WO2011137623A1 - 多载波中测量的处理方法及用户设备 - Google Patents

多载波中测量的处理方法及用户设备 Download PDF

Info

Publication number
WO2011137623A1
WO2011137623A1 PCT/CN2010/077293 CN2010077293W WO2011137623A1 WO 2011137623 A1 WO2011137623 A1 WO 2011137623A1 CN 2010077293 W CN2010077293 W CN 2010077293W WO 2011137623 A1 WO2011137623 A1 WO 2011137623A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
signal quality
serving cell
threshold value
threshold
Prior art date
Application number
PCT/CN2010/077293
Other languages
English (en)
French (fr)
Inventor
施小娟
黄亚达
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011137623A1 publication Critical patent/WO2011137623A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements

Definitions

  • the present invention relates to the field of communications, and in particular to a processing method and a user equipment for measurement in a multi-carrier.
  • LTE Long Term Evolution
  • a system supports a maximum downlink transmission bandwidth of 20 MHz.
  • LTE-A Carrier Aggregation
  • UE User Equipment
  • the CA aggregates two or more component carriers (CCs) to support a downlink transmission bandwidth of more than 20 MHz and a maximum of 100 MHz.
  • CCs component carriers
  • each component carrier performing carrier aggregation may be continuous at frequency i or above (eg, 20Mhz and lOMhz are consecutive carrier aggregations;), or Discontinuous (for example, 20Mhz and 20Mhz are discontinuous carrier aggregation)
  • FIG. 2 is a schematic diagram 1 of coverage of carrier aggregation according to the related art
  • FIG. 3 is a schematic diagram 2 of coverage of carrier aggregation according to the related art, only located at the same base station
  • the carrier carrier with overlapping coverage can perform carrier aggregation.
  • the LTE-A system using carrier aggregation technology is a multi-carrier system.
  • the base station can configure up to 5 downlink carriers for the UE.
  • a downlink primary carrier (DL PCC) is configured for the UE by explicit configuration or according to the protocol.
  • the monthly service cell currently working by the UE on the DL PCC is called the main month.
  • the primary serving cell (Pcell)
  • the downlink carrier other than the DL PCC configured by the base station for the UE is called the downlink secondary carrier (Downlink Se) Condary Component Carrier (DL SCC)
  • the monthly service cell currently working by the UE on the DL SCC is called a second serving cell (Scell).
  • the DL SCC (or Scell) can be activated and deactivated flexibly.
  • the UE only receives data on the activated carrier (or Scell), such as physical
  • the monitoring of the Physical Downlink Control Channel (PDCCH) is performed; and for the deactivated carrier, the UE does not monitor the PDCCH channel, nor does it receive data on the Physical Downlink Shared Channel (PDSCH), thereby achieving power saving.
  • the DL PCC configuration is activated and cannot be deactivated.
  • the UE can move between cells. To ensure service continuity and ensure service quality, after the user establishes a service, the UE needs to perform measurement according to the configuration of the serving base station, and report to the serving base station that the service base station configuration requirement is met. Measurement report.
  • the serving base station may perform mobility management of the connected state according to the measurement report reported by the UE and the load, service distribution, and hardware resources of the neighboring cell (also referred to as handover decision); Inter-Cell Interference Coordination (ICIC) is reported for the resource usage and traffic load of the same-frequency neighboring cell.
  • ICIC Inter-Cell Interference Coordination
  • the base station needs to obtain the signal quality of each cell on each component carrier that the user equipment can currently perform carrier aggregation, and then perform component carrier management (referred to as carrier management) in combination with the load of each component carrier, the service distribution, and the interference condition on the component carrier.
  • the cell on the component carrier that can perform carrier aggregation is selected and allocated to the user equipment.
  • the related art measures the power consumption of the UE, on the other hand, the reporting of the measurement report also consumes air interface resources, so it is necessary to try to Reduce measurement, but at the same time It affects functions such as mobility management and inter-cell interference coordination.
  • the user equipment needs to measure multiple carriers in real time to provide the above signal quality information.
  • the inventors found that the user equipment is real-time to multi-carrier. The measurement is performed, resulting in a large increase in power consumption of the user equipment and a decrease in system performance, thereby reducing the user experience.
  • the present invention has been made in view of the problem that the user equipment performs real-time measurement on multiple carriers, resulting in a significant increase in power consumption of the user equipment.
  • the main object of the present invention is to provide a multi-carrier measurement method and system to solve the above problems.
  • a processing method for measurement in a multi-carrier includes: receiving, by the UE, a threshold value of the control measurement initiated by the base station; and determining, by the UE, the one or more serving cells of the working The signal quality satisfies the measurement start condition; the UE initiates the measurement.
  • the threshold value is a first threshold value that is used to represent the signal quality of the serving cell;
  • the starting condition is that the signal quality of the primary serving cell in the serving cell is lower than the first threshold, or the activated secondary serving cell in the serving cell The signal quality is lower than the first threshold; the UE determines that the start condition is met, and starts all measurements that the base station configures for the UE.
  • the threshold value includes a first threshold value that represents a signal quality of the primary serving cell and a second threshold value that identifies a signal quality of the secondary serving cell; the starting condition is that the signal quality of the primary serving cell in the serving cell is lower than the first The threshold value, or the signal quality of the activated secondary serving cell in the serving cell is lower than the second threshold; the UE determines that the start condition is met, and starts all measurements that the base station configures for the UE.
  • the threshold value includes a first threshold value that represents a signal quality of the primary serving cell and a second threshold value and a third threshold value that characterize a signal quality of the secondary serving cell, where the second threshold value is lower than the second threshold value
  • the threshold value is that the signal quality of the primary serving cell in the serving cell is lower than the second threshold, or the signal quality of the secondary serving cell in the serving cell is higher than the second threshold and lower than the third threshold.
  • Limit The UE determines that the start condition is met, and starts all measurements that the base station configures for the UE.
  • the UE uses the threshold to determine that the signal quality of the one or more monthly serving cells that it works meets the measurement start condition, and further includes: the UE receiving the task from the base station for indicating the measurement task group in the multi-carrier Group information. Further, the UE determines, by using the threshold value and the task grouping information, that the signal quality of the serving cell meets the starting condition of the measurement task group; and starts the measurement of the measurement task group.
  • the threshold value is a first threshold value for characterizing the signal quality of the monthly traffic cell; the starting condition of the measurement task group is that the signal quality of the primary serving cell in the serving cell is lower than the first threshold; Condition, start the measurement of the measurement task group.
  • the threshold value is a first threshold value that represents the signal quality of the serving cell; the starting condition of the measurement task group is that the signal quality of the activated secondary serving cell in the serving cell is lower than the first threshold, or the measurement task group The starting condition is that the signal quality of the traffic cell is not considered; the UE determines that the starting condition is met, and the measurement of the measurement task group is started.
  • the serving cell includes one of the following: a primary serving cell; or a primary serving cell and one or more secondary serving cells.
  • the user equipment includes: a first receiving module, configured to receive a threshold for controlling measurement initiation configured by the base station; and a determining module, configured to determine a signal quality of one or more serving cells for which the working cell is operated by using the threshold value Meet the measurement start condition; start the module to start the measurement.
  • the startup module includes: a first startup submodule, configured to start all measurements configured by the base station for the UE.
  • the method further includes: a second receiving module, configured to receive task group information from the base station for indicating a measurement task group in the multi-carrier; the startup module further includes: a second startup sub-module, configured to start the measurement task group measuring.
  • FIG. 1 is a schematic diagram of carrier aggregation according to the related art
  • FIG. 2 is a schematic diagram 1 of coverage of carrier aggregation according to the related art
  • FIG. 3 is a schematic diagram 2 of coverage of carrier aggregation according to the related art
  • FIG. 5 is a schematic diagram of a carrier operating state of a user equipment according to an embodiment of the present invention
  • FIG. 6 is a structural block diagram of a user equipment according to an embodiment of the present invention.
  • Step S402 The UE receives a threshold value of a control measurement start configured by a base station.
