WO2011136045A1 - Method and apparatus for producing carbon monoxide - Google Patents

Method and apparatus for producing carbon monoxide Download PDF

Info

Publication number
WO2011136045A1
WO2011136045A1 PCT/JP2011/059383 JP2011059383W WO2011136045A1 WO 2011136045 A1 WO2011136045 A1 WO 2011136045A1 JP 2011059383 W JP2011059383 W JP 2011059383W WO 2011136045 A1 WO2011136045 A1 WO 2011136045A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
gas
carbon monoxide
metal oxide
oxygen
Prior art date
Application number
PCT/JP2011/059383
Other languages
French (fr)
Japanese (ja)
Inventor
和也 木下
雄一 妹尾
陽介 柴田
明弘 菅野
勇 八島
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2012512768A priority Critical patent/JPWO2011136045A1/en
Publication of WO2011136045A1 publication Critical patent/WO2011136045A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a method and apparatus for producing carbon monoxide using carbon dioxide as a raw material. Moreover, this invention relates to the conversion agent used for this manufacturing method.
  • Carbon dioxide is known as a greenhouse gas.
  • the concentration of carbon dioxide in the atmosphere continues to rise, which is considered to contribute to global warming. Therefore, from the viewpoint of preventing global warming, a technique for recovering carbon dioxide released into the environment is very important.
  • an oxygen deficient iron oxide is used to decompose carbon dioxide gas into carbon monoxide gas and oxygen gas, and the oxygen gas generated generates oxygen deficient iron oxide.
  • a technique for returning to the original iron oxide and recovering only carbon monoxide gas has been proposed (see Patent Document 1).
  • the above-mentioned technique is a technique for producing carbon monoxide gas from carbon dioxide by a stoichiometric reaction with carbon dioxide using an iron oxide having oxidizing power, whereas catalytic catalytic reduction.
  • a technique for generating carbon monoxide gas from carbon dioxide has also been proposed.
  • carbon monoxide gas or carbon is obtained by catalytic reduction of carbon dioxide using a metal oxide such as WO 3 , Y 2 O 3 , ZnO or the like as a catalyst and hydrogen or methane as a reducing agent. It has been reported that it can be generated.
  • Patent Document 2 proposes a method of separating carbon dioxide into carbon monoxide and oxygen using a solid reaction membrane having an oxygen ion conductor made of CeO 2 and a catalyst.
  • oxygen is separated from carbon dioxide by a catalyst supported on an oxygen ion conductor made of CeO 2 , and this oxygen is diffused in the oxygen ion conductor by a potential generated due to a difference in oxygen concentration. .
  • Patent Document 3 describes that carbon monoxide is brought into contact with an oxygen ion conductive ceramic at a high temperature, and the ceramic is at least partially saturated with oxygen to generate carbon monoxide.
  • the ceramic include CeO 2 doped with CaO.
  • Non-Patent Document 1 In the technique described in Non-Patent Document 1, it is necessary to introduce hydrogen and methane simultaneously with carbon dioxide. In addition to carbon monoxide and carbon as a product, unreacted carbon dioxide, hydrogen, methane, and the like are mixed. Therefore, it is economically disadvantageous in that it requires a separation step in the end, and when the product is carbon, the catalytic activity tends to decrease due to the precipitation on the catalyst. .
  • Patent Document 2 The technique described in Patent Document 2 is economically disadvantageous because a noble metal catalyst is used to decompose carbon dioxide into carbon monoxide and oxygen. Moreover, cerium oxide carrying a noble metal catalyst is only used as an ion pump for diffusing oxygen ions, and cerium oxide is not directly involved in the production of carbon monoxide from carbon dioxide.
  • CeO 2 doped with CaO which is supposed to generate carbon monoxide from carbon dioxide, has only irreversible oxygen vacancies. CeO 2 having only irreversible oxygen vacancies has a low ability to convert carbon dioxide to carbon monoxide.
  • an object of the present invention is to provide a method for producing carbon monoxide from carbon dioxide that can eliminate the various disadvantages of the above-described conventional technology.
  • a metal oxide having oxygen ion conductivity and having a reversible oxygen deficiency is brought into contact with carbon dioxide gas under heating, and carbon dioxide is reduced by a stoichiometric reaction.
  • the present invention provides a suitable apparatus for carrying out the manufacturing method as described above.
  • the inner tube includes a metal oxide having oxygen ion conductivity and having a reversible oxygen deficiency, Carbon dioxide gas is circulated between the outer tube and the inner tube, and a reducing gas is circulated in the inner tube, or a reducing property is provided between the outer tube and the inner tube.
  • An apparatus for producing carbon monoxide configured to circulate gas and circulate carbon dioxide gas in the inner pipe is provided.
  • the present invention provides another suitable apparatus for carrying out the above manufacturing method.
  • Two or more batch type reactors, and a switching valve having an input unit connected to each of the carbon dioxide gas source and the reducing gas source and an output unit connected to each of the reactors,
  • An apparatus for producing carbon monoxide capable of arranging a metal oxide having oxygen ion conductivity and having reversible oxygen vacancies, Carbon dioxide gas or reducing gas is alternatively and simultaneously supplied to each reactor via the switching valve, and the type of gas supplied to each reactor can be switched by switching the switching valve.
  • An apparatus for producing carbon monoxide configured as described above is provided.
  • the present invention provides another suitable apparatus for carrying out the above manufacturing method.
  • This is a carbon monoxide production apparatus in which plate-like bodies comprising a metal oxide having oxygen ion conductivity and having reversible oxygen vacancies and plate-like separators are alternately stacked. And A plurality of ridges and ridges extending in one direction are alternately arranged on each surface of each separator, Carbon dioxide gas is circulated through the concave portion located on the opposing surface of one separator and the plate-like body in the two separators facing each other across the plate-like body, and the other separator and the plate-like body
  • the carbon monoxide manufacturing apparatus comprised so that a reducing gas may be distribute
  • carbon monoxide can be efficiently generated using carbon dioxide as a raw material.
  • FIG. 1 is a schematic view showing an apparatus suitably used in the method for producing carbon monoxide of the present invention.
  • FIG. 2 is a schematic view showing another apparatus suitably used in the method for producing carbon monoxide of the present invention.
  • FIG. 3 is a schematic view showing still another apparatus suitably used in the method for producing carbon monoxide of the present invention.
  • FIG. 4 is a schematic diagram showing the apparatus used in the example.
  • carbon dioxide gas is heated with a specific metal oxide (hereinafter, this metal oxide is also referred to as “converter to carbon monoxide” or simply “converter”).
  • This metal oxide is also referred to as “converter to carbon monoxide” or simply “converter”.
  • Carbon monoxide gas is produced by contact.
  • the reaction between the conversion agent and carbon dioxide gas is a stoichiometric reaction utilizing the reducing power of the conversion agent. That is, the conversion agent made of this metal oxide is not used as a catalyst, but as a reactant itself.
  • the conversion agent comprising the specific metal oxide, one having oxygen ion conductivity and having reversible oxygen vacancies is used. Since this conversion agent has a reversible oxygen deficiency, the conversion agent acquires the reducibility of carbon dioxide.
  • deletion is produced
  • a reversible defect is a defect in which oxygen can be taken into a deficient site. For example, when the metal oxide is cerium oxide, which will be described later, in cerium oxide having a reversible defect, an unbalanced state of charge due to lack of oxygen is reduced to a part of tetravalent cerium to trivalent. To compensate.
  • Trivalent cerium is unstable and easily returns to tetravalent. Therefore, by incorporating oxygen into the deficient site, trivalent cerium returns to tetravalent, and the charge balance is always kept at zero. By incorporating oxygen into the deficient site, the deficiency disappears, but oxygen deficiency is generated again by treatment under strong reducing conditions. “Reversible oxygen deficiency” is used in this sense.
  • Irreversible oxygen deficiency is formed by doping a metal oxide with an element having a valence lower than that of the metal. Irreversible oxygen deficiency differs from reversible oxygen deficiency and is not a deficiency generated by treatment under strong reducing conditions. Irreversible oxygen vacancies include, for example, mixing a metal oxide with an oxide of a valence element lower than the valence of the metal, firing in the atmosphere, etc., and substituting solid solution with the low valence element. To obtain.
  • the inorganic oxide is, for example, cerium oxide
  • the valence of cerium in cerium oxide having irreversible oxygen deficiency is all tetravalent. Therefore, oxygen is not taken into the deficient site.
  • CeO 2 Ce 0.8 Ca 0.2 O 2
  • this oxygen deficiency is not capable of absorbing oxygen.
  • the irreversible oxygen deficiency is not caused by forced extraction of oxygen but is caused by charge compensation in the metal oxide.
  • the conversion agent comprising the metal oxide used in the present invention has oxygen ion conductivity as described above.
  • the oxygen ion conductivity may be developed at a temperature at which the production method of the present invention is performed. Since this conversion agent has oxygen ion conductivity, almost all of the reversible oxygen vacancies present in this conversion agent can be effectively utilized for the reaction with carbon dioxide.
  • the reason is as follows. That is, since the production method of the present invention is a reaction between a solid metal oxide and a gaseous carbon dioxide gas, the reaction mainly proceeds on the solid surface. And the oxygen deficiency which exists in the surface of a metal oxide couple
  • the metal oxide since the metal oxide has oxygen ion conductivity, oxygen associated with oxygen vacancies existing on the surface of the metal oxide is in the state of oxygen ions (O 2 ⁇ ). The oxygen vacancies disappear inside the metal oxide, and reversible oxygen vacancies are generated again on the surface of the metal oxide. By repeating this, almost all of the reversible oxygen vacancies present in the conversion agent can contribute to the reaction with carbon dioxide.
  • the iron oxide having oxygen vacancies described in Patent Document 1 described in the background section does not have oxygen ion conductivity, so that oxygen vacancies remain in the oxide. Even so, when all the oxygen vacancies present on the surface of the oxide disappear, the reactivity with carbon dioxide is greatly reduced.
  • the conversion agent comprising the metal oxide used in the present invention has oxygen ion conductivity and has the following advantages. That is, in this conversion agent, the reversible oxygen deficiency present in the converter can also contribute to the reaction with carbon dioxide, so that the reactivity with carbon dioxide can be achieved without excessively increasing the specific surface area of this conversion agent. Is hard to decline. Therefore, there is a degree of freedom that the reactant containing the conversion agent can be formed into a desired shape such as a granular shape, a pellet shape, a plate shape, or a cylindrical shape.
  • a metal oxide that does not have oxygen ion conductivity for example, an iron oxide having an oxygen vacancy described in Patent Document 1 described in the background section, has an oxygen vacancy existing therein.
  • the conversion agent comprising the metal oxide used in the production method of the present invention is essential to have oxygen ion conductivity and to have reversible oxygen vacancies.
  • the metal oxide having fluorite include, for example, cerium oxide; metal oxide having a fluorite structure represented by stabilized zirconia (substantially a cubic fluorite type at a temperature used for reaction with carbon dioxide) And the oxide having the fluorite structure substituted with a metal element for improving oxygen ion conductivity and oxygen deficiency; bismuth oxide and bismuth oxide with oxygen ion conductivity and those obtained by substituting a metal element to enhance oxygen deficiency; formula ABO 3 (a and B is a metal element) oxide and the a site and B site of the ABO 3 has a perovskite structure represented by Those obtained by substituting a metal element to enhance oxygen ion conductivity, oxygen deficiency,; oxide and said A general formula A 2 B 2 O 5 (A and B represents a metal element) having a brown
  • cerium oxide When cerium oxide is used as the conversion agent used in the production method of the present invention, as the cerium oxide, CeO 2-x (wherein Ce has a tetravalent and trivalent mixed valence, x is And a reversible oxygen deficiency and a fluorite-type crystal structure are preferably used.
  • cerium oxide having a fluorite structure (CeO 2 ) is produced by firing a cerium-containing salt or a hydrate thereof in an oxidizing atmosphere such as air, and then the cerium oxide is strongly reduced. And reversible oxygen deficiency.
  • the temperature is preferably 500 to 1400 ° C., more preferably 600 to 1300 ° C., and the time is preferably 1 to 20 hours, more preferably 1 to 5 hours.
  • a hydrogen-containing atmosphere having a hydrogen concentration of not less than the lower explosion limit, preferably not less than 20% by volume, is used as the reducing atmosphere.
  • the hydrogen concentration may be 100% by volume.
  • the temperature is preferably 700 to 1100 ° C., more preferably 800 to 1050 ° C., and the time is preferably 1 to 3 hours, more preferably 1 to 2 hours. Details of such cerium oxide are described, for example, in WO2010 / 004963 relating to the earlier application of the present applicant.
  • the cerium oxide is represented by CeO 2-x (wherein Ce has a trivalent and mixed valence of less than trivalent, and x represents a number of 0.5 to 0.7), and is reversible. Those having a typical oxygen deficiency and having a superlattice structure similar to fluorite are also preferably used.
  • Fluorite-like is a state in which the oxygen vacancies that initially exist at random are changed into ordered oxygen vacancies as oxygen escapes from the crystals of fluorite-type structures such as ordinary cerium oxide. Strictly speaking, it means a state that cannot be called a fluorite structure.
  • Examples thereof include a magnetoplumbite type structure represented by PbFe 12 O 19 and a structure such as YBa 2 Cu 3 O 6.9 exhibiting superconductivity.
  • the superlattice is a crystal lattice whose periodic structure is longer than the basic unit lattice by superimposing a plurality of types of crystal lattices. It can be confirmed, for example, by X-ray structural analysis that cerium oxide has a superlattice structure similar to fluorite. Cerium oxide having such a structure can be obtained by using an oxygen-containing cerium salt or a hydrate thereof as a precursor and directly reducing it.
  • the reduction treatment is performed in a strong reducing atmosphere in which the concentration of a reducing gas such as hydrogen gas, acetylene gas, or carbon monoxide gas is high and heat treatment is performed at a high temperature.
  • the reducing gas concentration is preferably not less than the lower limit of explosion to 100% by volume, more preferably 20% to 100% by volume.
  • the treatment temperature is preferably 500 ° C. or higher, more preferably 700 ° C. to 1200 ° C., and still more preferably 1000 ° C. to 1050 ° C.
  • the strongly reducing atmosphere is generally atmospheric pressure, but pressure conditions may be used instead.
  • a reducing gas atmosphere is maintained throughout the reaction system, and the reaction system is not exposed to the oxygen-containing gas atmosphere. The details of such cerium oxide are described in, for example, WO2008 / 140004 related to the applicant's previous application.
  • an OSC (oxygen storage and release capability) material is known as a metal oxide capable of absorbing oxygen.
  • OSC materials are often used as promoters for automotive catalysts.
  • the OSC material uses oxygen ion conductivity and valence change of cerium oxide, releases oxygen for oxidation reaction and absorbs oxygen for reduction reaction, so that the gas composition in exhaust gas Is used for the purpose of stably purifying exhaust gas with a three-way catalyst. Therefore, the OSC material is a co-catalyst for converting carbon monoxide in the exhaust gas to carbon dioxide, and is used in a reaction process opposite to the production method of the present invention that generates carbon monoxide from carbon dioxide. Is.
  • the reaction between the conversion agent and carbon dioxide gas used in the production method of the present invention is performed under heating.
  • the heating temperature is set to, for example, 450 to 1000 ° C., particularly 450 to 800 ° C., particularly 500 to 750 ° C., to increase the conversion efficiency from carbon dioxide to carbon monoxide and to the action of carbon monoxide once generated. From the viewpoint of effectively preventing the conversion agent from being reduced and carbon dioxide from being regenerated.
  • the reaction may be carried out batchwise or continuously. Since the reaction of this production method is a stoichiometric reaction, the amount of the conversion agent and carbon dioxide gas may be 1 equivalent or more, particularly 3 equivalents or more with respect to 1 equivalent of carbon dioxide. preferable.
  • the conversion agent is cerium oxide represented by CeO 2-x (x is as defined above)
  • x / 2 mol of CO 2 is equivalent to x / 2 mol of CO 2.
  • the conversion agent can be contacted with carbon dioxide gas in various forms.
  • the powdered conversion agent can be allowed to stand (or filled) to carry out the reaction, and the conversion agent can be granulated, pelletized, massive, or plate-shaped. It is also possible to use a product formed into a shape such as a honeycomb shape, a Raschig ring shape, or a bell saddle shape by leaving (or filling).
  • the reaction time of the carbon dioxide gas in the batch reactor is sufficient to convert carbon dioxide to carbon monoxide and prevent the generated carbon monoxide from reacting with the conversion agent and returning to carbon dioxide. From this point, it is preferable to set the time to 5 minutes to 3 hours, particularly 5 minutes to 1 hour.
  • a reaction surface that converts carbon dioxide into carbon monoxide is separated from a regeneration surface that generates oxygen deficiency with a reducing gas by a dense membrane such as a cylinder, plate, or disk. Any structure can be used.
  • the carbon dioxide gas to be brought into contact with the conversion agent is ideal if it is 100% carbon dioxide gas because a separation step is not necessary later, but it may contain a small amount of other gases.
  • the other gas is an oxygen-containing gas such as oxygen gas or water vapor
  • the ratio to the total amount of the supplied gas is preferably as small as possible.
  • FIG. 1 schematically shows a carbon monoxide production apparatus suitably used in the production method of the present invention.
  • the apparatus shown in the figure is of a continuous type and has a double tube structure.
  • the apparatus 10 shown in the figure includes an outer tube 11 and an inner tube 12 disposed in the outer tube 11.
  • a heating device 13 such as a heater is disposed in the inner tube 12.
  • the inner tube 12 contains the conversion agent.
  • carbon dioxide gas is circulated in the space between the outer tube 11 and the inner tube 12. While carbon dioxide gas circulates in this space, carbon dioxide gas reacts with the conversion agent contained in the inner tube 11 to generate carbon monoxide.
  • the apparatus 10 shown in FIG. 1 is configured to circulate reducing gas in the inner pipe 12 in addition to circulating carbon dioxide gas in the space between the outer pipe 11 and the inner pipe 12.
  • hydrogen which is a typical example of reducing gas, is described.
  • oxygen is extracted from the conversion agent oxidized by contact with carbon dioxide gas, and lost oxygen vacancies are generated again.
  • carbon monoxide is generated by bringing the conversion agent into contact with carbon dioxide gas, and then the conversion agent oxidized by contact with the carbon dioxide gas is reduced.
  • the metal oxide can be regenerated by carrying out strong reduction by contacting with a reactive gas. The reason why such repeated regeneration treatment is possible is that the conversion agent has oxygen ion conductivity.
  • the reducing gas for example, hydrogen gas or acetylene gas can be used.
  • a reducing gas containing hydrogen gas is preferably not less than the lower limit of explosion to 100% by volume, more preferably 20% to 100% by volume.
  • the treatment temperature is preferably 500 to 1200 ° C, more preferably 700 ° C to 1200 ° C, and still more preferably 1000 ° C to 1050 ° C. Strong reducing gas is generally at atmospheric pressure.
  • the heating device 13 is disposed inside the inner tube 12, but a heating device may be disposed around the outer tube 11 instead.
  • the temperature at which oxygen is forcibly extracted from the oxidized conversion agent 24 is higher than the temperature at which the reaction between the carbon dioxide gas and the conversion agent 24 occurs. It is advantageous to arrange 13 in terms of ease of forced extraction of oxygen.
  • the flow direction of carbon dioxide gas and the flow direction of reducing gas are the same direction, but instead, the flow direction of carbon dioxide gas and the flow direction of reducing gas are opposite directions. It may be.
  • a reducing gas can be circulated in the space between the outer tube 11 and the inner tube 12, and carbon dioxide gas can be circulated in the inner tube 12. .
  • a heating device around the outer tube 11.
  • the apparatus 20 shown in FIG. 2 includes two batch-type reaction apparatuses 21 and 22. Furthermore, the device 20 includes a switching valve 23.
  • the switching valve 23 has input parts 23a and 23b respectively connected to a carbon dioxide gas source and a reducing gas source (in FIG. 2, hydrogen, which is a representative example of the reducing gas, is described). . Furthermore, the switching valve 23 has output parts 23c and 23d connected to the reaction devices 21 and 22, respectively.
  • the conversion agent 24 can be arranged in each of the reaction apparatuses 21 and 22.
  • a heating device 25 is disposed around each of the reaction devices 21 and 22.
  • carbon dioxide gas or reducing gas is alternatively and simultaneously supplied to each of the reaction apparatuses 21 and 22 via the switching valve 23.
  • the type of gas supplied to each reactor can be switched by switching the switching valve 23.
  • the switching valve 23 is set to the position shown in FIG. 2, carbon dioxide gas is supplied to the second reaction apparatus 22, and reducing gas is supplied to the first reaction apparatus 21. To be supplied to. And each reaction apparatus 21 and 22 is heated with the heating apparatus 25, and reducing gas and carbon dioxide gas are supplied to each reaction apparatus 21 and 22.
  • FIG. 1 in this way, in the first reaction device 21, the conversion agent 24 placed inside is strongly reduced, oxygen is forcibly extracted, and a reversible oxygen deficiency is generated in the conversion agent 24.
  • the second reactor 22 carbon monoxide is generated by the reaction of carbon dioxide and the conversion agent 24, and the number of oxygen vacancies in the conversion agent 24 gradually decreases.
  • the switching valve 23 is switched to supply carbon dioxide gas to the first reactor 21 and reducing gas to the second reactor 22.
  • the conversion agent 24 that is stationary in the first reactor 21 is highly active that is not in contact with carbon dioxide gas, the amount of carbon monoxide produced is increased by bringing it into contact with carbon dioxide gas.
  • the conversion agent 24 whose activity is reduced due to a decrease in the number of oxygen vacancies is strongly reduced, oxygen is forcibly extracted, and reversible oxygen vacancies are generated again in the conversion agent 24. .
  • the heating temperatures of the first reaction apparatus 21 and the second reaction apparatus 22 may be set to the same or different temperatures.
  • the temperature at which oxygen is forcibly extracted from the oxidized conversion agent 24 is higher than the temperature at which the reaction between carbon dioxide gas and the conversion agent 24 occurs. Is preferably set higher than the heating temperature of the reactor that produces carbon monoxide.
  • the apparatus 30 shown in FIG. 3 has a structure in which plate-like bodies 31 including the conversion agent and plate-like separators 32 are alternately stacked. A plurality of convex portions 33 and concave portions 34 extending in one direction are alternately arranged on each surface of each separator 32. As a result, a space is formed between the plate-like body 31 and the pair of separators that are opposed to each other with the gas formed by the concave portions 34. Moreover, although not shown in figure, the apparatus 30 is equipped with the heating apparatus arrange
  • the extending direction of the convex portion 33 and the concave portion 34 formed on one surface and the other surface is shifted by 90 degrees.
  • the extending direction of the convex portion 33 and the concave strip portion 34 formed on each surface of the separator 32 is not limited to this.
  • the extending direction of the convex part 33 and the concave line part 34 formed on each surface of the separator 32 may intersect at an angle other than 90 degrees, or the same direction.
  • the direction of the gas flowing through the concave line part 34 on one surface side of the separator 32 and the other may be the same direction or the opposite direction.
  • a system for converting carbon dioxide into carbon monoxide using the conversion agent is also provided.
  • carbon dioxide contained in exhaust gas generated from a smelter, ironworks or thermal power plant, which is a main source of carbon dioxide gas is separated using a known method.
  • the separated carbon dioxide is brought into contact with the conversion agent.
  • Carbon monoxide is produced by the contact under heating.
  • the produced carbon monoxide can be fed back to, for example, a blast furnace at a steel mill and reused.
  • Example 1 (1) Production of cerium oxide having reversible oxygen vacancies (a) Synthesis of cerium oxide without oxygen vacancies 100 g of cerium carbonate was allowed to stand in a heating furnace and baked by heating while circulating air. . Heating was started from room temperature, heated at a rate of temperature increase of 10 ° C./min, and after reaching 1000 ° C., this temperature was maintained for 1 hour. Then, it naturally left to cool. The air flow rate was 1000 SCCM. In this way, a porous body of cerium oxide having no oxygen defects was obtained. Measurement by XRD confirmed that this cerium oxide was represented by CeO 2 and had a fluorite-type crystal structure. This cerium oxide was pulverized by a ball mill.
  • valve V1 was closed and left for 1 hour.
  • the stoichiometric ratio of carbon dioxide gas to cerium oxide having reversible oxygen deficiency was set to 1: 1 (that is, 1 equivalent described above).
  • the valve V2 was opened, and nitrogen gas was supplied into the tubular furnace until the gas recovery bag was slightly expanded.
  • the valve V2 was closed, and the gas recovery bag was heat sealed and separated from the tube. In this state, the temperature of the tubular furnace was lowered and cooled to room temperature.
  • the valve V1 was opened and nitrogen gas was supplied into the tubular furnace. The supply was continued until the pressure in the tubular furnace reached atmospheric pressure.
  • valves V3 and V5 were opened, and carbon monoxide in the tubular furnace was extruded with nitrogen gas.
  • the gas after reaction collected in the gas collection bag was qualitatively and quantitatively analyzed using gas chromatography. As a result, the conversion rate from carbon dioxide to carbon monoxide was 60%.
  • Examples 2 to 9 Carbon monoxide gas was produced from carbon dioxide gas in the same manner as in Example 1 except that the conditions shown in Table 1 below were adopted. The conversion rate at that time is shown in the same table. In the table, the results of Example 1 are also shown.
  • This comparative example is an example in which cerium oxide having no oxygen defect is used instead of cerium oxide having reversible oxygen deficiency used in Example 1.
  • the cerium oxide having no oxygen defects is the same as the cerium oxide having no oxygen defects, which is an intermediate produced in the course of the production process of cerium oxide having reversible oxygen vacancies in Example 1.
  • Carbon monoxide gas was produced from carbon dioxide gas in the same manner as in Example 1 except that this cerium oxide having no oxygen defect was used and the conditions shown in Table 1 were adopted. The conversion rate at that time is shown in the same table.
  • cerium oxide having only irreversible oxygen vacancies was used instead of cerium oxide having reversible oxygen vacancies used in Example 1.
  • cerium oxide having only irreversible oxygen vacancies calcium-doped cerium oxide produced by the following method was used. This calcium-doped cerium oxide corresponds to the substance described in column 5, lines 59 to 64 of Patent Document 3 described in the background art section. Using this calcium-doped cerium oxide, carbon monoxide gas was produced from carbon dioxide gas in the same manner as in Example 1 except that the conditions shown in Table 1 were adopted. The conversion rate at that time is shown in the same table.
  • the filtrate was calcined at 300 ° C. for 3 hours in the air, and then calcined at 1000 ° C. for 3 hours in the air to obtain calcium-doped cerium oxide.
  • the lattice constant of this calcium-doped cerium oxide was 5.4158 ⁇ . Since the lattice constant of cerium oxide not doped with calcium is 5.4113 ⁇ , it was confirmed that the obtained calcium-doped cerium oxide expanded in lattice and solid-dissolved calcium.

