WO2011137645A1 - 一种长距盒及其对上下行光的处理方法 - Google Patents

一种长距盒及其对上下行光的处理方法 Download PDF

Info

Publication number
WO2011137645A1
WO2011137645A1 PCT/CN2010/079388 CN2010079388W WO2011137645A1 WO 2011137645 A1 WO2011137645 A1 WO 2011137645A1 CN 2010079388 W CN2010079388 W CN 2010079388W WO 2011137645 A1 WO2011137645 A1 WO 2011137645A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
interface
different
light
pon
Prior art date
Application number
PCT/CN2010/079388
Other languages
English (en)
French (fr)
Inventor
徐继东
张德智
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10851014.0A priority Critical patent/EP2521290A4/en
Priority to US13/576,180 priority patent/US8989580B2/en
Publication of WO2011137645A1 publication Critical patent/WO2011137645A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables

Definitions

  • the present invention relates to an optical network system, and more particularly to a long giant box suitable for coexisting passive optical network (PON) systems and a method for processing the uplink and downlink lights.
  • PON passive optical network
  • Long-distance PON is a point-to-multipoint fiber access technology.
  • 1 is a schematic structural diagram of a conventional long-distance passive optical network, as shown in FIG. 1, including an optical line terminal (OLT, Optical Line Terminal), an optical network unit (ONU), and an optical distribution network (ODN). , Optical Distribution Network ).
  • OLT optical line terminal
  • ONU optical network unit
  • ODN optical distribution network
  • an OLT is connected to a plurality of 0NUs through an optical extension box (also referred to as a long-distance box) and an optical power splitter (referred to as a splitter), as shown in FIG.
  • an optical extension box also referred to as a long-distance box
  • an optical power splitter referred to as a splitter
  • FIG. 2 is a schematic diagram of the structure of a coexisting long-distance passive optical network. Since different P0N systems generally have different uplink and downlink wavelengths, such as Gigabit P0N (GPON) and 10 Gigabit P0N (XG-PON).
  • GPON Gigabit P0N
  • XG-PON 10 Gigabit P0N
  • the downstream wavelength of GPON is 1480 nm to 1500 nm
  • the upstream wavelength is 1290 nm to 1330 nm
  • the downstream wavelength of XG-PON is 1575 nm to 1581 nm.
  • the upstream wavelength is 1260 nm to 1280 nm.
  • the existing long-distance box is mainly designed for a single PON system. For multiple PON coexistence systems, the long-distance box of a single PON system cannot satisfy this coexisting PON system, so a synthetic long-distance box is needed to meet its needs.
  • Figure 2 shows. Summary of the invention
  • the main object of the present invention is to provide a long-distance box and a method for processing the same, which can be reliably applied to the operation of a plurality of different PON systems in the same ODN.
  • a long-distance box for a PON system in which a PON system of different passive optical networks coexists mainly including a diplexer, an optical amplifier (OA), a wavelength division multiplexing filter, an opto-optical OEO conversion device, and Local management box, where
  • the optical duplexer connects the long-distance box to the trunk fiber for splitting the uplink and downlink light from different PON systems, and the upstream light of different PON systems is transmitted through the first optical channel, and the downstream light of different PON systems passes through Two optical channel transmission;
  • An optical amplifier located on the first optical channel, and outputting the upstream light of different PON systems after amplification
  • the wavelength division multiplexing filter is located on the second optical channel, and is configured to divide the second optical channel into different sub-optical channels according to different wavelengths, and the descending lights of different PON systems are amplified by different sub-optical channels and output;
  • OEO conversion devices are respectively located on different sub-optical channels on the second optical channel for amplifying the downward light of different PON systems
  • the local management box is connected to the optical line terminal OLT via a shunt coupler (TAP) and trunk fiber, through which the OLT controls and manages the optical amplifier and OEO converter.
  • TRIP shunt coupler
  • the PON coexistence system includes a first PON system and a second PON system
  • the upstream light of the first PON system and the second PON system have overlapping bands; the first PON system The downstream light of the second PON system has different wavelengths.
  • the optical duplexer includes a first optical diplexer and a second optical diplexer
  • the upstream light of the first PON system and the second PON system enters the first optical channel from the branch fiber and the optical splitter via the second optical duplexer; the downstream light of the first PON system and the second PON system
  • the second optical channel is accessed from the backbone fiber via the first optical diplexer.
  • the optical duplexer is composed of an optical circulator and has three interfaces, wherein the first interface is an optical input port, the second interface is an optical input/output port, and the third interface is an optical output port;
  • the first interface of the first optical dual-channel device is connected to the first optical channel, the second interface is connected to the trunk optical fiber, and the third interface is connected to the second optical channel;
  • the first interface is connected to the second optical channel, the second interface is connected to the optical splitter, and the third interface is connected to the first optical channel.
  • the wavelength division multiplexing filter includes a first wavelength division multiplexing filter and a second wavelength division multiplexing filter
  • the first wavelength division multiplexing filter outputs the downward light entering the second optical channel from the first optical duplexer to different sub optical channels, and the second wavelength division multiplexing filter will be different from The downstream light of the sub-optical channel is combined and output to the second optical diplexer.
  • the wavelength division multiplexing filter is composed of a sideband filter, and includes an R interface, a P interface, and a C interface.
  • the downlink light of the first PON system is reflected, and only the R interface is input/output, and the The downstream light of the second PON system is transmitted only through the P interface input/output; the C port is connected to the optical duplexer on the trunk fiber;
  • the C interface of the first wavelength division multiplexing filter is connected to the third interface of the first optical duplexer, and the R interface is connected to one end of the first OEO device on one of the sub optical channels, and the P interface and the other One end of the second OEO device on one sub-optical channel is connected;
  • the C interface of the second WDM filter is connected to the first interface of the second optical diplexer, and the R interface and one of the sub-optical channels
  • the other end of the first 0E0 device is connected, and the P interface is connected to the other end of the second 0E0 device on the other sub-optical channel.
  • the downlink light of the first PON system is sent by the 0LT of the first PON system, and reaches the second interface of the first optical duplexer via the trunk fiber of the 0LT side, from the first optical duplexer
  • the three interface is output to the C interface of the first wavelength division multiplexing filter located in the second optical channel, and then output from the R interface of the first wavelength division multiplexing filter to the first 0E0 device,
  • the first OE device is amplified and output to the R interface of the second wavelength division multiplexing filter, and then returns to the second optical channel from the C interface of the second wavelength division multiplexing filter and enters the
  • the first interface of the second optical duplexer is finally returned from the second interface of the second optical duplexer to the trunk optical channel, and enters the optical splitter branch fiber to reach the ONU;
