WO2011134353A1 - Method and apparatus for resources mapping of physical hybrid arq indicator channel - Google Patents

Method and apparatus for resources mapping of physical hybrid arq indicator channel Download PDF

Info

Publication number
WO2011134353A1
WO2011134353A1 PCT/CN2011/072856 CN2011072856W WO2011134353A1 WO 2011134353 A1 WO2011134353 A1 WO 2011134353A1 CN 2011072856 W CN2011072856 W CN 2011072856W WO 2011134353 A1 WO2011134353 A1 WO 2011134353A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic shift
dynamic cyclic
dmrs
codeword stream
layer
Prior art date
Application number
PCT/CN2011/072856
Other languages
French (fr)
Chinese (zh)
Inventor
戴博
曾萍
吴欣
左志松
郁光辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011134353A1 publication Critical patent/WO2011134353A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to the field of communications, and in particular, to a resource mapping method and apparatus for a Physical Hybrid ARQ indicator channel (PHICH) in an uplink single-user multi-antenna transmission scenario.
  • PHICH Physical Hybrid ARQ indicator channel
  • BACKGROUND The Long Term Evolution (LTE) system is an important plan of the third generation partner organization.
  • LTE Long Term Evolution
  • the LTE system uses the extended Cyclic Prefix, one slot contains 6 lengths.
  • / Downstream symbol. 1 is a schematic diagram of a physical resource block of an LTE system with a bandwidth of 5 MHz according to the related art. As shown in FIG.
  • a resource element is one subcarrier in one OFDM symbol, and one downlink resource is used.
  • a Resource Block (abbreviated as RB) is composed of 12 consecutive subcarriers and 7 consecutive OFDM symbols (6 when the cyclic prefix is extended).
  • a resource block is 180 kHz in the frequency domain, and is a time slot of a general time slot in the time domain. When resource allocation is performed, resource blocks are used as a basic unit for allocation.
  • a Physical Uplink Control Channel (PUCCH) is located on two sidebands of the entire frequency band, and is used to transmit a Physical Uplink Shared Channel (PUSCH). Used to carry upstream data.
  • Physical broadcast channel PBCH for short
  • the information carried by the channel includes the frame number of the system, the downlink bandwidth of the system, the period of the physical hybrid retransmission channel, and the use.
  • a physical downlink control channel (PDCCH) is used to carry uplink and downlink scheduling information, and uplink power control information.
  • the Downlink Control Information (DCI) format (format) carried by the physical downlink control channel is divided into the following types: DCI format 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 3 3A, etc., where format 0 is used to indicate the scheduling of the physical uplink shared channel (PUSCH); DCI format 1 , 1A, IB , 1C, ID is used for the physical downlink shared channel of the single transport block (Physical Downlink Shared Channel (PDSCH) is a different transmission mode; DCI format 2, 2A is used for different transmission modes of space division multiplexing; DCI format 3, 3A is used for physical uplink control channel (PUCCH) And transmission of power control commands of the PUSCH.
  • Physical uplink shared channel Used to carry uplink transmission data.
  • the channel-related resource allocation, modulation and coding scheme, demodulation reference signal (DMRS), cyclic shift (referred to as CS), and other control information are used by the uplink grant (UL grant) with DCI format.
  • HAR Physical Hybrid ARQ Indicator Channel
  • the number and duration of the PHICH channel group are determined by the system message in the PBCH of the downlink carrier in which it is located.
  • the time-frequency position of the PHICH is determined by the number of PHICH channel groups, the duration, the antenna configuration of the cell PBCH, the cell ID, and the PHICH.
  • the group number and the sequence index within the group are determined.
  • the number of PHICH groups N p g H is determined by the following formula ( a ): Regular cyclic prefix case
  • N g e ⁇ 1/6, 1/2, 1, 2 ⁇ is determined by the system message in the PBCH of the downlink carrier (Downlink carrier, DL carrier for short), and the PHICH group number is from 0 to N p g H - The number of 1 , where N ⁇ is the bandwidth of the downlink carrier where the PHICH is located.
  • the number of PHICH groups is m, . - ⁇ , where ' is determined by Table 1 below. Table 1
  • DMRS Reference Signal
  • the configuration of the parameter causes different cyclic shifts among the MU-MIMO users in the cell, so that the intra-cell MU-MIMO users are orthogonal, and the intra-cell interference is suppressed.
  • the UE determines the cyclic shift amount of the demodulation reference signal according to the dynamic cyclic shift parameter according to the correspondence relationship of Table 3. table 3
  • J'o ⁇ t nde is the lowest index of the physical resource block ( Ph y sical Resource Block, abbreviated as PRB) allocated by the uplink resource;
  • TDD UL/DL configuration 0 PUSCH is transmitted in subframe 4 or 9
  • n cs of the DMRS sequence is determined by three parameters, as follows:
  • n PRS ⁇ n s is determined by the cell identity number A (identity, referred to as ID) and the variable based on the time slot is: l ID PUSCH
  • LTE-A Long-Term Evolution Advanced
  • LTE-A is an evolved version of LTE Release-8.
  • Backward compatibility is required in the requirements of advanced international wireless communication systems proposed by the International Telecommunication Union Radiocommunication Group.
  • the requirements for backward compatibility between LTE-Advanced and LTE Release-8 mean that: LTE Release-8 terminals can work in LTE-Advanced networks; LTE-Advanced terminals can work in LTE Release-8 networks.
  • LTE-Advanced should be able to be configured in different sizes, including wider frequencies than LTE Release-8.
  • Spectrum configuration eg, 100 MHz continuous spectrum resources
  • the method of carrier aggregation is used, that is, two or more component carriers are aggregated to support downlinks greater than 20 MHz.
  • Transmission bandwidth A terminal in an LTE-A system can simultaneously transmit one or more component carriers according to its capability, and the uplink can use a single-user multi-antenna transmission technology, including Transmit Diversity (TxD for short) and spatial multiplexing (Multiple Input).
  • TxD Transmit Diversity
  • Multiple Input Multiple Input
  • MIMO Multiple Output
  • ACK/NACK Acknowledgement/Negative Acknowledgement
  • Standardization is required.
  • the codeword to layer mapping rule of the uplink codeword stream is the same as the downlink layer mapping rule, and FIG. 2 is a schematic diagram of layer mapping of the LTE-A uplink codeword stream according to the related art.
  • OCC Orthogonal Cover Code
  • uplink scheduling DCI format 0 does not support uplink multi-antenna transmission, in LTE-
  • the uplink scheduling DCI needs to be newly added, and it is temporarily recorded as DCI format X.
  • DCI format X is used, the appropriate DMRS cyclic shift related parameters are configured for each layer of the UE, and each cyclic shift is performed. If the bit size is 3 bits, the signaling overhead is relatively large. For example, for 4-layer transmission, each layer is configured with a 3-bit DMRS cyclic shift parameter, which requires 12-bit signaling.
  • DMRS may be introduced.
  • OFC Orthogonal Cover Code
  • the uplink 4 antenna layer 4 transmits and uses the OCC code.
  • the terminal uses the dynamic cyclic shift amount of the same bit field in the MU-MIMO scenario, the PHICH mapping needs to be redefined.
  • Some single antenna resource mapping methods are not applicable to multi-antenna transmission modes with multi-layer resource mapping.
  • SUMMARY OF THE INVENTION The present invention has been made in view of the problem that the single antenna resource mapping method in the related art is not applicable to the multi-antenna transmission mode with multi-layer resource mapping.
  • a PHICH resource mapping method includes: dynamic cyclic shift amount and/or layer index determination of a demodulation reference signal (DMRS) in a base station codeword stream I and/or uplink scheduling downlink control information (DCI)
  • DMRS demodulation reference signal
  • DCI uplink scheduling downlink control information
  • the determining the dynamic cyclic shift parameter of the DMRS includes: directly using the value of the DMRS dynamic cyclic shift i or in the uplink scheduling DCI as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream.
  • the determining the dynamic cyclic shift parameter of the DMRS includes: selecting the last or highest layer index of the layer where the first codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer index as the first codeword stream corresponding to The dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula.
  • the foregoing determining the dynamic cyclic shift parameter of the DMRS includes: selecting the last or highest layer of the layer where the first codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer in the predetermined dynamic cyclic shift parameter and the actual dynamic
  • the corresponding dynamic cyclic shift parameter in the correspondence relationship of the cyclic shift amount is used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream.
  • the determining the dynamic cyclic shift parameter of the DMRS includes: using the sum of the dynamic cyclic shift parameter of the first codeword stream and the offset as the second codeword stream.
  • the dynamic cyclic shift parameter of the DMRS in the corresponding PHICH mapping formula is a dynamic cyclic shift parameter of the first codeword stream and the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the modulo 8 of the offset as the second codeword stream.
