WO2011135969A1 - Method for producing induced pluripotent stem cells - Google Patents

Method for producing induced pluripotent stem cells Download PDF

Info

Publication number
WO2011135969A1
WO2011135969A1 PCT/JP2011/058027 JP2011058027W WO2011135969A1 WO 2011135969 A1 WO2011135969 A1 WO 2011135969A1 JP 2011058027 W JP2011058027 W JP 2011058027W WO 2011135969 A1 WO2011135969 A1 WO 2011135969A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
bone marrow
ips
pluripotent stem
cell
Prior art date
Application number
PCT/JP2011/058027
Other languages
French (fr)
Japanese (ja)
Inventor
健一 磯部
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2012512738A priority Critical patent/JPWO2011135969A1/en
Publication of WO2011135969A1 publication Critical patent/WO2011135969A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc

Definitions

  • the present invention relates to a method for producing induced pluripotent stem cells and uses thereof.
  • This application claims priority based on Japanese Patent Application No. 2010-103211 filed on Apr. 28, 2010, the entire contents of which are incorporated by reference.
  • Non-Patent Documents 1 to 5 The establishment of induced pluripotent stem cells (iPS cells) from mice or humans is a major breakthrough in regenerative medicine. This technology is expected to enable treatment using patients' own cells (regenerative medicine). Elderly people create iPS cells from their own cells and modify them as necessary to use them. The era of repairing organs and tissues whose functions have declined and treating diseases associated with aging is about to come.
  • iPS cells One of the issues to be overcome in clinical application of iPS cells is their low production efficiency.
  • iPS cells In order to use iPS cells for treatment of diseases and repair of organs and tissues that have deteriorated due to aging, it is necessary to develop a technique for efficiently producing iPS cells.
  • a technique for efficiently producing iPS cells In particular, in the present age of aging, it is required to provide a technique for efficiently producing iPS cells from somatic cells of elderly people (aging individuals). Then, this invention makes it a subject to provide the method of producing an iPS cell efficiently and simply.
  • the present inventors have intensively studied to solve the above problems, adopt bone marrow that can be collected relatively easily as a cell source, and perform transformation operations (transformation into iPS cells) by introducing transcription factors and the like.
  • transformation operations transformation into iPS cells
  • GM-CSF granulocyte monocyte colony-stimulating factor
  • Macrophage-colony-stimulating Factor granulocyte monocyte colony-stimulating Factor
  • the bone marrow of an aged mouse was cultured in a medium supplemented with GM-CSF for a short period, and then four transcription factors (Oct3 / 4, Sox2, Klf4, and c-Myc) were introduced.
  • GM-CSF GM-CSF
  • four transcription factors Oct3 / 4, Sox2, Klf4, and c-Myc
  • the appearance of iPS cell-like colonies was observed after about 1 month.
  • clones were established from the formed colonies and their characteristics were examined, they showed the ability to differentiate into three germ layers as well as iPS cells prepared from fibroblasts and highly expressed pluripotent stem cell markers.
  • iPS cells were successfully established from the bone marrow of an aging individual, and the above strategy was confirmed to be effective.
  • the age of the old mouse used in the experiments by the present inventors corresponds to 60s to 80s in terms of human age.
  • the successful establishment of iPS cells from such aged cells is a major breakthrough for the practical application of iPS cells.
  • iPS cells in past reports have been prepared from fetal fibroblasts in mice and young individual fibroblasts in humans. Even when producing from fibroblasts, the production efficiency of iPS cells is not good. Furthermore, it is more difficult to produce iPS cells from other cells. For example, in order to establish iPS cells from T cells, it is necessary to delete the p53 gene (Non-patent Document 6). On the other hand, although it has been reported that iPS cells have been successfully established from bone marrow (Non-patent Documents 7 and 8), the bone marrow of an aged individual is not used.
  • iPS cells are prepared from myeloma cells induced by stimulation with GM-CSF. Therefore, iPS cells suitable for application to regenerative medicine and free from gene rearrangement can be obtained. This is also an advantage unique to the production method of the present invention, and is worthy of special mention.
  • the present invention listed below is based on the above findings and results.
  • a method for producing induced pluripotent stem cells comprising the following steps (1) and (2): (1) culturing bone marrow in the presence of granulocyte monocyte colony-stimulating factor; (2) Transforming the proliferated cells into pluripotent stem cells.
  • a method for producing a cell differentiated into a specific cell lineage which comprises subjecting the induced pluripotent stem cell according to any one of [6] to [8] to a differentiation induction treatment.
  • a method for preparing cells for producing induced pluripotent stem cells comprising culturing bone marrow in the presence of granulocyte monocyte colony-stimulating factor.
  • EGFP enhanced green fluorescent protein
  • Bone marrow cells cultured for 4 days in the presence of GM-CS (BMD4) are cultured for 7 days (BMD7; cells obtained under normal conditions to induce bone marrow dendritic cells).
  • BMD7 cells obtained under normal conditions to induce bone marrow dendritic cells.
  • ⁇ , IL-1b), chemokine (ccl7), transcription factors (C / EBPa, Pu-1) are expressed, but iPS cells (BM-M-iPS) established from senescent bone marrow myeloma cells are produced from MEF Similar to iPS cells, the expression of these cytokines is reduced.
  • BM-M-iPS pluripotent stem cell markers Nanog, Oct4, FgF4, Esg-1 and Cript
  • BM-i-DC BM-M-iPS
  • MEF-iPS MEF-iPS
  • the upper row shows mesoderm tissue expressing ⁇ -actin.
  • the middle row shows endoderm tissue expressing ⁇ -fetoprotein.
  • the lower row shows ectoderm tissue expressing neurofilament H.
  • C iPS cells were cultured on OP9 seeded in a 6-well plate coated with 0.1% gelatin. After culturing for 5 days, a phase contrast microscope image was taken ( ⁇ 100).
  • Bottom BM-M-iPS on day 5 of co-culture with OP9.
  • BM-M-iPS differentiation Analysis results of cell surface markers before and after differentiation induction. BM-M-iPS cells and MEF-iPS cells were induced to differentiate into myeloma using GM-CSF, and then the myeloma cell surface marker was detected. Chimeric mice obtained using BM-M-iPS cells.
  • the present invention provides a novel method for producing induced pluripotent stem cells (hereinafter also referred to as the production method of the present invention).
  • “Induced pluripotent stem cells” are cells having pluripotency (multipotency) and proliferative ability, which are produced by reprogramming somatic cells by introduction of reprogramming factors. Induced pluripotent stem cells exhibit properties similar to embryonic stem cells (ES cells). For convenience of explanation, in the present specification, induced pluripotent stem cells may be abbreviated as iPS cells.
  • step (1) step of culturing bone marrow in the presence of granulocyte monocyte colony-stimulating factor
  • step (2) proliferated cells as pluripotent stem cells
  • GM-CSF granulocyte monocyte colony-stimulating factor
  • bone marrow is prepared.
  • Bone marrow can be collected in the usual way (for example, the bone marrow transplant promotion foundation donor safety committee edited by the bone marrow transplant promotion foundation third edition is helpful). For example, it can be collected from the iliac bone using a bone marrow puncture needle.
  • the collected bone marrow may be subjected to pretreatment. Examples of the pretreatment here include removal of impurities by filter treatment, separation of cell components by centrifugation, washing with PBS, and the like.
  • the animal species of bone marrow is not particularly limited. Bone marrow collected from humans is preferably used, but animals other than humans (including pet animals, domestic animals, laboratory animals. Specifically, examples include mice, rats, guinea pigs, hamsters, monkeys, cows, pigs, goats, sheep. Bone marrow collected from dogs, cats, chickens, etc.).
  • the activity of a cell depends on the age of the individual from which it is derived. That is, the cells of old individuals are usually less active than the cells of young individuals. For this reason, when producing iPS cells from cells of old individuals, the success rate (production efficiency) is low. According to the present invention, iPS cell production efficiency can be improved, and iPS cells can be obtained relatively stably from cells of old individuals. In one embodiment of the present invention, this feature is utilized to produce iPS cells using human bone marrow after the middle age. In another embodiment, human bone marrow after middle age is used, and in another embodiment, human bone marrow after senior age is used.
  • the present invention that improves the production efficiency of iPS cells greatly contributes to the development of medical treatment for patients after the middle age when the risk of disease increases.
  • the present invention is particularly effective when the cells of old individuals, in other words, cells with low activity, are used as the source, but the scope of application is not particularly limited. You may use a cell of an age individual as a source.
  • Bone marrow prepared as described above is subjected to culture in the presence of GM-CSF. Specifically, bone marrow is cultured in a medium supplemented with GM-CSF. Prior to culturing under such conditions, culturing may be performed in a medium not containing GM-CSF. For example, GM-CSF-free medium is used for primary culture (or primary culture and several subsequent passages), and GM-CSF-containing medium is used for subsequent subcultures.
  • the animal species of GM-CSF to be used may not be the same as the animal species of bone marrow, but the animal species are preferably combined so that the action of GM-CSF can be exhibited well. For example, when human bone marrow is used, it is preferable to use human GM-CSF. Matching animal species in this way is also preferable in terms of preventing the introduction of components derived from different animals and improving safety.
  • GM-CSF is a cytokine (hematopoietic growth factor) that promotes differentiation into hematopoietic stem cells, and promotes proliferation and differentiation of progenitor cells of granulocytes and monocytes / macrophages.
  • GM-CSF is mainly secreted from activated T cells.
  • GM-CSF also has colony-forming activity of erythroblasts, eosinophils, and megakaryocytes, and has been reported to be widely involved in the hematopoietic mechanism of living organisms.
  • GM-CSF separated and purified from a living body may be used, or recombinantly produced GM-CSF (recombinant GM-CSF) may be used.
  • Several GM-CSFs are commercially available (for example, provided by Cosmo Bio Co., Ltd., Biochemical Bio Business Co., Ltd., Miltenyi Biotech Co., Ltd., etc.), and such commercially available products can also be
  • the concentration of GM-CSF in the medium is not particularly limited, and can be set as appropriate by preliminary experiments or the like.
  • An example of the GM-CSF concentration is 1 ng / ml to 100 ng / ml, and a preferred concentration is 5 ng / ml to 20 ng / ml.
  • the GM-CSF concentration need not be constant throughout the entire culture period. For example, it is possible to employ a culture condition in which the added concentration becomes higher in the later stage of culture.
  • the culture period using the GM-CSF-containing medium is, for example, 1 to 20 days, preferably 2 to 14 days, more preferably 3 to 7 days, and even more preferably 3 to 5 days.
  • the medium used in the present invention can be constituted by adding necessary components to the basic medium. Iscov modified Dulbecco medium (IMDM) (GIBCO, etc.), ham F12 medium (HamF12) (SIGMA, Gibco, etc.), Dulbecco's modified Eagle medium (D-MEM) (Nacalai Tesque, Sigma, Gibco, etc.), Glasgow basic medium (Gibco, etc.), RPMI1640 medium, etc. can be used. Two or more basic media may be used in combination.
  • IMDM Iscov modified Dulbecco medium
  • HamF12 HamF12
  • D-MEM Dulbecco's modified Eagle medium
  • RPMI1640 medium etc. Two or more basic media may be used in combination.
  • IMDM / HamF12 As an example of the mixed medium, a medium in which IMDM and HamF12 are mixed in equal amounts (for example, commercially available as trade name: IMDM / HamF12 (Gibco)) can be mentioned.
  • components that can be added to the medium include serum (fetal calf serum, human serum, sheep serum, etc.), serum replacement (Knockout serum replacement (KSR), etc.), bovine serum albumin (BSA), antibiotics, 2-mercapto Examples include ethanol, leukemia inhibitory factor (LIF), PVA, L-glutamine, insulin, transferrin, and selenium.
  • Other culture conditions such as culture temperature may be in accordance with normal culture conditions for mammalian cells. That is, for example, it may be cultured in an environment of 37 ° C. and 5% CO 2 .
  • iPS cell production The most basic method of iPS cell production is to introduce four factors, transcription factors Oct3 / 4, Sox2, Klf4 and c-Myc, into cells using viruses (Takahashi K, Yamanaka S : Cell 126 (4), 663-676, 2006; Takahashi, K, et al: Cell 131 (5), 861-72, 2007).
  • Human iPS cells have been reported to be established by introducing four factors, Oct4, Sox2, Lin28 and Nonog (Yu J, et al: Science 318 (5858), 1917-1920, 2007).
  • Three factors excluding c-Myc (Nakagawa M, et al: Nat. Biotechnol.
  • lentiviruses (Yu J, et al: Science 318 (5858), 1917-1920, 2007), adenoviruses (Stadtfeld M, et al: Science 322 (5903 ), 945-949, 2008), plasmid (Okita K, et al: Science 322 (5903), 949-953, 2008), transposon vectors (Woltjen K, Michael IP, Mohseni P, et al: Nature 458, 766- 770, 2009; Kaji K, Norrby K, Pac a A, et al: Nature 458, 771-775, 2009; Yusa K, Rad R, Takeda J, et al: Nat Methods 6, 363-369, 2009), or Techniques using episomal vectors (Yu J, Hu K, Smuga-Otto K, Tian S, et al: Science 324, 797-801, 2009) have been developed.
  • pluripotent stem cell markers such as Fbxo15, Nanog, Oct / 4, Fgf-4, Esg-1, and Cript Etc. can be selected as an index.
  • the selected cells are collected as iPS cells.
  • the iPS cells obtained by the production method of the present invention are used for drug discovery research tools (eg, development of cell-based assay systems such as screening systems for drug efficacy and safety testing), research tools for elucidating disease states (eg, human diseases) Production of model cells or model animals), or a raw material or material for cell medicine / regenerative medicine.
  • drug discovery research tools eg, development of cell-based assay systems such as screening systems for drug efficacy and safety testing
  • research tools for elucidating disease states eg, human diseases
  • Production of model cells or model animals e.g, human diseases
  • iPS cells are differentiated into a desired cell lineage in principle. Therefore, the present invention also provides a method for producing a cell differentiated into a specific cell lineage, characterized by subjecting the iPS cell produced by the production method of the present invention to differentiation induction treatment.
  • iPS cells obtained by the production method of the present invention As a means for inducing differentiation of iPS cells obtained by the production method of the present invention into a specific cell lineage, various differentiation induction methods reported in the past for iPS cells can be used, as well as embryonic stem cells (ES cells) The differentiation induction method reported for) can also be applied with modifications as necessary.
  • ES cells embryonic stem cells
  • embryoid body (EB) formation method (Chinzei R, Tanaka Y, et al: Hepatology 36, 22-29, 2002; Yamada T, Yoshikawa M, et al: Stem Cells 20, 146-154, 2002; Asahina K , Fujimori H, et al: Genes Cells 9, 1297-1308, 2004; Choi D, Lee HJ, et al: Stem Cells 23, 817-827, 2005) is the most common method for differentiating ES cells in vitro Is.
  • the EB formation method may be applied when inducing differentiation of the iPS cells obtained by the production method of the present invention.
  • ES cell differentiation induction methods include EB formation, differentiation induction by forced expression of specific genes (Levinson-Dushnik M, Benvenisty N, et al: Mol Cell BioI 17, 3817-3822, 1997; Ishizaka S, Shiroi A, et al: FASEB J 16, 1444-1446, 2002; Fujikura J, Yamato E, et al:: Genes Dev 16, 784-789, 2002; Blyszczuk P, Czyz J, et al: Proc Sat cad 100, 998-1003, 2003; Miyazaki S, Yamato E, et al: Diabetes 53, be1030-1037, 2004), co-culture with stromal cells (Shiraki ⁇ N, Lai CJ, et al: Genes Cells 10, 503)
  • mice were purchased from Japan SLC.
  • EGFP-C57BL / 6 mice C14-Y01-FM131Osb expressing GFP (Green Fluorescent Protein) throughout the body were sold from RIKEN with permission from Mr. Okabe (Reference 7). These mice were bred at the Experimental Animal Center of Nagoya University School of Medicine based on the animal experiment guidelines of Nagoya University.
  • mice embryo fibroblasts MEF
  • the uterus was removed from a B6 mouse at 13.5 gestation and washed with PBS.
  • the head and abdominal tissues of the separated embryos were removed, the remainder was finely cut with scissors, and the cells were dispersed using 0.25% trypsin / 1 mM EDTA.
  • the cells thus obtained were cultured in DMEM (Dulbecco's Modified Eagle Medium) containing 10% FCS.
  • Bone marrow derived myeloid cells are obtained from 0.3% GM-CSF supernatant (from Toray Dow Corning Silicone Co., Ltd.) based on the method of Inaba et al. RPMI1640 medium (10% FBS, 300 ⁇ g / mL glutamine, 100 U / mL penicillin, 100 ⁇ g / mL streptomycin and 50 ⁇ M 2-mercaptoethanol) supplemented with GM-CSF-producing hamster cell culture supernatant) Obtained).
  • Plat-E packaging cells were purchased from Professor Kitamura (Non-patent Document 9).
  • SNL / 76/7 cells producing LIF were obtained by introducing a LIF expression construct into STO cells (Non-patent Document 10).
  • Plat-E cells were cultured in a 6-well plate (cell density of 5 ⁇ 10 5 per well) and 4 transcription factor genes (Oct3 / 4, Sox2, Klf4 and c) cloned into pMXs vector -Myc) was introduced using Fugene 6 gene introduction reagent (Roche). Specifically, vector and Fugene 6 were mixed and sprinkled drop by drop onto Plat-E cells. After incubation for 24 hours at 37 ° C. and 5% CO 2 , the medium (MEM) was changed.
  • MEM medium
  • a virus-containing supernatant was obtained by passing through a 0.45 ⁇ m mesh cellulose acetate filter (Schleicher & Schuell).
  • MEF and BM-M cells were seeded at a cell density of 5 ⁇ 10 5 cells on mitomycin C-treated SNL / 76/7 cells (1 ⁇ 10 6 cells / well).
  • the virus-containing supernatant was sprinkled.
  • the medium (MEM) was changed (24 hours after MEF and 48 hours after BM-B), and the culture was continued until colonies appeared.
  • EB Embryoid body formation
  • Previous protocol Ohnuki, M., Takahashi, K., and Yamanaka, S. (2009) Curr. Protoc. Stem Cell Biol., 9, 4A.
  • In vitro differentiation was induced through EB formation by a method with slight modification to 2.1-4A.2.25.).
  • cells were suspended in a culture solution for iPS cells at a density of 3 ⁇ 10 3 cells / 20 ⁇ L, and hanging drop culture was performed for 8 days.
  • the formed EB was transferred to a 0.1% gelatin-coated dish and further induced to differentiate for 10 days.
  • Immunohistochemical staining was performed using ⁇ -fetoprotein (R & D MAB1368) as the endoderm marker, ⁇ -smooth muscle actin (Sigma A2547) as the mesoderm marker, and neurofilament H (Cell signaling No. 2836) as the ectoderm marker. .
  • EGFPC57BL / 6 mouse bone marrow was cultured in GM-CSF for 4 days, and then 4 factors were introduced (introduction was performed twice with the expectation that efficiency would increase). After one month, several colonies were observed. When these colonies were removed with a pipette and transferred onto mitomycin C-treated SNL / 76/6 cells that had been cultured in a 24-well plate, two clones grew (FIG. 1). The morphology of these clones was similar to iPS cells and ES cells prepared from fetal fibroblasts (MEF) (FIG. 2).
  • BM-M-iPS iPS cells prepared from senescent bone marrow myelocytes.
  • BM-M-iPS iPS cells
  • BM-M-iPS showed the same gene expression profile as MEF-iPS prepared from MEF.
  • the expression of Nanog, Oct / 4, Fgf-4, Esg-1 and Cript which are known to increase in pluripotent stem cells, is increased in the same way as MEF-iPS.
  • BM-M-iPS In vitro differentiation of iPS cells prepared from senescent (21 months old) bone marrow myelocytes
  • BM-M-iPS was cultured for 8 days by the hanging drop method to form embryoid bodies (EB). Subsequently, EB was transferred to a 0.1% gelatin-coated 24-well plate (FIG. 7A). After culturing for 10 days, it was stained with a tissue-specific antibody.
  • Differentiated BM-M-iPS cells expressed GFP (FIG. 7B left) and also expressed ⁇ -smooth muscle actin, ⁇ -fetoprotein and neurofilament H (middle of FIG. 7B).
  • MEF-iPS was induced to differentiate (data not shown).
  • the proportion of cells expressing ⁇ -smooth muscle actin was 50% for BM-M-iPS and 61.2% for MEF-iPS.
  • ⁇ -fetoprotein expression was observed in 84.1% of BM-M-iPS cells and 51.7% of MEF-iPS cells.
  • neurofilament H was expressed in 68% of cells for BM-M-iPS and 73.1% for MEF-iPS.
  • BM-M-iPS after differentiation induction could be returned to myeloid cells.
  • BM-M-iPS and MEF-iPS were co-cultured with OP9 cells for 5 days, respectively. Thereafter, the OP9 cells were replaced, and further cultured for 5 days in a culture solution for OP9 supplemented with GM-CSF (FIG. 7C). Subsequently, the cells were transferred to a 6-well plate (no treatment for cell adhesion). At this stage, myeloid-like cells were observed for both BM-M-iPS and MEF-iPS (FIG. 7D).
  • the 8-cell embryo was removed from the zona pellucida and transferred to an aggregation plate. Immediately before aggregation with the 8-cell stage embryo, a mass of BM-M-iPS cells (8 to 15 cells) was collected by trypsin treatment. Then, the 8-cell embryo from which the transparent body was removed and the mass of BM-M-iPS cells were aggregated. After aggregation, they were transplanted into the uterus of E2.5 pseudopregnant female mice.
  • IPS cells were successfully established from aged mouse bone marrow-derived myeloma cells. This achievement is particularly important in the following three points. First, iPS cells were prepared from myeloid cells derived from bone marrow, second, iPS cells were prepared from aged mice, and third, established iPS cells were most commonly used C57BL / Since it is derived from 6 mice and possesses a GFP marker expressed throughout the body, it does not receive immune rejection when used in transfer experiments, and the location (location) of cells after transfer can be easily confirmed.
  • iPS cells A simple and safe method is required to establish iPS cells from human autologous cells and use them for treatment of self-diseases and regeneration of tissues damaged by aging (personalized cells and therapies). So far, various cells (sources) have been used for the production of iPS cells. The most commonly used cells are fetal or adult fibroblasts (Refs. 2, 3). When adult neural stem cells are used, iPS cells can be established by using only two factors (Reference 11). IPS cells have also been prepared from liver cells and gastrointestinal cells of adult mice (Reference Document 12). Attempts have also been made to produce iPS cells from immune system cells, and it has been reported that iPS cells have been successfully produced from B cells (reference 13) and T cells (reference 6).
  • iPS cells produced by these methods are not suitable for regenerative medicine. This is because the gene has already been recombined (gene rearrangement has occurred).
  • GM-CSF GM-CSF
  • iPS cells relatively easily from an old individual.
  • Uses of iPS cells obtained by the method of the present invention include treatment of various diseases associated with aging or aging (muscle atrophy, osteoporosis, arthritis, etc.), pulmonary fibrosis, cirrhosis, renal failure, and beauty (keratinocytes). Skin rejuvenation using cells differentiated into (keratinocytes)).
  • Kitamura, Plat-E an efficient and stable system for transient packaging of retroviruses, Gene Ther. 7 (2000), pp.1063-1066.
  • Williams RL Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM. Myeloid leukaemia inhibitory factor maintaining the developmental potential of embryonic stem cells. Nature. 1988 Dec 15; 336 (6200): 684-7.
  • Aoi T Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008; 321: 699-702.
  • Hanna J Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ, Cassady JP, Foreman R, Lengner CJ, Dausman JA, Jaenisch R. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Transplantation (AREA)
  • Cell Biology (AREA)
  • Neurology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Pulmonology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Disclosed is a method for efficiently and conveniently producing iPS cells. Pluripotent stem cells are obtained by culturing bone marrow in the presence of granulocyte-monocyte colony-stimulating factor, and then genetically transforming the propagated cells.