  • the upstream light of the first PON system is sent by the ONU of the first PON system, and reaches the second interface of the second optical duplexer via the branch fiber and the optical splitter, from the second optical duplexer.
  • the third interface output enters the first optical channel, is amplified by the optical amplifier, and is output to the first interface of the first optical duplexer, and then input from the second interface of the first optical duplexer a backbone fiber, which is then transmitted to the OLT of the first PON system;
  • the downlink light of the second PON system is sent by the OLT of the second PON system, and reaches the second interface of the first optical duplexer via the trunk optical fiber, and the third interface from the first optical dual-channel device
  • the port outputs a C interface of the first wavelength division multiplexing filter that reaches the second optical channel, and then enters the second OEO device from the P interface of the first wavelength division multiplexing filter
  • the second OEO device is amplified and output to the P interface of the second wavelength division multiplexing filter, and then returns to the second optical channel from the C interface of the second wavelength division multiplexing filter and enters the second
  • the first port of the optical duplexer finally outputs the return from the second interface of the second optical duplexer to the main optical channel, and enters the optical splitter branch fiber to reach the ONU;
  • the uplink light of the second PON system is sent by the ONU of the second PON system, and reaches the second interface of the second optical duplexer via the branch fiber and the optical splitter, from the second optical duplexer
  • the third port output enters the first optical channel, is amplified by the optical amplifier, and is output to the first interface of the first optical duplexer, and then outputted from the second interface of the first optical duplexer Input master
  • the dry fiber is then transmitted to the OLT of the second PON system.
  • the optical amplifier is a broadband semiconductor optical amplifier SOA.
  • the first optical channel is configured to transmit uplink light of different PON systems
  • the second optical channel is used to transmit downlink light of different PON systems.
  • a long-distance box processing method for uplink and downlink light comprising:
  • the uplink and downlink light from different PON systems are split, and the uplink light of different PON systems is transmitted through the first optical channel, and the downlink light of different PON systems is transmitted through the second optical channel;
  • the upstream light of different PON systems is amplified by an optical amplifier and output to the OLT of the respective system.
  • the downstream light of different wavelengths is transmitted through different sub-optical channels in the second optical channel, in different The sub-optical channels are amplified by different photoelectric lights and output to the ONUs of the respective systems.
  • the uplink and downlink lights from different PON systems are split, and the uplink opticals of different PON systems are transmitted through the first optical channel, and the downstream optical signals of different PON systems are transmitted through the second optical channel.
  • the upstream light of different PON systems is amplified by the optical amplifier and output to the OLT of the respective system; according to the wavelength of the downstream light of different PON systems, the downstream light of different wavelengths is transmitted through different sub-optical channels in the second optical channel, After being amplified by different photoelectric lights on different sub-light channels, they are output to the ONUs of the respective systems.
  • the invention utilizes a hybrid long-distance box combining OEO and OA technology to process the coexisting PON system, and combines the advantages of optical amplification and photoelectric light respectively, and has high reliability, so that the up-and-down light of different PON systems is obtained. Effective amplification.
  • FIG. 1 is a schematic structural diagram of a conventional long-distance passive optical network
  • FIG. 2 is a schematic structural diagram of a coexisting long-distance passive optical network
  • FIG. 3 is a schematic structural view of a long-distance box of the present invention.
  • FIG. 6 is a schematic diagram of an interface of an optical circulator according to the present invention.
  • the long-distance box of the present invention uses an OEO (Optical-Electrical-Optical converter) and an Optical Amplifier (OA) method.
  • OEO Optical-Electrical-Optical converter
  • OA Optical Amplifier
  • a diplexer Including a diplexer, an optical amplifier (OA), a wavelength division multiplexing filter (WDM Filter), an OEO device, and a local management box (Local Management Box), wherein
  • the optical duplexer (which can be implemented by an optical circulator in practical applications) connects the long-distance box to the trunk fiber for splitting the uplink and downlink light from different PON systems, including the first optical duplexer and the first
  • the two-light dual-transmitter enables the upstream light of different PON systems to be transmitted through the first optical channel between the first optical duplexer and the second optical dual-transmitter, and the downstream light of different PON systems is transmitted through the second optical channel.
  • the OA is located on the first optical channel and is used to amplify the upstream light of different PON systems and output. It can be a broadband semiconductor optical amplifier (SOA).
  • SOA semiconductor optical amplifier
  • the wavelength division multiplexing filter is located on the second optical channel, and is configured to divide the second optical channel into different sub-optical channels according to different wavelengths, and the descending lights of different PON systems are amplified by different sub-optical channels and output to the optical Dual signal.
  • the long-distance box shown in FIG. 3 takes the coexistence of two PON systems as an example. Therefore, the downstream optical channel is divided into two sub-optical channels, and the wavelength division multiplexing filter includes a first wavelength division multiplexing filter and a second wavelength division multiplexing. A filter is used, wherein the first wavelength division multiplexing filter divides the downstream optical channel into different sub-optical channels, and the second wavelength division multiplexing filter combines the downstream lights from different sub-optical channels and outputs the same.
  • the OEO device includes a plurality of OEO devices respectively located on different sub-optical channels for respectively amplifying the descending light of different PON systems.
  • the long-distance box shown in Figure 3 is shared by two PON systems.
  • the OEO device includes a first OEO device and a second OEO device, respectively located on two sub-optical channels between the first wavelength division multiplexing filter and the second wavelength division multiplexing filter, for amplifying Downlink signals for two different PON systems.
  • the local management box is connected to the OLT through the TAP coupler and the backbone fiber.
  • the local management box includes the local controller and EONT and the filter (not shown in Figure 3 for simplicity).
  • the detailed structure is shown in Figure 4. 4 is a schematic diagram of the composition of the local management box of the present invention.
  • the command signal of the OLT reaches the EONT of the local management box through the TAP coupler, and passes through the splitting of the filter to reach the corresponding sub-EONT, and then the EONT transmits the relevant instruction to
  • the local controller manages and controls the long-distance amplifying device according to the instruction, and then feeds the result back to the EONT, according to different PON system signals, the corresponding sub-EONT passes the filter, the TAP coupler and the backbone fiber to send feedback information Go to the corresponding OLT.