Abstract

Disclosed is a method for producing carbon monoxide, which is characterized in that a carbon dioxide gas and a metal oxide that has oxygen ion conductivity and reversible oxygen deficiency are brought into contact with each other, while being heated, so that carbon dioxide is reduced by a stoichiometric reaction, thereby generating carbon monoxide. The metal oxide is preferably composed of cerium oxide that has reversible oxygen deficiency. The metal oxide oxidized by the contact with the carbon dioxide gas is preferably regenerated by being brought into contact with a reducing gas.

Description

一酸化炭素の製造方法及び製造装置Carbon monoxide production method and production apparatus
 本発明は、二酸化炭素を原料とする一酸化炭素の製造方法及び製造装置に関する。また本発明は、該製造方法に用いられる変換剤に関する。 The present invention relates to a method and apparatus for producing carbon monoxide using carbon dioxide as a raw material. Moreover, this invention relates to the conversion agent used for this manufacturing method.
 二酸化炭素は温室効果ガスとして知られている。大気中の二酸化炭素の濃度は上昇を続けており、地球温暖化の一因とされている。したがって地球温暖化防止の観点から、環境中に放出される二酸化炭素を回収する技術は、非常に重要である。 Carbon dioxide is known as a greenhouse gas. The concentration of carbon dioxide in the atmosphere continues to rise, which is considered to contribute to global warming. Therefore, from the viewpoint of preventing global warming, a technique for recovering carbon dioxide released into the environment is very important.
 二酸化炭素を回収する技術として、例えば酸素欠損状態の鉄の酸化物を用いて二酸化炭素ガスを一酸化炭素ガスと酸素ガスとに分解し、生成した酸素ガスによって酸素欠損状態の鉄の酸化物を元の鉄酸化物に戻し、一酸化炭素ガスのみを回収する技術が提案されている(特許文献1参照)。 As a technique for recovering carbon dioxide, for example, an oxygen deficient iron oxide is used to decompose carbon dioxide gas into carbon monoxide gas and oxygen gas, and the oxygen gas generated generates oxygen deficient iron oxide. A technique for returning to the original iron oxide and recovering only carbon monoxide gas has been proposed (see Patent Document 1).
 前記の技術は、酸化力を有する鉄の酸化物を用いた二酸化炭素との化学量論的な反応によって二酸化炭素から一酸化炭素ガスを生成する技術であるのに対して、触媒的な接触還元によって二酸化炭素から一酸化炭素ガスを生成する技術も提案されている。例えば非特許文献1においては、WO3、Y23、ZnOなどの金属酸化物を触媒とし、水素やメタンなどを還元剤として用いた二酸化炭素の接触還元によって、一酸化炭素ガスや炭素の生成が可能であることが報告されている。 The above-mentioned technique is a technique for producing carbon monoxide gas from carbon dioxide by a stoichiometric reaction with carbon dioxide using an iron oxide having oxidizing power, whereas catalytic catalytic reduction. A technique for generating carbon monoxide gas from carbon dioxide has also been proposed. For example, in Non-Patent Document 1, carbon monoxide gas or carbon is obtained by catalytic reduction of carbon dioxide using a metal oxide such as WO 3 , Y 2 O 3 , ZnO or the like as a catalyst and hydrogen or methane as a reducing agent. It has been reported that it can be generated.
 これらの技術とは別に、特許文献2には、CeO2からなる酸素イオン伝導体と触媒とを有する固体反応膜を用いて二酸化炭素を一酸化炭素と酸素に分離する方法が提案されている。この方法においては、CeO2からなる酸素イオン伝導体に担持された触媒によって二酸化炭素から酸素を分離させて、この酸素を、酸素濃度差のために生じる電位によって酸素イオン伝導体内を拡散させている。 Apart from these techniques, Patent Document 2 proposes a method of separating carbon dioxide into carbon monoxide and oxygen using a solid reaction membrane having an oxygen ion conductor made of CeO 2 and a catalyst. In this method, oxygen is separated from carbon dioxide by a catalyst supported on an oxygen ion conductor made of CeO 2 , and this oxygen is diffused in the oxygen ion conductor by a potential generated due to a difference in oxygen concentration. .
 特許文献3には、二酸化炭素を高温で酸素イオン伝導性セラミックに接触させ、該セラミックを酸素で少なくとも部分的に飽和させて、一酸化炭素を生成させることが記載さている。前記セラミックの例としては、CaOがドープされたCeO2が挙げられている。 Patent Document 3 describes that carbon monoxide is brought into contact with an oxygen ion conductive ceramic at a high temperature, and the ceramic is at least partially saturated with oxygen to generate carbon monoxide. Examples of the ceramic include CeO 2 doped with CaO.
特開平5-68853号公報Japanese Patent Laid-Open No. 5-68853 特開2001-322958号公報JP 2001-322958 A 米国特許第6464955号明細書US Pat. No. 6,464,955
 特許文献1に記載の技術によれば、確かに二酸化炭素ガスから一酸化炭素ガスが生成する。しかし、鉄の酸化物は、酸素イオン導電性が低く、表面が酸化されてしまうと、たとえ該酸化物の内部に酸素欠損が存在していても、該酸素欠損は二酸化炭素ガスと接触することができない。したがって二酸化炭素ガスから一酸化炭素ガスへの変換効率を高めたい場合には、酸素欠損を有する鉄の酸化物を多量に使用する必要があり、経済的に不利になる。 According to the technique described in Patent Document 1, carbon monoxide gas is certainly generated from carbon dioxide gas. However, iron oxide has low oxygen ion conductivity, and if the surface is oxidized, the oxygen deficiency will come into contact with carbon dioxide gas even if oxygen deficiency exists inside the oxide. I can't. Therefore, in order to increase the conversion efficiency from carbon dioxide gas to carbon monoxide gas, it is necessary to use a large amount of iron oxide having oxygen deficiency, which is economically disadvantageous.
 非特許文献1に記載の技術では、二酸化炭素と同時に水素やメタンを投入する必要があり、生成物としての一酸化炭素や炭素の他に、未反応の二酸化炭素や水素、メタンなどが混在してしまうので、最終的に分離工程を要するという点で経済的に不利であり、しかも生成物が炭素である場合には、それが触媒上に析出することに起因して触媒活性が低下しやすい。 In the technique described in Non-Patent Document 1, it is necessary to introduce hydrogen and methane simultaneously with carbon dioxide. In addition to carbon monoxide and carbon as a product, unreacted carbon dioxide, hydrogen, methane, and the like are mixed. Therefore, it is economically disadvantageous in that it requires a separation step in the end, and when the product is carbon, the catalytic activity tends to decrease due to the precipitation on the catalyst. .
 特許文献2に記載の技術では、二酸化炭素を一酸化炭素と酸素に分解させるために貴金属触媒を用いているので経済的に不利である。また、貴金属触媒を担持している酸化セリウムは、酸素イオンを拡散させるためのイオンポンプとして使用されているに過ぎず、酸化セリウムは二酸化炭素からの一酸化炭素の生成に直接関与していない。 The technique described in Patent Document 2 is economically disadvantageous because a noble metal catalyst is used to decompose carbon dioxide into carbon monoxide and oxygen. Moreover, cerium oxide carrying a noble metal catalyst is only used as an ion pump for diffusing oxygen ions, and cerium oxide is not directly involved in the production of carbon monoxide from carbon dioxide.
 特許文献3において、二酸化炭素から一酸化炭素を生成させるとされているCaOがドープされたCeO2は、不可逆的な酸素欠損のみを有するものである。不可逆的な酸素欠損のみを有するCeO2は、二酸化炭素を一酸化炭素に変換する能力が低い。 In Patent Document 3, CeO 2 doped with CaO, which is supposed to generate carbon monoxide from carbon dioxide, has only irreversible oxygen vacancies. CeO 2 having only irreversible oxygen vacancies has a low ability to convert carbon dioxide to carbon monoxide.
 したがって本発明の課題は、前述した従来技術が有する種々の欠点を解消し得る二酸化炭素からの一酸化炭素の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a method for producing carbon monoxide from carbon dioxide that can eliminate the various disadvantages of the above-described conventional technology.
 本発明は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と二酸化炭素ガスとを加熱下に接触させ、化学量論反応によって二酸化炭素を還元して、一酸化炭素を生成させることを特徴とする一酸化炭素の製造方法を提供するものである。 In the present invention, a metal oxide having oxygen ion conductivity and having a reversible oxygen deficiency is brought into contact with carbon dioxide gas under heating, and carbon dioxide is reduced by a stoichiometric reaction. A method for producing carbon monoxide, characterized in that is produced.
 また本発明は、前記の製造方法を実施するための好適な装置として、
 外管と、該外管内に配置された内管とを備え、
 該内管は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物を含んで構成されており、
 該外管と該内管との間に二酸化炭素ガスを流通させ、かつ該内管内に還元性ガスを流通させるように構成されているか、又は
 該外管と該内管との間に還元性ガスを流通させ、かつ該内管内に二酸化炭素ガスを流通させるように構成されている一酸化炭素の製造装置を提供するものである。
Further, the present invention provides a suitable apparatus for carrying out the manufacturing method as described above.
An outer tube, and an inner tube disposed in the outer tube,
The inner tube includes a metal oxide having oxygen ion conductivity and having a reversible oxygen deficiency,
Carbon dioxide gas is circulated between the outer tube and the inner tube, and a reducing gas is circulated in the inner tube, or a reducing property is provided between the outer tube and the inner tube. An apparatus for producing carbon monoxide configured to circulate gas and circulate carbon dioxide gas in the inner pipe is provided.
 更に本発明は、前記の製造方法を実施するための別の好適な装置として、
 二基以上のバッチ式反応装置と、二酸化炭素ガス源及び還元性ガス源のそれぞれに接続する入力部及び各反応装置のそれぞれ接続する出力部を有する切替弁とを備え、各反応装置内に、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物の配置が可能になっている一酸化炭素の製造装置であって、
 前記の切替弁を介して各反応装置に二酸化炭素ガス又は還元性ガスが択一的に、かつ同時に供給され、かつ該切替弁の切り替えによって各反応装置に供給されるガスの種類を切り替えられるように構成されている一酸化炭素の製造装置を提供するものである。
Furthermore, the present invention provides another suitable apparatus for carrying out the above manufacturing method.
Two or more batch type reactors, and a switching valve having an input unit connected to each of the carbon dioxide gas source and the reducing gas source and an output unit connected to each of the reactors, An apparatus for producing carbon monoxide capable of arranging a metal oxide having oxygen ion conductivity and having reversible oxygen vacancies,
Carbon dioxide gas or reducing gas is alternatively and simultaneously supplied to each reactor via the switching valve, and the type of gas supplied to each reactor can be switched by switching the switching valve. An apparatus for producing carbon monoxide configured as described above is provided.
 更に本発明は、前記の製造方法を実施するための別の好適な装置として、
 酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物を含んで構成される板状体と、板状のセパレータとが交互にスタックされてなる一酸化炭素の製造装置であって、
 各セパレータの各面には、一方向に延びる複数の凸条部及び凹条部が交互に配置されており、
 前記の板状体を挟んで対向する2つのセパレータにおける一方のセパレータと該板状体との対向面に位置する凹条部に二酸化炭素ガスを流通させ、かつ他方のセパレータと該板状体との対向面に位置する凹条部に還元性ガスを流通させるように構成されている一酸化炭素の製造装置を提供するものである。
Furthermore, the present invention provides another suitable apparatus for carrying out the above manufacturing method.
This is a carbon monoxide production apparatus in which plate-like bodies comprising a metal oxide having oxygen ion conductivity and having reversible oxygen vacancies and plate-like separators are alternately stacked. And
A plurality of ridges and ridges extending in one direction are alternately arranged on each surface of each separator,
Carbon dioxide gas is circulated through the concave portion located on the opposing surface of one separator and the plate-like body in the two separators facing each other across the plate-like body, and the other separator and the plate-like body The carbon monoxide manufacturing apparatus comprised so that a reducing gas may be distribute | circulated to the concave part located in the opposing surface of this.
 本発明によれば、二酸化炭素を原料として効率的に一酸化炭素を生成させることができる。 According to the present invention, carbon monoxide can be efficiently generated using carbon dioxide as a raw material.
図1は、本発明の一酸化炭素の製造方法に好適に用いられる装置を示す模式図である。FIG. 1 is a schematic view showing an apparatus suitably used in the method for producing carbon monoxide of the present invention. 図2は、本発明の一酸化炭素の製造方法に好適に用いられる別の装置を示す模式図である。FIG. 2 is a schematic view showing another apparatus suitably used in the method for producing carbon monoxide of the present invention. 図3は、本発明の一酸化炭素の製造方法に好適に用いられる更に別の装置を示す模式図である。FIG. 3 is a schematic view showing still another apparatus suitably used in the method for producing carbon monoxide of the present invention. 図4は、実施例で用いた装置を示す模式図である。FIG. 4 is a schematic diagram showing the apparatus used in the example.
 以下本発明を、その好ましい実施形態に基づき説明する。本発明においては、二酸化炭素ガスを特定の金属酸化物(以下、この金属酸化物のことを「二酸化炭素の一酸化炭素への変換剤」又は単に「変換剤」ともいう。)と加熱下に接触させて一酸化炭素ガスを生成させる。この変換剤と、二酸化炭素ガスとの反応は、この変換剤の還元力を利用した化学量論反応である。つまり、この金属酸化物からなる変換剤は、触媒として用いられるものではなく、反応物そのものとして用いられるものである。 Hereinafter, the present invention will be described based on preferred embodiments thereof. In the present invention, carbon dioxide gas is heated with a specific metal oxide (hereinafter, this metal oxide is also referred to as “converter to carbon monoxide” or simply “converter”). Carbon monoxide gas is produced by contact. The reaction between the conversion agent and carbon dioxide gas is a stoichiometric reaction utilizing the reducing power of the conversion agent. That is, the conversion agent made of this metal oxide is not used as a catalyst, but as a reactant itself.
 前記の特定の金属酸化物からなる変換剤としては、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有するものが用いられる。この変換剤が、可逆的な酸素欠損を有することによって、該変換剤は二酸化炭素の還元性を獲得する。可逆的な欠損とは、強力な還元条件下の処理によって金属酸化物から酸素が強制的に引き抜かれることで生成するものである。可逆的な欠損は、欠損したサイトに酸素が取り込まれることが可能な欠損である。例えば金属酸化物が、後述する酸化セリウムである場合、可逆的な欠損を有する酸化セリウムにおいては、酸素不足に起因する電荷のアンバランスな状態を、四価のセリウムの一部が三価に還元されることで補償している。三価のセリウムは不安定であり、四価に戻りやすいものである。したがって、欠損したサイトに酸素が取り込まれることで、三価となっているセリウムが四価に戻り、電荷のバランスが常にゼロに保たれる。欠損したサイトに酸素が取り込まれることで、該欠損は消失するが、再び強力な還元条件下の処理によって酸素欠損が生成する。「可逆的な酸素欠損」とは、この意味で用いられる。 As the conversion agent comprising the specific metal oxide, one having oxygen ion conductivity and having reversible oxygen vacancies is used. Since this conversion agent has a reversible oxygen deficiency, the conversion agent acquires the reducibility of carbon dioxide. A reversible defect | deletion is produced | generated when oxygen is forcibly extracted from a metal oxide by the process under strong reducing conditions. A reversible defect is a defect in which oxygen can be taken into a deficient site. For example, when the metal oxide is cerium oxide, which will be described later, in cerium oxide having a reversible defect, an unbalanced state of charge due to lack of oxygen is reduced to a part of tetravalent cerium to trivalent. To compensate. Trivalent cerium is unstable and easily returns to tetravalent. Therefore, by incorporating oxygen into the deficient site, trivalent cerium returns to tetravalent, and the charge balance is always kept at zero. By incorporating oxygen into the deficient site, the deficiency disappears, but oxygen deficiency is generated again by treatment under strong reducing conditions. “Reversible oxygen deficiency” is used in this sense.
 これに対して、不可逆的な酸素欠損も知られている。不可逆的な酸素欠損とは、金属酸化物に、該金属の価数よりも低価数の元素をドープすることで形成されるものである。不可逆的な酸素欠損は、可逆的な酸素欠損と異なり、強力な還元条件下の処理で発生した欠損ではない。不可逆的な酸素欠損は、例えば、金属酸化物に、該金属の価数よりも低価数の元素の酸化物を混合し、大気下で焼成するなどして低価数の元素で置換固溶させることによって得られる。無機酸化物が、例えば酸化セリウムである場合、不可逆的な酸素欠損を有する酸化セリウムにおけるセリウムの価数はすべて四価である。したがって、欠損したサイトに酸素が取り込まれることはない。例えば、CeO2に20mol%のCaを固溶させた場合(Ce0.8Ca0.22)、陽イオンの平均価数は4×0.8+2×0.2=3.6なので、酸素の電荷をこの価数にバランスさせるために必要な酸素原子の数は3.6÷2=1.8個となる。この数は、化学量論量の酸素原子の数である2個よりも少なく、その分だけ酸素欠損が生じる。しかし、この酸素欠損は酸素の吸収が可能なものではない。このように、不可逆的な酸素欠損は、酸素の強制的な引き抜きによって生じるものではなく、金属酸化物における電荷補償によって生じるものである。 On the other hand, irreversible oxygen deficiency is also known. Irreversible oxygen deficiency is formed by doping a metal oxide with an element having a valence lower than that of the metal. Irreversible oxygen deficiency differs from reversible oxygen deficiency and is not a deficiency generated by treatment under strong reducing conditions. Irreversible oxygen vacancies include, for example, mixing a metal oxide with an oxide of a valence element lower than the valence of the metal, firing in the atmosphere, etc., and substituting solid solution with the low valence element. To obtain. When the inorganic oxide is, for example, cerium oxide, the valence of cerium in cerium oxide having irreversible oxygen deficiency is all tetravalent. Therefore, oxygen is not taken into the deficient site. For example, when 20 mol% of Ca is dissolved in CeO 2 (Ce 0.8 Ca 0.2 O 2 ), the average cation valence is 4 × 0.8 + 2 × 0.2 = 3.6. The number of oxygen atoms necessary to balance this valence is 3.6 ÷ 2 = 1.8. This number is less than the stoichiometric amount of two oxygen atoms, and oxygen vacancies are generated accordingly. However, this oxygen deficiency is not capable of absorbing oxygen. Thus, the irreversible oxygen deficiency is not caused by forced extraction of oxygen but is caused by charge compensation in the metal oxide.
 本発明において用いられる前記の金属酸化物からなる変換剤は、上述のとおり酸素イオン伝導性を有している。酸素イオン伝導性は、本発明の製造方法を実施する温度において発現すればよい。この変換剤が酸素イオン伝導性を有することで、この変換剤中に存在する可逆的な酸素欠損の概ねすべてが二酸化炭素との反応に有効活用できる。その理由は次のとおりである。すなわち、本発明の製造方法は、固体である金属酸化物と、気体である二酸化炭素ガスとの反応なので、反応は主として固体表面において進行する。そして、金属酸化物の表面に存在する酸素欠損が、二酸化炭素中の酸素と結合することで、該表面における酸素欠損が消失するとともに、二酸化炭素が一酸化炭素へ変換される。この場合、該金属酸化物が酸素イオン伝導性を有することで、該金属酸化物の表面に存在する酸素欠損と結びついた酸素は、酸素イオン(O2-)の状態で該金属酸化物の内部に移動し、該金属酸化物の内部において酸素欠損が消失するとともに、該金属酸化物の表面には可逆的な酸素欠損が再び生成する。この繰り返しによって、変換剤中に存在する可逆的な酸素欠損の概ねすべてを二酸化炭素との反応に寄与させることができる。これに対して、例えば背景技術の項で述べた特許文献1に記載の酸素欠損を有する鉄の酸化物は、酸素イオン伝導性を有していないので、該酸化物の内部に酸素欠損が残存していても、該酸化物の表面に存在するすべて酸素欠損が消失した時点で、二酸化炭素との反応性が非常に低下してしまう。 The conversion agent comprising the metal oxide used in the present invention has oxygen ion conductivity as described above. The oxygen ion conductivity may be developed at a temperature at which the production method of the present invention is performed. Since this conversion agent has oxygen ion conductivity, almost all of the reversible oxygen vacancies present in this conversion agent can be effectively utilized for the reaction with carbon dioxide. The reason is as follows. That is, since the production method of the present invention is a reaction between a solid metal oxide and a gaseous carbon dioxide gas, the reaction mainly proceeds on the solid surface. And the oxygen deficiency which exists in the surface of a metal oxide couple | bonds with the oxygen in a carbon dioxide, The oxygen deficiency in this surface lose | disappears, and a carbon dioxide is converted into carbon monoxide. In this case, since the metal oxide has oxygen ion conductivity, oxygen associated with oxygen vacancies existing on the surface of the metal oxide is in the state of oxygen ions (O 2− ). The oxygen vacancies disappear inside the metal oxide, and reversible oxygen vacancies are generated again on the surface of the metal oxide. By repeating this, almost all of the reversible oxygen vacancies present in the conversion agent can contribute to the reaction with carbon dioxide. On the other hand, for example, the iron oxide having oxygen vacancies described in Patent Document 1 described in the background section does not have oxygen ion conductivity, so that oxygen vacancies remain in the oxide. Even so, when all the oxygen vacancies present on the surface of the oxide disappear, the reactivity with carbon dioxide is greatly reduced.
 本発明において用いられる前記の金属酸化物からなる変換剤が酸素イオン伝導性を有することには次の利点もある。すなわち、この変換剤においては、その内部に存在する可逆的な酸素欠損も二酸化炭素との反応に寄与できるので、この変換剤の比表面積を過度に大きくしなくても、二酸化炭素との反応性は低下しづらい。したがって、この変換剤を含む反応体を、例えば粒状やペレット状、板状、筒状などの所望の形状に成形できるという自由度がある。これに対して、酸素イオン伝導性を有していない金属酸化物、例えば背景技術の項で述べた特許文献1に記載の酸素欠損を有する鉄の酸化物は、その内部に存在する酸素欠損は二酸化炭素との反応にほとんど寄与しないので、該酸素欠損を有効活用しようとすれば、該酸化物の比表面積を非常に大きくする必要がある。換言すれば、微粉末の状態で使用することが必須となり、それに起因して取り扱い性や、反応装置の設計の自由度が低い。 The conversion agent comprising the metal oxide used in the present invention has oxygen ion conductivity and has the following advantages. That is, in this conversion agent, the reversible oxygen deficiency present in the converter can also contribute to the reaction with carbon dioxide, so that the reactivity with carbon dioxide can be achieved without excessively increasing the specific surface area of this conversion agent. Is hard to decline. Therefore, there is a degree of freedom that the reactant containing the conversion agent can be formed into a desired shape such as a granular shape, a pellet shape, a plate shape, or a cylindrical shape. On the other hand, a metal oxide that does not have oxygen ion conductivity, for example, an iron oxide having an oxygen vacancy described in Patent Document 1 described in the background section, has an oxygen vacancy existing therein. Since it hardly contributes to the reaction with carbon dioxide, it is necessary to increase the specific surface area of the oxide in order to effectively utilize the oxygen deficiency. In other words, it is indispensable to use it in the state of fine powder, resulting in low handleability and flexibility in designing the reactor.
 以上のとおり、本発明の製造方法で用いられる金属酸化物からなる前記の変換剤は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有することが必須であるところ、そのような性質を有する金属酸化物としては、例えば酸化セリウム;安定化ジルコニア等に代表される蛍石型構造を有する金属酸化物(実質的に二酸化炭素との反応に使用する温度で立方晶系の蛍石型へと相転移するものも含まれる。)及び該蛍石型構造を有する酸化物へ酸素イオン伝導性や酸素欠損を向上させる金属元素を置換したもの;酸化ビスマス及び酸化ビスマスへ酸素イオン伝導性や酸素欠損を向上させる金属元素を置換したもの;一般式ABO3(A及びBは金属元素)で表されるペロブスカイト型構造を有する酸化物並びに該ABO3のAサイト及びBサイトを酸素イオン伝導性や酸素欠損を向上させる金属元素を置換したもの;一般式A225(A及びBは金属元素)で表されるブラウンミラライト型構造を有する酸化物並びに該A225のAサイト及びBサイトを酸素イオン伝導性や酸素欠損を向上させる金属元素を置換したもの;一般式Ln10Si627(LnはLa、Pr、Nd、Sm、Gd又はDyを表す。)で表される希土類珪酸塩;La2Mo29等のモズナ石型構造を有する酸化物;一般式Nd2Ln236(LnはY、Ce、Eu、Sm又はGdを表す)で表される希土類金属オキシフッ化物などが挙げられる。特に、酸素イオン伝導性が高く、かつ可逆的な酸素欠損を生じさせやすい点や、経済性の点から、酸化セリウムを用いることが好ましい。 As described above, the conversion agent comprising the metal oxide used in the production method of the present invention is essential to have oxygen ion conductivity and to have reversible oxygen vacancies. Examples of the metal oxide having fluorite include, for example, cerium oxide; metal oxide having a fluorite structure represented by stabilized zirconia (substantially a cubic fluorite type at a temperature used for reaction with carbon dioxide) And the oxide having the fluorite structure substituted with a metal element for improving oxygen ion conductivity and oxygen deficiency; bismuth oxide and bismuth oxide with oxygen ion conductivity and those obtained by substituting a metal element to enhance oxygen deficiency; formula ABO 3 (a and B is a metal element) oxide and the a site and B site of the ABO 3 has a perovskite structure represented by Those obtained by substituting a metal element to enhance oxygen ion conductivity, oxygen deficiency,; oxide and said A general formula A 2 B 2 O 5 (A and B represents a metal element) having a brownmillerite type structure represented by 2 B 2 O 5 A site and B site substituted with a metal element for improving oxygen ion conductivity and oxygen deficiency; general formula Ln 10 Si 6 O 27 (Ln is La, Pr, Nd, Sm, Gd or A rare earth silicate represented by Dy); an oxide having a moznaite structure such as La 2 Mo 2 O 9 ; a general formula Nd 2 Ln 2 O 3 F 6 (Ln is Y, Ce, Eu, Sm) Or a rare earth metal oxyfluoride represented by Gd). In particular, it is preferable to use cerium oxide from the viewpoints of high oxygen ion conductivity and reversible oxygen vacancies, and economical efficiency.