Description

誘導多能性幹細胞の作製法Method for producing induced pluripotent stem cells
 本発明は誘導多能性幹細胞の作製法及びその用途に関する。本出願は、2010年4月28日に出願された日本国特許出願第2010-103211号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 The present invention relates to a method for producing induced pluripotent stem cells and uses thereof. This application claims priority based on Japanese Patent Application No. 2010-103211 filed on Apr. 28, 2010, the entire contents of which are incorporated by reference.
 マウスあるいはヒトから誘導多能性幹細胞(iPS細胞)が樹立されるようになったことは再生医療における大きなブレークスルーとなる(非特許文献1~5)。この技術は患者自身の細胞を用いた治療(再生医療)を可能にすると期待されており、高齢者が自己の細胞からiPS細胞を作製し、必要に応じて修飾をした上で利用することによって、機能が衰えた臓器・組織を修復したり、老化に伴う疾病を治療したりする時代が到来しようとしている。 The establishment of induced pluripotent stem cells (iPS cells) from mice or humans is a major breakthrough in regenerative medicine (Non-Patent Documents 1 to 5). This technology is expected to enable treatment using patients' own cells (regenerative medicine). Elderly people create iPS cells from their own cells and modify them as necessary to use them. The era of repairing organs and tissues whose functions have declined and treating diseases associated with aging is about to come.
 iPS細胞を臨床応用する上で克服すべき課題の一つはその作製効率の低さである。iPS細胞を疾病の治療や老化で衰えた臓器・組織の修復に利用するためには、iPS細胞を効率的に作製する技術の開発が必要である。特に、高齢化が進む現代においては高齢者(老化個体)の体細胞から効率的にiPS細胞を作製する技術の提供が要請される。そこで本発明は、iPS細胞を効率的且つ簡便に作製する方法を提供することを課題とする。 One of the issues to be overcome in clinical application of iPS cells is their low production efficiency. In order to use iPS cells for treatment of diseases and repair of organs and tissues that have deteriorated due to aging, it is necessary to develop a technique for efficiently producing iPS cells. In particular, in the present age of aging, it is required to provide a technique for efficiently producing iPS cells from somatic cells of elderly people (aging individuals). Then, this invention makes it a subject to provide the method of producing an iPS cell efficiently and simply.
 本発明者らは上記課題を解決すべく鋭意検討し、比較的容易に採取可能な骨髄を細胞のソースとして採用するとともに、転写因子などの導入による形質転換操作(iPS細胞への形質転換)の前に細胞を顆粒球単球コロニー刺激因子(GM-CSF; Granulocyte Macrophage colony-stimulating Factor)の存在下で培養するという戦略を考案した。この戦略の有効性を検証するため、老齢マウスの骨髄を用いた実験を行った。具体的には老齢マウスの骨髄をGM-CSF添加培地で短期間培養した後、4つの転写因子(Oct3/4、Sox2、Klf4及びc-Myc)を導入した。その結果、約1月後にはiPS細胞様のコロニーの出現を認めた。形成されたコロニーからクローンを確立し、その特性を調べたところ、繊維芽細胞から作製したiPS細胞と同様に3胚葉への分化能を示すとともに多能性幹細胞マーカーを高発現していた。このように、老化個体の骨髄からiPS細胞を樹立することに成功し、上記戦略が有効であることを確認できた。ここで、本発明者らが実験に使用した老齢マウスの月齢(21月齢)はヒト年齢でいうと60代~80代に相当する。このような老齢個体由来の細胞からiPS細胞の樹立に成功したことは、iPS細胞の実用化に向けた大きなブレークスルーとなる。 The present inventors have intensively studied to solve the above problems, adopt bone marrow that can be collected relatively easily as a cell source, and perform transformation operations (transformation into iPS cells) by introducing transcription factors and the like. Previously, we devised a strategy of culturing cells in the presence of granulocyte monocyte colony-stimulating factor (GM-CSF; Macrophage-colony-stimulating Factor). In order to verify the effectiveness of this strategy, experiments were performed using bone marrow from aged mice. Specifically, the bone marrow of an aged mouse was cultured in a medium supplemented with GM-CSF for a short period, and then four transcription factors (Oct3 / 4, Sox2, Klf4, and c-Myc) were introduced. As a result, the appearance of iPS cell-like colonies was observed after about 1 month. When clones were established from the formed colonies and their characteristics were examined, they showed the ability to differentiate into three germ layers as well as iPS cells prepared from fibroblasts and highly expressed pluripotent stem cell markers. Thus, iPS cells were successfully established from the bone marrow of an aging individual, and the above strategy was confirmed to be effective. Here, the age of the old mouse used in the experiments by the present inventors (21 months of age) corresponds to 60s to 80s in terms of human age. The successful establishment of iPS cells from such aged cells is a major breakthrough for the practical application of iPS cells.
 一方、老齢個体の骨髄を用いた場合に比べ、若齢個体の骨髄を用いるとiPS細胞のコロニーが早期に出現することが示された(後述の実施例を参照)。この結果は、若齢個体の骨髄の活性が高いことを裏付ける一方で、上記戦略が若齢個体の骨髄を細胞のソースとした場合にも有効であることを示す。 On the other hand, it was shown that iPS cell colonies appeared earlier when bone marrow of young individuals was used than when bone marrow of old individuals was used (see Examples described later). This result confirms that the bone marrow activity of young individuals is high, while the above strategy is also effective when the bone marrow of young individuals is used as the cell source.
 ところで、過去の報告における多くのiPS細胞は、マウスでは胎児繊維芽細胞、ヒトでは若齢個体の繊維芽細胞から作製されている。繊維芽細胞から作製する場合でもiPS細胞の作製効率はよくない。まして、他の細胞からiPS細胞を作製する場合にはより困難が伴う。例えばT細胞からiPS細胞を樹立しようとすればp53遺伝子を欠損させる必要がある(非特許文献6)。一方、骨髄からiPS細胞を樹立することに成功したとの報告はあるものの(非特許文献7、8)、老齢個体の骨髄を用いたものではない。本発明者らが採用した方法は比較的簡便であるにも拘わらずiPS細胞の作製効率を高め、老齢個体の骨髄からのiPS細胞の樹立をも可能にするものである。言い換えれば、過去の報告とは一線を画し、再生医療分野などにおけるiPS細胞の実用化、応用を進める上で極めて重要且つ有益な技術を提供するものであり、その意義は大きい。一方、本発明の方法によればGM-CSFの刺激により誘導されたミエロ系細胞からiPS細胞が作製される。従って、再生医療への適用に適した、遺伝子の再構成が生じていないiPS細胞が得られる。このことも本発明の作製法に特有の利点であり、特筆に値する。
 以下に列挙する本発明は上記知見及び成果に基づく。
 [1]以下のステップ(1)及び(2)を含む、誘導多能性幹細胞の作製法:
 (1)骨髄を顆粒球単球コロニー刺激因子の存在下で培養するステップ;
 (2)増殖した細胞を多能性幹細胞へ形質転換させるステップ。
 [2]骨髄がヒトの骨髄である、[1]に記載の誘導多能性幹細胞の作製法。
 [3]骨髄が、壮年期以降のヒトの骨髄である、[1]に記載の誘導多能性幹細胞の作製法。
 [4]骨髄がマウスの骨髄である、[1]に記載の誘導多能性幹細胞の作製法。
 [5]ステップ(2)の形質転換が、Oct3/4、Sox2、Klf4及びc-Mycの4因子を細胞に導入することにより行われる、[1]~[4]のいずれか一項に記載の誘導多能性幹細胞の作製法。
 [6][1]~[5]のいずれか一項に記載の作製法で作製される誘導多能性幹細胞。
 [7]多能性幹細胞マーカーであるNanog遺伝子、Oct4遺伝子、FgF4遺伝子、Esg-1遺伝子及びCript遺伝子を発現している、[6]に記載の誘導多能性幹細胞。
 [8]遺伝子の再構成が行われていない、[6]又は[7]に記載の誘導多能性幹細胞。
 [9][6]~[8]のいずれか一項に記載の誘導多能性幹細胞に対して分化誘導処理を施すことを特徴とする、特定の細胞系譜に分化した細胞の作製法。
 [10]骨髄を顆粒球単球コロニー刺激因子の存在下で培養することを特徴とする、誘導多能性幹細胞作製用細胞の調製法。
By the way, many iPS cells in past reports have been prepared from fetal fibroblasts in mice and young individual fibroblasts in humans. Even when producing from fibroblasts, the production efficiency of iPS cells is not good. Furthermore, it is more difficult to produce iPS cells from other cells. For example, in order to establish iPS cells from T cells, it is necessary to delete the p53 gene (Non-patent Document 6). On the other hand, although it has been reported that iPS cells have been successfully established from bone marrow (Non-patent Documents 7 and 8), the bone marrow of an aged individual is not used. Although the method employed by the present inventors is relatively simple, it increases iPS cell production efficiency and enables the establishment of iPS cells from the bone marrow of aged individuals. In other words, it is different from past reports, and provides extremely important and useful technology for the practical application and application of iPS cells in the field of regenerative medicine, and its significance is great. On the other hand, according to the method of the present invention, iPS cells are prepared from myeloma cells induced by stimulation with GM-CSF. Therefore, iPS cells suitable for application to regenerative medicine and free from gene rearrangement can be obtained. This is also an advantage unique to the production method of the present invention, and is worthy of special mention.
The present invention listed below is based on the above findings and results.
[1] A method for producing induced pluripotent stem cells, comprising the following steps (1) and (2):
(1) culturing bone marrow in the presence of granulocyte monocyte colony-stimulating factor;
(2) Transforming the proliferated cells into pluripotent stem cells.
[2] The method for producing induced pluripotent stem cells according to [1], wherein the bone marrow is human bone marrow.
[3] The method for producing induced pluripotent stem cells according to [1], wherein the bone marrow is human bone marrow after the middle age.
[4] The method for producing induced pluripotent stem cells according to [1], wherein the bone marrow is mouse bone marrow.
[5] The transformation according to any one of [1] to [4], wherein the transformation in step (2) is performed by introducing four factors Oct3 / 4, Sox2, Klf4 and c-Myc into the cell. Of Induced Pluripotent Stem Cells
[6] An induced pluripotent stem cell produced by the production method according to any one of [1] to [5].
[7] The induced pluripotent stem cell according to [6], which expresses Nanog gene, Oct4 gene, FgF4 gene, Esg-1 gene and Cript gene, which are pluripotent stem cell markers.
[8] The induced pluripotent stem cell according to [6] or [7], wherein gene rearrangement is not performed.
[9] A method for producing a cell differentiated into a specific cell lineage, which comprises subjecting the induced pluripotent stem cell according to any one of [6] to [8] to a differentiation induction treatment.
[10] A method for preparing cells for producing induced pluripotent stem cells, comprising culturing bone marrow in the presence of granulocyte monocyte colony-stimulating factor.
iPS細胞の作製手順を模式的に示す図。21ヶ月齢のEGFP(enhanced green fluorescent protein)陽性C57BL/6マウスから骨髄細胞を取り出し、GM-CSF存在下で4日間培養後、iPS作製に必要な4因子を導入した。IPS様コロニーが数個現れた。トリプシンを用いてこれらをピックアップし、24ウェルプレートで培養した。その中で二つのクローンがiPS様形態を保ちながら増殖した。液体窒素下に保存するとともに、1クローンを後の解析に使用した。The figure which shows typically the preparation procedure of an iPS cell. Bone marrow cells were removed from 21-month-old EGFP (enhanced green fluorescent protein) positive C57BL / 6 mice, cultured in the presence of GM-CSF for 4 days, and then 4 factors necessary for iPS production were introduced. Several IPS-like colonies appeared. These were picked up using trypsin and cultured in 24-well plates. Among them, two clones grew while maintaining iPS-like morphology. One clone was used for later analysis while stored under liquid nitrogen. 細胞の形態変化を示す図。3つの形態変化を示す。左:21ヶ月齢C57BL/6マウスの骨髄細胞をGM-CSF存在下で培養した後の形態(培養4日目)。中央:出現したiPS細胞コロニー。右:確立した骨髄細胞由来iPS細胞(BM-M-iPS)。The figure which shows the morphological change of a cell. Three morphological changes are shown. Left: Morphology after culturing bone marrow cells of 21-month-old C57BL / 6 mice in the presence of GM-CSF (culture day 4). Center: Appearing iPS cell colony. Right: Established bone marrow cell-derived iPS cells (BM-M-iPS). iPS細胞作製効率の比較。C57BL/6マウス繊維芽細胞(MEF)、2ヶ月齢マウスの骨髄細胞をGM-CSF存在下で培養(4日間)したもの、又は23ヶ月齢マウスの骨髄細胞をGM-CSFで培養(4日間)したものを10cm培養皿内でフィーダー細胞上に培養し、iPS作製用の4因子を導入し、現れるコロニー数を経時的にカウントした。Comparison of iPS cell production efficiency. C57BL / 6 mouse fibroblasts (MEF), 2-month-old mouse bone marrow cells cultured in the presence of GM-CSF (4 days), or 23-month-old mouse bone marrow cells cultured in GM-CSF (4 days ) Were cultured on feeder cells in a 10 cm culture dish, 4 factors for iPS production were introduced, and the number of colonies that appeared was counted over time. BM-M-iPS細胞の皮下注射により形成された腫瘤を示す図。左:マウスの背中に形成された腫瘤。右:摘出した腫瘤。The figure which shows the tumor formed by the subcutaneous injection of BM-M-iPS cell. Left: A tumor formed on the back of the mouse. Right: Removed mass. 老化骨髄ミエロ系細胞から樹立したiPS細胞の生体における分化能を示す図。BM-M-iPS細胞1x107個をC57BL/6マウスの背中に皮下注射した。A. 注射21日後、腫瘤を確認し(図3)、組織切片作製用にOCTで固定した。B. H&E染色像を示す。外胚葉;皮膚の角質層、中胚葉;平滑筋細胞、内胚葉;消化管上皮細胞。The figure which shows the differentiation ability in the body of the iPS cell established from the aging bone marrow myeloma cell. Seven BM-M-iPS cells 1 × 10 7 were injected subcutaneously into the back of C57BL / 6 mice. A. The tumor was confirmed 21 days after injection (FIG. 3) and fixed with OCT for preparation of tissue sections. B. H & E stained image is shown. Ectoderm; stratum corneum of skin; mesoderm; smooth muscle cells; endoderm; gastrointestinal epithelial cells. 老化骨髄ミエロ系細胞から樹立したiPS細胞の遺伝子発現を示す図。骨髄細胞をGM-CS存在下で4日間培養したもの(BMD4)は同7日間培養したもの(BMD7;骨髄樹状細胞を誘導する通常の条件で得られる細胞)同様にミエロ系サイトカイン(TNF-α、IL-1b)、ケモカイン(ccl7)、転写因子(C/EBPa、Pu-1)を発現するが、老化骨髄ミエロ系細胞から樹立したiPS細胞(BM-M-iPS)は、MEFから作製したiPS細胞と同様、これらサイトカインの発現が低下している。その代わり多能性幹細胞マーカーであるNanog、Oct4、FgF4、Esg-1及びCriptの発現が上昇した。分化誘導後のBM-M-iPS(BM-i-DC)及びMEF-iPS(MEF-i-DC)についても遺伝子発現を調べた。The figure which shows the gene expression of the iPS cell established from the aging bone marrow myeloma cell. Bone marrow cells cultured for 4 days in the presence of GM-CS (BMD4) are cultured for 7 days (BMD7; cells obtained under normal conditions to induce bone marrow dendritic cells). α, IL-1b), chemokine (ccl7), transcription factors (C / EBPa, Pu-1) are expressed, but iPS cells (BM-M-iPS) established from senescent bone marrow myeloma cells are produced from MEF Similar to iPS cells, the expression of these cytokines is reduced. Instead, the expression of pluripotent stem cell markers Nanog, Oct4, FgF4, Esg-1 and Cript increased. Gene expression was also examined for BM-M-iPS (BM-i-DC) and MEF-iPS (MEF-i-DC) after differentiation induction. 