  • the implementation of the EONT is well known to those skilled in the art and will not be described herein. The specific implementation is not intended to limit the scope of the present invention.
  • FIG. 5 is a schematic diagram of the interface of the wavelength division multiplexing filter.
  • the wavelength division multiplexing filter is related to the wavelength of the PON system.
  • the wavelength division multiplexing filter can It consists of sideband filters, which reflect the downstream light of GPON, that is, the downstream light of GPON is only input/output through the R interface of the filter, and the downlink light of XG-PON is transmitted at the same time, that is, the downward light of XG-PON is only Input/output through the P interface of the filter.
  • the C interface of the filter is connected to the optical diplexer on the backbone fiber.
  • the optical circulator here includes three interfaces, which are respectively labeled as interface 1 (first interface), interface 2 ( Second interface) and interface 3 (third interface).
  • the interface 1 is an input port of light, that is, light can only be input from the interface 1 and cannot be output from the interface 1
  • the interface 2 is an input/output port of light, that is, light can be input or output from the interface 2
  • the interface 3 is light.
  • the output port that is, the light can only be output from the interface 3 and cannot be input from the interface 3.
  • the direction of light transmission can only be: From interface 1 To interface 2, or from interface 2 to interface 3, and other paths are forbidden.
  • the invention utilizes a hybrid long-distance box combining OEO and OA technology, which combines the advantages of optical amplification and photoelectric light, and has high reliability, so that the up-and-down light of different PON systems is effectively amplified.
  • a first optical channel (unidirectional) and a second optical channel (unidirectional) are formed by the first optical duplexer and the second optical duplexer, and an SOA is disposed on the first optical channel. That is, for the coexistence PON system of the first PON system such as GPON and the second PON system such as XG-PON, the upstream light of SOA to GPON and XG-PON is amplified, that is, the light of 1260 nm to 1330 nm is amplified.
  • the second optical channel forms two sub-optical channels through the first wavelength division multiplexing filter and the second wavelength division multiplexing filter, and the first sub-optical channel is provided with a first OEO device (also referred to as an OEO transceiver), An OEO device only performs OEO amplification on the downstream light of the first PON system, a second OEO device with another wavelength is disposed on the second sub optical channel, and the second OEO device only performs OEO on the downstream light of the second PON system. Magnification.
  • the OLT manages and controls the two OEO devices through a local management box, including burst mode and clock synchronization.
  • the downlink light of the first PON system is sent by the OLT of the first PON system, and reaches the second interface of the first optical duplexer via the trunk optical fiber of the OLT side, and is output from the third interface of the first optical duplexer to the first interface.
  • the C interface of the first wavelength division multiplexing filter of the two optical channels is then outputted from the R interface of the first wavelength division multiplexing filter to the first OEO device, amplified by the first OEO device, and output to the second wavelength division
  • the R interface of the multiplexing filter is then returned from the C interface of the second wavelength division multiplexing filter to the second optical channel and enters the first interface of the second optical duplexer, and finally from the second optical duplexer
  • the output of the second interface returns to the trunk optical channel, and enters the optical splitter branch fiber to reach the ONU.
  • the upstream light of the first PON system is sent by the ONU of the first PON system, via the branch fiber,
  • the beam splitter reaches the second interface of the second optical duplexer, outputs the first optical channel from the third interface of the second optical duplexer, is amplified by the SOA, and is output to the first interface of the first optical duplexer, and then
  • the trunk fiber is input from the second interface of the first optical duplexer, and then transmitted to the OLT of the first PON system.
  • the downlink light of the second PON system is sent by the OLT of the second PON system, and reaches the second interface of the first optical duplexer via the trunk optical fiber, and outputs the third interface from the first optical duplexer to the second optical channel.
  • the C port of the first wavelength division multiplexing filter is then input from the P interface of the first wavelength division multiplexing filter into the second OEO device, amplified by the second OEO device, and output to the second wavelength division multiplexing filter.
  • the P interface is then returned from the C interface of the second wavelength division multiplexing filter to the second optical channel and enters the first interface of the second optical duplexer, and finally returns to the trunk from the second interface of the second optical duplexer.
  • the optical channel enters the splitter branch fiber and reaches the ONU.
  • the upstream light of the second PON system is sent by the ONU of the second PON system, and reaches the second interface of the second optical duplexer via the branch fiber and the optical splitter, and outputs the first interface from the third interface of the second optical duplexer.
  • the optical channel is amplified by the SOA and output to the first interface of the first optical duplexer, and then the input trunk fiber is output from the second interface of the first optical duplexer, and then transmitted to the OLT of the second PON system.
  • the first PON system is EPON and the second PON system is 10G-EPON. Since the upstream light of EPON (1260-1360nm) overlaps with the upstream optical (1260 ⁇ 1280nm) band of 10GEPON, if the method of OEO is used, the implementation is more troublesome, and the uplink of the present invention is simply implemented by the SOA method.
  • Step 700 Split the uplink and downlink light from different PON systems, and the uplink light of different PON systems is transmitted through the first optical channel, and the downlink light of different PON systems is transmitted through the second optical channel.
  • Step 701 The uplink light of the different PON systems is amplified by the optical amplifier and output to the OLT of the respective system. According to the wavelength of the downlink light of the different PON system, the downlink light of different wavelengths is transmitted through different sub-optical channels in the second optical channel. After being amplified by different photoelectric lights on different sub-light channels, they are output to the ONUs of the respective systems.
  • the method of the present invention uses optical amplification such as SOA to simply overlap.
  • the corresponding photoelectric optical transceiver is used for amplification processing by reflection or transmission.
  • the method of the present invention utilizes a mixed long-distance box pair combining OEO and OA technologies, and the point-to-multipoint fiber access of the coexisting PON system is processed, and the optical amplification is integrated.
  • the advantages of each and the photoelectric light are high, and the up-and-down light of different PON systems is effectively amplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明提供了一种长距盒及其对上下行光的处理方法,对来自不同无源光网络(PON)系统的上下行光进行分流,不同PON系统的上行光通过第一光通道传输,不同PON系统的下行光通过第二光通道传输;其中,不同PON系统的上行光通过光放大器放大后输出至各自系统的光线路终端(OLT);根据不同PON系统的下行光的波长,对不同波长的下行光通过第二光通道中的不同子光通道传输,在不同的子光通道上经过不同的光电光(OEO)放大后输出至各自系统的光网络单元(ONU)。本发明运用了OEO和OA技术相结合的混和式的长距盒对共存的PON系统的点对多点光纤接入进行处理,综合了光放大和光电光各自的优点,可靠性高,使得不同PON系统的上下行光均得到了有效的放大。

