WO2011135108A1 - Resonant direct-current electrical transmission module with high-frequency transformer - Google Patents

Resonant direct-current electrical transmission module with high-frequency transformer Download PDF

Info

Publication number
WO2011135108A1
WO2011135108A1 PCT/ES2010/070266 ES2010070266W WO2011135108A1 WO 2011135108 A1 WO2011135108 A1 WO 2011135108A1 ES 2010070266 W ES2010070266 W ES 2010070266W WO 2011135108 A1 WO2011135108 A1 WO 2011135108A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
voltage
transmission
converter
power
Prior art date
Application number
PCT/ES2010/070266
Other languages
Spanish (es)
French (fr)
Inventor
Iñigo MARTINEZ DE ALEGRÍA MANCISIDOR
Salvador Ceballos Recio
Pedro IBAÑEZ EREÑO
José Luis MARTÍN GONZÁLEZ
Igor Gabiola Atxustegi
Jon ANDREU LARRAÑAGA
Iñigo KORTABARRIA IZAGIRRE
Original Assignee
Fundacion Robotiker
Universidad Del Pais Vasco-Euskal Herriko Unibertsitatea
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Robotiker, Universidad Del Pais Vasco-Euskal Herriko Unibertsitatea filed Critical Fundacion Robotiker
Priority to PCT/ES2010/070266 priority Critical patent/WO2011135108A1/en
Publication of WO2011135108A1 publication Critical patent/WO2011135108A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention applies to systems for mono or bidirectional transmission of electric power in direct current from an electric power source to a consumer system. More specifically, it refers to the use of a bidirectional resonant converter and a high frequency transformer to convert the current.
  • HVDC High Voltage Direct Current
  • the transmission in direct current is a technology that allows the transmission of electrical energy between two three-phase networks through overhead lines or DC cables.
  • the advantage of a direct current transmission system is a faster and higher quality control of the transmitted active and reactive power, as well as a lower driver cost. Due to the high cost of the power converters necessary to convert the alternating current into continuous, these systems are only used over very long distances, especially when the installation of cable sections in marine applications is necessary.
  • HVDC LCC Transmission in high voltage and direct current by means of natural switching converters based on converters to thyristors switched to grid frequency (50 - 60 Hz).
  • grid frequency 50 - 60 Hz.
  • HVDC LCC systems are very robust but cannot control reactive power, require low frequency filters and an auxiliary starting system.
  • 2- HVDC VSC This technology has the advantages of independent control of active and reactive powers, absence of risk of failover in weak networks, empty start of alternating networks without own generation, smaller in size than HVDC LCC among others (W0199501 670).
  • Both systems are based on the elevation of the voltage of a three-phase alternating current network by means of a network frequency transformer (50 - 60 Hz) with a grain-oriented steel core and the conversion of alternating to continuous on the high voltage side of the transformer through thyristors or IGBTs.
  • These conventional systems HVDC LCC and HVDC VSC have a doubling of the converter stages and do not take full advantage of the potential of the system. It is very common to have a system with a park of n three-phase alternating current generators. Each generator is connected by a rectifier to control the power, a DC bus, an inverter and a low frequency transformer to a low frequency (50-60 Hz) and medium voltage (12-33 kV) network.
  • the medium voltage network is then connected to a high-voltage line in direct current by means of a low frequency booster transformer and a high voltage converter.
  • a low frequency booster transformer and a high voltage converter are used.
  • the n power transformers equal to the nominal power of the generators ⁇ P n0 m) and a power transformer n P nom , are all low frequency. Attempts have been made to eliminate this duplication of stages with converters and transformers through several proposals, but these have always been applied to very specific applications.
  • the invention aims to alleviate the technical problems mentioned in the previous section. For this, it proposes a module of electrical transmission in direct current that includes among others the following elements:
  • a high frequency bidirectional DC-AC converter (C)
  • b. a high frequency and high voltage elevator transformer c. a continuous voltage bus as the power supply of said converter.
  • the converter is adapted to operate with resonant switching.
  • the transformer core is made of amorphous steel, of a crystalline or ferrite magnetic material or any other low loss magnetic material in the core.
  • it comprises an active rectifier if the power transmission must be bidirectional, or a passive diode rectifier if the power transmission is unidirectional.
  • the invention also contemplates an electrical transmission system composed of a plurality N of these modules connected in series and / or in parallel by inductances.
  • the system comprises a module connected in series and a plurality of modules connected in parallel.
  • This system replaces the transformer of each generator element and the common 50Hz (60 Hz) transformer of conventional HVDC converters with a single high frequency transformer (1 -10 kHz) by using resonant converters with low switching losses.
  • the use of high frequency transformers makes it possible to reduce its size by at least an order of magnitude and reduce losses in the core by using materials with lower losses such as amorphous steels, nanocrystalline magnetic materials or ferrite in the case in which The power of the application is not excessively large or any material with low losses.
  • Figure 1 shows a generic HVDC transmission system with a network frequency transformer in both terminals.
  • Figure 2.- represents a generation park with n generators, AC distribution system and HVDC transmission system according to the state of the art.
  • Figure 3.- shows a possible implementation of a bidirectional or unidirectional resonant converter with high frequency transformer according to the invention.
  • Figure 4.- shows a second possible implementation of a bidirectional or unidirectional resonant converter with high frequency transformer according to the invention.
  • Figure 5.- represents a parallel connection of N resonant converters with high frequency transformer with N independent voltage sources according to an embodiment of the invention.
  • Figure 6.- shows examples of monopolar transmission systems.
  • FIG. 7 shows examples of bipolar transmission systems.
  • the system of the invention is usable for the transmission of electrical energy in direct current from a direct current bus through one or several transmission lines in direct current via cables or overhead lines to another direct current bus. as load Alternatively, the system can feed a direct current load from a three-phase or single-phase source, a three-phase or single-phase alternating current load from a three-phase or single-phase source or a three-phase or single-phase alternating current load from a direct current source.
  • a low or medium voltage continuous voltage bus from which, by means of a DC-AC power converter and a low frequency transformer a three-phase medium voltage system is generated ( 12-33 kV) alternating (50-60 Hz) used for power transmission.
  • a three-phase medium voltage system is generated ( 12-33 kV) alternating (50-60 Hz) used for power transmission.
  • the system object of the invention proposes to use directly the existing direct voltage bus in many applications of generation and consumption of electric energy and in distribution and transmission systems (wind generation, photovoltaic generation, fuel cells, frequency inverters, etc.