  • Step S404 the UE determines, by using the threshold value, that the signal quality of one or more serving cells in which the UE works meets the start condition measured in the multi-carrier.
  • Step 4 gathers S406, and the UE starts measurement.
  • the user equipment is required to perform measurement on multiple carriers in real time.
  • the user equipment starts the measurement only after determining that the measurement condition of the measurement in the multi-carrier is satisfied, and the user equipment can be prevented from starting the measurement in real time, thereby preventing the user equipment from greatly increasing power consumption and improving the user experience.
  • the UE uses the threshold value to determine that the signal quality of one or more serving cells meets the start condition measured in the multi-carrier, and starts all measurements configured by the base station for the UE.
  • the carrier management needs in the multi-carrier system can be satisfied, and the measurement is not initiated too early, and a large number of measurement reports are triggered, thereby reducing the power consumption of the UE, and providing a good body-risk for the user.
  • the starting conditions that satisfy the measurement in the multi-carrier can be determined in the following three ways.
  • the threshold value is a first threshold value that represents the signal quality of the serving cell; the starting condition is that the signal quality of the primary serving cell in the serving cell is lower than the first threshold, or any activated secondary service in the serving cell The signal quality of the cell is lower than the first threshold; the UE determines that the start condition is met, and starts all measurements configured by the base station for it.
  • the threshold value includes a first threshold value indicating a signal quality of the primary serving cell and a second threshold value indicating a signal quality of the secondary serving cell; the starting condition is that the signal quality of the primary serving cell in the serving cell is lower than the first The threshold value, or the signal quality of any activated secondary serving cell in the serving cell is lower than the second threshold; the UE determines that the starting condition is met, and starts all measurements configured by the base station for it.
  • Threshold values include the first threshold value indicating the main service', the signal quality of the area, and the auxiliary service a second threshold value and a third threshold value of the signal quality of the cell, wherein the second threshold is lower than the third threshold; the starting condition is that the signal quality of the primary serving cell in the serving cell is lower than the second threshold The limit value, or the signal quality of any secondary serving cell in the serving cell is higher than the second threshold and lower than the third threshold; the UE determines that the starting condition is met, and starts all measurements configured by the base station. It should be noted that, in the preferred embodiment, the foregoing preferred embodiment (3) introduces different start thresholds for Pcell and Scell respectively. It has the following advantages:
  • the measurement start threshold of the Pcell can be directly used to determine whether to start the end measurement.
  • the measurement start threshold of the Pcell can be directly used to determine whether to start the end measurement.
  • the UE uses the threshold value.
  • the UE receives the task group information from the base station for indicating the measurement task group in the multi-carrier.
  • the measurement task group may be divided for the measurement of the plurality of carriers, and the start condition is set for the measurement task group.
  • the start condition may control the start and end of each measurement task in the measurement task group, when the measurement task group corresponds When the start condition is met, the user equipment initiates all measurement tasks in the measurement task group.
  • different measurements may be initiated separately for different measurement requirements, that is, carrier-related measurements are started as early as possible to meet carrier management requirements in a multi-carrier system; In addition to the measurement related to carrier management, it reduces the power consumption of the user equipment and improves the user experience on the basis of satisfying mobility management, small-interference coordination management and other related purposes.
  • the formula determines the start condition that satisfies the measurement in the multi-carrier.
  • the threshold value is a first threshold value that represents the signal quality of the serving cell; the starting condition of the measurement task group is that the signal quality of the primary serving cell in the serving cell is lower than the first threshold; the UE determines that the starting condition is met, Start the measurement of the measurement task group.
  • the threshold value is a first threshold value that represents the signal quality of the serving cell; the starting condition of the measurement task group is that the signal quality of any activated secondary serving cell in the serving cell is lower than the first threshold, or the measurement task
  • the start condition of the group is that the signal quality of the serving cell is not considered; the UE determines that the start condition is met, and the measurement of the measurement task group is started.
  • the carrier management needs in the multi-carrier system can be satisfied, and the measurement is not initiated too early, and a large number of measurement reports are triggered, thereby reducing the power consumption of the UE, and providing a good body-risk for the user.
  • the present invention also provides a preferred embodiment incorporating the technical solutions of the above-described plurality of preferred embodiments, which will be described in detail below with reference to FIG. 5 is a schematic diagram of a carrier operating state of a user equipment according to an embodiment of the present invention.
  • the serving base station configures three carriers (fl, ⁇ , ⁇ ) for the user equipment, and the current serving cell of the user equipment is respectively celll, cell2 and on the carrier.
  • the carrier f4 is another carrier that can be carrier-aggregated with fl, ⁇ 2, ⁇ under the control of the serving base station.
  • the service base station configures the following measurement tasks for the user equipment according to the requirements of mobility management, small-band interference coordination management, and component carrier management: Measurement Task 1 (using MIDI identification): The measurement object is fl, and the measurement 4 configuration is configured.
  • the measurement event is the A3 event, and the specific definition of the A3 event is that the signal quality of the adjacent cell on fl is higher than the signal quality of the Pcell by an offset value.
  • Measurement task 2 (identified by MID2): The measurement object is f2, and the measurement event configured by the measurement report is A3 event. The specific definition of the A3 event is that the signal quality of the adjacent cell on f2 is higher than the signal quality of Scell 1. Offset value.
  • Measurement task 3 (identified by MID3): The measurement object is f2, the measurement event configured by the measurement report is A3 event, and the specific definition of the A3 event is the signal quality ratio of the cell on f2. The signal quality is high by an offset value.
  • Measurement task 4 (identified by MID4): The measurement object is ⁇ , and the measurement event configured by the measurement report is A3 event. The specific definition of the A3 event is that the signal quality of the cell on ⁇ is higher than the signal quality of Pcell by an offset value. .
  • Measurement task 5 (identified by MID5): The measurement object is f4, and the measurement event configured by the measurement 4 is configured as the A4 event. The specific definition of the A4 event is that the signal quality of the adjacent cell on f4 is higher than a threshold. It should be noted that, in addition to the above measurement tasks, the base station may also configure other measurement tasks for the user equipment, and the present invention is not exhaustive.
  • the preferred embodiment 1 describes that the base station configures the same S-measure for all measurement of the user equipment, and the S-measure characterizes the signal quality threshold of the serving cell (including Pcell and Scell), and controls all measurements. Start and end.
  • the specific starting conditions are as follows: The signal quality of the Pcell is lower than the S-measure, or the signal quality of any activated Scell is lower than the S-measure.
  • the signal quality of the Pcell refers to the reference signal received power of the Pcell (referred to as RSRP).
  • RSRP reference signal received power of the Pcell
  • the smoothing filter is performed. result.
  • the signal quality of the Scell refers to the result that the RSRP measurement value of the Scell is smoothed by the user equipment layer.
  • the signal quality of the Pcell is higher than the S-measure and the signal quality of all activated Scells is higher than the S-measure, the user equipment ends all measurements.
  • the signal quality of the Pcell is lower than the S-measure, or the signal quality of the Scell1 is 4 S-measure, the user equipment initiates the measurement of the measurement task 1 to the measurement task 5; when the signal quality of the Pcell is high
  • the signal quality of S-measure and Scelll is higher than S-measure, the user equipment ends the measurement of the above measurement task 1 to measurement task 5.
  • the base station of the preferred embodiment may also configure two thresholds for controlling the start and end of all measurements, S-measure-Pcell and S-measure-Scell, for all measurements of the user equipment.
  • the S-measure-Pcell is a threshold for characterizing the quality of the Pcell signal
  • the S-measure-Scell is a threshold for characterizing the quality of the Scell signal.
  • Different startup thresholds are configured for Pcell and Scell respectively, which increases flexibility.
