the gradient determining unit 134 is based on the current and past vertical positions of the preceding vehicle 200 stored in the storage unit 131 (hereinafter referred to as the preceding vehicle vertical position Pz). It is determined whether or not the road gradient of the destination 100 has changed.
 条件判定部135は、物体の上下位置を正確に検出するための条件が所定時間の間満たされたか否か判定する。なお、第1の実施形態においては、条件判定部135は、先行車200の上下位置を正確に検出するための条件が所定時間の間満たされたか否かを、記憶部131、物体識別部132、先行車加減速度算出部133、勾配判定部134、加速度センサ11、および舵角センサ12から取得した情報に基づいて判定する。なお、第1の実施形態に係る条件判定部135が実行する処理の詳細については後述図6において説明する。 The condition determination unit 135 determines whether a condition for accurately detecting the vertical position of the object is satisfied for a predetermined time. In the first embodiment, the condition determination unit 135 determines whether or not a condition for accurately detecting the vertical position of the preceding vehicle 200 is satisfied for a predetermined time, based on the storage unit 131 and the object identification unit 132. The determination is based on information acquired from the preceding vehicle acceleration / deceleration calculation unit 133, the gradient determination unit 134, the acceleration sensor 11, and the rudder angle sensor 12. Details of processing executed by the condition determination unit 135 according to the first embodiment will be described later with reference to FIG.
 角度算出部136は、レーダー装置10の検出軸線Jと自車両100の進行先の道路の路面とが成す相対ピッチ角θ(図11参照)を、条件判定部135の判定結果、および記憶部131に記憶された先行車上下位置Pzに基づいて算出する。また、第1の実施形態に係る角度算出部136は、相対ピッチ角に基づいて自車両100のピッチ方向の姿勢角ψを算出する。そして、角度算出部136は、算出した姿勢角ψを車両制御装置50へ出力する。なお、第1の実施形態に係る角度算出部136が実行する処理の詳細については後述図7において説明する。 The angle calculation unit 136 uses the relative pitch angle θ (see FIG. 11) formed by the detection axis J of the radar device 10 and the road surface of the road on which the host vehicle 100 travels, the determination result of the condition determination unit 135, and the storage unit 131. Is calculated based on the preceding vehicle up-and-down position Pz. Further, the angle calculation unit 136 according to the first embodiment calculates the attitude angle ψ in the pitch direction of the host vehicle 100 based on the relative pitch angle. Then, the angle calculation unit 136 outputs the calculated attitude angle ψ to the vehicle control device 50. Details of the processing executed by the angle calculation unit 136 according to the first embodiment will be described later with reference to FIG.
 設定変更部137は、レーダー装置10の設定を変更する機能部である。設定変更部137は、例えば、レーダー装置10の検出軸線Jの位置を相対ピッチ角θに応じて変更する。具体的には、設定変更部137は、レーダー装置10の検出軸線Jを相対ピッチ角θが小さくなるよう移動させる。 The setting change unit 137 is a functional unit that changes the setting of the radar device 10. For example, the setting change unit 137 changes the position of the detection axis J of the radar device 10 according to the relative pitch angle θ. Specifically, the setting changing unit 137 moves the detection axis J of the radar apparatus 10 so that the relative pitch angle θ is small.
 図1の説明に戻り、衝突判定ECU40は、典型的には、CPUなどの情報処理装置、メモリなどの記憶装置、およびインターフェース回路などを備える制御装置である。衝突判定ECU40は、障害物検出ECU13から障害物の位置情報を取得する。そして、衝突判定ECU40は、障害物と自車両100とが衝突する危険性が高いか否かを判定する。衝突判定ECU40は、障害物と自車両100とが衝突する危険性が高いと判定した場合、車両制御装置50を作動させて当該衝突の回避を促す。 Returning to the description of FIG. 1, the collision determination ECU 40 is typically a control device including an information processing device such as a CPU, a storage device such as a memory, and an interface circuit. The collision determination ECU 40 acquires obstacle position information from the obstacle detection ECU 13. Then, the collision determination ECU 40 determines whether or not there is a high risk that the obstacle and the host vehicle 100 will collide. When the collision determination ECU 40 determines that there is a high risk of the obstacle and the host vehicle 100 colliding, the collision determination ECU 40 activates the vehicle control device 50 to urge avoidance of the collision.
 車両制御装置50は、例えば、ブレーキ制御装置、ステアリング制御装置、警報装置、およびサスペンション制御装置等の制御装置である。ブレーキ制御装置、ステアリング制御装置、および警報装置は、衝突判定ECU40からの指示に応じて、各々、障害物と自車両100との衝突を回避するよう自車両100の走行を制御したり、警報を発したりする。また、サスペンション制御装置は、角度算出部から受信した姿勢角ψの値に応じてサスペンションを制御し、自車両100の姿勢が水平に保たれるよう制御する。 The vehicle control device 50 is a control device such as a brake control device, a steering control device, an alarm device, and a suspension control device. Each of the brake control device, the steering control device, and the alarm device controls the traveling of the host vehicle 100 so as to avoid the collision between the obstacle and the host vehicle 100 or issues an alarm according to an instruction from the collision determination ECU 40. Or emit. Further, the suspension control device controls the suspension in accordance with the value of the posture angle ψ received from the angle calculation unit, and performs control so that the posture of the host vehicle 100 is kept horizontal.
 次いで、図3を参照して、障害物検出ECU13が実行する処理について説明する。図3は、第1の実施形態に係る障害物検出ECUが実行する処理の一例を示すフローチャートである。障害物検出ECU13は、例えば、自車両100のIG電源がオン状態に設定された場合に図3のフローチャートの処理を開始する。障害物検出ECU13は、図3のフローチャートの処理を開始すると、先ず、ステップA1の処理を実行する。 Next, a process executed by the obstacle detection ECU 13 will be described with reference to FIG. FIG. 3 is a flowchart illustrating an example of processing executed by the obstacle detection ECU according to the first embodiment. Obstacle detection ECU13 starts the process of the flowchart of FIG. 3, for example, when the IG power supply of the own vehicle 100 is set to an ON state. When the obstacle detection ECU 13 starts the process of the flowchart of FIG. 3, first, the obstacle detection ECU 13 executes the process of step A1.
 ステップA1において、記憶部131は、記憶していた検出物に関するデータを初期化する。IG電源がオン状態に設定された際、すなわち、エンジン始動時に一旦、予め記憶されていた検出物に関するデータを初期化することによって、前回走行時に検出した検出物のデータの影響を受けることなく、以下の処理において相対ピッチ角θ等の値を正確に算出することができる。 In step A1, the storage unit 131 initializes the stored data relating to the detected object. When the IG power supply is set to the on-state, that is, by initializing the data relating to the detected object once stored at the time of starting the engine, it is not affected by the data of the detected object detected during the previous run. Values such as the relative pitch angle θ can be accurately calculated in the following processing.
 次いで、ステップA2において、レーダー装置10は、検出物の位置情報、および物体の速度Vmを検出する。また、記憶部131は、レーダー装置10により記憶された検出物の位置情報、および物体の速度Vmを記憶する。 Next, in step A2, the radar apparatus 10 detects the position information of the detected object and the velocity Vm of the object. Further, the storage unit 131 stores the position information of the detected object stored by the radar device 10 and the velocity Vm of the object.
 次いで、ステップA3において、物体識別部132は、図4に示す検出物識別処理を実行して、検出物を識別する。図4は、第1の実施形態に係る物体識別部が実行する検出物識別処理の一例を示すフローチャートである。 Next, in step A3, the object identification unit 132 executes the detected object identification process shown in FIG. 4 to identify the detected object. FIG. 4 is a flowchart illustrating an example of the detected object identification process executed by the object identification unit according to the first embodiment.
 物体識別部132は、図4に示す検出物識別処理を開始すると、先ず、検出物が領域R2に存在するか否か判定する(ステップA301)。領域R2は、図5に示すように、検出物の位置を示すXYZ座標系において、Z座標が所定の閾値Rth1以上、Rth2未満の領域である。図5は、検出物を識別する際に用いる閾値Rth1、Rth2の定義を示す図である。なお、閾値Rth1は、自車両100の車体の下端位置を示す値に予め定めておくことが好ましい。また、閾値Rth2は、自車両100の車体の上端位置を示す値に予め定めておくことが好ましい。このように、閾値Rth1およびRth2の値を定めることによって、物体識別部132は、検出物が自車両100の車体の下端以上、且つ、自車両100の車体の上端未満の領域R2内に存在するか否か判定することができる。物体識別部132は、検出物が領域R2に存在すると判定すると(ステップA301でYes)、検出物を自車両100と衝突する可能性のある障害物であると識別し、当該識別結果を記憶部131に記憶させる(ステップA302)。また、物体識別部132は、障害物と識別した検出物に関し記憶部131に記憶されたデータを衝突判定ECU40へ出力する。ステップA302の処理を完了すると、物体識別部132は、処理をステップA306へ処理を進める。一方、物体識別部132は、検出物が領域R2に存在しないと判定すると(ステップA301でNo)、検出物を障害物でないと識別し、処理をステップA303へ進める。 When the object identification unit 132 starts the detected object identification process shown in FIG. 4, it first determines whether or not the detected object exists in the region R2 (step A301). As shown in FIG. 5, the region R2 is a region where the Z coordinate is not less than a predetermined threshold Rth1 and less than Rth2 in the XYZ coordinate system indicating the position of the detected object. FIG. 5 is a diagram illustrating definitions of threshold values Rth1 and Rth2 used when identifying a detected object. The threshold value Rth1 is preferably set in advance to a value indicating the lower end position of the vehicle body of the host vehicle 100. In addition, the threshold value Rth2 is preferably set in advance to a value indicating the upper end position of the vehicle body of the host vehicle 100. Thus, by determining the values of the threshold values Rth1 and Rth2, the object identification unit 132 exists in the region R2 where the detected object is equal to or higher than the lower end of the vehicle body of the host vehicle 100 and lower than the upper end of the vehicle body of the host vehicle 100. It can be determined whether or not. If the object identification unit 132 determines that the detected object exists in the region R2 (Yes in step A301), the object identification unit 132 identifies the detected object as an obstacle that may collide with the host vehicle 100, and stores the identification result. 131 (step A302). Further, the object identification unit 132 outputs data stored in the storage unit 131 regarding the detected object identified as an obstacle to the collision determination ECU 40. When the process of step A302 is completed, the object identification unit 132 advances the process to step A306. On the other hand, when the object identification unit 132 determines that the detected object does not exist in the region R2 (No in Step A301), the object identifying unit 132 identifies the detected object as not an obstacle and advances the process to Step A303.
 ステップA303において、物体識別部132は、検出物が領域R1に存在するか否か判定する。領域R1は、図5に示すように、検出物の位置を示すXYZ座標系において、閾値Rth1未満の領域である。すなわち、物体識別部132は、検出物が自車両100の車体の下端未満の領域R1内に存在するか否か判定する。物体識別部132は、検出物が領域R1に存在すると判定した場合(ステップA303でYes)、検出物が段差であると識別し、当該識別結果を記憶部131に記憶させる(ステップA304)。一方、物体識別部132は、検出物が領域R1に存在しないと判定した場合(ステップA303でNo)、検出物は検出物が自車両100の車体の上端以上の領域R3に存在していると考えられる。したがって、このような場合、物体識別部132は、検出物が自車両100の走行する道路から離れて上方に設置された高架物であると識別する(ステップA305)。そして、物体識別部132は、当該識別結果を記憶部131に記憶させる。そして、物体識別部132は、ステップA304またはステップA305の処理を完了すると、図4の検出物識別処理を完了し、処理を図3のステップA4へ進める。 In step A303, the object identification unit 132 determines whether the detected object exists in the region R1. As shown in FIG. 5, the region R1 is a region that is less than the threshold value Rth1 in the XYZ coordinate system that indicates the position of the detected object. That is, the object identification unit 132 determines whether or not the detected object is present in the region R1 below the lower end of the vehicle body of the host vehicle 100. When the object identification unit 132 determines that the detected object is present in the region R1 (Yes in Step A303), the object identification unit 132 identifies that the detected object is a step and stores the identification result in the storage unit 131 (Step A304). On the other hand, when the object identification unit 132 determines that the detected object does not exist in the region R1 (No in Step A303), the detected object exists in the region R3 above the upper end of the vehicle body of the host vehicle 100. Conceivable. Therefore, in such a case, the object identification unit 132 identifies the detected object as an elevated object that is installed above and away from the road on which the host vehicle 100 travels (step A305). Then, the object identification unit 132 stores the identification result in the storage unit 131. And the object identification part 132 will complete | finish the detection target identification process of FIG. 4, and will advance a process to step A4 of FIG. 3, if the process of step A304 or step A305 is completed.
 上述ステップA302において検出物を障害物であると判定すると、物体識別部132は、さらに、当該検出物が先行車であるか否かを判定する。具体的には、物体識別部132は、検出物の移動軌跡が自車両100の移動軌跡と類似するか否か判定する(ステップA306)。より詳細には、物体識別部132は、記憶部131に記憶された検出物の現在および過去の位置情報から当該検出物の移動軌跡を仮想的なマップ上にマッピングする。同様に、物体識別部132は、自車両100の移動軌跡を上記マップ上にマッピングする。そして、物体識別部132は、検出物の移動軌跡の形状と、自車両100の移動軌跡の形状とが類似するか否か判定する。物体識別部132は、検出物の移動軌跡が自車両100の移動軌跡と類似すると判定した場合(ステップA306でYes)、検出物を先行車と識別し、当該識別結果を記憶部131に記憶させる(ステップA307)。物体識別部132は、ステップA307の処理を完了すると、検出物識別処理を完了し、処理を図3のステップA4へ進める。 If it is determined in step A302 that the detected object is an obstacle, the object identifying unit 132 further determines whether the detected object is a preceding vehicle. Specifically, the object identification unit 132 determines whether or not the movement locus of the detected object is similar to the movement locus of the host vehicle 100 (step A306). More specifically, the object identification unit 132 maps the movement locus of the detected object on a virtual map from the current and past position information of the detected object stored in the storage unit 131. Similarly, the object identification unit 132 maps the movement trajectory of the host vehicle 100 on the map. Then, the object identification unit 132 determines whether or not the shape of the movement locus of the detected object is similar to the shape of the movement locus of the host vehicle 100. When the object identification unit 132 determines that the movement trajectory of the detected object is similar to the movement trajectory of the host vehicle 100 (Yes in Step A306), the object identification unit 132 identifies the detected object as a preceding vehicle and stores the identification result in the storage unit 131. (Step A307). When the object identification unit 132 completes the process of step A307, the object identification unit 132 completes the detected object identification process and advances the process to step A4 of FIG.