  • the proposed system can also be used for the transmission of electrical energy from a three-phase or single-phase alternating current network by adding an inverter and a capacitor to obtain a direct current bus.
  • the continuous voltage source can be obtained by any conventional element (three-phase or single-phase generator or network and three-phase diode or IGBT rectifier, panel or set of photovoltaic panels, batteries, fuel cells, etc.).
  • the resonant converter consists of a complete bridge of IGBTs, MOSFETs, GTOs or any semiconductor of controlled power.
  • the load is a high frequency (1 -10 kHz) lifting transformer with amorphous steel core (VITROVAC ® , METGLAS ® ), nanocrystalline magnetic material (VITROPERM ® , FINEMET ® ), ferrite or any other low loss material in the core .
  • the transformer by design, will have a specific leak inductance. When the desired leakage inductance cannot be obtained by construction limits of the transformer, an inductance with the desired value between the capacitor and the transformer is connected in series.
  • a controlled rectifier is used if the power transmission must be bidirectional or a passive diode rectifier if the power transmission is unidirectional connected to a DC bus via a series inductance (in the case where the conductor inductance is sufficient, the series inductance can be omitted).
  • a series inductance in the case where the conductor inductance is sufficient, the series inductance can be omitted.
  • an identical system by properly switching the active rectifier, generates an alternating voltage on the high voltage side, and a transformer identical to the first reduces the voltage and this is rectified by a resonant conversion, feeding a bus of continuous to the exit of the same.
  • This DC bus can be used to directly feed DC / DC loads or it can be used to generate a three-phase or single-phase AC network using conventional low, medium or high voltage inverters.
  • the proposed transmission system is constructed by connecting a number N of modules in series and in parallel until the desired current and voltage are obtained so that the available semiconductors are optimally used.
  • the most desired connection is the parallel connection by series inductance due to the simplicity of the control. In the case of the parallel connection it is not necessary to oversize the semiconductors of the output stage of the resonant converter.
  • the basic module of the present invention is the resonant converter CR connected to a direct voltage source and to the transformer.
  • Figures 3 and 4 show, by way of illustration, two possible implementations of this converter.
  • the output terminals of the bridge are connected in series to the primary of a transformer with a primary winding and n secondary windings.
  • the secondary of the transformer are connected to a rectifier formed by a second bridge
  • the outputs of the rectifier bridges are connected, according to the implementation shown in Fig. 3, to a capacitor that functions as a continuous voltage source and all the capacitors are connected in series until the desired output voltage is obtained. According to the implementation shown in Fig. 4, the outputs of the rectifier bridges connect directly to the continuous link without the need for a capacitor.
  • the transformer is responsible for adapting the voltage levels between the generator or consumer system (usually at low or medium voltage) and the transmission line voltage (usually at medium or high voltage).
  • the active rectifier of IGBTs with antiparallel diodes if the power transmission must be bidirectional, or the passive diode rectifier if the power transmission is unidirectional, are formed by high-voltage semiconductors connected in series until the ability to withstand the voltage of the transmission line with a sufficient safety margin.
  • the converter connected to a DC voltage source generates a high frequency square voltage alternating voltage wave at its output.
  • this frequency coincides with the resonant frequency of the resonant circuit formed by the serial connection of the capacitor and the transformer where L is the value of the leakage inductance of the transformer plus any inductance connected in series to it and C is the value of the capacitor connected in series.
  • L is the value of the leakage inductance of the transformer plus any inductance connected in series to it
  • C is the value of the capacitor connected in series.
  • the transmitted power can be regulated in several ways, varying the frequency, the duty cycle of the square wave, both factors or regulating the input current to the voltage source.
  • the set consisting of the N modules can be connected in series with an inductance and connected in parallel to other sets of similar modules. Finally, the entire system is connected to the conductors of the transmission line so that the desired voltage and current levels can be obtained (Figure 5).
  • an identical system by properly switching the active rectifier, generates an alternating voltage on the high voltage side, and a transformer identical to the first reduces the voltage and this is rectified by a resonant conversion, feeding a bus of Continuous voltage at its output.
  • This bus can be used to directly feed voltage / direct current loads or to generate a three-phase or single-phase alternating network using conventional medium or high low voltage inverters.
  • Another alternative is to connect the end of the conductors to conventional HVDC transmission systems.
  • This system consists of: • M electric generators (asynchronous or synchronous) of nominal power P n0 m with rectifiers connected to a DC bus. In figure 5 they are represented as a voltage source.
  • This converter can be composed of a conventional HVDC station or a resonant converter with a high frequency transformer and a conventional inverter, avoiding the use of a low frequency transformer.
  • N power transformers P n0 m and a power transformer N x P n0 m of low frequency (50 Hz) are replaced by N power transformers P n0 m of high frequency.
  • the redundancy and security of the system is increased since there is no possibility of a failure of the transmission system due to failure in the HVDC station as it is not necessary and the failure of a converter only affects the generator to which it is connected.
  • the power conversion is done by resonant converter with minimal switching losses.
  • a high switching frequency and a transformer of small size and weight The elevation and reduction of the voltage is carried out by a transformer of smaller size and weight than conventional transformers operating at 50-60 Hz, which is Especially relevant in marine applications (offshore wind farms, power generation from waves, tides, etc.).
  • the Thyristors or high voltage IGBTs are eliminated and replaced by diodes, with much lower cost and without the need for control. In this case the cost of the system is considerably reduced since only the diodes are used on the high voltage side and the main part of the power conversion is on the low or medium voltage side.
  • the system is applicable in the transmission of electrical energy through overhead lines, buried cables, submarine cables, distribution systems in ships, photovoltaic power generation parks, electrical energy distribution systems, etc.
  • the invention is obviously not limited to the specific embodiments described herein, but also encompasses any variation that may be considered by any person skilled in the art (for example, as regards the choice of materials, dimensions , components, configuration, etc.), within the general scope of the invention as defined in the claims.