Description

一种长距盒及其对上下行光的处理方法 技术领域
本发明涉及光网络系统, 尤指一种适用于共存的无源光网络(PON, Passive Optical Network ) 系统的长巨盒及其对上下行光的处理方法。 背景技术
有线宽带接入技术的快速发展和低成本需求, 促进了釆用光纤逐步取 代现有的铜线(有线) 系统的发展, 即光进铜退已经成为一种趋势。 同时, 无源光网络最宽最快以及最环保的特性, 长距无源光网络对于扁平化和简 化网络的结构以及适应距离较长的网络结构和减少投资成本等特点, 正在 被绝大多数运营商所接受并开始或准备部署, 以满足日益增长的通信用户 以及更快速和更好的服务需求。
长距 PON是一种点对多点的光纤接入技术。 图 1为现有长距无源光网 络的组成结构示意图, 如图 1所示, 包括光线路终端 (OLT, Optical Line Terminal )、光网络单元( ONU, Optical Network Unit )以及光分配网络( ODN, Optical Distribution Network ) 。 通常, 一个 OLT通过光延长盒(也称为长 距盒)以及光功率分离器(简称分光器)连接多个 0NU而构成的点到多点 结构, 如图 1所示。
目前, 为了减少投资成本以及 0DN的复用, 在无源光网络中会存在几 个 P0N系统共用一个 0DN的情况(简称为共存的 P0N系统)。 见图 2所 示, 图 2为共存长距无源光网络的组成结构示意图, 由于不同的 P0N系统 一般会有不同的上下行波长,比如千兆 P0N( GPON )与万兆 P0N( XG-PON ) 两种 PON共存的 PON系统,其中, GPON的下行波长是 1480nm~1500nm, 上行波长是 1290nm~1330nm, 而 XG-PON的下行波长是 1575nm~1581nm, 上行波长是 1260nm~1280nm。 现有长距盒主要是针对单个 PON 系统设计 的, 对于多个 PON共存系统, 单个 PON系统的长距盒不能满足这种共存 的 PON系统, 因此需要一个合成长距盒来满足其需求, 见图 2所示。 发明内容
有鉴于此, 本发明的主要目的在于提供一种长距盒及其对上下行光的 处理方法, 能够可靠地适用于多个不同的 PON系统在同一个 ODN中运行 的情况。
为达到上述目的, 本发明的技术方案是这样实现的:
一种长距盒, 应用于不同无源光网络 PON系统共存的 PON系统, 主 要包括光双讯器 (diplexer )、 光放大器 (OA )、 波分复用滤波器、 光电光 OEO转换装置, 以及本地管理盒, 其中,
光双讯器, 将长距盒连接到主干光纤, 用于对来自不同 PON系统的上 下行光进行分路, 不同 PON系统的上行光通过第一光通道传输, 不同 PON 系统的下行光通过第二光通道传输;
光放大器, 位于第一光通道上, 并对不同 PON系统的上行光放大后输 出;
波分复用滤波器, 位于第二光通道上, 用于按照不同的波长将第二光 通道分为不同的子光通道, 不同 PON系统的下行光经不同的子光通道放大 后输出;
OEO转换装置, 分别位于第二光通道上的不同子光通道上, 用于放大 不同 PON系统的下行光;
本地管理盒, 通过分流耦合器 (TAP ) 和主干光纤与光线路终端 OLT 相连, OLT通过它来控制和管理光放大器和 OEO转换装置。
所述 PON共存系统包括第一 PON系统和第二 PON系统;
第一 PON系统与第二 PON系统的上行光具有重叠波段; 第一 PON系 统与第二 PON系统的下行光具有不同的波长。
所述光双讯器, 包括第一光双讯器和第二光双讯器;
所述第一 P0N系统与第二 PON系统的上行光从分支光纤、 分光器, 经由第二光双讯器进入所述第一光通道; 所述第一 P0N 系统与第二 P0N 系统的下行光从主干光纤经由第一光双讯器进入第二光通道。
所述光双讯器, 由光环行器组成, 共有三个接口, 其中, 第一接口为 光的输入口, 第二接口为光的输入 /输出口, 第三接口为光的输出口;
所述第一光双讯器的第一接口接入所述第一光通道, 第二接口接入主 干光纤, 第三接口接入所述第二光通道; 所述第二光双讯器的第一接口接 入所述第二光通道, 第二接口接入分光器, 第三接口接入所述第一光通道。
所述波分复用滤波器包括第一波分复用滤波器和第二波分复用滤波 器; 其中,
第一波分复用滤波器将来自所述第一光双讯器的进入所述第二光通道 的下行光分别输出至不同的子光通道, 第二波分复用滤波器将来自不同的 子光通道的下行光合并后输出至所述第二光双讯器。
所述波分复用滤波器由边带滤波片组成, 包括 R接口、 P接口和 C接 口; 对所述第一 PON系统的下行光均反射, 只通过的 R接口输入 /输出, 同时对所述第二 PON系统的下行光均透射, 只通过 P接口输入 /输出; C口 与主干光纤上的光双讯器相连;
所述第一波分复用滤波器的 C接口与所述第一光双讯器的第三接口相 连, R接口与其中一个子光通道上的第一 OEO装置的一端相连, P接口与 另一个子光通道上的第二 OEO装置的一端相连; 所述第二波分复用滤波器 的 C接口与所述第二光双讯器的第一接口相连, R接口与其中一个子光通 道上的第一 0E0 装置的另一端相连, P接口与另一个子光通道上的第二 0E0装置的另一端相连。 所述第一 PON系统的下行光, 由第一 P0N系统的 0LT发出, 经 0LT 侧的主干光纤到达所述第一光双讯器的第二接口, 从所述第一光双讯器的 第三接口输出到位于所述第二光通道的第一波分复用滤波器的 C接口, 然 后再从所述第一波分复用滤波器的 R接口输出至所述第一 0E0装置 ,经所 述第一 0E0装置放大后输出至所述第二波分复用滤波器的 R接口,然后再 从所述第二波分复用滤波器的 C接口返回所述第二光通道并进入所述第二 光双讯器的第一接口, 最后从所述第二光双讯器的第二接口输出返回主干 光通道, 进入分光器分支光纤到达 ONU;
所述第一 PON系统的上行光, 由所述第一 PON系统的 ONU发出, 经 分支光纤、 分光器到达所述第二光双讯器的第二接口, 从所述第二光双讯 器的第三接口输出进入所述第一光通道, 经所述光放大器放大后输出至所 述第一光双讯器的第一接口, 再从所述第一光双讯器的第二接口输入主干 光纤, 接着传输到所述第一 PON系统的 OLT;