 一方、物体識別部132は、検出物の移動軌跡が自車両100の移動軌跡と類似しないと判定した場合(ステップA306でNo)、すなわち、検出物が先行車でないと判定した場合、検出物が路側物であるか否か判定する。具体的には、物体識別部132は、検出物が自車両100の前側方で静止しているか否かを、記憶部131に記憶された位置情報に基づいて判定する(ステップA308)。物体識別部132は、検出物が自車両100の前側方で静止していないと判定した場合(ステップA308でNo)、検出物識別処理を完了し、処理を図3のステップA4へ進める。一方、物体識別部132は、検出物が自車両100の前側方で静止していると判定した場合(ステップA308でYes)、当該検出物を路側物であると識別し、当該識別結果を記憶部131に記憶させる(ステップA309)。そして、ステップA309の処理を完了すると、物体識別部132は、路側物と識別した検出物が自車両100の進行方向に延設されているか否かを、記憶部131に記憶された位置情報に基づいて判定する(ステップA310)。具体的には、検出物のX軸方向の長さが所定の閾値以上であるか否か判定する。物体識別部132は、路側物と識別した検出物が自車両100の進行方向に延設されていると判定した場合、当該検出物がガードレールであると識別し、当該識別結果を記憶部131に記憶させる(ステップA311)。一方、物体識別部132は、路側物と識別した検出物が自車両100の進行方向に延設されていないと判定した場合、検出物識別処理を完了し、処理を図3のステップA4へ進める。 On the other hand, if the object identification unit 132 determines that the movement locus of the detected object is not similar to the movement locus of the host vehicle 100 (No in step A306), that is, if it is determined that the detected object is not a preceding vehicle, the detected object is It is determined whether it is a roadside object. Specifically, the object identification unit 132 determines whether or not the detected object is stationary at the front side of the host vehicle 100 based on the position information stored in the storage unit 131 (step A308). If the object identification unit 132 determines that the detected object is not stationary at the front side of the host vehicle 100 (No in Step A308), the object identification unit 132 completes the detected object identification process and advances the process to Step A4 in FIG. On the other hand, when the object identification unit 132 determines that the detected object is stationary at the front side of the host vehicle 100 (Yes in Step A308), the object identification unit 132 identifies the detected object as a roadside object and stores the identification result. The information is stored in the unit 131 (step A309). When the process of step A309 is completed, the object identification unit 132 indicates whether or not the detected object identified as a roadside object is extended in the traveling direction of the host vehicle 100 in the position information stored in the storage unit 131. Based on the determination (step A310). Specifically, it is determined whether or not the length of the detected object in the X-axis direction is greater than or equal to a predetermined threshold value. When the object identification unit 132 determines that the detected object identified as the roadside object is extended in the traveling direction of the host vehicle 100, the object identification unit 132 identifies that the detected object is a guardrail, and stores the identification result in the storage unit 131. Store (step A311). On the other hand, when the object identification unit 132 determines that the detected object identified as the roadside object is not extended in the traveling direction of the host vehicle 100, the object identification unit 132 completes the detected object identification process and proceeds to step A4 in FIG. .
 上記物体識別部132の処理によれば、検出物の上下位置情報に基づいて容易に物体を識別することができる。 According to the processing of the object identification unit 132, an object can be easily identified based on the vertical position information of the detected object.
 なお、上記ステップA306の処理は一例であり、物体識別部132は、上記ステップA306において従来周知の手法を用いて検出物の移動軌跡が自車両100の移動軌跡と類似するか否か判定して構わない。また、物体識別部132は、上記ステップA306に示した処理に限らず、従来周知の任意の手法を用いて検出物が先行車であるか否か判定しても構わない。また、物体識別部132は、上記ステップA308において、従来周知の手法を用いて検出物が自車両100の前方で静止しているか否か判定して構わない。また、物体識別部132は、上記検出物識別処理に限らず、従来周知の任意の手法を用いて検出物を、より詳細に識別しても構わない。 Note that the processing in step A306 is an example, and the object identification unit 132 determines in step A306 whether the movement locus of the detected object is similar to the movement locus of the host vehicle 100 using a conventionally known method. I do not care. The object identifying unit 132 is not limited to the process shown in step A306 above, and may determine whether the detected object is a preceding vehicle using any conventionally known method. In step A308, the object identification unit 132 may determine whether the detected object is stationary in front of the host vehicle 100 using a conventionally known method. Further, the object identification unit 132 is not limited to the above-described detection object identification process, and the detection object may be identified in more detail using any conventionally known method.
 図3の説明に戻り、ステップA4において、条件判定部135は、条件判定処理を実行する。図6は、第1の実施形態に係る条件判定部が実行する条件判定処理Aの一例を示すフローチャートである。条件判定部135は、条件判定処理Aを開始すると、以下に示すステップA40からステップA45の条件が全て満たされているか否か判定する。 Returning to the description of FIG. 3, in step A4, the condition determination unit 135 executes a condition determination process. FIG. 6 is a flowchart illustrating an example of the condition determination process A executed by the condition determination unit according to the first embodiment. When the condition determination process A is started, the condition determination unit 135 determines whether or not all of the following conditions from Step A40 to Step A45 are satisfied.
 先ず、条件判定部135は、現時点において先行車200が検出されているか否かを、記憶部131に記憶された物体検出部132による識別結果に基づいて判定する(ステップA40)。次いで、条件判定部135は、自車両100が定速走行中であるか否か判定する(ステップA41)。具体的には、条件判定部135は、加速度センサ11から取得した自車加減速度ACsが予め定められた閾値ACsth以下であるか否かに応じて、自車両100が定速走行中であるか否か判定する。次いで、条件判定部135は、自車両100が直進走行中であるか否か判定する(ステップA42において)。具体的には、条件判定部135は、舵角センサ12から取得した舵角ωが予め定められた閾値ωth未満であるか否かに応じて、自車両100が直進走行中であるか否か判定する。次いで、条件判定部135は、先行車200が定速走行中であるか否か判定する(ステップA43)。具体的には、先ず、先行車加減速度算出部133が、先行車加減速度ACmを算出する。そして、条件判定部135が、先行車加減速度算出部133から取得した先行車加減速度ACmが予め定められた閾値ACmth以下であるか否かに応じて、先行車200が定速走行中であるか否か判定する。次いで、条件判定部135は、先行車200が直進走行中であるか否か判定する(ステップA44)。具体的には、条件判定部135は、記憶部131に記憶された先行車200の横位置(Y座標)の時間当たりの変化量が予め定められた閾値未満であるか否かに応じて、先行車200が直進走行中であるか否か判定する。 First, the condition determination unit 135 determines whether or not the preceding vehicle 200 is currently detected based on the identification result by the object detection unit 132 stored in the storage unit 131 (step A40). Next, the condition determination unit 135 determines whether or not the host vehicle 100 is traveling at a constant speed (step A41). Specifically, the condition determination unit 135 determines whether the host vehicle 100 is traveling at a constant speed depending on whether or not the host vehicle acceleration / deceleration ACs acquired from the acceleration sensor 11 is equal to or less than a predetermined threshold ACsth. Judge whether or not. Next, the condition determination unit 135 determines whether or not the host vehicle 100 is traveling straight ahead (in step A42). Specifically, the condition determination unit 135 determines whether or not the host vehicle 100 is traveling straight depending on whether or not the rudder angle ω acquired from the rudder angle sensor 12 is less than a predetermined threshold ωth. judge. Next, the condition determination unit 135 determines whether or not the preceding vehicle 200 is traveling at a constant speed (step A43). Specifically, first, the preceding vehicle acceleration / deceleration calculation unit 133 calculates the preceding vehicle acceleration / deceleration ACm. Then, the preceding vehicle 200 is traveling at a constant speed depending on whether or not the preceding vehicle acceleration / deceleration ACm acquired from the preceding vehicle acceleration / deceleration calculating unit 133 by the condition determining unit 135 is equal to or less than a predetermined threshold ACmth. It is determined whether or not. Next, the condition determination unit 135 determines whether or not the preceding vehicle 200 is traveling straight ahead (step A44). Specifically, the condition determination unit 135 determines whether or not the amount of change per hour of the lateral position (Y coordinate) of the preceding vehicle 200 stored in the storage unit 131 is less than a predetermined threshold. It is determined whether the preceding vehicle 200 is traveling straight ahead.
 次いで、ステップA45においては、勾配判定部134が、自車両100の進行先の路面勾配に変化が無いか否かを判定する。先行車200が勾配のある路面を走行し出すと、先行車200の上下位置が急速に変動し出すと考えられる。したがって、勾配判定部134は、先ず、現在および過去の先行車200の上下位置Pzの値を記憶部131から読み出す。そして、先行車200の上下位置Pzの単位時間当たりの変化量を先行車上下速度ΔPzとして算出する。そして、勾配判定部134は、先行車上下速度ΔPzが予め定められた閾値ΔPzth以下である場合、自車両100の進行先の路面勾配に変化がないと判定する。一方、先行車上下速度ΔPzが予め定められた閾値ΔPzthより大きい場合、自車両100の進行先の路面勾配に変化があると判定する。すなわち、勾配判定部134は、下式(1)が満たされているか否か判定する。条件判定部135は、勾配判定部134による判定結果を取得して自車両100の進行先の路面勾配に変化があるか否かを判定する。
  ΔPz≦ΔPzth   …(1)
Next, in step A45, the gradient determination unit 134 determines whether there is no change in the road surface gradient of the traveling destination of the host vehicle 100. It is considered that when the preceding vehicle 200 starts running on a sloped road surface, the vertical position of the preceding vehicle 200 starts to fluctuate rapidly. Therefore, the gradient determination unit 134 first reads the value of the vertical position Pz of the current and past preceding vehicles 200 from the storage unit 131. Then, the amount of change per unit time of the vertical position Pz of the preceding vehicle 200 is calculated as the preceding vehicle vertical speed ΔPz. When the preceding vehicle vertical speed ΔPz is equal to or less than a predetermined threshold value ΔPzth, the gradient determination unit 134 determines that there is no change in the road surface gradient of the traveling destination of the host vehicle 100. On the other hand, when the preceding vehicle vertical speed ΔPz is greater than a predetermined threshold value ΔPzth, it is determined that there is a change in the road surface gradient of the traveling destination of the host vehicle 100. That is, the gradient determination unit 134 determines whether or not the following expression (1) is satisfied. The condition determination unit 135 acquires the determination result by the gradient determination unit 134 and determines whether or not the road surface gradient of the traveling destination of the host vehicle 100 has changed.
ΔPz ≦ ΔPzth (1)
 そして、ステップA40からステップA45の条件が全て満たされている場合(ステップA40からステップA45において全てYes)、条件判定部135は、正確検出条件フラグをオンに設定する(ステップA46)。一方、ステップA40からステップA45の条件の何れかが満たされていない場合(ステップA40からステップA45の何れか1つでNo)、正確検出条件フラグをオフに設定する(ステップA47)。正確検出条件フラグは、当該フラグがオン状態である場合に、検出物の上下位置を正確に検出可能な状況であることを示すフラグである。正確検出条件フラグのオン/オフ状態は障害物検出ECU13の記憶装置に記憶される。ステップA46またはステップA47の処理を完了すると、条件判定部135は、処理を図3のステップA5へ進める。 If all the conditions from step A40 to step A45 are satisfied (all from step A40 to step A45 are Yes), the condition determination unit 135 sets the accurate detection condition flag to ON (step A46). On the other hand, when any of the conditions from Step A40 to Step A45 is not satisfied (No in any one of Step A40 to Step A45), the accurate detection condition flag is set to OFF (Step A47). The accurate detection condition flag is a flag indicating that the vertical position of the detected object can be accurately detected when the flag is on. The on / off state of the accurate detection condition flag is stored in the storage device of the obstacle detection ECU 13. When the process of step A46 or step A47 is completed, the condition determination unit 135 advances the process to step A5 of FIG.
 図3の説明に戻り、ステップA5において、条件判定部135は、正確検出条件フラグがオンに設定されてから所定時間が経過したか否か判定する。具体的には、条件判定部135は、正確検出条件フラグがオンに設定された時点からの経過時間Tを測定する。そして、条件判定部135は、経過時間Tが、予め定められた閾値Tth以上となったか否か判定する。条件判定部135は、正確検出条件フラグがオンに設定されてから所定時間が経過したと判定した場合(ステップA5でYes)処理をステップA6へ進める。一方、条件判定部135は、正確検出条件フラグがオンに設定されてから所定時間が経過していないと判定した場合(ステップA5でNo)処理をステップA8へ進める。 3, in step A5, the condition determination unit 135 determines whether or not a predetermined time has elapsed since the accurate detection condition flag was set to ON. Specifically, the condition determination unit 135 measures the elapsed time T from the time when the accurate detection condition flag is set to ON. Then, the condition determination unit 135 determines whether or not the elapsed time T is equal to or greater than a predetermined threshold Tth. If the condition determination unit 135 determines that a predetermined time has elapsed since the accurate detection condition flag was set to ON (Yes in step A5), the process proceeds to step A6. On the other hand, if the condition determination unit 135 determines that the predetermined time has not elapsed since the accurate detection condition flag is set to ON (No in step A5), the process proceeds to step A8.
 上述の条件判定部135の処理によれば、先行車200の上下位置を正確に検出可能な状況が所定時間継続した場合に、以下に示す角度算出処理が実行され、相対ピッチ角θおよび姿勢角ψを算出される。したがって、誤って検出された先行車200の上下位置情報に基づいて相対ピッチ角θおよび姿勢角ψが算出されることを防ぐことができる。また、自車両100が一定速度で走行していること、および先行車200が一定速度で走行していることを条件とすることによって、より正確性の高い先行車200の上下位置情報Pzにのみ基づいて相対ピッチ角θおよび姿勢角ψを算出することができる。故に、誤って算出された相対ピッチ角θおよび姿勢角ψに基づいてレーダー装置10の設定が変更されることを防ぐことができる。 According to the process of the condition determination unit 135 described above, when the situation in which the vertical position of the preceding vehicle 200 can be accurately detected continues for a predetermined time, the angle calculation process shown below is executed, and the relative pitch angle θ and the attitude angle are ψ is calculated. Therefore, it is possible to prevent the relative pitch angle θ and the attitude angle ψ from being calculated based on the vertical position information of the preceding vehicle 200 detected in error. In addition, the condition that the host vehicle 100 is traveling at a constant speed and the preceding vehicle 200 is traveling at a constant speed makes it possible to obtain only the vertical position information Pz of the preceding vehicle 200 with higher accuracy. Based on this, the relative pitch angle θ and the posture angle ψ can be calculated. Therefore, it is possible to prevent the setting of the radar apparatus 10 from being changed based on the relative pitch angle θ and the attitude angle ψ calculated in error.
 ステップA6において、角度算出部136は、角度算出処理を実行する。第1の実施形態に係る角度算出部136は、図7に示す角度算出処理Aを実行する。なお、図7は、第1の実施形態に係る角度算出部が実行する角度算出処理Aの一例を示すフローチャートである。 In step A6, the angle calculation unit 136 executes an angle calculation process. The angle calculation unit 136 according to the first embodiment executes an angle calculation process A shown in FIG. FIG. 7 is a flowchart illustrating an example of an angle calculation process A executed by the angle calculation unit according to the first embodiment.