老化(21ヶ月齢)骨髄ミエロ細胞由来のiPS細胞(BM-M-iPS)のin vitro分化。(A)胚様体(EB)形成及びin vitro分化誘導のスキーム(×40)。BM-M-iPS細胞をハンギングドロップ法で8日間培養した後、24ウェルプレートに移した。ハンギングドロップ法による培養(左)及び形成されたEB(右)を示す(Olympus社の位相差顕微鏡を使用)。(B)分化したBM-M-iPSの免疫染色(×100)。上段はα-アクチンを発現する中胚葉組織を示す。中段はα-フェトプロテインを発現する内胚葉組織を示す。下段はニューロフィラメントHを発現する外胚葉組織を示す。(C) 0.1%ゼラチンコート6ウェルプレートに播種したOP9上でiPS細胞を培養した。5日間の培養の後、位相差顕微鏡像を撮影した(×100)。上段;OP9との共培養5日目のMEF-iPS。下段;OP9との共培養5日目のBM-M-iPS。分化誘導後の位相差顕微鏡像及びギムザ染色像。上段;MEF-iPSの分化。下段;BM-M-iPSの分化。In vitro differentiation of iPS cells (BM-M-iPS) derived from senescent (21 months old) bone marrow myelocytes. (A) Scheme of embryoid body (EB) formation and in vitro differentiation induction (× 40). BM-M-iPS cells were cultured for 8 days by the hanging drop method and then transferred to a 24-well plate. The culture by the hanging drop method (left) and the formed EB (right) are shown (using an Olympus phase contrast microscope). (B) Immunostaining of differentiated BM-M-iPS (× 100). The upper row shows mesoderm tissue expressing α-actin. The middle row shows endoderm tissue expressing α-fetoprotein. The lower row shows ectoderm tissue expressing neurofilament H. (C) iPS cells were cultured on OP9 seeded in a 6-well plate coated with 0.1% gelatin. After culturing for 5 days, a phase contrast microscope image was taken (× 100). Upper row: MEF-iPS on day 5 of co-culture with OP9. Bottom: BM-M-iPS on day 5 of co-culture with OP9. Phase contrast microscope image and Giemsa stained image after differentiation induction. Upper row: Differentiation of MEF-iPS. Bottom: BM-M-iPS differentiation. 分化誘導前後の細胞表面マーカーの解析結果。BM-M-iPS細胞とMEF-iPS細胞をGM-CSFによってミエロ系に分化誘導した後、ミエロ系細胞表面マーカーを検出した。Analysis results of cell surface markers before and after differentiation induction. BM-M-iPS cells and MEF-iPS cells were induced to differentiate into myeloma using GM-CSF, and then the myeloma cell surface marker was detected. BM-M-iPS細胞を用いて得られたキメラマウス。Chimeric mice obtained using BM-M-iPS cells.
 本発明は誘導多能性幹細胞の新規作製法(以下、本発明の作製法とも呼ぶ)を提供する。「誘導多能性幹細胞」とは、初期化因子の導入などにより体細胞をリプログラミングすることによって作製される、多能性(多分化能)と増殖能を有する細胞である。誘導多能性幹細胞は胚性幹細胞(ES細胞)に近い性質を示す。説明の便宜上、本明細書では誘導多能性幹細胞のことをiPS細胞と略称することがある。 The present invention provides a novel method for producing induced pluripotent stem cells (hereinafter also referred to as the production method of the present invention). “Induced pluripotent stem cells” are cells having pluripotency (multipotency) and proliferative ability, which are produced by reprogramming somatic cells by introduction of reprogramming factors. Induced pluripotent stem cells exhibit properties similar to embryonic stem cells (ES cells). For convenience of explanation, in the present specification, induced pluripotent stem cells may be abbreviated as iPS cells.
 本発明の作製法では以下の二つのステップ、即ち、ステップ(1)「骨髄を顆粒球単球コロニー刺激因子の存在下で培養するステップ」とステップ(2)「増殖した細胞を多能性幹細胞へ形質転換させるステップ」を行う。以下、各ステップの詳細を説明する。 In the production method of the present invention, the following two steps, namely, step (1) “step of culturing bone marrow in the presence of granulocyte monocyte colony-stimulating factor” and step (2) “proliferated cells as pluripotent stem cells” Step of transforming into Details of each step will be described below.
 (1)顆粒球単球コロニー刺激因子(GM-CSF;Granulocyte Macrophage colony-stimulating Factor)存在下での培養
 本発明ではiPS細胞へ形質転換させるステップに先だって、骨髄細胞をGM-CSF存在下で培養する。この培養を行うことが本発明の最大の特徴である。この培養工程を組み込むことによってiPS細胞の作製効率が向上する。理論に拘泥する訳ではないが、GM-CSFによる刺激を加えることによりミエロ系細胞系譜への誘導が生じ、増殖性の高い細胞が得られる。また、遺伝子の再構成を防止することができる。この特徴は、遺伝子の再構成が行われたB細胞やT細胞由来のiPS細胞を作製する技術(参考文献6、13)と明確に異なり、再生医療での利用に適したiPS細胞を提供できる点において重要且つ有益である。
(1) Cultivation in the presence of granulocyte monocyte colony-stimulating factor (GM-CSF) In the present invention, prior to the step of transforming into iPS cells, bone marrow cells are cultured in the presence of GM-CSF. To do. Performing this culture is the greatest feature of the present invention. By incorporating this culture step, iPS cell production efficiency is improved. Without being bound by theory, application of stimulation with GM-CSF leads to induction in the myeloma cell lineage, resulting in highly proliferative cells. Moreover, gene rearrangement can be prevented. This feature is clearly different from the technology for producing iPS cells derived from B cells and T cells that have undergone gene rearrangement (reference documents 6 and 13), and can provide iPS cells suitable for use in regenerative medicine. Important and beneficial in terms.
 本発明ではまず骨髄を用意する。骨髄は常法で採取すればよい(例えば、財団法人骨髄移植推進財団ドナー安全委員会編集の骨髄採取マニュアル第三版が参考になる)。例えば、骨髄穿刺針を用いて腸骨から採取することができる。採取した骨髄を前処理に供してもよい。ここでの前処理として、フィルター処理等による不純物の除去、遠心処理等による細胞成分の分離、PBSによる洗浄等を挙げることができる。 In the present invention, first, bone marrow is prepared. Bone marrow can be collected in the usual way (for example, the bone marrow transplant promotion foundation donor safety committee edited by the bone marrow transplant promotion foundation third edition is helpful). For example, it can be collected from the iliac bone using a bone marrow puncture needle. The collected bone marrow may be subjected to pretreatment. Examples of the pretreatment here include removal of impurities by filter treatment, separation of cell components by centrifugation, washing with PBS, and the like.
 骨髄の動物種は特に限定されない。好ましくはヒトから採取された骨髄が用いられるが、ヒト以外の動物(ペット動物、家畜、実験動物を含む。具体的には例えばマウス、ラット、モルモット、ハムスター、サル、ウシ、ブタ、ヤギ、ヒツジ、イヌ、ネコ、ニワトリ等である)から採取された骨髄を用いることもできる。 The animal species of bone marrow is not particularly limited. Bone marrow collected from humans is preferably used, but animals other than humans (including pet animals, domestic animals, laboratory animals. Specifically, examples include mice, rats, guinea pigs, hamsters, monkeys, cows, pigs, goats, sheep. Bone marrow collected from dogs, cats, chickens, etc.).
 一般に、細胞の活性はその由来である個体の齢に依存する。即ち、老齢個体の細胞は、通常、若齢個体の細胞よりも活性が低い。このため老齢個体の細胞からiPS細胞を作製する場合その成功率(作製効率)は低くなる。本発明によればiPS細胞の作製効率を向上でき、老齢個体の細胞からも比較的安定してiPS細胞を得ることが可能となる。本発明の一態様ではこの特徴を活かし、壮年期以降のヒトの骨髄を用いてiPS細胞を作製する。また、他の一態様では中年期以降、更に他の一態様では高年期以降のヒトの骨髄を用いる。ヒトの一生は幼年期(0~4歳)、少年期(5~14歳)、青年期(15~24歳)、壮年期(25~44歳)、中年期(45~64歳)、高年期(65歳以上)に分けることができる。一般に、壮年期以降は生活習慣病に罹り易くなるといわれ、また老化に起因する各種疾病(例えば筋萎縮、骨粗鬆症、関節炎)への罹患率も高まる。iPS細胞の作製効率を向上させる本発明は、このように疾病リスクの高まる壮年期以降の患者を対象とした医療の発展に大きく貢献する。尚、以上の説明から分かるように、本発明は老齢個体の細胞、換言すれば活性の低い細胞をソースとした場合に特に有効であるが、その適用範囲は特に限定されるものではなく、若齢個体の細胞をソースにしてもよい。 In general, the activity of a cell depends on the age of the individual from which it is derived. That is, the cells of old individuals are usually less active than the cells of young individuals. For this reason, when producing iPS cells from cells of old individuals, the success rate (production efficiency) is low. According to the present invention, iPS cell production efficiency can be improved, and iPS cells can be obtained relatively stably from cells of old individuals. In one embodiment of the present invention, this feature is utilized to produce iPS cells using human bone marrow after the middle age. In another embodiment, human bone marrow after middle age is used, and in another embodiment, human bone marrow after senior age is used. Human life is childhood (0-4 years), boyhood (5-14 years), adolescence (15-24 years), middle age (25-44 years), middle age (45-64 years), Can be divided into older age (65 years old and over). In general, it is said that it becomes easy to suffer from lifestyle-related diseases after the middle age, and the prevalence of various diseases caused by aging (for example, muscle atrophy, osteoporosis, arthritis) increases. The present invention that improves the production efficiency of iPS cells greatly contributes to the development of medical treatment for patients after the middle age when the risk of disease increases. As can be seen from the above description, the present invention is particularly effective when the cells of old individuals, in other words, cells with low activity, are used as the source, but the scope of application is not particularly limited. You may use a cell of an age individual as a source.
 以上のようにして用意した骨髄をGM-CSF存在下での培養に供する。具体的にはGM-CSFが添加された培地中で骨髄を培養する。当該条件下での培養の前に、GM-CSFを含有しない培地で培養することにしてもよい。例えば、初代培養(又は初代培養とその後の数継代)にGM-CSF非含有培地を使用し、以降の継代培養にGM-CSF含有培地を使用することにする。使用するGM-CSFの動物種は骨髄の動物種と同一でなくてもよいが、GM-CSFの作用が良好に発揮されるように、好ましくは動物種を合わせるとよい。例えば、ヒト骨髄を使用する場合にあってはヒトGM-CSFを使用することが好ましい。このように動物種を合わせることは、異種動物由来の成分の混入を防止でき、安全性が向上するという点においても好ましい。 Bone marrow prepared as described above is subjected to culture in the presence of GM-CSF. Specifically, bone marrow is cultured in a medium supplemented with GM-CSF. Prior to culturing under such conditions, culturing may be performed in a medium not containing GM-CSF. For example, GM-CSF-free medium is used for primary culture (or primary culture and several subsequent passages), and GM-CSF-containing medium is used for subsequent subcultures. The animal species of GM-CSF to be used may not be the same as the animal species of bone marrow, but the animal species are preferably combined so that the action of GM-CSF can be exhibited well. For example, when human bone marrow is used, it is preferable to use human GM-CSF. Matching animal species in this way is also preferable in terms of preventing the introduction of components derived from different animals and improving safety.
 GM-CSFは造血幹細胞に分化を促すサイトカイン(造血系成長因子)であり、顆粒球及び単球/マクロファージの前駆細胞の増殖や分化を促す。GM-CSFは主に活性化T細胞より分泌される。GM-CSFには赤芽球、好酸球、巨核球のコロニー形成活性も認められ、生体の造血機構に幅広く関与している可能性が報告されている。生体から分離・精製したGM-CSFを用いても、或いは組換え生産したGM-CSF(リコンビナントGM-CSF)を用いても良い。いくつかのGM-CSFが市販されており(例えばコスモ・バイオ株式会社、生化学バイオビジネス株式会社、ミルテニーバイオテク株式会社などが提供する)、このような市販品を用いることもできる。 GM-CSF is a cytokine (hematopoietic growth factor) that promotes differentiation into hematopoietic stem cells, and promotes proliferation and differentiation of progenitor cells of granulocytes and monocytes / macrophages. GM-CSF is mainly secreted from activated T cells. GM-CSF also has colony-forming activity of erythroblasts, eosinophils, and megakaryocytes, and has been reported to be widely involved in the hematopoietic mechanism of living organisms. GM-CSF separated and purified from a living body may be used, or recombinantly produced GM-CSF (recombinant GM-CSF) may be used. Several GM-CSFs are commercially available (for example, provided by Cosmo Bio Co., Ltd., Biochemical Bio Business Co., Ltd., Miltenyi Biotech Co., Ltd., etc.), and such commercially available products can also be used.
 培地中のGM-CSF濃度は特に限定されず、予備実験等によって適宜設定することができる。GM-CSF濃度の例を示せば1ng/ml~100ng/mlであり、好ましい濃度は5 ng/ml~20 ng/mlである。全培養期間を通してGM-CSF濃度が一定である必要はない。例えば、培養後期に添加濃度が高くなる培養条件を採用することができる。GM-CSF含有培地を用いた培養の期間は例えば1日~20日、好ましくは2日~14日、更に好ましくは3日~7日、より一層好ましくは3日~5日とする。 The concentration of GM-CSF in the medium is not particularly limited, and can be set as appropriate by preliminary experiments or the like. An example of the GM-CSF concentration is 1 ng / ml to 100 ng / ml, and a preferred concentration is 5 ng / ml to 20 ng / ml. The GM-CSF concentration need not be constant throughout the entire culture period. For example, it is possible to employ a culture condition in which the added concentration becomes higher in the later stage of culture. The culture period using the GM-CSF-containing medium is, for example, 1 to 20 days, preferably 2 to 14 days, more preferably 3 to 7 days, and even more preferably 3 to 5 days.
 GM-CSFを添加すること以外は、基本的には哺乳動物細胞の通常の培養条件に従えばよい。基本培地に必要な成分を添加することによって本発明に使用する培地を構成することができる。基本培地としてイスコフ改変ダルベッコ培地(IMDM)(GIBCO社等)、ハムF12培地(HamF12)(SIGMA社、Gibco社等)、ダルベッコ変法イーグル培地(D-MEM)(ナカライテスク株式会社、シグマ社、ギブコ社等)、グラスゴー基本培地(Gibco社社等)、RPMI1640培地等を用いることができる。二種以上の基本培地を併用することにしてもよい。混合培地の一例として、IMDMとHamF12を等量混合した培地(例えば商品名:IMDM/HamF12(Gibco社)として市販される)を挙げることができる。培地に添加可能な成分の例として、血清(ウシ胎仔血清、ヒト血清、羊血清等)、血清代替物(Knockout serum replacement(KSR)など)、ウシ血清アルブミン(BSA)、抗生物質、2-メルカプトエタノール、白血病抑制因子(LIF)、PVA、L-グルタミン、インスリン、トランスフェリン、セレニウムを挙げることができる。培養温度等、その他の培養条件についても、哺乳動物細胞の通常の培養条件に準ずればよい。即ち、例えば37℃、5%CO2の環境下で培養すればよい。 Except for the addition of GM-CSF, basically, normal culture conditions for mammalian cells may be followed. The medium used in the present invention can be constituted by adding necessary components to the basic medium. Iscov modified Dulbecco medium (IMDM) (GIBCO, etc.), ham F12 medium (HamF12) (SIGMA, Gibco, etc.), Dulbecco's modified Eagle medium (D-MEM) (Nacalai Tesque, Sigma, Gibco, etc.), Glasgow basic medium (Gibco, etc.), RPMI1640 medium, etc. can be used. Two or more basic media may be used in combination. As an example of the mixed medium, a medium in which IMDM and HamF12 are mixed in equal amounts (for example, commercially available as trade name: IMDM / HamF12 (Gibco)) can be mentioned. Examples of components that can be added to the medium include serum (fetal calf serum, human serum, sheep serum, etc.), serum replacement (Knockout serum replacement (KSR), etc.), bovine serum albumin (BSA), antibiotics, 2-mercapto Examples include ethanol, leukemia inhibitory factor (LIF), PVA, L-glutamine, insulin, transferrin, and selenium. Other culture conditions such as culture temperature may be in accordance with normal culture conditions for mammalian cells. That is, for example, it may be cultured in an environment of 37 ° C. and 5% CO 2 .
(2)iPS細胞への形質転換(初期化、リプログラミング)
 上記の通り、理論に拘泥する訳ではないが、骨髄をGM-CSF存在下で培養するとミエロ系細胞(Bone marrow derived myeloid cells)が増殖する。本発明では当該ミエロ系細胞をiPS細胞へと形質転換させる。iPS細胞への形質転換にはこれまでに報告された各種iPS細胞作製法を利用できる。また、今後開発されるiPS細胞作製法を適用することも当然に想定される。
(2) Transformation into iPS cells (initialization, reprogramming)
As described above, without being bound by theory, bone marrow derived myeloid cells grow when bone marrow is cultured in the presence of GM-CSF. In the present invention, the myeloma cells are transformed into iPS cells. Various iPS cell production methods reported so far can be used for transformation into iPS cells. In addition, it is naturally assumed that an iPS cell production method developed in the future will be applied.
 iPS細胞作製法の最も基本的な手法は、転写因子であるOct3/4、Sox2、Klf4及びc-Mycの4因子を、ウイルスを利用して細胞へ導入する方法である(Takahashi K, Yamanaka S: Cell 126 (4), 663-676, 2006; Takahashi, K, et al: Cell 131 (5), 861-72, 2007)。ヒトiPS細胞についてはOct4、Sox2、Lin28及びNonogの4因子の導入による樹立の報告がある(Yu J, et al: Science 318(5858), 1917-1920, 2007)。c-Mycを除く3因子(Nakagawa M, et al: Nat. Biotechnol. 26 (1), 101-106, 2008)、Oct3/4及びKlf4の2因子(Kim J B, et al: Nature 454 (7204), 646-650, 2008)、或いはOct3/4のみ(Kim J B, et al: Cell 136 (3), 411-419, 2009)の導入によるiPS細胞の樹立も報告されている。また、遺伝子の発現産物であるタンパク質を細胞に導入する手法(Zhou H, Wu S, Joo JY, et al: Cell Stem Cell 4, 381-384, 2009; Kim D, Kim CH, Moon JI, et al: Cell Stem Cell 4, 472-476, 2009)も報告されている。一方、ヒストンメチル基転移酵素G9aに対する阻害剤BIX-01294やヒストン脱アセチル化酵素阻害剤バルプロ酸(VPA)或いはBayK8644等を使用することによって作製効率の向上や導入する因子の低減などが可能であるとの報告もある(Huangfu D, et al: Nat. Biotechnol. 26 (7), 795-797, 2008; Huangfu D, et al: Nat. Biotechnol. 26 (11), 1269-1275, 2008; Silva J, et al: PLoS. Biol. 6 (10), e 253, 2008)。遺伝子導入法についても検討が進められ、レトロウイルスの他、レンチウイルス(Yu J, et al: Science 318(5858), 1917-1920, 2007)、アデノウイルス(Stadtfeld M, et al: Science 322 (5903), 945-949, 2008)、プラスミド(Okita K, et al: Science 322 (5903), 949-953, 2008)、トランスポゾンベクター(Woltjen K, Michael IP, Mohseni P, et al: Nature 458, 766-770, 2009; Kaji K, Norrby K, Pac a A, et al: Nature 458, 771-775, 2009; Yusa K, Rad R, Takeda J, et al: Nat Methods 6, 363-369, 2009)、或いはエピソーマルベクター(Yu J, Hu K, Smuga-Otto K, Tian S, et al: Science 324, 797-801, 2009)を遺伝子導入に利用した技術が開発されている。 The most basic method of iPS cell production is to introduce four factors, transcription factors Oct3 / 4, Sox2, Klf4 and c-Myc, into cells using viruses (Takahashi K, Yamanaka S : Cell 126 (4), 663-676, 2006; Takahashi, K, et al: Cell 131 (5), 861-72, 2007). Human iPS cells have been reported to be established by introducing four factors, Oct4, Sox2, Lin28 and Nonog (Yu J, et al: Science 318 (5858), 1917-1920, 2007). Three factors excluding c-Myc (Nakagawa M, et al: Nat. Biotechnol. 26 (1), 101-106, 2008), Oct3 / 4 and Klf4, two factors (Kim J B, et al: Nature 454 (7204 ), 646-650, 2008), or only Oct3 / 4 (Kim J B, et al: Cell 136 (3), 411-419, 2009) has been reported to establish iPS cells. In addition, a method of introducing a gene expression product into a cell (Zhou H, Wu S, Joo JY, et al: Cell Stem Cell 4, 381-384, 2009; Kim D, Kim CH, Moon JI, et al : Cell Stem Cell 4, 472-476, 2009) has also been reported. On the other hand, by using the inhibitor BIX-01294 for histone methyltransferase G9a, the histone deacetylase inhibitor valproic acid (VPA) or BayK8644, production efficiency can be improved and factors to be introduced can be reduced. (Huangfu D, et al: Nat. Biotechnol. 26 (7), 795-797, 2008; Huangfu D, et al: Nat. Biotechnol. 26 (11), 1269-1275, 2008; Silva J Et al: PLoS. Biol. 6 (10), e 253, 2008). Studies on gene transfer methods are also underway. In addition to retroviruses, lentiviruses (Yu J, et al: Science 318 (5858), 1917-1920, 2007), adenoviruses (Stadtfeld M, et al: Science 322 (5903 ), 945-949, 2008), plasmid (Okita K, et al: Science 322 (5903), 949-953, 2008), transposon vectors (Woltjen K, Michael IP, Mohseni P, et al: Nature 458, 766- 770, 2009; Kaji K, Norrby K, Pac a A, et al: Nature 458, 771-775, 2009; Yusa K, Rad R, Takeda J, et al: Nat Methods 6, 363-369, 2009), or Techniques using episomal vectors (Yu J, Hu K, Smuga-Otto K, Tian S, et al: Science 324, 797-801, 2009) have been developed.
 iPS細胞への形質転換、即ち初期化(リプログラミング)が生じた細胞はFbxo15、Nanog、Oct/4、Fgf-4、Esg-1及びCript等の多能性幹細胞マーカー(未分化マーカー)の発現などを指標として選択することができる。選択された細胞をiPS細胞として回収する。 Cells that have undergone transformation (reprogramming) into iPS cells are expressed pluripotent stem cell markers (undifferentiation markers) such as Fbxo15, Nanog, Oct / 4, Fgf-4, Esg-1, and Cript Etc. can be selected as an index. The selected cells are collected as iPS cells.
 本発明の作製法で得られたiPS細胞は創薬研究用ツール(例えば薬効や安全性試験のためのスクリーニング系等、細胞ベースのアッセイ系の開発)、病態解明用の研究ツール(例えばヒト疾患モデル細胞又はモデル動物の作製)、或いは細胞医療・再生医療用の原料ないし材料として有用である。iPS細胞から疾患モデル細胞を作製するため或いはiPS細胞を細胞医療・再生医療に利用するためには、原則、iPS細胞を所望の細胞系譜に分化誘導することになる。そこで本発明は、本発明の作製法で作製されたiPS細胞に対して分化誘導処理を施すことを特徴とする、特定の細胞系譜に分化した細胞の作製法も提供する。本発明の作製法で得られたiPS細胞を特定の細胞系譜に分化誘導させる手段としては、iPS細胞について過去に報告された各種分化誘導法を利用できることは勿論のこと、胚性幹細胞(ES細胞)について報告された分化誘導法も必要に応じて修正を加えた上で適用可能である。例えば、胚様体(EB)形成法(Chinzei R, Tanaka Y, et al: Hepatology 36, 22-29, 2002; Yamada T, Yoshikawa M, et al: Stem Cells 20, 146-154, 2002; Asahina K, Fujimori H, et al: Genes Cells 9, 1297-1308, 2004; Choi D, Lee HJ, et al: Stem Cells 23, 817-827, 2005)は、ES細胞をin vitroで分化させる方法として最も一般的である。本発明の作製法で得られたiPS細胞を分化誘導させる際にEB形成法を適用することにしてもよい。EB形成法としてハンギング・ドロップ(Hanging drop)法(Rundnick MA, Mcburney MW, Cell culture methods and induction of differentiation of embryonal carcinoma cell lines, p. 19-49. In Robertson, E. J. (ed.), Teratocarcinomas and embryonic stem cells: a practical approach, IRL press, Washington DC, 1987等)、細菌用培養皿(Bacterial dish)を用いた方法(Doetschman TC, Eistetter H, Katz M, et al: Embryol. Exp Morph 87, 27-45, 1985等)、U底のマルチウェルプレートを利用した方法(Yasuda E, Seki Y, Higuchi T, et al: J Biosci Bioeng 107, 442-446, 2009; Karp JM, Yeh J, Eng G, et al: Lab Chip 7, 786-794, 2007; Moeller HC, Mian MK, Shrivastava S, et al: Biomaterials 29, 752-763, 2008等)、SFEBq法(Eiraku M, Watanabe K, Matsuo-Takasaki M, et al: Cell Stem Cell 3, 519-532, 2008等)等が開発されている。EBからは様々な組織細胞を分化誘導することが可能である(Doetschman T.C, et al: J. Embryol. Exp. Morphol. 87, 27-45, 1985)。ES細胞の分化誘導法として、EB形成法の他、特定の遺伝子の強制発現による分化誘導法(Levinson-Dushnik M, Benvenisty N, et al: Mol Cell BioI 17, 3817-3822, 1997; Ishizaka S, Shiroi A, et al: FASEB J 16, 1444-1446, 2002; Fujikura J, Yamato E, et al: : Genes Dev 16, 784-789, 2002; Blyszczuk P, Czyz J, et al : Proc Natl Acad Sci USA 100, 998-1003, 2003; Miyazaki S, Yamato E, et al: Diabetes 53, 1030-1037, 2004)、ストローマ細胞との共培養による方法(Shiraki N, Lai CJ, et al: Genes Cells 10, 503-516, 2005; Ishii T, Yasuchika K, et al : Exp Cell Res 309, 68-77, 2005; Teratani T, Yamamoto H, et al: Hepatology 41, 836-846, 2005; Soto-Gutierrez A, Kobayashi N, et al: Nat Biotechnol 24, 1412-1419, 2006)、液性因子を利用した方法(SchuldinerM, Yanuka 0, et al: Proc Natl Acad Sci USA 97, 11307-11312, 2000; Lumelsky N, Blondel 0, et al: Science 292, 1389-1394, 2001; Hamazaki T, Iiboshi Y, et al: FEBS Lett 497, 15-19, 2001; Hori Y, Rulifson IC, et al: Proc Natl Acad Sci USA 99, 16105-16110, 2002; Kim D, Gu Y, et al: Pancreas 27, e34-41, 2003)等がある。これらの方法に準じ、本発明の作製法で得られたiPS細胞を分化誘導することにしてもよい。以下、分化誘導法に関する報告のいくつかを例示する。 The iPS cells obtained by the production method of the present invention are used for drug discovery research tools (eg, development of cell-based assay systems such as screening systems for drug efficacy and safety testing), research tools for elucidating disease states (eg, human diseases) Production of model cells or model animals), or a raw material or material for cell medicine / regenerative medicine. In order to produce disease model cells from iPS cells or to use iPS cells for cell therapy / regenerative medicine, iPS cells are differentiated into a desired cell lineage in principle. Therefore, the present invention also provides a method for producing a cell differentiated into a specific cell lineage, characterized by subjecting the iPS cell produced by the production method of the present invention to differentiation induction treatment. As a means for inducing differentiation of iPS cells obtained by the production method of the present invention into a specific cell lineage, various differentiation induction methods reported in the past for iPS cells can be used, as well as embryonic stem cells (ES cells) The differentiation induction method reported for) can also be applied with modifications as necessary. For example, embryoid body (EB) formation method (Chinzei R, Tanaka Y, et al: Hepatology 36, 22-29, 2002; Yamada T, Yoshikawa M, et al: Stem Cells 20, 146-154, 2002; Asahina K , Fujimori H, et al: Genes Cells 9, 1297-1308, 2004; Choi D, Lee HJ, et al: Stem Cells 23, 817-827, 2005) is the most common method for differentiating ES cells in vitro Is. The EB formation method may be applied when inducing differentiation of the iPS cells obtained by the production method of the present invention. Hanging drop method (Rundnick MA, Mcburney MW, Cell culture methods and induction of differentiation of embryonal carcinoma cell lines, p. 19-49. In Robertson, E. J. (ed.), Teratocarcinomas and embryonic stem cells: a practical approach, IRL press, Washington DC, 1987 etc., Bacterial dish method (Doetschman TC, Eistetter H, Katz M, et al: Expembol , 27-45, 1985, etc.), U-bottom multi-well plate method (Yasuda E, Seki Y, Higuchi T, et al: J Biosci Bioeng 107, 442-446, 2009; Karp JM, Yeh J, Eng G, et al: Lab Chip 7, 786-794, 2007; Moeller HC, Mian MK, Shrivastava S, et al: Biomaterials 29, 752-763, 2008, etc.), SFEBq method (Eiraku M, Watanabe K, Matsuo-Takasaki) M, “etal”: “Cell” Stem “Cell” 3, “519-532,” 2008, etc.) have been developed. It is possible to induce differentiation of various tissue cells from EB (Doetschman.T.C, et al: J. Embryol. Exp. Morphol. 87, 27-45, 1985). ES cell differentiation induction methods include EB formation, differentiation induction by forced expression of specific genes (Levinson-Dushnik M, Benvenisty N, et al: Mol Cell BioI 17, 3817-3822, 1997; Ishizaka S, Shiroi A, et al: FASEB J 16, 1444-1446, 2002; Fujikura J, Yamato E, et al:: Genes Dev 16, 784-789, 2002; Blyszczuk P, Czyz J, et al: Proc Sat cad 100, 998-1003, 2003; Miyazaki S, Yamato E, et al: Diabetes 53, be1030-1037, 2004), co-culture with stromal cells (Shiraki 方法 N, Lai CJ, et al: Genes Cells 10, 503) -516, 2005; Ishii T, Yassuchika K, et al: Exp Cell Res 309, 68-77, 2005; Teratani T, Yamamoto H, et al: Hepatology 41, 836-846, 2005; Soto-Gutierrez A, Kobayashi N , Et al: Nat Biotechnol 24, 1412-1419, 2006), method using humoral factors (SchuldinerM, Yanuka 0, et al: Proc Natl Acad Sci USA 97, 11307-11312, 2000; Lumelsky N, Blondel 0, et al: Science 292, 1389-1394, 2001; Hamazaki T, Iiboshi Y, et al: FEBS Lett 497, 15-19, 2001; Hori Y, Rulifson IC, et al: Proc Natl Acad Sci USA 99, 16105-16110, 2002; Kim D, Gu Y, et al: Pancreas 27, e34-41, 2003). According to these methods, iPS cells obtained by the production method of the present invention may be induced to differentiate. The following are some examples of reports on differentiation induction methods.
 EBから心筋細胞への分化誘導には胚様体を培養皿に付着させて培養し、自己拍動する筋細胞を分取する方法(Boheler K.R, et al: Circ. Res. 91, 189-201, 2002等)が一般的である。また、心筋細胞を高純度で得る方法も報告されている(Klug M. G, et al: J. Clin. Invest. 98, 216-224(1996); Muller M, et al: FASEB. J. 14, 2540-2548, 2000等)。EBから膵インスリン産生細胞へ分化誘導することも可能である(D'Amour KA, Bang AG, Eliazer S, et al: Nat Biotechnol 24, 1392-1401, 2006等)。一方、血管内皮細胞や血管平滑筋細胞への分化誘導法も報告されている(Vittet D, et al: Proc. Natl. Acad. Sci. USA 94, 6273-6278, 1997; Bloch W, et al: J. Cell Biol. 139, 265-278, 1997; Yamashita J, et al: Nature 408, 92-96, 2000; Feraud O, et al: Lab. Invest. 81, 1669-1681, 2001等)。網膜細胞への分化誘導法もいくつかの報告がある(Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, Kamiya D, Honda Y, Sasai N, Yoshimura N, Takahashi M, Sasai Y, Proc. Natl. Acad. Sci. USA 102, 11331-11336, 2005; Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura, N, Akaike A, Sasai Y, Takahashi M, Nat. Biotechnol. 26, 215-224, 2008; Osakada F, Ikeda H, Sasai Y, Takahashi M, Nat. Protoc. 4, 811-824, 2009; Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, Yoshimura N, Takahashi M, Neurosci. Lett. 458, 126-131, 2009; Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M. J Cell Sci 122, 3169-3179, 2009等)。また、bFGF存在下で培養した後に浮遊凝集培養系で培養する方法(Studer L, et al: Nat. Neurosci. 1, 290-295, 1998等)、bFGF及びグリア細胞株の培養上清の存在下で培養する方法(Daadi M. M, and Weiss S. J.: Neuroscience 19, 4484-4497, 1999等)、FGF8、Shh、bFGF及びアスコルビン酸等を利用した方法(Lee S. H. et al: Nat. Biotechnol. 18, 675-679, 2000等)、骨髄間質細胞と共培養する方法(Kawasaki H, et al: Neuron 28, 31-40, 2000等)、樹状細胞への分化誘導法(Senju S, Haruta M, Matsunaga Y, et al: Stem Cells 27, 1021-1031, 2009等)等、ドーパミン産生神経細胞へ分化誘導法も数多く報告されている。尚、上掲の分化誘導法は単なる例示であって、本発明に適用可能な分化誘導法はこれらに限定されるものではない。 To induce differentiation of EBs into cardiomyocytes, the embryoid body is attached to a culture dish and cultured, and the self-pulsating myocytes are separated (Boheler KR, et al: Circ. Res. 91, 189-201) , 2002 etc.) is common. A method for obtaining cardiomyocytes with high purity has also been reported (KlugluM. G, et al: J. Clin. Invest. 98, 216-224 (1996);) Muller M, et al: FASEB. J. 14 , 2540-2548, 2000, etc.). It is also possible to induce differentiation from EBs into pancreatic insulin-producing cells (D'Amour KA, Bang AG, Eliazer S, et al: Nat Biotechnol 24, 1392-1401, 2006, etc.). On the other hand, differentiation induction methods to vascular endothelial cells and vascular smooth muscle cells have also been reported (Vittet D, et al: Proc. Natl. Acad. Sci. USA 94, 6273-6278, 1997; Bloch W, et al: J. Cell Biol. 139, 265-278, 1997; Yamashita J, et al: Nature-408, 92-96, 2000; Feraud O, et al: Lab. Invest. 81, 1669-1681, 2001, etc.). There are also several reports on the induction of differentiation into retinal cells (Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, Kamiya D, Honda Y, Sasai N, Yoshimura N, Takahashi M, Sasai Y Proc. Natl. Acad. Sci. USA 102, 11331-11336, 2005; Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura, N, Akaike A, Sasai Y, techNolh. 26, 215-224, 2008; Osakada F, Ikeda H, Sasai Y, Takahashi M, Nat. Protoc. 4, 811-824, 2009; Hirami Y, Osakada F, Takahashi K, Okita K, Yked Yoshimura N, Takahashi M, Neurosci. Lett. 458, 126-131, 2009; Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M. 179 , 2009 etc.). In addition, a method of culturing in the presence of bFGF followed by suspension aggregation culture system (StudertuL, et al: Nat. Neurosci. 1, 290-295, 1998, etc.), in the presence of bFGF and glial cell line culture supernatant (Daadi M. M, and Weiss S. J .: Neuroscience 19, 4484-4497, 1999, etc.), a method using FGF8, Shh, bFGF, ascorbic acid, etc. (Lee S. H. et al: Nat. Biotechnol. 18, 675-679, 2000 etc.), co-culture with bone marrow stromal cells (Kawasaki H, et al: Neuron 28, 31-40, 2000 etc.), differentiation induction method into dendritic cells ( Many methods for inducing differentiation into dopaminergic neurons have been reported, such as Senju S, Haruta M, Matsunaga Y, et al: Stem Cells 27, 1021-1031, 2009). The differentiation induction methods described above are merely examples, and the differentiation induction methods applicable to the present invention are not limited to these.
 老齢個体からのiPS細胞の樹立を目指し、以下の実験を行った。
1.方法
(1)マウス
 C57BL/6(B6)マウスは日本エスエルシー株式会社から購入した。全身にGFP(Green Fluorescent Protein)を発現するEGFP-C57BL/6マウス(C14-Y01-FM131Osb)は独立行政法人理化学研究所から岡部氏の許可の下、分譲を受けた(参考文献7)。これらのマウスは国立大学法人名古屋大学の動物実験指針に基づき名古屋大学医学部実験動物センターで飼育した。
The following experiments were conducted to establish iPS cells from aged individuals.
1. Method (1) Mouse C57BL / 6 (B6) mice were purchased from Japan SLC. EGFP-C57BL / 6 mice (C14-Y01-FM131Osb) expressing GFP (Green Fluorescent Protein) throughout the body were sold from RIKEN with permission from Mr. Okabe (Reference 7). These mice were bred at the Experimental Animal Center of Nagoya University School of Medicine based on the animal experiment guidelines of Nagoya University.
(2)遺伝子
 転写因子を保持するプラスミドpMXs-c-Myc、pMXs-Klf4、pMXs-Sox2及びpMXs-OCT3/4はAddgene社より購入した。
(2) Gene Plasmids pMXs-c-Myc, pMXs-Klf4, pMXs-Sox2, and pMXs-OCT3 / 4, which hold transcription factors, were purchased from Addgene.
(3)細胞
 マウス胎仔繊維芽細胞(MEF)を調製するため、妊娠13.5日のB6マウスから子宮を取り出し、PBSで洗浄した。分離した胚の頭部及び腹部組織を除去し、残りをはさみで細かく切り、0.25%トリプシン/1 mM EDTAを用いて細胞を分散させた。このようにして得られた細胞を10% FCSを含有するDMEM(Dulbecco's Modified Eagle Medium)で培養した。
(3) Cells In order to prepare mouse embryo fibroblasts (MEF), the uterus was removed from a B6 mouse at 13.5 gestation and washed with PBS. The head and abdominal tissues of the separated embryos were removed, the remainder was finely cut with scissors, and the cells were dispersed using 0.25% trypsin / 1 mM EDTA. The cells thus obtained were cultured in DMEM (Dulbecco's Modified Eagle Medium) containing 10% FCS.
 骨髄由来ミエロ系細胞(BM-M; Bone marrow derived myeloid cells)は稲葉らの方法(参考文献8)に基づき骨髄を0.3% GM-CSF上清(東レ・ダウコーニング・シリコーン株式会社の須藤氏から分譲を受けた、GM-CSFを産生するハムスター細胞の培養上清)を添加したRPMI1640培地(10% FBS、300μg/mLグルタミン、100 U/mLペニシリン、100μg/mLストレプトマイシン及び50μM 2-メルカプトエタノールを含有する)で培養することによって得た。Plat-Eパッケージング細胞は北村教授より分譲を受けた(非特許文献9)。STO細胞にLIF発現コンストラクトを遺伝子導入することによってLIFを産生するSNL/76/7細胞を得た(非特許文献10)。遺伝子導入2日前にPlat-E細胞を6ウェルプレートで培養し(1ウェルあたり5×105の細胞密度)、pMXsベクターにクローニングされた4つの転写因子遺伝子(Oct3/4、Sox2、Klf4及びc-Myc)をFugene 6遺伝子導入試薬(ロッシュ社)を用いて導入した。具体的にはベクターとFugene 6を混合し、一滴ずつPlat-E細胞にふりかけた。37℃、5%CO2下で24時間インキュベートした後、培地(MEM)を交換した。24時間後、0.45μmメッシュの酢酸セルロースフィルター(Schleicher & Schuell社)に通し、ウイルス含有上清を得た。一方、MEF及びBM-M細胞をそれぞれ、マイトマイシンC処理したSNL/76/7細胞(1x106個/ウェル)上に5x105個の細胞密度で播種した。24時間後、ウイルス含有上清をふりかけた。当該処理の後、培地(MEM)を交換し(MEFは24時間後、BM-Bは48時間後)、コロニーが現れるまで培養を続けた。 Bone marrow derived myeloid cells (BM-M) are obtained from 0.3% GM-CSF supernatant (from Toray Dow Corning Silicone Co., Ltd.) based on the method of Inaba et al. RPMI1640 medium (10% FBS, 300 μg / mL glutamine, 100 U / mL penicillin, 100 μg / mL streptomycin and 50 μM 2-mercaptoethanol) supplemented with GM-CSF-producing hamster cell culture supernatant) Obtained). Plat-E packaging cells were purchased from Professor Kitamura (Non-patent Document 9). SNL / 76/7 cells producing LIF were obtained by introducing a LIF expression construct into STO cells (Non-patent Document 10). Two days before gene transfer, Plat-E cells were cultured in a 6-well plate (cell density of 5 × 10 5 per well) and 4 transcription factor genes (Oct3 / 4, Sox2, Klf4 and c) cloned into pMXs vector -Myc) was introduced using Fugene 6 gene introduction reagent (Roche). Specifically, vector and Fugene 6 were mixed and sprinkled drop by drop onto Plat-E cells. After incubation for 24 hours at 37 ° C. and 5% CO 2 , the medium (MEM) was changed. After 24 hours, a virus-containing supernatant was obtained by passing through a 0.45 μm mesh cellulose acetate filter (Schleicher & Schuell). On the other hand, MEF and BM-M cells were seeded at a cell density of 5 × 10 5 cells on mitomycin C-treated SNL / 76/7 cells (1 × 10 6 cells / well). After 24 hours, the virus-containing supernatant was sprinkled. After the treatment, the medium (MEM) was changed (24 hours after MEF and 48 hours after BM-B), and the culture was continued until colonies appeared.
(4)胚様体(EB)の形成及びin vitro分化
 既報のプロトコール(Ohnuki, M., Takahashi, K., and Yamanaka, S. (2009) Curr. Protoc. Stem Cell Biol., 9, 4A.2.1-4A.2.25.)に若干の修正を加えた方法によって、EBの形成を介してin vitro分化誘導した。概要を説明すると、iPS細胞用の培養液に3×103個/20μLの密度で細胞を懸濁し、8日間ハンギングドロップ培養した。形成されたEBを0.1%ゼラチンコートディッシュに移し、更に10日間分化誘導した。内胚葉マーカーとしてα-フェトプロテイン(R&D MAB1368)、中胚葉マーカーとしてα-平滑筋アクチン(Sigma A2547)及び外胚葉マーカーとしてニューロフィラメントH(Cell signaling No.2836)を使用し、免疫組織染色を実施した。
(4) Embryoid body formation (EB) and in vitro differentiation Previous protocol (Ohnuki, M., Takahashi, K., and Yamanaka, S. (2009) Curr. Protoc. Stem Cell Biol., 9, 4A. In vitro differentiation was induced through EB formation by a method with slight modification to 2.1-4A.2.25.). In brief, cells were suspended in a culture solution for iPS cells at a density of 3 × 10 3 cells / 20 μL, and hanging drop culture was performed for 8 days. The formed EB was transferred to a 0.1% gelatin-coated dish and further induced to differentiate for 10 days. Immunohistochemical staining was performed using α-fetoprotein (R & D MAB1368) as the endoderm marker, α-smooth muscle actin (Sigma A2547) as the mesoderm marker, and neurofilament H (Cell signaling No. 2836) as the ectoderm marker. .
2.結果
(1)老化骨髄由来ミエロ系細胞からのiPS細胞の樹立
 老化骨髄からiPS細胞を樹立することを目指して実験を行った。EGFPを全身に発現する老齢C57BL/6マウスから骨髄細胞を取り出し、4因子(OCT3/4、Sox2、Klf4、c-Myc)を導入することによってiPS細胞を作製することを数回試みたが、いずれも失敗に終わった。そこで、骨髄をGM-CSFで4日間培養し、ミエロ系細胞が分化、増殖している時期の細胞(BM-M; bone marrow derived myeloid cells)に4因子を導入する実験に切り換えた。具体的には21ヶ月齢のEGFPC57BL/6マウス骨髄をGM-CSFで4日間培養後、4因子を導入した(効率が上がることを期待して導入操作を2回行った)。1月後、数個のコロニーが観察された。これらのコロニーをピペットで取り出し、24ウェルプレートで培養しておいたマイトマイシンC処理済のSNL/76/6細胞上に移して培養すると、2クローンが増殖した(図1)。これらクローンの形態は胎仔繊維芽細胞(MEF)から作製したiPS細胞及びES細胞と同様であった(図2)。
2. Results (1) Establishment of iPS cells from aged bone marrow-derived myeloma cells An experiment was conducted with the aim of establishing iPS cells from aged bone marrow. I tried to make iPS cells several times by removing bone marrow cells from old C57BL / 6 mice that express EGFP systemically and introducing 4 factors (OCT3 / 4, Sox2, Klf4, c-Myc). Both failed. Therefore, bone marrow was cultured in GM-CSF for 4 days, and switched to an experiment in which 4 factors were introduced into cells (BM-M; bone marrow derived myeloid cells) when myeloma cells were differentiated and proliferating. Specifically, 21-month-old EGFPC57BL / 6 mouse bone marrow was cultured in GM-CSF for 4 days, and then 4 factors were introduced (introduction was performed twice with the expectation that efficiency would increase). After one month, several colonies were observed. When these colonies were removed with a pipette and transferred onto mitomycin C-treated SNL / 76/6 cells that had been cultured in a 24-well plate, two clones grew (FIG. 1). The morphology of these clones was similar to iPS cells and ES cells prepared from fetal fibroblasts (MEF) (FIG. 2).
(2)胎仔繊維芽細胞(MEF)、若い骨髄ミエロ細胞(BM-M)、及び老化骨髄ミエロ細胞間でのiPS細胞作製効率の比較
 胎仔繊維芽細胞(MEF)、若い(2ヶ月齢)骨髄ミエロ細胞(BM-M)及び老化(23ヶ月齢)骨髄ミエロ細胞からそれぞれiPS細胞を作製し、作製効率(iPS細胞の作製頻度)を比較した。MEFと若い(2ヶ月齢)BM-Mからは約15日でコロニーが現れた。一方、老化(23ヶ月齢)BM-Mからはコロニーが現れるまでに30日を要した(図3)。尚、GM-CSFを使用しないと、若い骨髄ミエロ細胞、老化骨髄ミエロ細胞のいずれについても、iPS細胞のコロニーは得られなかった。
(2) Comparison of iPS cell production efficiency among fetal fibroblasts (MEF), young bone marrow myelocytes (BM-M), and aged bone marrow myelocytes Fetal fibroblasts (MEF), young (2 months old) bone marrow IPS cells were prepared from myelocytes (BM-M) and senescent (23 months old) bone marrow myelocytes, respectively, and their production efficiencies (iPS cell production frequency) were compared. Colonies appeared in about 15 days from MEF and young (2 months old) BM-M. On the other hand, from aging (23 months old) BM-M, it took 30 days for colonies to appear (FIG. 3). Without GM-CSF, iPS cell colonies could not be obtained for either young bone marrow myelocytes or senescent bone marrow myelocytes.
(3)老化骨髄ミエロ細胞から作製されたiPS細胞(BM-M-iPS)による、MEF-iPSと同様の3胚葉の形成
 BM-M-iPSとMEF-iPSを2ヶ月齢のC57BL/6マウスの皮下に1x107個注射したところ、3週間程で腫瘤が現れた(図4)。固定後、H&E染色すると、外胚葉(皮膚の角質層(corneum)、図5左)、中胚葉(平滑筋、図5中央)、内胚葉(腸管上皮、図5右)の3胚葉組織が観察された(図5)。
(3) Formation of three germ layers similar to MEF-iPS by iPS cells (BM-M-iPS) prepared from senescent bone marrow myelocytes. Two-month-old C57BL / 6 mice were treated with BM-M-iPS and MEF-iPS. When 1 × 10 7 were injected subcutaneously, a tumor appeared in about 3 weeks (FIG. 4). After fixation, when stained with H & E, 3 germ layers of ectoderm (corneum of skin, left of Fig. 5), mesoderm (smooth muscle, middle of Fig. 5), endoderm (intestinal epithelium, right of Fig. 5) are observed (FIG. 5).
(4)老化骨髄ミエロ細胞から樹立したiPS細胞の遺伝子発現
 C57BL/6マウス(21ヶ月齢)骨髄細胞をGM-CSF存在下で4日又は7日間培養した。細胞からRNAを調製し、TNF-α、IL-1β、CCL-7、C/EBPα及びPU.1の発現をRT-PCRで検索すると強い発現を認めた(図6)。一方、老化骨髄ミエロ細胞から樹立したiPS細胞(BM-M-iPS)ではこれらミエロ系遺伝子発現が強く低下しているか、或いは発現が認められなかった(図6)。即ち、BM-M-iPSは、MEFから作製したMEF-iPSと同様の遺伝子発現プロファイルを示した。一方、BM-M-iPSでは、多能性幹細胞で発現が上昇することが知られているNanog、Oct/4、Fgf-4、Esg-1及びCriptの遺伝子発現がMEF-iPSと同様に上昇していた。
(4) Gene expression of iPS cells established from senescent bone marrow myelocytes C57BL / 6 mice (21 months old) bone marrow cells were cultured in the presence of GM-CSF for 4 or 7 days. When RNA was prepared from the cells and TNF-α, IL-1β, CCL-7, C / EBPα and PU.1 expression were searched by RT-PCR, strong expression was observed (FIG. 6). On the other hand, in iPS cells (BM-M-iPS) established from senescent bone marrow myelocytes, the expression of these myelic genes was strongly reduced or not observed (FIG. 6). That is, BM-M-iPS showed the same gene expression profile as MEF-iPS prepared from MEF. On the other hand, in BM-M-iPS, the expression of Nanog, Oct / 4, Fgf-4, Esg-1 and Cript, which are known to increase in pluripotent stem cells, is increased in the same way as MEF-iPS. Was.
(5)老化(21ヶ月齢)骨髄ミエロ細胞から作製したiPS細胞のin vitro分化
 次に、BM-M-iPSをin vitroで3胚葉に分化させることを試みた。ハンギングドロップ法でBM-M-iPSを8日間培養して胚様体(EB)を形成させた。続いて、EBを0.1%ゼラチンコート24ウェルプレートに移した(図7A)。10日間培養した後、組織特異的抗体で染色した。分化したBM-M-iPS細胞はGFPを発現するとともに(図7B左)、α-平滑筋アクチン、α-フェトプロテイン及びニューロフィラメントHを発現した(図7B中央)。同様の方法でMEF-iPSも分化誘導した(データ示さず)。分化マーカーを発現する細胞を計数した結果、α-平滑筋アクチンを発現する細胞の割合はBM-M-iPSでは50%であり、MEF-iPSでは61.2%であった。α-フェトプロテインについては、BM-M-iPS細胞の場合は84.1%、MEF-iPSの場合は51.7%の細胞に発現を認めた。同様に、ニューロフィラメントHについては、BM-M-iPSの場合は68%、MEF-iPSの場合は73.1%の細胞に発現を認めた。これらの結果は、3胚葉の分化能に関して、BM-M-iPSとMEF-iPS細胞との間に大きな差がないことを示す。
(5) In vitro differentiation of iPS cells prepared from senescent (21 months old) bone marrow myelocytes Next, an attempt was made to differentiate BM-M-iPS into three germ layers in vitro. BM-M-iPS was cultured for 8 days by the hanging drop method to form embryoid bodies (EB). Subsequently, EB was transferred to a 0.1% gelatin-coated 24-well plate (FIG. 7A). After culturing for 10 days, it was stained with a tissue-specific antibody. Differentiated BM-M-iPS cells expressed GFP (FIG. 7B left) and also expressed α-smooth muscle actin, α-fetoprotein and neurofilament H (middle of FIG. 7B). In the same manner, MEF-iPS was induced to differentiate (data not shown). As a result of counting cells expressing differentiation markers, the proportion of cells expressing α-smooth muscle actin was 50% for BM-M-iPS and 61.2% for MEF-iPS. Regarding α-fetoprotein, expression was observed in 84.1% of BM-M-iPS cells and 51.7% of MEF-iPS cells. Similarly, neurofilament H was expressed in 68% of cells for BM-M-iPS and 73.1% for MEF-iPS. These results indicate that there is no significant difference between BM-M-iPS and MEF-iPS cells with respect to the differentiation ability of the three germ layers.
 更に、分化誘導後のBM-M-iPSをミエロイド細胞に戻すことが可能か否かを調べた。OP9用培養液を用い、BM-M-iPSとMEF-iPSをそれぞれOP9細胞と5日間共培養した。その後、OP9細胞を交換し、GM-CSF添加OP9用培養液で更に5日間培養した(図7C)。続いて、細胞を6ウェルプレート(細胞接着のための処理は施していない)に移した。この段階でBM-M-iPS及びMEF-iPSの両者についてミエロイド様細胞が認められた(図7D)。また、分化誘導後の細胞では、Nanog及びPou5f1の発現が消失していた(図6)。一方、ミエロ系サイトカイン(TNF-α、IL-1β)、ケモカイン(CCL-7)及び転写因子(C/EBPα、Pu-1)の発現上昇を認めた(図6)。分化誘導させた細胞について、PE標識抗体を用いてミエロ系細胞表面マーカーの発現を調べた。ミエロ系に分化誘導させたBM-M-iPS及びMEF-iPSの両者についてCD11b及びCD115の発現を認めた(図8)。以上の結果は、BM-M-iPSがミエロ系細胞に分化したことを示す。 Furthermore, it was investigated whether BM-M-iPS after differentiation induction could be returned to myeloid cells. Using the culture solution for OP9, BM-M-iPS and MEF-iPS were co-cultured with OP9 cells for 5 days, respectively. Thereafter, the OP9 cells were replaced, and further cultured for 5 days in a culture solution for OP9 supplemented with GM-CSF (FIG. 7C). Subsequently, the cells were transferred to a 6-well plate (no treatment for cell adhesion). At this stage, myeloid-like cells were observed for both BM-M-iPS and MEF-iPS (FIG. 7D). Moreover, in the cells after differentiation induction, the expression of Nanog and Pou5f1 was lost (FIG. 6). On the other hand, increased expression of myelin cytokines (TNF-α, IL-1β), chemokine (CCL-7) and transcription factors (C / EBPα, Pu-1) was observed (FIG. 6). About the cell which induced differentiation, the expression of the myelic cell surface marker was investigated using PE labeled antibody. Expression of CD11b and CD115 was observed for both BM-M-iPS and MEF-iPS induced to differentiate into the myeloma system (FIG. 8). The above results indicate that BM-M-iPS differentiated into myeloma cells.
(6)アグリゲーション法によるキメラマウスの作製
 更なる検討として、BM-M-iPSを用いてキメラマウスの作製を試みた。まず、1日目に5 IUの妊馬血清ゴナドトロピン(PMSG)を6週齢ICRマウスに投与し、3日目にヒト胎盤性性腺刺激ホルモン(hCG)を投与した後、オスマウスとともにケージに入れた。交尾後2.5日目の朝に8細胞期胚を採取し、同日、アグリゲーション法に使用した。アグリゲーションを実施する1日前に、サブコンフルエント(70~80%)の状態のBM-M-iPS細胞の懸濁液を、ゼラチンコートしたディッシュに添加した。一方、8細胞期胚を、その透明帯を除去した後、アグリゲーション用プレートに移した。8細胞期胚とのアグリゲーションの直前に、トリプシン処理によってBM-M-iPS細胞の塊(8~15細胞)を回収した。そして、透明体を除去した8細胞期胚とBM-M-iPS細胞の塊をアグリゲーションさせた。アグリゲーションの後、E2.5の偽妊娠メスマウスの子宮に移植した。
(6) Production of chimeric mouse by aggregation method As a further study, production of a chimeric mouse was attempted using BM-M-iPS. First, 5 IU pregnant mare serum gonadotropin (PMSG) was administered to 6-week-old ICR mice on day 1, human placental gonadotropin (hCG) was administered on day 3, and then placed in a cage with male mice . On the morning of 2.5 days after mating, 8-cell embryos were collected and used for the aggregation method on the same day. One day prior to aggregation, a suspension of BM-M-iPS cells in a sub-confluent state (70-80%) was added to the gelatin-coated dish. On the other hand, the 8-cell embryo was removed from the zona pellucida and transferred to an aggregation plate. Immediately before aggregation with the 8-cell stage embryo, a mass of BM-M-iPS cells (8 to 15 cells) was collected by trypsin treatment. Then, the 8-cell embryo from which the transparent body was removed and the mass of BM-M-iPS cells were aggregated. After aggregation, they were transplanted into the uterus of E2.5 pseudopregnant female mice.
 以上のプロトコールでキメラマウスの作製を試みた結果、図9に示す通り、BM-M-iPS細胞由来の黒い毛色が混ざった仔マウスが得られた。この結果は、BM-M-iPSがES細胞同様に多能性を示し、その有用性が高いことを意味する。 As a result of the attempt to produce a chimeric mouse by the above protocol, a pup mouse having a black hair color derived from BM-M-iPS cells was obtained as shown in FIG. This result means that BM-M-iPS shows pluripotency like ES cells and its usefulness is high.
3.考察
 老化マウス骨髄由来ミエロ系細胞よりiPS細胞を樹立することに成功した。この成果は以下の3点において特に重要である。1つ目は骨髄由来ミエロ系細胞よりiPS細胞を作製したこと、2つ目は老齢マウスからiPS細胞を作製したこと、3つ目は、樹立されたiPS細胞は最もよく使用されているC57BL/6マウス由来であり、しかも全身に発現するGFPマーカーを保有するため、移入実験に利用したときに免疫拒絶を受けないこと、移入後の細胞の位置(所在)を容易に確認できること、である。
3. Discussion IPS cells were successfully established from aged mouse bone marrow-derived myeloma cells. This achievement is particularly important in the following three points. First, iPS cells were prepared from myeloid cells derived from bone marrow, second, iPS cells were prepared from aged mice, and third, established iPS cells were most commonly used C57BL / Since it is derived from 6 mice and possesses a GFP marker expressed throughout the body, it does not receive immune rejection when used in transfer experiments, and the location (location) of cells after transfer can be easily confirmed.
 ヒトの自己細胞からiPS細胞を樹立し、自己の疾患の治療や、老化により障害された組織の再生に利用する(personalized cell therapies)には簡便で安全な方法が求められる。これまでに各種細胞(ソース)がiPS細胞の作製に利用されてきた。最も一般的に利用される細胞は胎児又は成人の繊維芽細胞である(参考文献2、3)。成人の神経幹細胞を用いた場合、僅か2つの因子の利用によってiPS細胞を樹立できる(参考文献11)。成体マウスの肝臓細胞や消化管細胞からもiPS細胞が作製されている(参考文献12)。また、免疫系細胞からiPS細胞を作製する試みも行われており、B細胞(参考文献13)、T細胞(参考文献6)からiPS細胞を作製することに成功したとの報告がある。しかしながら、これらの方法で作製されたiPS細胞は再生医療には適さない。遺伝子が既に組み換えられている(遺伝子の再構成が生じている)からである。今回、GM-CSFで短期間培養するという方法を採用することによって、老化骨髄細胞からiPS細胞を作製することに成功した。骨髄細胞を培養してiPS細胞を作製したとの報告(参考文献14、15)はあるものの、老齢個体の骨髄を用いたものではない。老齢個体由来の細胞を用いてiPS細胞を樹立できたことは、iPS細胞の実用化に向けた大きなブレークスルーとなる。 A simple and safe method is required to establish iPS cells from human autologous cells and use them for treatment of self-diseases and regeneration of tissues damaged by aging (personalized cells and therapies). So far, various cells (sources) have been used for the production of iPS cells. The most commonly used cells are fetal or adult fibroblasts (Refs. 2, 3). When adult neural stem cells are used, iPS cells can be established by using only two factors (Reference 11). IPS cells have also been prepared from liver cells and gastrointestinal cells of adult mice (Reference Document 12). Attempts have also been made to produce iPS cells from immune system cells, and it has been reported that iPS cells have been successfully produced from B cells (reference 13) and T cells (reference 6). However, iPS cells produced by these methods are not suitable for regenerative medicine. This is because the gene has already been recombined (gene rearrangement has occurred). We have succeeded in producing iPS cells from senescent bone marrow cells by adopting a method of culturing for a short time with GM-CSF. Although there are reports (reference documents 14 and 15) that iPS cells were prepared by culturing bone marrow cells, the bone marrows of elderly individuals were not used. The establishment of iPS cells using cells derived from aged individuals is a major breakthrough for the practical application of iPS cells.
 本発明の方法によれば老齢個体からもiPS細胞を比較的簡便に作製することが可能となる。本発明の方法で得られるiPS細胞の用途として、加齢ないし老化に伴う各種疾患(筋萎縮、骨粗しょう症、関節炎など)、肺繊維症、肝硬変、腎不全等の治療、及び美容(角質細胞(ケラチノサイト)に分化された細胞を用いた皮膚の若返りなど)が想定される。 According to the method of the present invention, it is possible to produce iPS cells relatively easily from an old individual. Uses of iPS cells obtained by the method of the present invention include treatment of various diseases associated with aging or aging (muscle atrophy, osteoporosis, arthritis, etc.), pulmonary fibrosis, cirrhosis, renal failure, and beauty (keratinocytes). Skin rejuvenation using cells differentiated into (keratinocytes)).
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
 本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.
 参考文献
[1] Jaenisch R, Young R,. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008: 132:567-82.
[2] Takahashi K, Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676.
[3] Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES cell-like state. Nature 2007 ;448: 318-24.
[4] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131: 861-72.
[5] Hanna J, Wernig M, Markoulaki S. et al., Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318:920-23.
[6] Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132-1135(2009).
[7] Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 1997 May 5;407(3):313-9.
[8] Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693-702.
[9] S. Morita, T. Kojima and T. Kitamura, Plat-E: an efficient and stable system for transient packaging of retroviruses, Gene Ther. 7 (2000), pp.1063-1066.
[10] Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 1988 Dec 15;336(6200):684-7.
[11] Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arau'zo-Bravo MJ, Ruau D, Han DW, Zenke M, Scho"ler HR. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 2008 Jul 31;454(7204):646-50.
[12] Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008;321:699-702.
[13] Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ, Cassady JP, Foreman R, Lengner CJ, Dausman JA, Jaenisch R. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008 Apr 18;133(2):250-64.
[14] Okabe M, Otsu M, Ahn DH, et al. Definitive proof for direct reprogramming of hematopoietic cells to pluripotency. Blood.2009;114:1764-1767.
[15] Kunisato A, Wakatsuki M, Kodama Y, Shinba H, Ishida I, Nagao K. Generation of induced pluripotent stem (iPS) cells by efficient reprogramming of adult bone marrow cells. Stem Cells Dev. 2010;19(2):229-238.
[16] Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M, Blasco MA, Serrano M. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136-1139.
References
[1] Jaenisch R, Young R ,. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008: 132: 567-82.
[2] Takahashi K, Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell 2006; 126: 663-676.
[3] Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES cell-like state. Nature 2007; 448: 318-24.
[4] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861-72.
[5] Hanna J, Wernig M, Markoulaki S. et al., Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318: 920-23.
[6] Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132-1135 (2009) .
[7] Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 1997 May 5; 407 (3): 313-9.
[8] Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte / macrophage colony-stimulating factor J Exp Med 176: 1693-702.
[9] S. Morita, T. Kojima and T. Kitamura, Plat-E: an efficient and stable system for transient packaging of retroviruses, Gene Ther. 7 (2000), pp.1063-1066.
[10] Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM. Myeloid leukaemia inhibitory factor maintaining the developmental potential of embryonic stem cells. Nature. 1988 Dec 15; 336 (6200): 684-7.
[11] Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arau'zo-Bravo MJ, Ruau D, Han DW, Zenke M, Scho "ler HR. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors.Nature. 2008 Jul 31; 454 (7204): 646-50.
[12] Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008; 321: 699-702.
[13] Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ, Cassady JP, Foreman R, Lengner CJ, Dausman JA, Jaenisch R. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008 Apr 18; 133 (2): 250-64.
[14] Okabe M, Otsu M, Ahn DH, et al. Definitive proof for direct reprogramming of hematopoietic cells to pluripotency. Blood.2009; 114: 1764-1767.
[15] Kunisato A, Wakatsuki M, Kodama Y, Shinba H, Ishida I, Nagao K. Generation of induced pluripotent stem (iPS) cells by efficient reprogramming of adult bone marrow cells. Stem Cells Dev. 2010; 19 (2): 229-238.
[16] Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M, Blasco MA, Serrano M. The Ink4 / Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136-1139.

Claims (10)

  1.  以下のステップ(1)及び(2)を含む、誘導多能性幹細胞の作製法:
     (1)骨髄を顆粒球単球コロニー刺激因子の存在下で培養するステップ;
     (2)増殖した細胞を多能性幹細胞へ形質転換させるステップ。
    A method for producing induced pluripotent stem cells, comprising the following steps (1) and (2):
    (1) culturing bone marrow in the presence of granulocyte monocyte colony-stimulating factor;
    (2) Transforming the proliferated cells into pluripotent stem cells.
  2.  骨髄がヒトの骨髄である、請求項1に記載の誘導多能性幹細胞の作製法。 The method for producing induced pluripotent stem cells according to claim 1, wherein the bone marrow is human bone marrow.
  3.  骨髄が、壮年期以降のヒトの骨髄である、請求項1に記載の誘導多能性幹細胞の作製法。 The method for producing induced pluripotent stem cells according to claim 1, wherein the bone marrow is human bone marrow after the middle age.
  4.  骨髄がマウスの骨髄である、請求項1に記載の誘導多能性幹細胞の作製法。 The method for producing induced pluripotent stem cells according to claim 1, wherein the bone marrow is mouse bone marrow.
  5.  ステップ(2)の形質転換が、Oct3/4、Sox2、Klf4及びc-Mycの4因子を細胞に導入することにより行われる、請求項1~4のいずれか一項に記載の誘導多能性幹細胞の作製法。 The induced pluripotency according to any one of claims 1 to 4, wherein the transformation in step (2) is performed by introducing four factors Oct3 / 4, Sox2, Klf4 and c-Myc into the cell. A method for producing stem cells.
  6.  請求項1~5のいずれか一項に記載の作製法で作製される誘導多能性幹細胞。 An induced pluripotent stem cell produced by the production method according to any one of claims 1 to 5.
  7.  多能性幹細胞マーカーであるNanog遺伝子、Oct4遺伝子、FgF4遺伝子、Esg-1遺伝子及びCript遺伝子を発現している、請求項6に記載の誘導多能性幹細胞。 The induced pluripotent stem cell according to claim 6, wherein the pluripotent stem cell marker Nanog gene, Oct4 gene, FgF4 gene, Esg-1 gene and Cript gene are expressed.
  8.  遺伝子の再構成が行われていない、請求項6又は7に記載の誘導多能性幹細胞。 The induced pluripotent stem cell according to claim 6 or 7, wherein gene rearrangement is not performed.
  9.  請求項6~8のいずれか一項に記載の誘導多能性幹細胞に対して分化誘導処理を施すことを特徴とする、特定の細胞系譜に分化した細胞の作製法。 A method for producing a cell differentiated into a specific cell lineage, characterized by subjecting the induced pluripotent stem cell according to any one of claims 6 to 8 to differentiation differentiation treatment.
  10.  骨髄を顆粒球単球コロニー刺激因子の存在下で培養することを特徴とする、誘導多能性幹細胞作製用細胞の調製法。 A method for preparing cells for producing induced pluripotent stem cells, comprising culturing bone marrow in the presence of granulocyte monocyte colony-stimulating factor.
PCT/JP2011/058027 2010-04-28 2011-03-30 Method for producing induced pluripotent stem cells WO2011135969A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012512738A JPWO2011135969A1 (en) 2010-04-28 2011-03-30 Method for producing induced pluripotent stem cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-103211 2010-04-28
JP2010103211 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011135969A1 true WO2011135969A1 (en) 2011-11-03

Family

ID=44861287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058027 WO2011135969A1 (en) 2010-04-28 2011-03-30 Method for producing induced pluripotent stem cells

Country Status (2)

Country Link
JP (1) JPWO2011135969A1 (en)
WO (1) WO2011135969A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686839A (en) * 2017-09-25 2018-02-13 安徽朵能生物科技有限公司 Microtubule bindin CRIPT, its therapeutic mutant and its application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507520A (en) * 2005-09-09 2009-02-26 ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ・アズ リプレゼンテッド バイ ザ セクレタリー・デパートメント オブ ヘルス アンド ヒューマン サービシーズ Methods and compositions for inhibiting cell death or enhancing cell proliferation
WO2009148057A1 (en) * 2008-06-02 2009-12-10 協和発酵キリン株式会社 Reprogramming of blood cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507520A (en) * 2005-09-09 2009-02-26 ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ・アズ リプレゼンテッド バイ ザ セクレタリー・デパートメント オブ ヘルス アンド ヒューマン サービシーズ Methods and compositions for inhibiting cell death or enhancing cell proliferation
WO2009148057A1 (en) * 2008-06-02 2009-12-10 協和発酵キリン株式会社 Reprogramming of blood cells

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EMINLI S ET AL.: "Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells.", NAT GENET., vol. 41, no. 9, 2009, pages 968 - 976, XP055048798, DOI: doi:10.1038/ng.428 *
KEN'ICHI ISOBE ET AL.: "Roka to Saisei Roka Mouse kara iPS Saibo no Juritsu", KISO ROKA KENKYU, vol. 34, no. 4, 4 November 2010 (2010-11-04), pages 33 - 35 *
OKABE M. ET AL.: "Definitive proof for direct reprogramming of hematopoietic cells to pluripotency.", BLOOD, vol. 114, no. 9, 2009, pages 1764 - 1767 *
ZHAO CHENG ET AL.: "Establishment of induced pluripotent stem cells from aged mice using bone marrow-derived myeloid cells.", J MOL CELL BIOL, vol. 3, no. 2, April 2011 (2011-04-01), pages 91 - 98 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686839A (en) * 2017-09-25 2018-02-13 安徽朵能生物科技有限公司 Microtubule bindin CRIPT, its therapeutic mutant and its application
CN107686839B (en) * 2017-09-25 2020-12-04 安徽朵能生物科技有限公司 Microtubule-associated protein CRIPT, therapeutic mutant thereof and application thereof

Also Published As

Publication number Publication date
JPWO2011135969A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
US11162075B2 (en) Methods and compositions for inducing hematopoietic cell differentiation
AU2021225187B2 (en) Methods for differentiating pluripotent cells
Nakagawa et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells
Takenaka et al. Effective generation of iPS cells from CD34+ cord blood cells by inhibition of p53
US20210371828A1 (en) Induced pluripotent cell comprising a controllable transgene for conditional immortalization
JP7023496B2 (en) Induction of differentiation of human pluripotent stem cells into hypothalamic neurons
US20230220344A1 (en) Induced pluripotent cell comprising a controllable transgene for conditional immortalisation
Obokata et al. Retracted: The Potential of Stem Cells in Adult Tissues Representative of the Three Germ Layers
Yamasaki et al. Long-term serial cultivation of mouse induced pluripotent stem cells in serum-free and feeder-free defined medium.
JPWO2014057997A1 (en) Initializing peptide and use thereof
WO2011135969A1 (en) Method for producing induced pluripotent stem cells
KR101390613B1 (en) Selenium-based differentiation method of human pluripotent stem cells into hematopoietic progenitor, vascular progenitor, endothelial and smooth muscle cells
Lou et al. Reprogramming of mouse cochlear cells by transcription factors to generate induced pluripotent stem cells
Wang et al. Comparing the reprogramming efficiency of mouse embryonic fibroblasts, mouse bone marrow mesenchymal stem cells and bone marrow mononuclear cells to iPSCs
TW202204609A (en) Method for manufacturing t progenitor cell
KR20140072676A (en) Preparation Method of Transgenic Chickin Induced Pluripotent Stem Cell
WO2021107117A1 (en) Method for producing hematopoietic cell from pluripotent stem cell
GRACE Generation of Porcine Induced Pluripotent Stem Cells and their Differentiation into Cardiac Lineages
JP2023058788A (en) Method for producing tissue
KR101639595B1 (en) Composition and method for promoting direct conversion of fibroblasts into hepatocytes
WO2024059584A1 (en) Methods and compositions for inducing hematopoietic cell differentiation
Li et al. AUTHOR COPY ONLY
Kondo et al. 3D-aggregated dermal stem cells with partial-pluripotency
Gauthaman et al. Human Embryonic Stem Cell-derived Tissue Transplantation Therapy: Clinical Hurdles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774753

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512738

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774753

Country of ref document: EP

Kind code of ref document: A1