Abstract

Bidirectional direct-current electrical transmission module characterized in that it comprises, inter alia, a high-frequency bidirectional resonant DC-AC converter, a high-frequency high-voltage step-up transformer, and a direct-voltage bus to power said converter. The use of high-frequency transformers helps to reduce the size thereof by at least one order of magnitude.

Description

MÓDULO DE TRANSMISIÓN ELÉCTRICA EN CORRIENTE CONTINUA RESONANTE CON TRANSFORMADOR DE ALTA FRECUENCIA  MODULE OF ELECTRIC TRANSMISSION IN CURRENT CONTINUOUS CURRENT WITH HIGH FREQUENCY TRANSFORMER
D E S C R I P C I O N CAMPO DE LA INVENCIÓN D E S C R I P C I O N FIELD OF THE INVENTION
La presente invención se aplica a sistemas para la transmisión mono o bidireccional de energía eléctrica en corriente continua desde una fuente de energía eléctrica hasta un sistema consumidor. Más concretamente, se refiere al uso de un convertidor resonante bidireccional y un transformador de alta frecuencia para convertir la corriente. The present invention applies to systems for mono or bidirectional transmission of electric power in direct current from an electric power source to a consumer system. More specifically, it refers to the use of a bidirectional resonant converter and a high frequency transformer to convert the current.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La transmisión en corriente continua (HVDC: High Voltage Direct Current) es una tecnología que permite la transmisión de energía eléctrica entre dos redes trifásicas mediante líneas aéreas o cables de corriente continua. La ventaja de un sistema de transmisión en corriente continua es un control más rápido y de mayor calidad de la potencia activa y reactiva transmitida, así como un menor coste de los conductores. Debido al alto coste de los convertidores de potencia necesarios para convertir la corriente alterna en continua estos sistemas solo se utilizan en muy largas distancias, especialmente cuando es necesaria la instalación de tramos de cable en aplicaciones marinas. The transmission in direct current (HVDC: High Voltage Direct Current) is a technology that allows the transmission of electrical energy between two three-phase networks through overhead lines or DC cables. The advantage of a direct current transmission system is a faster and higher quality control of the transmitted active and reactive power, as well as a lower driver cost. Due to the high cost of the power converters necessary to convert the alternating current into continuous, these systems are only used over very long distances, especially when the installation of cable sections in marine applications is necessary.
Actualmente existen varios sistemas para la trasmisión en corriente continua que se pueden agrupar en dos tipos:  There are currently several systems for direct current transmission that can be grouped into two types:
1 - HVDC LCC: Transmisión en alta tensión y corriente continua mediante convertidores de conmutación natural basados en convertidores a tiristores conmutados a frecuencia de red (50 - 60 Hz). Un ejemplo del uso de esta tecnología puede verse en las patentes WO199601517 y US5644882. Los sistemas HVDC LCC son muy robustos pero no pueden controlar la potencia reactiva, requieren filtros de baja frecuencia y un sistema de arranque auxiliar. 1 - HVDC LCC: Transmission in high voltage and direct current by means of natural switching converters based on converters to thyristors switched to grid frequency (50 - 60 Hz). An example of Use of this technology can be seen in patents WO199601517 and US5644882. HVDC LCC systems are very robust but cannot control reactive power, require low frequency filters and an auxiliary starting system.
2- HVDC VSC: Esta tecnología presenta las ventajas de un control independiente de las potencias activa y reactiva, ausencia de riesgo de fallos de conmutación en redes débiles, arranque en vacío de redes de alterna sin generación propia, de tamaño más reducido que HVDC LCC entre otras (W0199501 670). 2- HVDC VSC: This technology has the advantages of independent control of active and reactive powers, absence of risk of failover in weak networks, empty start of alternating networks without own generation, smaller in size than HVDC LCC among others (W0199501 670).
Ambos sistemas se basan en la elevación de la tensión de una red de corriente alterna trifásica mediante transformador a frecuencia de red (50 - 60 Hz) con núcleo de acero laminado de grano orientado y la conversión de alterna a continua en el lado de alta tensión del transformador mediante tiristores o IGBTs. Estos sistemas convencionales (HVDC LCC y HVDC VSC) presentan una duplicación de las etapas convertidoras y no aprovechan al máximo la potencialidad del sistema. Es muy común tener un sistema con un parque de n generadores de corriente alterna trifásica. Cada generador se conecta mediante un rectificador para controlar la potencia, un bus DC, un inversor y un transformador de baja frecuencia a una red de baja frecuencia (50-60 Hz) y de media tensión (12-33 kV). La red de media tensión se conecta después a una línea de alta tensión en corriente continua mediante un transformador elevador de baja frecuencia y un convertidor de alta tensión. De esta manera, desde un punto de generación en corriente alterna a la línea de transmisión en corriente continua se utilizan dos transformadores de baja frecuencia (50-60 Hz) (figuras 1 y 2) de volumen y peso elevado. Los n transformadores de potencia igual a la potencia nominal de los generadores {Pn0m) y un transformador de potencia n Pnom, son todos ellos de baja frecuencia. Se ha intentado eliminar esta duplicación de etapas con convertidores y transformadores mediante varias propuestas, pero éstas siempre se han aplicado a aplicaciones muy específicas. Por ejemplo en la patente WO/2008/004126 "High Voltage Direct Current link transmisión system for variable Speedy wind turbine" se describe un método de conexión directa del estator de máquinas asincronas doblemente alimentadas a una red HVDC mediante transformador de 50 Hz, y en la patente WO 2001 /25628 Wind Power Plant se describe la conexión directa de un generador o máquina síncrona mediante un transformador de baja frecuencia (0-50 Hz) y un rectificador de diodos a una línea HVDC. Both systems are based on the elevation of the voltage of a three-phase alternating current network by means of a network frequency transformer (50 - 60 Hz) with a grain-oriented steel core and the conversion of alternating to continuous on the high voltage side of the transformer through thyristors or IGBTs. These conventional systems (HVDC LCC and HVDC VSC) have a doubling of the converter stages and do not take full advantage of the potential of the system. It is very common to have a system with a park of n three-phase alternating current generators. Each generator is connected by a rectifier to control the power, a DC bus, an inverter and a low frequency transformer to a low frequency (50-60 Hz) and medium voltage (12-33 kV) network. The medium voltage network is then connected to a high-voltage line in direct current by means of a low frequency booster transformer and a high voltage converter. Thus, from a point of generation in alternating current to the transmission line in direct current, two low frequency transformers (50-60 Hz) (figures 1 and 2) of high volume and weight are used. The n power transformers equal to the nominal power of the generators {P n0 m) and a power transformer n P nom , are all low frequency. Attempts have been made to eliminate this duplication of stages with converters and transformers through several proposals, but these have always been applied to very specific applications. For example, in WO / 2008/004126 "High Voltage Direct Current link transmission system for variable Speedy wind turbine" describes a method of direct connection of the stator of double-fed asynchronous machines to a HVDC network by means of a 50 Hz transformer, and in WO 2001/25628 Wind Power Plant describes the direct connection of a synchronous generator or machine by means of a low frequency transformer (0-50 Hz) and a diode rectifier to an HVDC line.
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La invención tiene por objeto paliar los problemas técnicos citados en el apartado anterior. Para ello, propone un módulo de trasmisión eléctrica en corriente continua que comprende entre otros los siguientes elementos: The invention aims to alleviate the technical problems mentioned in the previous section. For this, it proposes a module of electrical transmission in direct current that includes among others the following elements:
a. un convertidor DC-AC bidireccional de alta frecuencia (C), b. un transformador elevador de alta frecuencia y alta tensión, c. un bus de tensión continua como alimentación de dicho convertidor.  to. a high frequency bidirectional DC-AC converter (C), b. a high frequency and high voltage elevator transformer, c. a continuous voltage bus as the power supply of said converter.
Preferentemente, el convertidor está adaptado para operar con conmutación resonante. También preferentemente, el núcleo del transformador es de acero amorfo, de un material magnético cristalino o ferrita o cualquier otro material magnético de bajas pérdidas en el núcleo. Opcionalmente, comprende un rectificador activo si la transmisión de potencia debe ser bidireccional, o un rectificador pasivo de diodos si la transmisión de potencia es unidireccional. La invención contempla también un sistema de transmisión eléctrico compuesto de una pluralidad N de éstos módulos conectados en serie y/o en paralelo mediante inductancias.  Preferably, the converter is adapted to operate with resonant switching. Also preferably, the transformer core is made of amorphous steel, of a crystalline or ferrite magnetic material or any other low loss magnetic material in the core. Optionally, it comprises an active rectifier if the power transmission must be bidirectional, or a passive diode rectifier if the power transmission is unidirectional. The invention also contemplates an electrical transmission system composed of a plurality N of these modules connected in series and / or in parallel by inductances.
Opcionalmente, el sistema comprende un módulo conectado en serie y una pluralidad de módulos conectados en paralelo. Dicho sistema sustituye el transformador de cada elemento generador y el transformador común de 50Hz (60 Hz) de los convertidores HVDC convencionales por un único transformador de alta frecuencia (1 -10 kHz) mediante la utilización de convertidores resonantes con bajas pérdidas de conmutación. La utilización de transformadores de alta frecuencia permite reducir el tamaño del mismo en al menos un orden de magnitud y reducir las pérdidas en el núcleo mediante la utilización de materiales con menores pérdidas como aceros amorfos, materiales magnéticos nanocristalinos o ferrita en el caso en el que la potencia de la aplicación no sea excesivamente grande o cualquier material de bajas pérdidas. Optionally, the system comprises a module connected in series and a plurality of modules connected in parallel. This system replaces the transformer of each generator element and the common 50Hz (60 Hz) transformer of conventional HVDC converters with a single high frequency transformer (1 -10 kHz) by using resonant converters with low switching losses. The use of high frequency transformers makes it possible to reduce its size by at least an order of magnitude and reduce losses in the core by using materials with lower losses such as amorphous steels, nanocrystalline magnetic materials or ferrite in the case in which The power of the application is not excessively large or any material with low losses.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Con objeto de ayudar a una mejor comprensión de las características de la invención de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña la siguiente descripción de un juego de dibujos en donde con carácter ilustrativo se ha representado lo siguiente: In order to help a better understanding of the features of the invention according to a preferred example of practical realization thereof, the following description of a set of drawings is attached, where the following has been represented by way of illustration:
Figura 1 .- muestra un sistema de transmisión HVDC genérico con transformador a frecuencia de red en ambos terminales. Figure 1 .- shows a generic HVDC transmission system with a network frequency transformer in both terminals.
Figura 2.- representa un parque de generación con n generadores, sistema de distribución AC y sistema de transmisión HVDC de acuerdo con el estado de la técnica. Figure 2.- represents a generation park with n generators, AC distribution system and HVDC transmission system according to the state of the art.
Figura 3.- muestra una posible implementación de un convertidor resonante bidireccional o unidireccional con transformador de alta frecuencia de acuerdo con la invención. Figura 4.- muestra una segunda posible implementación de un convertidor resonante bidireccional o unidireccional con transformador de alta frecuencia de acuerdo con la invención. Figura 5.- representa una conexión en paralelo de N convertidores resonantes con transformador de alta frecuencia con N fuentes de tensión independientes de acuerdo con un ejemplo de realización de la invención. Figure 3.- shows a possible implementation of a bidirectional or unidirectional resonant converter with high frequency transformer according to the invention. Figure 4.- shows a second possible implementation of a bidirectional or unidirectional resonant converter with high frequency transformer according to the invention. Figure 5.- represents a parallel connection of N resonant converters with high frequency transformer with N independent voltage sources according to an embodiment of the invention.
Figura 6.- muestra ejemplos de sistemas de transmisión monopolar. Figure 6.- shows examples of monopolar transmission systems.
Figura 7.- muestra ejemplos de sistemas de transmisión bipolar. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN El sistema de la invención es utilizable para la transmisión de energía eléctrica en corriente continua desde un bus de corriente continua a través de una o varias líneas de transmisión en corriente continua mediante cables o líneas aéreas hasta otro bus de corriente continua como carga. Alternativamente el sistema puede alimentar una carga de corriente continua desde una fuente trifásica o monofásica, una carga de corriente alterna trifásica o monofásica desde una fuente trifásica o monofásica o una carga de corriente alterna trifásica o monofásica desde una fuente de corriente continua. En múltiples aplicaciones de generación de energía eléctrica se dispone de un bus de tensión continua de baja o media tensión, a partir del cual, mediante un convertidor de potencia DC-AC y un transformador de baja frecuencia se genera un sistema trifásico de media tensión (12-33 kV) alterna (50-60 Hz) utilizado para la transmisión de energía. Cuando se desea transmitir esta energía mediante cable o líneas aéreas en corriente continua en aplicaciones de grandes distancias y en aplicaciones submarinas, es necesario añadir un sistema que eleve la tensión alterna y la rectifique. El sistema objeto de la invención propone utilizar directamente el bus de tensión continua existente en multitud de aplicaciones de generación y consumo de energía eléctrica y en sistemas de distribución y transmisión (generación eólica, generación fotovoltaica, pilas de combustible, variadores de frecuencia, etc.) para alimentar un convertidor DC-AC resonante bidireccional de alta frecuencia y pérdidas de conmutación muy bajas (al menos un orden de magnitud inferiores a sistemas no resonantes) que alimenta un transformador elevador de alta frecuencia y alta tensión. El sistema propuesto también se puede utilizar para la transmisión de energía eléctrica desde una red de corriente alterna trifásica o monofásica añadiendo un inversor y un condensador para obtener un bus de corriente continua. Figure 7.- shows examples of bipolar transmission systems. DETAILED DESCRIPTION OF THE INVENTION The system of the invention is usable for the transmission of electrical energy in direct current from a direct current bus through one or several transmission lines in direct current via cables or overhead lines to another direct current bus. as load Alternatively, the system can feed a direct current load from a three-phase or single-phase source, a three-phase or single-phase alternating current load from a three-phase or single-phase source or a three-phase or single-phase alternating current load from a direct current source. In multiple applications of electric power generation there is a low or medium voltage continuous voltage bus, from which, by means of a DC-AC power converter and a low frequency transformer a three-phase medium voltage system is generated ( 12-33 kV) alternating (50-60 Hz) used for power transmission. When it is desired to transmit this energy via cable or overhead lines in direct current in long distance applications and in applications Underwater, it is necessary to add a system that elevates the alternating voltage and rectifies it. The system object of the invention proposes to use directly the existing direct voltage bus in many applications of generation and consumption of electric energy and in distribution and transmission systems (wind generation, photovoltaic generation, fuel cells, frequency inverters, etc. ) to power a high frequency bidirectional resonant DC-AC converter and very low switching losses (at least an order of magnitude less than non-resonant systems) that feeds a high-frequency high-voltage transformer. The proposed system can also be used for the transmission of electrical energy from a three-phase or single-phase alternating current network by adding an inverter and a capacitor to obtain a direct current bus.
La fuente de tensión continua se puede obtener mediante cualquier elemento convencional (generador o red trifásica o monofásica y rectificador trifásico de diodos o de IGBTs, panel o conjunto de paneles fotovoltaicos, baterías, pilas de combustible, etc.). El convertidor resonante está formado por un puente completo de IGBTs, MOSFETs, GTOs o cualquier semiconductor de potencia controlado. The continuous voltage source can be obtained by any conventional element (three-phase or single-phase generator or network and three-phase diode or IGBT rectifier, panel or set of photovoltaic panels, batteries, fuel cells, etc.). The resonant converter consists of a complete bridge of IGBTs, MOSFETs, GTOs or any semiconductor of controlled power.
La carga es un transformador elevador de alta frecuencia (1 -10 kHz) con núcleo de acero amorfo (VITROVAC®, METGLAS®), material magnético nanocristalino (VITROPERM®, FINEMET®), ferrita o cualquier otro material de bajas pérdidas en el núcleo. El transformador, por diseño, tendrá una inductancia de fugas determinada. Cuando por límites de construcción del transformador no se pueda obtener la inductancia de fugas deseada se conectara en serie una inductancia con el valor deseado entre el condensador y el transformador. A la salida del transformador, se utiliza un rectificador controlado si la transmisión de potencia debe ser bidireccional o un rectificador pasivo de diodos si la transmisión de potencia es unidireccional conectados a un bus de corriente continua mediante una inductancia serie (en el caso en que la inductancia del conductor sea suficiente se puede omitir la inductancia serie). Al otro extremo del conductor, un sistema idéntico, mediante la conmutación adecuada del rectificador activo, genera una tensión alterna en el lado de alta tensión, y un transformador idéntico al primero reduce la tensión y esta se rectifica mediante una conversión resonante, alimentando un bus de continua a la salida del mismo. Este bus de tensión continua puede ser utilizado para alimentar directamente cargas de tensión/corriente continua o puede ser utilizado para generar una red de corriente alterna trifásica o monofásica mediante inversores convencionales de tensión baja, media o alta. El sistema de transmisión propuesto se construye conectando un número N de módulos en serie y en paralelo hasta obtener la corriente y tensión deseados de forma que los semiconductores disponibles se utilicen de forma óptima. La conexión más deseada es la conexión en paralelo mediante inductancia serie por la simplicidad del control. En el caso de la conexión paralelo no es necesario sobredimensionar los semiconductores de la etapa de salida del convertidor resonante. The load is a high frequency (1 -10 kHz) lifting transformer with amorphous steel core (VITROVAC ® , METGLAS ® ), nanocrystalline magnetic material (VITROPERM ® , FINEMET ® ), ferrite or any other low loss material in the core . The transformer, by design, will have a specific leak inductance. When the desired leakage inductance cannot be obtained by construction limits of the transformer, an inductance with the desired value between the capacitor and the transformer is connected in series. At the output of the transformer, a controlled rectifier is used if the power transmission must be bidirectional or a passive diode rectifier if the power transmission is unidirectional connected to a DC bus via a series inductance (in the case where the conductor inductance is sufficient, the series inductance can be omitted). At the other end of the conductor, an identical system, by properly switching the active rectifier, generates an alternating voltage on the high voltage side, and a transformer identical to the first reduces the voltage and this is rectified by a resonant conversion, feeding a bus of continuous to the exit of the same. This DC bus can be used to directly feed DC / DC loads or it can be used to generate a three-phase or single-phase AC network using conventional low, medium or high voltage inverters. The proposed transmission system is constructed by connecting a number N of modules in series and in parallel until the desired current and voltage are obtained so that the available semiconductors are optimally used. The most desired connection is the parallel connection by series inductance due to the simplicity of the control. In the case of the parallel connection it is not necessary to oversize the semiconductors of the output stage of the resonant converter.
El módulo básico de la presente invención lo constituye el convertidor resonante CR conectado a una fuente de tensión continua y al transformador. En las figuras 3 y 4 se muestran, a modo ilustrativo, dos posibles implementaciones de este convertidor. Los terminales de salida del puente se conectan en serie al primario de un transformador con un bobinado primario y n bobinados secundarios. Los secundarios del transformador se conectan a un rectificador formado por un segundo puenteThe basic module of the present invention is the resonant converter CR connected to a direct voltage source and to the transformer. Figures 3 and 4 show, by way of illustration, two possible implementations of this converter. The output terminals of the bridge are connected in series to the primary of a transformer with a primary winding and n secondary windings. The secondary of the transformer are connected to a rectifier formed by a second bridge
C como el de entrada si se requiere transmisión bidireccional o un puente rectificador de diodos si la transmisión es unidireccional. Las salidas de los puentes rectificadores se conectan, según la implementación mostrada en la Fig. 3, a un condensador que funciona como fuente de tensión continua y todos los condensadores se conectan en serie hasta obtener la tensión de salida deseada. Según la implementación mostrada en la Fig. 4 las salidas de los puentes rectificadores se conectan directamente al enlace de continua sin necesidad de condensador. El transformador se encarga de adecuar los niveles de tensión entre el sistema generador o consumidor (generalmente en baja o media tensión) y la tensión de la línea de transmisión (generalmente en media o alta tensión). C as the input if bidirectional transmission or a diode rectifier bridge is required if the transmission is unidirectional. The outputs of the rectifier bridges are connected, according to the implementation shown in Fig. 3, to a capacitor that functions as a continuous voltage source and all the capacitors are connected in series until the desired output voltage is obtained. According to the implementation shown in Fig. 4, the outputs of the rectifier bridges connect directly to the continuous link without the need for a capacitor. The transformer is responsible for adapting the voltage levels between the generator or consumer system (usually at low or medium voltage) and the transmission line voltage (usually at medium or high voltage).
El rectificador activo de IGBTs con diodos en antiparalelo si la transmisión de potencia debe ser bidireccional, o el rectificador pasivo de diodos si la transmisión de potencia es unidireccional, están formados por semiconductores de alta tensión conectados en serie hasta obtener la capacidad de soportar la tensión de la línea de transmisión con un margen de seguridad suficiente. The active rectifier of IGBTs with antiparallel diodes if the power transmission must be bidirectional, or the passive diode rectifier if the power transmission is unidirectional, are formed by high-voltage semiconductors connected in series until the ability to withstand the voltage of the transmission line with a sufficient safety margin.
El convertidor conectado a una fuente de tensión continua genera una onda de tensión cuadrada alterna de alta frecuencia en su salida. Según la implementación del convertidor resonante mostrada en la Fig. 3 es necesario que esta frecuencia coincida con la frecuencia de resonancia del circuito resonante formado por la conexión serie del condensador y del transformador
Figure imgf000010_0001
donde L es el valor de la inductancia de fugas del transformador más cualquier inductancia conectada en serie al mismo y C es el valor del condensador conectado en serie. A esta frecuencia la corriente es sinusoidal y es nula en el encendido y el apagado de los semiconductores de manera que las pérdidas por conmutación son muy pequeñas y se puede operar a frecuencias elevadas. La potencia transmitida se puede regular de varias maneras, variando la frecuencia, el ciclo de trabajo de la onda cuadrada, ambos factores o regulando la corriente de entrada a la fuente de tensión.
The converter connected to a DC voltage source generates a high frequency square voltage alternating voltage wave at its output. According to the implementation of the resonant converter shown in Fig. 3 it is necessary that this frequency coincides with the resonant frequency of the resonant circuit formed by the serial connection of the capacitor and the transformer
Figure imgf000010_0001
where L is the value of the leakage inductance of the transformer plus any inductance connected in series to it and C is the value of the capacitor connected in series. At this frequency the current is sinusoidal and is zero in the switching on and off of the semiconductors so that the switching losses are very small and can be operated at high frequencies. The transmitted power can be regulated in several ways, varying the frequency, the duty cycle of the square wave, both factors or regulating the input current to the voltage source.
El conjunto formado por los N módulos se puede conectar en serie con una inductancia y conectarse en paralelo a otros conjuntos de módulos similares. Finalmente todo el sistema se conecta a los conductores de la línea de transmisión de manera que se pueden obtener los niveles de tensión y corriente que se deseen (figura 5). Preferentemente el número de convertidores en serie es Ni=1 y el número de convertidores en paralelo N2 puede ser tan alto como se quiera (únicamente limitado por la capacidad de transmitir corriente del conductor). Estas conexiones se pueden realizar tantas veces como se desee de manera que la potencia se puede transmitir por un número cualquiera de conductores, aunque la opción preferente es un sistema bipolar (figura 7). The set consisting of the N modules can be connected in series with an inductance and connected in parallel to other sets of similar modules. Finally, the entire system is connected to the conductors of the transmission line so that the desired voltage and current levels can be obtained (Figure 5). Preferably the number of serial converters is Ni = 1 and the number of parallel converters N 2 can be as high as desired (only limited by the ability to transmit current from the conductor). These connections can be made as many times as desired so that the power can be transmitted by any number of conductors, although the preferred option is a bipolar system (Figure 7).
Al otro extremo del conductor un sistema idéntico, mediante la conmutación adecuada del rectificador activo, genera una tensión alterna en el lado de alta tensión, y un transformador idéntico al primero reduce la tensión y esta se rectifica mediante una conversión resonante, alimentando un bus de tensión continua a la salida del mismo. Este bus se puede utilizar para alimentar directamente cargas de tensión/corriente continua o para generar una red de alterna trifásica o monofásica mediante inversores convencionales de tensión baja media o alta. Otra alternativa es conectar el extremo de los conductores a sistemas de transmisión HVDC convencionales. At the other end of the conductor, an identical system, by properly switching the active rectifier, generates an alternating voltage on the high voltage side, and a transformer identical to the first reduces the voltage and this is rectified by a resonant conversion, feeding a bus of Continuous voltage at its output. This bus can be used to directly feed voltage / direct current loads or to generate a three-phase or single-phase alternating network using conventional medium or high low voltage inverters. Another alternative is to connect the end of the conductors to conventional HVDC transmission systems.
A continuación se describe una posible aplicación del sistema descrito en un parque de generación marina. Dicho sistema se compone de: • M generadores eléctricos (asincronos o síncronos) de potencia nominal Pn0m con rectificadores conectados a un bus DC. En la figura 5 se representan como una fuente de tensión. A possible application of the system described in a marine generation park is described below. This system consists of: • M electric generators (asynchronous or synchronous) of nominal power P n0 m with rectifiers connected to a DC bus. In figure 5 they are represented as a voltage source.
• N convertidores elevadores resonantes con transformador de alta frecuencia.  • N resonant booster converters with high frequency transformer.
• Condensadores e inductancias de salida.  • Capacitors and output inductances.
• Cable o línea aérea de media o alta tensión.  • Cable or overhead line of medium or high voltage.
• Convertidor inversor reductor para conexión a red eléctrica. Este convertidor puede estar compuesto por una estación HVDC convencional o un convertidor resonante con transformador de alta frecuencia y un inversor convencional, evitando la utilización de un transformador de baja frecuencia.  • Reducing inverter converter for connection to the mains. This converter can be composed of a conventional HVDC station or a resonant converter with a high frequency transformer and a conventional inverter, avoiding the use of a low frequency transformer.
El sistema presenta varias ventajas frente a un sistema HVDC convencional. Se sustituyen N transformadores de potencia Pn0m y un transformador de potencia N x Pn0m de baja frecuencia (50 Hz) por N transformadores de potencia Pn0m de alta frecuencia. Esto constituye una reducción de volumen y peso muy significativo y muy relevante sobre todo en aplicaciones marinas, donde además se elimina la necesidad de una plataforma en alta mar para la estación HVDC, ya que cada generador se puede conectar directamente a la línea de transmisión y se reduce considerablemente el coste del cableado. Se aumenta la redundancia y seguridad del sistema ya que no existe la posibilidad de caída del sistema de transmisión por fallo en la estación HVDC al no ser necesaria y el fallo de un convertidor solo afecta al generador al que se haya conectado. La conversión de potencia se realiza mediante convertidor resonante con mínimas pérdidas de conmutación. Así se consigue utilizar una frecuencia de conmutación elevada y un transformador de pequeño tamaño y peso. La elevación y reducción de la tensión se realiza mediante un transformador de menor tamaño y peso que los transformadores convencionales que operan a 50-60 Hz, lo que es especialmente relevante en aplicaciones marinas (parques eólicos en alta mar, generación de energía a partir de las olas, mareas, etc.). The system has several advantages over a conventional HVDC system. N power transformers P n0 m and a power transformer N x P n0 m of low frequency (50 Hz) are replaced by N power transformers P n0 m of high frequency. This constitutes a very significant and very significant reduction in volume and weight, especially in marine applications, which also eliminates the need for an offshore platform for the HVDC station, since each generator can be connected directly to the transmission line and the cost of wiring is greatly reduced. The redundancy and security of the system is increased since there is no possibility of a failure of the transmission system due to failure in the HVDC station as it is not necessary and the failure of a converter only affects the generator to which it is connected. The power conversion is done by resonant converter with minimal switching losses. Thus, it is possible to use a high switching frequency and a transformer of small size and weight. The elevation and reduction of the voltage is carried out by a transformer of smaller size and weight than conventional transformers operating at 50-60 Hz, which is Especially relevant in marine applications (offshore wind farms, power generation from waves, tides, etc.).
En el caso de transmisión unidireccional (por ejemplo en parques de generación eólica o marina) se eliminan los Tiristores o IGBTs de alta tensión y se sustituyen por diodos, con mucho menor coste y sin necesidad de control. En este caso el coste del sistema se reduce considerablemente ya que en el lado de alta tensión solo se utilizan diodos y la parte principal de la conversión de potencia se halla en el lado de baja o media tensión. In the case of unidirectional transmission (for example in wind or marine generation parks) the Thyristors or high voltage IGBTs are eliminated and replaced by diodes, with much lower cost and without the need for control. In this case the cost of the system is considerably reduced since only the diodes are used on the high voltage side and the main part of the power conversion is on the low or medium voltage side.
El sistema es aplicable en transmisión de energía eléctrica mediante líneas aéreas, cables enterrados, cables submarinos, sistemas de distribución en buques, parques de generación de energía fotovoltaica, sistemas de distribución de energía eléctrica, etc. The system is applicable in the transmission of electrical energy through overhead lines, buried cables, submarine cables, distribution systems in ships, photovoltaic power generation parks, electrical energy distribution systems, etc.
En este texto, el término "comprende" y sus derivaciones (tales como "que comprende", etc.) no deben entenderse en sentido excluyente, es decir, estos términos no deben interpretarse como que excluyen la posibilidad de que lo que se describe y se define pueda incluir elementos, etapas, etc. adicionales. In this text, the term "comprises" and its derivations (such as "comprising", etc.) should not be understood in an exclusive sense, that is, these terms should not be construed as excluding the possibility that what is described and defined may include elements, stages, etc. additional.
Por otro lado, la invención obviamente no se limita a las realizaciones específicas descritas en el presente documento, sino que también abarca cualquier variación que pueda considerarse por cualquier experto en la técnica (por ejemplo, en lo que respecta a la elección de materiales, dimensiones, componentes, configuración, etc.), dentro del alcance general de la invención tal como se define en las reivindicaciones. On the other hand, the invention is obviously not limited to the specific embodiments described herein, but also encompasses any variation that may be considered by any person skilled in the art (for example, as regards the choice of materials, dimensions , components, configuration, etc.), within the general scope of the invention as defined in the claims.

Claims

REIVINDICACIONES
1 . - Módulo de trasmisión eléctrica en corriente continua caracterizado porque que comprende entre otros los siguientes elementos: one . - Module of electrical transmission in direct current characterized in that it includes among others the following elements:
a. un convertidor DC-AC bidireccional de alta frecuencia (C), b. un transformador elevador de alta frecuencia y alta tensión, c. un bus de tensión continua como alimentación de dicho convertidor.  to. a high frequency bidirectional DC-AC converter (C), b. a high frequency and high voltage elevator transformer, c. a continuous voltage bus as the power supply of said converter.
2. - Módulo según la reivindicación 1 caracterizado porque el convertidor está adaptado para operar con conmutación resonante 2. - Module according to claim 1 characterized in that the converter is adapted to operate with resonant switching
3. - Módulo según las reivindicaciones 1 ó 2 caracterizado por el uso de un transformador de frecuencia mayor de 60 Hz. 3. - Module according to claims 1 or 2 characterized by the use of a frequency transformer greater than 60 Hz.
4. - Módulo según cualquiera de las reivindicaciones anteriores caracterizador porque comprende además un rectificador activo si la transmisión de potencia debe ser bidireccional, o un rectificador pasivo de diodos si la transmisión de potencia es unidireccional. 4. - Module according to any of the preceding claims, characterized in that it further comprises an active rectifier if the power transmission must be bidirectional, or a passive diode rectifier if the power transmission is unidirectional.
5. - Sistema de transmisión eléctrico compuesto de una pluralidad N de módulos según cualquiera de las reivindicaciones anteriores, caracterizado porque dichos módulos están conectados en serie y/o en paralelo mediante inductancias. 5. - Electric transmission system composed of a plurality N of modules according to any of the preceding claims, characterized in that said modules are connected in series and / or in parallel by inductances.
6. - Sistema según la reivindicación 5 caracterizado porque comprende un módulo conectado en serie y una pluralidad de módulos conectados en paralelo. 6. - System according to claim 5 characterized in that it comprises a module connected in series and a plurality of modules connected in parallel.
PCT/ES2010/070266 2010-04-27 2010-04-27 Resonant direct-current electrical transmission module with high-frequency transformer WO2011135108A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070266 WO2011135108A1 (en) 2010-04-27 2010-04-27 Resonant direct-current electrical transmission module with high-frequency transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070266 WO2011135108A1 (en) 2010-04-27 2010-04-27 Resonant direct-current electrical transmission module with high-frequency transformer

Publications (1)

Publication Number Publication Date
WO2011135108A1 true WO2011135108A1 (en) 2011-11-03

Family

ID=44310099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070266 WO2011135108A1 (en) 2010-04-27 2010-04-27 Resonant direct-current electrical transmission module with high-frequency transformer

Country Status (1)

Country Link
WO (1) WO2011135108A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995001670A1 (en) 1993-06-29 1995-01-12 Square D Company Ac to dc power conversion system
WO1996001517A1 (en) 1994-07-04 1996-01-18 Asea Brown Boveri Ab Hvdc transmission
US5644882A (en) 1996-05-17 1997-07-08 Brown, Jr.; Carlton Roofing system
WO2001025628A2 (en) 1999-10-07 2001-04-12 Vestas Wind Systems A/S Wind power plant
US6437996B1 (en) * 1998-10-05 2002-08-20 Aloys Wobben Electrical power transmission system
WO2008004126A2 (en) 2006-03-17 2008-01-10 Ingeteam, S.A. High voltage direct current link transmission system for variable speed wind turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995001670A1 (en) 1993-06-29 1995-01-12 Square D Company Ac to dc power conversion system
WO1996001517A1 (en) 1994-07-04 1996-01-18 Asea Brown Boveri Ab Hvdc transmission
US5644882A (en) 1996-05-17 1997-07-08 Brown, Jr.; Carlton Roofing system
US6437996B1 (en) * 1998-10-05 2002-08-20 Aloys Wobben Electrical power transmission system
WO2001025628A2 (en) 1999-10-07 2001-04-12 Vestas Wind Systems A/S Wind power plant
WO2008004126A2 (en) 2006-03-17 2008-01-10 Ingeteam, S.A. High voltage direct current link transmission system for variable speed wind turbine

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EVANS I C ET AL: "Powering The Way A Paper on AC Link TM Technology for 21st Century HVDC Transmission", ENERGY 2030 CONFERENCE, 2008. ENERGY 2008. IEEE, IEEE, PISCATAWAY, NJ, USA, 17 November 2008 (2008-11-17), pages 1 - 11, XP031423669, ISBN: 978-1-4244-2850-2 *
KRISTIAN PRESTRUD ASTAD ET AL: "Direct AC/AC power converter for wind power application", MELECON 2010 - 2010 15TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, IEEE, PISCATAWAY, NJ, USA, 26 April 2010 (2010-04-26), pages 113 - 118, XP031683650, ISBN: 978-1-4244-5793-9 *
MOGSTAD A B ET AL: "A power conversion system for offshore wind parks", INDUSTRIAL ELECTRONICS, 2008. IECON 2008. 34TH ANNUAL CONFERENCE OF IEEE, IEEE, PISCATAWAY, NJ, USA, 10 November 2008 (2008-11-10), pages 2106 - 2112, XP031825740, ISBN: 978-1-4244-1767-4 *

Similar Documents

Publication Publication Date Title
ES2954855T3 (en) System and procedure for power conversion
EP2559145B1 (en) Hybrid 2-level and multilevel hvdc converter
CN105210277B (en) HVDC (HVDC) converter system and its operating method
EP2904682B1 (en) Medium voltage dc collection system with power electronics
RU2518163C2 (en) Configuration of multi-level modular submerged power system
US9362848B2 (en) Hybrid AC/DC converter for HVDC applications
CN104145396B (en) Middle pressure DC collection systems
US9048694B2 (en) DC connection scheme for windfarm with internal MVDC collection grid
KR101670309B1 (en) Converter
Chen et al. A comparison of medium voltage high power DC/DC converters with high step-up conversion ratio for offshore wind energy systems
US20150222146A1 (en) Systems and methods for uninterruptible power supplies with generators
US20140146583A1 (en) Hvdc converter with neutral-point connected zero-sequence dump resistor
US9577544B2 (en) Device and method for connecting an electric power generator to an HVDC transmission system
CN104242341A (en) Direct-drive wind power conversion structure based on MMC and bipolar direct-current transmission structure
JP6454540B2 (en) Power converter
US9859806B2 (en) Method and apparatus for obtaining electricity from offshore wind turbines
Ricchiuto et al. Overview of multi-DC-bus solutions for DC microgrids
CN219513973U (en) Power supply device for high-current loads and apparatus having a power supply device
Limpaecher et al. 750kW AC-link power converter for renewable generation and energy storage applications
Zhu et al. Topology, modulation and control strategy of a multi-port DC/DC converter based on modular multilevel converter
WO2011135108A1 (en) Resonant direct-current electrical transmission module with high-frequency transformer
CN207559579U (en) DC fan transmission system
CN109617120A (en) Direct-current wind generating set and wind power plant
KR101116000B1 (en) Power conversion system and power conversion method using series connected current source ac/dc power converters
CN113098044B (en) Current converter-based power distribution system and power distribution method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10801426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10801426

Country of ref document: EP

Kind code of ref document: A1