 角度算出部136は、角度算出処理Aを開始すると、先ず、平均先行車上下位置PzAを算出する(ステップA61)。平均先行車上下位置PzAは、前記正確検出条件フラグがオンに設定された時点から、現時点までの間の複数の時点において検出した先行車200の上下位置Pzの平均値である。 When the angle calculation process A is started, the angle calculation unit 136 first calculates the average preceding vehicle vertical position PzA (step A61). The average preceding vehicle up / down position PzA is an average value of the up / down positions Pz of the preceding vehicle 200 detected at a plurality of times from the time when the accurate detection condition flag is set to ON.
 次いで、角度算出部136は、先行車上下変位量Ph1を算出する(ステップA62)。先行車上下変位量Ph1は、図8に示すように上述検出物の位置を示すXYZ座標系において予め定められた先行車位置基準位置Pkに対する平均先行車上下位置PzAの変位量である。なお、図8は、先行車位置基準位置Pk、平均先行車上下位置PzA、および先行車上下変位量Ph1の定義を示す図である。先行車位置基準位置Pkは、図9に示すように、自車両100の車体が水平を保った状態でレーダー装置10によって先行車200が検出された場合に検出されるであろう先行車200の予想上下位置(Z座標)を示す値である。先行車位置基準位置Pkの値は、実験等により任意に定められる。なお、図9は、自車両100の車体が水平を保った状態でレーダー装置10によって先行車200が検出される様子を示す図である。例えば、図9に示すような状況で先行車200が検出された場合における、先行車200の検出位置をM1とすると、レーダー装置10の当該検出位置M1のZ座標(先行車上下位置Pz)は、図10に示すように先行車位置基準位置Pkと略同値となる。なお、図10は、自車両100の車体が水平を保った状態で検出された先行車200の検出位置M1を検出面SA上に示す図である。 Next, the angle calculation unit 136 calculates the preceding vehicle vertical displacement amount Ph1 (step A62). The preceding vehicle up / down displacement amount Ph1 is a displacement amount of the average preceding vehicle up / down position PzA with respect to the preceding vehicle position reference position Pk predetermined in the XYZ coordinate system indicating the position of the detected object as shown in FIG. FIG. 8 is a diagram showing the definitions of the preceding vehicle position reference position Pk, the average preceding vehicle up / down position PzA, and the preceding vehicle up / down displacement amount Ph1. As shown in FIG. 9, the preceding vehicle position reference position Pk is detected when the preceding vehicle 200 is detected when the radar device 10 detects the preceding vehicle 200 with the body of the host vehicle 100 kept horizontal. It is a value indicating the expected vertical position (Z coordinate). The value of the preceding vehicle position reference position Pk is arbitrarily determined by experiments or the like. FIG. 9 is a diagram illustrating a state in which the preceding vehicle 200 is detected by the radar device 10 while the vehicle body of the host vehicle 100 is kept horizontal. For example, when the preceding vehicle 200 is detected in the situation shown in FIG. 9 and the detection position of the preceding vehicle 200 is M1, the Z coordinate (the preceding vehicle vertical position Pz) of the detection position M1 of the radar apparatus 10 is As shown in FIG. 10, it is substantially the same value as the preceding vehicle position reference position Pk. FIG. 10 is a diagram showing the detection position M1 of the preceding vehicle 200 detected on the detection surface SA when the body of the host vehicle 100 is kept horizontal.
 次いで、角度算出部136は、レーダー装置10の検出軸線Jと自車両100の進行先の路面とが成す相対ピッチ角θを先行車上下変位量Ph1に応じて算出する(ステップA63)。ここで、図11に示すように自車両100の後部に比較的重い荷物が積載されるなどして、自車両100の車体前端が上方向へ向いた場合を想定する。図11は、自車両100の車体が傾斜した状態でレーダー装置10によって先行車200が検出される様子を示す図である。このような場合、レーダー装置10の検出軸線Jも自車両100の車体と共に上方向を向く。そのため、先行車200の検出位置M2は、先行車位置基準位置Pkより先行車上下変位量Ph1だけ下方へずれた位置にレーダー装置10により検出される。このように、自車量100の進行先の路面に勾配がない場合、先行車上下変位量Ph1と検出軸線Jの傾きとの間に相関関係が得られる。したがって、角度算出部136は、相対ピッチ角θを先行車上下変位量Ph1に応じて算出するすることができるのである。角度算出部136は、例えば、相対ピッチ角θと先行車上下変位量Ph1との相関関係を示すデータテーブルを予め記憶する。そして、角度算出部136は、当該データテーブルを参照して先行車上下変位量Ph1に対応する相対ピッチ角θを算出する。 Next, the angle calculation unit 136 calculates the relative pitch angle θ formed by the detection axis J of the radar device 10 and the road surface on which the host vehicle 100 travels according to the preceding vehicle vertical displacement amount Ph1 (step A63). Here, a case is assumed where the front end of the vehicle body of the host vehicle 100 is directed upward, for example, as shown in FIG. FIG. 11 is a diagram illustrating a state in which the preceding vehicle 200 is detected by the radar device 10 with the vehicle body of the host vehicle 100 tilted. In such a case, the detection axis J of the radar apparatus 10 also faces upward together with the vehicle body of the host vehicle 100. Therefore, the detection position M2 of the preceding vehicle 200 is detected by the radar device 10 at a position shifted downward from the preceding vehicle position reference position Pk by the preceding vehicle vertical displacement amount Ph1. Thus, when there is no gradient on the road surface where the host vehicle amount 100 travels, a correlation is obtained between the preceding vehicle vertical displacement amount Ph1 and the inclination of the detection axis J. Therefore, the angle calculation unit 136 can calculate the relative pitch angle θ according to the preceding vehicle vertical displacement amount Ph1. For example, the angle calculation unit 136 stores in advance a data table indicating the correlation between the relative pitch angle θ and the preceding vehicle vertical displacement amount Ph1. Then, the angle calculation unit 136 calculates the relative pitch angle θ corresponding to the preceding vehicle vertical displacement amount Ph1 with reference to the data table.
 このように、角度算出部136の処理によれば、先行車位置基準位置Pkに対する先行車200の上下位置のずれ(先行車上下変位量Ph1)を求める簡単な処理で相対ピッチ角θを算出することが可能である。また、異なる複数の時点において検出した先行車200の上下位置Pzの平均値に基づいて先行車上下変位量Ph1を算出することによって、上下位置Pzがノイズ等により一時的に誤検出してしまう場合があったとしても、このような誤検出の影響を抑制して、正確に相対ピッチ角θを算出することができる。 As described above, according to the process of the angle calculation unit 136, the relative pitch angle θ is calculated by a simple process for obtaining the vertical position shift (preceding vehicle vertical displacement amount Ph1) of the preceding vehicle 200 with respect to the preceding vehicle position reference position Pk. It is possible. Also, when the vertical displacement amount Ph1 of the preceding vehicle is calculated based on the average value of the vertical position Pz of the preceding vehicle 200 detected at a plurality of different time points, the vertical position Pz is temporarily erroneously detected due to noise or the like. Even if there is, it is possible to accurately calculate the relative pitch angle θ while suppressing the influence of such erroneous detection.
 次いで、角度算出部136は、姿勢角ψを相対ピッチ角θに基づいて算出する(ステップA64)。図11に示した通り、自車両100が勾配変化の無い平坦な路面を走行している場合、相対ピッチ角θは、自車両100のピッチ方向の姿勢角に応じた値となっていると考えられる。ここで、上記ステップA45およびステップA5の処理から、第1の実施形態においては、自車両100の進行先の路面の勾配変化が無いと判定された場合、すなわち自車両100が平坦な路面を走行している場合に、相対ピッチ角θが算出される。したがって、角度算出部136は、姿勢角ψを相対ピッチ角θに基づいて算出することができるのである。ここで、例えば、レーダー装置10が、自車両100の車体の前後方向を示す軸線(以下前後軸線)に対して検出軸線Jがオフセット角αだけ傾斜するように自車両100に取り付けられている場合を想定する。このような場合、角度算出部136は、相対ピッチ角θからオフセット角αを減算することによって自車両100の車体の水平面に対するピッチ角を姿勢角ψとして算出する。なお、オフセット角αの値が0である場合、角度算出部136は、相対ピッチ角θの値をそのまま姿勢角ψの値として算出する。角度算出部136は、算出した姿勢角ψの値を車両制御装置50へ出力する。角度算出部136は、ステップA64の処理を完了すると、処理を図3のステップA7へ進める。 Next, the angle calculation unit 136 calculates the posture angle ψ based on the relative pitch angle θ (step A64). As shown in FIG. 11, when the host vehicle 100 is traveling on a flat road surface having no change in gradient, the relative pitch angle θ is considered to be a value corresponding to the posture angle of the host vehicle 100 in the pitch direction. It is done. Here, in the first embodiment, when it is determined from the processing of step A45 and step A5 that there is no change in the gradient of the road surface on which the host vehicle 100 travels, that is, the host vehicle 100 travels on a flat road surface. In this case, the relative pitch angle θ is calculated. Therefore, the angle calculation unit 136 can calculate the posture angle ψ based on the relative pitch angle θ. Here, for example, when the radar apparatus 10 is attached to the host vehicle 100 such that the detection axis J is inclined by the offset angle α with respect to an axis indicating the front-rear direction of the vehicle body of the host vehicle 100 (hereinafter referred to as the front-rear axis). Is assumed. In such a case, the angle calculation unit 136 calculates the pitch angle with respect to the horizontal plane of the vehicle body of the host vehicle 100 as the posture angle ψ by subtracting the offset angle α from the relative pitch angle θ. When the value of the offset angle α is 0, the angle calculation unit 136 calculates the value of the relative pitch angle θ as it is as the value of the posture angle ψ. The angle calculation unit 136 outputs the calculated value of the posture angle ψ to the vehicle control device 50. When the angle calculation unit 136 completes the process of step A64, the process proceeds to step A7 of FIG.
 このように、本発明の第1の実施形態に係る物体検出装置1によれば、検出された先行車200の上下位置情報に基づいて相対ピッチ角θおよび姿勢角ψを算出可能である。そのため、相対ピッチ角θや姿勢角ψを算出するためにジャイロセンサ等のハードウェアを自車両に搭載する必要がない。すなわち、安価な構成で相対ピッチ角θや姿勢角ψを検出可能である。また、第1の実施形態に係る物体検出装置1によれば、自車両100の周囲にガードレール等の路側物が存在しない状況においても姿勢角ψを算出することができる。 As described above, according to the object detection device 1 according to the first embodiment of the present invention, the relative pitch angle θ and the attitude angle ψ can be calculated based on the detected vertical position information of the preceding vehicle 200. Therefore, it is not necessary to install hardware such as a gyro sensor in the own vehicle in order to calculate the relative pitch angle θ and the attitude angle ψ. That is, the relative pitch angle θ and the posture angle ψ can be detected with an inexpensive configuration. Further, according to the object detection device 1 according to the first embodiment, the posture angle ψ can be calculated even in a situation where there is no roadside object such as a guardrail around the host vehicle 100.
 図3の説明に戻り、設定変更部137は、角度算出部136により算出された相対ピッチ角θの値に応じてレーダー装置10の設定を変更する(ステップA7)。具体的には、設定変更部137は、図12に示すように、相対ピッチ角θの値が小さくなるようレーダー装置10の検出軸線Jの位置を移動させる。図12は、レーダー装置10の検出軸線Jの方向が変更される様子を示す図である。より好ましくは、設定変更部137は、相対ピッチ角θの値が0となるようレーダー装置10の検出軸線Jの位置を移動させる。なお、レーダー装置10が検出軸線Jを移動する手法は従来周知の任意の手法を用いて良い。例えば、レーダー装置10は、受信した反射波信号を相対ピッチ角θに応じて位相シフトする等の演算によって検出軸線Jの位置を仮想的に移動させても良い。また、レーダー装置10は、反射波信号を受信する受信アンテナの角度や配置をアクチュエータによって物理的に変更することによって検出軸線Jの位置を物理的に移動させても良い。ステップA7の処理を完了すると、設定変更部137は、処理をステップA8へ進める。 3, the setting changing unit 137 changes the setting of the radar device 10 according to the value of the relative pitch angle θ calculated by the angle calculating unit 136 (step A7). Specifically, as shown in FIG. 12, the setting change unit 137 moves the position of the detection axis J of the radar apparatus 10 so that the value of the relative pitch angle θ becomes small. FIG. 12 is a diagram illustrating how the direction of the detection axis J of the radar apparatus 10 is changed. More preferably, the setting change unit 137 moves the position of the detection axis J of the radar apparatus 10 so that the value of the relative pitch angle θ is zero. It should be noted that any conventionally known method may be used as the method by which the radar apparatus 10 moves the detection axis J. For example, the radar apparatus 10 may virtually move the position of the detection axis J by a calculation such as phase shifting the received reflected wave signal according to the relative pitch angle θ. Further, the radar apparatus 10 may physically move the position of the detection axis J by physically changing the angle and arrangement of the receiving antenna that receives the reflected wave signal with an actuator. When the process of step A7 is completed, the setting change unit 137 advances the process to step A8.
 次いで、ステップA8において、障害物検出ECU13は、自車両100のIG電源がオフ状態に設定されたか否か判定する。障害物検出ECU13は、自車両100のIG電源がオン状態に維持されていると判定した場合、処理を上記ステップA2へ戻し、ステップA2からステップA7の処理を繰り返し実行する。一方、障害物検出ECU13は、自車両100のIG電源がオフ状態に設定されている場合、図3のフローチャートの処理を終了する。 Next, in step A8, the obstacle detection ECU 13 determines whether or not the IG power source of the host vehicle 100 is set to an off state. When the obstacle detection ECU 13 determines that the IG power supply of the host vehicle 100 is maintained in the ON state, the obstacle detection ECU 13 returns the process to step A2 and repeatedly executes the processes from step A2 to step A7. On the other hand, when the IG power source of the host vehicle 100 is set to the off state, the obstacle detection ECU 13 ends the process of the flowchart of FIG.
 以上に示した通り、本発明の第1の実施形態に係る物体検出装置1によれば、相対ピッチ角θに応じて、レーダー装置10の検出軸線Jの方向を補正することができる。より具体的には、相対ピッチ角θが0になるよう検出軸線Jの方向が変更されることによって、当該検出軸線Jが常に路面と並行になるよう制御される。したがって、検出物の路面からの高さを正確に検出することができる。また、路面から離れ上方に配置された看板等の高架物が低い位置に存在するものとして誤検出され難くなる。そして、このように正確に検出された検出物の位置情報を用いて当該検出物がどのような物体であるかが識別するため、物体検出装置1によれば、物体を正確に識別することができる。 As described above, according to the object detection device 1 according to the first embodiment of the present invention, the direction of the detection axis J of the radar device 10 can be corrected according to the relative pitch angle θ. More specifically, by changing the direction of the detection axis J so that the relative pitch angle θ becomes 0, the detection axis J is controlled to be always parallel to the road surface. Therefore, the height of the detected object from the road surface can be accurately detected. In addition, it is difficult to detect erroneously that an elevated object such as a signboard disposed above and away from the road surface exists at a low position. Then, since the position information of the detected object thus accurately detected is used to identify what kind of object the detected object is, the object detecting device 1 can accurately identify the object. it can.
 なお、姿勢角ψの算出精度が低くても構わない場合、設定変更部137は、上記ステップA4からステップA8の処理を省略しても構わない。このような処理を行う場合、物体検出装置1は、加速度センサ11、舵角センサ12を備えない構成として良い。 If the calculation accuracy of the posture angle ψ may be low, the setting change unit 137 may omit the processing from step A4 to step A8. When performing such processing, the object detection device 1 may be configured not to include the acceleration sensor 11 and the steering angle sensor 12.
 また、上述ステップA7において、設定変更部137は、上述の処理に限らずレーダー装置10の設定を相対ピッチ角θに応じた任意の設定変更処理を行って構わない。例えば、設定変更部137は、相対ピッチ角θに応じてレーダー装置10における反射波信号の受信感度を変更しても構わない。より詳細には、設定変更部137は、相対ピッチ角θが大きいほど、レーダー装置10の物体検出領域のうち、比較的上方の領域からの反射波信号の受信感度を低下させても構わない。また、設定変更部137は、相対ピッチ角θに応じてレーダー装置10が照射する検出波信号の送信強度を変更しても構わない。より詳細には、設定変更部137は、相対ピッチ角θが大きいほど、レーダー装置10の物体検出領域のうち、比較的上方の領域へ送信する検出波信号の送信強度を低下させても構わない。 In step A7, the setting change unit 137 may perform arbitrary setting change processing according to the relative pitch angle θ for the setting of the radar device 10 without being limited to the above-described processing. For example, the setting change unit 137 may change the reception sensitivity of the reflected wave signal in the radar apparatus 10 according to the relative pitch angle θ. More specifically, the setting changing unit 137 may decrease the reception sensitivity of the reflected wave signal from a relatively upper region in the object detection region of the radar apparatus 10 as the relative pitch angle θ is larger. The setting change unit 137 may change the transmission intensity of the detection wave signal emitted by the radar apparatus 10 according to the relative pitch angle θ. More specifically, the setting change unit 137 may decrease the transmission intensity of the detection wave signal transmitted to a relatively upper region in the object detection region of the radar apparatus 10 as the relative pitch angle θ is larger. .
 また、物体識別部132は、異なる複数の先行車を識別し、角度算出部136は、異なる複数の先行車各々の上下位置情報に基づいて相対ピッチ角θおよび姿勢角ψを算出しても構わない。例えば、異なる複数の先行車各々の上下位置情報に基づいて、各々に得られた相対ピッチ角θの平均値を相対ピッチ角θとして算出しても構わない。 The object identifying unit 132 may identify a plurality of different preceding vehicles, and the angle calculating unit 136 may calculate the relative pitch angle θ and the posture angle ψ based on the vertical position information of each of the plurality of different preceding vehicles. Absent. For example, an average value of the relative pitch angles θ obtained for each of a plurality of different preceding vehicles may be calculated as the relative pitch angle θ.
 <第2の実施形態>
 上記第1の実施形態では、物体検出装置1が先行車200の上下位置情報に基づいて相対ピッチ角θおよび姿勢角ψを算出する例について説明したが、物体検出装置は、ガードレールの上下位置情報に基づいて相対ピッチ角θおよび姿勢角ψを算出しても構わない。なお、図13は、自車両100の車体が傾斜した状態でレーダー装置10によってガードレール300が検出される様子を示す図である。以下、第2の実施形態に係る物体検出装置について説明する。
<Second Embodiment>
In the first embodiment, the example in which the object detection device 1 calculates the relative pitch angle θ and the posture angle ψ based on the vertical position information of the preceding vehicle 200 has been described. The relative pitch angle θ and the posture angle ψ may be calculated based on the above. FIG. 13 is a diagram illustrating a state where the guard rail 300 is detected by the radar device 10 in a state where the vehicle body of the host vehicle 100 is tilted. Hereinafter, an object detection device according to the second embodiment will be described.
 第2の実施形態に係る物体検出装置の構成は、第1の実施形態と同様である(図1、2参照)。また、第2の実施形態に係る障害物検出ECU13は図3のフローチャートと同様の手順で処理を実行するが、ステップA4において条件判定部135が実行する条件判定処理、およびステップA6において角度算出部136が実行する角度算出処理が異なる。以下、第2の実施形態に係る条件判定部135および角度算出部136が実行する処理について説明する。 The configuration of the object detection apparatus according to the second embodiment is the same as that of the first embodiment (see FIGS. 1 and 2). Further, the obstacle detection ECU 13 according to the second embodiment executes the process in the same procedure as the flowchart of FIG. 3, but the condition determination process executed by the condition determination unit 135 in step A4 and the angle calculation unit in step A6. The angle calculation process executed by 136 is different. Hereinafter, processing executed by the condition determination unit 135 and the angle calculation unit 136 according to the second embodiment will be described.
 先ず、第2の実施形態に係る条件判定部135がステップA4において実行する条件判定処理Bについて説明する。図14は、第2の実施形態に係る条件判定部135が実行する条件判定処理Bの一例を示すフローチャートである。条件判定部135は、条件判定処理Bを開始すると、以下に示すステップB40からステップB43の条件が全て満たされているか否か判定する。 First, the condition determination process B executed in step A4 by the condition determination unit 135 according to the second embodiment will be described. FIG. 14 is a flowchart illustrating an example of condition determination processing B executed by the condition determination unit 135 according to the second embodiment. When the condition determination process B is started, the condition determination unit 135 determines whether or not all of the following conditions from Step B40 to Step B43 are satisfied.
 先ず、条件判定部135は、現時点においてガードレール300が検出されているか否かを、記憶部131に記憶された物体検出部132による識別結果に基づいて判定する(ステップB40)。次いで、条件判定部135は、上記ステップA41と同様にして自車両100が定速走行中であるか否か判定する(ステップB41)。次いで、条件判定部135は、上記ステップA42と同様にして自車両100が直進走行中であるか否か判定する(ステップB42)。 First, the condition determination unit 135 determines whether or not the guardrail 300 is currently detected based on the identification result by the object detection unit 132 stored in the storage unit 131 (step B40). Next, the condition determination unit 135 determines whether or not the host vehicle 100 is traveling at a constant speed in the same manner as in step A41 (step B41). Next, the condition determining unit 135 determines whether or not the host vehicle 100 is traveling straight ahead in the same manner as in step A42 (step B42).
 次いで、ステップB43においては、勾配判定部134が、自車両100の進行先の路面勾配に変化があるか否かを判定する。ガードレール300が勾配のある路面に沿って設置されている場合、当該ガードレール300の上下位置が路面勾配の変化に応じて変動すると考えられる(図24参照)。したがって、勾配判定部134は、先ず、自車両100から所定距離だけ離れた位置におけるガードレール300の上下位置を取得する。より具体的には、勾配判定部134は、X座標がL1の位置におけるガードレール300のZ座標(以下、ガードレール上下位置Gzと呼称する)を記憶部131から読み出す。なお、ガードレール上下位置Gzは、ステップA2において、予め検出、記憶されているものとする。ガードレール上下位置Gzの単位時間当たりの変化量をガードレール上下変化量ΔGzとして算出する。そして、勾配判定部134は、ガードレール上下変化量ΔGzが予め定められた閾値ΔGzth以下である場合、自車両100の進行先の道路の勾配に変化がないと判定する。一方、ガードレール上下変化量ΔGzが予め定められた閾値ΔGzthより大きい場合、自車両100の進行先の路面勾配に変化があると判定する。すなわち、勾配判定部134は、下式(2)が満たされているか否か判定する。
  ΔGz≦ΔGzth   …(2)
Next, in step B43, the gradient determination unit 134 determines whether there is a change in the road surface gradient of the traveling destination of the host vehicle 100. When the guard rail 300 is installed along a sloped road surface, it is considered that the vertical position of the guard rail 300 fluctuates according to the change in the road slope (see FIG. 24). Therefore, the gradient determination unit 134 first acquires the vertical position of the guard rail 300 at a position away from the host vehicle 100 by a predetermined distance. More specifically, the gradient determining unit 134 reads from the storage unit 131 the Z coordinate of the guardrail 300 (hereinafter referred to as the guardrail vertical position Gz) at the position where the X coordinate is L1. It is assumed that the guardrail vertical position Gz is detected and stored in advance in step A2. A change amount per unit time of the guard rail vertical position Gz is calculated as a guard rail vertical change amount ΔGz. Then, when the guardrail up / down change amount ΔGz is equal to or less than a predetermined threshold value ΔGzth, the gradient determination unit 134 determines that there is no change in the gradient of the destination road of the host vehicle 100. On the other hand, when the guard rail up / down change amount ΔGz is larger than a predetermined threshold value ΔGzth, it is determined that there is a change in the road gradient of the traveling destination of the host vehicle 100. That is, the gradient determination unit 134 determines whether or not the following expression (2) is satisfied.
ΔGz ≦ ΔGzth (2)
 そして、ステップB40からステップB43の条件が全て満たされている場合(ステップB40からステップB43において全てYes)、条件判定部135は、正確検出条件フラグをオンに設定する(ステップB44)。一方、ステップB40からステップB43の条件の何れかが満たされていない場合(ステップB40からステップB43の何れか1つでNo)、正確検出条件フラグをオフに設定する(ステップB45)。ステップB44またはステップB45の処理を完了すると、条件判定部135は、処理を図3のステップA5へ進める。 If all the conditions from step B40 to step B43 are satisfied (all from step B40 to step B43 is Yes), the condition determination unit 135 sets the accurate detection condition flag to ON (step B44). On the other hand, when any of the conditions from Step B40 to Step B43 is not satisfied (No in any one of Step B40 to Step B43), the accurate detection condition flag is set to OFF (Step B45). When the process of step B44 or step B45 is completed, the condition determining unit 135 advances the process to step A5 of FIG.
 上記条件判定処理Bによれば、自車両100の進行先の道路に勾配変化が無く、尚かつ、所定時間の間、継続してガードレール300が検出された場合に、以下に示す角度算出処理Bが実行される。 According to the condition determination process B, the angle calculation process B described below is performed when there is no change in the gradient of the road on which the host vehicle 100 travels and the guardrail 300 is continuously detected for a predetermined time. Is executed.
 次いで、第2の実施形態に係る角度算出部136が上述図3のステップA6において実行する姿勢角処理Bについて説明する。図15は、第2の実施形態に係る角度算出部136が実行する角度算出処理Bの一例を示すフローチャートである。 Next, the attitude angle process B executed by the angle calculation unit 136 according to the second embodiment in step A6 of FIG. 3 will be described. FIG. 15 is a flowchart illustrating an example of an angle calculation process B executed by the angle calculation unit 136 according to the second embodiment.
 角度算出部136は、条件判定処理を開始すると、先ず平均ガードレール上下位置GzAを算出する(ステップB61)。平均ガードレール上下位置GzAは、前記正確検出条件フラグがオンに設定された時点から、現時点までの間に検出したガードレール上下位置Gzの平均値である。なお、ガードレール上下位置Gzは、自車両100から所定距離(例えばX=L1)の位置におけるガードレール300の上端のZ座標である。ガードレール上下位置GzはステップA2の処理において検出され、記憶部131に記憶されているものとする。角度算出部136は、記憶部131から上記複数の時点において検出されたガードレール上下位置Gzの値を読み出し、これらの値の平均値を平均ガードレール上下位置GzAとして算出する。 When the condition determination process is started, the angle calculation unit 136 first calculates the average guardrail vertical position GzA (step B61). The average guardrail vertical position GzA is an average value of the guardrail vertical position Gz detected from the time when the accurate detection condition flag is set to ON until the present time. The guardrail vertical position Gz is the Z coordinate of the upper end of the guardrail 300 at a predetermined distance (for example, X = L1) from the host vehicle 100. It is assumed that the guardrail vertical position Gz is detected in the process of step A2 and stored in the storage unit 131. The angle calculation unit 136 reads the value of the guardrail vertical position Gz detected at the plurality of times from the storage unit 131, and calculates the average value of these values as the average guardrail vertical position GzA.
 次いで、角度算出部136は、ガードレール上下変位量Gh1を算出する(ステップB62)。ガードレール上下変位量Gh1は、上述検出物の位置を示すXYZ座標系において予め定められたガードレール位置基準位置Gkに対する平均ガードレール上下位置GzAの変位量である。図16は、ガードレール位置基準位置Gk、平均ガードレール上下位置GzA、およびガードレール上下変位量Gh1の定義を示す図である。ガードレール位置基準位置Gkは、自車両100の車体が水平を保った状態でレーダー装置10によってガードレール300が検出された場合に検出されるであろうガードレール300の上下位置(Z座標)を示す値である。ガードレール位置基準位置Gkは、実験等により任意に定められる。 Next, the angle calculation unit 136 calculates a guard rail vertical displacement amount Gh1 (step B62). The guard rail vertical displacement amount Gh1 is a displacement amount of the average guard rail vertical position GzA with respect to the guard rail position reference position Gk that is predetermined in the XYZ coordinate system indicating the position of the detected object. FIG. 16 is a diagram illustrating definitions of the guardrail position reference position Gk, the average guardrail vertical position GzA, and the guardrail vertical displacement amount Gh1. The guardrail position reference position Gk is a value indicating the vertical position (Z coordinate) of the guardrail 300 that will be detected when the guardrail 300 is detected by the radar apparatus 10 with the body of the host vehicle 100 kept horizontal. is there. The guardrail position reference position Gk is arbitrarily determined by experiments or the like.
 次いで、角度算出部136は、レーダー装置10の検出軸線Jと自車両100の進行先の路面とが成す相対ピッチ角θをガードレール上下変位量Gh1に応じて算出する(ステップB63)。ここで、図13に示すように自車両100の後部に比較的重い荷物が積載されるなどして、自車両100の車体前端が上方向へ向いた場合を想定する。このような場合、レーダー装置10の検出軸線Jも上方向を向く。そのため、ガードレール300の検出位置M3は、ガードレール位置基準位置Gkよりもガードレール上下変位量Gh1だけ下方へずれた位置としてレーダー装置10により検出される。このように、自車量100の進行先の路面に勾配がない場合、ガードレール上下変位量Gh1と検出軸線Jの傾きとの間に相関関係が得られる。故に、角度算出部136は、相対ピッチ角θをガードレール上下変位量Gh1に応じて算出することができるのである。より詳細には、角度算出部136は、例えば、相対ピッチ角θとガードレール上下変位量Gh1との相関関係を示すデータテーブルを予め記憶する。そして、角度算出部136は、当該データテーブルを参照してガードレール上下変位量Gh1に対応する相対ピッチ角θを算出する。 Next, the angle calculation unit 136 calculates the relative pitch angle θ formed by the detection axis J of the radar device 10 and the road surface on which the host vehicle 100 travels according to the guard rail vertical displacement amount Gh1 (step B63). Here, as shown in FIG. 13, a case is assumed in which a relatively heavy load is loaded on the rear portion of the host vehicle 100 and the vehicle body front end of the host vehicle 100 is directed upward. In such a case, the detection axis J of the radar apparatus 10 also faces upward. Therefore, the detection position M3 of the guard rail 300 is detected by the radar device 10 as a position shifted downward from the guard rail position reference position Gk by the guard rail vertical displacement amount Gh1. Thus, when there is no gradient on the road surface where the host vehicle amount 100 travels, a correlation is obtained between the guardrail vertical displacement amount Gh1 and the inclination of the detection axis J. Therefore, the angle calculation unit 136 can calculate the relative pitch angle θ according to the guard rail vertical displacement amount Gh1. More specifically, the angle calculation unit 136 stores in advance a data table indicating the correlation between the relative pitch angle θ and the guard rail vertical displacement amount Gh1, for example. Then, the angle calculation unit 136 calculates the relative pitch angle θ corresponding to the guardrail vertical displacement amount Gh1 with reference to the data table.