  • the corresponding specific starting conditions are: The signal quality of the Pcell is lower than the S-measure-Pcell, or the signal quality of any one of the activated Scells is S-measure-Scell.
  • the second base station configures three measurement start thresholds for all measurements of the user equipment, S-measure-Pcell, S-measurel and S-measure2, and the above three measurement start thresholds are used to control the start and end of all measurements, where S -measure-Pcell is a threshold value for characterizing the quality of the Pcell signal, and the UE determines whether to start all measurements according to the signal quality of the Pcell and the S-measure-Pcell; S-measurel and S-measure2 are threshold values for characterizing the Scell signal, and S-measurel is smaller than S-measure2, and the UE determines whether to start all measurements according to the signal quality of the Scell and S-measurel and S-measure2.
  • the specific starting conditions are as follows: The signal quality of the Pcell is lower than that of the S-measure-Pcell, or the signal quality of any one of the Scells is higher than S-measurel and lower than S-measure2. Correspondingly, when the signal quality of the Pcell is higher than the S-measure-Pcell, and the signal quality of all the Scells satisfies the S-measure2, the user equipment ends all measurements.
  • the preferred embodiment 2 introduces different measurement start thresholds for the P cells and the Scells on the basis of the above-mentioned preferred embodiment.
  • the measurement start threshold of the Pcell can be directly used to determine whether to start the end measurement.
  • the Scell it is not necessary to distinguish the activation deactivation state of the Scell, which reduces the complexity of the processing of the user equipment. That is, because the carrier may be deactivated because the carrier signal quality is poor, or the user equipment has completely left the coverage of the carrier, the preferred embodiment increases that "the signal quality of any one Scell satisfies the S-measurel.
  • the preferred embodiment 3 describes that the base station configures an S-measure for the user equipment, and configures different start conditions for different measurement task groups, and each start condition controls each measurement task in the measurement task group controlled by the base station. Start and end, when the start condition corresponding to the measurement task group is met, the user equipment initiates measurement of all measurement tasks in the measurement task group. It should be noted that the measurement of the serving cell is not controlled by any starting condition, that is, the serving cell always measures.
  • the base station configures an S-measure for the user equipment. When configuring the measurement task, the base station divides the measurement task into different measurement task groups. The user equipment controls the start and end of each measurement task in different measurement task groups according to the start conditions of different measurement task groups. .
  • the base station configures the S-measure for the user equipment, and the 4 bar measurement task is divided into different measurement task groups: Measurement Task Group 1: Carrier Management Measurement Task Group.
  • the carrier management measurement task group may be the measurement task 3 to the measurement task 5; or may include only the measurement task 5.
  • Measurement Task Group 2 Other Measurement Task Groups.
  • all of the above measurement tasks ie, measurement tasks 1 to 5 may be used.
  • the description of the measurement task group by the base station depends on the RRM management policy of the base station.
  • the measurement task 3 And the measurement task 4 can be used for base station for carrier management (PCC management therein), and for base station for mobility management; measurement task 5 can be used for carrier management or mobility management, and the above grouping method is a possibility
  • the base station notifies the user equipment of the foregoing group information in the measurement configuration, and specifically, the base station adds a carrier management measurement task group list based on the existing measurement configuration structure, and the list includes Contains all measurement tasks included in measurement task group 1.
  • the user equipment controls the start and end of each measurement task in different measurement task groups according to the start conditions of different measurement task groups.
  • the specific starting conditions are as follows:
  • the starting condition of the measuring task group 1 is that the signal quality of any one of the activated Scells is lower than the S-measure.
  • the corresponding end condition is that the signal quality of all activated Scells is higher than the S-measure.
  • Measurement Task Group 2 The starting condition is that the signal quality of the Pcell is lower than the S-measure.
  • the corresponding end condition is that the signal quality of the Pcell is higher than the S-measure.
  • the signal quality of the Scell1 is lower than the S-measure
  • the user equipment initiates measurement of all measurement tasks in measurement task group 1.
  • the signal quality of Scelll is higher than S-measure, the user equipment ends measurement of all measurement tasks in measurement task group 1.
  • the user equipment starts the measurement of all the measurement tasks in the measurement task group 2; when the signal quality of the Pcell is higher than the S-measure, the user equipment ends the measurement of all the measurement tasks in the measurement task group 2.
  • the method can start different measurements for different measurement needs, that is, start carrier management related measurements as early as possible to meet more Carrier management in the wave system requires the user equipment to initiate measurement in real time; but at the same time, it does not start other measurements besides carrier management related measurements, so as to meet mobility management, small interval coordination and other related purposes.
  • the base station reduces the power consumption of the user equipment and improves the user experience.
  • the base station configures an S-measure for the user equipment.
  • the base station divides the measurement task into different measurement task groups, and the user equipment.
  • the start and end of each measurement task in different measurement task groups are controlled according to the start conditions of different measurement task groups.
  • the specific grouping mode is the same as the preferred embodiment 3.
  • the specific starting conditions are:
  • the starting condition of the measurement task group 1 is that the user equipment ignores the S-
  • the configuration of the measure that is, the user equipment always measures all measurement tasks in the measurement task group 1.
  • the start condition of the measurement task group 2 is that the signal quality of the Pcell is lower than the S-measure.
  • the corresponding end condition is that the signal quality of the Pcell is higher than the S- Measure.
  • the user equipment always starts measurement of all measurement tasks in the measurement task group 1.
  • the user equipment When the signal quality of the Pcell is lower than the S-measure, the user equipment starts measurement of all measurement tasks in the measurement task group 2; when the signal quality of the Pcell is higher than the S-measure, the user equipment ends measurement of all measurement tasks in the task group 2 measuring.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included in the scope of the present invention.
  • the steps may be performed in a computer system such as a set of computer executable instructions, and although the logical order is shown in the flowcharts, in some cases the illustrated or described may be performed in a different order than the ones described herein.
  • FIG. 6 is a structural block diagram of a user equipment according to an embodiment of the present invention, including the first The receiving module 62, the determining module 64 and the starting module 66.
  • the first receiving module 62 is configured to receive a threshold for controlling measurement initiation configured by the base station, and the determining module 64 is connected to the first receiving module 62 for using the first receiving
  • the threshold value received by the module 62 determines that the signal quality of one or more serving cells in which it operates satisfies the measurement start condition; the startup module 66 is connected to the determination module 64. For starting measurement when the determining module 66 determines that the starting condition is met.
  • the starting module 66 includes: a first starting sub-module 662, connected to the determining module 64, for determining a working cell of the working module at the determining module 64.
  • the user equipment further includes: a second receiving module 68, wherein the starting module 66 further includes a second promoter module 664.
  • the second receiving module 68 is configured to receive task grouping information from the base station for indicating a measurement task group in the multi-carrier; the second promoter module 664 is connected to the determining module 64 and the second receiving module 68, for determining The module 64 determines the measurement of the measurement task group received by the second receiving module 68 when the signal quality of the working cell of the working cell determines that the signal quality of the serving cell meets the measurement condition of the multi-carrier measurement.
  • the user equipment described in the device embodiment corresponds to Implementation of the above method For example, the specific implementation process has been described in detail in the method embodiment, and is not mentioned here.
  • the foregoing embodiment of the present invention provides a processing method and user equipment for measurement in a multi-carrier.
  • the user equipment is used to determine that the measurement in the multi-carrier meets the start condition, and the measurement is started, which solves the problem that the user equipment performs real-time measurement on the multi-carrier, and the power consumption of the user equipment is greatly increased, thereby improving the user experience.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.