所述第二 PON系统的下行光, 由所述第二 PON系统的 OLT发出, 经 主干光纤到达所述第一光双讯器的第二接口, 从所述第一光双讯器的第三 口输出到达所述第二光通道的第一波分复用滤波器的 C接口, 然后再从所 述第一波分复用滤波器的 P接口进入所述第二 OEO装置,经所述第二 OEO 装置放大后输出至所述第二波分复用滤波器的 P接口, 然后再从所述第二 波分复用滤波器的 C接口返回所述第二光通道并进入所述第二光双讯器的 第一口, 最后从所述第二光双讯器的第二接口输出返回主干光通道, 进入 分光器分支光纤到达 ONU;
所述第二 PON系统的上行光, 由所述第二 PON系统的 ONU发出, 经 分支光纤、 分光器达到所述第二光双讯器的第二接口, 从所述第二光双讯 器的第三口输出进入所述第一光通道, 经所述光放大器放大后输出至所述 第一光双讯器的第一接口, 再从所述第一光双讯器的第二接口输出输入主 干光纤, 接着传输到所述第二 PON系统的 OLT。
所述光放大器为宽带半导体光放大器 SOA。
所述第一光通道, 用于传输不同 PON系统的上行光, 所述第二光通道 用于传输不同 PON系统的下行光。
一种长距盒对上下行光的处理方法, 包括:
对来自不同 PON系统的上下行光进行分路, 不同 PON系统的上行光 通过第一光通道传输, 不同 PON系统的下行光通过第二光通道传输;
不同 PON系统的上行光通过光放大器放大后输出至各自系统的 OLT; 根据不同 PON系统的下行光的波长, 对不同波长的下行光通过第二光通道 中的不同子光通道传输, 在不同的子光通道上经过不同的光电光放大后输 出至各自系统的 ONU。
从上述本发明提供的技术方案可以看出, 对来自不同 PON系统的上下 行光进行分路, 不同 PON 系统的上行光通过第一光通道传输, 不同 PON 系统的下行光通过第二光通道传输; 其中, 不同 PON系统的上行光通过光 放大器放大后输出至各自系统的 OLT;根据不同 PON系统的下行光的波长, 对不同波长的下行光通过第二光通道中的不同子光通道传输, 在不同的子 光通道上经过不同的光电光放大后输出至各自系统的 ONU。 本发明运用了 OEO和 OA技术相结合的混和式的长距盒对共存的 PON系统进行处理,综 合了光放大和光电光各自的优点, 可靠性高, 使得不同 PON系统的上下行 光均得到了有效的放大。 附图说明
图 1为现有长距无源光网络的组成结构示意图;
图 2为共存长距无源光网络的组成结构示意图;
图 3为本发明长距盒的组成结构示意图;
图 4为本地管理盒的组成结构示意图; 图 5为本发明波分复用滤波器的接口示意图;
图 6为本发明光环行器的接口示意图;
具体实施方式
图 3为本发明长距盒的组成结构示意图, 如图 3所示, 本发明长距盒 运用了光电光( OEO, Optical-Electrical-Optical converter )和光放大( OA, Optical Amplifier )混合方式,主要包括光双讯器( diplexer )、光放大器( OA )、 波分复用滤波器( WDM Filter )、 OEO装置和本地管理盒( Local Management Box ), 其中,
光双讯器 (实际应用中可以釆用光环行器来实现)将长距盒连接到主 干光纤, 用于对来自不同 PON系统的上下行光进行分路, 包括第一光双讯 器和第二光双讯器, 使得在第一光双讯器和第二光双讯器之间, 不同 PON 系统的上行光通过第一光通道传输, 不同 PON系统的下行光通过第二光通 道传输。
OA, 位于第一光通道上, 用于放大不同 PON系统的上行光, 并输出。 可以是一个宽带半导体光放大器(SOA, Semiconductor Optical amplifier ) 。
波分复用滤波器, 位于第二光通道上, 用于按照不同的波长将第二光 通道分为不同的子光通道, 不同 PON系统的下行光经不同的子光通道放大 后输出至光双讯器。 图 3所示的长距盒以两个 PON系统共存为例, 因此, 下行光通道被分成两个子光通道, 波分复用滤波器包括第一波分复用滤波 器和第二波分复用滤波器, 其中, 第一波分复用滤波器将下行光通道分成 不同的子光通道, 第二波分复用滤波器将来自不同的子光通道的下行光合 并后输出。
OEO装置, 包括分别位于不同的子光通道上的多个 OEO装置,分别用 于放大不同的 PON系统的下行光。 图 3所示的长距盒以两个 PON系统共 存为例, 因此, OEO装置包括第一 OEO装置和第二 OEO装置, 分别位于 第一波分复用滤波器和第二波分复用滤波器之间的两个子光通道上, 用于 放大两个不同 PON系统的下行信号。
此外,本地管理盒通过 TAP耦合器和主干光纤与 OLT相连,本地管理 盒包括本地控制器和 EONT以及滤波片 (为了简化, 图 3中未示出) , 详 细的结构见图 4所示, 图 4为本发明本地管理盒的组成结构示意图, OLT 的指令信号通过 TAP耦合器到达本地管理盒的 EONT处, 经过滤波片的分 路,分别到达相应的子 EONT处, 然后 EONT把相关指令传给本地控制器, 其根据指令对长距放大装置进行管理和控制, 然后把结果反馈到 EONT, 根据不同 PON系统信号, 由其对应的子 EONT通过滤波片, TAP耦合器和 主干光纤把反馈信息发到相应的 OLT处。 EONT的实现属于本领域技术人 员公知技术, 这里不再赘述, 其具体实现方案并不用于限定本发明的保护 范围。
图 5为波分复用滤波器的接口示意图, 如图 3所示, 波分复用滤波器 与 PON系统的波长有关, 如 GPON和 XG-PON共存的 PON系统, 波分复 用滤波器可以由边带滤波片组成, 对 GPON的下行光均反射, 即 GPON的 下行光只通过滤波器的 R接口输入 /输出,同时对 XG-PON的下行光均透射, 即 XG-PON的下行光只通过滤波器的 P接口输入 /输出。滤波器的 C接口与 主干光纤上的光双讯器相连。
图 6为本发明光双讯器的接口示意图, 如图 6所示, 光双讯器这里即 光环行器 (Circulator ) 包括三个接口, 分别标为接口 1 (第一接口), 接口 2 (第二接口 )和接口 3 (第三接口)。 其中, 接口 1是光的输入口, 即光只 能从接口 1输入而不能从接口 1输出, 接口 2是光的输入 /输出口, 即光可 以从接口 2输入或输出, 接口 3是光的输出口, 即光只能从接口 3输出而 不能从接口 3输入。 根据光环行器的特性, 光的传输方向只能是: 从接口 1 到接口 2, 或从接口 2到接口 3 , 而其它的路径是禁止的。
本发明运用了 OEO和 OA技术相结合的混和式的长距盒, 综合了光放 大和光电光各自的优点, 可靠性高, 使得不同 PON系统的上下行光均得到 了有效的放大。
下面结合图 2、 图 3和图 4, 以 GPON和 XG-PON共存的 PON系统为 例 ,对本发明长距盒的工作原理进行详细描述。以第一 PON系统和第二 PON 系统共存的 PON系统为例。
如图 3所示,通过第一光双讯器和第二光双讯器,构成第一光通道(单 向)和第二光通道(单向) , 在第一光通道上设置有一个 SOA, 即对第一 PON系统如 GPON和第二 PON系统如 XG-PON的共存 PON系统, SOA 对 GPON和 XG-PON 的上行光均放大即对 1260nm~1330nm的光均放大。 第二光通道通过第一波分复用滤波器和第二波分复用滤波器形成两个子光 通道, 第一子光通道上设置有第一 OEO装置 (也称为 OEO收发器) , 第 一 OEO装置只对第一 PON系统的下行光进行 OEO式的放大, 第二子光通 道上设置有另一波长的第二 OEO装置, 第二 OEO装置只对第二 PON系统 的下行光进行 OEO式的放大。 OLT通过本地管理盒对两个 OEO装置进行 管理和控制, 包括突发模式和时钟同步等的控制。
第一 PON系统的下行光, 由第一 PON系统的 OLT发出,经 OLT侧的 主干光纤到达第一光双讯器的第二接口, 从第一光双讯器的第三接口输出 到位于第二光通道的第一波分复用滤波器的 C接口, 然后再从第一波分复 用滤波器的 R接口输出至第一 OEO装置, 经第一 OEO装置放大后输出至 第二波分复用滤波器的 R接口, 然后再从第二波分复用滤波器的 C接口返 回第二光通道并进入第二光双讯器的第一接口, 最后从第二光双讯器的第 二接口输出返回主干光通道, 进入分光器分支光纤到达 ONU。
第一 PON系统的上行光,由第一 PON系统的 ONU发出,经分支光纤、 分光器到达第二光双讯器的第二接口, 从第二光双讯器的第三接口输出进 入第一光通道, 经 SOA放大后输出至第一光双讯器的第一接口, 再从第一 光双讯器的第二接口输入主干光纤, 接着传输到第一 PON系统的 OLT。
第二 PON系统的下行光, 由第二 PON系统的 OLT发出, 经主干光纤 到达第一光双讯器的第二接口, 从第一光双讯器的第三接口输出到达第二 光通道的第一波分复用滤波器的 C 口, 然后再从第一波分复用滤波器的 P 接口进入第二 OEO装置, 经第二 OEO装置放大后输出至第二波分复用滤 波器的 P接口, 然后再从第二波分复用滤波器的 C接口返回第二光通道并 进入第二光双讯器的第一接口, 最后从第二光双讯器的第二接口输出返回 主干光通道, 进入分光器分支光纤到达 ONU。
第二 PON系统的上行光,由第二 PON系统的 ONU发出,经分支光纤、 分光器达到第二光双讯器的第二接口, 从第二光双讯器的第三接口输出进 入第一光通道, 经 SOA放大后输出至第一光双讯器的第一接口, 再从第一 光双讯器的第二接口输出输入主干光纤,接着传输到第二 PON系统的 OLT。
对于图 3所示的是 PON和 10G-EPON 的共存系统, 上述第一 PON系 统就是 EPON , 第二 PON 系统是 10G-EPON。 由于 EPON 的上行光 ( 1260-1360nm ) 与 10GEPON的上行光( 1260~1280nm ) 波段是重叠的, 如果釆用 OEO的方式, 实现比较麻烦, 而本发明上行釆用 SOA方式简单 地实现了上行具有重叠波段的共存的 PON系统的上行光的传输方法。 所示, 包括以下步骤:
步骤 700: 对来自不同 PON系统的上下行光进行分路, 不同 PON系统的 上行光通过第一光通道传输, 不同 PON系统的下行光通过第二光通道传输。
本步骤将不同 PON系统的上下行光进行分路, 以便对上行光和下行光 分别釆用不同的处理方式。 步骤 701 : 不同 PON系统的上行光通过光放大器放大后输出至各自系 统的 OLT; 根据不同 PON系统的下行光的波长, 对不同波长的下行光通过 第二光通道中的不同子光通道传输, 在不同的子光通道上经过不同的光电 光放大后输出至各自系统的 ONU。
本步骤中, 对于不同 PON系统的上行光, EPON和 10GEPON共存的 PON系统, 存在波段重叠的情况, 对于这种情况, 本发明方法中釆用光放 大如 SOA方式, 简单地实现了对具有重叠波段的共存的 PON系统的上行 光的放大处理。 而对于具有不同波长的下行光, 通过反射或透射, 分别釆 用对应的光电光收发器进行放大处理。
从图 7所示的本发明方法可见, 本发明方法运用了 OEO和 OA技术相 结合的混和式的长距盒对,共存的 PON系统的点对多点光纤接入进行处理, 综合了光放大和光电光各自的优点, 可靠性高, 使得不同 PON系统的上下 行光均得到了有效的放大。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种长距盒, 应用于不同无源光网络 P0N系统共存的 P0N系统, 其特征在于, 主要包括光双讯器、 光放大器 OA、 波分复用滤波器、 光电光 OEO转换装置, 以及本地管理盒, 其中,
光双讯器, 将长距盒连接到主干光纤, 用于对来自不同 PON系统的上 下行光进行分路, 不同 PON系统的上行光通过第一光通道传输, 不同 PON 系统的下行光通过第二光通道传输;
光放大器, 位于第一光通道上, 并对不同 PON系统的上行光放大后输 出;
波分复用滤波器, 位于第二光通道上, 用于按照不同的波长将第二光 通道分为不同的子光通道, 不同 PON系统的下行光经不同的子光通道放大 后输出;
OEO转换装置, 分别位于第二光通道上的不同子光通道上, 用于放大 不同 PON系统的下行光;
本地管理盒,通过分流耦合器 TAP和主干光纤与光线路终端 OLT相连, OLT通过它来控制和管理光放大器和 OEO转换装置。
2、 根据权利要求 1所述的长距盒, 其特征在于, 所述 PON共存系统 包括第一 PON系统和第二 PON系统;
第一 PON系统与第二 PON系统的上行光具有重叠波段; 第一 PON系 统与第二 PON系统的下行光具有不同的波长。
3、 根据权利要求 2所述的长距盒, 其特征在于, 所述光双讯器包括: 第一光双讯器和第二光双讯器;
所述第一 PON系统与第二 PON系统的上行光从分支光纤、 分光器, 经由第二光双讯器进入所述第一光通道; 所述第一 PON 系统与第二 PON 系统的下行光从主干光纤经由第一光双讯器进入第二光通道。
4、 根据权利要求 3所述的长距盒, 其特征在于, 所述光双讯器, 由光 环行器组成, 共有三个接口, 其中, 第一接口为光的输入口, 第二接口为 光的输入 /输出口, 第三接口为光的输出口;
所述第一光双讯器的第一接口接入所述第一光通道, 第二接口接入主 干光纤, 第三接口接入所述第二光通道; 所述第二光双讯器的第一接口接 入所述第二光通道, 第二接口接入分光器, 第三接口接入所述第一光通道。
5、 根据权利要求 4所述的长距盒, 其特征在于, 所述波分复用滤波器 包括第一波分复用滤波器和第二波分复用滤波器; 其中,
第一波分复用滤波器将来自所述第一光双讯器的进入所述第二光通道 的下行光分别输出至不同的子光通道, 第二波分复用滤波器将来自不同的 子光通道的下行光合并后输出至所述第二光双讯器。
6、 根据权利要求 5所述的长距盒, 其特征在于, 所述波分复用滤波器 由边带滤波片组成, 包括 R接口、 P接口和 C接口; 对所述第一 PON系统 的下行光均反射, 只通过的 R接口输入 /输出, 同时对所述第二 PON系统 的下行光均透射, 只通过 P接口输入 /输出; C口与主干光纤上的光双讯器 相连;
所述第一波分复用滤波器的 C接口与所述第一光双讯器的第三接口相 连, R接口与其中一个子光通道上的第一 OEO装置的一端相连, P接口与 另一个子光通道上的第二 OEO装置的一端相连; 所述第二波分复用滤波器 的 C接口与所述第二光双讯器的第一接口相连, R接口与其中一个子光通 道上的第一 OEO 装置的另一端相连, P接口与另一个子光通道上的第二 OEO装置的另一端相连。
7、 根据权利要求 6所述的长距盒, 其特征在于,
所述第一 PON系统的下行光, 由第一 PON系统的 OLT发出, 经 OLT 侧的主干光纤到达所述第一光双讯器的第二接口, 从所述第一光双讯器的 第三接口输出到位于所述第二光通道的第一波分复用滤波器的 C接口, 然 后再从所述第一波分复用滤波器的 R接口输出至所述第一 OEO装置 ,经所 述第一 OEO装置放大后输出至所述第二波分复用滤波器的 R接口,然后再 从所述第二波分复用滤波器的 C接口返回所述第二光通道并进入所述第二 光双讯器的第一接口, 最后从所述第二光双讯器的第二接口输出返回主干 光通道, 进入分光器分支光纤到达 ONU;
所述第一 PON系统的上行光, 由所述第一 PON系统的 ONU发出, 经 分支光纤、 分光器到达所述第二光双讯器的第二接口, 从所述第二光双讯 器的第三接口输出进入所述第一光通道, 经所述光放大器放大后输出至所 述第一光双讯器的第一接口, 再从所述第一光双讯器的第二接口输入主干 光纤, 接着传输到所述第一 PON系统的 OLT;
所述第二 PON系统的下行光, 由所述第二 PON系统的 OLT发出, 经 主干光纤到达所述第一光双讯器的第二接口, 从所述第一光双讯器的第三 口输出到达所述第二光通道的第一波分复用滤波器的 C接口, 然后再从所 述第一波分复用滤波器的 P接口进入所述第二 OEO装置,经所述第二 OEO 装置放大后输出至所述第二波分复用滤波器的 P接口, 然后再从所述第二 波分复用滤波器的 C接口返回所述第二光通道并进入所述第二光双讯器的 第一口, 最后从所述第二光双讯器的第二接口输出返回主干光通道, 进入 分光器分支光纤到达 ONU;
所述第二 PON系统的上行光, 由所述第二 PON系统的 ONU发出, 经 分支光纤、 分光器达到所述第二光双讯器的第二接口, 从所述第二光双讯 器的第三口输出进入所述第一光通道, 经所述光放大器放大后输出至所述 第一光双讯器的第一接口, 再从所述第一光双讯器的第二接口输出输入主 干光纤, 接着传输到所述第二 PON系统的 OLT。
8、 根据权利要求 1~7任一项所述的长距盒, 其特征在于, 所述光放大 器为宽带半导体光放大器 SOA。
9、 根据权利要求 1~7任一项所述的长距盒, 其特征在于, 所述第一光 通道,用于传输不同 PON系统的上行光,所述第二光通道用于传输不同 PON 系统的下行光。
10、 一种长距盒对上下行光的处理方法, 其特征在于, 包括: 对来自不同 PON系统的上下行光进行分路, 不同 PON系统的上行光 通过第一光通道传输, 不同 PON系统的下行光通过第二光通道传输;
不同 PON系统的上行光通过光放大器放大后输出至各自系统的 OLT; 根据不同 PON系统的下行光的波长, 对不同波长的下行光通过第二光通道 中的不同子光通道传输, 在不同的子光通道上经过不同的光电光放大后输 出至各自系统的 ONU。
PCT/CN2010/079388 2010-05-01 2010-12-02 一种长距盒及其对上下行光的处理方法 WO2011137645A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10851014.0A EP2521290A4 (en) 2010-05-01 2010-12-02 EXTENSION HOUSING AND METHOD FOR PROCESSING AMOUNTING AND DESCENDING OPTICAL SIGNALS
US13/576,180 US8989580B2 (en) 2010-05-01 2010-12-02 Long-distance box and method for processing uplink and downlink light thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010173399.5 2010-05-01
CN201010173399.5A CN102238437B (zh) 2010-05-01 2010-05-01 一种长距盒及其对上下行光的处理方法