 本発明の製造方法で用いられる前記の変換剤として酸化セリウムを用いる場合、その酸化セリウムとしては、CeO2-x(式中、Ceは四価及び三価の混合価数を有し、xは0.5未満の正の数を表す。)で表され、可逆的な酸素欠損を有し、かつ蛍石型の結晶構造を有するものが好適に用いられる。この酸化セリウムは、含セリウム塩又はその水和物を大気等の酸化性雰囲気下に焼成することで蛍石型の構造の酸化セリウム(CeO2)を製造し、次いで該酸化セリウムを強還元して可逆的な酸素欠損を生成させることで得られる。焼成条件は、温度が好ましくは500~1400℃、更に好ましくは600~1300℃であり、時間は好ましくは1~20時間、更に好ましくは1~5時間である。強還元においては、還元雰囲気として、水素濃度が爆発下限以上、好ましくは20体積%以上の含水素雰囲気が用いられる。もちろん水素濃度が100体積%でもよい。温度は好ましくは700~1100℃、更に好ましくは800~1050℃であり、時間は好ましくは1~3時間、更に好ましくは1~2時間である。このような酸化セリウムの詳細は、例えば本出願人の先の出願に係るWO2010/004963に記載されている。 When cerium oxide is used as the conversion agent used in the production method of the present invention, as the cerium oxide, CeO 2-x (wherein Ce has a tetravalent and trivalent mixed valence, x is And a reversible oxygen deficiency and a fluorite-type crystal structure are preferably used. In this cerium oxide, cerium oxide having a fluorite structure (CeO 2 ) is produced by firing a cerium-containing salt or a hydrate thereof in an oxidizing atmosphere such as air, and then the cerium oxide is strongly reduced. And reversible oxygen deficiency. Regarding the firing conditions, the temperature is preferably 500 to 1400 ° C., more preferably 600 to 1300 ° C., and the time is preferably 1 to 20 hours, more preferably 1 to 5 hours. In strong reduction, a hydrogen-containing atmosphere having a hydrogen concentration of not less than the lower explosion limit, preferably not less than 20% by volume, is used as the reducing atmosphere. Of course, the hydrogen concentration may be 100% by volume. The temperature is preferably 700 to 1100 ° C., more preferably 800 to 1050 ° C., and the time is preferably 1 to 3 hours, more preferably 1 to 2 hours. Details of such cerium oxide are described, for example, in WO2010 / 004963 relating to the earlier application of the present applicant.
 また、酸化セリウムとして、CeO2-x(式中、Ceは三価及び三価未満の混合価数を有し、xは0.5~0.7の数を表す。)で表され、可逆的な酸素欠損を有し、かつ蛍石類似の超格子構造を有するものも好適に用いられる。蛍石類似とは、通常の酸化セリウムのような蛍石型構造の結晶体から酸素が抜けていくにしたがって、最初ランダムに存在する酸素欠損が、規則配列の酸素欠損へと変わった状態であり、厳密には蛍石型構造と呼べない状態をいう。例えばPbFe1219で表されるようなマグネトプランバイト型構造や、超伝導性を示すYBa2Cu36.9等の構造が挙げられる。また、超格子とは、複数の種類の結晶格子の重ね合わせによって、その周期構造が基本単位格子よりも長くなった結晶格子のことである。酸化セリウムが、蛍石類似の超格子構造を有することは、例えばX線構造解析によって確認できる。このような構造の酸化セリウムは、含酸素セリウム塩又はその水和物を前駆体とし、これを直接還元することで得ることができる。還元処理は、例えば水素ガスやアセチレンガスや一酸化炭素ガス等の還元性ガスの濃度が高濃度でかつ高温熱処理である強還元雰囲気中で行われる。還元性ガス濃度は好ましくは爆発下限以上~100体積%、更に好ましくは20体積%~100体積%である。処理温度は好ましくは500℃以上、更に好ましくは700℃~1200℃、一層好ましくは1000℃~1050℃である。強還元雰囲気は一般に常圧であるが、これに代えて加圧条件を用いてもよい。還元処理中、反応系内は還元性ガス雰囲気が終始維持され、反応系内が含酸素ガス雰囲気に曝されることはない。このような酸化セリウムの詳細は、例えば本出願人の先の出願に係るWO2008/140004に記載されている。 Further, the cerium oxide is represented by CeO 2-x (wherein Ce has a trivalent and mixed valence of less than trivalent, and x represents a number of 0.5 to 0.7), and is reversible. Those having a typical oxygen deficiency and having a superlattice structure similar to fluorite are also preferably used. Fluorite-like is a state in which the oxygen vacancies that initially exist at random are changed into ordered oxygen vacancies as oxygen escapes from the crystals of fluorite-type structures such as ordinary cerium oxide. Strictly speaking, it means a state that cannot be called a fluorite structure. Examples thereof include a magnetoplumbite type structure represented by PbFe 12 O 19 and a structure such as YBa 2 Cu 3 O 6.9 exhibiting superconductivity. The superlattice is a crystal lattice whose periodic structure is longer than the basic unit lattice by superimposing a plurality of types of crystal lattices. It can be confirmed, for example, by X-ray structural analysis that cerium oxide has a superlattice structure similar to fluorite. Cerium oxide having such a structure can be obtained by using an oxygen-containing cerium salt or a hydrate thereof as a precursor and directly reducing it. The reduction treatment is performed in a strong reducing atmosphere in which the concentration of a reducing gas such as hydrogen gas, acetylene gas, or carbon monoxide gas is high and heat treatment is performed at a high temperature. The reducing gas concentration is preferably not less than the lower limit of explosion to 100% by volume, more preferably 20% to 100% by volume. The treatment temperature is preferably 500 ° C. or higher, more preferably 700 ° C. to 1200 ° C., and still more preferably 1000 ° C. to 1050 ° C. The strongly reducing atmosphere is generally atmospheric pressure, but pressure conditions may be used instead. During the reduction treatment, a reducing gas atmosphere is maintained throughout the reaction system, and the reaction system is not exposed to the oxygen-containing gas atmosphere. The details of such cerium oxide are described in, for example, WO2008 / 140004 related to the applicant's previous application.
 ところで、本発明で用いられる、可逆的な酸素欠損を有する金属酸化物の他に、酸素の吸収が可能な金属酸化物として、OSC(酸素吸蔵放出能力)材料が知られている。OSC材料は自動車用触媒の助触媒としてよく用いられる。OSC材料は酸化セリウムが有する酸素イオン伝導性と価数変化を利用して、酸化反応に対しては酸素を放出し、還元反応に対しては酸素を吸収することで、排気ガス中のガス組成を安定化し、三元触媒による排気ガスの浄化を安定的に行うことを目的として用いられるものである。したがって、OSC材料は排気ガス中の一酸化炭素を二酸化炭素へ変換するための助触媒であって、二酸化炭素から一酸化炭素を生成させる本発明の製造方法とは、正反対の反応プロセスに用いられるものである。 By the way, in addition to the metal oxide having reversible oxygen deficiency used in the present invention, an OSC (oxygen storage and release capability) material is known as a metal oxide capable of absorbing oxygen. OSC materials are often used as promoters for automotive catalysts. The OSC material uses oxygen ion conductivity and valence change of cerium oxide, releases oxygen for oxidation reaction and absorbs oxygen for reduction reaction, so that the gas composition in exhaust gas Is used for the purpose of stably purifying exhaust gas with a three-way catalyst. Therefore, the OSC material is a co-catalyst for converting carbon monoxide in the exhaust gas to carbon dioxide, and is used in a reaction process opposite to the production method of the present invention that generates carbon monoxide from carbon dioxide. Is.
 本発明の製造方法において用いられる前記の変換剤と二酸化炭素ガスとの反応は、加熱下に行われる。加熱温度は例えば450~1000℃、特に450~800℃、とりわけ500~750℃に設定することが、二酸化炭素から一酸化炭素への変換効率を高める点、及び一旦生成した一酸化炭素の作用によって、前記の変換剤が還元されかつ二酸化炭素が再生されることを効果的に防止する点から好ましい。反応はバッチ式で行ってもよく、あるいは連続式で行ってもよい。変換剤と二酸化炭素ガスとの量は、本製造方法の反応が化学量論反応であることから、二酸化炭素1当量に対して、該変換剤を1当量以上、特に3当量以上とすることが好ましい。ここで言う1当量とは、例えば該変換剤がCeO2-x(xは前記と同義である。)で表される酸化セリウムである場合、該酸化セリウムに対し、x/2molのCO2が反応することである。 The reaction between the conversion agent and carbon dioxide gas used in the production method of the present invention is performed under heating. The heating temperature is set to, for example, 450 to 1000 ° C., particularly 450 to 800 ° C., particularly 500 to 750 ° C., to increase the conversion efficiency from carbon dioxide to carbon monoxide and to the action of carbon monoxide once generated. From the viewpoint of effectively preventing the conversion agent from being reduced and carbon dioxide from being regenerated. The reaction may be carried out batchwise or continuously. Since the reaction of this production method is a stoichiometric reaction, the amount of the conversion agent and carbon dioxide gas may be 1 equivalent or more, particularly 3 equivalents or more with respect to 1 equivalent of carbon dioxide. preferable. For example, when the conversion agent is cerium oxide represented by CeO 2-x (x is as defined above), x / 2 mol of CO 2 is equivalent to x / 2 mol of CO 2. To react.
 前記の変換剤は、種々の形態で二酸化炭素ガスと接触させることができる。例えばバッチ式反応装置であれば、粉末状の前記の変換剤を静置(又は充填)して反応を行うことができる他、前記の変換剤を造粒したもの、ペレット状、塊状、板状、ハニカム状、ラシヒリング状、ベルサドル状等の形状へ成型したものも静置(又は充填)して使用することも可能である。バッチ式反応装置内での二酸化炭素ガスの反応時間は、二酸化炭素から一酸化炭素への変換を十分に行う点、及び生成した一酸化炭素が変換剤と反応して二酸化炭素に戻ることを防止する点から、5分~3時間、特に5分~1時間に設定することが好ましい。一方、連続式反応装置であれば、筒状、板状、円盤状等の緻密膜で二酸化炭素を一酸化炭素へ変換する反応面と還元性ガスで酸素欠損を生成する再生面とが隔絶されている構造であればよい。 The conversion agent can be contacted with carbon dioxide gas in various forms. For example, in the case of a batch reactor, the powdered conversion agent can be allowed to stand (or filled) to carry out the reaction, and the conversion agent can be granulated, pelletized, massive, or plate-shaped. It is also possible to use a product formed into a shape such as a honeycomb shape, a Raschig ring shape, or a bell saddle shape by leaving (or filling). The reaction time of the carbon dioxide gas in the batch reactor is sufficient to convert carbon dioxide to carbon monoxide and prevent the generated carbon monoxide from reacting with the conversion agent and returning to carbon dioxide. From this point, it is preferable to set the time to 5 minutes to 3 hours, particularly 5 minutes to 1 hour. On the other hand, in the case of a continuous reaction apparatus, a reaction surface that converts carbon dioxide into carbon monoxide is separated from a regeneration surface that generates oxygen deficiency with a reducing gas by a dense membrane such as a cylinder, plate, or disk. Any structure can be used.
 前記の変換剤と接触させる二酸化炭素ガスは、二酸化炭素ガス100%であれば、後に分離の工程が必要ないため理想的であるが、その他のガスを少量含んでいてもよい。ただし、その他のガスが酸素ガス又は水蒸気等の含酸素ガスである場合、供給するガス全量に対する割合は極力少量であることが望ましい。 The carbon dioxide gas to be brought into contact with the conversion agent is ideal if it is 100% carbon dioxide gas because a separation step is not necessary later, but it may contain a small amount of other gases. However, when the other gas is an oxygen-containing gas such as oxygen gas or water vapor, the ratio to the total amount of the supplied gas is preferably as small as possible.
 図1には、本発明の製造方法で好適に用いられる一酸化炭素の製造装置が模式的に示されている。同図に示す装置は連続式のものであり、二重管構造になっている。詳細には、同図に示す装置10は、外管11と、該外管11内に配置された内管12とを備えている。内管12内にはヒーター等の加熱装置13が配置されている。内管12は前記の変換剤を含有している。この装置においては、外管11と内管12との間の空間に二酸化炭素ガスを流通させる。この空間内を二酸化炭素ガスが流通する間に、二酸化炭素ガスと、内管11に含まれる前記の変換剤とが反応して一酸化炭素が生成する。 FIG. 1 schematically shows a carbon monoxide production apparatus suitably used in the production method of the present invention. The apparatus shown in the figure is of a continuous type and has a double tube structure. Specifically, the apparatus 10 shown in the figure includes an outer tube 11 and an inner tube 12 disposed in the outer tube 11. A heating device 13 such as a heater is disposed in the inner tube 12. The inner tube 12 contains the conversion agent. In this apparatus, carbon dioxide gas is circulated in the space between the outer tube 11 and the inner tube 12. While carbon dioxide gas circulates in this space, carbon dioxide gas reacts with the conversion agent contained in the inner tube 11 to generate carbon monoxide.
 図1に示す装置10においては、外管11と内管12との間の空間に二酸化炭素ガスを流通させることに加えて、内管12内に還元性ガスを流通させるように構成されている(図1においては、還元性ガスの代表例である水素が記載されている。)。これによって、二酸化炭素ガスとの接触によって酸化された前記の変換剤から酸素が引き抜かれ、消失した酸素欠損が再び生成する。このように、同図に示す装置10を用いれば、前記の変換剤を二酸化炭素ガスと接触させて一酸化炭素を生成させた後に、二酸化炭素ガスとの接触によって酸化された該変換剤を還元性ガスと接触させて強還元を行い、該金属酸化物を再生することができる。このような繰り返しの再生処理が可能な理由は、前記の変換剤が酸素イオン伝導性を有しているからである。還元性ガスとしては、例えば水素ガスやアセチレンガスを用いることができる。特に水素ガスを含む還元性ガスを用いることが好ましい。そのような還元性ガスにおける水素ガスの濃度は、好ましくは爆発下限以上~100体積%、更に好ましくは20体積%~100体積%である。処理温度は好ましくは500~1200℃、更に好ましくは700℃~1200℃、一層好ましくは1000℃~1050℃である。強還元ガスは一般に常圧である。 The apparatus 10 shown in FIG. 1 is configured to circulate reducing gas in the inner pipe 12 in addition to circulating carbon dioxide gas in the space between the outer pipe 11 and the inner pipe 12. (In FIG. 1, hydrogen, which is a typical example of reducing gas, is described.) As a result, oxygen is extracted from the conversion agent oxidized by contact with carbon dioxide gas, and lost oxygen vacancies are generated again. Thus, if the apparatus 10 shown in the figure is used, carbon monoxide is generated by bringing the conversion agent into contact with carbon dioxide gas, and then the conversion agent oxidized by contact with the carbon dioxide gas is reduced. The metal oxide can be regenerated by carrying out strong reduction by contacting with a reactive gas. The reason why such repeated regeneration treatment is possible is that the conversion agent has oxygen ion conductivity. As the reducing gas, for example, hydrogen gas or acetylene gas can be used. In particular, it is preferable to use a reducing gas containing hydrogen gas. The concentration of hydrogen gas in such a reducing gas is preferably not less than the lower limit of explosion to 100% by volume, more preferably 20% to 100% by volume. The treatment temperature is preferably 500 to 1200 ° C, more preferably 700 ° C to 1200 ° C, and still more preferably 1000 ° C to 1050 ° C. Strong reducing gas is generally at atmospheric pressure.
 図1に示す装置においては、内管12の内部に加熱装置13を配置したが、これに代えて外管11の周囲に加熱装置を配置してもよい。尤も、一般に、二酸化炭素ガスと変換剤24との反応が起こる温度に比べて、酸化された変換剤24から酸素を強制的に引き抜く温度の方が高いことから、内管12の内部に加熱装置13を配置することが、酸素の強制的な引き抜きのしやすさの点から有利である。 In the apparatus shown in FIG. 1, the heating device 13 is disposed inside the inner tube 12, but a heating device may be disposed around the outer tube 11 instead. However, in general, the temperature at which oxygen is forcibly extracted from the oxidized conversion agent 24 is higher than the temperature at which the reaction between the carbon dioxide gas and the conversion agent 24 occurs. It is advantageous to arrange 13 in terms of ease of forced extraction of oxygen.
 なお図1に示す装置においては、二酸化炭素ガスの流通方向と還元性ガスの流通方向が同方向であったが、これに代えて二酸化炭素ガスの流通方向と還元性ガスの流通方向を反対方向にしてもよい。また、図1に示す装置の変形例として、外管11と内管12との間の空間に還元性ガスを流通させ、内管12内に二酸化炭素ガスを流通させるように構成することもできる。この場合には、内管12に含まれている前記の変換剤の再生を効率的に行うために、外管11の周囲に加熱装置を配置することが好ましい。 In the apparatus shown in FIG. 1, the flow direction of carbon dioxide gas and the flow direction of reducing gas are the same direction, but instead, the flow direction of carbon dioxide gas and the flow direction of reducing gas are opposite directions. It may be. Further, as a modification of the apparatus shown in FIG. 1, a reducing gas can be circulated in the space between the outer tube 11 and the inner tube 12, and carbon dioxide gas can be circulated in the inner tube 12. . In this case, in order to efficiently regenerate the conversion agent contained in the inner tube 12, it is preferable to arrange a heating device around the outer tube 11.
 図2に示す装置20は、二基のバッチ式反応装置21,22を備えている。更に装置20は、切替弁23を備えている。切替弁23は、二酸化炭素ガス源及び還元性ガス源(図2においては、還元性ガスの代表例である水素が記載されている。)にそれぞれ接続する入力部23a,23bを有している。更に切替弁23は、各反応装置21,22のそれぞれに接続する出力部23c,23dを有している。各反応装置21,22内には、前記の変換剤24の配置が可能になっている。また、各反応装置21,22の周囲には、加熱装置25が配置されている。 The apparatus 20 shown in FIG. 2 includes two batch- type reaction apparatuses 21 and 22. Furthermore, the device 20 includes a switching valve 23. The switching valve 23 has input parts 23a and 23b respectively connected to a carbon dioxide gas source and a reducing gas source (in FIG. 2, hydrogen, which is a representative example of the reducing gas, is described). . Furthermore, the switching valve 23 has output parts 23c and 23d connected to the reaction devices 21 and 22, respectively. The conversion agent 24 can be arranged in each of the reaction apparatuses 21 and 22. A heating device 25 is disposed around each of the reaction devices 21 and 22.
 図2に示す装置20においては、切替弁23を介して各反応装置21,22に二酸化炭素ガス又は還元性ガスが択一的にかつ同時に供給されるようになっている。これに加えて、切替弁23の切り替えによって、各反応装置に供給されるガスの種類を切り替えられるようになっている。 In the apparatus 20 shown in FIG. 2, carbon dioxide gas or reducing gas is alternatively and simultaneously supplied to each of the reaction apparatuses 21 and 22 via the switching valve 23. In addition to this, the type of gas supplied to each reactor can be switched by switching the switching valve 23.
 図2に示す装置を運転する場合には、まず、切替弁23を図2に示す位置に設定し、二酸化炭素ガスが第2反応装置22に供給され、かつ還元性ガスが第1反応装置21に供給されるようにする。そして、加熱装置25によって各反応装置21,22を加熱して、各反応装置21,22に還元性ガス及び二酸化炭素ガスを供給する。このようにすると、第1反応装置21においては、その内部に静置された前記の変換剤24が強還元されて、酸素が強制的に引き抜かれ、可逆的な酸素欠損が変換剤24に生じる。一方、第2反応装置22においては、二酸化炭素と変換剤24の反応によって一酸化炭素が生成するとともに、該変換剤24中の酸素欠損の数が次第に減少してくる。そして、第2反応装置22における一酸化炭素の生成量が減少してきたら、切替弁23を切り替えて、二酸化炭素ガスが第1反応装置21に供給され、かつ還元性ガスが第2反応装置22に供給されるようにする。第1反応装置21内に静置されている変換剤24は、二酸化炭素ガスと接触していない活性の高いものなので、これを二酸化炭素ガスと接触させることで、一酸化炭素の生成量が増加に転じる。一方第2反応装置22においては、酸素欠損の数が減少して活性の低下した変換剤24が強還元されて、酸素が強制的に引き抜かれ、可逆的な酸素欠損が変換剤24に再び生じる。 When the apparatus shown in FIG. 2 is operated, first, the switching valve 23 is set to the position shown in FIG. 2, carbon dioxide gas is supplied to the second reaction apparatus 22, and reducing gas is supplied to the first reaction apparatus 21. To be supplied to. And each reaction apparatus 21 and 22 is heated with the heating apparatus 25, and reducing gas and carbon dioxide gas are supplied to each reaction apparatus 21 and 22. FIG. In this way, in the first reaction device 21, the conversion agent 24 placed inside is strongly reduced, oxygen is forcibly extracted, and a reversible oxygen deficiency is generated in the conversion agent 24. . On the other hand, in the second reactor 22, carbon monoxide is generated by the reaction of carbon dioxide and the conversion agent 24, and the number of oxygen vacancies in the conversion agent 24 gradually decreases. When the amount of carbon monoxide produced in the second reactor 22 decreases, the switching valve 23 is switched to supply carbon dioxide gas to the first reactor 21 and reducing gas to the second reactor 22. To be supplied. Since the conversion agent 24 that is stationary in the first reactor 21 is highly active that is not in contact with carbon dioxide gas, the amount of carbon monoxide produced is increased by bringing it into contact with carbon dioxide gas. Turn to. On the other hand, in the second reactor 22, the conversion agent 24 whose activity is reduced due to a decrease in the number of oxygen vacancies is strongly reduced, oxygen is forcibly extracted, and reversible oxygen vacancies are generated again in the conversion agent 24. .
 図2に示す装置20においては、第1反応装置21と第2反応装置22の加熱温度は同じに設定してもよく、あるいは異なる温度に設定してもよい。一般に、二酸化炭素ガスと変換剤24との反応が起こる温度に比べて、酸化された変換剤24から酸素を強制的に引き抜く温度の方が高いことから、還元性ガスを供給する方の反応装置の加熱温度を、一酸化炭素を生成させる方の反応装置の加熱温度よりも高く設定することが好ましい。 In the apparatus 20 shown in FIG. 2, the heating temperatures of the first reaction apparatus 21 and the second reaction apparatus 22 may be set to the same or different temperatures. In general, the temperature at which oxygen is forcibly extracted from the oxidized conversion agent 24 is higher than the temperature at which the reaction between carbon dioxide gas and the conversion agent 24 occurs. Is preferably set higher than the heating temperature of the reactor that produces carbon monoxide.
 このように、二酸化炭素ガスと変換剤24との反応を、第1反応装置21と第2反応装置22とで交互に行うことで、該変換剤24を再生しつつ、一酸化炭素の生成を半連続的に行うことが可能になる。なお、図2に示す装置20においてはバッチ式反応装置を二基用いたが、これに代えて三基以上の反応装置を用いてもよい。 In this manner, the carbon dioxide gas and the conversion agent 24 are alternately reacted in the first reaction device 21 and the second reaction device 22 to regenerate the conversion agent 24 and generate carbon monoxide. Semi-continuous operation is possible. In the apparatus 20 shown in FIG. 2, two batch reactors are used, but three or more reactors may be used instead.
 図3に示す装置30は、前記の変換剤を含んで構成される板状体31と、板状のセパレータ32とが交互にスタックされた構造を有している。各セパレータ32の各面には、一方向に延びる複数の凸状部33及び凹条部34が交互に配置されている。これによって、板状体31と、これを挟んで対向する一対のセパレータとの間には、凹条部34によって形成されたガスの流通が可能な空間が形成される。また図示していないが、装置30は、スタック構造体の周囲に配置された加熱装置を備えている。 The apparatus 30 shown in FIG. 3 has a structure in which plate-like bodies 31 including the conversion agent and plate-like separators 32 are alternately stacked. A plurality of convex portions 33 and concave portions 34 extending in one direction are alternately arranged on each surface of each separator 32. As a result, a space is formed between the plate-like body 31 and the pair of separators that are opposed to each other with the gas formed by the concave portions 34. Moreover, although not shown in figure, the apparatus 30 is equipped with the heating apparatus arrange | positioned around the stack structure.
 図3に示す装置30を運転する場合には、加熱装置(図示せず)によってスタック構造体を所定温度に加熱した状態下に、板状体31を挟んで対向する2つのセパレータ32a,32bにおける一方のセパレータ32aと板状体31との対向面に位置する凹条部34aに二酸化炭素ガスを流通させる。この凹条部34a内を二酸化炭素ガスが流通する間に、二酸化炭素ガスと、板状体31に含まれる前記の変換剤とが反応して一酸化炭素が生成する。これに加えて、かつ他方のセパレータ32bと板状体31との対向面に位置する凹条部34bに還元性ガスを流通させるように構成する(図3においては、還元性ガスの代表例である水素が記載されている。)。これによって、二酸化炭素ガスとの接触によって酸化された前記の変換剤から酸素が引き抜かれ、消失した酸素欠損が再び生成する。このように、装置30を用いれば、先に説明した図1に示す装置10と同様に、前記の変換剤を二酸化炭素ガスと接触させて一酸化炭素を生成させた後、二酸化炭素ガスとの接触によって酸化された該変換剤を還元性ガスと接触させて強還元を行い、該金属酸化物を再生することができる。 When the apparatus 30 shown in FIG. 3 is operated, in the two separators 32a and 32b facing each other with the plate-like body 31 interposed therebetween while the stack structure is heated to a predetermined temperature by a heating device (not shown). Carbon dioxide gas is circulated through the concave portion 34a located on the opposing surface of one separator 32a and the plate-like body 31. While carbon dioxide gas flows through the recess 34a, the carbon dioxide gas reacts with the conversion agent contained in the plate 31 to generate carbon monoxide. In addition to this, the reducing gas is circulated through the concave portion 34b located on the opposing surface of the other separator 32b and the plate-like body 31 (in FIG. 3, a representative example of reducing gas). Some hydrogen is described.) As a result, oxygen is extracted from the conversion agent oxidized by contact with carbon dioxide gas, and lost oxygen vacancies are generated again. As described above, when the apparatus 30 is used, as in the apparatus 10 shown in FIG. 1 described above, the conversion agent is brought into contact with carbon dioxide gas to generate carbon monoxide, and then the carbon dioxide gas is used. The metal oxide can be regenerated by bringing the conversion agent oxidized by contact into contact with a reducing gas and performing strong reduction.
 図3に示す装置30の各セパレータ32は、その一方の面と他方の面に形成されている凸状部33及び凹条部34の延びる方向が90度ずれている。しかし、セパレータ32の各面に形成されている凸状部33及び凹条部34の延びる方向は、これに限られない。例えばセパレータ32の各面に形成されている凸状部33及び凹条部34の延びる方向は、90度以外の角度で交差していてもよく、あるいは同方向でもよい。セパレータ32の各面に形成されている凸状部33及び凹条部34の延びる方向が同方向である場合、セパレータ32の一方の面側の凹条部34に流通させるガスの方向と、他方の面側の凹条部34に流通させるガスの方向とは同方向でもよく、あるいは反対方向でもよい。 In each separator 32 of the device 30 shown in FIG. 3, the extending direction of the convex portion 33 and the concave portion 34 formed on one surface and the other surface is shifted by 90 degrees. However, the extending direction of the convex portion 33 and the concave strip portion 34 formed on each surface of the separator 32 is not limited to this. For example, the extending direction of the convex part 33 and the concave line part 34 formed on each surface of the separator 32 may intersect at an angle other than 90 degrees, or the same direction. When the extending direction of the convex part 33 and the concave line part 34 formed on each surface of the separator 32 is the same direction, the direction of the gas flowing through the concave line part 34 on one surface side of the separator 32 and the other The direction of the gas flowing through the groove 34 on the surface side may be the same direction or the opposite direction.
 なお、図2及び図3に示す装置に関して、特に説明しない点については、図1に示す装置に関する説明が適宜適用される。 Note that, regarding the device shown in FIGS. 2 and 3, the description regarding the device shown in FIG.
 また、本発明によれば、前記の変換剤を用いた、二酸化炭素を一酸化炭素に変換するシステムも提供される。このシステムにおいては、産業上、二酸化炭素ガスの主要な発生源である精錬所、製鉄所又は火力発電所から発生した排気ガス中に含まれる二酸化炭素を、公知の手法を用いて分離する。そして分離された二酸化炭素を、前記の変換剤と接触させる。このとき、精錬所、製鉄所又は火力発電所から発生した廃熱を用いた加熱下に接触させれば、エネルギー効率を高めることができて有利である。この加熱下の接触によって一酸化炭素が生成する。このシステムによれば、二酸化炭素ガスが大気中に放出されることが抑制されるだけでなく、生成した一酸化炭素を、C1ケミストリーの原料として有効活用できるという利点がある。あるいは、生成した一酸化炭素を、例えば製鉄所の高炉にフィードバックして、再使用することもできる。 Further, according to the present invention, a system for converting carbon dioxide into carbon monoxide using the conversion agent is also provided. In this system, carbon dioxide contained in exhaust gas generated from a smelter, ironworks or thermal power plant, which is a main source of carbon dioxide gas, is separated using a known method. The separated carbon dioxide is brought into contact with the conversion agent. At this time, if the waste heat generated from the smelter, ironworks or thermal power plant is contacted under heating, it is advantageous in that energy efficiency can be increased. Carbon monoxide is produced by the contact under heating. According to this system, not only carbon dioxide gas is prevented from being released into the atmosphere, but also the produced carbon monoxide can be effectively used as a raw material for C1 chemistry. Alternatively, the produced carbon monoxide can be fed back to, for example, a blast furnace at a steel mill and reused.
 精錬所又は製鉄所においては、排気ガスとして二酸化炭素ガスが生成する他、水素ガスも生成する。特に精錬所においては水素ガスが多量に生成する。この水素ガスを、二酸化炭素ガスとの接触によって酸化された前記の変換剤の再生に用いれば、別途水素ガスを用意することなく、可逆的な酸素欠損を有する前記の変換剤を得ることができるので、エネルギー効率が一層高くなり有利である。 In smelters or steelworks, carbon dioxide gas is generated as exhaust gas, and hydrogen gas is also generated. Particularly in smelters, hydrogen gas is produced in large quantities. If this hydrogen gas is used for regeneration of the conversion agent oxidized by contact with carbon dioxide gas, the conversion agent having a reversible oxygen deficiency can be obtained without preparing a separate hydrogen gas. Therefore, energy efficiency is further increased, which is advantageous.
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.
  〔実施例1〕
(1)可逆的な酸素欠損を有する酸化セリウムの製造
(a)酸素欠陥を有しない酸化セリウムの合成
 炭酸セリウム100gを加熱炉内に静置し、空気を流通させながら加熱して焼成を行った。加熱は、室温から開始し、10℃/分の昇温速度で加熱を行い、1000℃に到達したのち、この温度を1時間保持した。その後、自然放冷した。空気の流通量は1000SCCMとした。このようにして酸素欠陥を有しない酸化セリウムの多孔質体を得た。XRDによる測定で、この酸化セリウムはCeO2で表され、蛍石型の結晶構造であることが確認された。この酸化セリウムをボールミルで粉砕処理した。
(b)酸素欠陥を有する酸化セリウムの合成
 前項(a)で得られた酸化セリウム(50g)を雰囲気制御型加熱炉内に静置し、100%の水素ガスを流通させながら加熱して還元を行った。加熱は、室温から開始し、10℃/分の昇温速度で加熱を行い、1000℃に到達したのち、この温度を1時間保持した。その後、自然放冷した。水素ガスの流通量は1000SCCMとした。このようにして、可逆的な酸素欠陥を有する酸化セリウムを得た。XRDによる測定の結果、この酸化セリウムは蛍石型の結晶構造であることが確認された。元素分析の結果、この酸化セリウムはCe(IV,III)O1.75で表されるものであった。
[Example 1]
(1) Production of cerium oxide having reversible oxygen vacancies (a) Synthesis of cerium oxide without oxygen vacancies 100 g of cerium carbonate was allowed to stand in a heating furnace and baked by heating while circulating air. . Heating was started from room temperature, heated at a rate of temperature increase of 10 ° C./min, and after reaching 1000 ° C., this temperature was maintained for 1 hour. Then, it naturally left to cool. The air flow rate was 1000 SCCM. In this way, a porous body of cerium oxide having no oxygen defects was obtained. Measurement by XRD confirmed that this cerium oxide was represented by CeO 2 and had a fluorite-type crystal structure. This cerium oxide was pulverized by a ball mill.
(B) Synthesis of cerium oxide having oxygen defects The cerium oxide (50 g) obtained in the previous section (a) is left in an atmosphere-controlled heating furnace, and is heated and reduced while flowing 100% hydrogen gas. went. Heating was started from room temperature, heated at a rate of temperature increase of 10 ° C./min, and after reaching 1000 ° C., this temperature was maintained for 1 hour. Then, it naturally left to cool. The circulation amount of hydrogen gas was 1000 SCCM. In this way, cerium oxide having reversible oxygen defects was obtained. As a result of measurement by XRD, it was confirmed that this cerium oxide has a fluorite-type crystal structure. As a result of elemental analysis, this cerium oxide was represented by Ce (IV, III) O 1.75 .
(2)二酸化炭素ガスからの一酸化炭素ガスの生成
 図4に示す装置を用いた、管状炉を窒素ガス雰囲気のグローブボックス内に設置した。管状炉内には、前項(1)で得られた可逆的な酸素欠損を有する酸化セリウムの粉末8.5gが静置されている。まず、バルブV5を閉じ、他のバルブはすべて開けて、管状炉内を真空吸引した。この状態のまま、バルブV1を閉じて管状炉を750℃まで加熱した。次いでバルブV2及びV3を閉じた後に管状炉内の吸引を停止した。バルブV4を締めて管状炉内に二酸化炭素ガス(100%)を供給した。供給は、管状炉内の圧力が大気圧になるまで行った。そしてバルブV1と閉じて1時間放置した。この時点での二酸化炭素ガスと可逆的な酸素欠損を有する酸化セリウムとの量論比は1:1(すなわち、先に述べた1当量)となるようにした。その後バルブV2を開け、更にガス回収袋が少し膨らむまで窒素ガスを管状炉内に供給した。次いで、バルブV2を閉じるととともに、ガス回収袋を熱シールして管から切り離した。この状態のまま管状炉を降温し、室温になるまで冷却した。冷却完了後、バルブV1を開けて管状炉内に窒素ガスを供給した。供給は、管状炉内の圧力が大気圧になるまで行った。最後に、バルブV3及びV5を開け、窒素ガスによって管状炉内の一酸化炭素を押し出した。ガス回収袋に回収した反応後のガスは、ガスクロマトグラフィーを用いて定性と定量を行った。その結果、二酸化炭素から一酸化炭素への変換率は60%であった。
(2) Production of carbon monoxide gas from carbon dioxide gas A tubular furnace using the apparatus shown in FIG. 4 was installed in a glove box in a nitrogen gas atmosphere. In the tubular furnace, 8.5 g of cerium oxide powder having reversible oxygen vacancies obtained in the preceding item (1) is placed. First, the valve V5 was closed, all other valves were opened, and the inside of the tubular furnace was vacuumed. In this state, the valve V1 was closed and the tubular furnace was heated to 750 ° C. Next, after the valves V2 and V3 were closed, the suction in the tubular furnace was stopped. The valve V4 was closed and carbon dioxide gas (100%) was supplied into the tubular furnace. The supply was continued until the pressure in the tubular furnace reached atmospheric pressure. Then, the valve V1 was closed and left for 1 hour. At this time, the stoichiometric ratio of carbon dioxide gas to cerium oxide having reversible oxygen deficiency was set to 1: 1 (that is, 1 equivalent described above). Thereafter, the valve V2 was opened, and nitrogen gas was supplied into the tubular furnace until the gas recovery bag was slightly expanded. Next, the valve V2 was closed, and the gas recovery bag was heat sealed and separated from the tube. In this state, the temperature of the tubular furnace was lowered and cooled to room temperature. After completion of cooling, the valve V1 was opened and nitrogen gas was supplied into the tubular furnace. The supply was continued until the pressure in the tubular furnace reached atmospheric pressure. Finally, the valves V3 and V5 were opened, and carbon monoxide in the tubular furnace was extruded with nitrogen gas. The gas after reaction collected in the gas collection bag was qualitatively and quantitatively analyzed using gas chromatography. As a result, the conversion rate from carbon dioxide to carbon monoxide was 60%.
  〔実施例2~9〕
 以下の表1に示す条件を採用する以外は実施例1と同様にして二酸化炭素ガスから一酸化炭素ガスを生成させた。そのときの変換率を同表に示す。なお、同表には実施例1の結果も併せて記載してある。
[Examples 2 to 9]
Carbon monoxide gas was produced from carbon dioxide gas in the same manner as in Example 1 except that the conditions shown in Table 1 below were adopted. The conversion rate at that time is shown in the same table. In the table, the results of Example 1 are also shown.
  〔比較例1〕
 本比較例は、実施例1で用いた可逆的な酸素欠損を有する酸化セリウムに代えて、酸素欠陥を有しない酸化セリウムを用いた例である。この酸素欠陥を有しない酸化セリウムは、実施例1における可逆的な酸素欠損を有する酸化セリウムの製造工程の途中で生成した中間物である、酸素欠陥を有しない酸化セリウムと同じものである。この酸素欠陥を有しない酸化セリウムを用い、表1に示す条件を採用する以外は実施例1と同様にして、二酸化炭素ガスから一酸化炭素ガスを生成させた。そのときの変換率を同表に示す。
[Comparative Example 1]
This comparative example is an example in which cerium oxide having no oxygen defect is used instead of cerium oxide having reversible oxygen deficiency used in Example 1. The cerium oxide having no oxygen defects is the same as the cerium oxide having no oxygen defects, which is an intermediate produced in the course of the production process of cerium oxide having reversible oxygen vacancies in Example 1. Carbon monoxide gas was produced from carbon dioxide gas in the same manner as in Example 1 except that this cerium oxide having no oxygen defect was used and the conditions shown in Table 1 were adopted. The conversion rate at that time is shown in the same table.
  〔比較例2〕
 本比較例は、実施例1で用いた可逆的な酸素欠損を有する酸化セリウムに代えて、不可逆的な酸素欠損のみを有する酸化セリウムを用いた例である。不可逆的な酸素欠損のみを有する酸化セリウムとして、下記の方法によって製造したカルシウムドープ酸化セリウムを用いた。このカルシウムドープ酸化セリウムは、背景技術の項で述べた特許文献3の第5欄第59~64行目に記載されている物質に相当するものである。このカルシウムドープ酸化セリウムを用い、表1に示す条件を採用する以外は実施例1と同様にして、二酸化炭素ガスから一酸化炭素ガスを生成させた。そのときの変換率を同表に示す。
[Comparative Example 2]
In this comparative example, cerium oxide having only irreversible oxygen vacancies was used instead of cerium oxide having reversible oxygen vacancies used in Example 1. As cerium oxide having only irreversible oxygen vacancies, calcium-doped cerium oxide produced by the following method was used. This calcium-doped cerium oxide corresponds to the substance described in column 5, lines 59 to 64 of Patent Document 3 described in the background art section. Using this calcium-doped cerium oxide, carbon monoxide gas was produced from carbon dioxide gas in the same manner as in Example 1 except that the conditions shown in Table 1 were adopted. The conversion rate at that time is shown in the same table.
 〔不可逆的な酸素欠損のみを有するカルシウムドープ酸化セリウムの合成〕
 炭酸水素アンモニウムとアンモニアと炭酸アンモニウムとシュウ酸とを水に溶解した水溶液を攪拌しながら、硝酸セリウム水溶液及び硝酸カルシウム水溶液を滴下し逆中和して沈殿を生成させた。硝酸セリウム水溶液及び硝酸カルシウム水溶液の滴下量は、セリウム及びカルシウムのモル濃度が、セリウム0.8に対しカルシウム0.2となるように調整した。生成した沈殿物をイオン交換水で2回洗浄してろ過した。その後、ろ過物を大気下に300℃で3時間にわたり仮焼成し、その後大気下に1000℃で3時間にわたり本焼成することでカルシウムドープ酸化セリウムを得た。XRDによる測定の結果、このカルシウムドープ酸化セリウムの格子定数は5.4158Åであった。カルシウムをドープしていない酸化セリウムの格子定数は5.4113Åであることから、得られたカルシウムドープ酸化セリウムは格子が膨張し、カルシウムが固溶していることが確認された。
[Synthesis of calcium-doped cerium oxide with only irreversible oxygen deficiency]
While stirring an aqueous solution in which ammonium hydrogen carbonate, ammonia, ammonium carbonate and oxalic acid were dissolved in water, a cerium nitrate aqueous solution and a calcium nitrate aqueous solution were added dropwise and reverse neutralized to form a precipitate. The dropping amount of the cerium nitrate aqueous solution and the calcium nitrate aqueous solution was adjusted so that the molar concentration of cerium and calcium was 0.2 with respect to cerium 0.8. The produced precipitate was washed twice with ion-exchanged water and filtered. Thereafter, the filtrate was calcined at 300 ° C. for 3 hours in the air, and then calcined at 1000 ° C. for 3 hours in the air to obtain calcium-doped cerium oxide. As a result of measurement by XRD, the lattice constant of this calcium-doped cerium oxide was 5.4158Å. Since the lattice constant of cerium oxide not doped with calcium is 5.4113 Å, it was confirmed that the obtained calcium-doped cerium oxide expanded in lattice and solid-dissolved calcium.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、可逆的な酸素欠損を有する酸化セリウムを用いて二酸化炭素を一酸化炭素に変換すると(実施例1~9)、高い変換率が得られることが判る。これに対し、酸素欠損を有しない酸化セリウムを用いて二酸化炭素を一酸化炭素に変換すると(比較例1)、その変換率は極めて低くなることが判る。不可逆的な酸素欠損のみを有する酸化セリウムを用いた場合(比較例2)も、その変換率は極めて低くなることが判る。 As is clear from Table 1, it is understood that high conversion can be obtained when carbon dioxide is converted into carbon monoxide using cerium oxide having reversible oxygen deficiency (Examples 1 to 9). On the other hand, when carbon dioxide is converted to carbon monoxide using cerium oxide having no oxygen deficiency (Comparative Example 1), it can be seen that the conversion rate is extremely low. It can be seen that also when cerium oxide having only irreversible oxygen deficiency is used (Comparative Example 2), the conversion rate is extremely low.

Claims (11)

  1.  酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と二酸化炭素ガスとを加熱下に接触させ、化学量論反応によって二酸化炭素を還元して、一酸化炭素を生成させることを特徴とする一酸化炭素の製造方法。 A metal oxide having oxygen ion conductivity and reversible oxygen deficiency is brought into contact with carbon dioxide gas under heating, and carbon monoxide is reduced by a stoichiometric reaction to generate carbon monoxide. A process for producing carbon monoxide characterized by the above.
  2.  前記の金属酸化物が、可逆的な酸素欠損を有する酸化セリウムからなる請求項1記載の製造方法。 The method according to claim 1, wherein the metal oxide is made of cerium oxide having reversible oxygen vacancies.
  3.  前記の金属酸化物が、CeO2-x(式中、Ceは四価及び三価の混合価数を有し、xは0.5未満の正の数を表す。)で表され、可逆的な酸素欠損を有し、かつ蛍石型の結晶構造を有する酸化セリウムからなる請求項2記載の製造方法。 The metal oxide is represented by CeO 2-x (wherein Ce has a tetravalent and trivalent mixed valence, and x represents a positive number less than 0.5) and is reversible. 3. The production method according to claim 2, comprising cerium oxide having an oxygen deficiency and a fluorite-type crystal structure.
  4.  前記の金属酸化物が、CeO2-x(式中、Ceは三価及び三価未満の混合価数を有し、xは0.5~0.7の数を表す。)で表され、可逆的な酸素欠損を有し、かつ蛍石類似の超格子構造を有する酸化セリウムからなる請求項2記載の製造方法。 The metal oxide is represented by CeO 2-x (wherein Ce has trivalent and mixed valences less than trivalent, x represents a number of 0.5 to 0.7), The production method according to claim 2, comprising cerium oxide having a reversible oxygen deficiency and a superlattice structure similar to fluorite.
  5.  前記の金属酸化物を二酸化炭素ガスと接触させて一酸化炭素を生成させた後、二酸化炭素ガスとの接触によって酸化された該金属酸化物を還元性ガスと接触させて該金属酸化物を再生する請求項1ないし4のいずれかに記載の製造方法。 After contacting the metal oxide with carbon dioxide gas to produce carbon monoxide, the metal oxide oxidized by contact with the carbon dioxide gas is contacted with a reducing gas to regenerate the metal oxide. The manufacturing method according to any one of claims 1 to 4.
  6.  外管と、該外管内に配置された内管とを備え、
     該内管は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物を含んで構成されており、
     該外管と該内管との間に二酸化炭素ガスを流通させ、かつ該内管内に還元性ガスを流通させるように構成されているか、又は
     該外管と該内管との間に還元性ガスを流通させ、かつ該内管内に二酸化炭素ガスを流通させるように構成されている一酸化炭素の製造装置。
    An outer tube, and an inner tube disposed in the outer tube,
    The inner tube includes a metal oxide having oxygen ion conductivity and having a reversible oxygen deficiency,
    Carbon dioxide gas is circulated between the outer tube and the inner tube, and a reducing gas is circulated in the inner tube, or a reducing property is provided between the outer tube and the inner tube. An apparatus for producing carbon monoxide configured to circulate gas and circulate carbon dioxide gas in the inner pipe.
  7.  二基以上のバッチ式反応装置と、二酸化炭素ガス源及び還元性ガス源のそれぞれに接続する入力部及び各反応装置のそれぞれ接続する出力部を有する切替弁とを備え、各反応装置内に、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物の配置が可能になっている一酸化炭素の製造装置であって、
     前記の切替弁を介して各反応装置に二酸化炭素ガス又は還元性ガスが択一的に、かつ同時に供給され、かつ該切替弁の切り替えによって各反応装置に供給されるガスの種類を切り替えられるように構成されている一酸化炭素の製造装置。
    Two or more batch type reactors, and a switching valve having an input unit connected to each of the carbon dioxide gas source and the reducing gas source and an output unit connected to each of the reactors, An apparatus for producing carbon monoxide capable of arranging a metal oxide having oxygen ion conductivity and having reversible oxygen vacancies,
    Carbon dioxide gas or reducing gas is alternatively and simultaneously supplied to each reactor via the switching valve, and the type of gas supplied to each reactor can be switched by switching the switching valve. Carbon monoxide production equipment configured in
  8.  酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物を含んで構成される板状体と、板状のセパレータとが交互にスタックされてなる一酸化炭素の製造装置であって、
     各セパレータの各面には、一方向に延びる複数の凸条部及び凹条部が交互に配置されており、
     前記の板状体を挟んで対向する2つのセパレータにおける一方のセパレータと該板状体との対向面に位置する凹条部に二酸化炭素ガスを流通させ、かつ他方のセパレータと該板状体との対向面に位置する凹条部に還元性ガスを流通させるように構成されている一酸化炭素の製造装置。
    This is a carbon monoxide production apparatus in which plate-like bodies comprising a metal oxide having oxygen ion conductivity and having reversible oxygen vacancies and plate-like separators are alternately stacked. And
    A plurality of ridges and ridges extending in one direction are alternately arranged on each surface of each separator,
    Carbon dioxide gas is circulated through the concave portion located on the opposing surface of one separator and the plate-like body in the two separators facing each other across the plate-like body, and the other separator and the plate-like body An apparatus for producing carbon monoxide configured to allow a reducing gas to circulate through a concave portion located on the opposite surface.
  9.  精錬所、製鉄所又は火力発電所から発生した排気ガス中に含まれる二酸化炭素を分離し、
     分離された二酸化炭素と、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物とを、精錬所、製鉄所又は火力発電所から発生した廃熱を用いた加熱下に接触させ、化学量論反応によって二酸化炭素を還元して、一酸化炭素を生成させることを特徴とする二酸化炭素を一酸化炭素に変換するシステム。
    Separating carbon dioxide contained in exhaust gas generated from smelters, steelworks or thermal power plants,
    Contacting the separated carbon dioxide with a metal oxide having oxygen ion conductivity and reversible oxygen deficiency under heating using waste heat generated from a smelter, ironworks or thermal power plant A system for converting carbon dioxide to carbon monoxide, characterized in that carbon dioxide is reduced by a stoichiometric reaction to produce carbon monoxide.
  10.  二酸化炭素ガスとの接触によって酸化された該金属酸化物を、精錬所又は製鉄所から発生した水素と接触させて、該金属酸化物に可逆的な酸素欠損を生じさせる請求項9記載のシステム。 10. The system according to claim 9, wherein the metal oxide oxidized by contact with carbon dioxide gas is brought into contact with hydrogen generated from a smelter or an ironworks to cause reversible oxygen deficiency in the metal oxide.
  11.  酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物からなることを特徴とする二酸化炭素の一酸化炭素への変換剤。 An agent for converting carbon dioxide to carbon monoxide, comprising a metal oxide having oxygen ion conductivity and reversible oxygen deficiency.
PCT/JP2011/059383 2010-04-26 2011-04-15 Method and apparatus for producing carbon monoxide WO2011136045A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012512768A JPWO2011136045A1 (en) 2010-04-26 2011-04-15 Carbon monoxide production method and production apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-101443 2010-04-26
JP2010101443 2010-04-26

Publications (1)

Publication Number Publication Date
WO2011136045A1 true WO2011136045A1 (en) 2011-11-03

Family

ID=44861353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059383 WO2011136045A1 (en) 2010-04-26 2011-04-15 Method and apparatus for producing carbon monoxide

Country Status (3)

Country Link
JP (1) JPWO2011136045A1 (en)
TW (1) TW201141783A (en)
WO (1) WO2011136045A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6843490B1 (en) * 2020-08-04 2021-03-17 積水化学工業株式会社 Gas manufacturing equipment, gas manufacturing system, steel manufacturing system, chemical manufacturing system and gas manufacturing method
JP2021075776A (en) * 2019-09-24 2021-05-20 積水化学工業株式会社 Iron manufacturing system and iron manufacturing method
WO2022029888A1 (en) * 2020-08-04 2022-02-10 積水化学工業株式会社 Gas production device, gas production system, and gas production method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305633B2 (en) * 2018-05-29 2023-07-10 積水化学工業株式会社 Catalyst, carbon dioxide reduction method, and carbon dioxide reduction device
JPWO2021192871A1 (en) * 2020-03-25 2021-09-30

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568853A (en) * 1991-09-11 1993-03-23 Nissan Motor Co Ltd Method for decomposing and recovering gaseous co2
JP2001322958A (en) * 2000-05-12 2001-11-20 Mitsubishi Electric Corp Method for fixing carbon dioxide and device for fixing carbon dioxide
WO2005088298A1 (en) * 2004-03-12 2005-09-22 Mitsui Mining & Smelting Co., Ltd. Oxygen detecting agent
WO2008001745A1 (en) * 2006-06-29 2008-01-03 Mitsui Mining & Smelting Co., Ltd. Dehumidifying/deoxidizing agent
WO2008140004A1 (en) * 2007-05-10 2008-11-20 Mitsui Mining & Smelting Co., Ltd. Deoxidant and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568853A (en) * 1991-09-11 1993-03-23 Nissan Motor Co Ltd Method for decomposing and recovering gaseous co2
JP2001322958A (en) * 2000-05-12 2001-11-20 Mitsubishi Electric Corp Method for fixing carbon dioxide and device for fixing carbon dioxide
WO2005088298A1 (en) * 2004-03-12 2005-09-22 Mitsui Mining & Smelting Co., Ltd. Oxygen detecting agent
WO2008001745A1 (en) * 2006-06-29 2008-01-03 Mitsui Mining & Smelting Co., Ltd. Dehumidifying/deoxidizing agent
WO2008140004A1 (en) * 2007-05-10 2008-11-20 Mitsui Mining & Smelting Co., Ltd. Deoxidant and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021075776A (en) * 2019-09-24 2021-05-20 積水化学工業株式会社 Iron manufacturing system and iron manufacturing method
JP6843490B1 (en) * 2020-08-04 2021-03-17 積水化学工業株式会社 Gas manufacturing equipment, gas manufacturing system, steel manufacturing system, chemical manufacturing system and gas manufacturing method
WO2022029886A1 (en) * 2020-08-04 2022-02-10 積水化学工業株式会社 Gas production device, gas production system, iron production system, chemical product production system, and gas production method
WO2022029888A1 (en) * 2020-08-04 2022-02-10 積水化学工業株式会社 Gas production device, gas production system, and gas production method
CN114302970A (en) * 2020-08-04 2022-04-08 积水化学工业株式会社 Gas production device, gas production system, iron-making system, chemical production system, and gas production method
EP3978434A4 (en) * 2020-08-04 2022-10-19 Sekisui Chemical Co., Ltd. Gas production device, gas production system, iron production system, chemical product production system, and gas production method

Also Published As

Publication number Publication date
TW201141783A (en) 2011-12-01
JPWO2011136045A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5858926B2 (en) Carbon monoxide production method and production apparatus
WO2012017916A1 (en) System for conversion of carbon dioxide into carbon monoxide in ironworks
Hare et al. Enhanced CO2 conversion to CO by silica-supported perovskite oxides at low temperatures
Zhang et al. Recent advances in lithium containing ceramic based sorbents for high-temperature CO 2 capture
Ding et al. A novel composite perovskite-based material for chemical-looping steam methane reforming to hydrogen and syngas
TWI603779B (en) Catalysts for thermochemical fuel production, and method of producing fuel using thermochemical fuel production
CA2017243C (en) Novel solid multi-component membranes, electrochemical reactor and use of membranes and reactor for oxidation reactions
Shafiefarhood et al. Iron-containing mixed-oxide composites as oxygen carriers for Chemical Looping with Oxygen Uncoupling (CLOU)
WO2011136045A1 (en) Method and apparatus for producing carbon monoxide
Zhu et al. Metal modified hexaaluminates for syngas generation and CO2 utilization via chemical looping
WO2018222749A1 (en) Supported perovskite-oxide composites for enhanced low temperature thermochemical conversion of co2 to co
JP5549732B2 (en) Hydrogen production method and apparatus
WO2012057161A1 (en) Method for producing carbon monoxide and production apparatus
Ezbiri et al. High redox performance of Y 0.5 Ba 0.5 CoO 3− δ for thermochemical oxygen production and separation
Liang et al. Cobalt-free dual-phase oxygen transporting membrane reactor for the oxidative dehydrogenation of ethane
JP6111070B2 (en) Carbon monoxide production method and production apparatus
KR20190013447A (en) High purity hydrogen production device and high purity hydrogen production method
Yang et al. Boosted carbon resistance of ceria-hexaaluminate by in-situ formed CeFexAl1− xO3 as oxygen pool for chemical looping dry reforming of methane
US20190039890A1 (en) High purity hydrogen production device and high purity hydrogen production method
US8357229B2 (en) Process for the production of oxygen at high temperature with materials of the manganese oxides type having a lamellar structure
Hernández-Fontes et al. Insight into CO selective chemisorption from syngas mixtures through Li 2 MnO 3; a new H 2 enrichment material
US20240067527A1 (en) Facile co2 sequestration and fuel production from a hydrocarbon
WO2008074181A1 (en) Oxygen separation membrane
KR101768001B1 (en) Hybrid solar heat-chemical looping process using oxygen carrier particle
US11584658B2 (en) Compositions, methods of making compositions, and hydrogen production via thermo-chemical splitting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512768

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774829

Country of ref document: EP

Kind code of ref document: A1