Abstract

本发明公开了一种多载波中测量的处理方法及用户设备。该方法包括:UE接收到基站配置的控制测量启动的门限值;UE使用门限值,确定其工作的一个或多个服务小区的信号质量满足测量启动条件;UE启动测量。本发明可以避免UE实时启动测量,从而避免UE大幅增加功耗,并提升了用户体验。

Description

多载波中测量的处理方法及用户设备 技术领域 本发明涉及通信领域, 具体而言, 涉及一种多载波中测量的处理方法及 用户设备。 背景技术 长期演进( Long Term Evolution , 简称为 LTE ) 系统中, 系统支持的最 大下行传输带宽为 20MHz。 为向移动用户提供更高的数据速率, 高级长期演进系统 ( Long Term Evolution Advance , 简称 LTE- A )提出了载波聚合技术 ( Carrier Aggregation, 简称为 CA ), 其目的是为具有相应能力的用户设备(User Equipment, 简称 为 UE )提供更大宽带, 提高用户设备的峰值速率。 CA将两个或者更多的分 量载波(Component Carriers, 简称为 CC ) 聚合起来支持大于 20MHz, 最大 不超过 100MHz的下行传输带宽。 图 1是根据相关技术的载波聚合的示意图, 如图 1所示, 进行载波聚合 的各个分量载波在频 i或上可以是连续的 (例如 20Mhz与 lOMhz是连续的载 波聚合;), 也可以是不连续的 (例如 20Mhz与 20Mhz是不连续的载波聚合 )„ 图 2是根据相关技术的载波聚合的覆盖的示意图一;图 3是根据相关技 术的载波聚合的覆盖的示意图二, 只有位于同一基站下的具有交叠覆盖范围 的分量载波才能进行载波聚合。釆用载波聚合技术的 LTE-A系统是一种多载 波系统。 引入载波聚合技术后, 基站可以为 UE配置至多 5个下行载波, 基站为 UE配置载波时,会通过显式的配置或者按照协议约定为 UE配置一个下行主 载波 ( Downlink Primary Component Carrier, DL PCC ), DL PCC上 UE当前 所工作的月艮务小区称为主月艮务小区 (Primary serving cell, Pcell ), 基站为 UE 配置的 DL PCC之外的其他下行载波称为下行辅载波 (Downlink Secondary Component Carrier, DL SCC ), DL SCC上 UE当前所工作的月艮务小区称为辅 月艮务小区 ( Second serving cell, Scell )。 DL SCC (或称 Scell ) 可以被灵活的 激活去激活, UE只在激活的载波上 (或称 Scell ) 进行数据接收, 如物理下 行控制信道 (Physical Downlink Control Channel, PDCCH ) 的监听; 而对于 去激活的载波,UE不监听 PDCCH信道,也不接收物理下行共享信道( Physical Downlink Shared Channel, PDSCH )上的数据,从而达到省电的目的。 DL PCC 配置即激活, 且不能被去激活。 在移动通信系统中, UE可以在各小区之间移动, 为了保证业务连续性, 确保业务质量, 用户建立业务后, UE 需要根据服务基站的配置进行测量, 并向服务基站报告满足服务基站配置要求的测量报告。 以 LTE系统为例, 服 务基站可以根据 UE上报的测量报告以及相邻小区的负载、 业务分布、 硬件 资源等因素进行连接态的移动性管理(也可以称为切换判决); 根据 UE上报 的测量报告以及同频相邻小区的资源使用情况和业务负载情况进行小区间千 4尤协调 ( Inter-Cell Interference Coordination, 简称为 ICIC )„ 引入载波聚合技术后, 为了给用户设备分配合适的分量载波, 基站需要 获取用户设备当前能进行载波聚合的各个分量载波上各小区的信号质量, 然 后结合各个分量载波的负载、 业务分布以及分量载波上的千扰情况等进行分 量载波管理(简称为载波管理),进而选择一个或多个可以进行载波聚合的分 量载波上的小区分配给用户设备。 由于相关技术中, 一方面测量消耗 UE的 电量, 另一方面测量报告的上报也耗费空口资源, 因此需要尽量减少测量, 但同时又不影响移动性管理和小区间千扰协调等功能。 但是为了满足载波管 理的需求, 用户设备需要实时地对多载波进行测量, 以提供上述信号质量的 信息。 但是发明人发现用户设备实时对多载波进行测量,导致用户设备功耗大 幅增加并导致系统性能降低, 从而降低用户体验。 发明内容 针对用户设备对多载波进行实时的测量而导致用户设备功耗大幅增加 的问题而提出本发明, 为此, 本发明的主要目的在于提供一种多载波的测量 方法及系统, 以解决上述问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种多载波中测量 的处理方法。 根据本发明的多载波中测量的处理方法包括: UE接收到基站配置的控 制测量启动的门限值; UE 使用门限值, 确定其工作的一个或多个服务小区 的信号质量满足测量启动条件; UE启动测量。 进一步地, 门限值为表征服务小区信号质量的第一门限值; 启动条件为 服务小区中的主服务小区的信号质量低于第一门限值, 或者服务小区中的激 活的辅服务小区的信号质量低于第一门限值; UE 确定满足启动条件, 启动 基站为 UE配置的所有测量。 进一步地,门限值包括表征主服务小区信号质量的第一门限值和表征辅 服务小区信号质量的第二门限值; 启动条件为服务小区中的主服务小区的信 号质量低于第一门限值, 或者服务小区中的激活的辅服务小区的信号质量低 于第二门限值; UE确定满足启动条件, 启动基站为 UE配置的所有测量。 进一步地,门限值包括表征主服务小区信号质量的第一门卩艮值以及表征 辅服务小区信号质量的第二门限值和第三门限值, 其中, 第二门限值低于第 三门限值;启动条件为服务小区中的主服务小区的信号质量低于第二门限值, 或者服务小区中的辅服务小区的信号质量高于第二门限值且低于第三门限 值; UE确定满足启动条件, 启动基站为 UE配置的所有测量。 进一步地, UE使用门限值, 确定其工作的一个或多个月艮务小区的信号 质量满足测量启动条件之前, 还包括: UE 接收来自基站的用于指示多载波 中的测量任务组的任务分组信息。 进一步地, UE使用门限值和任务分组信息, 确定服务小区的信号质量 满足测量任务组的启动条件; 启动测量任务组的测量。 进一步地, 门限值为表征月艮务小区信号质量的第一门限值; 测量任务组 的启动条件为服务小区中的主服务小区的信号质量低于第一门限值; UE 确 定满足启动条件, 启动测量任务组的测量。 进一步地, 门限值为表征服务小区信号质量的第一门限值; 测量任务组 的启动条件为服务小区中的激活的辅服务小区的信号质量低于第一门限值, 或者测量任务组的启动条件为不考虑 艮务小区的信号质量; UE 确定满足启 动条件, 启动测量任务组的测量。 进一步地, 服务小区包括以下之一: 主服务小区; 或者主服务小区以及 一个或多个辅服务小区。 为了实现上述目的, 根据本发明的另一方面, 提供了一种用户设备。 根据本发明的用户设备包括:第一接收模块, 用于接收基站配置的控制 测量启动的门限值; 确定模块, 用于使用门限值, 确定其工作的一个或多个 服务小区的信号质量满足测量启动条件; 启动模块, 用于启动测量。 进一步地, 启动模块包括: 第一启动子模块, 用于启动基站为 UE配置 的所有测量。 进一步地, 还包括: 第二接收模块, 用于接收来自基站的用于指示多载 波中的测量任务组的任务分组信息; 启动模块还包括: 第二启动子模块, 用 于启动测量任务组的测量。 通过本发明,釆用用户设备确定满足多载波中测量的启动条件则启动该 测量, 解决了用户设备对多载波进行实时的测量而导致用户设备功耗大幅增 加的问题, 进而提升了用户体验。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据相关技术的载波聚合的示意图; 图 2是根据相关技术的载波聚合的覆盖的示意图一; 图 3 是根据相关技术的载波聚合的覆盖的示意图二; 图 4是 居本发明实施例的多载波的测量方法的流程图; 图 5是本发明实施例的用户设备载波工作状态的示意图; 图 6是根据本发明实施例的用户设备的结构框图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 本发明的下述实施例基于 LTE-A的多载波技术, 通过基站与用户设备 的交互, 实现对用户设备的管理。 图 4是才艮据本发明实施例的多载波的测量方法的流程图,包括如下的步 骤: 步骤 S402, UE接收到基站配置的控制测量启动的门限值。 步骤 S404, UE使用门限值, 确定其工作的一个或多个服务小区的信号 质量满足多载波中测量的启动条件。 步 4聚 S406, UE启动测量。 相关技术中, 需要用户设备实时对多载波进行测量。 本发明实施例中, 用户设备只有确定满足多载波中测量的启动条件, 才启动该测量, 可以避免 用户设备实时启动测量,从而避免用户设备大幅增加功耗, 并提高用户体验。 优选地, UE使用门限值, 确定一个或多个服务小区的信号质量满足多 载波中测量的启动条件, 启动基站为 UE配置的所有测量。 需要说明的是, 本优选实施例中, 可以既满足多载波系统中载波管理需 要, 又不至于过早启动测量、 触发大量测量报告, 从而降低了 UE的功耗, 给用户良好的体 -险。 具体地, 在启动上述所有测量之前, 可以通过下述三种方式确定满足多 载波中测量的启动条件。
( 1 ) 门限值为表征服务小区信号质量的第一门限值; 启动条件为服务 小区中的主服务小区的信号质量低于第一门限值, 或者服务小区中的任意激 活的辅服务小区的信号质量低于第一门限值; UE 确定满足启动条件, 启动 基站为其配置的所有测量。
( 2 ) 门限值包括表征主服务小区信号质量的第一门限值和表征辅服务 小区信号质量的第二门限值; 启动条件为服务小区中的主服务小区的信号质 量低于第一门限值, 或者服务小区中的任意激活的辅服务小区的信号质量低 于第二门限值; UE确定满足启动条件, 启动基站为其配置的所有测量。
( 3 ) 门限值包括表征主服务'〗、区信号质量的第一门限值以及表征辅服 务小区信号质量的第二门限值和第三门限值, 其中, 第二门限值低于第三门 限值; 启动条件为服务小区中的主服务小区的信号质量低于第二门限值, 或 者服务小区中的任意辅服务小区的信号质量高于第二门限值且低于第三门限 值; UE确定满足启动条件, 启动基站为其配置的所有测量。 需要说明的是, 本优选实施例中, 上述优选实施例 (3 )分别针对 Pcell 和 Scell引入不同的启动门限。 其具备如下的优点:
( 1 ) 可以保证良好的后向兼容性。 当用户设备从支持载波聚合的基站移动到不支持载波聚合的基站时,可 以直接使用 Pcell的测量启动门限判断是否启动结束测量。 ( 2 )不需要区分 Scell的激活去激活状态, 降低了用户设备处理的复杂 度。 因为载波被去激活可能的原因是因为该载波信号质量很差,或者用户设 备根本已经离开了该载波的覆盖范围, 因此优选实施例 (3 ) 增加 "服务小 区中的任意辅服务小区的信号质量高于第二门限值,, 的限定条件, 可以不需 要考虑 Scell 的激活去激活状态, 同时有效防止因为去激活载波信号质量太 差导致的过早启动测量。 优选地, UE使用门限值, 确定其工作的一个或多个月艮务小区的信号质 量满足多载波中测量的启动条件之前, UE 接收来自基站的用于指示多载波 中的测量任务组的任务分组信息。 优选地, 本发明实施例中可以为多个载波的测量划分测量任务组, 并针 对该测量任务组设置启动条件。 该启动条件可以控制该测量任务组中各个测 量任务的启动与结束, 当测量任务组对应的启动条件满足时, 用户设备启动 对该测量任务组中所有测量任务的测量。 需要说明的是, 本优选实施例中, 可以针对不同的测量需求分别启动不 同的测量, 即尽早启动载波管理相关的测量, 以满足多载波系统中载波管理 需要; 但同时又不过早启动除载波管理相关的测量之外的其他测量, 从而在 满足移动性管理, 小区间千扰协调管理及其他相关目的的基础上, 降低了用 户设备的功耗, 提升了用户体验。 具体地, 在启动上述测量任务组中所有测量之前, 可以通过下述两种方 式确定满足多载波中测量的启动条件。
( 1 ) 门限值为表征服务小区信号质量的第一门限值; 测量任务组的启 动条件为服务小区中的主服务小区的信号质量低于第一门限值; UE 确定满 足启动条件, 启动测量任务组的测量。 ( 2 ) 门限值为表征服务小区信号质量的第一门限值; 测量任务组的启 动条件为服务小区中的任意激活的辅服务小区的信号质量低于第一门限值, 或者测量任务组的启动条件为不考虑服务小区的信号质量; UE 确定满足启 动条件, 启动测量任务组的测量。 需要说明的是, 本优选实施例中, 可以既满足多载波系统中载波管理需 要, 又不至于过早启动测量、 触发大量测量报告, 从而降低了 UE的功耗, 给用户良好的体 -险。 本发明还提供了一个优选实施例,结合了上述多个优选实施例的技术方 案, 下面结合图 5来详细描述。 图 5是本发明实施例的用户设备载波工作状态的示意图,服务基站为用 户设备配置了 3个载波(fl , β, β ), 用户设备当前的服务小区分别为上述 载波上的 celll , cell2和 cell3 , 其中 celll为用户设备的 Pcell, cell2和 cell3 为用户设备的 Scell, 且 cell2被基站激活, cell3未被基站激活(即 cell3处于 去激活状态)。 载波 f4为服务基站控制下另一个还可以与 fl , ΐ2, β进行载 波聚合的载波。 服务基站根据移动性管理, 小区间千扰协调管理和分量载波管理的需 要, 为用户设备配置了如下测量任务: 测量任务 1 (用 MIDI标识): 测量对象为 fl , 测量 4艮告配置所配置的 测量事件为 A3事件, A3事件的具体定义为 fl上相邻小区的信号质量比 Pcell 的信号质量高一个偏移值。 测量任务 2 (用 MID2标识): 测量对象为 f2 , 测量 4艮告配置所配置的 测量事件为 A3 事件, A3 事件的具体定义为 f2 上相邻小区的信号质量比 Scell 1的信号质量高一个偏移值。 测量任务 3 (用 MID3标识): 测量对象为 f2 , 测量 4艮告配置所配置的 测量事件为 A3事件, A3事件的具体定义为 f2上小区的信号质量比 Pcell的 信号质量高一个偏移值。 测量任务 4 (用 MID4标识): 测量对象为 β , 测量 4艮告配置所配置的 测量事件为 A3事件, A3事件的具体定义为 β上小区的信号质量比 Pcell的 信号质量高一个偏移值。 测量任务 5 (用 MID5标识): 测量对象为 f4, 测量 4艮告配置所配置的 测量事件为 A4事件, A4事件的具体定义为 f4上相邻小区的信号质量高于 一个门限值。 需要说明的是, 除以上测量任务外, 基站还可以为用户设备配置其他测 量任务, 本发明专利不——穷举。 优选实施例一 本优选实施例一描述了基站为用户设备的所有测量配置相同的 S-measure, 该 S-measure表征服务小区 (包括 Pcell和 Scell ) 的信号质量门 限值, 用于控制所有测量的启动与结束。 具体启动条件为: Pcell的信号质量低于 S-measure, 或者任意一个激活 的 Scell的信号质量低于 S-measure。 上述 Pcell的信号质量是指 Pcell的参考信号接收功率( Reference Signal Received Power, 简称为 RSRP )测量值经过用户设备层三, 即无线资源控制 ( Radio Resource Control , 简称为 RRC )层, 平滑滤波之后的结果。 同样地, 上述 Scell的信号质量是指 Scell的 RSRP测量值经过用户设备层三平滑滤波 之后的结果。 相应的, 当 Pcell的信号质量高于 S-measure并且所有激活的 Scell的信 号质量高于 S-measure时, 用户设备结束所有测量。 本优选实施例中, 当 Pcell的信号质量低于 S-measure, 或者 Scelll的信 号质量 4氏于 S-measure时, 用户设备启动上述测量任务 1到测量任务 5的测 量;当 Pcell的信号质量高于 S-measure并且 Scelll的信号质量高于 S-measure 时, 用户设备结束上述测量任务 1到测量任务 5的测量。 优选的,本优选实施例基站也可以为用户设备的所有测量配置两个用于 控制所有测量启动与结束的门限值, S-measure-Pcell和 S-measure- Scell, 其 中 S-measure-Pcell是表征 Pcell信号质量的门限值, S-measure-Scell是表征 Scell信号质量的门限值。 分别针对 Pcell和 Scell配置不同的启动门限, 增加 了灵活性。 相应的具体启动条件为: Pcell的信号质量低于 S-measure-Pcell,或者任 意一个激活的 Scell的信号质量氏于 S-measure-Scell。 而当 Pcell的信号质量 高于 S-measure-Pcell并且所有激活的 Scell的信号质量高于 S -measure- Scell 时, 用户设备结束所有测量。 优选实施例二 基站为用户设备的所有测量配置三个测量启动门限, S-measure-Pcell, S-measurel和 S-measure2, 以上三个测量启动门限用于控制所有测量的启动 与结束, 其中 S-measure-Pcell是表征 Pcell信号质量的门限值, UE根据 Pcell 的信号质量及 S-measure-Pcell 判断是否启动所有测量; S-measurel 和 S-measure2是表征 Scell信号质量的门限值,且 S-measurel小于 S-measure2, UE根据 Scell的信号质量及 S-measurel和 S-measure2判断是否启动所有测 量。 具体启动条件为: Pcell的信号质量低于 S-measure-Pcell,或者任意一个 Scell的信号质量满足高于 S-measurel且低于 S-measure2。 相应的, 当 Pcell的信号质量高于 S-measure-Pcell, 并且所有 Scell的信 号质量满足高于 S-measure2时, 用户设备结束所有测量。 本优选实施例二在上述优选实施方例一的基础上分别 4十对 Pcell和 Scell 引入不同的测量启动门限。 其具备如下的优点: 一方面可以保证良好的后向兼容性,即当用户设备从支持载波聚合的基 站移动到不支持载波聚合的基站时, 可以直接使用 Pcell 的测量启动门限判 断是否启动结束测量。 另一方面, 考虑 Scell时不需要区分 Scell的激活去激活状态, 降低了用 户设备处理的复杂度。 即因为载波被去激活可能的原因是因为该载波信号质 量很差, 或者用户设备根本已经离开了该载波的覆盖范围, 因此本优选实施 例增加 "任意一个 Scell 的信号质量满足高于 S-measurel" 的限定条件, 可 以不需要考虑 Scell 的激活去激活状态, 同时有效防止因为去激活载波信号 质量太差导致的过早启动测量。 以本优选实施例为例, 当 Pcell的信号质量氐于 S-measure-Pcell时, 或 者 Scelll的信号质量高于 S-measurel JM氐于 S-measure2时, 或者 Scell2的 信号质量高于 S-measurel且低于 S-measure2时,用户设备启动上述测量任务 1到测量任务 5的测量;当 Pcell的信号质量高于 S-measure-Pcell,并且 Scelll 的信号质量高于 S-measure2, 并且 Scell2的信号质量高于 S-measure2时, 用 户设备结束上述测量任务 1到测量任务 5的测量。 优选实施例三 本优选实施例三描述了基站为用户设备配置一个 S-measure, 并且为不 同的测量任务组配置不同的启动条件, 各个启动条件控制其所控制的测量任 务组中各个测量任务的启动与结束, 当满足测量任务组对应的启动条件时, 用户设备启动对所述测量任务组中所有测量任务的测量。 需要说明的是, 服务小区的测量不受任何启动条件控制, 即服务小区始 终测量。 基站为用户设备配置一个 S-measure, 在配置测量任务时, 基站把测量 任务分成不同的测量任务组, 用户设备根据不同测量任务组的启动条件控制 不同测量任务组中各个测量任务的启动与结束。 基站为用户设备配置 S-measure,并 4巴测量任务分成不同的测量任务组: 测量任务组 1 : 载波管理测量任务组。 比如本实施例中载波管理测量任 务组可以是测量任务 3到测量任务 5; 或者可以仅包含测量任务 5。 测量任务组 2: 其他测量任务组。 比如本实施例中可以是以上所有测量 任务 (即测量任务 1到 5 )„ 需要说明的是, 基站对测量任务组的划分, 取决于基站的 RRM管理策 略, 比如本实施例中, 测量任务 3和测量任务 4既可用于基站进行载波管理 (其中的 PCC管理), 也可用于基站进行移动性管理; 测量任务 5即可用于 载波管理, 也可用于移动性管理, 上述分组方式是一种可能的实施方式。 基站在测量配置中通知用户设备上述分组信息, 具体可以是,基站在现 有测量配置结构的基础上, 增加一个载波管理测量任务组列表, 该列表中包 含测量任务组 1所包含的所有测量任务。 用户设备根据不同测量任务组的启动条件控制不同测量任务组中各个 测量任务的启动与结束。 具体启动条件为: 测量任务组 1 的启动条件为, 任意一个激活的 Scell 的信号质量低于 S-measure„ 相应的结束条件为所有激活的 Scell的信号质量高于 S-measure。 测量任务组 2的启动条件为, Pcell的信号质量低于 S-measure。 相应的 结束条件为 Pcell的信号质量高于 S-measure。 以本优选实施例三为例, 当 Scelll的信号质量低于 S-measure时, 用户 设备启动测量任务组 1 中所有测量任务的测量; 当 Scelll 的信号质量高于 S-measure时, 用户设备结束测量任务组 1 中所有测量任务的测量。 当 Pcell 的信号质量低于 S-measure时, 用户设备启动测量任务组 2中所有测量任务 的测量; 当 Pcell的信号质量高于 S-measure时, 用户设备结束测量任务组 2 中所有测量任务的测量。 