Publications (1)

Publication Number Publication Date
WO2011137645A1 true WO2011137645A1 (zh) 2011-11-10

Family

ID=44888568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079388 WO2011137645A1 (zh) 2010-05-01 2010-12-02 一种长距盒及其对上下行光的处理方法

Country Status (4)

Country Link
US (1) US8989580B2 (zh)
EP (1) EP2521290A4 (zh)
CN (1) CN102238437B (zh)
WO (1) WO2011137645A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108260A (zh) * 2011-11-11 2013-05-15 中兴通讯股份有限公司 无源光网络系统及上、下行光信号发送方法
CN102572619B (zh) * 2011-12-16 2018-03-02 中兴通讯股份有限公司 无源光网络系统、光线路终端和光传输方法
CN104113792B (zh) * 2014-07-30 2018-04-06 上海斐讯数据通信技术有限公司 一种OpenFlow控制通道建立方法及系统
GB2533160A (en) * 2014-12-12 2016-06-15 Ge Oil & Gas Uk Ltd Repeaters
CN108964771A (zh) * 2017-10-24 2018-12-07 上海欣诺通信技术股份有限公司 一种带有光放大模块的光分路装置
CN109547100B (zh) * 2018-12-05 2021-07-20 广州芯德通信科技股份有限公司 一种强制关闭异常光纤终端的光功率增强装置及方法
US10924186B1 (en) * 2019-12-03 2021-02-16 Netgami System L.L.C. Optical fiber link for remote low power sensor solution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009030161A1 (en) * 2007-08-31 2009-03-12 Huawei Technologies Co., Ltd. Backward compatible pon coexistence
CN101425852A (zh) * 2007-10-29 2009-05-06 阿尔卡特朗讯 用于无源光网络的电子点到多点中继器
CN101478348A (zh) * 2008-01-03 2009-07-08 华为技术有限公司 一种点到多点系统中继设备管理的方法、设备和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565522A (en) * 1979-06-27 1981-01-21 Tsukasa Nagao Progressive wave coupling type light wave and millimeter wave circulator applying faraday effect
US7970281B2 (en) * 2007-01-26 2011-06-28 Fujitsu Limited System and method for managing different transmission architectures in a passive optical network
CN101630979B (zh) * 2008-07-16 2015-05-06 华为技术有限公司 一种延长器、数据传输方法及无源光网络系统
US20100239257A1 (en) * 2009-03-20 2010-09-23 Motorola, Inc. Logical partitioning of a passive optical network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009030161A1 (en) * 2007-08-31 2009-03-12 Huawei Technologies Co., Ltd. Backward compatible pon coexistence
CN101425852A (zh) * 2007-10-29 2009-05-06 阿尔卡特朗讯 用于无源光网络的电子点到多点中继器
CN101478348A (zh) * 2008-01-03 2009-07-08 华为技术有限公司 一种点到多点系统中继设备管理的方法、设备和系统

Also Published As

Publication number Publication date
EP2521290A4 (en) 2014-03-19
CN102238437B (zh) 2016-06-15
US8989580B2 (en) 2015-03-24
EP2521290A1 (en) 2012-11-07
CN102238437A (zh) 2011-11-09
US20120294615A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
US8855490B2 (en) Backward compatible PON coexistence
US8463135B2 (en) Relay apparatus, signal processing apparatus and optical communication system
US20100196011A1 (en) Wavelength Division and Time Division Multiplex Mixing Passive Optical Network System, Terminal and Signal Transmission Method
WO2011137645A1 (zh) 一种长距盒及其对上下行光的处理方法
US9306700B2 (en) Method and device for transmitting optical signals
JP5689528B2 (ja) 長距離ボックス及び長距離ボックスのアップリンク/ダウンリンク光に対する処理方法
WO2012062119A1 (zh) 无源光网络及其信号的传输方法
WO2013087006A1 (zh) 无源光网络系统、光线路终端和光传输方法
WO2013075662A1 (zh) 共存无源光网络系统及上、下行光信号发送方法
WO2013097785A1 (zh) 一种光纤故障检测方法及装置
WO2013189333A2 (zh) 一种光传输系统、模式耦合器和光传输方法
US8923697B2 (en) Long reach optical amplification device, passive optical network, and method for transmitting optical signals
CN101471730B (zh) 基于波分复用结构的光纤宽带接入系统及光网络单元
JP2010166279A (ja) 光通信システムおよび光集線装置
KR101500056B1 (ko) 광학 네트워크용 반사 반도체 광학 증폭기
CN103516433A (zh) 一种光电光中继器、长距盒及对上下行光信号的处理方法
CN103108260A (zh) 无源光网络系统及上、下行光信号发送方法
CN103297867B (zh) 分时分波复用无源光网络
TWI629876B (zh) An elastic physical layer grid optical network interactive operation transmission device for switching and converting an upstream optical wavelength of a plurality of optical network units into a specified optical wavelength of NG-PON2
US9389364B1 (en) Optical splitter with absorptive core and reflective grating
Li et al. A simple wavelength-shared WDM-PON system and its quick collision test method for upstream channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010851014

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13576180

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE