WO2011136207A1 - Base station, mobile station, control signal transmission method, and control signal reception method - Google Patents

Base station, mobile station, control signal transmission method, and control signal reception method Download PDF

Info

Publication number
WO2011136207A1
WO2011136207A1 PCT/JP2011/060140 JP2011060140W WO2011136207A1 WO 2011136207 A1 WO2011136207 A1 WO 2011136207A1 JP 2011060140 W JP2011060140 W JP 2011060140W WO 2011136207 A1 WO2011136207 A1 WO 2011136207A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mobile station
baseband signal
control channel
base station
Prior art date
Application number
PCT/JP2011/060140
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 石井
貞行 安部田
哲士 阿部
尚人 大久保
信彦 三木
大將 梅田
Original Assignee
株式会社 エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 エヌ・ティ・ティ・ドコモ filed Critical 株式会社 エヌ・ティ・ティ・ドコモ
Publication of WO2011136207A1 publication Critical patent/WO2011136207A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0085Timing of allocation when channel conditions change

Definitions

  • the present invention relates to a base station, a mobile station, a control signal transmission method, and a control signal reception method.
  • the Orthogonal Frequency Division Multiplexing (OFDM) system is a technique for transmitting a signal on a plurality of subcarriers.
  • OFDM Orthogonal Frequency Division Multiplexing
  • an additional subcarrier DC subcarrier
  • this subcarrier is not used for signal transmission (see 3GPP TS 36.101 V9.3.0 (2010-03)).
  • the subcarrier (DC subcarrier) added to the center is located in the direct current component after down-conversion to the baseband signal, so the signal on the DC subcarrier is This is because it cannot be decrypted.
  • the component carrier refers to a continuous frequency region of a predetermined unit. For example, a 10 MHz component carrier and a 20 MHz component carrier can be integrated to increase the system bandwidth. There may be a frequency region of another system between the component carriers.
  • the mobile station cannot decode the signal at the position of the DC component after down-conversion to the baseband signal.
  • the mobile station cannot decode the subcarrier, so that the data channel (that is, the data channel) Data signal) or a control channel (that is, a control signal included in the control channel) reception quality deteriorates.
  • this problem becomes significant in a control channel in which the number of symbols of the physical channel is small and deterioration due to the inability to decode the subcarrier cannot be compensated by redundant bits or coded bits. More specifically, the problem becomes significant when the number of subcarriers used for the control channel is small.
  • the present invention aims to improve the reception quality of the control channel even when carrier aggregation is applied to communication.
  • the base station of the present invention A base station that communicates with a mobile station by applying carrier aggregation, A management unit for managing subcarriers located in a DC component of a baseband signal in the mobile station; When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, the predetermined control for the mobile station is transferred to a radio resource different from the radio resource of the subcarrier located in the DC component of the baseband signal.
  • the control signal transmission method of the present invention includes: A control signal transmission method in a base station that communicates with a mobile station by applying carrier aggregation, Managing a subcarrier located in a DC component of a baseband signal at the mobile station; When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, the predetermined control for the mobile station is transferred to a radio resource different from the radio resource of the subcarrier located in the DC component of the baseband signal. Mapping the channel; Transmitting a control signal of a predetermined control channel; It is characterized by having.
  • the mobile station of the present invention A mobile station that communicates with a base station by applying carrier aggregation, When subcarriers located in the DC component of the baseband signal are used for a predetermined control channel, mapping information holding that holds radio resource mapping information used instead of the radio resources of the subcarrier located in the DC component of the baseband signal And A control signal receiving unit that receives a control signal of a predetermined control channel based on the mapping information held in the mapping information holding unit; It is characterized by having.
  • the control signal receiving method of the present invention includes: A control signal reception method in a mobile station that communicates with a base station by applying carrier aggregation, When subcarriers located in the DC component of the baseband signal are used for a predetermined control channel, holding radio resource mapping information used instead of the radio resources of the subcarrier located in the DC component of the baseband signal; Receiving a control signal of a predetermined control channel based on the mapping information held in the mapping information holding unit; It is characterized by having.
  • the base station of the present invention A base station that communicates with a mobile station by applying carrier aggregation, A management unit for managing subcarriers located in a DC component of a baseband signal in the mobile station; When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, the transmission power of the subcarrier located in the DC component of the baseband signal is reduced and transmission of the remaining subcarriers in the predetermined control channel is performed.
  • the control signal transmission method of the present invention includes: A control signal transmission method in a base station that communicates with a mobile station by applying carrier aggregation, Managing a subcarrier located in a DC component of a baseband signal at the mobile station; When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, the transmission power of the subcarrier located in the DC component of the baseband signal is reduced and transmission of the remaining subcarriers in the predetermined control channel is performed. Increasing power, and Transmitting a control signal of a predetermined control channel; It is characterized by having.
  • the base station of the present invention A base station that communicates with a mobile station by applying carrier aggregation, A management unit for managing subcarriers located in a DC component of a baseband signal in the mobile station; When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, a generation unit that generates a control signal for the predetermined control channel as a message or broadcast information addressed to the mobile station; A transmitter for transmitting a message or broadcast information addressed to the mobile station; It is characterized by having.
  • the control signal transmission method of the present invention includes: A control signal transmission method in a base station that communicates with a mobile station by applying carrier aggregation, Managing a subcarrier located in a DC component of a baseband signal at the mobile station; When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, generating a control signal for the predetermined control channel as a message or broadcast information addressed to the mobile station; Transmitting a message or broadcast information addressed to the mobile station; It is characterized by having.
  • the block diagram of the mobile station which concerns on the Example of this invention Flowchart of control signal reception method in mobile station according to an embodiment of the present invention
  • the block diagram of the base station which concerns on the 1st modification of this invention The conceptual diagram which shows the transmission power control in the base station which concerns on the 1st modification of this invention
  • carrier aggregation is applied to communication between a mobile station and a base station.
  • the mobile station cannot decode the signal of the subcarrier located in the DC component after the down conversion to the baseband signal.
  • a subcarrier is used for a predetermined control channel, the reception quality of the control channel at the mobile station deteriorates.
  • control channels such as PCFICH (Physical Control Format Indicator Indicator Channel) and PHICH (Physical Hybrid-ARQ Indicator Channel) are mapped to the entire band, but the number of subcarriers to be mapped is small. That is, since such a control channel is mapped to a predetermined number or less of subcarriers, reception quality is significantly degraded.
  • the base station manages the subcarriers located in the DC component of the baseband signal in the mobile station that communicates by applying carrier aggregation.
  • the base station maps the predetermined control channel to a radio resource different from the radio resource of the managed subcarrier.
  • the base station may decrease the transmission power of the subcarrier and increase the transmission power of the remaining subcarriers. . Further, the base station may transmit a control signal transmitted through a predetermined control channel as broadcast information or an RRC message.
  • FIG. 1 is a diagram showing a position of a direct current component of a baseband signal in a mobile station when carrier aggregation is applied to communication.
  • the carrier aggregation may be constituted by two 20 MHz component carriers as shown in FIG.
  • the component carrier refers to a continuous frequency region of a predetermined unit. Although the frequency region of another system may exist between the component carriers, FIG. 2 shows a case where each component carrier is set continuously in frequency.
  • a mobile station (called an LTE mobile station) using a bandwidth of 20 MHz according to LTE (Long Term Evolution) receives a signal within one 20 MHz component carrier.
  • LTE Long Term Evolution
  • a mobile station using a total bandwidth of 40 MHz by carrier aggregation can receive signals by integrating two 20 MHz component carriers.
  • the position of the direct current component of the baseband signal is between the two component carriers for a mobile station using a bandwidth of 40 MHz.
  • no signal is transmitted between the component carriers, so that the reception quality is not deteriorated due to the DC component of the baseband signal.
  • the carrier aggregation may be configured symmetrically on the frequency axis by one 10 MHz component carrier and two 20 MHz component carriers.
  • the position of the DC component of the baseband signal matches the center subcarrier (DC subcarrier) of the 10 MHz component carrier.
  • the center subcarrier of each component carrier is not used for signal transmission, reception quality deterioration due to the DC component of the baseband signal does not occur.
  • the carrier aggregation may be composed of a 10 MHz component carrier and a 20 MHz component carrier as shown in FIG. Also in this case, the center subcarrier (DC subcarrier) of each component carrier of 10 MHz and 20 MHz is not used for signal transmission.
  • a mobile station using a total bandwidth of 30 MHz can receive a signal by integrating a 10 MHz component carrier and a 20 MHz component carrier.
  • the position of the direct current component of the baseband signal is the subcarrier for signal transmission of the 20 MHz component carrier for a mobile station using a bandwidth of 30 MHz. May overlap.
  • the carrier aggregation may be configured asymmetrically on the frequency axis by one 10 MHz component carrier and two 20 MHz component carriers.
  • the position of the DC component of the baseband signal may overlap with the signal transmission subcarrier of the 20 MHz component carrier.
  • the mobile station when the carrier aggregation is configured asymmetrically on the frequency axis, the mobile station cannot decode the signal on the subcarrier located in the DC component of the baseband signal, and the reception quality deteriorates.
  • the downlink channel includes a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a downlink control channel, and a downlink reference signal (DL RS: Downlink Reference Signal).
  • the downlink control channel includes PDCCH (Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • PDSCH is a channel used for transmitting downlink data addressed to a mobile station.
  • PDSCH is encoded and mapped to the entire band or a part of the band. Due to the coding gain, the influence of reception quality degradation due to the DC component of the baseband signal is small. Even when the coding gain is small, if the HARQ retransmission is performed in a different band, the influence of the deterioration of the reception quality is small.
  • the PDCCH is a channel used for transmitting control information (DCI: Downlink Control Information) necessary for uplink and downlink data channel transmission. For example, resource allocation information, a modulation scheme, etc. are transmitted by PDCCH.
  • the downlink control information includes control information for all mobile stations and control information for individual mobile stations (or for individual mobile station groups in which a plurality of mobile stations are combined).
  • the PDCCH is encoded and mapped to the entire band. Due to the coding gain, the influence of reception quality degradation due to the DC component of the baseband signal is small.
  • PCFICH is a channel used to transmit CFI (Control Format Indicator) indicating the number of OFDM symbols used for a control channel among 14 OFDM symbols constituting one subframe.
  • CFI Control Format Indicator
  • PHICH is a channel used to transmit acknowledgment information (ACK / NACK) (HI: HARQ Indicator) for the uplink data channel.
  • ACK / NACK acknowledgment information
  • HI HARQ Indicator
  • DL RS is a predetermined signal sequence used for channel estimation, CQI measurement, cell search, and the like.
  • the same signal sequence is mapped to subcarriers spread over the entire band. Therefore, even if the DL RS is deteriorated due to the direct current component of the baseband signal, the influence of the deterioration of the reception quality is small by not using the DL RS for channel estimation or the like.
  • Radio resources are allocated to PDCCH, PCFICH, and PHICH in units of resource element groups (REG).
  • the physical resources of the downlink control channel are divided in the time direction and the frequency direction.
  • One subcarrier ⁇ 1 OFDM symbol is called a resource element (RE), and one resource element group is composed of four resource elements.
  • FIG. 2 shows a conceptual diagram of the resource element group.
  • FIG. 2 shows a case where the first 3 OFDM symbols of one subframe are used for the downlink control channel.
  • DL RSs R1, R2 are arranged every 6 subcarriers.
  • R1 is a reference signal for one antenna in the case of two transmitting antennas
  • R2 is a reference signal for the other antenna.
  • RB Resource ⁇ ⁇ ⁇ ⁇ Block
  • eight resource element groups can be secured in one resource block in the first OFDM symbol.
  • Fig. 3 shows the frame structure of the downlink channel.
  • DL RS is omitted in FIG.
  • the downlink control channel can use the top 3 OFDM symbols of 1 subframe at the maximum (4 OFDM symbols in the 1.4 MHz band).
  • CFI is transmitted in PCFICH to indicate the number of OFDM symbols used for the control channel. Since it is not possible to recognize how many OFDM symbols are used for the control channel unless the PCFICH is demodulated, the PCFICH is mapped to the first OFDM symbol.
  • Four resource element groups are used for PCFICH, and the four resource element groups are mapped so as to be substantially equally spaced over the entire band. Specifically, the mapping positions of the four resource element groups are determined by a predetermined calculation formula based on the cell ID and the system bandwidth.
  • PHICH may be mapped to the first OFDM symbol or may be mapped over 3 OFDM symbols.
  • FIG. 3 shows a case where PHICH is mapped to the first OFDM symbol.
  • Three resource element groups are used for PHICH, and the three resource element groups are mapped so as to be substantially equally spaced over the entire band. Specifically, the mapping positions of the three resource element groups are determined by a predetermined calculation formula based on the cell ID and the number of resource element groups excluding PCFICH.
  • PCFICH and PHICH are mapped to the entire band, the number of mapped subcarriers is small. Therefore, the influence of the degradation of the reception quality due to the DC component of the baseband signal is great. Base stations and mobile stations for avoiding such influence will be described below.
  • FIG. 4 shows a block diagram of a base station according to an embodiment of the present invention.
  • the base station 10 includes a management unit 101, a mapping unit 103, a control signal transmission unit 105, and a data signal transmission unit 107.
  • the management unit 101 manages subcarriers located in the DC component of the baseband signal in a mobile station that communicates by applying carrier aggregation.
  • the component carriers constituting the carrier aggregation are asymmetric on the frequency axis, it is managed which subcarrier is located in the DC component of the baseband signal in the mobile station.
  • the position of the DC component of the baseband signal may be calculated in advance before operation and stored in the management unit 101.
  • the mapping unit 103 maps PCFICH and PHICH to resource element groups. For example, PCFICH and PHICH are mapped to predetermined positions as shown in FIG. Next, mapping section 103 determines whether or not a subcarrier located in a DC component of a baseband signal in a mobile station that performs communication using the above-described carrier aggregation is used for PCFICH or PHICH. When the subcarrier located in the DC component of the baseband signal is used for PCFICH or PHICH, the mapping unit 103 secures another radio resource in addition to the above-described PCFICH and PHICH radio resources, and maps the PCFICH or PHICH. To do.
  • the mapping unit 103 performs normal PCFICH and PHICH radio resources when a subcarrier located in a DC component of a baseband signal in a mobile station that communicates by applying the above-described carrier aggregation is used for PCFICH or PHICH.
  • another radio resource is secured, and the PCFICH and PHICH are transmitted using both radio resources.
  • Another radio resource may be reserved according to a predetermined rule determined in advance between the mobile station and the base station.
  • radio resources are allocated to the PCFICH and PHICH in units of resource element groups, and therefore, another radio resource to be secured may be one resource element group.
  • the mapping unit 103 may reserve the same number of resource element groups as the number of resource element groups used by the PCFICH or PHICH instead of securing one resource element group.
  • mapping 103 reserves another radio resource for PCFICH or PHICH
  • a mobile station that communicates by applying carrier aggregation uses another radio resource for the PCFICH or PHICH.
  • the mobile station that decodes PCFICH or PHICH and communicates without applying carrier aggregation uses the radio resource for normal PCFICH or PHICH instead of the other radio resource for PCFICH or PHICH.
  • PHICH may be decoded.
  • FIG. 5 shows an example in which the subcarrier located in the DC component of the baseband signal is used for PCFICH.
  • the mapping unit 103 may map the PCFICH to the resource element group (REG2) adjacent to the resource element group (REG1) including the subcarrier located in the DC component of the baseband signal.
  • the mapping unit 103 may further map PCFICH to the adjacent resource element group.
  • the adjacent resource element group is secured, but not limited to the adjacent resource element group, any resource element group different from the resource element group (REG1) including the subcarrier located in the DC component of the baseband signal is used. May be secured.
  • FIG. 5 shows an example in which the subcarrier located in the DC component of the baseband signal is used for PCFICH, but the same applies to the case where PHICH is mapped to the position of the DC component of the baseband signal.
  • Another radio resource is secured. Note that the resource element group secured in this way is not used for PDCCH transmission.
  • the mapping unit 103 may reserve one resource element instead of the entire resource element group when securing another radio resource. Since the subcarrier located in the DC component of the baseband signal corresponds to one resource element, it is sufficient if one resource element can be secured without securing four resource elements. The remaining three resource elements may be used for transmission of PDCCH. However, since a normal LTE mobile station cannot recognize how to use such a resource element group, the remaining three resource elements are not used for transmission of PDCCH for the LTE mobile station. However, depending on the mobile station, the resource element corresponding to the subcarrier located in the DC component of the baseband signal can be regarded as null and decoded. For such mobile stations, the remaining three resource elements may be used for transmission of PDCCH.
  • the control signal transmission unit 105 transmits a control signal (DCI, CFI, HI) using a control channel (PDCCH, PCFICH, PHICH) mapped to a radio resource.
  • DCI control signal
  • CFI CFI
  • HI control signal
  • PDCCH control channel
  • PCFICH PCFICH
  • PHICH control channel
  • the data signal transmission unit 107 transmits a data signal addressed to the mobile station.
  • the data signals include U-plane signals (user data) such as best-effort IP packets and voice signals, and C-plane signals (control data) such as broadcast information and RRC messages.
  • the mapping unit 103 maps the PCFICH or PHICH to another radio resource
  • the data signal transmission unit 107 may transmit information on the other radio resource as an RRC message. Or the information of another radio
  • a broadcast information transmission unit (not shown) may transmit information on another radio resource.
  • FIG. 6 shows a flowchart of a control signal transmission method in the base station according to the embodiment of the present invention.
  • the management unit 101 identifies the subcarrier located in the DC component of the baseband signal in the mobile station that communicates by applying carrier aggregation (S101).
  • the mapping unit 103 maps the PCFICH to a predetermined position as shown in FIG. 3 (S103).
  • mapping section 103 determines whether or not a subcarrier located in a DC component of a baseband signal in a mobile station that communicates by applying carrier aggregation is used for PCFICH (S105).
  • mapping section 103 maps PCFICH to another radio resource (S107).
  • the mapping unit 103 maps the PCFICH to the other radio resource in addition to the normal radio resource.
  • mapping section 103 does not need to map PCFICH to another radio resource.
  • the control signal transmission unit 105 transmits a control signal (CFI) by PCFICH mapped to the radio resource (S109).
  • CFI control signal
  • the data signal transmission unit 107 transmits information (mapping information) of another radio resource secured by the mapping unit 103 as an RRC message or broadcast information (S111).
  • FIG. 6 illustrates PCFICH as an example in particular, but the control signal transmission method according to the embodiment of the present invention can be similarly applied to the case of PHICH.
  • FIG. 7 shows a block diagram of a mobile station according to an embodiment of the present invention.
  • the mobile station 20 includes a mapping information holding unit 201, a control signal receiving unit 203, and a data signal receiving unit 205.
  • mapping information holding unit 201 replaces the radio resource of the subcarrier located in the DC component of the baseband signal. Holds mapping information of another radio resource to be used. Such mapping information may be determined according to a predetermined rule determined in advance between the mobile station and the base station. Also, the mapping information may be transmitted from the base station as an RRC message or broadcast information.
  • the mobile station may notify the base station of information on subcarriers located in the DC component of the baseband signal when the mobile station performs carrier aggregation.
  • the base station may determine the mapping information based on information on subcarriers located in the DC component of the baseband signal.
  • mapping information holding unit 201 moves to the resource element group (REG2) next to the resource element group (REG1). Mapping information that the PCFICH is mapped may be held.
  • mapping information that PCFICH is mapped to the adjacent resource element group may be held.
  • the control signal receiving unit 203 receives PDCCH, PCFICH, and PHICH control signals (DCI, CFI, HI) based on the mapping information held in the mapping information holding unit 201. For example, the control information receiving unit 203 determines whether a subcarrier located in the DC component of the baseband signal is used for PCFICH or PHICH. When used for PCFICH or PHICH, the control signal receiving unit 203 receives PCFICH and PHICH control signals (CFI, HI) using another radio resource indicated by the mapping information. When not used for PCFICH or PHICH, the control signal receiving unit 203 receives PCFICH and PHICH control signals (CFI, HI) at a predetermined position as shown in FIG.
  • the data signal receiving unit 205 receives a data signal addressed to the mobile station 20.
  • the mapping information is transmitted from the base station as an RRC message or broadcast information
  • the data signal receiving unit 205 receives the mapping information and notifies the mapping information holding unit 201 of the mapping information.
  • a broadcast information reception unit (not shown) may receive the mapping information instead of the data signal reception unit 205.
  • FIG. 8 shows a flowchart of the control signal receiving method in the mobile station according to the embodiment of the present invention.
  • the data signal receiving unit 205 receives mapping information of another radio resource used in place of the subcarrier radio resource located in the DC component of the baseband signal (S201).
  • the received mapping information is held in the mapping information holding unit 201.
  • the control signal receiving unit 203 determines whether the subcarrier located in the DC component of the baseband signal is used for PCFICH (S203). When used for PCFICH, the control signal (CFI) of PCFICH is received using another radio resource indicated by the mapping information (S205). If not used in PCFICH, a PCFICH control signal (CFI) is received at a predetermined position as shown in FIG. 3 (S207).
  • the PCFICH is described as an example in particular, but the control signal receiving method according to the embodiment of the present invention can be similarly applied to the case of PHICH.
  • FIG. 9 shows a block diagram of a base station according to the first modification of the present invention.
  • the base station 15 includes a management unit 151, a mapping unit 153, a transmission power control unit 154, a control signal transmission unit 155, and a data signal transmission unit 157.
  • the management unit 151 manages subcarriers located in the DC component of the baseband signal in a mobile station that communicates by applying carrier aggregation.
  • the component carriers constituting the carrier aggregation are asymmetric on the frequency axis, it is managed which subcarrier is located in the DC component of the baseband signal in the mobile station.
  • the mapping unit 153 maps the PCFICH and PHICH to the resource element group. For example, PCFICH and PHICH are mapped to predetermined positions as shown in FIG.
  • the transmission power control unit 154 determines whether a subcarrier located in the DC component of the baseband signal is used for PCFICH. When used for PCFICH, the transmission power of the subcarrier is decreased and the transmission power of the remaining subcarriers is increased. As described with reference to FIG. 3, four resource element groups (that is, 16 resource elements) are used for PCFICH. The amplitude of PCFICH transmission power is shown in FIG. FIG. 10A shows the amplitude when transmission power control is not performed. When the subcarrier located in the DC component of the baseband signal in the mobile station corresponds to one of the 16 resource elements, the transmission power control unit 154 may decrease the transmission power of the resource element. More specifically, the transmission power may be set to null. Furthermore, as shown in FIG. 10B, the transmission power of the remaining three subcarriers belonging to the same resource element group may be increased. Alternatively, the transmission power of the remaining 15 subcarriers may be increased.
  • the control signal transmission unit 155 transmits a control signal (DCI, CFI, HI) using a control channel (PDCCH, PCFICH, PHICH) mapped to a radio resource.
  • DCI control signal
  • CFI CFI
  • HI control signal
  • PDCCH control channel
  • PCFICH PCFICH
  • PHICH control channel
  • the data signal transmission unit 157 transmits a data signal addressed to the mobile station.
  • FIG. 11 shows a flowchart of a control signal transmission method in the base station according to the first modification of the present invention.
  • the management unit 151 identifies a subcarrier located in a DC component of a baseband signal in a mobile station that communicates by applying carrier aggregation (S151).
  • the mapping unit 153 maps the PCFICH to a predetermined position as shown in FIG. 3 (S153).
  • the transmission power control unit 154 determines whether the subcarrier located in the DC component of the baseband signal is used for PCFICH (S155). When the subcarrier located in the DC component of the baseband signal is used for PCFICH, the transmission power control unit 154 decreases the transmission power of the subcarrier and increases the transmission power of the remaining subcarriers (S157). When the subcarrier located in the DC component of the baseband signal is not used for PCFICH, the transmission power control unit 154 does not need to control the transmission power of PCFICH.
  • the control signal transmission unit 105 transmits a control signal (CFI) by PCFICH (S159).
  • the mobile station communicating with the base station 15 shown in FIG. 9 communicates by applying carrier aggregation, the mobile station ignores the subcarrier located in the DC component of the baseband signal, and controls the control signal ( CFI).
  • the PCFICH transmission power control has been described as an example, but the concept of the first modified example can be similarly applied to PHICH.
  • the management unit 101 of the base station 10 manages subcarriers located in the DC component of the baseband signal in the mobile station that communicates by applying carrier aggregation.
  • the component carriers constituting the carrier aggregation are asymmetric on the frequency axis, it is managed which subcarrier is located in the DC component of the baseband signal in the mobile station.
  • the position of the DC component of the baseband signal may be calculated in advance before operation and stored in the management unit 101.
  • the CFI transmitted by PCFICH is generated as an RRC message addressed to the mobile station and transmitted from the data signal transmission unit 107.
  • the CFI transmitted by PCFICH may be generated as broadcast information and transmitted as broadcast information from a broadcast information transmission unit (not shown).
  • the mapping unit 103 maps PCFICH and PHICH to resource element groups. For example, PCFICH and PHICH are mapped to predetermined positions as shown in FIG.
  • the control signal transmission unit 105 transmits a control signal (DCI, CFI, HI) using a control channel (PDCCH, PCFICH, PHICH) mapped to a radio resource.
  • DCI control signal
  • CFI CFI
  • HI control signal
  • PDCCH control channel
  • PCFICH PCFICH
  • PHICH control channel
  • the data signal receiving unit 205 of the mobile station 20 receives the CFI transmitted as the RRC message.
  • a broadcast information reception unit (not shown) of mobile station 20 receives CFI transmitted as broadcast information.
  • control signal receiving unit 203 can receive the control signal regardless of whether or not the subcarrier located in the DC component of the baseband signal is used for PCFICH.
  • the management unit 101 of the base station 10 manages subcarriers located in the DC component of the baseband signal in the mobile station that communicates by applying carrier aggregation.
  • the component carriers constituting the carrier aggregation are asymmetric on the frequency axis, it is managed which subcarrier is located in the DC component of the baseband signal in the mobile station.
  • the position of the DC component of the baseband signal may be calculated in advance before operation and stored in the management unit 101.
  • the mapping unit 103 maps PCFICH and PHICH to resource element groups. For example, PCFICH and PHICH are mapped to predetermined positions as shown in FIG.
  • the PHICH radio resource corresponding to the PUSCH communicates by applying carrier aggregation
  • the radio resources of PUSCH may be allocated so as not to include subcarriers located in the DC component of the baseband signal in the mobile station.
  • the control signal transmission unit 105 of the base station 10 transmits an uplink scheduling grant for the uplink shared channel (PUSCH)
  • the PHICH radio resource corresponding to the PUSCH communicates by applying carrier aggregation.
  • information regarding the cyclic shift in the uplink scheduling grant may be set so as not to include a subcarrier located in the DC component of the baseband signal in the mobile station.
  • the position of the radio resource of PHICH is changed by the information regarding the cyclic shift.
  • the subcarrier located in the DC component of the baseband signal in the mobile station that communicates by applying carrier aggregation is not included in the radio resources of PHICH, the characteristics of the DC component of the baseband signal are Deterioration can be avoided.
  • the remaining three resource elements can be effectively used for transmission of PDCCH or the like.
  • the mobile station ignores the subcarrier located in the DC component of the baseband signal and decodes the control signal with the remaining subcarriers. At this time, since the transmission power of the remaining subcarriers has increased, there is a high possibility that the control signal can be decoded.
  • the second modification is effective when it is not necessary to dynamically change the CFI.
  • the base station and the mobile station according to the embodiments of the present invention are described using functional block diagrams, but the present invention may be realized by hardware, software, or a combination thereof. Further, two or more embodiments and modifications may be used in combination as necessary.

Abstract

The disclosed base station, which applies carrier aggregation and communicates with a mobile station, has: a management unit that manages a subcarrier positioned at the direct-current component of a baseband signal at the aforementioned mobile station; a mapping unit that, when the subcarrier positioned at the direct-current component of the baseband signal is used in a predetermined control channel, maps the predetermined control channel for the aforementioned mobile station to a wireless resource that differs from the wireless resource of the subcarrier positioned at the direct-current component of the baseband signal; and a control signal transmission unit that transmits a control signal of the predetermined control channel.

Description

基地局、移動局、制御信号送信方法及び制御信号受信方法Base station, mobile station, control signal transmission method, and control signal reception method
 本発明は、基地局、移動局、制御信号送信方法及び制御信号受信方法に関する。 The present invention relates to a base station, a mobile station, a control signal transmission method, and a control signal reception method.
 直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)方式は、信号を複数のサブキャリアに乗せて伝送する技術である。一般的に、OFDM方式では、キャリアの中心に追加のサブキャリア(DCサブキャリア)が設定され、このサブキャリアは、信号送信に用いられない(3GPP TS 36.101 V9.3.0 (2010-03)参照)。 The Orthogonal Frequency Division Multiplexing (OFDM) system is a technique for transmitting a signal on a plurality of subcarriers. In general, in the OFDM method, an additional subcarrier (DC subcarrier) is set at the center of the carrier, and this subcarrier is not used for signal transmission (see 3GPP TS 36.101 V9.3.0 (2010-03)). .
 この理由は、移動局等の受信機において、中心に追加されたサブキャリア(DCサブキャリア)は、ベースバンド信号へのダウンコンバージョン後の直流成分に位置するため、そのDCサブキャリア上の信号は復号できないためである。 This is because, in a receiver such as a mobile station, the subcarrier (DC subcarrier) added to the center is located in the direct current component after down-conversion to the baseband signal, so the signal on the DC subcarrier is This is because it cannot be decrypted.
 次世代の無線アクセスでは、複数のコンポーネントキャリアと呼ばれる周波数領域を一体化して広帯域化するキャリアアグリゲーションの適用が検討されている。コンポーネントキャリアとは、所定の単位の連続する周波数領域のことを言う。例えば、10MHzのコンポーネントキャリアと20MHzのコンポーネントキャリアとを一体化して、システム帯域の広帯域化を図ることができる。コンポーネントキャリア間には、他システムの周波数領域が存在してもよい。 In next-generation wireless access, application of carrier aggregation that integrates a plurality of frequency bands called component carriers to increase the bandwidth is being studied. The component carrier refers to a continuous frequency region of a predetermined unit. For example, a 10 MHz component carrier and a 20 MHz component carrier can be integrated to increase the system bandwidth. There may be a frequency region of another system between the component carriers.
 キャリアアグリゲーションが通信に適用される場合においても、移動局は、ベースバンド信号へのダウンコンバージョン後の直流成分の位置では信号を復号できない。例えば、ベースバンド信号へのダウンコンバージョン後の直流成分に位置するサブキャリアがデータチャネルまたは制御チャネルに用いられる場合、移動局は、前記サブキャリアを復号できないため、そのデータチャネル(すなわち、そのデータチャネルに含まれるデータ信号)、または、制御チャネル(すなわち、その制御チャネルに含まれる制御信号)の受信品質が劣化するという問題が生じる。特に、その物理チャネルのシンボル数が少なく、前記サブキャリアを復号できないことによる劣化を、冗長ビットや符号化ビットにより補償できない可能性が高い制御チャネルにおいて、本問題が顕著になる。より具体的には、制御チャネルに用いられるサブキャリア数が少ない場合には、問題が顕著になる。 Even when carrier aggregation is applied to communication, the mobile station cannot decode the signal at the position of the DC component after down-conversion to the baseband signal. For example, when a subcarrier located in a direct current component after down-conversion to a baseband signal is used for a data channel or a control channel, the mobile station cannot decode the subcarrier, so that the data channel (that is, the data channel) Data signal) or a control channel (that is, a control signal included in the control channel) reception quality deteriorates. In particular, this problem becomes significant in a control channel in which the number of symbols of the physical channel is small and deterioration due to the inability to decode the subcarrier cannot be compensated by redundant bits or coded bits. More specifically, the problem becomes significant when the number of subcarriers used for the control channel is small.
 本発明は、キャリアアグリゲーションが通信に適用される場合にも、制御チャネルの受信品質を向上させることを目的とする。 The present invention aims to improve the reception quality of the control channel even when carrier aggregation is applied to communication.
 本発明の基地局は、
 キャリアアグリゲーションを適用して移動局と通信する基地局であって、
 前記移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理する管理部と、
 ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、ベースバンド信号の直流成分に位置するサブキャリアの無線リソースとは異なる無線リソースに、前記移動局用の所定の制御チャネルをマッピングするマッピング部と、
 所定の制御チャネルの制御信号を送信する制御信号送信部と、
 を有することを特徴とする。
The base station of the present invention
A base station that communicates with a mobile station by applying carrier aggregation,
A management unit for managing subcarriers located in a DC component of a baseband signal in the mobile station;
When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, the predetermined control for the mobile station is transferred to a radio resource different from the radio resource of the subcarrier located in the DC component of the baseband signal. A mapping unit for mapping channels;
A control signal transmitter for transmitting a control signal of a predetermined control channel;
It is characterized by having.
 本発明の制御信号送信方法は、
キャリアアグリゲーションを適用して移動局と通信する基地局における制御信号送信方法であって、
 前記移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理するステップと、
 ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、ベースバンド信号の直流成分に位置するサブキャリアの無線リソースとは異なる無線リソースに、前記移動局用の所定の制御チャネルをマッピングするステップと、
 所定の制御チャネルの制御信号を送信するステップと、
 を有することを特徴とする。
The control signal transmission method of the present invention includes:
A control signal transmission method in a base station that communicates with a mobile station by applying carrier aggregation,
Managing a subcarrier located in a DC component of a baseband signal at the mobile station;
When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, the predetermined control for the mobile station is transferred to a radio resource different from the radio resource of the subcarrier located in the DC component of the baseband signal. Mapping the channel;
Transmitting a control signal of a predetermined control channel;
It is characterized by having.
 本発明の移動局は、
 キャリアアグリゲーションを適用して基地局と通信する移動局であって、
 ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、ベースバンド信号の直流成分に位置するサブキャリアの無線リソースの代わりに用いる無線リソースのマッピング情報を保持するマッピング情報保持部と、
 前記マッピング情報保持部に保持されたマッピング情報に基づいて、所定の制御チャネルの制御信号を受信する制御信号受信部と、
 を有することを特徴とする。
The mobile station of the present invention
A mobile station that communicates with a base station by applying carrier aggregation,
When subcarriers located in the DC component of the baseband signal are used for a predetermined control channel, mapping information holding that holds radio resource mapping information used instead of the radio resources of the subcarrier located in the DC component of the baseband signal And
A control signal receiving unit that receives a control signal of a predetermined control channel based on the mapping information held in the mapping information holding unit;
It is characterized by having.
 本発明の制御信号受信方法は、
 キャリアアグリゲーションを適用して基地局と通信する移動局における制御信号受信方法であって、
 ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、ベースバンド信号の直流成分に位置するサブキャリアの無線リソースの代わりに用いる無線リソースのマッピング情報を保持するステップと、
 前記マッピング情報保持部に保持されたマッピング情報に基づいて、所定の制御チャネルの制御信号を受信するステップと、
 を有することを特徴とする。
The control signal receiving method of the present invention includes:
A control signal reception method in a mobile station that communicates with a base station by applying carrier aggregation,
When subcarriers located in the DC component of the baseband signal are used for a predetermined control channel, holding radio resource mapping information used instead of the radio resources of the subcarrier located in the DC component of the baseband signal;
Receiving a control signal of a predetermined control channel based on the mapping information held in the mapping information holding unit;
It is characterized by having.
 本発明の基地局は、
キャリアアグリゲーションを適用して移動局と通信する基地局であって、
 前記移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理する管理部と、
 ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、ベースバンド信号の直流成分に位置するサブキャリアの送信電力を減少させ、所定の制御チャネルの残りのサブキャリアの送信電力を増加させる送信電力制御部と、
 所定の制御チャネルの制御信号を送信する制御信号送信部と、
 を有することを特徴とする。
The base station of the present invention
A base station that communicates with a mobile station by applying carrier aggregation,
A management unit for managing subcarriers located in a DC component of a baseband signal in the mobile station;
When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, the transmission power of the subcarrier located in the DC component of the baseband signal is reduced and transmission of the remaining subcarriers in the predetermined control channel is performed. A transmission power control unit for increasing power;
A control signal transmitter for transmitting a control signal of a predetermined control channel;
It is characterized by having.
 本発明の制御信号送信方法は、
キャリアアグリゲーションを適用して移動局と通信する基地局における制御信号送信方法であって、
 前記移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理するステップと、
 ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、ベースバンド信号の直流成分に位置するサブキャリアの送信電力を減少させ、所定の制御チャネルの残りのサブキャリアの送信電力を増加させるステップと、
 所定の制御チャネルの制御信号を送信するステップと、
 を有することを特徴とする。
The control signal transmission method of the present invention includes:
A control signal transmission method in a base station that communicates with a mobile station by applying carrier aggregation,
Managing a subcarrier located in a DC component of a baseband signal at the mobile station;
When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, the transmission power of the subcarrier located in the DC component of the baseband signal is reduced and transmission of the remaining subcarriers in the predetermined control channel is performed. Increasing power, and
Transmitting a control signal of a predetermined control channel;
It is characterized by having.
 本発明の基地局は、
キャリアアグリゲーションを適用して移動局と通信する基地局であって、
 前記移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理する管理部と、
 ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、所定の制御チャネルの制御信号を前記移動局宛のメッセージ又は報知情報として生成する生成部と、
 前記移動局宛のメッセージ又は報知情報を送信する送信部と、
 を有することを特徴とする。
The base station of the present invention
A base station that communicates with a mobile station by applying carrier aggregation,
A management unit for managing subcarriers located in a DC component of a baseband signal in the mobile station;
When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, a generation unit that generates a control signal for the predetermined control channel as a message or broadcast information addressed to the mobile station;
A transmitter for transmitting a message or broadcast information addressed to the mobile station;
It is characterized by having.
 本発明の制御信号送信方法は、
 キャリアアグリゲーションを適用して移動局と通信する基地局における制御信号送信方法であって、
 前記移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理するステップと、
 ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、所定の制御チャネルの制御信号を前記移動局宛のメッセージ又は報知情報として生成するステップと、
 前記移動局宛のメッセージ又は報知情報を送信するステップと、
 を有することを特徴とする。
The control signal transmission method of the present invention includes:
A control signal transmission method in a base station that communicates with a mobile station by applying carrier aggregation,
Managing a subcarrier located in a DC component of a baseband signal at the mobile station;
When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, generating a control signal for the predetermined control channel as a message or broadcast information addressed to the mobile station;
Transmitting a message or broadcast information addressed to the mobile station;
It is characterized by having.
 本発明の実施例によれば、キャリアアグリゲーションが通信に適用される場合にも、制御チャネルの受信品質を向上させることが可能になる。 According to the embodiment of the present invention, it is possible to improve the reception quality of the control channel even when carrier aggregation is applied to communication.
キャリアアグリゲーションが通信に適用される場合の移動局でのベースバンド信号の直流成分の位置を示す図The figure which shows the position of the direct current | flow component of a baseband signal in a mobile station in case a carrier aggregation is applied to communication リソースエレメントグループの概念図Conceptual diagram of resource element group 下りリンクチャネルのフレーム構造を示す図The figure which shows the frame structure of a downlink channel 本発明の実施例に係る基地局のブロック図The block diagram of the base station which concerns on the Example of this invention ベースバンド信号の直流成分に位置するサブキャリアがPCFICHに用いられている例An example in which a subcarrier located in the DC component of a baseband signal is used in PCFICH 本発明の実施例に係る基地局における制御信号送信方法のフローチャート7 is a flowchart of a control signal transmission method in a base station according to an embodiment of the present invention. 本発明の実施例に係る移動局のブロック図The block diagram of the mobile station which concerns on the Example of this invention 本発明の実施例に係る移動局における制御信号受信方法のフローチャートFlowchart of control signal reception method in mobile station according to an embodiment of the present invention 本発明の第1変形例に係る基地局のブロック図The block diagram of the base station which concerns on the 1st modification of this invention 本発明の第1変形例に係る基地局での送信電力制御を示す概念図The conceptual diagram which shows the transmission power control in the base station which concerns on the 1st modification of this invention 本発明の第1変形例に係る基地局における制御信号送信方法のフローチャートThe flowchart of the control signal transmission method in the base station which concerns on the 1st modification of this invention.
 本発明の実施例では、キャリアアグリゲーションが移動局と基地局との間の通信に適用される。移動局は、ベースバンド信号へのダウンコンバージョン後の直流成分に位置するサブキャリアの信号を復号できない。このようなサブキャリアが所定の制御チャネルに用いられる場合、移動局での制御チャネルの受信品質が劣化する。例えば、PCFICH(Physical Control Format Indicator Channel)やPHICH(Physical Hybrid-ARQ Indicator Channel)のような制御チャネルは、帯域全体にマッピングされるものの、マッピングされるサブキャリア数は少ない。すなわち、このような制御チャネルは、所定数以下のサブキャリアにマッピングされるため、受信品質の劣化が顕著になる。このような受信品質の劣化を回避するため、基地局は、キャリアアグリゲーションを適用して通信する移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理する。そして、基地局は、そのサブキャリアが所定の制御チャネルに用いられる場合、管理しているサブキャリアの無線リソースとは異なる無線リソースに、所定の制御チャネルをマッピングする。 In the embodiment of the present invention, carrier aggregation is applied to communication between a mobile station and a base station. The mobile station cannot decode the signal of the subcarrier located in the DC component after the down conversion to the baseband signal. When such a subcarrier is used for a predetermined control channel, the reception quality of the control channel at the mobile station deteriorates. For example, control channels such as PCFICH (Physical Control Format Indicator Indicator Channel) and PHICH (Physical Hybrid-ARQ Indicator Channel) are mapped to the entire band, but the number of subcarriers to be mapped is small. That is, since such a control channel is mapped to a predetermined number or less of subcarriers, reception quality is significantly degraded. In order to avoid such degradation of reception quality, the base station manages the subcarriers located in the DC component of the baseband signal in the mobile station that communicates by applying carrier aggregation. When the subcarrier is used for a predetermined control channel, the base station maps the predetermined control channel to a radio resource different from the radio resource of the managed subcarrier.
 或いは、基地局は、ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、そのサブキャリアの送信電力を減少させ、残りのサブキャリアの送信電力を増加させてもよい。また、基地局は、所定の制御チャネルで送信する制御信号を報知情報又はRRCメッセージとして送信してもよい。 Alternatively, when a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, the base station may decrease the transmission power of the subcarrier and increase the transmission power of the remaining subcarriers. . Further, the base station may transmit a control signal transmitted through a predetermined control channel as broadcast information or an RRC message.
 以下、本発明の実施例について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、キャリアアグリゲーションが通信に適用される場合の移動局でのベースバンド信号の直流成分の位置を示す図である。キャリアアグリゲーションは、図1(A)に示すように、2つの20MHzのコンポーネントキャリアにより構成されてもよい。コンポーネントキャリアとは、所定の単位の連続する周波数領域のことを言う。コンポーネントキャリア間には、他システムの周波数領域が存在してもよいが、同図においては、各コンポーネントキャリアが周波数的に連続して設定される場合を示す。LTE(Long Term Evolution)に従って20MHzの帯域幅を用いる移動局(LTE移動局と呼ぶ)は、1つの20MHzのコンポーネントキャリア内で信号を受信する。このようなLTE移動局のため、20MHzの各コンポーネントキャリアの中心サブキャリア(DCサブキャリア)は信号送信に用いられない。 FIG. 1 is a diagram showing a position of a direct current component of a baseband signal in a mobile station when carrier aggregation is applied to communication. The carrier aggregation may be constituted by two 20 MHz component carriers as shown in FIG. The component carrier refers to a continuous frequency region of a predetermined unit. Although the frequency region of another system may exist between the component carriers, FIG. 2 shows a case where each component carrier is set continuously in frequency. A mobile station (called an LTE mobile station) using a bandwidth of 20 MHz according to LTE (Long Term Evolution) receives a signal within one 20 MHz component carrier. For such an LTE mobile station, the center subcarrier (DC subcarrier) of each component carrier of 20 MHz is not used for signal transmission.
 一方、キャリアアグリゲーションにより合計40MHzの帯域幅を用いる移動局は、2つの20MHzのコンポーネントキャリアを一体化して信号を受信できる。この場合、2つのコンポーネントキャリアは周波数軸上で対称的になっているため、40MHzの帯域幅を用いる移動局にとって、ベースバンド信号の直流成分の位置は、2つのコンポーネントキャリアの間になる。通常では、コンポーネントキャリア間には特に信号は送信されないため、ベースバンド信号の直流成分に起因する受信品質の劣化は生じない。 On the other hand, a mobile station using a total bandwidth of 40 MHz by carrier aggregation can receive signals by integrating two 20 MHz component carriers. In this case, since the two component carriers are symmetrical on the frequency axis, the position of the direct current component of the baseband signal is between the two component carriers for a mobile station using a bandwidth of 40 MHz. Normally, no signal is transmitted between the component carriers, so that the reception quality is not deteriorated due to the DC component of the baseband signal.
 また、キャリアアグリゲーションは、図1(B)に示すように、1つの10MHzのコンポーネントキャリアと、2つの20MHzのコンポーネントキャリアとにより、周波数軸上で対称的に構成されてもよい。この場合、50MHzの帯域幅を用いる移動局にとって、ベースバンド信号の直流成分の位置は、10MHzのコンポーネントキャリアの中心サブキャリア(DCサブキャリア)と一致する。上記の通り、各コンポーネントキャリアの中心サブキャリアは信号送信に用いられないため、ベースバンド信号の直流成分に起因する受信品質の劣化は生じない。 Further, as shown in FIG. 1B, the carrier aggregation may be configured symmetrically on the frequency axis by one 10 MHz component carrier and two 20 MHz component carriers. In this case, for a mobile station using a bandwidth of 50 MHz, the position of the DC component of the baseband signal matches the center subcarrier (DC subcarrier) of the 10 MHz component carrier. As described above, since the center subcarrier of each component carrier is not used for signal transmission, reception quality deterioration due to the DC component of the baseband signal does not occur.
 しかし、キャリアアグリゲーションは、図1(C)に示すように、10MHzのコンポーネントキャリアと、20MHzのコンポーネントキャリアとにより構成されてもよい。この場合にも、10MHz及び20MHzの各コンポーネントキャリアの中心サブキャリア(DCサブキャリア)は信号送信に用いられない。 However, the carrier aggregation may be composed of a 10 MHz component carrier and a 20 MHz component carrier as shown in FIG. Also in this case, the center subcarrier (DC subcarrier) of each component carrier of 10 MHz and 20 MHz is not used for signal transmission.
 一方、合計30MHzの帯域幅を用いる移動局は、10MHzのコンポーネントキャリアと20MHzのコンポーネントキャリアとを一体化して、信号を受信できる。この場合、2つのコンポーネントキャリアは周波数軸上で非対称的になっているため、30MHzの帯域幅を用いる移動局にとって、ベースバンド信号の直流成分の位置は、20MHzのコンポーネントキャリアの信号送信用サブキャリアに重なる可能性がある。 On the other hand, a mobile station using a total bandwidth of 30 MHz can receive a signal by integrating a 10 MHz component carrier and a 20 MHz component carrier. In this case, since the two component carriers are asymmetric on the frequency axis, the position of the direct current component of the baseband signal is the subcarrier for signal transmission of the 20 MHz component carrier for a mobile station using a bandwidth of 30 MHz. May overlap.
 また、キャリアアグリゲーションは、図1(D)に示すように、1つの10MHzのコンポーネントキャリアと、2つの20MHzのコンポーネントキャリアとにより、周波数軸上で非対称的に構成されてもよい。この場合にも同様に、50MHzの帯域幅を用いる移動局にとって、ベースバンド信号の直流成分の位置は、20MHzのコンポーネントキャリアの信号送信用サブキャリアに重なる可能性がある。 Further, as shown in FIG. 1D, the carrier aggregation may be configured asymmetrically on the frequency axis by one 10 MHz component carrier and two 20 MHz component carriers. Similarly, in this case, for a mobile station using a bandwidth of 50 MHz, the position of the DC component of the baseband signal may overlap with the signal transmission subcarrier of the 20 MHz component carrier.
 このように、キャリアアグリゲーションが周波数軸上で非対称的に構成される場合、移動局は、ベースバンド信号の直流成分に位置するサブキャリアでは信号を復号できず、受信品質が劣化する。 Thus, when the carrier aggregation is configured asymmetrically on the frequency axis, the mobile station cannot decode the signal on the subcarrier located in the DC component of the baseband signal, and the reception quality deteriorates.
 次に、ベースバンド信号の直流成分が下りリンクチャネルに与える影響について説明する。 Next, the influence of the DC component of the baseband signal on the downlink channel will be described.
 下りリンクチャネルには、下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)と、下りリンク制御チャネルと、下りリンクのリファレンス信号(DL RS:Downlink Reference Signal)が含まれる。下りリンク制御チャネルには、PDCCH(Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)等が含まれる。 The downlink channel includes a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a downlink control channel, and a downlink reference signal (DL RS: Downlink Reference Signal). The downlink control channel includes PDCCH (Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
 PDSCHは、移動局宛の下りリンクデータを送信するために用いられるチャネルである。一般的に、PDSCHは符号化され、帯域全体、あるいは、帯域の一部にマッピングされる。符号化利得により、ベースバンド信号の直流成分による受信品質の劣化の影響は小さい。また、符号化利得が小さい場合でも、HARQの再送が異なる帯域で行われる場合には、前記受信品質の劣化の影響は小さくなる。 PDSCH is a channel used for transmitting downlink data addressed to a mobile station. In general, PDSCH is encoded and mapped to the entire band or a part of the band. Due to the coding gain, the influence of reception quality degradation due to the DC component of the baseband signal is small. Even when the coding gain is small, if the HARQ retransmission is performed in a different band, the influence of the deterioration of the reception quality is small.
 PDCCHは、上りリンク及び下りリンクのデータチャネル送信に必要な制御情報(DCI:Downlink Control Information)を送信するために用いられるチャネルである。例えば、リソース割り当て情報、変調方式等がPDCCHで送信される。下りリンク制御情報には、全移動局を対象とする制御情報と、移動局個別(又は複数の移動局をまとめた移動局グループ個別)の制御情報とが含まれる。一般的に、PDCCHは符号化され、帯域全体にマッピングされる。符号化利得により、ベースバンド信号の直流成分による受信品質の劣化の影響は小さい。 The PDCCH is a channel used for transmitting control information (DCI: Downlink Control Information) necessary for uplink and downlink data channel transmission. For example, resource allocation information, a modulation scheme, etc. are transmitted by PDCCH. The downlink control information includes control information for all mobile stations and control information for individual mobile stations (or for individual mobile station groups in which a plurality of mobile stations are combined). In general, the PDCCH is encoded and mapped to the entire band. Due to the coding gain, the influence of reception quality degradation due to the DC component of the baseband signal is small.
 PCFICHは、1サブフレームを構成する14OFDMシンボルのうち、制御チャネルに使用するOFDMシンボル数を示すCFI(Control Format Indicator)を送信するために用いられるチャネルである。PCFICHは、帯域全体にマッピングされるものの、マッピングされるサブキャリア数は少ない。従って、ベースバンド信号の直流成分による受信品質の劣化の影響が大きい。 PCFICH is a channel used to transmit CFI (Control Format Indicator) indicating the number of OFDM symbols used for a control channel among 14 OFDM symbols constituting one subframe. Although PCFICH is mapped to the entire band, the number of mapped subcarriers is small. Therefore, the influence of the degradation of the reception quality due to the DC component of the baseband signal is great.
 PHICHは、上りリンクデータチャネルに対する送達確認情報(ACK/NACK)(HI:HARQ Indicator)を送信するために用いられるチャネルである。PHICHは、帯域全体にマッピングされるものの、マッピングされるサブキャリア数は少ない。従って、ベースバンド信号の直流成分による受信品質の劣化の影響が大きい。 PHICH is a channel used to transmit acknowledgment information (ACK / NACK) (HI: HARQ Indicator) for the uplink data channel. Although PHICH is mapped to the entire band, the number of mapped subcarriers is small. Therefore, the influence of the degradation of the reception quality due to the DC component of the baseband signal is great.
 DL RSは、チャネル推定、CQI測定、セルサーチ等に用いられる所定の信号系列である。DL RSは、同じ信号系列が帯域全体に広がったサブキャリアにマッピングされる。従って、ベースバンド信号の直流成分によりDL RSが劣化したとしても、そのDL RSをチャネル推定等に使用しないことで、受信品質の劣化の影響は小さい。 DL RS is a predetermined signal sequence used for channel estimation, CQI measurement, cell search, and the like. In DL RS, the same signal sequence is mapped to subcarriers spread over the entire band. Therefore, even if the DL RS is deteriorated due to the direct current component of the baseband signal, the influence of the deterioration of the reception quality is small by not using the DL RS for channel estimation or the like.
 次に、ベースバンド信号の直流成分による受信品質の劣化の影響が大きいPCFICH及びPHICHのフレーム構造について、更に詳細に説明する。 Next, the frame structure of PCFICH and PHICH that are greatly affected by the degradation of the reception quality due to the DC component of the baseband signal will be described in more detail.
 PDCCH、PCFICH及びPHICHには、リソースエレメントグループ(REG:Resource Element Group)を単位として無線リソースが割り当てられる。下りリンク制御チャネルの物理リソースは、時間方向及び周波数方向に分割される。1サブキャリア×1OFDMシンボルをリソースエレメント(RE:Resource Element)と呼び、1つのリソースエレメントグループは、4個のリソースエレメントで構成される。 Radio resources are allocated to PDCCH, PCFICH, and PHICH in units of resource element groups (REG). The physical resources of the downlink control channel are divided in the time direction and the frequency direction. One subcarrier × 1 OFDM symbol is called a resource element (RE), and one resource element group is composed of four resource elements.
 図2に、リソースエレメントグループの概念図を示す。図2は、1サブフレームの先頭の3OFDMシンボルが下りリンク制御チャネルに用いられる場合を示している。先頭の1OFDMシンボルには、DL RS(R1、R2)が6サブキャリア毎に配置される。R1は、2送信アンテナの場合の一方のアンテナのリファレンス信号であり、R2は、他方のアンテナのリファレンス信号である。送信アンテナ数によって、1リソースブロック(RB:Resource Block)におけるリソースエレメントグループ数は異なるが、単純化のため、送信アンテナ数が1つの場合には、R2の無線リソースはパンクチャされる。従って、図2の場合、先頭の1OFDMシンボルには、1リソースブロックに8個のリソースエレメントグループを確保できる。 Figure 2 shows a conceptual diagram of the resource element group. FIG. 2 shows a case where the first 3 OFDM symbols of one subframe are used for the downlink control channel. In the first OFDM symbol, DL RSs (R1, R2) are arranged every 6 subcarriers. R1 is a reference signal for one antenna in the case of two transmitting antennas, and R2 is a reference signal for the other antenna. Although the number of resource element groups in one resource block (RB: Resource に お け る Block) differs depending on the number of transmission antennas, for simplicity, when the number of transmission antennas is one, the radio resource of R2 is punctured. Accordingly, in the case of FIG. 2, eight resource element groups can be secured in one resource block in the first OFDM symbol.
 図3に、下りリンクチャネルのフレーム構造を示す。説明の便宜上、図3ではDL RSが省略されている。下りリンク制御チャネルは、最大で1サブフレームの先頭3OFDMシンボル(1.4MHz帯域では4OFDMシンボル)を使用できる。制御チャネルに使用するOFDMシンボル数を示すために、CFIがPCFICHで送信される。PCFICHを復調しない限り、何個のOFDMシンボルが制御チャネルに使用されるか認識できないため、PCFICHは、先頭のOFDMシンボルにマッピングされる。PCFICHには4個のリソースエレメントグループが用いられ、4個のリソースエレメントグループは、帯域全体にほぼ等間隔になるようにマッピングされる。具体的には、4個のリソースエレメントグループのマッピング位置は、セルIDとシステム帯域幅とに基づいて、所定の計算式によって決定される。 Fig. 3 shows the frame structure of the downlink channel. For convenience of explanation, DL RS is omitted in FIG. The downlink control channel can use the top 3 OFDM symbols of 1 subframe at the maximum (4 OFDM symbols in the 1.4 MHz band). CFI is transmitted in PCFICH to indicate the number of OFDM symbols used for the control channel. Since it is not possible to recognize how many OFDM symbols are used for the control channel unless the PCFICH is demodulated, the PCFICH is mapped to the first OFDM symbol. Four resource element groups are used for PCFICH, and the four resource element groups are mapped so as to be substantially equally spaced over the entire band. Specifically, the mapping positions of the four resource element groups are determined by a predetermined calculation formula based on the cell ID and the system bandwidth.
 PHICHは、先頭のOFDMシンボルにマッピングされてもよく、3OFDMシンボルに渡ってマッピングされてもよい。図3は、PHICHが先頭のOFDMシンボルにマッピングされている場合を示している。PHICHには3個のリソースエレメントグループが用いられ、3個のリソースエレメントグループは、帯域全体にほぼ等間隔になるようにマッピングされる。具体的には、3個のリソースエレメントグループのマッピング位置は、セルIDと、PCFICHを除いたリソースエレメントグループ数とに基づいて、所定の計算式によって決定される。 PHICH may be mapped to the first OFDM symbol or may be mapped over 3 OFDM symbols. FIG. 3 shows a case where PHICH is mapped to the first OFDM symbol. Three resource element groups are used for PHICH, and the three resource element groups are mapped so as to be substantially equally spaced over the entire band. Specifically, the mapping positions of the three resource element groups are determined by a predetermined calculation formula based on the cell ID and the number of resource element groups excluding PCFICH.
 このように、PCFICH及びPHICHは、帯域全体にマッピングされるものの、マッピングされるサブキャリア数は少ない。従って、ベースバンド信号の直流成分による受信品質の劣化の影響が大きい。このような影響を回避するための基地局及び移動局について、以下に説明する。 Thus, although PCFICH and PHICH are mapped to the entire band, the number of mapped subcarriers is small. Therefore, the influence of the degradation of the reception quality due to the DC component of the baseband signal is great. Base stations and mobile stations for avoiding such influence will be described below.
 <本発明の実施例に係る基地局及び移動局の構成及び動作>
 図4に、本発明の実施例に係る基地局のブロック図を示す。基地局10は、管理部101と、マッピング部103と、制御信号送信部105と、データ信号送信部107とを有する。
<Configuration and operation of base station and mobile station according to embodiments of the present invention>
FIG. 4 shows a block diagram of a base station according to an embodiment of the present invention. The base station 10 includes a management unit 101, a mapping unit 103, a control signal transmission unit 105, and a data signal transmission unit 107.
 管理部101は、キャリアアグリゲーションを適用して通信する移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理する。特に、キャリアアグリゲーションを構成するコンポーネントキャリアが周波数軸上で非対称的になっている場合、どのサブキャリアが移動局でのベースバンド信号の直流成分に位置するかを管理する。ベースバンド信号の直流成分の位置は、運用前に予め算出され、管理部101に格納されてもよい。 The management unit 101 manages subcarriers located in the DC component of the baseband signal in a mobile station that communicates by applying carrier aggregation. In particular, when the component carriers constituting the carrier aggregation are asymmetric on the frequency axis, it is managed which subcarrier is located in the DC component of the baseband signal in the mobile station. The position of the DC component of the baseband signal may be calculated in advance before operation and stored in the management unit 101.
 マッピング部103は、PCFICH及びPHICHをリソースエレメントグループにマッピングする。例えば、PCFICH及びPHICHは、図3に示すような所定の位置にマッピングされる。次に、マッピング部103は、上述したキャリアアグリゲーションを適用して通信する移動局でのベースバンド信号の直流成分に位置するサブキャリアがPCFICH又はPHICHに用いられるかを判断する。ベースバンド信号の直流成分に位置するサブキャリアがPCFICH又はPHICHに用いられる場合、マッピング部103は、上述のPCFICH及びPHICHの無線リソースに加えて、別の無線リソースを確保し、PCFICH又はPHICHをマッピングする。すなわち、マッピング部103は、上述したキャリアアグリゲーションを適用して通信する移動局でのベースバンド信号の直流成分に位置するサブキャリアがPCFICH又はPHICHに用いられる場合に、通常のPCFICH及びPHICHの無線リソースに加えて、別の無線リソースを確保し、両方の無線リソースを用いて、PCFICH及びPHICHを送信する。別の無線リソースは、移動局と基地局との間で事前に決められた所定の規則に従って確保されてもよい。上記のように、一般的にはPCFICH及びPHICHには、リソースエレメントグループを単位として無線リソースが割り当てられるため、確保される別の無線リソースは、1つのリソースエレメントグループでもよい。 The mapping unit 103 maps PCFICH and PHICH to resource element groups. For example, PCFICH and PHICH are mapped to predetermined positions as shown in FIG. Next, mapping section 103 determines whether or not a subcarrier located in a DC component of a baseband signal in a mobile station that performs communication using the above-described carrier aggregation is used for PCFICH or PHICH. When the subcarrier located in the DC component of the baseband signal is used for PCFICH or PHICH, the mapping unit 103 secures another radio resource in addition to the above-described PCFICH and PHICH radio resources, and maps the PCFICH or PHICH. To do. That is, the mapping unit 103 performs normal PCFICH and PHICH radio resources when a subcarrier located in a DC component of a baseband signal in a mobile station that communicates by applying the above-described carrier aggregation is used for PCFICH or PHICH. In addition to the above, another radio resource is secured, and the PCFICH and PHICH are transmitted using both radio resources. Another radio resource may be reserved according to a predetermined rule determined in advance between the mobile station and the base station. As described above, generally, radio resources are allocated to the PCFICH and PHICH in units of resource element groups, and therefore, another radio resource to be secured may be one resource element group.
 あるいは、マッピング部103は、1つのリソースエレメントグループを確保する代わりに、PCFICH又はPHICHが用いるリソースエレメントグループの数と同じ数のリソースエレメントグループを確保してもよい。 Alternatively, the mapping unit 103 may reserve the same number of resource element groups as the number of resource element groups used by the PCFICH or PHICH instead of securing one resource element group.
 上述したように、マッピング103が、PCFICH又はPHICHのための別の無線リソースを確保する場合、キャリアアグリゲーションを適用して通信する移動局は、前記PCFICH又はPHICHのための別の無線リソースを使用してPCFICH又はPHICHを復号し、キャリアアグリゲーションを適用せずに通信する移動局は、前記PCFICH又はPHICHのための別の無線リソースではなく、通常のPCFICH又はPHICHのための無線リソースを使用してPCFICH又はPHICHを復号してもよい。 As described above, when the mapping 103 reserves another radio resource for PCFICH or PHICH, a mobile station that communicates by applying carrier aggregation uses another radio resource for the PCFICH or PHICH. The mobile station that decodes PCFICH or PHICH and communicates without applying carrier aggregation uses the radio resource for normal PCFICH or PHICH instead of the other radio resource for PCFICH or PHICH. Alternatively, PHICH may be decoded.
 図5には、ベースバンド信号の直流成分に位置するサブキャリアがPCFICHに用いられている例を示している。このような場合、例えば、マッピング部103は、ベースバンド信号の直流成分に位置するサブキャリアが含まれるリソースエレメントグループ(REG1)の隣のリソースエレメントグループ(REG2)にPCFICHをマッピングしてもよい。隣のリソースエレメントグループ(REG2)がPHICHに用いられている場合、マッピング部103は、更に隣のリソースエレメントグループにPCFICHをマッピングしてもよい。ここでは、隣のリソースエレメントグループが確保されるが、隣のリソースエレメントグループに限らず、ベースバンド信号の直流成分に位置するサブキャリアが含まれるリソースエレメントグループ(REG1)とは異なる如何なるリソースエレメントグループが確保されてもよい。図5には、ベースバンド信号の直流成分に位置するサブキャリアがPCFICHに用いられている例を示しているが、ベースバンド信号の直流成分の位置にPHICHがマッピングされている場合も同様にして、別の無線リソースが確保される。なお、このように確保されたリソースエレメントグループは、PDCCHの送信のためには使用されない。 FIG. 5 shows an example in which the subcarrier located in the DC component of the baseband signal is used for PCFICH. In such a case, for example, the mapping unit 103 may map the PCFICH to the resource element group (REG2) adjacent to the resource element group (REG1) including the subcarrier located in the DC component of the baseband signal. When the adjacent resource element group (REG2) is used for PHICH, the mapping unit 103 may further map PCFICH to the adjacent resource element group. Here, the adjacent resource element group is secured, but not limited to the adjacent resource element group, any resource element group different from the resource element group (REG1) including the subcarrier located in the DC component of the baseband signal is used. May be secured. FIG. 5 shows an example in which the subcarrier located in the DC component of the baseband signal is used for PCFICH, but the same applies to the case where PHICH is mapped to the position of the DC component of the baseband signal. Another radio resource is secured. Note that the resource element group secured in this way is not used for PDCCH transmission.
 マッピング部103は、別の無線リソースを確保する場合、リソースエレメントグループ全体ではなく、そのうちの1つのリソースエレメントを確保してもよい。ベースバンド信号の直流成分に位置するサブキャリアは、1つのリソースエレメントに対応するため、4個のリソースエレメントを確保しなくても、1つのリソースエレメントが確保できればよい。残りの3個のリソースエレメントは、PDCCHの送信のために使用されてもよい。ただし、通常のLTE移動局は、このようなリソースエレメントグループの使用方法を認識できないため、残りの3個のリソースエレメントは、LTE移動局用のPDCCHの送信のためには使用されない。しかし、移動局によっては、ベースバンド信号の直流成分に位置するサブキャリアに対応するリソースエレメントをヌルとみなして復号できる。このような移動局に対しては、残りの3個のリソースエレメントを、PDCCHの送信のために使用してもよい。 The mapping unit 103 may reserve one resource element instead of the entire resource element group when securing another radio resource. Since the subcarrier located in the DC component of the baseband signal corresponds to one resource element, it is sufficient if one resource element can be secured without securing four resource elements. The remaining three resource elements may be used for transmission of PDCCH. However, since a normal LTE mobile station cannot recognize how to use such a resource element group, the remaining three resource elements are not used for transmission of PDCCH for the LTE mobile station. However, depending on the mobile station, the resource element corresponding to the subcarrier located in the DC component of the baseband signal can be regarded as null and decoded. For such mobile stations, the remaining three resource elements may be used for transmission of PDCCH.
 制御信号送信部105は、無線リソースにマッピングされた制御チャネル(PDCCH、PCFICH、PHICH)で制御信号(DCI、CFI、HI)を送信する。 The control signal transmission unit 105 transmits a control signal (DCI, CFI, HI) using a control channel (PDCCH, PCFICH, PHICH) mapped to a radio resource.
 データ信号送信部107は、移動局宛のデータ信号を送信する。データ信号には、ベストエフォート型のIPパケットや音声信号等のU-planeの信号(ユーザデータ)と報知情報やRRCメッセージ等のC-planeの信号(制御データ)が含まれる。マッピング部103でPCFICH又はPHICHが別の無線リソースにマッピングされた場合、データ信号送信部107は、別の無線リソースの情報をRRCメッセージとして送信してもよい。或いは、別の無線リソースの情報は、報知情報として送信されてもよい。この場合、データ信号送信部107の代わりに、報知情報送信部(図示せず)が別の無線リソースの情報を送信してもよい。 The data signal transmission unit 107 transmits a data signal addressed to the mobile station. The data signals include U-plane signals (user data) such as best-effort IP packets and voice signals, and C-plane signals (control data) such as broadcast information and RRC messages. When the mapping unit 103 maps the PCFICH or PHICH to another radio resource, the data signal transmission unit 107 may transmit information on the other radio resource as an RRC message. Or the information of another radio | wireless resource may be transmitted as alerting | reporting information. In this case, instead of the data signal transmission unit 107, a broadcast information transmission unit (not shown) may transmit information on another radio resource.
 図6に、本発明の実施例に係る基地局における制御信号送信方法のフローチャートを示す。 FIG. 6 shows a flowchart of a control signal transmission method in the base station according to the embodiment of the present invention.
 管理部101は、キャリアアグリゲーションを適用して通信する移動局でのベースバンド信号の直流成分に位置するサブキャリアを特定する(S101)。 The management unit 101 identifies the subcarrier located in the DC component of the baseband signal in the mobile station that communicates by applying carrier aggregation (S101).
 マッピング部103は、図3に示すような所定の位置にPCFICHをマッピングする(S103)。次に、マッピング部103は、キャリアアグリゲーションを適用して通信する移動局でのベースバンド信号の直流成分に位置するサブキャリアがPCFICHに用いられるかを判断する(S105)。ベースバンド信号の直流成分に位置するサブキャリアがPCFICHに用いられる場合、マッピング部103は、別の無線リソースにPCFICHをマッピングする(S107)。この場合、マッピング部103は、通常の無線リソースに加えて、前記別の無線リソースにPCFICHをマッピングする。ベースバンド信号の直流成分に位置するサブキャリアがPCFICHに用いられない場合、マッピング部103は、別の無線リソースにPCFICHをマッピングする必要はない。 The mapping unit 103 maps the PCFICH to a predetermined position as shown in FIG. 3 (S103). Next, mapping section 103 determines whether or not a subcarrier located in a DC component of a baseband signal in a mobile station that communicates by applying carrier aggregation is used for PCFICH (S105). When the subcarrier located in the DC component of the baseband signal is used for PCFICH, mapping section 103 maps PCFICH to another radio resource (S107). In this case, the mapping unit 103 maps the PCFICH to the other radio resource in addition to the normal radio resource. When the subcarrier located in the DC component of the baseband signal is not used for PCFICH, mapping section 103 does not need to map PCFICH to another radio resource.
 制御信号送信部105は、無線リソースにマッピングされたPCFICHで制御信号(CFI)を送信する(S109)。 The control signal transmission unit 105 transmits a control signal (CFI) by PCFICH mapped to the radio resource (S109).
 データ信号送信部107は、マッピング部103で確保された別の無線リソースの情報(マッピング情報)をRRCメッセージ又は報知情報として送信する(S111)。 The data signal transmission unit 107 transmits information (mapping information) of another radio resource secured by the mapping unit 103 as an RRC message or broadcast information (S111).
 図6では、特にPCFICHを例に挙げて説明したが、本発明の実施例に係る制御信号送信方法は、PHICHの場合にも同様に適用可能である。 FIG. 6 illustrates PCFICH as an example in particular, but the control signal transmission method according to the embodiment of the present invention can be similarly applied to the case of PHICH.
 図7に、本発明の実施例に係る移動局のブロック図を示す。移動局20は、マッピング情報保持部201と、制御信号受信部203と、データ信号受信部205とを有する。 FIG. 7 shows a block diagram of a mobile station according to an embodiment of the present invention. The mobile station 20 includes a mapping information holding unit 201, a control signal receiving unit 203, and a data signal receiving unit 205.
 マッピング情報保持部201は、キャリアアグリゲーションを行う場合にベースバンド信号の直流成分に位置するサブキャリアがPCFICH又はPHICHに用いられる場合、ベースバンド信号の直流成分に位置するサブキャリアの無線リソースの代わりに用いる別の無線リソースのマッピング情報を保持する。このようなマッピング情報は、移動局と基地局との間で事前に決められた所定の規則に従って決定されてもよい。また、マッピング情報は、RRCメッセージ又は報知情報として基地局から送信されてもよい。 When subcarriers located in the DC component of the baseband signal are used for PCFICH or PHICH when performing carrier aggregation, the mapping information holding unit 201 replaces the radio resource of the subcarrier located in the DC component of the baseband signal. Holds mapping information of another radio resource to be used. Such mapping information may be determined according to a predetermined rule determined in advance between the mobile station and the base station. Also, the mapping information may be transmitted from the base station as an RRC message or broadcast information.
 あるいは、移動局は、自局がキャリアアグリゲーションを行う場合のベースバンド信号の直流成分に位置するサブキャリアの情報を基地局に通知してもよい。この場合、基地局は、前記ベースバンド信号の直流成分に位置するサブキャリアの情報に基づいて、前記マッピング情報を決定してもよい。 Alternatively, the mobile station may notify the base station of information on subcarriers located in the DC component of the baseband signal when the mobile station performs carrier aggregation. In this case, the base station may determine the mapping information based on information on subcarriers located in the DC component of the baseband signal.
 例えば、図5に示すように、ベースバンド信号の直流成分の位置にPCFICHがマッピングされている場合、マッピング情報保持部201は、そのリソースエレメントグループ(REG1)の隣のリソースエレメントグループ(REG2)にPCFICHがマッピングされるというマッピング情報を保持してもよい。隣のリソースエレメントグループ(REG2)がPHICHに用いられている場合、更に隣のリソースエレメントグループにPCFICHがマッピングされるというマッピング情報を保持してもよい。 For example, as shown in FIG. 5, when the PCFICH is mapped to the position of the DC component of the baseband signal, the mapping information holding unit 201 moves to the resource element group (REG2) next to the resource element group (REG1). Mapping information that the PCFICH is mapped may be held. When the adjacent resource element group (REG2) is used for PHICH, mapping information that PCFICH is mapped to the adjacent resource element group may be held.
 制御信号受信部203は、マッピング情報保持部201に保持されたマッピング情報に基づいて、PDCCH、PCFICH及びPHICHの制御信号(DCI、CFI、HI)を受信する。例えば、制御情報受信部203は、ベースバンド信号の直流成分に位置するサブキャリアがPCFICH又はPHICHに用いられているかを判断する。PCFICH又はPHICHに用いられている場合、制御信号受信部203は、マッピング情報により示された別の無線リソースを使用して、PCFICH及びPHICHの制御信号(CFI、HI)を受信する。PCFICH又はPHICHに用いられてない場合、制御信号受信部203は、図3に示すような所定の位置において、PCFICH及びPHICHの制御信号(CFI、HI)を受信する。 The control signal receiving unit 203 receives PDCCH, PCFICH, and PHICH control signals (DCI, CFI, HI) based on the mapping information held in the mapping information holding unit 201. For example, the control information receiving unit 203 determines whether a subcarrier located in the DC component of the baseband signal is used for PCFICH or PHICH. When used for PCFICH or PHICH, the control signal receiving unit 203 receives PCFICH and PHICH control signals (CFI, HI) using another radio resource indicated by the mapping information. When not used for PCFICH or PHICH, the control signal receiving unit 203 receives PCFICH and PHICH control signals (CFI, HI) at a predetermined position as shown in FIG.
 データ信号受信部205は、移動局20宛のデータ信号を受信する。マッピング情報がRRCメッセージまたは報知情報として基地局から送信される場合、データ信号受信部205は、マッピング情報を受信し、マッピング情報をマッピング情報保持部201に通知する。なお、マッピング情報が報知情報として基地局から送信される場合、データ信号受信部205の代わりに、報知情報受信部(図示せず)がマッピング情報を受信してもよい。 The data signal receiving unit 205 receives a data signal addressed to the mobile station 20. When the mapping information is transmitted from the base station as an RRC message or broadcast information, the data signal receiving unit 205 receives the mapping information and notifies the mapping information holding unit 201 of the mapping information. When the mapping information is transmitted from the base station as broadcast information, a broadcast information reception unit (not shown) may receive the mapping information instead of the data signal reception unit 205.
 図8に、本発明の実施例に係る移動局における制御信号受信方法のフローチャートを示す。 FIG. 8 shows a flowchart of the control signal receiving method in the mobile station according to the embodiment of the present invention.
 データ信号受信部205は、ベースバンド信号の直流成分に位置するサブキャリアの無線リソースの代わりに用いる別の無線リソースのマッピング情報を受信する(S201)。受信したマッピング情報は、マッピング情報保持部201に保持される。 The data signal receiving unit 205 receives mapping information of another radio resource used in place of the subcarrier radio resource located in the DC component of the baseband signal (S201). The received mapping information is held in the mapping information holding unit 201.
 制御信号受信部203は、ベースバンド信号の直流成分に位置するサブキャリアがPCFICHに用いられているかを判断する(S203)。PCFICHに用いられている場合、マッピング情報により示された別の無線リソースを使用して、PCFICHの制御信号(CFI)を受信する(S205)。PCFICHに用いられてない場合、図3に示すような所定の位置において、PCFICHの制御信号(CFI)を受信する(S207)。 The control signal receiving unit 203 determines whether the subcarrier located in the DC component of the baseband signal is used for PCFICH (S203). When used for PCFICH, the control signal (CFI) of PCFICH is received using another radio resource indicated by the mapping information (S205). If not used in PCFICH, a PCFICH control signal (CFI) is received at a predetermined position as shown in FIG. 3 (S207).
 図8では、特にPCFICHを例に挙げて説明したが、本発明の実施例に係る制御信号受信方法は、PHICHの場合にも同様に適用可能である。 In FIG. 8, the PCFICH is described as an example in particular, but the control signal receiving method according to the embodiment of the present invention can be similarly applied to the case of PHICH.
 <本発明の第1変形例に係る基地局及び移動局の構成及び動作>
 図9に、本発明の第1変形例に係る基地局のブロック図を示す。基地局15は、管理部151と、マッピング部153と、送信電力制御部154と、制御信号送信部155と、データ信号送信部157とを有する。
<Configuration and operation of base station and mobile station according to first modification of the present invention>
FIG. 9 shows a block diagram of a base station according to the first modification of the present invention. The base station 15 includes a management unit 151, a mapping unit 153, a transmission power control unit 154, a control signal transmission unit 155, and a data signal transmission unit 157.
 管理部151は、キャリアアグリゲーションを適用して通信する移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理する。特に、キャリアアグリゲーションを構成するコンポーネントキャリアが周波数軸上で非対称的になっている場合、どのサブキャリアが移動局でのベースバンド信号の直流成分に位置するかを管理する。 The management unit 151 manages subcarriers located in the DC component of the baseband signal in a mobile station that communicates by applying carrier aggregation. In particular, when the component carriers constituting the carrier aggregation are asymmetric on the frequency axis, it is managed which subcarrier is located in the DC component of the baseband signal in the mobile station.
 マッピング部153は、PCFICH及びPHICHをリソースエレメントグループにマッピングする。例えば、PCFICH及びPHICHは、図3に示すような所定の位置にマッピングされる。 The mapping unit 153 maps the PCFICH and PHICH to the resource element group. For example, PCFICH and PHICH are mapped to predetermined positions as shown in FIG.
 送信電力制御部154は、ベースバンド信号の直流成分に位置するサブキャリアがPCFICHに用いられるかを判断する。PCFICHに用いられる場合、そのサブキャリアの送信電力を減少させ、残りのサブキャリアの送信電力を増加させる。図3を参照して説明したように、PCFICHには、4個のリソースエレメントグループ(すなわち、16個のリソースエレメント)が用いられる。PCFICHの送信電力の振幅を図10に示す。図10(A)は、送信電力制御が行われていない場合の振幅を示している。移動局でのベースバンド信号の直流成分に位置するサブキャリアが16個のリソースエレメントの1つに相当する場合、送信電力制御部154は、そのリソースエレメントの送信電力を減少させてもよい。より具体的には、送信電力をヌルに設定してもよい。更に、図10(B)に示すように、同じリソースエレメントグループに属する残りの3個のサブキャリアの送信電力を増加させてもよい。或いは、残りの15個のサブキャリアの送信電力を増加させてもよい。 The transmission power control unit 154 determines whether a subcarrier located in the DC component of the baseband signal is used for PCFICH. When used for PCFICH, the transmission power of the subcarrier is decreased and the transmission power of the remaining subcarriers is increased. As described with reference to FIG. 3, four resource element groups (that is, 16 resource elements) are used for PCFICH. The amplitude of PCFICH transmission power is shown in FIG. FIG. 10A shows the amplitude when transmission power control is not performed. When the subcarrier located in the DC component of the baseband signal in the mobile station corresponds to one of the 16 resource elements, the transmission power control unit 154 may decrease the transmission power of the resource element. More specifically, the transmission power may be set to null. Furthermore, as shown in FIG. 10B, the transmission power of the remaining three subcarriers belonging to the same resource element group may be increased. Alternatively, the transmission power of the remaining 15 subcarriers may be increased.
 制御信号送信部155は、無線リソースにマッピングされた制御チャネル(PDCCH、PCFICH、PHICH)で制御信号(DCI、CFI、HI)を送信する。 The control signal transmission unit 155 transmits a control signal (DCI, CFI, HI) using a control channel (PDCCH, PCFICH, PHICH) mapped to a radio resource.
 データ信号送信部157は、移動局宛のデータ信号を送信する。 The data signal transmission unit 157 transmits a data signal addressed to the mobile station.
 図11に、本発明の第1変形例に係る基地局における制御信号送信方法のフローチャートを示す。 FIG. 11 shows a flowchart of a control signal transmission method in the base station according to the first modification of the present invention.
 管理部151は、キャリアアグリゲーションを適用して通信する移動局でのベースバンド信号の直流成分に位置するサブキャリアを特定する(S151)。 The management unit 151 identifies a subcarrier located in a DC component of a baseband signal in a mobile station that communicates by applying carrier aggregation (S151).
 マッピング部153は、図3に示すような所定の位置にPCFICHをマッピングする(S153)。 The mapping unit 153 maps the PCFICH to a predetermined position as shown in FIG. 3 (S153).
 送信電力制御部154は、ベースバンド信号の直流成分に位置するサブキャリアがPCFICHに用いられるかを判断する(S155)。ベースバンド信号の直流成分に位置するサブキャリアがPCFICHに用いられる場合、送信電力制御部154は、そのサブキャリアの送信電力を減少させ、残りのサブキャリアの送信電力を増加させる(S157)。ベースバンド信号の直流成分に位置するサブキャリアがPCFICHに用いられない場合、送信電力制御部154は、PCFICHの送信電力を制御する必要はない。 The transmission power control unit 154 determines whether the subcarrier located in the DC component of the baseband signal is used for PCFICH (S155). When the subcarrier located in the DC component of the baseband signal is used for PCFICH, the transmission power control unit 154 decreases the transmission power of the subcarrier and increases the transmission power of the remaining subcarriers (S157). When the subcarrier located in the DC component of the baseband signal is not used for PCFICH, the transmission power control unit 154 does not need to control the transmission power of PCFICH.
 制御信号送信部105は、PCFICHで制御信号(CFI)を送信する(S159)。 The control signal transmission unit 105 transmits a control signal (CFI) by PCFICH (S159).
 なお、図9に示す基地局15と通信する移動局は、キャリアアグリゲーションを適用して通信する場合に、ベースバンド信号の直流成分に位置するサブキャリアを無視し、残りのサブキャリアで制御信号(CFI)を復号する。 When the mobile station communicating with the base station 15 shown in FIG. 9 communicates by applying carrier aggregation, the mobile station ignores the subcarrier located in the DC component of the baseband signal, and controls the control signal ( CFI).
 第1変形例では、PCFICHの送信電力制御を例に挙げて説明したが、第1変形例の概念は、PHICHにも同様に適用可能である。 In the first modified example, the PCFICH transmission power control has been described as an example, but the concept of the first modified example can be similarly applied to PHICH.
 <本発明の第2変形例に係る基地局及び移動局の構成及び動作>
 図4及び図7を参照して、本発明の第2変形例に係る基地局及び移動局について説明する。第2変形例では、PCFICHで送信されるCFIを1サブフレーム毎に通知せずに、より長い期間で制御する。CFIは固定されてもよい。
<Configuration and operation of base station and mobile station according to second modification of the present invention>
With reference to FIG.4 and FIG.7, the base station and mobile station which concern on the 2nd modification of this invention are demonstrated. In the second modification, the CFI transmitted by PCFICH is controlled for a longer period without notifying every subframe. The CFI may be fixed.
 基地局10の管理部101は、キャリアアグリゲーションを適用して通信する移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理する。特に、キャリアアグリゲーションを構成するコンポーネントキャリアが周波数軸上で非対称的になっている場合、どのサブキャリアが移動局でのベースバンド信号の直流成分に位置するかを管理する。ベースバンド信号の直流成分の位置は、運用前に予め算出され、管理部101に格納されてもよい。 The management unit 101 of the base station 10 manages subcarriers located in the DC component of the baseband signal in the mobile station that communicates by applying carrier aggregation. In particular, when the component carriers constituting the carrier aggregation are asymmetric on the frequency axis, it is managed which subcarrier is located in the DC component of the baseband signal in the mobile station. The position of the DC component of the baseband signal may be calculated in advance before operation and stored in the management unit 101.
 ベースバンド信号の直流成分に位置するサブキャリアがPCFICHに用いられる可能性がある場合、PCFICHで送信されるCFIは、移動局宛のRRCメッセージとして生成され、データ信号送信部107から送信される。或いは、PCFICHで送信されるCFIは、報知情報として生成され、報知情報送信部(図示せず)から報知情報として送信されてもよい。 When there is a possibility that the subcarrier located in the DC component of the baseband signal is used for PCFICH, the CFI transmitted by PCFICH is generated as an RRC message addressed to the mobile station and transmitted from the data signal transmission unit 107. Alternatively, the CFI transmitted by PCFICH may be generated as broadcast information and transmitted as broadcast information from a broadcast information transmission unit (not shown).
 マッピング部103は、PCFICH及びPHICHをリソースエレメントグループにマッピングする。例えば、PCFICH及びPHICHは、図3に示すような所定の位置にマッピングされる。 The mapping unit 103 maps PCFICH and PHICH to resource element groups. For example, PCFICH and PHICH are mapped to predetermined positions as shown in FIG.
 制御信号送信部105は、無線リソースにマッピングされた制御チャネル(PDCCH、PCFICH、PHICH)で制御信号(DCI、CFI、HI)を送信する。 The control signal transmission unit 105 transmits a control signal (DCI, CFI, HI) using a control channel (PDCCH, PCFICH, PHICH) mapped to a radio resource.
 移動局20のデータ信号受信部205は、RRCメッセージとして送信されたCFIを受信する。また、CFIが報知情報として送信される場合、移動局20の報知情報受信部(図示せず)は、報知情報として送信されたCFIを受信する。 The data signal receiving unit 205 of the mobile station 20 receives the CFI transmitted as the RRC message. When CFI is transmitted as broadcast information, a broadcast information reception unit (not shown) of mobile station 20 receives CFI transmitted as broadcast information.
 制御信号受信部203は、受信したCFIによりフレーム構造がわかるため、ベースバンド信号の直流成分に位置するサブキャリアがPCFICHに用いられているか否かに拘らず、制御信号を受信できる。 Since the frame structure is known from the received CFI, the control signal receiving unit 203 can receive the control signal regardless of whether or not the subcarrier located in the DC component of the baseband signal is used for PCFICH.
 <本発明の第3変形例に係る基地局の構成及び動作>
 図4及び図7を参照して、本発明の第3変形例に係る基地局について説明する。第3変形例では、基地局は、PUSCHの無線リソースを割り当てる際に、対応するPHICHの無線リソースが、キャリアアグリゲーションを適用して通信する場合の移動局でのベースバンド信号の直流成分に位置するサブキャリアを含まないように、PUSCHの無線リソースを割り当ててもよい。
<Configuration and Operation of Base Station According to Third Modification of Present Invention>
With reference to FIG.4 and FIG.7, the base station which concerns on the 3rd modification of this invention is demonstrated. In the third modification, when the base station allocates the PUSCH radio resource, the corresponding PHICH radio resource is located in the DC component of the baseband signal in the mobile station when communicating by applying carrier aggregation. You may allocate the radio | wireless resource of PUSCH so that a subcarrier may not be included.
 基地局10の管理部101は、キャリアアグリゲーションを適用して通信する移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理する。特に、キャリアアグリゲーションを構成するコンポーネントキャリアが周波数軸上で非対称的になっている場合、どのサブキャリアが移動局でのベースバンド信号の直流成分に位置するかを管理する。ベースバンド信号の直流成分の位置は、運用前に予め算出され、管理部101に格納されてもよい。 The management unit 101 of the base station 10 manages subcarriers located in the DC component of the baseband signal in the mobile station that communicates by applying carrier aggregation. In particular, when the component carriers constituting the carrier aggregation are asymmetric on the frequency axis, it is managed which subcarrier is located in the DC component of the baseband signal in the mobile station. The position of the DC component of the baseband signal may be calculated in advance before operation and stored in the management unit 101.
 マッピング部103は、PCFICH及びPHICHをリソースエレメントグループにマッピングする。例えば、PCFICH及びPHICHは、図3に示すような所定の位置にマッピングされる。 The mapping unit 103 maps PCFICH and PHICH to resource element groups. For example, PCFICH and PHICH are mapped to predetermined positions as shown in FIG.
 基地局10の制御信号送信部105は、上りリンクの共有チャネル(PUSCH)のための上りスケジューリンググラントを送信する場合に、前記PUSCHに対応するPHICH無線リソースが、キャリアアグリゲーションを適用して通信する場合の移動局でのベースバンド信号の直流成分に位置するサブキャリアを含まないように、PUSCHの無線リソースを割り当ててもよい。あるいは、基地局10の制御信号送信部105は、上りリンクの共有チャネル(PUSCH)のための上りスケジューリンググラントを送信する場合に、前記PUSCHに対応するPHICH無線リソースが、キャリアアグリゲーションを適用して通信する場合の移動局でのベースバンド信号の直流成分に位置するサブキャリアを含まないように、前記上りスケジューリンググラント内のサイクリックシフトに関する情報を設定してもよい。尚、前記サイクリックシフトに関する情報により、PHICHの無線リソースの位置が変更される。 When the control signal transmission unit 105 of the base station 10 transmits an uplink scheduling grant for an uplink shared channel (PUSCH), the PHICH radio resource corresponding to the PUSCH communicates by applying carrier aggregation The radio resources of PUSCH may be allocated so as not to include subcarriers located in the DC component of the baseband signal in the mobile station. Alternatively, when the control signal transmission unit 105 of the base station 10 transmits an uplink scheduling grant for the uplink shared channel (PUSCH), the PHICH radio resource corresponding to the PUSCH communicates by applying carrier aggregation. In this case, information regarding the cyclic shift in the uplink scheduling grant may be set so as not to include a subcarrier located in the DC component of the baseband signal in the mobile station. In addition, the position of the radio resource of PHICH is changed by the information regarding the cyclic shift.
 本変更例により、キャリアアグリゲーションを適用して通信する移動局でのベースバンド信号の直流成分に位置するサブキャリアが、PHICHの無線リソースに含まれないため、前記ベースバンド信号の直流成分による特性の劣化を回避することが可能となる。 According to this modification, since the subcarrier located in the DC component of the baseband signal in the mobile station that communicates by applying carrier aggregation is not included in the radio resources of PHICH, the characteristics of the DC component of the baseband signal are Deterioration can be avoided.
 <本発明の実施例の効果>
 以上のように、本発明の実施例によれば、キャリアアグリゲーションが通信に適用される場合にも、制御チャネルの受信品質を向上させることが可能になる。
<Effect of the embodiment of the present invention>
As described above, according to the embodiment of the present invention, it is possible to improve the reception quality of the control channel even when carrier aggregation is applied to communication.
 より具体的には、ベースバンド信号の直流成分に位置するサブキャリアがPCFICH又はPHICHに用いられる場合でも、別の無線リソースを用いて、PCFICH又はPHICHの受信品質を向上させることが可能になる。 More specifically, even when a subcarrier located in the DC component of the baseband signal is used for PCFICH or PHICH, it is possible to improve the reception quality of PCFICH or PHICH using another radio resource.
 また、別の無線リソースを確保するに際して、リソースエレメントグループではなく、そのうちの1つのリソースエレメントが確保される場合、残りの3個のリソースエレメントは、PDCCHの送信等に有効活用できる。 Further, when another radio resource is secured, when not one resource element group but one resource element is secured, the remaining three resource elements can be effectively used for transmission of PDCCH or the like.
 また、第1変形例のような送信電力制御が行われる場合、移動局は、ベースバンド信号の直流成分に位置するサブキャリアを無視し、残りのサブキャリアで制御信号を復号する。このとき、残りのサブキャリアの送信電力が増加しているため、制御信号を復号できる可能性が高くなる。 In addition, when transmission power control is performed as in the first modification, the mobile station ignores the subcarrier located in the DC component of the baseband signal and decodes the control signal with the remaining subcarriers. At this time, since the transmission power of the remaining subcarriers has increased, there is a high possibility that the control signal can be decoded.
 また、第2変形例は、CFIを動的に変更する必要がない場合に有効である。 In addition, the second modification is effective when it is not necessary to dynamically change the CFI.
 説明の便宜上、本発明の実施例に係る基地局及び移動局は機能的なブロック図を用いて説明しているが、本発明は、ハードウェア、ソフトウェア又はそれらの組み合わせで実現されてもよい。また、2以上の実施例及び変形例が必要に応じて組み合わせて使用されてもよい。 For convenience of explanation, the base station and the mobile station according to the embodiments of the present invention are described using functional block diagrams, but the present invention may be realized by hardware, software, or a combination thereof. Further, two or more embodiments and modifications may be used in combination as necessary.
 以上、本発明の実施例について説明したが、本発明は、上記の実施例に限定されることなく、特許請求の範囲内において、種々の変更・応用が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and applications are possible within the scope of the claims.
 本国際出願は2010年4月30日に出願した日本国特許出願2010-105993号に基づく優先権を主張するものであり、2010-105993号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2010-105993 filed on April 30, 2010, and the entire contents of 2010-105993 are incorporated herein by reference.
10  基地局
101 管理部
103 マッピング部
105 制御信号送信部
107 データ信号送信部
20  移動局
201 マッピング情報保持部
203 制御信号受信部
205 データ信号受信部
15  基地局
151 管理部
153 マッピング部
154 送信電力制御部
155 制御信号送信部
157 データ信号送信部
10 base station 101 management unit 103 mapping unit 105 control signal transmission unit 107 data signal transmission unit 20 mobile station 201 mapping information holding unit 203 control signal reception unit 205 data signal reception unit 15 base station 151 management unit 153 mapping unit 154 transmission power control 155 Control signal transmitter 157 Data signal transmitter

Claims (12)

  1.  キャリアアグリゲーションを適用して移動局と通信する基地局であって、
     前記移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理する管理部と、
     ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、ベースバンド信号の直流成分に位置するサブキャリアの無線リソースとは異なる無線リソースに、前記移動局用の所定の制御チャネルをマッピングするマッピング部と、
     所定の制御チャネルの制御信号を送信する制御信号送信部と、
     を有する基地局。
    A base station that communicates with a mobile station by applying carrier aggregation,
    A management unit for managing subcarriers located in a DC component of a baseband signal in the mobile station;
    When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, the predetermined control for the mobile station is transferred to a radio resource different from the radio resource of the subcarrier located in the DC component of the baseband signal. A mapping unit for mapping channels;
    A control signal transmitter for transmitting a control signal of a predetermined control channel;
    Base station with
  2.  前記マッピング部は、所定の規則に従って、ベースバンド信号の直流成分に位置するサブキャリアが含まれるリソースエレメントグループとは異なるリソースエレメントグループに、所定の制御チャネルをマッピングする、請求項1の基地局。 The base station according to claim 1, wherein the mapping unit maps a predetermined control channel to a resource element group different from a resource element group including a subcarrier located in a DC component of a baseband signal according to a predetermined rule.
  3.  前記マッピング部は、所定の規則に従って、ベースバンド信号の直流成分に位置するサブキャリアが含まれるリソースエレメントグループとは異なるリソースエレメントグループのうち、1つのリソースエレメントに、所定の制御チャネルをマッピングする、請求項1の基地局。 The mapping unit maps a predetermined control channel to one resource element in a resource element group different from a resource element group including a subcarrier located in a DC component of a baseband signal according to a predetermined rule. The base station according to claim 1.
  4.  異なる無線リソースの情報を送信するマッピング情報送信部を更に有する、請求項1の基地局。 The base station according to claim 1, further comprising a mapping information transmission unit that transmits information on different radio resources.
  5.  前記所定の制御チャネルは、PCFICH又はPHICHである、請求項1の基地局。 The base station according to claim 1, wherein the predetermined control channel is PCFICH or PHICH.
  6.  キャリアアグリゲーションを適用して移動局と通信する基地局における制御信号送信方法であって、
     前記移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理するステップと、
     ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、ベースバンド信号の直流成分に位置するサブキャリアの無線リソースとは異なる無線リソースに、前記移動局用の所定の制御チャネルをマッピングするステップと、
     所定の制御チャネルの制御信号を送信するステップと、
     を有する制御信号送信方法。
    A control signal transmission method in a base station that communicates with a mobile station by applying carrier aggregation,
    Managing a subcarrier located in a DC component of a baseband signal at the mobile station;
    When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, the predetermined control for the mobile station is transferred to a radio resource different from the radio resource of the subcarrier located in the DC component of the baseband signal. Mapping the channel;
    Transmitting a control signal of a predetermined control channel;
    A control signal transmission method comprising:
  7.  キャリアアグリゲーションを適用して基地局と通信する移動局であって、
     ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、ベースバンド信号の直流成分に位置するサブキャリアの無線リソースの代わりに用いる無線リソースのマッピング情報を保持するマッピング情報保持部と、
     前記マッピング情報保持部に保持されたマッピング情報に基づいて、所定の制御チャネルの制御信号を受信する制御信号受信部と、
     を有する移動局。
    A mobile station that communicates with a base station by applying carrier aggregation,
    When subcarriers located in the DC component of the baseband signal are used for a predetermined control channel, mapping information holding that holds radio resource mapping information used instead of the radio resources of the subcarrier located in the DC component of the baseband signal And
    A control signal receiving unit that receives a control signal of a predetermined control channel based on the mapping information held in the mapping information holding unit;
    A mobile station.
  8.  キャリアアグリゲーションを適用して基地局と通信する移動局における制御信号受信方法であって、
     ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、ベースバンド信号の直流成分に位置するサブキャリアの無線リソースの代わりに用いる無線リソースのマッピング情報を保持するステップと、
     前記マッピング情報保持部に保持されたマッピング情報に基づいて、所定の制御チャネルの制御信号を受信するステップと、
     を有する制御信号受信方法。
    A control signal reception method in a mobile station that communicates with a base station by applying carrier aggregation,
    When subcarriers located in the DC component of the baseband signal are used for a predetermined control channel, holding radio resource mapping information used instead of the radio resources of the subcarrier located in the DC component of the baseband signal;
    Receiving a control signal of a predetermined control channel based on the mapping information held in the mapping information holding unit;
    A control signal receiving method comprising:
  9.  キャリアアグリゲーションを適用して移動局と通信する基地局であって、
     前記移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理する管理部と、
     ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、ベースバンド信号の直流成分に位置するサブキャリアの送信電力を減少させ、所定の制御チャネルの残りのサブキャリアの送信電力を増加させる送信電力制御部と、
     所定の制御チャネルの制御信号を送信する制御信号送信部と、
     を有する基地局。
    A base station that communicates with a mobile station by applying carrier aggregation,
    A management unit for managing subcarriers located in a DC component of a baseband signal in the mobile station;
    When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, the transmission power of the subcarrier located in the DC component of the baseband signal is reduced and transmission of the remaining subcarriers in the predetermined control channel is performed. A transmission power control unit for increasing power;
    A control signal transmitter for transmitting a control signal of a predetermined control channel;
    Base station with
  10.  キャリアアグリゲーションを適用して移動局と通信する基地局における制御信号送信方法であって、
     前記移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理するステップと、
     ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、ベースバンド信号の直流成分に位置するサブキャリアの送信電力を減少させ、所定の制御チャネルの残りのサブキャリアの送信電力を増加させるステップと、
     所定の制御チャネルの制御信号を送信するステップと、
     を有する制御信号送信方法。
    A control signal transmission method in a base station that communicates with a mobile station by applying carrier aggregation,
    Managing a subcarrier located in a DC component of a baseband signal at the mobile station;
    When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, the transmission power of the subcarrier located in the DC component of the baseband signal is reduced and transmission of the remaining subcarriers in the predetermined control channel is performed. Increasing power, and
    Transmitting a control signal of a predetermined control channel;
    A control signal transmission method comprising:
  11.  キャリアアグリゲーションを適用して移動局と通信する基地局であって、
     前記移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理する管理部と、
     ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、所定の制御チャネルの制御信号を前記移動局宛のメッセージ又は報知情報として生成する生成部と、
     前記移動局宛のメッセージ又は報知情報を送信する送信部と、
     を有する基地局。
    A base station that communicates with a mobile station by applying carrier aggregation,
    A management unit for managing subcarriers located in a DC component of a baseband signal in the mobile station;
    When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, a generation unit that generates a control signal for the predetermined control channel as a message or broadcast information addressed to the mobile station;
    A transmitter for transmitting a message or broadcast information addressed to the mobile station;
    Base station with
  12.  キャリアアグリゲーションを適用して移動局と通信する基地局における制御信号送信方法であって、
     前記移動局でのベースバンド信号の直流成分に位置するサブキャリアを管理するステップと、
     ベースバンド信号の直流成分に位置するサブキャリアが所定の制御チャネルに用いられる場合、所定の制御チャネルの制御信号を前記移動局宛のメッセージ又は報知情報として生成するステップと、
     前記移動局宛のメッセージ又は報知情報を送信するステップと、
     を有する制御信号送信方法。
    A control signal transmission method in a base station that communicates with a mobile station by applying carrier aggregation,
    Managing a subcarrier located in a DC component of a baseband signal at the mobile station;
    When a subcarrier located in the DC component of the baseband signal is used for a predetermined control channel, generating a control signal for the predetermined control channel as a message or broadcast information addressed to the mobile station;
    Transmitting a message or broadcast information addressed to the mobile station;
    A control signal transmission method comprising:
PCT/JP2011/060140 2010-04-30 2011-04-26 Base station, mobile station, control signal transmission method, and control signal reception method WO2011136207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-105993 2010-04-30
JP2010105993A JP5427103B2 (en) 2010-04-30 2010-04-30 Base station, mobile station, control signal transmission method, and control signal reception method

Publications (1)

Publication Number Publication Date
WO2011136207A1 true WO2011136207A1 (en) 2011-11-03

Family

ID=44861505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060140 WO2011136207A1 (en) 2010-04-30 2011-04-26 Base station, mobile station, control signal transmission method, and control signal reception method

Country Status (2)

Country Link
JP (1) JP5427103B2 (en)
WO (1) WO2011136207A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003612A1 (en) * 2012-06-27 2014-01-03 Telefonaktiebolaget L M Ericsson (Publ) A user equipment supporting communication in a multicarrier radio communication system and a method therein for receiving information
WO2016025754A1 (en) * 2014-08-14 2016-02-18 Qualcomm Incorporated Systems and methods for improved communication efficiency in wireless networks
WO2016037056A1 (en) * 2014-09-04 2016-03-10 Qualcomm Incorporated Efficient resource allocation for wireless communication
TWI645730B (en) * 2014-09-16 2018-12-21 美商高通公司 Efficient resource allocation
WO2019199814A1 (en) * 2018-04-10 2019-10-17 Qualcomm Incorporated Uplink signaling of direct current (dc) tone location in new radio (nr)
WO2020154863A1 (en) * 2019-01-28 2020-08-06 华为技术有限公司 Method and device for processing direct current carrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304063A (en) * 2005-05-09 2005-10-27 Sony Corp Radio communication method, radio communication system, radio base station, radio communication terminal and program
WO2007148584A1 (en) * 2006-06-19 2007-12-27 Ntt Docomo, Inc. Device and method for performing communication in a variable band
JP2008187602A (en) * 2007-01-31 2008-08-14 Fujitsu Ltd Communication system and communication method
JP2009212981A (en) * 2008-03-05 2009-09-17 Ntt Docomo Inc Mobile communication system, transmitter, receiver, and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304063A (en) * 2005-05-09 2005-10-27 Sony Corp Radio communication method, radio communication system, radio base station, radio communication terminal and program
WO2007148584A1 (en) * 2006-06-19 2007-12-27 Ntt Docomo, Inc. Device and method for performing communication in a variable band
JP2008187602A (en) * 2007-01-31 2008-08-14 Fujitsu Ltd Communication system and communication method
JP2009212981A (en) * 2008-03-05 2009-09-17 Ntt Docomo Inc Mobile communication system, transmitter, receiver, and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTOROLA: "PCFICH and PHICH for carrier aggregation", 3GPP TSG RANI MEETING #59BIS, RL-100200, 18 January 2010 (2010-01-18) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9538517B2 (en) 2012-06-27 2017-01-03 Telefonaktiebolaget Lm Ericsson (Publ) User equipment supporting communication in a multicarrier radio communication system and a method therein for receiving information
WO2014003612A1 (en) * 2012-06-27 2014-01-03 Telefonaktiebolaget L M Ericsson (Publ) A user equipment supporting communication in a multicarrier radio communication system and a method therein for receiving information
WO2016025754A1 (en) * 2014-08-14 2016-02-18 Qualcomm Incorporated Systems and methods for improved communication efficiency in wireless networks
US10028284B2 (en) 2014-08-14 2018-07-17 Qualcomm Incorporated Systems and methods for improved communication efficiency in wireless networks
CN106797292B (en) * 2014-09-04 2020-09-11 高通股份有限公司 Efficient resource allocation for wireless communication
WO2016037056A1 (en) * 2014-09-04 2016-03-10 Qualcomm Incorporated Efficient resource allocation for wireless communication
CN106797292A (en) * 2014-09-04 2017-05-31 高通股份有限公司 For the efficient resource allocation of radio communication
US9854580B2 (en) 2014-09-04 2017-12-26 Qualcomm, Incorporated Efficient resource allocation
KR101904900B1 (en) 2014-09-04 2018-10-08 퀄컴 인코포레이티드 Efficient resource allocation for wireless communication
TWI645730B (en) * 2014-09-16 2018-12-21 美商高通公司 Efficient resource allocation
WO2019199814A1 (en) * 2018-04-10 2019-10-17 Qualcomm Incorporated Uplink signaling of direct current (dc) tone location in new radio (nr)
US11160055B2 (en) 2018-04-10 2021-10-26 Qualcomm Incorporated Communication of direct current (DC) tone location
US11825476B2 (en) 2018-04-10 2023-11-21 Qualcomm Incorporated Communication of direct current (DC) tone location
WO2020154863A1 (en) * 2019-01-28 2020-08-06 华为技术有限公司 Method and device for processing direct current carrier
CN111819810A (en) * 2019-01-28 2020-10-23 华为技术有限公司 Method and device for processing direct current carrier
CN111819810B (en) * 2019-01-28 2021-10-26 华为技术有限公司 Method and device for processing direct current carrier

Also Published As

Publication number Publication date
JP2011238989A (en) 2011-11-24
JP5427103B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
RU2760212C2 (en) System and method for compatibility of low-delay and delay-resistant communication systems
EP3504914B1 (en) System and method for multiplexing traffic
CN110313210B (en) Downlink control channel monitoring optimization for discontinuous reception mode and/or narrowband operation
US20220061041A1 (en) Two-stage sidelink control information for sidelink communications
US9629147B2 (en) Method for signaling of resource allocation to adjust granularity in cellular multi-carrier system
US9503239B2 (en) Radio network node, user equipment and methods therein
EP2622777B1 (en) Search space for non-interleaved relay physical downlink control channel r-pdcch
JP2020005265A (en) Method for pucch transmission by mtc device
US11949619B2 (en) Short physical downlink control channel (sPDCCH) mapping design
US20140050159A1 (en) Methods and Arrangements for Transmitting and Receiving Control Information
EP3829244B1 (en) User device and method thereof
US9059822B2 (en) Radio network node, user equipment and methods therein
US20110002293A1 (en) Method for allocating control channel
US11432272B2 (en) Assignment of short physical downlink control channel (sPDCCH) candidates for short transmission time interval (sTTI)
US20120224546A1 (en) Method and terminal for performing direct communication between terminals
CN108352916A (en) For monitoring the method and apparatus for exempting from the control channel in licensed band
JP5427103B2 (en) Base station, mobile station, control signal transmission method, and control signal reception method
US11902193B2 (en) Search space configuration for short transmission time interval
EP3577973B1 (en) Dynamic short physical downlink control channel (spdcch) resources determination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774988

Country of ref document: EP

Kind code of ref document: A1