釆用本优选实施例三的方法,可以 4十对不同的测量需求分别启动不同的 测量, 即尽早启动载波管理相关的测量, 以满足多载波系统中载波管理需要 用户设备实时启动测量的需求; 但同时又不过早启动除载波管理相关的测量 之外的其他测量, 从而在满足移动性管理, 小区间千 4尤协调管理及其他相关 目的的基础上, 降低了用户设备的功耗, 提升了用户体验。 优选实施例四 基站为用户设备配置一个 S-measure, 在配置测量任务时, 基站把测量 任务分成不同的测量任务组, 用户设备根据不同测量任务组的启动条件控制 不同测量任务组中各个测量任务的启动与结束。 具体分组方式同优选实施方 式三。 具体启动条件为: 测量任务组 1的启动条件为, 用户设备忽略 S-measure的配置, 即用户 设备始终测量测量任务组 1中所有测量任务。 测量任务组 2的启动条件为, Pcell的信号质量低于 S-measure。 相应的 结束条件为 Pcell的信号质量高于 S-measure。 以本优选实施例为例,用户设备始终启动测量任务组 1中所有测量任务 的测量。 当 Pcell的信号质量低于 S-measure时, 用户设备启动测量任务组 2 中所有测量任务的测量; 当 Pcell的信号质量高于 S-measure时, 用户设备结 束测量任务组 2中所有测量任务的测量。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。 需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执 行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是 在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 本发明实施例提供了一种用户设备,该用户设备可以用于实现上述多载 波中测量的处理方法。 图 6是才艮据本发明实施例的用户设备的结构框图, 包 括第一接收模块 62 , 确定模块 64和启动模块 66。 第一接收模块 62 , 用于接收基站配置的控制测量启动的门限值; 确定 模块 64 ,连接至第一接收模块 62 , 用于使用第一接收模块 62接收的门限值, 确定其工作的一个或多个服务小区的信号质量满足测量启动条件; 启动模块 66 , 连接至确定模块 64 , 用于在确定模块 66确定满足启动条件时, 启动测 量。 优选地, 启动模块 66包括: 第一启动子模块 662 , 连接至确定模块 64 , 用于在确定模块 64 确定其工作的服务小区的信号质量满足多载波中测量的 启动条件时, 启动基站为 UE配置的所有测量。 优选地, 上述用户设备还包括: 第二接收模块 68 , 上述启动模块 66还 包括第二启动子模块 664。 第二接收模块 68 , 用于接收来自基站的用于指示多载波中的测量任务 组的任务分组信息; 第二启动子模块 664 , 连接至确定模块 64和第二接收模 块 68 , 用于在确定模块 64确定其工作的服务小区的信号质量满足多载波中 测量的启动条件时, 启动第二接收模块 68接收的测量任务组的测量。 需要说明的是, 装置实施例中描述的用户设备对应于上述的方法实施 例,其具体的实现过程在方法实施例中已经进行过详细说明,在此不再赞述。 综上所述, 居本发明的上述实施例, 提供了一种多载波中测量的处理 方法及用户设备。釆用用户设备确定多载波中测量满足启动条件时启动测量, 解决了用户设备对多载波进行实时的测量而导致用户设备功耗大幅增加的问 题, 进而提升了用户体验。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种多载波中测量的处理方法, 其特征在于, 包括:
用户设备 UE接收到基站配置的控制测量启动的门限值; 所述 UE使用所述门限值, 确定其工作的一个或多个服务小区的信 号质量满足测量启动条件;
所述 UE启动测量。
2. 根据权利要求 1所述的方法, 其特征在于,
所述门限值为表征服务'〗、区信号质量的第一门限值; 所述启动条件为所述服务小区中的主服务小区的信号质量低于所 述第一门限值, 或者所述服务小区中的激活的辅服务小区的信号质量低 于所述第一门限值;
所述 UE确定满足所述启动条件, 启动所述基站为 UE配置的所有 测量。
3. 根据权利要求 1所述的方法, 其特征在于,
所述门限值包括表征主服务小区信号质量的第一门限值和表征辅 服务小区信号质量的第二门限值;
所述启动条件为所述服务小区中的主服务小区的信号质量低于所 述第一门限值, 或者所述服务小区中的激活的辅服务小区的信号质量低 于所述第二门限值;
所述 UE确定满足所述启动条件, 启动所述基站为 UE配置的所有 测量。
4. 根据权利要求 1所述的方法, 其特征在于,
所述门限值包括表征主月艮务小区信号质量的第一门限值以及表征 辅服务小区信号质量的第二门限值和第三门限值, 其中, 所述第二门限 值低于所述第三门限值; 所述启动条件为所述服务小区中的主服务小区的信号质量低于所 述第二门限值, 或者所述服务小区中的辅服务小区的信号质量高于所述 第二门限值且低于所述第三门限值;
所述 UE确定满足所述启动条件, 启动所述基站为 UE配置的所有 测量。 才艮据权利要求 1所述的方法, 其特征在于, 所述 UE使用所述门限值, 确定其工作的一个或多个服务小区的信号质量满足测量启动条件之 前, 还包括:
所述 UE接收来自所述基站的用于指示所述多载波中的测量任务组 的任务分组信息。 根据权利要求 5所述的方法, 其特征在于,
所述 UE使用所述门限值和所述任务分组信息,确定所述月艮务小区 的信号质量满足所述测量任务组的启动条件;
启动所述测量任务组的测量。 根据权利要求 6所述的方法, 其特征在于,
所述门限值为表征服务'〗、区信号质量的第一门限值;
所述测量任务组的启动条件为所述月艮务小区中的主月艮务小区的信 号质量低于所述第一门限值;
所述 UE确定满足所述启动条件, 启动所述测量任务组的测量。 根据权利要求 6所述的方法, 其特征在于,
所述门限值为表征服务'〗、区信号质量的第一门限值;
所述测量任务组的启动条件为所述月艮务小区中的激活的辅月艮务小 区的信号质量低于所述第一门限值, 或者所述测量任务组的启动条件为 不考虑所述服务小区的信号质量;
所述 UE确定满足所述启动条件, 启动所述测量任务组的测量。 根据权利要求 1至 8中任一项所述的方法, 其特征在于, 所述服务小 区包括以下之一:
主服务小区; 主服务小区以及一个或多个辅服务小区。
10. —种用户设备, 其特征在于,
第一接收模块, 用于接收基站配置的控制测量启动的门限值; 确定模块, 用于使用所述门限值, 确定其工作的一个或多个月艮务小 区的信号质量满足测量启动条件;
启动模块, 用于启动测量。
11. 根据权利要求 10所述的用户设备, 其特征在于, 所述启动模块包括: 第一启动子模块, 用于启动所述基站为 UE配置的所有测量。
12. 根据权利要求 10所述的用户设备, 其特征在于, 还包括:
第二接收模块,用于接收来自所述基站的用于指示所述多载波中的 测量任务组的任务分组信息;
所述启动模块还包括:
第二启动子模块, 用于启动所述测量任务组的测量。
PCT/CN2010/077293 2010-05-04 2010-09-25 多载波中测量的处理方法及用户设备 WO2011137623A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010174080.4 2010-05-04
CN2010101740804A CN102237937A (zh) 2010-05-04 2010-05-04 多载波中测量的处理方法及用户设备

Publications (1)

Publication Number Publication Date
WO2011137623A1 true WO2011137623A1 (zh) 2011-11-10

Family

ID=44888208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077293 WO2011137623A1 (zh) 2010-05-04 2010-09-25 多载波中测量的处理方法及用户设备

Country Status (2)

Country Link
CN (1) CN102237937A (zh)
WO (1) WO2011137623A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014166050A1 (en) * 2013-04-09 2014-10-16 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for ue measurements and reporting
WO2016052066A1 (ja) * 2014-09-30 2016-04-07 日本電気株式会社 無線基地局、移動局、無線通信システム、無線基地局の制御方法および記録媒体
CN108513329A (zh) * 2017-02-28 2018-09-07 中兴通讯股份有限公司 控制小区切换的方法、终端及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101031152A (zh) * 2007-02-07 2007-09-05 重庆重邮信科股份有限公司 一种缩短移动用户终端在空闲模式下重选时延的方法
CN101094508A (zh) * 2006-06-23 2007-12-26 华为技术有限公司 硬切换测量启动方法和系统
WO2008127166A2 (en) * 2007-04-13 2008-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Multi-carrier cqi feedback method and apparatus
CN101466106A (zh) * 2008-12-30 2009-06-24 上海无线通信研究中心 一种移动通信系统中多信道的测量方法及小区切换方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101094508A (zh) * 2006-06-23 2007-12-26 华为技术有限公司 硬切换测量启动方法和系统
CN101031152A (zh) * 2007-02-07 2007-09-05 重庆重邮信科股份有限公司 一种缩短移动用户终端在空闲模式下重选时延的方法
WO2008127166A2 (en) * 2007-04-13 2008-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Multi-carrier cqi feedback method and apparatus
CN101466106A (zh) * 2008-12-30 2009-06-24 上海无线通信研究中心 一种移动通信系统中多信道的测量方法及小区切换方法

Also Published As

Publication number Publication date
CN102237937A (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
JP7037607B2 (ja) ライセンス支援アクセスのためのrrm測定および報告
TWI440321B (zh) 測量配置方法和用戶設備
JP5878918B2 (ja) キャリア・アグリゲーションシステムにおける測定タスクの処理方法及び処理システム
RU2577032C2 (ru) Способ и устройство для осуществления администрирования несущих в системе с агрегацией несущих
EP2448312B1 (en) Method for reporting measurement result of carrier aggregation and user equipment
EP2566218B1 (en) Measurement configuration method for multi-carrier system and equipment thereof
KR101734812B1 (ko) 이동통신시스템 및 그 이동 통신 시스템에서 캐리어 메저먼트 방법
CN106470474B (zh) 一种不同通信网络共存使用免授权频段的方法
KR101719683B1 (ko) 이동통신시스템에서 복수 개의 캐리어들이 집적된 단말기의 캐리어들에 대한 효율적인 메저먼트 방법
WO2016015525A1 (zh) 一种无线网络接入控制方法、设备及系统
US9491662B2 (en) Method in a radio network node for controlling usage of rat and frequency bandwidth in a radio communication system
US20130294415A1 (en) Dynamic Spectrum Refarming with Multiple Carriers
US20210385836A1 (en) Multiple uplink carriers in a cell deployed in unlicensed spectrum
WO2011137632A1 (zh) 多载波系统中的测量事件的处理方法和系统
WO2015096088A1 (zh) 信道测量配置方法、信道测量方法、装置和通信系统
WO2012022199A1 (zh) 多载波系统中的载波测量方法及系统
WO2010118582A1 (zh) 一种下行小区间干扰协调方法和基站
CN110831034B (zh) 信道测量方法及设备
WO2011153887A1 (zh) 切换信息的传递方法、系统及设备
WO2021104039A1 (zh) 一种测量配置方法及装置
WO2011157009A1 (zh) 测量任务的执行方法及系统
WO2017020192A1 (zh) 一种负载均衡方法及装置
CN102238618B (zh) 多载波中测量任务的启动方法及用户设备
WO2021104038A1 (zh) 一种测量配置方法及装置
WO2011137623A1 (zh) 多载波中测量的处理方法及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850992

Country of ref document: EP

Kind code of ref document: A1