 次いで、角度算出部136は、ステップA64と同様にして、姿勢角ψを相対ピッチ角θに基づいて算出する(ステップB64)。角度算出部136は、ステップB64の処理を完了すると、処理を図3のステップA7へ進める。 Next, the angle calculation unit 136 calculates the posture angle ψ based on the relative pitch angle θ in the same manner as in step A64 (step B64). When the angle calculation unit 136 completes the process of step B64, the process proceeds to step A7 of FIG.
 このように、本発明の第2の実施形態に係る物体検出装置によれば、検出されたガードレール300の上下位置情報に基づいて相対ピッチ角θおよび姿勢角ψを算出可能である。そのため、相対ピッチ角θや姿勢角ψを算出するためにジャイロセンサ等のハードウェアを自車両に搭載する必要がない。すなわち、安価な構成で相対ピッチ角θや姿勢角ψを検出可能である。また、第2の実施形態に係る物体検出装置によれば、自車両100の前方に先行車が存在しない状況においても姿勢角ψを算出することができる。 Thus, according to the object detection device according to the second embodiment of the present invention, the relative pitch angle θ and the posture angle ψ can be calculated based on the detected vertical position information of the guard rail 300. Therefore, it is not necessary to install hardware such as a gyro sensor in the own vehicle in order to calculate the relative pitch angle θ and the attitude angle ψ. That is, the relative pitch angle θ and the posture angle ψ can be detected with an inexpensive configuration. In addition, according to the object detection device according to the second embodiment, the posture angle ψ can be calculated even in a situation where no preceding vehicle exists in front of the host vehicle 100.
 また、第2の実施形態に係る物体検出装置によれば、第1の実施形態と同様に、相対ピッチ角θに応じて、レーダー装置10の検出軸線Jの方向を補正することができる。したがって、検出物の位置を正確に検出し、当該検出物がどのような物体であるかを正確に識別することができる。 Also, according to the object detection apparatus according to the second embodiment, the direction of the detection axis J of the radar apparatus 10 can be corrected according to the relative pitch angle θ, as in the first embodiment. Therefore, it is possible to accurately detect the position of the detected object and accurately identify what kind of object the detected object is.
 なお、上記では、角度算出部136が自車両100から所定距離離れた位置(X=L1)におけるガードレール上下位置Gzの現在および過去の値を平均した平均ガードレール上下位置GzAに基づいて相対ピッチ角θを算出する例について説明したが、角度算出部136は、距離L1離れた位置だけでなく、異なる複数箇所におけるガードレール300の上下位置に基づいて相対ピッチ角を算出しても構わない。 In the above description, the relative pitch angle θ is calculated based on the average guardrail vertical position GzA obtained by averaging the current and past values of the guardrail vertical position Gz at a position (X = L1) that is a predetermined distance away from the host vehicle 100. However, the angle calculation unit 136 may calculate the relative pitch angle based not only on the positions separated by the distance L1 but also on the vertical positions of the guard rails 300 at different locations.
 <第3の実施形態>
 上記第2の実施形態においては、角度算出部136がガードレール等の道路に沿って延設された路側物の上下位置情報に基づいて相対角ピッチθを算出する例について説明したが、角度算出部136は、任意の路側物の位置情報の経時変化に基づいて相対ピッチ角θを算出しても構わない。以下、第3の実施形態に係る物体検出装置について説明する。
<Third Embodiment>
In the second embodiment, the angle calculation unit 136 has been described with respect to an example in which the relative angle pitch θ is calculated based on the vertical position information of a roadside object extending along a road such as a guard rail. In 136, the relative pitch angle θ may be calculated based on the change over time of the position information of an arbitrary roadside object. Hereinafter, the object detection apparatus according to the third embodiment will be described.
 第3の実施形態に係る物体検出装置の構成は、第1、2の実施形態と同様である(図1、2参照)。また、第3の実施形態に係る障害物検出ECU13は図3のフローチャートと同様の手順で処理を実行するが、ステップA4において条件判定部135が実行する条件判定処理、およびステップA6において角度算出部136が実行する角度算出処理が異なる。以下、第3の実施形態に係る条件判定部135および角度算出部136が実行する処理について説明する。 The configuration of the object detection apparatus according to the third embodiment is the same as that of the first and second embodiments (see FIGS. 1 and 2). Further, the obstacle detection ECU 13 according to the third embodiment executes the process in the same procedure as the flowchart of FIG. 3, but the condition determination process executed by the condition determination unit 135 in step A4 and the angle calculation unit in step A6. The angle calculation process executed by 136 is different. Hereinafter, processing executed by the condition determination unit 135 and the angle calculation unit 136 according to the third embodiment will be described.
 先ず、第3の実施形態に係る条件判定部135がステップA4において実行する条件判定処理Cについて説明する。図17は、第3の実施形態に係る条件判定部135が実行する条件判定処理Cの一例を示すフローチャートである。なお、図17に示す条件判定処理Cの処理のうち、図13に示した条件判定処理Bと同様の処理については同様の符号を付し、詳細な説明を省略する。条件判定部135は、条件判定処理Cを開始すると、以下に示すステップC40およびステップB41からステップB43の条件が全て満たされているか否か判定する。 First, the condition determination process C executed by the condition determination unit 135 according to the third embodiment in step A4 will be described. FIG. 17 is a flowchart illustrating an example of the condition determination process C executed by the condition determination unit 135 according to the third embodiment. Note that, in the process of the condition determination process C shown in FIG. 17, the same process as the condition determination process B shown in FIG. When the condition determination process C is started, the condition determination unit 135 determines whether or not all of the following conditions from Step C40 and Step B41 to Step B43 are satisfied.
 先ず、条件判定部135は、前回検出した路側物を現時点においても検出しているか否かを、記憶部131に記憶された物体検出部132による識別結果に基づいて判定する(ステップC40)。次いで、上述第2の実施形態と同様にしてステップB41からステップB43の条件が満たされているか否か判定する。そして、ステップC40およびステップB41からステップB43の条件が全て満たされている場合(ステップC40およびステップB41からステップB43において全てYes)、条件判定部135は、正確検出条件フラグをオンに設定する(ステップB44)。一方、ステップB40からステップB43の条件の何れかが満たされていない場合(ステップC40およびステップB41からステップB43の何れか1つでNo)、正確検出条件フラグをオフに設定する(ステップB45)。ステップB46またはステップB47の処理を完了すると、条件判定部135は、処理を図3のステップA5へ進める。 First, the condition determination unit 135 determines whether or not the roadside object detected last time is still detected based on the identification result by the object detection unit 132 stored in the storage unit 131 (step C40). Next, it is determined whether the conditions from step B41 to step B43 are satisfied in the same manner as in the second embodiment. If all the conditions of Step C40 and Step B41 to Step B43 are satisfied (Yes in Step C40 and Step B41 to Step B43), the condition determination unit 135 sets the accurate detection condition flag to ON (Step B44). On the other hand, when any of the conditions from Step B40 to Step B43 is not satisfied (No in any one of Step C40 and Step B41 to Step B43), the accurate detection condition flag is set to OFF (Step B45). When the process of step B46 or step B47 is completed, the condition determining unit 135 advances the process to step A5 of FIG.
 次いで、第3の実施形態に係る角度算出部136が上述図3のステップA6において実行する角度算出処理Cについて説明する。図18は、第3の実施形態に係る角度算出部136が実行する角度算出処理Cの一例を示すフローチャートである。 Next, an angle calculation process C executed by the angle calculation unit 136 according to the third embodiment in step A6 of FIG. 3 will be described. FIG. 18 is a flowchart illustrating an example of an angle calculation process C executed by the angle calculation unit 136 according to the third embodiment.
 上記条件判定処理Cによれば、自車両100の進行先の道路に勾配変化が無く、尚かつ、所定時間の間、継続して同一の路側物が検出された場合に、以下に示す角度算出処理Cが実行される。 According to the condition determination process C, the following angle calculation is performed when there is no change in the gradient of the road on which the host vehicle 100 is traveling and the same roadside object is continuously detected for a predetermined time. Process C is executed.
 次いで、角度算出部136は、条件判定処理を開始すると、先ず、路側物移動ベクトルVeQを算出する(ステップC61)。路側物移動ベクトルVeQは、レーダー装置10により検出された路側物の位置情報の変化を示すベクトル情報である。以下では、角度算出部136が、路側物として検出されたガードレールのポール400について路側物移動ベクトルVeQを算出する例について説明する。具体的には、角度算出部136は、現時点T1における自車両100に対するポール400の相対的な検出位置Q1、および過去時点T2における自車両100に対するポール400の相対的な検出位置Q2を記憶部131から取得し、図19に示すようにXZ平面上においてマッピングする。そして、検出位置Q1および点を結ぶXZ平面上のベクトルを路側物移動ベクトルVeQとして算出する。なお、図19は、路側物移動ベクトルVeQを示す図である。 Next, when the condition determination process is started, the angle calculation unit 136 first calculates the roadside object movement vector VeQ (step C61). The roadside object movement vector VeQ is vector information indicating a change in position information of the roadside object detected by the radar apparatus 10. Hereinafter, an example in which the angle calculation unit 136 calculates the roadside object movement vector VeQ for the guard rail pole 400 detected as a roadside object will be described. Specifically, the angle calculation unit 136 stores the relative detection position Q1 of the pole 400 with respect to the host vehicle 100 at the current time T1, and the relative detection position Q2 of the pole 400 with respect to the host vehicle 100 at the past time T2. And is mapped on the XZ plane as shown in FIG. Then, a vector on the XZ plane connecting the detection position Q1 and the point is calculated as a roadside object movement vector VeQ. FIG. 19 is a diagram illustrating the roadside object movement vector VeQ.
 次いで、角度算出部136は、レーダー装置10の検出軸線Jと自車両100の進行先の路面とが成す相対ピッチ角θを路側物移動ベクトルVeQと検出軸線Jとの位置関係に応じて算出する(ステップC62)。具体的には、路側物移動ベクトルVeQと検出軸線Jとが成す角を相対ピッチ角θとして算出する。図19に示すように、自車両100が勾配変化の無い平坦な路面を走行している場合、自車両100が進行するほど、検出されたポール400は相対的に自車両100に接近してくる。ここで、自車両100の姿勢が上方向を向いており、レーダー装置10の検出軸線Jも同様に上方を向いている場合を想定する。このような場合、現実のポール400の検出点Q1およびQ2の上下位置は変化していないにも拘わらず、レーダー装置10において検出された現時点T1におけるポール400の上下位置Qz1は、過去時点T2におけるポール400の上下位置Qz2に比べて、上方へ移動しているように検出される。すなわち、路側物の上下位置は、検出軸線Jの向きを示す相対ピッチ角θに応じて経時変化する。したがって、相対ピッチ角θは路側物の上下位置の変化を示す路側物移動ベクトルVeQによって算出することができるのである。 Next, the angle calculation unit 136 calculates the relative pitch angle θ formed by the detection axis J of the radar device 10 and the road surface on which the host vehicle 100 travels according to the positional relationship between the roadside object movement vector VeQ and the detection axis J. (Step C62). Specifically, the angle formed by the roadside object movement vector VeQ and the detection axis J is calculated as the relative pitch angle θ. As shown in FIG. 19, when the host vehicle 100 is traveling on a flat road surface without a change in slope, the detected pole 400 relatively approaches the host vehicle 100 as the host vehicle 100 travels. . Here, it is assumed that the posture of the host vehicle 100 is directed upward and the detection axis J of the radar apparatus 10 is also directed upward. In such a case, although the vertical positions of the detection points Q1 and Q2 of the actual pole 400 are not changed, the vertical position Qz1 of the pole 400 at the current time T1 detected by the radar device 10 is the past time T2. Compared with the vertical position Qz2 of the pole 400, it is detected as moving upward. That is, the vertical position of the roadside object changes with time according to the relative pitch angle θ indicating the direction of the detection axis J. Therefore, the relative pitch angle θ can be calculated by the roadside object movement vector VeQ indicating the change in the vertical position of the roadside object.
 このように、本発明の第3の実施形態に係る物体検出装置によれば、検出されたポール400の上下位置情報に基づいて相対ピッチ角θを算出可能である。そのため、当該ピッチ角を算出するためのセンサ等を自車両に搭載する必要がない。 Thus, according to the object detection device of the third embodiment of the present invention, the relative pitch angle θ can be calculated based on the detected vertical position information of the pole 400. Therefore, there is no need to mount a sensor or the like for calculating the pitch angle on the host vehicle.
 次いで、角度算出部136は、上記ステップB64と同様にして姿勢角ψを相対ピッチ角θに基づいて算出する(ステップC63)。 Next, the angle calculation unit 136 calculates the posture angle ψ based on the relative pitch angle θ in the same manner as in Step B64 (Step C63).
 以上に示した通り、第3の実施形態に係る物体検出装置によれば、ガードレールのような道路に沿った帯状を成す路側物に限らず、任意の形態の路側物を用いて相対ピッチ角θおよび姿勢角ψを算出することができる。また、第3の実施形態に係る物体検出装置によれば、自車両100の前方に先行車が存在しない状況においても姿勢角ψを算出することができる。 As described above, according to the object detection apparatus according to the third embodiment, the relative pitch angle θ is not limited to a roadside object that forms a belt-like shape along a road such as a guardrail, but a roadside object of any form. And the attitude angle ψ can be calculated. In addition, according to the object detection device according to the third embodiment, the posture angle ψ can be calculated even in a situation where no preceding vehicle exists in front of the host vehicle 100.
 また、第3の実施形態に係る物体検出装置によれば、第1の実施形態と同様に、相対ピッチ角θに応じて、レーダー装置10の検出軸線Jの方向を補正することができる。したがって、検出物の位置を正確に検出し、当該検出物を正確に識別することができる。 Also, according to the object detection apparatus according to the third embodiment, the direction of the detection axis J of the radar apparatus 10 can be corrected according to the relative pitch angle θ, as in the first embodiment. Therefore, it is possible to accurately detect the position of the detected object and accurately identify the detected object.
 なお、角度算出部136は、ガードレール300のポール400に限らず、記憶部131に記憶された任意の路側物の位置情報に基づいて上記図18の処理を実行して構わない。また、上記ステップC61の処理は一例であり、角度算出部136は、従来周知の任意の手法を用いて路側物移動ベクトルVeQを算出して構わない。 Note that the angle calculation unit 136 is not limited to the pole 400 of the guardrail 300, and may execute the process of FIG. 18 based on the position information of an arbitrary roadside object stored in the storage unit 131. Moreover, the process of the said step C61 is an example, and the angle calculation part 136 may calculate the roadside object movement vector VeQ using the conventionally well-known arbitrary methods.
 <第4の実施形態>
 上記第1乃至3の実施形態においては、自車両100の進行先の道路に勾配変化が無い(ステップA45、B43でYes)ことを前提とした場合、相対ピッチ角θの大きさと姿勢角ψに相関性があると考えられるため、角度算出部136が相対ピッチ角θに基づいて姿勢角ψを算出する例に説明した。一方で、自車両100の進行先の道路に勾配変化があり、且つ、自車両100の姿勢が水平を保っている場合には、検出軸線Jと自車両100の進行先の道路の路面とが成す相対ピッチ角θは、図20に示す通り、当該道路の勾配角に応じた値になっていると考えられる。したがって、角度算出部136は、自車両100の進行先の道路に勾配変化がある場合には、当該進行先の道路の勾配角φを算出しても良い。なお、図20は、進行先の道路に勾配変化がある場合における相対ピッチ角θと勾配角φの関係を示す図である。以下、第4の実施形態に係る物体検出装置について説明する。
<Fourth Embodiment>
In the first to third embodiments, when it is assumed that there is no gradient change in the road on which the host vehicle 100 travels (Yes in Steps A45 and B43), the relative pitch angle θ and the posture angle ψ are Since it is considered that there is a correlation, the example in which the angle calculation unit 136 calculates the posture angle ψ based on the relative pitch angle θ has been described. On the other hand, when there is a gradient change in the road to which the host vehicle 100 travels and the attitude of the host vehicle 100 is kept horizontal, the detection axis J and the road surface of the road to which the host vehicle 100 travels are It is considered that the relative pitch angle θ formed is a value corresponding to the slope angle of the road as shown in FIG. Therefore, when there is a gradient change in the destination road of the host vehicle 100, the angle calculation unit 136 may calculate the slope angle φ of the destination road. Note that FIG. 20 is a diagram illustrating the relationship between the relative pitch angle θ and the gradient angle φ when there is a gradient change in the destination road. Hereinafter, an object detection apparatus according to the fourth embodiment will be described.
 第4の実施形態に係る物体検出装置の構成は、第1の実施形態と同様であるが(図1、2参照)、障害物検出ECU13が実行する処理が異なる。また、第4の実施形態に係る障害物検出ECU13は図3のフローチャートと同様の手順で処理を実行するが、ステップA4において条件判定部135が実行する条件判定処理、およびステップA6において角度算出部136が実行する角度算出処理が異なる。以下、第3の実施形態に係る条件判定部135および角度算出部136が実行する処理について説明する。以下、第4の実施形態に係る条件判定部135および角度算出部136が実行する処理について説明する。 The configuration of the object detection apparatus according to the fourth embodiment is the same as that of the first embodiment (see FIGS. 1 and 2), but the processing executed by the obstacle detection ECU 13 is different. Further, the obstacle detection ECU 13 according to the fourth embodiment executes the process in the same procedure as the flowchart of FIG. 3, but the condition determination process executed by the condition determination unit 135 in step A4 and the angle calculation unit in step A6. The angle calculation process executed by 136 is different. Hereinafter, processing executed by the condition determination unit 135 and the angle calculation unit 136 according to the third embodiment will be described. Hereinafter, processing executed by the condition determination unit 135 and the angle calculation unit 136 according to the fourth embodiment will be described.
 先ず、第4の実施形態に係る条件判定部135がステップA4において実行する条件判定処理Dについて説明する。図21は、第4の実施形態に係る条件判定部135が実行する条件判定処理Dの一例を示すフローチャートである。なお、図21に示す条件判定処理Dのうち、上述図6に示す条件判定処理Aと同様の処理を行うステップについては、同様の符号を付し、詳細な説明を省略する。条件判定部135は、条件判定処理Dを開始すると、以下に示すステップA40からステップA44、およびステップD45の条件が全て満たされているか否か判定する。 First, the condition determination process D executed by the condition determination unit 135 according to the fourth embodiment in step A4 will be described. FIG. 21 is a flowchart illustrating an example of the condition determination process D executed by the condition determination unit 135 according to the fourth embodiment. Note that, in the condition determination process D shown in FIG. 21, steps that perform the same process as the condition determination process A shown in FIG. 6 are given the same reference numerals, and detailed description thereof is omitted. When the condition determination process D is started, the condition determination unit 135 determines whether or not all of the following conditions from Step A40 to Step A44 and Step D45 are satisfied.
 ステップD45において、勾配判定部134は、自車両100の進行先の路面勾配に変化があるか否かを判定する。具体的には、勾配判定部134は、上述のステップA45の処理と同様にして、先行車上下速度ΔPzを算出する。そして、勾配判定部134は、先行車上下速度ΔPzが予め定められた閾値ΔPzth以下である場合、自車両100の進行先の路面勾配に変化があると判定する。一方、先行車上下速度ΔPzが予め定められた閾値ΔPzthより大きい場合、自車両100の進行先の路面勾配に変化がないと判定する。すなわち、勾配判定部134は、下式(3)が満たされているか否か判定する。
  ΔPz>ΔPzth   …(3)
In step D45, the gradient determination unit 134 determines whether there is a change in the road surface gradient of the traveling destination of the host vehicle 100. Specifically, the gradient determination unit 134 calculates the preceding vehicle vertical speed ΔPz in the same manner as in the process of step A45 described above. Then, when the preceding vehicle vertical speed ΔPz is equal to or less than a predetermined threshold value ΔPzth, the gradient determination unit 134 determines that the road surface gradient of the traveling destination of the host vehicle 100 has changed. On the other hand, when the preceding vehicle vertical speed ΔPz is greater than a predetermined threshold value ΔPzth, it is determined that there is no change in the road surface gradient of the traveling destination of the host vehicle 100. That is, the gradient determination unit 134 determines whether or not the following expression (3) is satisfied.
ΔPz> ΔPzth (3)
 そして、ステップA40からステップA44、およびステップD45の条件が全て満たされている場合(ステップA40からステップA44およびステップD45において全てYes)、条件判定部135は、正確検出条件フラグをオンに設定する(ステップA46)。一方、ステップA40からステップA45の条件の何れかが満たされていない場合(ステップA40からステップA44およびステップD45の何れか1つでNo)、正確検出条件フラグをオフに設定する(ステップA47)。ステップA46またはステップA47の処理を完了すると、条件判定部135は、処理を図3のステップA5へ進める。 When all the conditions from step A40 to step A44 and step D45 are satisfied (all from step A40 to step A44 and step D45 are all Yes), the condition determination unit 135 sets the accurate detection condition flag to ON ( Step A46). On the other hand, if any of the conditions from Step A40 to Step A45 is not satisfied (No in any one of Step A40 to Step A44 and Step D45), the accurate detection condition flag is set to OFF (Step A47). When the process of step A46 or step A47 is completed, the condition determination unit 135 advances the process to step A5 of FIG.
 上記条件判定処理Dによれば、自車両100の進行先の道路勾配が変化しており、尚かつ、所定時間の間、継続して先行車200が検出された場合に、以下に示す角度算出処理Dが実行される。 According to the condition determination process D, when the road gradient of the destination of the host vehicle 100 is changing and the preceding vehicle 200 is continuously detected for a predetermined time, the following angle calculation is performed. Process D is executed.
 次いで、第4の実施形態に係る角度算出部136が上述図3のステップA6において実行する角度算出処理Dについて説明する。図22は、第4の実施形態に係る角度算出部136が実行する角度算出処理Dの一例を示すフローチャートである。 Next, an angle calculation process D executed by the angle calculation unit 136 according to the fourth embodiment in step A6 in FIG. 3 will be described. FIG. 22 is a flowchart illustrating an example of an angle calculation process D executed by the angle calculation unit 136 according to the fourth embodiment.
 角度算出部136は、角度算出処理Dを開始すると、先行車上下変位量Ph2を算出する(ステップD61)。先行車上下変位量Ph2は、先行車位置基準位置Pkに対する現時点の先行車上下位置Pzの変位量である。 When the angle calculation process D is started, the angle calculation unit 136 calculates the preceding vehicle vertical displacement amount Ph2 (step D61). The preceding vehicle up / down displacement amount Ph2 is a displacement amount of the current preceding vehicle up / down position Pz with respect to the preceding vehicle position reference position Pk.
 次いで、角度算出部136は、相対ピッチ角θを先行車上下変位量Ph2に応じて算出する(ステップD62)。角度算出部136は、例えば、相対ピッチ角θと先行車上下変位量Ph2との相関関係を示すデータテーブルを予め記憶する。そして、角度算出部136は、当該データテーブルを参照して先行車上下変位量Ph2に対応する相対ピッチ角θを算出する。 Next, the angle calculation unit 136 calculates the relative pitch angle θ according to the preceding vehicle vertical displacement amount Ph2 (step D62). For example, the angle calculation unit 136 stores in advance a data table indicating the correlation between the relative pitch angle θ and the preceding vehicle vertical displacement amount Ph2. Then, the angle calculation unit 136 calculates the relative pitch angle θ corresponding to the preceding vehicle vertical displacement amount Ph2 with reference to the data table.
 次いで、角度算出部136は、勾配角φを相対ピッチ角θに基づいて算出する(ステップD63)。図20に示した通り、相対ピッチ角θは、自車両100の進行先の道路の勾配に応じた値となっていると考えられる。したがって、角度算出部136は、相対ピッチ角θの値をそのまま勾配角φの値として算出する。なお、レーダー装置10が、上述のように自車両100の車体に対してオフセット角αだけ傾斜するように取り付けられている場合、角度算出部136は、相対ピッチ角θからオフセット角αを減算することによって自車両100の車体の水平面に対するピッチ角を勾配角φとして算出して良い。角度算出部136は、ステップD64の処理を完了すると、処理を図3のステップA7へ進める。 Next, the angle calculation unit 136 calculates the gradient angle φ based on the relative pitch angle θ (step D63). As shown in FIG. 20, the relative pitch angle θ is considered to be a value corresponding to the gradient of the road on which the host vehicle 100 travels. Therefore, the angle calculation unit 136 calculates the value of the relative pitch angle θ as it is as the value of the gradient angle φ. When the radar apparatus 10 is mounted so as to be inclined by the offset angle α with respect to the vehicle body of the host vehicle 100 as described above, the angle calculation unit 136 subtracts the offset angle α from the relative pitch angle θ. Thus, the pitch angle with respect to the horizontal plane of the vehicle body of the host vehicle 100 may be calculated as the gradient angle φ. When the angle calculation unit 136 completes the process of step D64, the process proceeds to step A7 of FIG.
 このように、本発明の第4の実施形態に係る物体検出装置によれば、検出された先行車200の上下位置情報に基づいて相対ピッチ角θおよび勾配角φを算出可能である。そのため、相対ピッチ角θや勾配角φを算出するためにナビゲーション装置等のハードウェアを自車両に搭載する必要がない。すなわち、安価な構成で相対ピッチ角θや勾配角φを検出可能である。また、第4の実施形態に係る物体検出装置によれば、自車両100の周囲にガードレール等の路側物が存在しない状況においても勾配角φを算出することができる。 Thus, according to the object detection device of the fourth embodiment of the present invention, the relative pitch angle θ and the gradient angle φ can be calculated based on the detected vertical position information of the preceding vehicle 200. Therefore, it is not necessary to install hardware such as a navigation device in the host vehicle in order to calculate the relative pitch angle θ and the gradient angle φ. That is, the relative pitch angle θ and the gradient angle φ can be detected with an inexpensive configuration. In addition, according to the object detection device according to the fourth embodiment, the gradient angle φ can be calculated even in a situation where there is no roadside object such as a guardrail around the host vehicle 100.
 また、第4の実施形態に係る物体検出装置によれば、第1の実施形態と同様に、相対ピッチ角θに応じて、レーダー装置10の検出軸線Jの方向を補正することができる。したがって、検出物の位置を正確に検出し、当該検出物を正確に識別することができる。 Further, according to the object detection device according to the fourth embodiment, the direction of the detection axis J of the radar device 10 can be corrected according to the relative pitch angle θ, as in the first embodiment. Therefore, it is possible to accurately detect the position of the detected object and accurately identify the detected object.
 <第5の実施形態>
 上記第4の実施形態においては、角度算出部136が先行車200の上下位置情報に基づいて勾配角φを算出する例について説明したが、角度算出部136は、図23に示すように勾配変化のある道路に沿って配置されたガードレール301の上下位置情報に基づいて勾配角φを算出して構わない。なお、図23は、勾配変化のある道路に沿って配置されたガードレールの位置が検出される様子を示す図である。以下、第5の実施形態に係る物体検出装置について説明する。
<Fifth Embodiment>
In the fourth embodiment, the example in which the angle calculation unit 136 calculates the gradient angle φ based on the vertical position information of the preceding vehicle 200 has been described. However, the angle calculation unit 136 changes the gradient as shown in FIG. The gradient angle φ may be calculated based on the vertical position information of the guardrail 301 arranged along a certain road. FIG. 23 is a diagram illustrating a state in which the position of a guardrail arranged along a road with a gradient change is detected. The object detection apparatus according to the fifth embodiment will be described below.
 第5の実施形態に係る物体検出装置の構成は、第1の実施形態と同様であるが(図1、2参照)、障害物検出ECU13が実行する処理が異なる。また、第5の実施形態に係る障害物検出ECU13は図3のフローチャートと同様の手順で処理を実行するが、ステップA4において条件判定部135が実行する条件判定処理、およびステップA6において角度算出部136が実行する角度算出処理が異なる。以下、第5の実施形態に係る条件判定部135および角度算出部136が実行する処理について説明する。以下、第5の実施形態に係る条件判定部135および角度算出部136が実行する処理について説明する。 The configuration of the object detection apparatus according to the fifth embodiment is the same as that of the first embodiment (see FIGS. 1 and 2), but the processing executed by the obstacle detection ECU 13 is different. Further, the obstacle detection ECU 13 according to the fifth embodiment executes the process in the same procedure as the flowchart of FIG. 3, but the condition determination process executed by the condition determination unit 135 in step A4 and the angle calculation unit in step A6. The angle calculation process executed by 136 is different. Hereinafter, processing executed by the condition determination unit 135 and the angle calculation unit 136 according to the fifth embodiment will be described. Hereinafter, processing executed by the condition determination unit 135 and the angle calculation unit 136 according to the fifth embodiment will be described.
 先ず、第5の実施形態に係る条件判定部135がステップA4において実行する条件判定処理Eについて説明する。図24は、第5の実施形態に係る条件判定部135が実行する条件判定処理Eの一例を示すフローチャートである。なお、図24に示す条件判定処理Eのうち、上述図14に示す条件判定処理Bと同様の処理を行うステップについては、同様の符号を付し、詳細な説明を省略する。条件判定部135は、条件判定処理Eを開始すると、以下に示すステップB40からステップB42、およびステップE43の条件が全て満たされているか否か判定する。 First, the condition determination process E executed by the condition determination unit 135 according to the fifth embodiment in step A4 will be described. FIG. 24 is a flowchart illustrating an example of the condition determination process E executed by the condition determination unit 135 according to the fifth embodiment. Note that, in the condition determination process E shown in FIG. 24, steps that perform the same process as the condition determination process B shown in FIG. 14 are given the same reference numerals, and detailed description thereof is omitted. When the condition determination process E is started, the condition determination unit 135 determines whether or not all of the following conditions from Step B40 to Step B42 and Step E43 are satisfied.
 先ず、条件判定部135は、現時点においてガードレール300が検出されているか否か判定する(ステップB40)。次いで、条件判定部135は、自車両100が定速走行中であるか否か判定する(ステップB41)。次いで、条件判定部135は、自車両100が直進走行中であるか否か判定する(ステップB42)。 First, the condition determination unit 135 determines whether or not the guardrail 300 is currently detected (step B40). Next, the condition determination unit 135 determines whether or not the host vehicle 100 is traveling at a constant speed (step B41). Next, the condition determination unit 135 determines whether or not the host vehicle 100 is traveling straight ahead (step B42).
 次いで、ステップE43において、勾配判定部134は、自車両100の進行先の路面勾配に変化があるか否かを判定する。具体的には、勾配判定部134は、上述のステップB43の処理と同様にして、ガードレール上下変化量ΔGzを算出する。そして、ガードレール上下変化量ΔGzが予め定められた閾値ΔGzthより大きい場合、自車両100の進行先の路面勾配に変化があると判定する。一方、勾配判定部134は、先行車上下速度ΔGzが予め定められた閾値ΔGzth以下である場合、自車両100の進行先の路面勾配に変化がないと判定する。すなわち、勾配判定部134は、下式(4)が満たされているか否か判定する。条件判定部135は、勾配判定部134による判定結果を取得して自車両100の進行先の路面勾配に変化があるか否かを判定する。
  ΔGz>ΔGzth   …(4)
Next, in step E43, the gradient determination unit 134 determines whether or not there is a change in the road surface gradient of the traveling destination of the host vehicle 100. Specifically, the gradient determination unit 134 calculates the guardrail up / down change amount ΔGz in the same manner as the process of Step B43 described above. When the guard rail up / down change amount ΔGz is larger than a predetermined threshold value ΔGzth, it is determined that there is a change in the road surface gradient of the traveling destination of the host vehicle 100. On the other hand, when the preceding vehicle vertical speed ΔGz is equal to or lower than a predetermined threshold value ΔGzth, the gradient determination unit 134 determines that there is no change in the road surface gradient of the traveling destination of the host vehicle 100. That is, the gradient determination unit 134 determines whether or not the following expression (4) is satisfied. The condition determination unit 135 acquires the determination result by the gradient determination unit 134 and determines whether or not the road surface gradient of the traveling destination of the host vehicle 100 has changed.
ΔGz> ΔGzth (4)
 そして、ステップB40からステップB42、およびステップE43の条件が全て満たされている場合(ステップB40からステップB42およびステップE43において全てYes)、条件判定部135は、正確検出条件フラグをオンに設定する(ステップB44)。一方、ステップB40からステップB42、およびステップE43の条件の何れかが満たされていない場合(ステップB40からステップB42およびステップE43の何れか1つでNo)、正確検出条件フラグをオフに設定する(ステップB45)。ステップB44またはステップB45の処理を完了すると、条件判定部135は、処理を図3のステップA5へ進める。 When all the conditions from step B40 to step B42 and step E43 are satisfied (all from step B40 to step B42 and step E43), the condition determination unit 135 sets the accurate detection condition flag to ON ( Step B44). On the other hand, if any of the conditions from Step B40 to Step B42 and Step E43 is not satisfied (No in any one of Step B40 to Step B42 and Step E43), the accurate detection condition flag is set to OFF ( Step B45). When the process of step B44 or step B45 is completed, the condition determining unit 135 advances the process to step A5 of FIG.
 上記条件判定処理Eによれば、自車両100の進行先の道路勾配に変化があり、尚かつ、所定時間の間、継続してガードレール300が検出された場合に、以下に示す角度算出処理Eが実行される。 According to the condition determination process E, when the road gradient of the traveling destination of the host vehicle 100 is changed and the guardrail 300 is continuously detected for a predetermined time, the angle calculation process E shown below is performed. Is executed.
 次いで、第5の実施形態に係る角度算出部136が上述図3のステップA6において実行する角度算出処理Eについて説明する。図25は、第5の実施形態に係る角度算出部136が実行する角度算出処理Eの一例を示すフローチャートである。 Next, the angle calculation process E executed by the angle calculation unit 136 according to the fifth embodiment in step A6 of FIG. 3 will be described. FIG. 25 is a flowchart illustrating an example of an angle calculation process E executed by the angle calculation unit 136 according to the fifth embodiment.
 角度算出部136は、角度算出処理Eを開始すると、ガードレール上下変位量Gh2を算出する(ステップE61)。ガードレール上下変位量Gh2は、ガードレール位置基準位置Gkに対する現時点のガードレール上下位置Gznの変位量である。現時点のガードレール上下位置GznはステップA2の処理において検出され、記憶部131に記憶されているものとする。角度算出部136は、記憶部131から上記現時点のガードレール上下位置Gznの値を読み出し、ガードレール基準位置Gkからの変位量Gh2を算出する。 When the angle calculation process E is started, the angle calculation unit 136 calculates the guard rail vertical displacement amount Gh2 (step E61). The guard rail vertical displacement amount Gh2 is a displacement amount of the current guard rail vertical position Gzn with respect to the guard rail position reference position Gk. It is assumed that the current guardrail vertical position Gzn is detected in the process of step A2 and stored in the storage unit 131. The angle calculation unit 136 reads the value of the current guardrail vertical position Gzn from the storage unit 131 and calculates the displacement amount Gh2 from the guardrail reference position Gk.
 次いで、角度算出部136は、相対ピッチ角θをガードレール上下変位量Gh2に応じて算出する(ステップE62)。角度算出部136は、例えば、相対ピッチ角θとガードレール上下変位量Gh2との相関関係を示すデータテーブルを予め記憶する。そして、角度算出部136は、当該データテーブルを参照してガードレール上下変位量Gh2に対応する相対ピッチ角θを算出する。 Next, the angle calculation unit 136 calculates the relative pitch angle θ according to the guard rail vertical displacement amount Gh2 (step E62). For example, the angle calculation unit 136 previously stores a data table indicating the correlation between the relative pitch angle θ and the guardrail vertical displacement amount Gh2. Then, the angle calculation unit 136 calculates the relative pitch angle θ corresponding to the guardrail vertical displacement amount Gh2 with reference to the data table.
 次いで、角度算出部136は、上記ステップD63と同様にして勾配角φを相対ピッチ角θに基づいて算出する(ステップE63)。角度算出部136は、ステップE64の処理を完了すると、処理を図3のステップA7へ進める。 Next, the angle calculation unit 136 calculates the gradient angle φ based on the relative pitch angle θ in the same manner as in step D63 (step E63). When the angle calculation unit 136 completes the process of step E64, the process proceeds to step A7 of FIG.
 このように、本発明の第5の実施形態に係る物体検出装置によれば、検出されたガードレール300の上下位置情報に基づいて相対ピッチ角θおよび勾配角φを算出可能である。そのため、相対ピッチ角θや勾配角φを算出するためにナビゲーション装置等のハードウェアを自車両に搭載する必要がない。すなわち、安価な構成で相対ピッチ角θや勾配角φを検出可能である。また、第5の実施形態に係る物体検出装置によれば、自車両100の前方に先行車が存在しない状況においても勾配角φを算出することができる。 Thus, according to the object detection device of the fifth embodiment of the present invention, the relative pitch angle θ and the gradient angle φ can be calculated based on the detected vertical position information of the guard rail 300. Therefore, it is not necessary to install hardware such as a navigation device in the host vehicle in order to calculate the relative pitch angle θ and the gradient angle φ. That is, the relative pitch angle θ and the gradient angle φ can be detected with an inexpensive configuration. In addition, according to the object detection device according to the fifth embodiment, it is possible to calculate the gradient angle φ even in a situation where there is no preceding vehicle ahead of the host vehicle 100.
 また、第5の実施形態に係る物体検出装置によれば、第1の実施形態と同様に、相対ピッチ角θに応じて、レーダー装置10の検出軸線Jの方向を補正することができる。したがって、検出物の位置を正確に検出し、当該検出物がどのような物体であるかを正確に識別することができる。 Further, according to the object detection apparatus according to the fifth embodiment, the direction of the detection axis J of the radar apparatus 10 can be corrected according to the relative pitch angle θ, as in the first embodiment. Therefore, it is possible to accurately detect the position of the detected object and accurately identify what kind of object the detected object is.
 なお、上記各実施形態では、物体検出装置が位置検出部としてレーダー装置10を備える例について説明したが、物体の位置を検出可能な任意の装置を位置検出部として用いて良い。例えば、物体検出装置は位置検出部として自車両100の前方を撮像するカメラを備えても構わない。なお、このような構成とする場合、検出軸線Jはカメラの光軸線を示すものとする。 In each of the above embodiments, the example in which the object detection device includes the radar device 10 as a position detection unit has been described. However, any device that can detect the position of an object may be used as the position detection unit. For example, the object detection device may include a camera that images the front of the host vehicle 100 as a position detection unit. In such a configuration, the detection axis J represents the optical axis of the camera.
 また、上記各実施形態では、レーダー装置10が自身の位置を原点とする座標系で検出物の位置を検出する例について説明したが、レーダー装置10は、任意の位置を原点として検出物の位置情報を取得して構わない。例えば、レーダー装置10は自車両100走行する道路の路面位置を検出し、当該路面位置をZ軸の原点として検出物の位置を検出しても構わない。 In each of the above embodiments, the example in which the radar apparatus 10 detects the position of the detected object in the coordinate system having its own position as the origin has been described. You can get the information. For example, the radar apparatus 10 may detect the position of the road surface on which the host vehicle 100 travels, and detect the position of the detected object using the road surface position as the origin of the Z axis.
 本発明に係る物体検出装置は、従来に比して物体を正確に検出可能な物体検出装置などとして有用である。 The object detection apparatus according to the present invention is useful as an object detection apparatus that can detect an object more accurately than in the past.
 1   物体検出装置
 10  レーダー装置(位置検出部)
 11  加速度センサ(自車加減速度検出部)
 12  舵角センサ(舵角検出部)
 13  障害物検出ECU
 131 記憶部
 132 物体識別部
 133 先行車加減速度算出部
 134 勾配判定部
 135 条件判定部
 136 角度算出部
 137 設定変更部
 40  衝突判定ECU
 50  車両制御装置
 91、92  看板
 100、800 自車両
 200 先行車
 300、301 ガードレール
 400 ポール
1 Object detection device 10 Radar device (position detection unit)
11 Accelerometer (Vehicle acceleration / deceleration detector)
12 Rudder angle sensor (steering angle detector)
13 Obstacle detection ECU
131 storage unit 132 object identification unit 133 preceding vehicle acceleration / deceleration calculation unit 134 gradient determination unit 135 condition determination unit 136 angle calculation unit 137 setting change unit 40 collision determination ECU
50 Vehicle control device 91, 92 Signboard 100, 800 Own vehicle 200 Preceding vehicle 300, 301 Guardrail 400 Pole

Claims (17)

  1.  自車両周囲に存在する物体を検出する物体検出装置であって、
     前記自車両の進行先の路面上に存在する物体の少なくとも上下位置情報を検出する位置検出部と、
     前記位置検出部により検出された前記物体が前記自車両と衝突する可能性のある障害物であるか否かを少なくとも識別する物体識別部と、
     前記自車両の進行先の道路の路面と、前記位置検出部の検出軸線とが成す相対的なピッチ角を前記物体の上下位置情報に基づいて算出する角度算出部と、
     前記位置検出部の設定を前記相対的なピッチ角に応じて補正することによって前記物体識別部による誤識別を抑制する設定変更部とを備えることを特徴とする、物体検出装置。
    An object detection device for detecting an object existing around a host vehicle,
    A position detection unit for detecting at least vertical position information of an object existing on a road surface on which the host vehicle travels;
    An object identification unit that at least identifies whether the object detected by the position detection unit is an obstacle that may collide with the host vehicle;
    An angle calculation unit that calculates a relative pitch angle formed by a road surface of a road on which the host vehicle travels and a detection axis of the position detection unit based on vertical position information of the object;
    An object detection apparatus comprising: a setting change unit that suppresses erroneous identification by the object identification unit by correcting the setting of the position detection unit according to the relative pitch angle.
  2.  前記角度算出部は、前記相対的なピッチ角を予め定められた基準位置に対する前記物体の上下位置の変位量に応じて算出することを特徴とする、請求項1に記載の物体検出装置。 The object detection apparatus according to claim 1, wherein the angle calculation unit calculates the relative pitch angle according to a displacement amount of the vertical position of the object with respect to a predetermined reference position.
  3.  前記位置検出部により検出された現在および過去の前記物体の上下位置情報を記憶する記憶部をさらに備え、
     前記角度算出部は、前記記憶部に記憶された現在および過去の前記物体の上下位置の平均位置を算出し、前記相対的なピッチ角を前記基準位置に対する当該平均位置の変位量に応じて算出することを特徴とする、請求項2に記載の物体検出装置
    A storage unit that stores the vertical position information of the current and past objects detected by the position detection unit;
    The angle calculation unit calculates an average position of current and past positions of the object stored in the storage unit, and calculates the relative pitch angle according to a displacement amount of the average position with respect to the reference position. The object detection device according to claim 2, wherein
  4.  前記物体の上下位置を正確に検出するための条件が所定時間の間満たされたか否か判定する条件判定部をさらに備え、
     前記角度算出部は、前記条件が所定時間の間満たされたと判定された場合に、当該所定時間内に検出された前記物体の上下位置情報に基づいて前記ピッチ角を算出することを特徴とする、請求項3に記載の物体検出装置。
    A condition determination unit that determines whether a condition for accurately detecting the vertical position of the object is satisfied for a predetermined time;
    The angle calculation unit calculates the pitch angle based on the vertical position information of the object detected within the predetermined time when it is determined that the condition is satisfied for a predetermined time. The object detection device according to claim 3.
  5.  前記自車両の加減速度を検出する自車加減速度検出部と、
     前記自車両の舵角を検出する舵角検出部とをさらに備え、
     前記条件判定部は、前記自車両の加減速度が予め定められた閾値以下であり、且つ、前記自車両の舵角が予め定められた閾値以下であることを、前記物体の上下位置を正確に検出するための条件として判定することを特徴とする、請求項4に記載の物体検出装置。
    A host vehicle acceleration / deceleration detecting unit for detecting acceleration / deceleration of the host vehicle;
    A steering angle detector for detecting a steering angle of the host vehicle,
    The condition determination unit accurately determines the vertical position of the object that the acceleration / deceleration of the host vehicle is equal to or less than a predetermined threshold and the steering angle of the host vehicle is equal to or less than a predetermined threshold. The object detection device according to claim 4, wherein the object detection device is determined as a condition for detection.
  6.  前記位置検出部により検出された物体が前記自車両の前方を走行する先行車であるか否かを判定する先行車判定部と、
     前記先行車の加減速度を算出する先行車加減速度算出部とをさらに備え、
     前記条件判定部は、前記自車両および前記先行車の加減速度が何れも予め定められた閾値以下であり、且つ、前記自車両の舵角が予め定められた閾値以下であることを、前記物体の上下位置を正確に検出するための条件として判定し、
     前記角度算出部は、前記条件が所定時間の間満たされたと判定された場合に、当該所定時間内に検出された前記先行車の上下位置情報に基づいて前記ピッチ角を算出することを特徴とする、請求項4に記載の物体検出装置。
    A preceding vehicle determination unit that determines whether or not the object detected by the position detection unit is a preceding vehicle traveling in front of the host vehicle;
    A preceding vehicle acceleration / deceleration calculation unit for calculating acceleration / deceleration of the preceding vehicle,
    The condition determining unit determines that the acceleration / deceleration of the host vehicle and the preceding vehicle are both equal to or less than a predetermined threshold value, and the steering angle of the host vehicle is equal to or less than a predetermined threshold value. As a condition for accurately detecting the vertical position of
    The angle calculation unit calculates the pitch angle based on vertical position information of the preceding vehicle detected within the predetermined time when it is determined that the condition is satisfied for a predetermined time. The object detection device according to claim 4.
  7.  前記物体識別部は、前記物体が前記進行先の路面に配置された路側物であるか否かを判別し、
     前記角度算出部は、前記路側物の現在および過去の上下位置に基づいて、当該路側物の前記自車両に対する相対的な移動方向を示す移動ベクトルを算出し、当該移動ベクトルと前記位置検出部の検出軸線とが成す角度を前記ピッチ角として算出することを特徴とする、請求項1乃至2の何れか1つに記載の物体検出装置。
    The object identification unit determines whether or not the object is a roadside object arranged on the road surface of the destination,
    The angle calculation unit calculates a movement vector indicating a relative movement direction of the roadside object with respect to the host vehicle based on the current and past vertical positions of the roadside object, and the movement vector and the position detection unit The object detection apparatus according to claim 1, wherein an angle formed by a detection axis is calculated as the pitch angle.
  8.  前記位置検出部により検出された現在および過去の前記物体の上下位置情報を記憶する記憶部と、
     前記進行先の道路勾配が変化しているか否かを前記位置検出部によって検出された現在および過去の前記物体の上下位置情報に基づいて判定する勾配判定部とをさらに備え、
     前記角度算出部は、前記勾配判定部によって前記進行先の道路勾配が変化していないと判定された場合、前記ピッチ角に基づいて前記自車両の車体の水平面に対するピッチ方向の姿勢角を算出することを特徴とする、請求項1乃至7に記載の物体検出装置。
    A storage unit for storing vertical and vertical position information of the current and past objects detected by the position detection unit;
    A gradient determination unit that determines whether or not the road gradient of the destination is changing based on the vertical position information of the current and past objects detected by the position detection unit;
    The angle calculation unit calculates a posture angle in a pitch direction with respect to a horizontal plane of the vehicle body of the host vehicle based on the pitch angle when the gradient determination unit determines that the road gradient of the destination is not changed. The object detection device according to claim 1, wherein the object detection device is an object detection device.
  9.  前記位置検出部により検出された現在および過去の前記物体の上下位置情報を記憶する記憶部と、
     前記進行先の道路勾配が変化しているか否かを前記位置検出部によって検出された現在および過去の前記物体の上下位置情報に基づいて判定する勾配判定部とをさらに備え、
     前記角度算出部は、前記勾配判定部によって前記進行先の道路勾配が変化していると判定された場合、前記進行先の道路の勾配角を前記ピッチ角に基づいて算出することを特徴とする、請求項1または8の何れか1つに記載の物体検出装置。
    A storage unit for storing vertical and vertical position information of the current and past objects detected by the position detection unit;
    A gradient determination unit that determines whether or not the road gradient of the destination is changing based on the vertical position information of the current and past objects detected by the position detection unit;
    The angle calculation unit calculates a gradient angle of the destination road based on the pitch angle when the gradient determination unit determines that the destination road gradient has changed. The object detection device according to claim 1.
  10.  前記物体識別部は、前記位置検出部により検出された物体が前記自車両の前方を走行する先行車であるか否かを判定し、
     前記角度算出部は、前記自車両の車体との相対的なピッチ角を前記記憶部に記憶された現在および過去の前記先行車の上下位置情報に基づいて算出することを特徴とする、請求項8乃至9の何れか1つに記載の物体検出装置。
    The object identification unit determines whether the object detected by the position detection unit is a preceding vehicle traveling in front of the host vehicle,
    The angle calculation unit calculates a relative pitch angle with respect to a vehicle body of the host vehicle based on vertical position information of the current and past preceding vehicles stored in the storage unit. The object detection apparatus according to any one of 8 to 9.
  11.  前記先行車の上下位置の単位時間当たりの変化量を現在および過去の前記先行車の上下位置情報に基づいて算出する上下位置変化量算出部とをさらに備え、
     前記勾配判定部は、
      当該先行車の上下位置の単位時間当たりの変化量が予め定められた閾値以上である場合、前記進行先の道路勾配が変化していると判定し、
      当該先行車の上下位置の単位時間当たりの変化量が予め定められた閾値未満である場合、前記進行先の道路勾配が変化していないと判定することを特徴とする、請求項10に記載の物体検出装置。
    A vertical position change amount calculating unit that calculates a change amount per unit time of the vertical position of the preceding vehicle based on current and past vertical position information of the preceding vehicle;
    The gradient determination unit
    When the amount of change per unit time of the vertical position of the preceding vehicle is equal to or greater than a predetermined threshold, it is determined that the road gradient of the destination has changed,
    11. The method according to claim 10, wherein when the amount of change per unit time of the vertical position of the preceding vehicle is less than a predetermined threshold value, it is determined that the road gradient of the traveling destination has not changed. Object detection device.
  12.  前記物体識別部は、前記物体が前記進行先の道路に配置された路側物であるか否かを判別し、当該物体が路側物であるか否かを判定し、
     前記角度算出部は、前記自車両の車体との相対的なピッチ角を前記記憶部に記憶された現在および過去の前記路側物の上下位置情報に基づいて算出することを特徴とする、請求項8乃至9の何れか1つに記載の物体検出装置。
    The object identification unit determines whether the object is a roadside object arranged on the destination road, determines whether the object is a roadside object,
    The angle calculation unit calculates a relative pitch angle with the vehicle body of the host vehicle based on current and past vertical position information of the roadside object stored in the storage unit. The object detection apparatus according to any one of 8 to 9.
  13.  前記物体識別部は、前記路側物が、前記進行先の路面に沿って一定の高さで延設された帯状の帯状路側物であるか否かをさらに判別し、
     前記位置検出部は、前記物体が前記帯状路側物であると判別された場合、前記自車両を基準として所定距離前方における前記帯状路側物の上下位置を検出し、
     前記勾配判定部は、
      現時点の前記上下位置と過去の前記上下位置との差分値が予め定められた閾値以上である場合、前記進行先の道路勾配が変化していると判定し、
      前記差分値が予め定められた閾値未満である場合、前記進行先の道路勾配が変化していないと判定することを特徴とする、請求項12に記載の物体検出装置。
    The object identification unit further determines whether or not the roadside object is a belt-like beltlike roadside object extending at a certain height along the road surface of the destination,
    When the position detection unit determines that the object is the belt-like roadside object, the position detection unit detects a vertical position of the belt-like roadside object in a predetermined distance forward with respect to the host vehicle,
    The gradient determination unit
    If the difference value between the current vertical position and the previous vertical position is greater than or equal to a predetermined threshold, it is determined that the road gradient of the destination has changed,
    The object detection device according to claim 12, wherein when the difference value is less than a predetermined threshold value, it is determined that the road gradient of the travel destination has not changed.
  14.  前記物体識別部は、前記物体の上下位置が上下方向の所定の領域内に存在する場合、当該物体が前記障害物であると識別することを特徴とする、請求項1乃至13の何れか1つに記載の物体検出装置。 The object identifying unit identifies the object as the obstacle when the vertical position of the object is within a predetermined region in the vertical direction. The object detection apparatus described in one.
  15.  前記物体識別部は、前記物体の上下位置が前記自車両の車体の下端以上、且つ、前記自車両の車体の上端未満の領域に存在する場合、当該物体が前記障害物であると識別することを特徴とする、請求項14に記載の物体検出装置。 The object identification unit identifies that the object is the obstacle when the vertical position of the object exists in a region that is equal to or higher than the lower end of the vehicle body of the host vehicle and less than the upper end of the vehicle body of the host vehicle. The object detection device according to claim 14, wherein:
  16.  前記物体識別部は、
      前記物体の上下位置が前記自車両の車体の下端以下の領域に存在する場合、当該物体
    が路面上の段差であると識別し、
      前記物体の上下位置が前記自車両の車体の上端以上の領域に存在する場合、当該物体が路面から離れた位置に配置された高架物であると識別することを特徴とする、請求項15に記載の物体検出装置。
    The object identification unit is
    When the vertical position of the object is present in a region below the lower end of the vehicle body of the host vehicle, the object is identified as a step on the road surface,
    The object according to claim 15, wherein when the vertical position of the object exists in a region higher than an upper end of the vehicle body of the host vehicle, the object is identified as an elevated object arranged at a position away from the road surface. The object detection apparatus described.
  17.  前記位置検出部は、前記検出軸線方向へ検出波を照射し、物体からの当該検出波の反射波を受信することによって当該物体の位置を検出するレーダー装置であり、
     前記設定変更部は、前記レーダー装置の検出軸線を前記ピッチ角が小さくなる方向へ回転移動させて当該レーダー装置による物体の検出領域を変更することによって前記物体識別部による誤判別を抑制することを特徴とする、請求項1乃至16の何れか1つに記載の物体検出装置。
    The position detection unit is a radar device that detects a position of the object by irradiating a detection wave in the detection axis direction and receiving a reflected wave of the detection wave from the object,
    The setting change unit suppresses erroneous determination by the object identification unit by rotating the detection axis of the radar device in a direction in which the pitch angle is reduced to change an object detection region by the radar device. The object detection device according to claim 1, wherein the object detection device is a feature.
PCT/JP2010/003143 2010-05-07 2010-05-07 Object detector WO2011138820A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003143 WO2011138820A1 (en) 2010-05-07 2010-05-07 Object detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003143 WO2011138820A1 (en) 2010-05-07 2010-05-07 Object detector

Publications (1)

Publication Number Publication Date
WO2011138820A1 true WO2011138820A1 (en) 2011-11-10

Family

ID=44903680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003143 WO2011138820A1 (en) 2010-05-07 2010-05-07 Object detector

Country Status (1)

Country Link
WO (1) WO2011138820A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015028860A3 (en) * 2013-08-26 2015-11-26 Toyota Jidosha Kabushiki Kaisha In-vehicle control device
WO2018228884A1 (en) * 2017-06-13 2018-12-20 Lucas Automotive Gmbh System for environment detection in a motor vehicle
CN113625237A (en) * 2021-08-11 2021-11-09 南京隼眼电子科技有限公司 Vehicle-mounted millimeter wave radar pitch angle error calibration method and device and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056020A (en) * 1998-08-07 2000-02-25 Honda Motor Co Ltd Object detecting device
JP2001084497A (en) * 1999-07-13 2001-03-30 Honda Motor Co Ltd Position detector
JP2004125739A (en) * 2002-10-07 2004-04-22 Omron Corp Object detection system and method
JP2004317323A (en) * 2003-04-17 2004-11-11 Daihatsu Motor Co Ltd Road surface gradient estimating device and road surface gradient estimating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056020A (en) * 1998-08-07 2000-02-25 Honda Motor Co Ltd Object detecting device
JP2001084497A (en) * 1999-07-13 2001-03-30 Honda Motor Co Ltd Position detector
JP2004125739A (en) * 2002-10-07 2004-04-22 Omron Corp Object detection system and method
JP2004317323A (en) * 2003-04-17 2004-11-11 Daihatsu Motor Co Ltd Road surface gradient estimating device and road surface gradient estimating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015028860A3 (en) * 2013-08-26 2015-11-26 Toyota Jidosha Kabushiki Kaisha In-vehicle control device
CN105473402A (en) * 2013-08-26 2016-04-06 丰田自动车株式会社 In-vehicle control device
WO2018228884A1 (en) * 2017-06-13 2018-12-20 Lucas Automotive Gmbh System for environment detection in a motor vehicle
CN113625237A (en) * 2021-08-11 2021-11-09 南京隼眼电子科技有限公司 Vehicle-mounted millimeter wave radar pitch angle error calibration method and device and electronic equipment

Similar Documents

Publication Publication Date Title
US10486698B2 (en) Vehicle cruise control device and cruise control method
JP5786941B2 (en) Autonomous driving control system for vehicles
US9102329B2 (en) Tracking control apparatus
CN109155109B (en) Target object detection device
US20180178811A1 (en) In-vehicle alert apparatus and method of controlling in-vehicle alert apparatus
CN107179530B (en) Device for determining an offset of a detection device mounted on a vehicle
US20070030131A1 (en) Vehicle obstacle verification system
JP2015155878A (en) Obstacle detection device for vehicle
US8847792B2 (en) Object detection apparatus and object detection program
JP5926069B2 (en) Obstacle determination device
US11086007B2 (en) Target detection device
JP2017027202A (en) Driving support system
US10907962B2 (en) Driving assistance system mounted in vehicle
JP6577767B2 (en) Object detection apparatus and object detection method
JP2021096265A (en) Measurement device, method for measurement, and program
US9643576B2 (en) Collision avoidance assist device and collision avoidance assist method
WO2017138329A1 (en) Collision prediction device
WO2011138820A1 (en) Object detector
JP2004184331A (en) Object recognition apparatus for motor vehicle
KR102545582B1 (en) System for avoiding collision in crossroad and method for control thereof
US11142187B2 (en) Parking assistance device
US10914832B2 (en) Estimation apparatus
JP2014112348A (en) Action analyzing apparatus, action analyzing system, and action analyzing method
US11407390B2 (en) Vehicle control apparatus and vehicle control method
JP2012014520A (en) Obstacle detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP