WO2011136551A2 - Lithium-air battery - Google Patents

Lithium-air battery Download PDF

Info

Publication number
WO2011136551A2
WO2011136551A2 PCT/KR2011/003067 KR2011003067W WO2011136551A2 WO 2011136551 A2 WO2011136551 A2 WO 2011136551A2 KR 2011003067 W KR2011003067 W KR 2011003067W WO 2011136551 A2 WO2011136551 A2 WO 2011136551A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
air battery
electrode active
positive electrode
Prior art date
Application number
PCT/KR2011/003067
Other languages
French (fr)
Korean (ko)
Other versions
WO2011136551A3 (en
Inventor
선양국
정훈기
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110039061A external-priority patent/KR101338142B1/en
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to CN201180031041.1A priority Critical patent/CN102948006B/en
Priority to US13/643,163 priority patent/US20130089796A1/en
Publication of WO2011136551A2 publication Critical patent/WO2011136551A2/en
Publication of WO2011136551A3 publication Critical patent/WO2011136551A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a lithium air battery.
  • Lithium air batteries which are recently developed as a power source for portable electronic devices and electric vehicles, exhibit a significantly higher energy density than lithium ion batteries as they are brought into contact with air, and thus have advantages of miniaturization and light weight. to be.
  • the lithium air battery is used by injecting an electrolyte solution into a battery cell including a positive electrode including a positive electrode active material for oxidizing and reducing lithium and a negative electrode including a negative electrode active material capable of intercalating and deintercalating lithium.
  • Lithium metal is mainly used as the negative electrode active material, which causes a rapid explosion reaction when it comes in contact with moisture and rapidly oxidizes when it comes in contact with air, and loses its activity.
  • One aspect of the present invention is to provide a lithium air battery that can be commercialized and large-sized with improved stability.
  • One aspect of the present invention is a positive electrode including a current collector and a positive electrode active material layer disposed on the current collector and including a positive electrode active material; A negative electrode including a negative electrode active material; And an electrolyte solution, and the positive electrode active material includes lithium peroxide (Li 2 O 2 ), lithium oxide (Li 2 O), lithium hydroxide (LiOH), or a combination thereof, and the negative electrode active material is an alloy of lithium metal, lithium It provides a lithium air battery comprising a material that can be dope and undoped, a transition metal oxide or a combination thereof.
  • the cathode active material layer may further include a conductive material including a carbonaceous material, a metal powder, a metal fiber, or a combination thereof, and the carbonaceous material may include natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, Carbon fibers, carbon nanotubes or a combination thereof may be included.
  • the cathode active material layer may further include a catalyst, wherein the catalyst is tricobalt tetraoxide (Co 3 O 4 ), manganese dioxide (MnO 2 ), cerium dioxide (CeO 2 ), platinum (Pt), gold (Au), silver ( Ag), ferric trioxide (Fe 2 O 3 ), triiron tetraoxide (Fe 3 O 4 ), nickel monoxide (NiO), copper oxide (CuO), perovskite-based catalysts, or combinations thereof.
  • the catalyst may be included in 1 to 50% by weight based on the total amount of the positive electrode active material layer.
  • the cathode active material may be included in an amount of 5 to 50 wt% based on the total amount of the cathode active material layer.
  • the alloy of the lithium metal is lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, Sn or combinations thereof It may include an alloy of a metal containing, the material that can be doped and undoped lithium, Si, Si containing alloys, Si-C composites, SiO x (0 ⁇ x ⁇ 2), Sn, Sn containing alloys, Sn-C composite, SnO 2 or a combination thereof, and the transition metal oxide may include vanadium oxide, lithium vanadium oxide, titanium oxide or a combination thereof.
  • the lithium air battery may include a swazelok type, a coin form, or a pouch form.
  • Example 1 is a graph showing charge and discharge characteristics of a lithium air battery according to Example 1;
  • FIG. 2 is a graph showing charge and discharge characteristics of the lithium air battery according to Example 2.
  • FIG. 3 is a graph showing charge and discharge characteristics of a lithium air battery according to Comparative Example 1.
  • FIG. 4 is a graph showing charge and discharge characteristics of a lithium air battery according to Comparative Example 2.
  • a lithium air battery includes a battery cell including a positive electrode, a negative electrode facing the positive electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte solution impregnating the positive electrode, the negative electrode, and the separator. do.
  • the positive electrode includes a current collector and a positive electrode active material layer formed on the current collector.
  • the positive electrode active material layer includes a positive electrode active material.
  • the current collector may be aluminum (Al), nickel (Ni), iron (Fe), titanium (Ti), stainless steel, etc., but is not limited thereto.
  • Examples of the shape of the current collector include a foil shape, a plate shape, a mesh (or grid) shape, a foam (or sponge) shape, and the like, and among these, a foam (or sponge) shape excellent in current collection efficiency may be mentioned. .
  • Lithium peroxide (Li 2 O 2 ), lithium oxide (Li 2 O), lithium hydroxide (LiOH) or a combination thereof may be used as the cathode active material, and among them, lithium peroxide (Li 2 O 2 ) may be used.
  • the positive electrode active material such as Li 2 O 2 is decomposed to generate lithium ions, which move to the negative electrode, and when the discharge occurs, the positive electrode active material such as Li 2 O 2 is improved, thereby improving stability of the lithium air battery. can do.
  • the cathode active material may be included in an amount of 5 to 50 wt% based on the total amount of the cathode active material layer.
  • the positive electrode active material is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging.
  • the cathode active material layer may further include at least one of a conductive material, a catalyst, and a binder.
  • the conductive material is used to impart conductivity to the electrode. Any conductive material may be used as long as it is an electron conductive material without causing chemical change in the battery. Specific examples of the conductive material may include a carbon-based material, a metal powder, a metal fiber, or a combination thereof.
  • the carbonaceous material may have a porous structure and a large specific surface area. Examples of the carbon-based material may include natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, carbon nanotube, or a combination thereof.
  • a metal such as copper, nickel, aluminum, or silver may be used.
  • the conductive material may be included in an amount of 30 to 50 wt% based on the total amount of the cathode active material layer. When the conductive material is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging.
  • the catalyst is supported on the conductive material and serves to help the decomposition of the cathode active material, and specific examples thereof include tricobalt tetraoxide (Co 3 O 4 ), manganese dioxide (MnO 2 ), cerium dioxide (CeO 2 ), and platinum (Pt). , Gold (Au), silver (Ag), ferric trioxide (Fe 2 O 3 ), triiron tetraoxide (Fe 3 O 4 ), nickel monoxide (NiO), copper oxide (CuO), perovskite catalyst Or a combination thereof.
  • the catalyst may be included in an amount of 1 to 50 wt% based on the total amount of the cathode active material layer.
  • the catalyst is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging as the cathode active material is smoothly decomposed.
  • the binder adheres positively to the positive electrode active material particles, and also adheres the positive electrode active material to the current collector, and specific examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, Carboxylated polyvinylchloride, polyvinylfluoride, polymers including ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber , Acrylated butadiene rubber, epoxy resin, nylon, and the like, but is not limited thereto.
  • the binder may be included in an amount of 5 to 30 wt% based on the total amount of the cathode active material layer. When the binder is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging.
  • the positive electrode is designed by exposing to air when manufacturing a lithium air battery. As the positive electrode is exposed to air, oxygen generated by the decomposition of the positive electrode active material may escape to the outside of the battery, thereby preventing the electrolyte from being oxidized due to the generated oxygen. In addition, when a small spark occurs, it can be exploded due to oxygen, which can be prevented, and can also prevent the volume expansion of the battery due to oxygen.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector.
  • the negative electrode active material layer includes a negative electrode active material.
  • the current collector may be copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam (foam), copper foam, a polymer substrate coated with a conductive metal, or a combination thereof, but is not limited thereto.
  • the negative electrode active material may be an alloy of lithium metal, a material capable of doping and undoping lithium, a transition metal oxide, or a combination thereof.
  • a lithium air battery according to an embodiment using the negative electrode active material it can significantly increase the stability compared to the case of using lithium metal.
  • alloy of the lithium metal lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, Sn, or a combination thereof Alloys of the metals including can be used.
  • Examples of materials capable of doping and undoping lithium include Si, Si-C composites, SiO x (0 ⁇ x ⁇ 2), and Si-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, and a group 13 to 16 element). , Transition metals, rare earth elements or combinations thereof, not Si), Sn, Sn-C composites, SnO 2 , Sn-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, an element of Group 13-16, a transition metal) , Rare earth elements or combinations thereof, and not Sn), and at least one of these and SiO 2 may be mixed and used.
  • the negative electrode active material When used in a lithium air battery, it has a higher theoretical capacity than the carbon-based material, and the theoretical density is also higher than that of the carbon-based material, thereby making it possible to manufacture a lithium air battery having an excellent energy density.
  • the negative electrode active materials a material capable of doping and undoping the lithium may be used, and more preferably, a Si-C composite or a Sn-C composite may be used.
  • a material capable of doping and undoping the lithium may be used, and more preferably, a Si-C composite or a Sn-C composite may be used.
  • the negative electrode active material is used in a lithium air battery, it is possible to manufacture a lithium air battery having a lower voltage band and having a large energy density due to relatively high capacity and stable life characteristics.
  • the transition metal oxide may include vanadium oxide, lithium vanadium oxide, titanium oxide, or a combination thereof, but is not limited thereto.
  • the negative active material may be included in an amount of 30 to 95 wt% based on the total amount of the negative electrode active material layer.
  • the negative electrode active material is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging.
  • the negative electrode active material layer may further include at least one of a conductive material and a binder.
  • the conductive material is used to impart conductivity to the electrode. Any conductive material may be used as long as it is an electron conductive material without causing chemical change in the battery. Specific examples of the conductive material include carbon-based materials, metal powders and metal fibers, or a combination thereof.
  • the carbonaceous material may include natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, or a combination thereof, and the metal powder and metal fiber may be metals such as copper, nickel, aluminum, silver, and the like. It may be used. Moreover, you may use together 1 type, or 1 or more types of conductive materials, such as a polyphenylene derivative.
  • the conductive material may be included in an amount of 1 to 50 wt% based on the total amount of the anode active material layer. When the conductive material is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging.
  • the binder adheres positively to the positive electrode active material particles, and also adheres the positive electrode active material to the current collector, and specific examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, Carboxylated polyvinylchloride, polyvinylfluoride, polymers including ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber , Acrylated butadiene rubber, epoxy resin, nylon, and the like, but is not limited thereto.
  • the binder may be included in an amount of 3 to 30 wt% based on the total amount of the anode active material layer. When the binder is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging.
  • the positive electrode and the negative electrode are prepared by mixing each active material, conductive material and binder in a solvent to prepare an active material composition, and applying the composition to a current collector.
  • the positive electrode is designed by exposing to air when manufacturing a lithium air battery.
  • N-methylpyrrolidone may be used as the solvent, but is not limited thereto.
  • the separator may be a single film or a multilayer film, for example, may be made of polyethylene, polypropylene, polyvinylidene fluoride, or a combination thereof.
  • the electrolyte may be a solid electrolyte or a liquid electrolyte.
  • polyethylene oxide polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride, or a combination thereof may be used.
  • liquid electrolyte a non-aqueous organic solvent can be used.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
  • the non-aqueous organic solvent may be selected from carbonate, ester, ether, ketone, alcohol and aprotic solvents.
  • Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), and ethylpropyl carbonate ( ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate , BC) and the like can be used.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • MPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • MEC methylethyl carbonate
  • EMC ethylmethyl carbonate
  • EMC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • the ester solvent may be, for example, methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, and merol. Valonolactone, caprolactone, and the like may be used.
  • the ether solvent for example, dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, and the like may be used.
  • the ketone solvent cyclohexanone may be used. Can be.
  • ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent.
  • non-aqueous organic solvent may use tetraethylene glycol dimethyl ether, ethylene glycol dimethacrylate, polyethylene glycol, polyethylene glycol dialkyl ether, polyalkyl glycol dialkyl ether, or a combination thereof.
  • the non-aqueous organic solvents may be used alone or in combination of one or more, and the mixing ratio in the case of mixing one or more may be appropriately adjusted according to the desired battery performance.
  • the electrolyte solution may include a lithium salt.
  • the lithium salt is a substance that dissolves in the non-aqueous organic solvent, acts as a source of lithium ions in the battery to enable operation of the lithium air battery, and promotes the movement of lithium ions between the positive electrode and the negative electrode. .
  • lithium salt examples include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), where x and y are natural numbers, LiCl, LiI, LiB (C 2 O 4 ) 2 (lithium bis (oxalato) ) borate; LiBOB), or a combination thereof.
  • the concentration of the lithium salt is preferably used within the range of about 0.1M to about 2.0M.
  • concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the lithium air battery may be manufactured in the form of a swazelok, or may be manufactured in the form of a coin, a pouch, or the like.
  • the prepared Sn-C composite powder, polyvinylidene fluoride (PVDF) and carbon black (super P) were mixed at a weight ratio of 80:10:10, respectively, and dispersed in N-methyl-2-pyrrolidone to prepare a negative electrode active material.
  • Lithium peroxide (Li 2 O 2 ), polyvinylidene fluoride (PVDF) and carbon black (super P) were mixed at a weight ratio of 45:10:45, respectively, dispersed in N-methyl-2-pyrrolidone to give a positive electrode.
  • An active material layer composition is prepared. After casting the cathode active material layer composition on an aluminum mesh, the cast electrode was dried in an oven at 100 ° C. for 2 hours, and vacuum dried for 12 hours or more to prepare a cathode.
  • Swagelok type lithium air battery is fabricated using the prepared separator of the cathode and anode and the porous polyethylene membrane (Celgard 3501, Celgard 3501). At this time, the anode is manufactured to have a hole in order to pass oxygen well.
  • An electrolyte solution in which LiPF 6 is dissolved at a concentration of 1 M is injected into a mixed solution having a mixing volume ratio of 3: 7 between ethylene carbonate (EC) and dimethyl carbonate (DMC) between the positive electrode and the negative electrode.
  • Si powder of 100 nm size and natural graphite powder of 5 ⁇ m size are mixed in a weight ratio of 30:70, which is mixed in a tetrahydrofuran solution.
  • 33 parts by weight of pitch are mixed with respect to 100 parts by weight of the mixed solution, followed by ball milling for 12 hours.
  • the mixed solution was dried in a vacuum oven at 100 ° C. for 6 hours, and then heat-treated at 1000 ° C. for 5 hours in an Ar atmosphere to prepare a Si-C composite.
  • the prepared Si-C composite powder, carbon black (super P), carboxymethylcellulose and styrene-butadiene rubber were mixed with water in a weight ratio of 85: 5: 3.3: 6.7, respectively, to prepare a negative electrode active material layer composition.
  • the cast electrode is dried in an oven at 100 °C for 2 hours, and vacuum dried for 12 hours or more to prepare a negative electrode.
  • Lithium peroxide (Li 2 O 2), polyvinylidene fluoride (PVDF), and carbon black (super P) were mixed each in a weight ratio of 45:10:45, N- methyl-pyrrolidone and dispersed in the positive An active material layer composition is prepared. After casting the cathode active material layer composition on an aluminum mesh, the cast electrode was dried in an oven at 100 ° C. for 2 hours, and vacuum dried for 12 hours or more to prepare a cathode.
  • Swagelok type lithium air battery is fabricated using the prepared separator of the cathode and anode and the porous polyethylene membrane (Celgard 3501, Celgard 3501). At this time, the anode is manufactured to have a hole in order to pass oxygen well.
  • An electrolyte solution in which LiPF 6 is dissolved at a concentration of 1 M is injected into a mixed solution having a mixing volume ratio of 3: 7 between ethylene carbonate (EC) and dimethyl carbonate (DMC) between the positive electrode and the negative electrode.
  • Lithium peroxide (Li 2 O 2 ), polyvinylidene fluoride (PVDF) and carbon black (super P) were mixed at a weight ratio of 45:10:45, respectively, dispersed in N-methyl-2-pyrrolidone to give a positive electrode.
  • An active material layer composition was prepared.
  • the cathode active material layer composition was coated on a current collector of nickel foam to prepare a cathode after drying and rolling.
  • MCMB Artificial graphite
  • PVDF polyvinylidene fluoride
  • super P carbon black
  • Swagelok type lithium air battery is fabricated using the prepared separator of the cathode and anode and the porous polyethylene membrane (Celgard 3501, Celgard 3501). At this time, the anode is manufactured to have a hole in order to pass oxygen well.
  • the electrolyte is prepared by injecting an electrolyte solution in which LiPF 6 is dissolved at a concentration of 1 M into a mixed solution having a mixing volume ratio of 3: 7 between ethylene carbonate (EC) and dimethyl carbonate (DMC) between the positive electrode and the negative electrode.
  • Comparative Example 1 the catalyst MnO 2 (5 parts by weight based on 100 parts by weight of carbon black) supported on lithium peroxide (Li 2 O 2 ), polyvinylidene fluoride (PVDF), and carbon black (super P) was respectively 45:10.
  • a lithium air battery was manufactured in the same manner as in Comparative Example 1, except that the positive electrode was prepared by mixing at a weight ratio of: 45.
  • the lithium air battery of Example 1 was placed in a chamber filled with oxygen, and then charged and discharged once under a current condition of 10 mA / g at 1.2 to 4.5 V.
  • the lithium air battery of Example 2 was once charged and discharged at a current condition of 5 mA / g at 2.0 to 4.5V.
  • the lithium air batteries of Comparative Examples 1 and 2 were once charged and discharged at a current condition of 10 mA / g at 2.0 to 4.1 V.
  • FIG. 1 is a graph showing the charge and discharge characteristics of the lithium air battery according to Example 1
  • Figure 2 is a graph showing the charge and discharge characteristics of the lithium air battery according to Example 2
  • Figure 3 is lithium air according to Comparative Example 1 4 is a graph showing charge and discharge characteristics of a battery
  • FIG. 4 is a graph showing charge and discharge characteristics of a lithium air battery according to Comparative Example 2.
  • lithium peroxide Li 2 O 2
  • Sn-C composite lithium peroxide (Li as a positive electrode active material)
  • Li as a positive electrode active material
  • the charge and discharge characteristics are superior to those of Comparative Examples 1 and 2 using the carbon-based compound as the negative electrode active material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)

Abstract

Provided is a lithium-air battery comprising: a positive electrode including a current collector and a positive electrode active material layer which is located on the current collector and includes a positive electrode active material; a negative electrode including a negative electrode active material; and an electrolyte, wherein the positive electrode active material includes lithium peroxide (Li2O2), lithium oxide (Li2O), lithium hydroxide (LiOH), or a combination thereof, and the negative electrode active material includes a lithium alloy, a material which can be doped or undoped with lithium, a transitional metal oxide, or a combination thereof.

Description

리튬 공기 전지Lithium air battery
본 기재는 리튬 공기 전지에 관한 것이다. The present disclosure relates to a lithium air battery.
최근의 휴대용 전자기기, 전기자동차 등의 전원으로서 개발되고 있는 리튬 공기 전지는 리튬을 공기와 접촉시킴에 따라, 리튬 이온 전지에 비해 현저히 높은 에너지 밀도를 나타내고 소형화, 경량화 등이 용이한 장점을 가진 전지이다.Lithium air batteries, which are recently developed as a power source for portable electronic devices and electric vehicles, exhibit a significantly higher energy density than lithium ion batteries as they are brought into contact with air, and thus have advantages of miniaturization and light weight. to be.
이러한 리튬 공기 전지는 리튬을 산화 및 환원시키는 양극 활물질을 포함하는 양극과 리튬을 인터칼레이션 및 디인터칼레이션할 수 있는 음극 활물질을 포함하는 음극을 포함하는 전지 셀에 전해액을 주입하여 사용된다.The lithium air battery is used by injecting an electrolyte solution into a battery cell including a positive electrode including a positive electrode active material for oxidizing and reducing lithium and a negative electrode including a negative electrode active material capable of intercalating and deintercalating lithium.
주로 상기 음극 활물질로는 리튬 금속이 사용되고 있는데, 이는 수분과 닿으면 급격한 폭발 반응을 일으키고 공기와 닿으면 급격히 산화되어 그 활성을 잃어버림에 따라, 안정성에 한계가 있어 상용화 및 대형화가 어려운 현실이다.Lithium metal is mainly used as the negative electrode active material, which causes a rapid explosion reaction when it comes in contact with moisture and rapidly oxidizes when it comes in contact with air, and loses its activity.
본 발명의 일 측면은 안정성이 개선되어 상용화 및 대형화가 가능한 리튬 공기 전지를 제공하기 위한 것이다.One aspect of the present invention is to provide a lithium air battery that can be commercialized and large-sized with improved stability.
본 발명의 일 측면은 집전체, 그리고 상기 집전체 위에 위치하고 양극 활물질을 포함하는 양극 활물질 층을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전해액을 포함하고, 상기 양극 활물질은 과산화리튬(Li2O2), 산화리튬(Li2O), 수산화리튬(LiOH) 또는 이들의 조합을 포함하고, 상기 음극 활물질은 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 전이 금속 산화물 또는 이들의 조합을 포함하는 리튬 공기 전지를 제공한다.One aspect of the present invention is a positive electrode including a current collector and a positive electrode active material layer disposed on the current collector and including a positive electrode active material; A negative electrode including a negative electrode active material; And an electrolyte solution, and the positive electrode active material includes lithium peroxide (Li 2 O 2 ), lithium oxide (Li 2 O), lithium hydroxide (LiOH), or a combination thereof, and the negative electrode active material is an alloy of lithium metal, lithium It provides a lithium air battery comprising a material that can be dope and undoped, a transition metal oxide or a combination thereof.
상기 양극 활물질 층은 탄소계 물질, 금속 분말, 금속 섬유 또는 이들의 조합을 포함하는 도전재를 더 포함할 수 있고, 상기 탄소계 물질은 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 탄소나노튜브 또는 이들의 조합을 포함할 수 있다.The cathode active material layer may further include a conductive material including a carbonaceous material, a metal powder, a metal fiber, or a combination thereof, and the carbonaceous material may include natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, Carbon fibers, carbon nanotubes or a combination thereof may be included.
상기 양극 활물질 층은 촉매를 더 포함할 수 있고, 상기 촉매는 사산화삼코발트(Co3O4), 이산화망간(MnO2), 이산화세륨(CeO2), 백금(Pt), 금(Au), 은(Ag), 삼산화이철(Fe2O3), 사산화삼철(Fe3O4), 일산화니켈(NiO), 산화구리(CuO), 페로브스카이트(perovskite)계 촉매 또는 이들의 조합을 포함할 수 있고, 상기 촉매는 상기 양극 활물질 층 총량에 대하여 1 내지 50 중량%로 포함될 수 있다. The cathode active material layer may further include a catalyst, wherein the catalyst is tricobalt tetraoxide (Co 3 O 4 ), manganese dioxide (MnO 2 ), cerium dioxide (CeO 2 ), platinum (Pt), gold (Au), silver ( Ag), ferric trioxide (Fe 2 O 3 ), triiron tetraoxide (Fe 3 O 4 ), nickel monoxide (NiO), copper oxide (CuO), perovskite-based catalysts, or combinations thereof. And, the catalyst may be included in 1 to 50% by weight based on the total amount of the positive electrode active material layer.
상기 양극 활물질은 상기 양극 활물질 층 총량에 대하여 5 내지 50 중량%로 포함될 수 있다.The cathode active material may be included in an amount of 5 to 50 wt% based on the total amount of the cathode active material layer.
상기 리튬 금속의 합금은 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, Sn 또는 이들의 조합을 포함하는 금속의 합금을 포함할 수 있고, 상기 리튬을 도프 및 탈도프할 수 있는 물질은 Si, Si 함유 합금, Si-C 복합체, SiOx(0<x<2), Sn, Sn 함유 합금, Sn-C 복합체, SnO2 또는 이들의 조합을 포함할 수 있고, 상기 전이 금속 산화물은 바나듐 산화물, 리튬 바나듐 산화물, 티타늄 산화물 또는 이들의 조합을 포함할 수 있다.The alloy of the lithium metal is lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, Sn or combinations thereof It may include an alloy of a metal containing, the material that can be doped and undoped lithium, Si, Si containing alloys, Si-C composites, SiO x (0 <x <2), Sn, Sn containing alloys, Sn-C composite, SnO 2 or a combination thereof, and the transition metal oxide may include vanadium oxide, lithium vanadium oxide, titanium oxide or a combination thereof.
상기 리튬 공기 전지는 스와즐락(swagelok) 타입, 코인 형태 또는 파우치 형태를 포함할 수 있다. The lithium air battery may include a swazelok type, a coin form, or a pouch form.
기타 본 발명의 측면들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Other details of aspects of the invention are included in the following detailed description.
안정성을 개선하여 상용화 및 대형화가 가능한 리튬 공기 전지를 구현할 수 있다.It is possible to implement a lithium air battery that can be commercialized and large in size by improving stability.
도 1은 실시예 1에 따른 리튬 공기 전지의 충방전 특성을 나타내는 그래프이다. 1 is a graph showing charge and discharge characteristics of a lithium air battery according to Example 1;
도 2는 실시예 2에 따른 리튬 공기 전지의 충방전 특성을 나타내는 그래프이다. 2 is a graph showing charge and discharge characteristics of the lithium air battery according to Example 2. FIG.
도 3은 비교예 1에 따른 리튬 공기 전지의 충방전 특성을 나타내는 그래프이다. 3 is a graph showing charge and discharge characteristics of a lithium air battery according to Comparative Example 1. FIG.
도 4는 비교예 2에 따른 리튬 공기 전지의 충방전 특성을 나타내는 그래프이다.4 is a graph showing charge and discharge characteristics of a lithium air battery according to Comparative Example 2. FIG.
이하, 본 발명의 구현 예를 상세히 설명하기로 한다.  다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다. Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 명세서에서 특별한 언급이 없는 한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.Unless stated otherwise in the present specification, when a part such as a layer, a film, an area, or a plate is "on" another part, it is not only when the other part is "right over" but also when there is another part in the middle. Include. On the contrary, when a part is "just above" another part, there is no other part in the middle.
일 구현예에 따른 리튬 공기 전지는 양극, 상기 양극과 대향하는 음극, 상기 양극과 상기 음극 사이에 배치되어 있는 세퍼레이터, 그리고 상기 양극, 상기 음극 및 상기 세퍼레이터를 함침하는 전해액을 포함하는 전지 셀을 포함한다.According to an embodiment, a lithium air battery includes a battery cell including a positive electrode, a negative electrode facing the positive electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte solution impregnating the positive electrode, the negative electrode, and the separator. do.
상기 양극은 집전체 및 상기 집전체 위에 형성되는 양극 활물질 층을 포함한다. 상기 양극 활물질 층은 양극 활물질을 포함한다.The positive electrode includes a current collector and a positive electrode active material layer formed on the current collector. The positive electrode active material layer includes a positive electrode active material.
상기 집전체로는 알루미늄(Al), 니켈(Ni), 철(Fe), 티타늄(Ti), 스테인리스 등을 사용할 수 있으나, 이에 한정되는 것은 아니다. 상기 집전체의 형상으로는 박 형상, 판 형상, 메쉬(또는 그리드) 형상, 폼(또는 스펀지) 형상 등을 들 수 있으며, 이 중 좋게는 집전 효율이 우수한 폼(또는 스펀지) 형상을 들 수 있다.The current collector may be aluminum (Al), nickel (Ni), iron (Fe), titanium (Ti), stainless steel, etc., but is not limited thereto. Examples of the shape of the current collector include a foil shape, a plate shape, a mesh (or grid) shape, a foam (or sponge) shape, and the like, and among these, a foam (or sponge) shape excellent in current collection efficiency may be mentioned. .
상기 양극 활물질로는 과산화리튬(Li2O2), 산화리튬(Li2O), 수산화리튬(LiOH) 또는 이들의 조합을 사용할 수 있고, 이 중 좋게는 과산화리튬(Li2O2)을 사용할 수 있다. 충전 시 Li2O2와 같은 상기 양극 활물질은 분해되어 리튬 이온이 생기며 이는 음극으로 이동하게 되고, 방전시 다시 Li2O2와 같은 상기 양극 활물질이 생기는 반응을 통하여, 리튬 공기 전지의 안정성을 개선할 수 있다.Lithium peroxide (Li 2 O 2 ), lithium oxide (Li 2 O), lithium hydroxide (LiOH) or a combination thereof may be used as the cathode active material, and among them, lithium peroxide (Li 2 O 2 ) may be used. Can be. During charging, the positive electrode active material such as Li 2 O 2 is decomposed to generate lithium ions, which move to the negative electrode, and when the discharge occurs, the positive electrode active material such as Li 2 O 2 is improved, thereby improving stability of the lithium air battery. can do.
상기 양극 활물질은 상기 양극 활물질 층 총량에 대하여 5 내지 50 중량%로 포함될 수 있다. 상기 양극 활물질이 상기 함량 범위 내로 포함될 경우 충방전시 안정한 리튬 공기 전지를 구현할 수 있다. The cathode active material may be included in an amount of 5 to 50 wt% based on the total amount of the cathode active material layer. When the positive electrode active material is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging.
상기 양극 활물질 층은 도전재, 촉매 및 바인더 중 적어도 하나를 추가로 포함할 수 있다.The cathode active material layer may further include at least one of a conductive material, a catalyst, and a binder.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하다. 상기 도전재의 구체적인 예로는 탄소계 물질, 금속 분말, 금속 섬유 또는 이들의 조합을 들 수 있다. 상기 탄소계 물질로는 다공질 구조를 가지고 큰 비표면적을 가지는 것이 좋은데, 이러한 예로는 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 탄소나노튜브 또는 이들의 조합을 들 수 있으며, 상기 금속 분말 및 금속 섬유로는 구리, 니켈, 알루미늄, 은 등의 금속을 사용한 것일 수 있다. 또한 폴리페닐렌 유도체 등의 도전성 재료를 1종 또는 1종 이상을 함께 혼합하여 사용할 수도 있다.The conductive material is used to impart conductivity to the electrode. Any conductive material may be used as long as it is an electron conductive material without causing chemical change in the battery. Specific examples of the conductive material may include a carbon-based material, a metal powder, a metal fiber, or a combination thereof. The carbonaceous material may have a porous structure and a large specific surface area. Examples of the carbon-based material may include natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, carbon nanotube, or a combination thereof. As the metal powder and the metal fiber, a metal such as copper, nickel, aluminum, or silver may be used. Moreover, you may use together 1 type, or 1 or more types of conductive materials, such as a polyphenylene derivative.
상기 도전재는 상기 양극 활물질 층 총량에 대하여 30 내지 50 중량%로 포함될 수 있다. 상기 도전재가 상기 함량 범위 내로 포함될 경우 충방전시 안정한 리튬 공기 전지를 구현할 수 있다.The conductive material may be included in an amount of 30 to 50 wt% based on the total amount of the cathode active material layer. When the conductive material is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging.
상기 촉매는 상기 도전재에 담지되어 상기 양극 활물질의 분해를 도와주는 역할을 하며, 구체적인 예로는 사산화삼코발트(Co3O4), 이산화망간(MnO2), 이산화세륨(CeO2), 백금(Pt), 금(Au), 은(Ag), 삼산화이철(Fe2O3), 사산화삼철(Fe3O4), 일산화니켈(NiO), 산화구리(CuO), 페로브스카이트(perovskite)계 촉매 또는 이들의 조합을 들 수 있다.The catalyst is supported on the conductive material and serves to help the decomposition of the cathode active material, and specific examples thereof include tricobalt tetraoxide (Co 3 O 4 ), manganese dioxide (MnO 2 ), cerium dioxide (CeO 2 ), and platinum (Pt). , Gold (Au), silver (Ag), ferric trioxide (Fe 2 O 3 ), triiron tetraoxide (Fe 3 O 4 ), nickel monoxide (NiO), copper oxide (CuO), perovskite catalyst Or a combination thereof.
상기 촉매는 상기 양극 활물질 층 총량에 대하여 1 내지 50 중량%로 포함될 수 있다. 상기 촉매가 상기 함량 범위 내로 포함될 경우 양극 활물질의 원활한 분해가 이루어짐에 따라 충방전시 안정한 리튬 공기 전지를 구현할 수 있다.The catalyst may be included in an amount of 1 to 50 wt% based on the total amount of the cathode active material layer. When the catalyst is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging as the cathode active material is smoothly decomposed.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 집전체에 잘 부착시키는 역할을 하며, 구체적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 들 수 있으나, 이에 한정되는 것은 아니다.The binder adheres positively to the positive electrode active material particles, and also adheres the positive electrode active material to the current collector, and specific examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, Carboxylated polyvinylchloride, polyvinylfluoride, polymers including ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber , Acrylated butadiene rubber, epoxy resin, nylon, and the like, but is not limited thereto.
상기 바인더는 상기 양극 활물질 층 총량에 대하여 5 내지 30 중량%로 포함될 수 있다. 상기 바인더가 상기 함량 범위 내로 포함될 경우 충방전시 안정한 리튬 공기 전지를 구현할 수 있다.The binder may be included in an amount of 5 to 30 wt% based on the total amount of the cathode active material layer. When the binder is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging.
상기 양극은 리튬 공기 전지 제작시 공기 중에 노출시켜 설계한다. 양극을 공기 중에 노출시킴에 따라 양극 활물질이 분해되어 생긴 산소가 전지 외부로 빠져나갈 수 있으므로, 분해되어 생긴 산소로 인해 전해액이 산화되는 것을 방지할 수 있다. 또한 작은 스파크 등이 일어날 때 산소로 인해 폭발할 수 있는데 이를 방지할 수도 있으며, 산소로 인한 전지의 부피 팽창을 막을 수도 있다. The positive electrode is designed by exposing to air when manufacturing a lithium air battery. As the positive electrode is exposed to air, oxygen generated by the decomposition of the positive electrode active material may escape to the outside of the battery, thereby preventing the electrolyte from being oxidized due to the generated oxygen. In addition, when a small spark occurs, it can be exploded due to oxygen, which can be prevented, and can also prevent the volume expansion of the battery due to oxygen.
상기 음극은 집전체 및 상기 접전체 위에 형성되는 음극 활물질 층을 포함한다. 상기 음극 활물질 층은 음극 활물질을 포함한다.The negative electrode includes a current collector and a negative electrode active material layer formed on the current collector. The negative electrode active material layer includes a negative electrode active material.
상기 집전체는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 또는 이들의 조합을 사용할 수 있으나, 이에 한정되는 것은 아니다.The current collector may be copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam (foam), copper foam, a polymer substrate coated with a conductive metal, or a combination thereof, but is not limited thereto.
상기 음극 활물질은 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 전이 금속 산화물 또는 이들의 조합을 사용할 수 있다. 상기 음극 활물질을 사용하여 일 구현예에 따른 리튬 공기 전지를 제작할 경우 리튬 금속을 사용한 경우 대비 안정성을 획기적으로 증가시킬 수 있다. The negative electrode active material may be an alloy of lithium metal, a material capable of doping and undoping lithium, a transition metal oxide, or a combination thereof. When manufacturing a lithium air battery according to an embodiment using the negative electrode active material it can significantly increase the stability compared to the case of using lithium metal.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, Sn 또는 이들의 조합을 포함하는 금속의 합금이 사용될 수 있다.As the alloy of the lithium metal, lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, Sn, or a combination thereof Alloys of the metals including can be used.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, Si-C 복합체, SiOx(0<x<2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Si은 아님), Sn, Sn-C 복합체, SnO2, Sn-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po 또는 이들의 조합을 들 수 있다.Examples of materials capable of doping and undoping lithium include Si, Si-C composites, SiO x (0 <x <2), and Si-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, and a group 13 to 16 element). , Transition metals, rare earth elements or combinations thereof, not Si), Sn, Sn-C composites, SnO 2 , Sn-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, an element of Group 13-16, a transition metal) , Rare earth elements or combinations thereof, and not Sn), and at least one of these and SiO 2 may be mixed and used. As the element Y, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, or a combination thereof is mentioned.
상기 음극 활물질을 리튬 공기 전지에 사용할 경우 탄소계 물질 대비 높은 이론 용량을 가지고 있으며, 이론 밀도도 탄소계 물질에 비해 높아 우수한 에너지 밀도를 갖는 리튬 공기 전지의 제작이 가능하다. When the negative electrode active material is used in a lithium air battery, it has a higher theoretical capacity than the carbon-based material, and the theoretical density is also higher than that of the carbon-based material, thereby making it possible to manufacture a lithium air battery having an excellent energy density.
상기 음극 활물질 중에서 좋게는 상기 리튬을 도프 및 탈도프할 수 있는 물질이 사용될 수 있고, 더욱 좋게는 Si-C 복합체 또는 Sn-C 복합체가 사용될 수 있다. 상기 음극 활물질을 리튬 공기 전지에 사용할 경우 보다 낮은 전압대를 가지고 비교적 높은 용량과 안정된 수명 특성으로 인하여 큰 에너지 밀도를 가지는 리튬 공기 전지의 제작이 가능하다. Among the negative electrode active materials, a material capable of doping and undoping the lithium may be used, and more preferably, a Si-C composite or a Sn-C composite may be used. When the negative electrode active material is used in a lithium air battery, it is possible to manufacture a lithium air battery having a lower voltage band and having a large energy density due to relatively high capacity and stable life characteristics.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물, 티타늄 산화물 또는 이들의 조합을 들 수 있으나, 이에 한정되는 것은 아니다.The transition metal oxide may include vanadium oxide, lithium vanadium oxide, titanium oxide, or a combination thereof, but is not limited thereto.
상기 음극 활물질은 상기 음극 활물질 층 총량에 대하여 30 내지 95 중량%로 포함될 수 있다. 상기 음극 활물질이 상기 함량 범위 내로 포함될 경우 충방전시 안정한 리튬 공기 전지를 구현할 수 있다. The negative active material may be included in an amount of 30 to 95 wt% based on the total amount of the negative electrode active material layer. When the negative electrode active material is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging.
상기 음극 활물질 층은 도전재 및 바인더 중 적어도 하나를 추가로 포함할 수 있다.The negative electrode active material layer may further include at least one of a conductive material and a binder.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하다. 상기 도전재의 구체적인 예로는 탄소계 물질, 금속 분말 및 금속 섬유, 또는 이들의 조합을 들 수 있다. 상기 탄소계 물질로는 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 또는 이들의 조합을 들 수 있으며, 상기 금속 분말 및 금속 섬유로는 구리, 니켈, 알루미늄, 은 등의 금속을 사용한 것일 수 있다. 또한 폴리페닐렌 유도체 등의 도전성 재료를 1종 또는 1종 이상을 함께 혼합하여 사용할 수도 있다.The conductive material is used to impart conductivity to the electrode. Any conductive material may be used as long as it is an electron conductive material without causing chemical change in the battery. Specific examples of the conductive material include carbon-based materials, metal powders and metal fibers, or a combination thereof. The carbonaceous material may include natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, or a combination thereof, and the metal powder and metal fiber may be metals such as copper, nickel, aluminum, silver, and the like. It may be used. Moreover, you may use together 1 type, or 1 or more types of conductive materials, such as a polyphenylene derivative.
상기 도전재는 상기 음극 활물질 층 총량에 대하여 1 내지 50 중량%로 포함될 수 있다. 상기 도전재가 상기 함량 범위 내로 포함될 경우 충방전시 안정한 리튬 공기 전지를 구현할 수 있다.The conductive material may be included in an amount of 1 to 50 wt% based on the total amount of the anode active material layer. When the conductive material is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 집전체에 잘 부착시키는 역할을 하며, 구체적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 들 수 있으나, 이에 한정되는 것은 아니다.The binder adheres positively to the positive electrode active material particles, and also adheres the positive electrode active material to the current collector, and specific examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, Carboxylated polyvinylchloride, polyvinylfluoride, polymers including ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber , Acrylated butadiene rubber, epoxy resin, nylon, and the like, but is not limited thereto.
상기 바인더는 상기 음극 활물질 층 총량에 대하여 3 내지 30 중량%로 포함될 수 있다. 상기 바인더가 상기 함량 범위 내로 포함될 경우 충방전시 안정한 리튬 공기 전지를 구현할 수 있다.The binder may be included in an amount of 3 to 30 wt% based on the total amount of the anode active material layer. When the binder is included in the content range, it is possible to implement a stable lithium air battery during charging and discharging.
상기 양극 및 상기 음극은 각각의 활물질, 도전재 및 바인더를 용매 중에서 혼합하여 활물질 조성물을 제조하고, 이 조성물을 집전체에 도포하여 제조한다. 상기 양극은 리튬 공기 전지 제작시 공기 중에 노출시켜 설계한다.The positive electrode and the negative electrode are prepared by mixing each active material, conductive material and binder in a solvent to prepare an active material composition, and applying the composition to a current collector. The positive electrode is designed by exposing to air when manufacturing a lithium air battery.
이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피롤리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted. N-methylpyrrolidone may be used as the solvent, but is not limited thereto.
상기 세퍼레이터는 단일막 또는 다층막일 수 있으며, 예컨대 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 조합으로 만들어질 수 있다.The separator may be a single film or a multilayer film, for example, may be made of polyethylene, polypropylene, polyvinylidene fluoride, or a combination thereof.
상기 전해액은 고체 전해액 또는 액체 전해액일 수 있다.The electrolyte may be a solid electrolyte or a liquid electrolyte.
상기 고체 전해액으로는 폴리에틸렌 옥사이드, 폴리프로필렌 옥사이드, 폴리아크릴로니트릴, 폴리비닐리덴 플루오라이드 또는 이들의 조합을 사용할 수 있다.As the solid electrolyte, polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride, or a combination thereof may be used.
상기 액체 전해액으로는 비수성 유기 용매를 사용할 수 있다.As the liquid electrolyte, a non-aqueous organic solvent can be used.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. 상기 비수성 유기 용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 및 비양성자성 용매에서 선택될 수 있다.The non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move. The non-aqueous organic solvent may be selected from carbonate, ester, ether, ketone, alcohol and aprotic solvents.
상기 카보네이트계 용매로는 예컨대 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트(dipropyl carbonate, DPC), 메틸프로필 카보네이트(methylpropyl carbonate, MPC), 에틸프로필 카보네이트(ethylpropyl carbonate, EPC), 메틸에틸 카보네이트(methylethyl carbonate, MEC), 에틸메틸 카보네이트(ethylmethyl carbonate, EMC), 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 부틸렌 카보네이트(butylene carbonate, BC) 등이 사용될 수 있다.Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), and ethylpropyl carbonate ( ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate , BC) and the like can be used.
또한 상기 에스테르계 용매로는 예컨대 메틸아세테이트, 에틸아세테이트, n-프로필아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 예컨대 디부틸에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있다.In addition, the ester solvent may be, for example, methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, decanolide, valerolactone, and merol. Valonolactone, caprolactone, and the like may be used. As the ether solvent, for example, dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, and the like may be used. As the ketone solvent, cyclohexanone may be used. Can be. In addition, ethyl alcohol, isopropyl alcohol, etc. may be used as the alcohol solvent.
또한 상기 비수성 유기 용매는 테트라에틸렌 글리콜 디메틸에테르, 에틸렌 글리콜 디메타크릴레이트, 폴리에틸렌 글리콜, 폴리에틸렌 글리콜 디알킬 에테르, 폴리알킬 글리콜 디알킬 에테르 또는 이들의 조합을 사용할 수도 있다.In addition, the non-aqueous organic solvent may use tetraethylene glycol dimethyl ether, ethylene glycol dimethacrylate, polyethylene glycol, polyethylene glycol dialkyl ether, polyalkyl glycol dialkyl ether, or a combination thereof.
상기 비수성 유기 용매는 단독 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있다.The non-aqueous organic solvents may be used alone or in combination of one or more, and the mixing ratio in the case of mixing one or more may be appropriately adjusted according to the desired battery performance.
상기 전해액은 리튬염을 포함할 수 있다.The electrolyte solution may include a lithium salt.
상기 리튬염은 상기 비수성 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 리튬 공기 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. The lithium salt is a substance that dissolves in the non-aqueous organic solvent, acts as a source of lithium ions in the battery to enable operation of the lithium air battery, and promotes the movement of lithium ions between the positive electrode and the negative electrode. .
상기 리튬염의 구체적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO3C2F5)2, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임), LiCl, LiI, LiB(C2O4)2(리튬 비스옥살레이토 보레이트(lithium bis(oxalato) borate; LiBOB), 또는 이들의 조합을 들 수 있다.Specific examples of the lithium salt include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ), where x and y are natural numbers, LiCl, LiI, LiB (C 2 O 4 ) 2 (lithium bis (oxalato) ) borate; LiBOB), or a combination thereof.
상기 리튬염의 농도는 약 0.1M 내지 약 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해액이 적절한 전도도 및 점도를 가지므로 우수한 전해액 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The concentration of the lithium salt is preferably used within the range of about 0.1M to about 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
상기 리튬 공기 전지는 스와즐락(swagelok) 타입으로 제작될 수 있고, 코인, 파우치 등의 형태로 제작될 수도 있다. The lithium air battery may be manufactured in the form of a swazelok, or may be manufactured in the form of a coin, a pouch, or the like.
이하에서는 본 발명의 구체적인 실시예들을 제시한다.  다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.The following presents specific embodiments of the present invention. However, the examples described below are merely for illustrating or explaining the present invention in detail, and thus the present invention is not limited thereto.
또한, 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략한다.In addition, the description is not described herein, so those skilled in the art that can be sufficiently technically inferred, the description thereof will be omitted.
(리튬 공기 전지 제작)(Lithium air battery production)
실시예 1Example 1
레조시놀(Aldrich사) 28 mmol 및 포름알데히드(37% 수용액, Aldrich사) 120 mmol을 혼합한 용액에, 소듐 카보네이트 및 레조시놀을 45:100의 몰비로 첨가하여 혼합한다. 혼합된 용액을 75℃에서 1시간 혼합한 후 겔 형태로 된 혼합체를 상온에서 24시간 에이징(aging) 시킨다. 에이징시킨 혼합체를 물과 에탄올로 세척하여 소듐 카보네이트를 제거한다. 이로부터 얻어진 구조체를 트리부틸페닐틴(tributylphenyltin)(Aldrich사) 용액에 하루 동안 담군 후, Ar 분위기에서 700℃에서 2시간 동안 열처리 하여 Sn-C 복합체를 제조한다.To a solution of 28 mmol of resorcinol (Aldrich) and 120 mmol of formaldehyde (37% aqueous solution, Aldrich), sodium carbonate and resorcinol are added in a molar ratio of 45: 100 and mixed. The mixed solution is mixed at 75 ° C. for 1 hour, and then the gelled mixture is aged at room temperature for 24 hours. The aged mixture is washed with water and ethanol to remove sodium carbonate. The resulting structure was immersed in a tributylphenyltin (Aldrich) solution for one day, and then heat-treated at 700 ° C. for 2 hours in an Ar atmosphere to prepare a Sn-C composite.
제조된 Sn-C 복합체 분말, 폴리비닐리덴 플루오라이드(PVDF) 및 카본 블랙(super P)을 각각 80:10:10의 중량비로 혼합 하여, N-메틸-2-피롤리돈에 분산시켜 음극 활물질 층 조성물을 제조한다. 상기 음극 활물질 층 조성물을 구리 호일에 캐스팅한 후, 캐스팅 된 전극을 100℃의 오븐에 2시간 건조 후, 12시간 이상 진공 건조시켜 음극을 제조한다.The prepared Sn-C composite powder, polyvinylidene fluoride (PVDF) and carbon black (super P) were mixed at a weight ratio of 80:10:10, respectively, and dispersed in N-methyl-2-pyrrolidone to prepare a negative electrode active material. Prepare the layer composition. After casting the negative electrode active material layer composition on a copper foil, the cast electrode is dried in an oven at 100 ℃ for 2 hours, and vacuum dried for 12 hours or more to prepare a negative electrode.
과산화리튬(Li2O2), 폴리비닐리덴 플루오라이드(PVDF) 및 카본 블랙(super P)을 각각 45:10:45의 중량비로 혼합하여, N-메틸-2-피롤리돈에 분산시켜 양극 활물질 층 조성물을 제조한다. 상기 양극 활물질 층 조성물을 알루미늄 메쉬(mesh)에 캐스팅한 후, 캐스팅된 전극을 100℃의 오븐에 2시간 건조 후, 12시간 이상 진공 건조시켜 양극을 제조한다.Lithium peroxide (Li 2 O 2 ), polyvinylidene fluoride (PVDF) and carbon black (super P) were mixed at a weight ratio of 45:10:45, respectively, dispersed in N-methyl-2-pyrrolidone to give a positive electrode. An active material layer composition is prepared. After casting the cathode active material layer composition on an aluminum mesh, the cast electrode was dried in an oven at 100 ° C. for 2 hours, and vacuum dried for 12 hours or more to prepare a cathode.
상기 제조된 음극 및 양극과 다공성 폴리에틸렌막의 세퍼레이터(셀가르드 엘엘씨사, Celgard 3501)를 사용하여 스와즐락(swagelok) 타입의 리튬 공기 전지를 제작한다. 이때 상기 양극은 산소를 잘 통하기 위하여 구멍을 가지도록 제조된다. 상기 양극 및 음극 사이에 에틸렌카보네이트(EC)와 디메틸카보네이트(DMC)의 혼합 부피비가 3:7인 혼합 용액에 1M 농도의 LiPF6이 용해된 전해액을 주입하여 제작한다. Swagelok type lithium air battery is fabricated using the prepared separator of the cathode and anode and the porous polyethylene membrane (Celgard 3501, Celgard 3501). At this time, the anode is manufactured to have a hole in order to pass oxygen well. An electrolyte solution in which LiPF 6 is dissolved at a concentration of 1 M is injected into a mixed solution having a mixing volume ratio of 3: 7 between ethylene carbonate (EC) and dimethyl carbonate (DMC) between the positive electrode and the negative electrode.
실시예 2Example 2
100nm 크기의 Si 분말과 5㎛ 크기의 천연 흑연 분말을 30:70의 중량비로 혼합하고, 이를 테트라히드로퓨란 용액에 혼합한다. 상기 혼합 용액 100 중량부에 대하여 33 중량부의 피치(pitch)를 혼합한 다음, 12시간 동안 볼밀링한다. 상기 혼합된 용액을 100℃의 진공 오븐에 6시간 동안 건조시킨 후, Ar 분위기에서 1000℃에서 5시간 동안 열처리하여 Si-C 복합체를 제조한다.Si powder of 100 nm size and natural graphite powder of 5 μm size are mixed in a weight ratio of 30:70, which is mixed in a tetrahydrofuran solution. 33 parts by weight of pitch are mixed with respect to 100 parts by weight of the mixed solution, followed by ball milling for 12 hours. The mixed solution was dried in a vacuum oven at 100 ° C. for 6 hours, and then heat-treated at 1000 ° C. for 5 hours in an Ar atmosphere to prepare a Si-C composite.
제조된 Si-C 복합체 분말, 카본 블랙(super P), 카르복시메틸셀룰로즈 및 스티렌-부타디엔 러버를 각각 85:5:3.3:6.7의 중량비로 물에 혼합하여, 음극 활물질 층 조성물을 제조한다. 상기 음극 활물질 층 조성물을 구리 호일에 캐스팅한 후, 캐스팅 된 전극을 100℃의 오븐에 2시간 건조 후, 12시간 이상 진공 건조시켜 음극을 제조한다.The prepared Si-C composite powder, carbon black (super P), carboxymethylcellulose and styrene-butadiene rubber were mixed with water in a weight ratio of 85: 5: 3.3: 6.7, respectively, to prepare a negative electrode active material layer composition. After casting the negative electrode active material layer composition on a copper foil, the cast electrode is dried in an oven at 100 ℃ for 2 hours, and vacuum dried for 12 hours or more to prepare a negative electrode.
과산화리튬(Li2O2), 폴리비닐리덴 플루오라이드(PVDF) 및 카본 블랙(super P)을 각각 45:10:45의 중량비로 혼합하여, N-메틸-2-피롤리돈에 분산시켜 양극 활물질 층 조성물을 제조한다. 상기 양극 활물질 층 조성물을 알루미늄 메쉬(mesh)에 캐스팅한 후, 캐스팅된 전극을 100℃의 오븐에 2시간 건조 후, 12시간 이상 진공 건조시켜 양극을 제조한다.Lithium peroxide (Li 2 O 2), polyvinylidene fluoride (PVDF), and carbon black (super P) were mixed each in a weight ratio of 45:10:45, N- methyl-pyrrolidone and dispersed in the positive An active material layer composition is prepared. After casting the cathode active material layer composition on an aluminum mesh, the cast electrode was dried in an oven at 100 ° C. for 2 hours, and vacuum dried for 12 hours or more to prepare a cathode.
상기 제조된 음극 및 양극과 다공성 폴리에틸렌막의 세퍼레이터(셀가르드 엘엘씨사, Celgard 3501)를 사용하여 스와즐락(swagelok) 타입의 리튬 공기 전지를 제작한다. 이때 상기 양극은 산소를 잘 통하기 위하여 구멍을 가지도록 제조된다. 상기 양극 및 음극 사이에 에틸렌카보네이트(EC)와 디메틸카보네이트(DMC)의 혼합 부피비가 3:7인 혼합 용액에 1M 농도의 LiPF6이 용해된 전해액을 주입하여 제작한다. Swagelok type lithium air battery is fabricated using the prepared separator of the cathode and anode and the porous polyethylene membrane (Celgard 3501, Celgard 3501). At this time, the anode is manufactured to have a hole in order to pass oxygen well. An electrolyte solution in which LiPF 6 is dissolved at a concentration of 1 M is injected into a mixed solution having a mixing volume ratio of 3: 7 between ethylene carbonate (EC) and dimethyl carbonate (DMC) between the positive electrode and the negative electrode.
비교예 1Comparative Example 1
과산화리튬(Li2O2), 폴리비닐리덴 플루오라이드(PVDF) 및 카본 블랙(super P)을 각각 45:10:45의 중량비로 혼합하여, N-메틸-2-피롤리돈에 분산시켜 양극 활물질 층 조성물을 제조하였다. 상기 양극 활물질 층 조성물을 니켈 폼의 집전체 위에 코팅하여 건조 및 압연 후 양극을 제조하였다.Lithium peroxide (Li 2 O 2 ), polyvinylidene fluoride (PVDF) and carbon black (super P) were mixed at a weight ratio of 45:10:45, respectively, dispersed in N-methyl-2-pyrrolidone to give a positive electrode. An active material layer composition was prepared. The cathode active material layer composition was coated on a current collector of nickel foam to prepare a cathode after drying and rolling.
인조 흑연(MCMB), 폴리비닐리덴 플루오라이드(PVDF) 및 카본 블랙(super P)을 각각 92:5:3의 중량비로 혼합 하여, N-메틸-2-피롤리돈에 분산시켜 음극 활물질 층 조성물을 제조하였다. 상기 음극 활물질 층 조성물을 두께 15 ㎛의 구리 호일에 코팅하여 건조 및 압연 후 음극을 제조하였다.Artificial graphite (MCMB), polyvinylidene fluoride (PVDF) and carbon black (super P) were mixed in a weight ratio of 92: 5: 3, respectively, and dispersed in N-methyl-2-pyrrolidone to form a negative electrode active material layer composition Was prepared. The negative electrode active material layer composition was coated on a copper foil having a thickness of 15 μm to prepare a negative electrode after drying and rolling.
상기 제조된 음극 및 양극과 다공성 폴리에틸렌막의 세퍼레이터(셀가르드 엘엘씨사, Celgard 3501)를 사용하여 스와즐락(swagelok) 타입의 리튬 공기 전지를 제작한다. 이때 상기 양극은 산소를 잘 통하기 위하여 구멍을 가지도록 제조된다. 상기 양극 및 음극 사이에 에틸렌카보네이트(EC)와 디메틸카보네이트(DMC)의 혼합 부피비가 3:7인 혼합 용액에 1M 농도의 LiPF6이 용해된 전해액을 주입하여 제작한다.Swagelok type lithium air battery is fabricated using the prepared separator of the cathode and anode and the porous polyethylene membrane (Celgard 3501, Celgard 3501). At this time, the anode is manufactured to have a hole in order to pass oxygen well. The electrolyte is prepared by injecting an electrolyte solution in which LiPF 6 is dissolved at a concentration of 1 M into a mixed solution having a mixing volume ratio of 3: 7 between ethylene carbonate (EC) and dimethyl carbonate (DMC) between the positive electrode and the negative electrode.
비교예 2Comparative Example 2
비교예 1에서 과산화리튬(Li2O2), 폴리비닐리덴 플루오라이드(PVDF) 및 카본 블랙(super P)에 담지된 촉매 MnO2(카본 블랙 100 중량부 대비 5 중량부)를 각각 45:10:45의 중량비로 혼합하여 양극을 제조한 것을 제외하고는, 비교예 1과 동일한 방법으로 리튬 공기 전지를 제작하였다. In Comparative Example 1, the catalyst MnO 2 (5 parts by weight based on 100 parts by weight of carbon black) supported on lithium peroxide (Li 2 O 2 ), polyvinylidene fluoride (PVDF), and carbon black (super P) was respectively 45:10. A lithium air battery was manufactured in the same manner as in Comparative Example 1, except that the positive electrode was prepared by mixing at a weight ratio of: 45.
실험예 1: 리튬 공기 전지의 전기화학성능 평가Experimental Example 1 Evaluation of Electrochemical Performance of Lithium Air Battery
리튬 공기 전지의 전기화학성능을 평가하기 위하여, 위에서 제작된 실시예 1 및 2와 비교예 1 및 2에 따른 리튬 공기 전지의 충방전 특성을 평가하여 그 결과를 도 1 내지 4에 나타내었다.In order to evaluate the electrochemical performance of the lithium air battery, the charge and discharge characteristics of the lithium air battery according to Examples 1 and 2 and Comparative Examples 1 and 2 manufactured above were evaluated and the results are shown in FIGS. 1 to 4.
실시예 1의 리튬 공기 전지를 산소로 채워져 있는 챔버 안에 넣은 후, 1.2 내지 4.5 V에서 10 mA/g의 전류 조건으로 1회 충전 및 방전을 실시하였다. 또한 실시예 2의 리튬 공기 전지를 2.0 내지 4.5 V에서 5 mA/g의 전류 조건으로 1회 충전 및 방전을 실시하였다. 또한 비교예 1 및 2의 리튬 공기 전지를 2.0 내지 4.1 V에서 10 mA/g의 전류 조건으로 1회 충전 및 방전을 실시하였다. The lithium air battery of Example 1 was placed in a chamber filled with oxygen, and then charged and discharged once under a current condition of 10 mA / g at 1.2 to 4.5 V. In addition, the lithium air battery of Example 2 was once charged and discharged at a current condition of 5 mA / g at 2.0 to 4.5V. In addition, the lithium air batteries of Comparative Examples 1 and 2 were once charged and discharged at a current condition of 10 mA / g at 2.0 to 4.1 V.
도 1은 실시예 1에 따른 리튬 공기 전지의 충방전 특성을 나타내는 그래프이고, 도 2는 실시예 2에 따른 리튬 공기 전지의 충방전 특성을 나타내는 그래프이고, 도 3은 비교예 1에 따른 리튬 공기 전지의 충방전 특성을 나타내는 그래프이고, 도 4는 비교예 2에 따른 리튬 공기 전지의 충방전 특성을 나타내는 그래프이다.1 is a graph showing the charge and discharge characteristics of the lithium air battery according to Example 1, Figure 2 is a graph showing the charge and discharge characteristics of the lithium air battery according to Example 2, Figure 3 is lithium air according to Comparative Example 1 4 is a graph showing charge and discharge characteristics of a battery, and FIG. 4 is a graph showing charge and discharge characteristics of a lithium air battery according to Comparative Example 2. FIG.
도 1 내지 4를 참고하면, 일 구현예에 따라 양극 활물질로 과산화리튬(Li2O2)을 사용하고 음극 활물질로 Sn-C 복합체를 사용한 실시예 1의 경우와, 양극 활물질로 과산화리튬(Li2O2)을 사용하고 음극 활물질로 Si-C 복합체를 사용한 실시예 2의 경우, 음극 활물질로 탄소계 화합물을 사용한 비교예 1 및 2의 경우와 비교하여, 충방전 특성이 우수함을 확인할 수 있다. Referring to FIGS. 1 to 4, according to the exemplary embodiment of using lithium peroxide (Li 2 O 2 ) as the positive electrode active material and Sn-C composite as the negative electrode active material, lithium peroxide (Li as a positive electrode active material) In Example 2 using 2 O 2 ) and using the Si-C composite as the negative electrode active material, it can be confirmed that the charge and discharge characteristics are superior to those of Comparative Examples 1 and 2 using the carbon-based compound as the negative electrode active material. .
이로부터 일 구현예에 따른 리튬 공기 전지의 안정성이 우수함을 알 수 있다. From this it can be seen that the stability of the lithium air battery according to the embodiment is excellent.
이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of the invention.

Claims (11)

  1. 집전체, 그리고 상기 집전체 위에 위치하고 양극 활물질을 포함하는 양극 활물질 층을 포함하는 양극;A positive electrode including a current collector and a positive electrode active material layer disposed on the current collector and including a positive electrode active material;
    음극 활물질을 포함하는 음극; 및A negative electrode including a negative electrode active material; And
    전해액을 포함하고, Including an electrolyte solution,
    상기 양극 활물질은 과산화리튬(Li2O2), 산화리튬(Li2O), 수산화리튬(LiOH) 또는 이들의 조합을 포함하고,The positive electrode active material includes lithium peroxide (Li 2 O 2 ), lithium oxide (Li 2 O), lithium hydroxide (LiOH) or a combination thereof,
    상기 음극 활물질은 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 전이 금속 산화물 또는 이들의 조합을 포함하는 The anode active material includes an alloy of lithium metal, a material capable of doping and undoping lithium, a transition metal oxide, or a combination thereof.
    리튬 공기 전지.Lithium air battery.
  2. 제1항에 있어서,The method of claim 1,
    상기 양극 활물질 층은 탄소계 물질, 금속 분말, 금속 섬유 또는 이들의 조합을 포함하는 도전재를 더 포함하는 것인 리튬 공기 전지.The cathode active material layer further comprises a conductive material comprising a carbon-based material, metal powder, metal fiber or a combination thereof.
  3. 제2항에 있어서,The method of claim 2,
    상기 탄소계 물질은 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 탄소나노튜브 또는 이들의 조합을 포함하는 것인 리튬 공기 전지.The carbonaceous material is natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, carbon nanotubes or a combination thereof.
  4. 제1항에 있어서,The method of claim 1,
    상기 양극 활물질 층은 촉매를 더 포함하는 것인 리튬 공기 전지.The cathode active material layer further comprises a catalyst.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 촉매는 사산화삼코발트(Co3O4), 이산화망간(MnO2), 이산화세륨(CeO2), 백금(Pt), 금(Au), 은(Ag), 삼산화이철(Fe2O3), 사산화삼철(Fe3O4), 일산화니켈(NiO), 산화구리(CuO), 페로브스카이트(perovskite)계 촉매 또는 이들의 조합을 포함하는 것인 리튬 공기 전지. The catalyst is tricobalt tetraoxide (Co 3 O 4 ), manganese dioxide (MnO 2 ), cerium dioxide (CeO 2 ), platinum (Pt), gold (Au), silver (Ag), ferric trioxide (Fe 2 O 3 ), trioxide A lithium air battery comprising iron (Fe 3 O 4 ), nickel monoxide (NiO), copper oxide (CuO), perovskite-based catalyst, or a combination thereof.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 촉매는 상기 양극 활물질 층 총량에 대하여 1 내지 50 중량%로 포함되는 것인 리튬 공기 전지. The catalyst is a lithium air battery containing 1 to 50% by weight based on the total amount of the positive electrode active material layer.
  7. 제1항에 있어서,The method of claim 1,
    상기 양극 활물질은 상기 양극 활물질 층 총량에 대하여 5 내지 50 중량%로 포함되는 것인 리튬 공기 전지.The positive electrode active material is a lithium air battery containing 5 to 50% by weight based on the total amount of the positive electrode active material layer.
  8. 제1항에 있어서,The method of claim 1,
    상기 리튬 금속의 합금은 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, Sn 또는 이들의 조합을 포함하는 금속의 합금을 포함하는 것인 리튬 공기 전지. The alloy of the lithium metal is lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, Sn or a combination thereof. A lithium air battery comprising an alloy of a metal to contain.
  9. 제1항에 있어서,The method of claim 1,
    상기 리튬을 도프 및 탈도프할 수 있는 물질은 Si, Si 함유 합금, Si-C 복합체, SiOx(0<x<2), Sn, Sn 함유 합금, Sn-C 복합체, SnO2 또는 이들의 조합을 포함하는 것인 리튬 공기 전지.The materials capable of doping and undoping lithium include Si, Si-containing alloys, Si-C composites, SiO x (0 <x <2), Sn, Sn-containing alloys, Sn-C composites, SnO 2, or combinations thereof. A lithium air battery comprising a.
  10. 제1항에 있어서,The method of claim 1,
    상기 전이 금속 산화물은 바나듐 산화물, 리튬 바나듐 산화물, 티타늄 산화물 또는 이들의 조합을 포함하는 것인 리튬 공기 전지.The transition metal oxide is vanadium oxide, lithium vanadium oxide, titanium oxide or a combination thereof.
  11. 제1항에 있어서,The method of claim 1,
    상기 리튬 공기 전지는 스와즐락(swagelok) 타입, 코인 형태 또는 파우치 형태를 포함하는 것인 리튬 공기 전지. The lithium air battery is a swage (swagelok) type, coin type or pouch form of a lithium air battery.
PCT/KR2011/003067 2010-04-27 2011-04-27 Lithium-air battery WO2011136551A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180031041.1A CN102948006B (en) 2010-04-27 2011-04-27 Lithium-air battery
US13/643,163 US20130089796A1 (en) 2010-04-27 2011-04-27 Lithium air battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100039203 2010-04-27
KR10-2010-0039203 2010-04-27
KR1020110039061A KR101338142B1 (en) 2010-04-27 2011-04-26 Lithium air battery
KR10-2011-0039061 2011-04-26

Publications (2)

Publication Number Publication Date
WO2011136551A2 true WO2011136551A2 (en) 2011-11-03
WO2011136551A3 WO2011136551A3 (en) 2012-03-01

Family

ID=44862039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003067 WO2011136551A2 (en) 2010-04-27 2011-04-27 Lithium-air battery

Country Status (1)

Country Link
WO (1) WO2011136551A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035979A (en) * 2012-12-10 2013-04-10 中南大学 Unsymmetrical lithia battery
KR101544585B1 (en) * 2012-09-27 2015-08-17 한국전기연구원 Cathode of lithium air battery, and method of manufacturing cathode of lithium air battery
KR20160068415A (en) 2014-12-05 2016-06-15 현대자동차주식회사 An anode of lithium-air battery and a method for producing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166685A (en) * 2005-02-07 2005-06-23 Toshiba Corp Air-lithium secondary battery
US20080280190A1 (en) * 2005-10-20 2008-11-13 Robert Brian Dopp Electrochemical catalysts
WO2009135030A1 (en) * 2008-04-30 2009-11-05 Battelle Memorial Institute Metal-air battery
US20090317724A1 (en) * 2008-06-20 2009-12-24 University Of Dayton Lithium-air cells incorporating solid electrolytes having enhanced ionic transport and catalytic activity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166685A (en) * 2005-02-07 2005-06-23 Toshiba Corp Air-lithium secondary battery
US20080280190A1 (en) * 2005-10-20 2008-11-13 Robert Brian Dopp Electrochemical catalysts
WO2009135030A1 (en) * 2008-04-30 2009-11-05 Battelle Memorial Institute Metal-air battery
US20090317724A1 (en) * 2008-06-20 2009-12-24 University Of Dayton Lithium-air cells incorporating solid electrolytes having enhanced ionic transport and catalytic activity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101544585B1 (en) * 2012-09-27 2015-08-17 한국전기연구원 Cathode of lithium air battery, and method of manufacturing cathode of lithium air battery
CN103035979A (en) * 2012-12-10 2013-04-10 中南大学 Unsymmetrical lithia battery
KR20160068415A (en) 2014-12-05 2016-06-15 현대자동차주식회사 An anode of lithium-air battery and a method for producing thereof

Also Published As

Publication number Publication date
WO2011136551A3 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
KR101338142B1 (en) Lithium air battery
KR102005448B1 (en) Lithium battery
KR101264364B1 (en) Cathode active material for lithium secondary battery and lithium secondary battery using the same
KR101451905B1 (en) Cathode Catalyst for Lithium-Air Battery, Method of Manufacturing the Same, and Lithium-Air Battery Comprising the Same
WO2015037950A1 (en) Cathode for lithium-air battery and manufacturing method therefor
KR101666871B1 (en) Positive electrode active material and method of manufacturing the same, and rechargeable lithium battery including the positive electrode active material
JP6908641B2 (en) Electrodes for lithium secondary batteries and lithium secondary batteries containing them
JP6399685B2 (en) Lithium secondary battery and manufacturing method thereof
KR20130039294A (en) Rechargeable lithium battery
WO2019013521A2 (en) Lithium secondary battery
WO2020204625A1 (en) Electrode for lithium secondary battery
WO2020153690A1 (en) Lithium composite negative electrode active material, negative electrode comprising same and methods for manufacturing same
KR20120091628A (en) Lithium ion battery
WO2019059662A2 (en) Metal secondary battery having metal electrode
WO2011136551A2 (en) Lithium-air battery
KR102290853B1 (en) Electrode for rechargeable lithium battery and rechargeable lithium battery including the same
DE112020006581T5 (en) RECHARGEABLE NON-AQUEOUS LITHIUM AIR BATTERY CELL WITH A SOLID ORGANIC CATALYST
KR102231210B1 (en) Positive electrode for lithium air battery, method of preparing the same and lithium air battery including the same
WO2019098564A2 (en) Positive electrode active material for lithium secondary battery and method for preparing same
WO2022080809A1 (en) Positive electrode for lithium secondary battery, and lithium secondary battery including same
KR101553389B1 (en) Positive active material for rechargeable lithium battery, coating material for positive active material, method of manufacturing the same and rechargeable lithium battery including same
KR101299666B1 (en) Electrolyte for lithium air rechargeable battery and lithium air rechargeable battery using the same
WO2019022358A1 (en) Cathode for lithium-sulfur battery, and lithium-sulfur battery comprising same
KR102452938B1 (en) Electrolyte for lithium metal battery and lithium metal battery comprising the same
WO2018038509A1 (en) Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031041.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775256

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13643163

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11775256

Country of ref document: EP

Kind code of ref document: A2