  • the determining the dynamic cyclic shift parameter of the DMRS includes: lowering or highest layer of the layer where the second codeword stream is located, or actual dynamic cyclic shift of the DMRS corresponding to the fixed layer The bit amount is used as a dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the second codeword stream.
  • the determining the dynamic cyclic shift parameter of the DMRS includes: lowering or highest layer of the layer where the second codeword stream is located, or actual dynamic cyclic shift of the DMRS corresponding to the fixed layer
  • the dynamic cyclic shift parameter corresponding to the bit quantity in the correspondence between the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift amount is used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the second codeword stream.
  • the uplink transmission data further includes the second codeword stream
  • the second codeword stream and the first codeword stream are mapped into the same PHICH group
  • the bit parameter is the sum of the value and the offset in the dynamic cyclic shift domain of the DMRS
  • the DMRS dynamic cyclic shift parameter in the orthogonal index formula corresponding to the second codeword stream PHICH is the value in the dynamic cyclic shift domain of the DMRS.
  • the above offset is one of the following: a predefined value, a base station configuration value, an index of the lowest layer or the highest layer corresponding to the second codeword stream, and a quotient of 12 and the total number of layers L.
  • the determining the dynamic cyclic shift parameter of the DMRS includes: the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to each codeword stream is the index of the highest layer or the highest layer of the layer where the codeword stream is located.
  • the determining the dynamic cyclic shift parameter of the DMRS includes: the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to each codeword stream is the actual dynamic cyclic shift amount of the fixed layer DMRS.
  • the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to each codeword stream is an actual dynamic cyclic shift amount of the fixed layer DMRS, including: the actual dynamic cyclic shift amount of the first layer is used as the first codeword stream.
  • the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula uses the actual dynamic cyclic shift amount of the second layer as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula of the second codeword stream.
  • the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to each codeword stream is a dynamic cyclic shift amount of the DMRS of the fixed layer, including: shifting the actual dynamic cyclic shift amount of the first layer in a predetermined dynamic cyclic shift
  • the corresponding dynamic cyclic shift parameter in the correspondence between the parameter and the actual dynamic cyclic shift amount is used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula of the first codeword stream, and the actual dynamic cyclic shift amount of the second layer is
  • the corresponding dynamic cyclic shift amount signaling value in the correspondence relationship is used as a dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula of the second codeword stream.
  • the corresponding relationship between the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift amount is:
  • the dynamic cyclic shift parameter 0, 1 , 2, 3, 4, 5, 6, 7 corresponds to the actual dynamic cyclic shift amount is 0. , 6, 3, 4, 2, 8, 10, 9.
  • a PHICH resource mapping apparatus is provided.
  • the PHICH resource mapping apparatus of the present invention includes: a determining module configured to set a dynamic cyclic shift amount and/or a layer index of a demodulation reference signal (DMRS) in a codeword stream index and/or uplink scheduling downlink control information (DCI) Determining a dynamic cyclic shift parameter of the DMRS; a resource mapping module configured to implement resource mapping of the PHICH according to the determined dynamic cyclic shift parameter.
  • DMRS demodulation reference signal
  • DCI uplink scheduling downlink control information
  • FIG. 1 is a schematic diagram of a physical resource block of an LTE system with a bandwidth of 5 MHz according to the related art
  • FIG. 2 is a schematic diagram of layer mapping of an LTE-A uplink codeword stream according to the related art
  • FIG. 4 is a flowchart of a resource mapping method of a PHICH according to an embodiment of the present invention
  • FIG. 5 is a PHICH of an embodiment of the present invention
  • the resource mapping method includes the following processing: Step S402: The base station determines the DMRS according to the dynamic cyclic shift amount and/or the layer index of the demodulation reference signal DMRS in the codeword stream index and/or the uplink scheduling DCI. Dynamic cyclic shift parameter; Step S404: The base station is determined by the dynamic cyclic shift parameter to implement resource mapping of the physical hybrid retransmission indication channel PHICH.
  • the uplink scheduling DCI format 0 does not support uplink multi-antenna transmission. In the LTE-A uplink multi-antenna transmission scenario, the uplink scheduling DCI needs to be newly added. If the new format is used, the layer is used for the UE.
  • the signaling overhead is relatively large, so a limited signaling overhead is used, such as a 3-bit DMRS cyclic shift domain indicating a set of DMRS actual cyclic shifts of multiple layers. .
  • a DMRS time domain orthogonal code may be introduced. Therefore, the single antenna PHICH resource mapping manner is not applicable to a multi-antenna transmission mode having multiple layers.
  • the mapping of PHICH resources in the UL SU-MIMO scenario can be effectively implemented.
  • the base station side feeds back ACK/NACK information of the uplink data, and carries the ACK/NACK information on the PHICH.
  • the dynamic cyclic shift parameter of the DMRS in the PHICH mapping is dynamically according to the DMRS indicated in the uplink scheduling DCI. At least one of the cyclic shift amount and the codeword stream index is determined.
  • Various preferred aspects of determining dynamic cyclic shift parameters in step 4 S402 are separately described below.
  • the foregoing step S402 may further include: the value in the DMRS dynamic cyclic shift domain in the uplink scheduling DCI is directly used as the PHICH mapping formula corresponding to the first codeword stream.
  • the dynamic cyclic shift parameter of the DMRS is n nMR .
  • Embodiment 1 If the uplink transmission is 4 layers and the two codeword streams are transmitted, when the DMRS dynamic cyclic shift amount signaling in the uplink scheduling DCI is 000, the actual dynamic cyclic shift amount of each layer corresponding to the DMRS is 0, 3,
  • step S402 may include the following processes: the highest or highest layer of the layer where the first codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer. 2 as the PHICH mapping formula corresponding to the first codeword stream
  • the uplink transmission is 4 layers, two codeword streams are transmitted, the first codeword stream is mapped to layer 0 and layer 1, and the second codeword stream is mapped to layer 2 and layer 3; when uplink scheduling DCI
  • the medium DMRS dynamic cyclic shift amount signaling is 000, the actual dynamic cyclic shift amount of each layer corresponding to the DMRS is 0, 3, 6, 9; the dynamic cyclic shift of the DMRS in the PHICH mapping corresponding to the first codeword stream
  • the bit parameter " DMRS is 0 or 3; (0 is the actual dynamic cyclic shift amount of the DMRS of the first layer of the first codeword stream, and 3 is the actual dynamic cyclic shift amount of the DMRS of the highest layer of the first codeword stream).
  • step S402 may include the following: a lowest or highest layer index of a layer where the first codeword stream is located, or an actual dynamic cyclic shift of the DMRS corresponding to the fixed layer index.
  • the dynamic cyclic shift amount signaling value corresponding to the corresponding relationship between the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift amount ie, LTE original correspondence table 3
  • step S402 includes the following processing:
  • the dynamic cyclic shift parameter DM « of the DMRS in the PHICH mapping formula of the layer where the second codeword stream is located is equal to the first codeword
  • the offset is a predefined value, or the offset is a base station configuration value, or the offset is an index of the lowest layer or the highest layer corresponding to the second codeword stream, or the offset is 12 and
  • Embodiment 4 If the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the first codeword stream is 0, the following describes the four scenarios.
  • Scene 4 is when the offset is 12 and the total number of layers L, where the total number of layers L can be 2, 3, 4.
  • the determining, by the base station the dynamic cyclic shift parameter may include the following: a highest or highest layer of the layer where the second codeword stream is located, or a DMRS corresponding to the fixed layer
  • the actual dynamic cyclic shift amount " ⁇ is the dynamic cyclic shift parameter " ⁇ ⁇ of the DMRS in the PHICH mapping formula corresponding to the second codeword stream.
  • Embodiment 5 If the uplink transmission is 4 layers, the two codeword streams are transmitted, the first codeword stream is mapped to layer 0 and layer 1, and the second codeword stream is mapped to layer 2 and layer 3; when the uplink scheduling DCI is in the DMRS dynamic loop When the shift amount signaling is 000, the actual dynamic cyclic shift amount of each layer corresponding to the DMRS is 0, 3, 6, 9; then the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the second codeword stream is " DM " ⁇ is 6 or 9; (6 is the actual dynamic cyclic shift amount of the highest layer of the second codeword stream, 9 is the actual dynamic cyclic shift amount of the highest layer of the second codeword stream); preferably, the uplink transmission data further includes the second In the case of the codeword stream, the above step 4 S402 may further include the following processing: the highest or highest layer of the layer where the second codeword stream is located, or the actual
  • Embodiment 6 If the uplink transmission is 4 layers, the two codeword streams are transmitted, the first codeword stream is mapped to layer 0 and layer 1, and the second codeword stream is mapped to layer 2 and layer 3; when the uplink scheduling DCI is in the DMRS dynamic loop When the shift amount signaling is 000, layer 0, layer 1, layer 2, layer 3 sequentially correspond to the actual dynamic cyclic shift amount of the DMRS is 0, 3, 6, 9; then the PHICH mapping corresponding to the second codeword stream
  • the dynamic cyclic shift parameter n DMRS of the DMRS is 1 or 7; (1 is the actual dynamic cyclic shift amount of the lowest layer of the second codeword stream 6 corresponding dynamic cyclic shift amount signaling value in the LTE original correspondence table 3 7 is the actual dynamic cyclic shift amount 9 of the highest layer of the second codeword stream and the corresponding dynamic cyclic shift amount signaling value in the LTE original correspondence table 3.
  • the method corresponding to the first codeword stream and the method corresponding to the second codeword stream may be arbitrarily combined to form a PHICH mapping method in two codeword stream scenarios. It should be noted that the mapping method corresponding to the first codeword stream is also applicable to the scenario of the multi-antenna field single-codeword stream.
  • the foregoing step S402 may further include the following process: The base station determines a last or highest layer index corresponding to each codeword stream as a dynamic cyclic shift parameter in the PHICH resource map corresponding to the codeword stream. The above preferred process is described below in connection with embodiment 7.
  • Example 7 If the uplink transmission is 4 layers, the two codeword streams are transmitted, the first codeword stream corresponds to layer 0 and layer 1, and the second codeword stream corresponds to layer 2 and layer 3; then: the first codeword stream corresponds to the PHICH mapping
  • the dynamic cyclic shift parameter of the DMRS is ⁇ 0 or 1; (0 is the lowest layer index of the first codeword stream, 1 is the highest layer index of the first codeword stream); then the PHICH mapping corresponding to the second codeword stream
  • the dynamic cyclic shift parameter of the DMRS is ⁇ 2 or 3; (2 is the lowest layer index of the second codeword stream, and 3 is the highest layer index of the second codeword stream).
  • the foregoing step S402 may further include the following processing: when the uplink transmission data includes two codeword streams, the PHICH resources of the two codeword streams are mapped into the same PHICH resource group ⁇ , and the uplink scheduling in the nu & i formula The value in the dynamic cyclic shift domain of the DMRS in the DCI is directly used as the PHICH mapping formula corresponding to the first codeword stream.
  • the dynamic cyclic shift parameter nDMRS of the DMRS , the PHICH group formula of the second codeword stream is the same as the first codeword stream, and the second codeword stream PHICH orthogonal index" adds a bias to the parameter of the first codeword stream in the formula Shift CWOffset + CWOffset, or,
  • s s (n DMRS + CWOffset) modS ), where the offset ( C ⁇ " ) is a predefined value, or the offset is the base station configuration value, or the offset is the second code word
  • the index of the lowest layer or the highest layer corresponding to the stream, or the quotient of the offset 12 and the total number of layers L, L may be 2, 3, 4).
  • Embodiment 8 If the uplink transmission is 4 layers, the two codeword streams are transmitted, the first codeword stream is mapped to layer 0 and layer 1, and the second codeword stream is mapped to layer 2 and layer 3; when the uplink scheduling DCI is in the DMRS dynamic loop When the shift amount signaling is 000, layer 0, layer 1, layer 2, and layer 3 sequentially correspond to the actual dynamic cyclic shift amount of the DMRS as 0, 3, 6, 9.
  • the PHICH resource is indicated by the sequence number pair ( ; , n CH , where is the PHICH group number, n; CH is the orthogonal sequence number in the group.
  • the PHICH resource mapping formula of the two codeword streams is as follows on the LTE basis:
  • n' cH ( Ip nckx IN P 8 Z P H + n + CWOffset) mod 2N SF
  • n cH 8 mod 2N
  • DA ⁇ is set to 0.
  • Case 1 If the initial PUSCH for the same transport block is semi-persistently scheduled. Case 2, if The initial PUSCH for the same transport block is scheduled by random access corresponding grants, where N CH is the spreading factor for PHICH modulation; the lowest PRB sequence number of the first time slot is transmitted for the corresponding PUSCH; NH is configured by the upper layer Number of PHICH groups;
  • I H can be determined by the following formula:
  • the value 000 in the DMRS dynamic cyclic shift domain in the uplink scheduling DCI is directly used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream.
  • the foregoing step S402 may further include the following process: the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to each codeword stream is obtained according to the actual dynamic cyclic shift amount of the fixed layer DMRS.
  • the actual dynamic cyclic shift amount of the first layer is used as the dynamic cyclic shift parameter n of the DMRS in the PHICH mapping formula of the first codeword stream, and the actual dynamic cyclic shift amount of the layer 1 (ie, the second layer) is taken as the first The dynamic cyclic shift parameter n DMR S of the DMRS in the PHICH mapping formula of the two code word stream.
  • the actual dynamic cyclic shift amount of layer 0 corresponds to the actual dynamic cyclic shift parameter and the actual dynamic cyclic shift amount
  • the dynamic cyclic shift amount signaling value in the relationship (ie, LTE original correspondence table 3) (corresponding according to the signaling in Table 2, ⁇ ) is the dynamic loop of the DMRS in the PHICH mapping formula of the first codeword stream.
  • Embodiment 9 If the uplink transmission is 4 layers, the two codeword streams are transmitted, the first codeword stream is mapped to layer 0 and layer 1, and the second codeword stream is mapped to layer 2 and layer 3; when the uplink scheduling DCI is in the DMRS dynamic loop When the shift amount signaling is 000, layer 0, layer 1, layer 2, and layer 3 sequentially correspond to the actual dynamic cyclic shift amount of the DMRS as 0, 3, 6, 9.
  • the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the first codeword stream "DMw is the actual dynamic cyclic shift amount of layer 0; the PHICH mapping corresponding to the second codeword stream
  • the dynamic cyclic shift parameter M ⁇ of the DMRS is the actual dynamic cyclic shift amount of layer 1; or the dynamic cyclic shift parameter of the DMRS in the PHICH map corresponding to the first codeword stream is the actual dynamic cyclic shift of layer 0.
  • the dynamic cyclic shift amount signaling value corresponding to the value in Table 3 is 0; the dynamic cyclic shift parameter of DMRS in the PHICH mapping corresponding to the second codeword stream is " ⁇ ⁇ is the actual dynamic cyclic shift amount of layer 1 at The corresponding dynamic cyclic shift amount signaling value 2 in Table 3.
  • Figure 5 is a structural block diagram of a PHICH resource mapping apparatus according to an embodiment of the present invention.
  • the resource mapping apparatus includes: a determining module 52 and processing Module 54.
  • the determining module 52 is configured to determine a dynamic cyclic shift parameter of the DMRS according to a dynamic cyclic shift amount and/or a layer index of the demodulation reference signal DMRS in the codeword stream I and/or the uplink scheduling DCI; the resource mapping module 54.
  • the resource mapping of the physical hybrid retransmission indication channel PHICH is implemented according to the determined dynamic cyclic shift parameter.
  • the processing of the foregoing base station can effectively implement mapping of PHICH resources in the UL SU-MIMO scenario.
  • determining mold Block 52 is further configured to directly use the value in the DMRS dynamic cyclic shift domain in the uplink scheduling DCI as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream.
  • the determining module 52 is further configured to set the lowest or highest index of the layer where the first codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer as the first codeword stream.
  • the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula is further configured to directly use the value in the DMRS dynamic cyclic shift domain in the uplink scheduling DCI as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream.
  • the determining module can determine the actual dynamic cyclic shift amount of each layer of the DMRS according to the dynamic cyclic shift amount of the DMRS in the uplink grant information, and corresponding to the first codeword stream.
  • the highest or highest layer, or the DMRS actual dynamic cyclic shift amount corresponding to the fixed layer, is used as the dynamic cyclic shift parameter dmrs of the DMRS in the PHICH map corresponding to the first codeword stream.
  • the determining module 52 is further configured to set the lowest or highest layer of the layer where the first codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer in the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift
  • the corresponding dynamic cyclic shift amount signaling value in the correspondence of the bit amount is used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream.
  • the determining module 52 is configured to determine, according to the dynamic cyclic shift amount of the DMRS in the uplink grant information, the actual dynamic cyclic shift amount of each layer of the DMRS; and the highest or highest layer corresponding to the first codeword stream.
  • the determining module 52 is further configured to: when the uplink transmission data further includes the second codeword stream (ie, includes two codeword streams, a first codeword stream and a second codeword stream), the first one
  • the sum of the dynamic cyclic shift parameter of the codeword stream and the offset is the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the second codeword stream.
  • the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the second codeword stream is equal to the sum of the parameter r and the offset (Offset) of the first codeword stream.
  • offset ( Offset ) is a predefined value, for example, 1 , 2, 3 ,
  • the offset is the base station configuration value, or the offset is the index of the last layer or the highest layer corresponding to the second codeword stream, or the quotient of 12 and the total number of layers L.
  • the determining module 52 is further configured to use the lowest or highest layer index of the layer where the second codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer index as the second code.
  • the determining module 52 may determine the actual dynamic cyclic shift amount of each layer of the DMRS according to the dynamic cyclic shift amount of the DMRS in the uplink scheduling DCI information, and correspond to the highest or highest layer corresponding to the second codeword stream.
  • the DMRS actual dynamic cyclic shift amount is used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the second codeword stream.
  • DMRS .
  • the determining module 52 is further configured to further include the second code in the uplink transmission data.
  • the determining module 52 is configured to determine the actual dynamic cyclic shift amount of each layer of the DMRS according to the dynamic cyclic shift amount of the DMRS in the uplink scheduling DCI; and corresponding to the highest or highest layer corresponding to the second codeword stream.
  • the actual dynamic cyclic shift amount of the DMRS is obtained according to the correspondence relationship of Table 3, and the dynamic cyclic shift parameter is obtained; the dynamic cyclic shift parameter n of the DMRS in the PHICH map corresponding to the second codeword stream is further determined by the module 52, It may also be configured to determine the highest or highest layer index corresponding to each codeword stream as the dynamic cyclic shift parameter in the PHICH resource map corresponding to the codeword stream. And, when the uplink transmission data includes the first codeword stream and the second codeword stream, and the PHICH resources corresponding to the two codeword streams are mapped in the same PHICH group, the determining module 52 may be in the PHICH formula.
  • the value of the DMRS dynamic cyclic shift domain in the uplink scheduling DCI is directly used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream; the orthogonal index formula corresponding to the second codeword stream PHICH
  • the DMRS dynamic cyclic shift parameter is the value of the DMRS dynamic cyclic shift i or the value of the sum of the offsets and the modulo 8.
  • the working mode of the above-mentioned respective modules combined with each other can be referred to the embodiment.
  • the method for mapping PHICH resources in the UL SU-MIMO scenario is implemented by the foregoing embodiments provided by the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and apparatus for resources mapping of Physical Hybrid ARQ Indicator Channel (PHICH) are provided in the present invention. The method and apparatus are used in Uplink Single-User Multiple Input Multiple Output (UL SU-MIMO) transmission scene. The method includes: a Base Station (BS) determining dynamic cyclic shift parameters of Demodulation Reference Signal (DMRS) according to a codeword stream index and/or a dynamic cyclic shift amount of the DMRS in Downlink Control Information (DCI) for uplink scheduling and/or layer index; the BS realizing resources mapping of the PHICH according to the determined dynamic cyclic shift parameters. With the subject-matter of the present invention, the resources mapping of the PHICH in MIMO scene could be effectively realized.

Description

PHICH资源映射方法及装置 技术领域 本发明涉及通信领域, 尤其涉及上行单用户多天线发送场景下物理混合 重传指示信道 ( Physical hybrid ARQ indicator channel , 简称为 PHICH ) 的资 源映射方法及装置。 背景技术 长期演进(Long Term Evolution, 简称为 LTE ) 系统是第三代伙伴组织 的重要计划。 LTE系统釆用常规循环前缀(Normal Cyclic Prefix ) 时, 一个 时隙包含 7 个长度的上 /下行符号, LTE 系统釆用扩展循环前缀 ( Extended Cyclic Prefix ) 时, 一个时隙包含 6个长度的上 /下行符号。 图 1是根据相关技术的带宽为 5MHz的 LTE系统物理资源块的示意图, 如图 1所示, 一个资源单元 (Resource Element, 简称为 RE ) 为一个 OFDM 符号中的一个子载波, 而一个下行资源块 (Resource Block, 简称为 RB ) 由 连续的 12个子载波和连续的 7个 (扩展循环前缀的时候为 6个) OFDM符 号构成。一个资源块在频域上为 180kHz,时域上为一个一般时隙的时间长度, 进行资源分配时, 会以资源块为基本单位来进行分配。 在上行子帧中, 物理 上行控制信道 ( Physical Uplink Control Channel, 简称为 PUCCH )位于整个 频带两个边带上, 中间用于传输物理上行共享信道 (Physical Uplink Shared Channel , 简称为 PUSCH ), 该信道用于^载上行数据。 在 LTE系统定义了如下几种物理信道: 物理广播信道(Physical broadcast channel, 简称为 PBCH ): 该信道 载 的信息包括系统的帧号、 系统的下行带宽、 物理混合重传信道的周期、 以及 用于确定物理混合重传指示信道 ( Physical hybrid ARQ indicator channel, 简 称为 PHICH )信道组数的参数 Ng e {1/6,1/2,1, 2}。 物理下行控制信道( Physical downlink control channel, 简称为 PDCCH ): 用于承载上、 下行调度信息, 以及上行功率控制信息。 其中, 物理下行控制信道承载的下行控制信息 ( Downlink Control Information, 简称为 DCI ) 格式 ( format ) 分为以下几种: DCI format 0、 1、 1A、 1B、 1C、 1D、 2、 2A、 3 , 3A等, 其中, format 0用于指示物理上行 共享信道( Physical uplink shared channel,简称为 PUSCH )的调度; DCI format 1 , 1A, IB , 1C, ID用于单传输块的物理下行共享信道(Physical Downlink Shared Channel, 简称为 PDSCH ) 的不同传输模式; DCI format 2, 2A用于 空分复用的不同传输模式; DCI format 3 , 3A用于物理上行控制信道( Physical uplink control channel, 简称为 PUCCH ) 和 PUSCH的功率控制指令的传输。 物理上行共享信道: 用于承载上行传输数据。 该信道相关的资源分配, 调制与编码方案, 解调参考信号 ( Demodulation Reference Signal , 简称为 DMRS ) 的循环移位 ( Cyclic shift, 简称为 CS )等控制信息由上行授权( UL grant ) 用 DCI format 0设置。 物理混合重传指示信道( Physical Hybrid ARQ Indicator Channel , 简称为 PHICH ): 用于承载上行传输数据的 ACK/NACK反馈信息。 PHICH信道组 的数目、持续时间( duration )由所在的下行载波的 PBCH中的系统消息确定, PHICH的时频位置由 PHICH信道组的数目、 持续时间、 小区 PBCH的天线 配置、 小区 ID以及 PHICH的组号和组内序列索引决定。 对于帧结构 1 ( FDD帧结构), PHICH组的数目 Np g H由以下公式 ( a ) 决定: 常规循环前缀情况 TECHNICAL FIELD The present invention relates to the field of communications, and in particular, to a resource mapping method and apparatus for a Physical Hybrid ARQ indicator channel (PHICH) in an uplink single-user multi-antenna transmission scenario. BACKGROUND The Long Term Evolution (LTE) system is an important plan of the third generation partner organization. When the LTE system uses the Normal Cyclic Prefix, one slot contains 7 lengths of uplink/downlink symbols. When the LTE system uses the extended Cyclic Prefix, one slot contains 6 lengths. / Downstream symbol. 1 is a schematic diagram of a physical resource block of an LTE system with a bandwidth of 5 MHz according to the related art. As shown in FIG. 1, a resource element (RE element) is one subcarrier in one OFDM symbol, and one downlink resource is used. A Resource Block (abbreviated as RB) is composed of 12 consecutive subcarriers and 7 consecutive OFDM symbols (6 when the cyclic prefix is extended). A resource block is 180 kHz in the frequency domain, and is a time slot of a general time slot in the time domain. When resource allocation is performed, resource blocks are used as a basic unit for allocation. In the uplink subframe, a Physical Uplink Control Channel (PUCCH) is located on two sidebands of the entire frequency band, and is used to transmit a Physical Uplink Shared Channel (PUSCH). Used to carry upstream data. The following physical channels are defined in the LTE system: Physical broadcast channel (PBCH for short): The information carried by the channel includes the frame number of the system, the downlink bandwidth of the system, the period of the physical hybrid retransmission channel, and the use. The parameter N g e {1/6, 1/2, 1, 2} of determining the number of physical hybrid ARQ indicator channel (PHICH) channel groups. A physical downlink control channel (PDCCH) is used to carry uplink and downlink scheduling information, and uplink power control information. The Downlink Control Information (DCI) format (format) carried by the physical downlink control channel is divided into the following types: DCI format 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 3 3A, etc., where format 0 is used to indicate the scheduling of the physical uplink shared channel (PUSCH); DCI format 1 , 1A, IB , 1C, ID is used for the physical downlink shared channel of the single transport block (Physical Downlink Shared Channel (PDSCH) is a different transmission mode; DCI format 2, 2A is used for different transmission modes of space division multiplexing; DCI format 3, 3A is used for physical uplink control channel (PUCCH) And transmission of power control commands of the PUSCH. Physical uplink shared channel: Used to carry uplink transmission data. The channel-related resource allocation, modulation and coding scheme, demodulation reference signal (DMRS), cyclic shift (referred to as CS), and other control information are used by the uplink grant (UL grant) with DCI format. 0 setting. Physical Hybrid ARQ Indicator Channel (PHICH): ACK/NACK feedback information used to carry uplink transmission data. The number and duration of the PHICH channel group are determined by the system message in the PBCH of the downlink carrier in which it is located. The time-frequency position of the PHICH is determined by the number of PHICH channel groups, the duration, the antenna configuration of the cell PBCH, the cell ID, and the PHICH. The group number and the sequence index within the group are determined. For frame structure 1 (FDD frame structure), the number of PHICH groups N p g H is determined by the following formula ( a ): Regular cyclic prefix case
A Tgroup  A Tgroup
1 v PHICH 公式 ( a )1 v PHICH formula (a)
Figure imgf000004_0001
扩展循环前缀情况
Figure imgf000004_0001
Extended cyclic prefix case
Ng e {1/6, 1/2, 1, 2}由所在的下行载波( Downlink carrier,简称为 DL carrier ) 的 PBCH中的系统消息确定, PHICH的组号 从 0到 Np g H - 1的编号, 其 中, N^是 PHICH所在的下行载波的带宽。 对于帧结构 2 ( TDD帧结构), PHICH组的数目每子帧为 m,. - Ν^ , 其 中 '由下表 1决定。 表 1 N g e {1/6, 1/2, 1, 2} is determined by the system message in the PBCH of the downlink carrier (Downlink carrier, DL carrier for short), and the PHICH group number is from 0 to N p g H - The number of 1 , where N^ is the bandwidth of the downlink carrier where the PHICH is located. For frame structure 2 (TDD frame structure), the number of PHICH groups is m, . - Ν^ , where ' is determined by Table 1 below. Table 1
上下行 子帧号 i  Up and down subframe number i
子帧  Subframe
0 1 2 3 4 5 6 7 8 9  0 1 2 3 4 5 6 7 8 9
配置  Configuration
0 2 1 - - - 2 1 - - - 0 2 1 - - - 2 1 - - -
1 0 1 - - 1 0 1 - - 11 0 1 - - 1 0 1 - - 1
2 0 0 - 1 0 0 0 - 1 02 0 0 - 1 0 0 0 - 1 0
3 1 0 - - - 0 0 0 1 13 1 0 - - - 0 0 0 1 1
4 0 0 - - 0 0 0 0 1 14 0 0 - - 0 0 0 0 1 1
5 0 0 - 0 0 0 0 0 1 05 0 0 - 0 0 0 0 0 1 0
6 1 1 - _ _ 1 1 _ _ 1 6 1 1 - _ _ 1 1 _ _ 1
PHICH资源由序列对
Figure imgf000005_0001
PHICH resource by sequence pair
Figure imgf000005_0001
是组中正交序列的索引, 由下面的资源映射公式 (b ) 确定: group ― τ lowest index Is the index of the orthogonal sequence in the group, determined by the following resource mapping formula (b): group ― τ lowest index
Π nnMRS)modN" + I W group Π n nMRS )modN" + IW group
PHICH ―、丄 PRB RA + PHICH i PHICH PHICH ―, 丄PRB RA + PHICH i PHICH
n seq ― lowest index I PHICH ( b ) PHICH ― I PRB RA 1
Figure imgf000005_0002
+ "丽) mod 2N S,F 其中, " s是 DCI format 0 中定义的解调参考信号 ( Demodulation
n seq ― lowest index I PHICH ( b ) PHICH ― I PRB RA 1
Figure imgf000005_0002
+ "丽" mod 2N S,F where, " s is the demodulation reference signal defined in DCI format 0 (Demodulation
Reference Signal , 简称为 DMRS ) 的动态循环移位参数, 该参数可以根据表 2的取值确定; 表 2 Reference Signal, referred to as DMRS) dynamic cyclic shift parameter, which can be determined according to the value of Table 2; Table 2
Figure imgf000005_0003
Figure imgf000005_0003
该参数的配置使小区内的 MU-MIMO用户间具有不同的循环移位,使小 区内 MU-MIMO用户正交, 抑制小区内千扰。 UE按照表 3的对应关系根据 动态循环移位参数确定解调参考信号的循环移位量。 表 3 The configuration of the parameter causes different cyclic shifts among the MU-MIMO users in the cell, so that the intra-cell MU-MIMO users are orthogonal, and the intra-cell interference is suppressed. The UE determines the cyclic shift amount of the demodulation reference signal according to the dynamic cyclic shift parameter according to the correspondence relationship of Table 3. table 3
Figure imgf000006_0001
d PHICH 调制的扩频因子, 对常规 CP, N^ICH=4, 扩展 CP,
Figure imgf000006_0001
d Spreading factor of PHICH modulation, for regular CP, N^ ICH = 4, extended CP,
C =2 。 C = 2 .
j'o^t nde,是上行资源分配的物理资源块 ( Physical Resource Block , 简称 为 PRB ) 的最低索引; J'o^t nde is the lowest index of the physical resource block ( Ph y sical Resource Block, abbreviated as PRB) allocated by the uplink resource;
TDD UL/DL配置 0下 PUSCH在子帧 4或 9传输 TDD UL/DL configuration 0 PUSCH is transmitted in subframe 4 or 9
I PHICH  I PHICH
其它  Other
LTE Release-8上行只允许单天线发送。 公式 (b) 中 、^对于 UE来说 在 DCI format 0中只会配置 1个。 LTE Release-8 uplinks only allow single antenna transmission. In formula (b), ^ for the UE, only one in DCI format 0.
PUSCH DMRS的序列设计, DMRS序列的时频扩展: r v PUSCH L \m Λ RS丄 , J v (a)Sequence design of PUSCH DMRS, time-frequency extension of DMRS sequence: r v PUSCH L \m Λ RS丄, J v (a)
-Msc +nj = rM [n -M sc +nj = r M [n
m = 0 ,1  m = 0 ,1
RS  RS
n = 0 M  n = 0 M
a =2 ncs/l2 ^DMRS + WDMRS + "PRS Mfmod 12 m = ns mod 2 : = 0,1分别对应每个子帧的第一, 第二时隙。 共 12种 循环移位值, PUSCH DMRS带宽与 PUSCH带宽相同。 a =2 n cs /l2 ^DMRS + W DMRS + "PRS Mfmod 12 m = n s mod 2 : = 0,1 corresponds to the first and second time slots of each subframe respectively. There are 12 cyclic shift values, and the PUSCH DMRS bandwidth is the same as the PUSCH bandwidth. .
DMRS序列的循环移位 ncs由三个参量决定, 具体说明如下: The cyclic shift n cs of the DMRS sequence is determined by three parameters, as follows:
: 由高层参数决定 (3比特), 半静态配置, 使不同的小区具有不同 的循环移位, 使小区间 MU-MIMO用户正交, 抑制小区间千扰。 τξ^: 由最近的 DCI format 0提供 (3 比特) (参考表 2), 动态配置, 使小 区内的 MU-MIMO用户间具有不同的循环移位, 使小区内 MU-MIMO用户 正交, 抑制小区内千扰。 可称作动态循环移位参数。 nPRS {ns) 由小区身份识别号 A ( Identity,简称为 ID ) 和 决定, 基 于时隙兆变的变量为:
Figure imgf000007_0001
l ID PUSCH
: Determined by high-level parameters (3 bits), semi-static configuration, so that different cells have different cyclic shifts, making inter-cell MU-MIMO users orthogonal, and suppressing inter-cell interference. Ξξ^: Provided by the nearest DCI format 0 (3 bits) (refer to Table 2), dynamic configuration, which makes the MU-MIMO users in the cell have different cyclic shifts, making the intra-cell MU-MIMO users orthogonal and suppressing The area is full of disturbances. It can be called a dynamic cyclic shift parameter. n PRS {n s ) is determined by the cell identity number A (identity, referred to as ID) and the variable based on the time slot is:
Figure imgf000007_0001
l ID PUSCH
init —  Init —
30 CH 定 义 为 : /s SCH
Figure imgf000007_0002
+ Ass )mod 30 ssUCCH = ^ID 1 mod30 , 其中 A ss G {0,1,..., 29 }通过高层配置。 高级长期演进系统 ( Long-Term Evolution Advanced , 简称为 LTE- A )是 LTE Release-8的演进版本。 国际电信联盟无线电通信组提出的高级国际无线 通信系统需求中要求后向兼容。 在 LTE-Advanced与 LTE Release-8后向兼容 的需求是指: LTE Release- 8的终端可以在 LTE-Advanced的网络中工作; LTE-Advanced 的终端可以在 LTE Release- 8 的网络中工作。 另夕卜, LTE-Advanced应能在不同大小的频 i普配置, 包括比 LTE Release-8更宽的频 谱配置 (例如, 100MHz 的连续的频谱资源) 下工作, 以达到更高的性能和 目标峰值速率。考虑到与 LTE Release- 8的兼容性,对于大于 20MHz的带宽, 釆用频谱聚集 ( Carrier aggregation ) 的方式, 即, 两个或两个以上的分量载 波( component carrier ) 聚集以支持大于 20MHz的下行传输带宽。 LTE-A系统中的终端按其能力能同时发送一个或多个分量载波, 且上行 可以釆用单用户多天线发送技术, 包括传输分集 ( Transmit Diversity,简称为 TxD ) 和空间复用 ( Multiple Input Multiple Output, 简称为 MIMO )„ 每个分 量载波最多支持 2个码字流同时传输,该 2个码字流的正确应答 /错误应答信 息 ( Acknowledgement/Negative Acknowledgement, 简称为 ACK/NACK ) 的 映射规则需要标准化。 上行码字流的层映射( Codeword to layer mapping )规 则同下行层映射规则, 图 2是根据相关技术的 LTE-A上行码字流的层映射的 示意图。 在 MIMO 场景下, 可能会引入 DMRS 时 i或正交码 ( Orthogonal Cover Code, 简称为 OCC ), 即在时隙的 2个 RS符号上釆用 ( 1 , 1 )或者( 1 , -1 ) 提高终端间的正交性。 图 3是 MIMO场景下, 上行 4天线 4层传输且釆用 OCC码的示意图。 在相关技术中, 上行调度 DCI format 0 并不支持上行多天线传输, 在 LTE-A上行多天线传输场景下, 上行调度 DCI 需要新增格式, 暂记作 DCI format X, 如果使用 DCI format X给 UE各层 ( layer ) 配置合适的 DMRS循 环移位相关参数, 按每个循环移位量 3 比特, 则信令开销比较大, 例如, 4 层传输, 每层配置一个 3比特 DMRS循环移位参数, 则需要 12比特的信令。 并且在 MIMO场景下,可能会引入 DMRS时 i或正交码( Orthogonal Cover Code, 简称为 OCC ), 即在时隙的 2个 RS符号上釆用 ( 1 , 1 )或者( 1 , -1 ) 提高终端间的正交性。 图 3是 MIMO场景下, 上行 4天线 4层传输且釆用 OCC码的示意图。 如果在 MU-MIMO场景下,终端釆用与现有相同比特字段的动态循环移 位量, 则 PHICH 映射需要重新定义。 因为现有的单天线资源映射方式并不 适用于具有多层资源映射的多天线传输模式。 发明内容 针对相关技术中单天线资源映射方式并不适用于具有多层资源映射的多 天线传输模式的问题而提出本发明, 为此, 本发明的主要目的在于提供一种 改进的 PHICH资源映射方法及装置, 以解决上述问题至少之一。 根据本发明的一个方面, 提供了一种 PHICH资源映射方法。 才艮据本发明的 PHICH资源映射方法包括: 基站 居码字流索 I和 /或上 行调度下行控制信息 (DCI ) 中解调参考信号 (DMRS ) 的动态循环移位量 和 /或层索引确定 DMRS 的动态循环移位参数; 基站 居确定的动态循环移 位参数实现 PHICH的资源映射。 上述确定 DMRS的动态循环移位参数包括:将上行调度 DCI中的 DMRS 动态循环移位 i或中的值直接作为第一个码字流对应的 PHICH 映射公式中的 DMRS的动态循环移位参数。 上述确定 DMRS的动态循环移位参数包括:将第一个码字流所在层的最 氐或最高层索引, 或者, 固定层索引对应的 DMRS实际动态循环移位量作为 第一个码字流对应的 PHICH映射公式中的 DMRS的动态循环移位参数。 上述确定 DMRS的动态循环移位参数包括:将第一个码字流所在层的最 氐或最高层, 或者, 固定层对应的 DMRS实际动态循环移位量在预定动态循 环移位参数与实际动态循环移位量的对应关系中对应的动态循环移位参数作 为第一个码字流对应的 PHICH映射公式中的 DMRS的动态循环移位参数。 在上行传输数据还包括第二码字流时,上述确定 DMRS的动态循环移位 参数包括: 将第一个码字流的动态循环移位参数与偏移量的和作为第二个码 字流对应的 PHICH映射公式中的 DMRS的动态循环移位参数。 或者, 将第 一个码字流的动态循环移位参数与偏移量的和模 8后作为第二个码字流对应 的 PHICH映射公式中的 DMRS的动态循环移位参数。 在上行传输数据还包括第二码字流时,上述确定 DMRS的动态循环移位 参数包括: 将第二个码字流所在层的最低或最高层, 或者, 固定层对应的 DMRS 实际动态循环移位量作为第二个码字流对应的 PHICH映射公式中的 DMRS的动态循环移位参数。 在上行传输数据还包括第二码字流时,上述确定 DMRS的动态循环移位 参数包括: 将第二个码字流所在层的最低或最高层, 或者, 固定层对应的 DMRS实际动态循环移位量在预定动态循环移位参数与实际动态循环移位量 的对应关系中对应的动态循环移位参数作为第二个码字流对应的 PHICH 映 射公式中的 DMRS的动态循环移位参数。 在上行传输数据还包括第二码字流时, 上述第二码字流与第一码字流映 射到同一个 PHICH组里, 第二码字流 PHICH对应的正交索引公式中 DMRS 动态循环移位参数为 DMRS动态循环移位域中的值与偏移量之和, 或者, 第 二码字流 PHICH对应的正交索引公式中 DMRS动态循环移位参数为 DMRS 动态循环移位域中的值与偏移量之和模 8后的值。 上述偏移量为以下之一: 预定义值、 基站配置值、 第二个码字流对应的 最低层或最高层的索引、 12与总层数 L的商。 上述确定 DMRS 的动态循环移位参数包括: 每个码字流对应的 PHICH 映射公式中的 DMRS 的动态循环移位参数为该码字流所在层的最氏层或最 高层的索引。 上述确定 DMRS 的动态循环移位参数包括: 每个码字流对应的 PHICH 映射中的 DMRS的动态循环移位参数为固定层的 DMRS的实际动态循环移 位量。 上述每个码字流对应的 PHICH映射中的 DMRS的动态循环移位参数为 固定层的 DMRS的实际动态循环移位量包括:将第一层的实际动态循环移位 量作为第一码字流的 PHICH映射公式中的 DMRS的动态循环移位参数, 将 第二层的实际动态循环移位量作为第二码字流的 PHICH 映射公式中的 DMRS的动态循环移位参数。 上述每个码字流对应的 PHICH映射中的 DMRS的动态循环移位参数为 固定层的 DMRS的动态循环移位量包括:将第一层的实际动态循环移位量在 在预定动态循环移位参数与实际动态循环移位量的对应关系中对应的动态循 环移位参数作为第一码字流的 PHICH映射公式中的 DMRS的动态循环移位 参数, 第二层的实际动态循环移位量在对应关系中对应的动态循环移位量信 令值作为第二码字流的 PHICH映射公式中的 DMRS的动态循环移位参数。 上述预定动态循环移位参数与实际动态循环移位量的对应关系为: 动态 循环移位参数 0, 1 , 2, 3 , 4, 5 , 6, 7依次对应的实际动态循环移位量为 0, 6, 3 , 4, 2, 8, 10, 9。 根据本发明的另一方面, 提供了一种 PHICH资源映射装置。 居本发明的 PHICH 资源映射装置包括: 确定模块, 设置为 居码字 流索引和 /或上行调度下行控制信息 (DCI ) 中解调参考信号 (DMRS ) 的动 态循环移位量和 /或层索引确定 DMRS的动态循环移位参数; 资源映射模块, 设置为根据确定的动态循环移位参数实现 PHICH的资源映射。 通过本发明, 在 MIMO 场景下对物理混合重传信道的映射公式中的 DMRS相关参数进行了重新定义, 解决了相关技术中单天线资源映射方式并 不适用于具有多层映射的多天线传输模式的问题, 进而可以有效实现 MIMO 场景下 PHICH资源的映射。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1为才艮据相关技术的带宽为 5MHz的 LTE系统物理资源块示意图; 图 2为根据相关技术的 LTE-A上行码字流的层映射示意图; 图 3为根据相关技术的 MIMO场景下,上行 4天线 4层传输且釆用 OCC 码的示意图; 图 4为才艮据本发明实施例的 PHICH的资源映射方法的流程图; 图 5为 居本发明实施例的 PHICH的资源映射装置的结构框图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 图 4为才艮据本发明实施例的 PHICH资源映射方法的流程图。 如图 4所 示, 该资源映射方法包括以下处理: 步骤 S402 : 基站才艮据码字流索引和 /或上行调度 DCI 中解调参考信号 DMRS的动态循环移位量和 /或层索引确定 DMRS的动态循环移位参数; 步骤 S404:基站 居确定的动态循环移位参数实现物理混合重传指示信 道 PHICH的资源映射。 相关技术中,上行调度 DCI format 0并不支持上行多天线传输,在 LTE-A 上行多天线传输场景下, 上行调度 DCI需要新增格式, 如果使用新增格式给 UE每层 (layer ) 用 3比特配置合适的 DMRS循环移位相关参数, 信令开销 比较大, 所以会用有限的信令开销, 如 3比特的 DMRS循环移位域指示的是 多个层的一组 DMRS 实际循环移位量。 并且在 MIMO场景下, 可能会引入 DMRS 时域正交码。 因而单天线 PHICH资源映射方式并不适用于具有多层 的多天线传输模式。 釆用上述技术方案, 可以有效实现 UL SU-MIMO场景 下 PHICH资源的映射。 在优选实施过程中, 基站侧反馈上行数据的 ACK/NACK信息, 承载在 PHICH上, 在 UL SU-MIMO场景下, PHICH映射中的 DMRS的动态循环移 位参数 根据上行调度 DCI中指示的 DMRS动态循环移位量、 码字流 索引中至少一项确定。 以下分别描述步 4聚 S402中确定动态循环移位参数的各个优选方案。 优选地, 在上行传输数据包括第一码字流时, 上述步骤 S402 可以进一 步包括: 上行调度 DCI 中的 DMRS动态循环移位域中的值直接作为第一个 码字流对应的 PHICH映射公式中的 DMRS的动态循环移位参数 nnMR,。 以下结合实施例一描述上述优选实施过程。 实施例一 如果上行传输为 4层, 两码字流传输, 当上行调度 DCI中 DMRS动态 循环移位量信令为 000时, 各层对应 DMRS的实际动态循环移位量为 0, 3 ,
30 C H is defined as: / s SCH
Figure imgf000007_0002
+ A ss ) mod 3 0 ss UCCH = ^ID 1 mod30 , where A ss G {0,1,..., 29 } is configured through the upper layer. The Long-Term Evolution Advanced (LTE-A) is an evolved version of LTE Release-8. Backward compatibility is required in the requirements of advanced international wireless communication systems proposed by the International Telecommunication Union Radiocommunication Group. The requirements for backward compatibility between LTE-Advanced and LTE Release-8 mean that: LTE Release-8 terminals can work in LTE-Advanced networks; LTE-Advanced terminals can work in LTE Release-8 networks. In addition, LTE-Advanced should be able to be configured in different sizes, including wider frequencies than LTE Release-8. Spectrum configuration (eg, 100 MHz continuous spectrum resources) works to achieve higher performance and target peak rates. Considering compatibility with LTE Release-8, for bandwidths greater than 20 MHz, the method of carrier aggregation is used, that is, two or more component carriers are aggregated to support downlinks greater than 20 MHz. Transmission bandwidth. A terminal in an LTE-A system can simultaneously transmit one or more component carriers according to its capability, and the uplink can use a single-user multi-antenna transmission technology, including Transmit Diversity (TxD for short) and spatial multiplexing (Multiple Input). Multiple Output (referred to as MIMO) „ Each component carrier supports up to 2 codeword streams for simultaneous transmission. The mapping rules of Acknowledgement/Negative Acknowledgement (ACK/NACK for short) are also used. Standardization is required. The codeword to layer mapping rule of the uplink codeword stream is the same as the downlink layer mapping rule, and FIG. 2 is a schematic diagram of layer mapping of the LTE-A uplink codeword stream according to the related art. In the MIMO scenario, When DMRS is introduced, an Orthogonal Cover Code (OCC) is used to improve the orthogonality between terminals by using (1, 1) or (1, -1) on the two RS symbols of the slot. 3 is a schematic diagram of an uplink 4 antenna layer 4 transmission and using an OCC code in a MIMO scenario. In the related art, uplink scheduling DCI format 0 does not support uplink multi-antenna transmission, in LTE- In the uplink multi-antenna transmission scenario, the uplink scheduling DCI needs to be newly added, and it is temporarily recorded as DCI format X. If DCI format X is used, the appropriate DMRS cyclic shift related parameters are configured for each layer of the UE, and each cyclic shift is performed. If the bit size is 3 bits, the signaling overhead is relatively large. For example, for 4-layer transmission, each layer is configured with a 3-bit DMRS cyclic shift parameter, which requires 12-bit signaling. And in the MIMO scenario, DMRS may be introduced. Or Orthogonal Cover Code (OCC), that is, using (1, 1) or (1, -1) on the two RS symbols of the slot to improve the orthogonality between the terminals. In the scenario, the uplink 4 antenna layer 4 transmits and uses the OCC code. If the terminal uses the dynamic cyclic shift amount of the same bit field in the MU-MIMO scenario, the PHICH mapping needs to be redefined. Some single antenna resource mapping methods are not applicable to multi-antenna transmission modes with multi-layer resource mapping. SUMMARY OF THE INVENTION The present invention has been made in view of the problem that the single antenna resource mapping method in the related art is not applicable to the multi-antenna transmission mode with multi-layer resource mapping. To this end, the main object of the present invention is to provide an improved PHICH resource mapping method. And devices to solve at least one of the above problems. According to an aspect of the present invention, a PHICH resource mapping method is provided. The PHICH resource mapping method according to the present invention includes: dynamic cyclic shift amount and/or layer index determination of a demodulation reference signal (DMRS) in a base station codeword stream I and/or uplink scheduling downlink control information (DCI) The dynamic cyclic shift parameter of the DMRS; the base station is determined by the dynamic cyclic shift parameter to implement the resource mapping of the PHICH. The determining the dynamic cyclic shift parameter of the DMRS includes: directly using the value of the DMRS dynamic cyclic shift i or in the uplink scheduling DCI as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream. The determining the dynamic cyclic shift parameter of the DMRS includes: selecting the last or highest layer index of the layer where the first codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer index as the first codeword stream corresponding to The dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula. The foregoing determining the dynamic cyclic shift parameter of the DMRS includes: selecting the last or highest layer of the layer where the first codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer in the predetermined dynamic cyclic shift parameter and the actual dynamic The corresponding dynamic cyclic shift parameter in the correspondence relationship of the cyclic shift amount is used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream. When the uplink transmission data further includes the second codeword stream, the determining the dynamic cyclic shift parameter of the DMRS includes: using the sum of the dynamic cyclic shift parameter of the first codeword stream and the offset as the second codeword stream. The dynamic cyclic shift parameter of the DMRS in the corresponding PHICH mapping formula. Alternatively, the dynamic cyclic shift parameter of the first codeword stream and the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the modulo 8 of the offset as the second codeword stream. When the uplink transmission data further includes the second codeword stream, the determining the dynamic cyclic shift parameter of the DMRS includes: lowering or highest layer of the layer where the second codeword stream is located, or actual dynamic cyclic shift of the DMRS corresponding to the fixed layer The bit amount is used as a dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the second codeword stream. When the uplink transmission data further includes the second codeword stream, the determining the dynamic cyclic shift parameter of the DMRS includes: lowering or highest layer of the layer where the second codeword stream is located, or actual dynamic cyclic shift of the DMRS corresponding to the fixed layer The dynamic cyclic shift parameter corresponding to the bit quantity in the correspondence between the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift amount is used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the second codeword stream. When the uplink transmission data further includes the second codeword stream, the second codeword stream and the first codeword stream are mapped into the same PHICH group, and the DMRS dynamic cyclic shift in the orthogonal index formula corresponding to the second codeword stream PHICH The bit parameter is the sum of the value and the offset in the dynamic cyclic shift domain of the DMRS, or the DMRS dynamic cyclic shift parameter in the orthogonal index formula corresponding to the second codeword stream PHICH is the value in the dynamic cyclic shift domain of the DMRS. The value after the modulo 8 with the sum of the offsets. The above offset is one of the following: a predefined value, a base station configuration value, an index of the lowest layer or the highest layer corresponding to the second codeword stream, and a quotient of 12 and the total number of layers L. The determining the dynamic cyclic shift parameter of the DMRS includes: the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to each codeword stream is the index of the highest layer or the highest layer of the layer where the codeword stream is located. The determining the dynamic cyclic shift parameter of the DMRS includes: the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to each codeword stream is the actual dynamic cyclic shift amount of the fixed layer DMRS. The dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to each codeword stream is an actual dynamic cyclic shift amount of the fixed layer DMRS, including: the actual dynamic cyclic shift amount of the first layer is used as the first codeword stream. The dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula uses the actual dynamic cyclic shift amount of the second layer as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula of the second codeword stream. The dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to each codeword stream is a dynamic cyclic shift amount of the DMRS of the fixed layer, including: shifting the actual dynamic cyclic shift amount of the first layer in a predetermined dynamic cyclic shift The corresponding dynamic cyclic shift parameter in the correspondence between the parameter and the actual dynamic cyclic shift amount is used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula of the first codeword stream, and the actual dynamic cyclic shift amount of the second layer is The corresponding dynamic cyclic shift amount signaling value in the correspondence relationship is used as a dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula of the second codeword stream. The corresponding relationship between the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift amount is: The dynamic cyclic shift parameter 0, 1 , 2, 3, 4, 5, 6, 7 corresponds to the actual dynamic cyclic shift amount is 0. , 6, 3, 4, 2, 8, 10, 9. According to another aspect of the present invention, a PHICH resource mapping apparatus is provided. The PHICH resource mapping apparatus of the present invention includes: a determining module configured to set a dynamic cyclic shift amount and/or a layer index of a demodulation reference signal (DMRS) in a codeword stream index and/or uplink scheduling downlink control information (DCI) Determining a dynamic cyclic shift parameter of the DMRS; a resource mapping module configured to implement resource mapping of the PHICH according to the determined dynamic cyclic shift parameter. Through the invention, the DMRS related parameters in the mapping formula of the physical hybrid retransmission channel are redefined in the MIMO scenario, and the single antenna resource mapping manner in the related art is not applicable to the multi-antenna transmission mode with multi-layer mapping. The problem can further effectively map the PHICH resources in the MIMO scenario. Other features and advantages of the invention will be set forth in the description which follows, and The objectives and other advantages of the invention will be realized and attained by the <RTI BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, In the drawings: FIG. 1 is a schematic diagram of a physical resource block of an LTE system with a bandwidth of 5 MHz according to the related art; FIG. 2 is a schematic diagram of layer mapping of an LTE-A uplink codeword stream according to the related art; FIG. 4 is a flowchart of a resource mapping method of a PHICH according to an embodiment of the present invention; FIG. 5 is a PHICH of an embodiment of the present invention; A block diagram of the structure of the resource mapping device. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments. 4 is a flow chart of a PHICH resource mapping method according to an embodiment of the present invention. As shown in FIG. 4, the resource mapping method includes the following processing: Step S402: The base station determines the DMRS according to the dynamic cyclic shift amount and/or the layer index of the demodulation reference signal DMRS in the codeword stream index and/or the uplink scheduling DCI. Dynamic cyclic shift parameter; Step S404: The base station is determined by the dynamic cyclic shift parameter to implement resource mapping of the physical hybrid retransmission indication channel PHICH. In the related art, the uplink scheduling DCI format 0 does not support uplink multi-antenna transmission. In the LTE-A uplink multi-antenna transmission scenario, the uplink scheduling DCI needs to be newly added. If the new format is used, the layer is used for the UE. The bit configuration of the appropriate DMRS cyclic shift related parameters, the signaling overhead is relatively large, so a limited signaling overhead is used, such as a 3-bit DMRS cyclic shift domain indicating a set of DMRS actual cyclic shifts of multiple layers. . And in the MIMO scenario, a DMRS time domain orthogonal code may be introduced. Therefore, the single antenna PHICH resource mapping manner is not applicable to a multi-antenna transmission mode having multiple layers. With the above technical solution, the mapping of PHICH resources in the UL SU-MIMO scenario can be effectively implemented. In a preferred implementation process, the base station side feeds back ACK/NACK information of the uplink data, and carries the ACK/NACK information on the PHICH. In the UL SU-MIMO scenario, the dynamic cyclic shift parameter of the DMRS in the PHICH mapping is dynamically according to the DMRS indicated in the uplink scheduling DCI. At least one of the cyclic shift amount and the codeword stream index is determined. Various preferred aspects of determining dynamic cyclic shift parameters in step 4 S402 are separately described below. Preferably, when the uplink transmission data includes the first codeword stream, the foregoing step S402 may further include: the value in the DMRS dynamic cyclic shift domain in the uplink scheduling DCI is directly used as the PHICH mapping formula corresponding to the first codeword stream. The dynamic cyclic shift parameter of the DMRS is n nMR . The above preferred implementation process will be described below in conjunction with the first embodiment. Embodiment 1 If the uplink transmission is 4 layers and the two codeword streams are transmitted, when the DMRS dynamic cyclic shift amount signaling in the uplink scheduling DCI is 000, the actual dynamic cyclic shift amount of each layer corresponding to the DMRS is 0, 3,
6, 9;则第一码字流对应的 PHICH映射中的 DMRS的动态循环移位参数《σΜ^ 为 0。 优选地, 在上行传输数据包括第一码字流时, 步骤 S402 可以包括以下 处理: 第一个码字流所在层的最氏或最高层, 或者, 固定层对应的 DMRS实 际动态循环移位量 2 作为第一个码字流对应的 PHICH 映射公式中的 6, 9; then the dynamic cyclic shift parameter " σΜ ^ of the DMRS in the PHICH mapping corresponding to the first codeword stream is 0. Preferably, when the uplink transmission data includes the first codeword stream, step S402 may include the following processes: the highest or highest layer of the layer where the first codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer. 2 as the PHICH mapping formula corresponding to the first codeword stream
DMRS的动态循环移位参数 以下结合实施例二描述上述优选实施过程。 实施例二 支设, 上行传输为 4层, 两码字流传输, 第一个码字流映射到层 0和层 1 , 第二个码字流映射到层 2和层 3; 当上行调度 DCI中 DMRS动态循环移 位量信令为 000时, 各层对应 DMRS的实际动态循环移位量为 0, 3 , 6, 9; 第一个码字流对应的 PHICH映射中的 DMRS的动态循环移位参数 "DMRS 为 0 或 3; ( 0为第一个码字流最氏层的 DMRS 实际动态循环移位量, 3为 第一个码字流最高层的 DMRS实际动态循环移位量)。 优选地, 在上行传输数据包括第一码字流时, 步骤 S402 可以包括以下 处理: 第一个码字流所在层的最低或最高层索引, 或者, 固定层索引对应的 DMRS 实际动态循环移位量 在预定动态循环移位参数与实际动态循环 移位量的对应关系 (即 LTE原始对应表 3 ) 中对应的动态循环移位量信令值Dynamic Cyclic Shift Parameters of DMRS The preferred implementation described above is described below in connection with Embodiment 2. Embodiment 2, the uplink transmission is 4 layers, two codeword streams are transmitted, the first codeword stream is mapped to layer 0 and layer 1, and the second codeword stream is mapped to layer 2 and layer 3; when uplink scheduling DCI When the medium DMRS dynamic cyclic shift amount signaling is 000, the actual dynamic cyclic shift amount of each layer corresponding to the DMRS is 0, 3, 6, 9; the dynamic cyclic shift of the DMRS in the PHICH mapping corresponding to the first codeword stream The bit parameter " DMRS is 0 or 3; (0 is the actual dynamic cyclic shift amount of the DMRS of the first layer of the first codeword stream, and 3 is the actual dynamic cyclic shift amount of the DMRS of the highest layer of the first codeword stream). Preferably, when the uplink transmission data includes the first codeword stream, step S402 may include the following: a lowest or highest layer index of a layer where the first codeword stream is located, or an actual dynamic cyclic shift of the DMRS corresponding to the fixed layer index. The dynamic cyclic shift amount signaling value corresponding to the corresponding relationship between the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift amount (ie, LTE original correspondence table 3)
(根据该信令在表 2中对应的《„^ ) 作为第一个码字流对应的 PHICH映射 公式中的 DMRS的动态循环移位参数 n. 以下结合实施例三描述上述优选实施过程 - 实施例三 如果上行传输为 4层, 两码字流传输, 第一个码字流映射到层 0和层 1 , 第二个码字流映射到层 2和层 3; 当上行调度 DCI中 DMRS动态循环移位量 信令为 000时, 层 0, 层 1 , 层 2, 层 3依次对应 DMRS的实际动态循环移 位量为 0, 3 , 6, 9; 第一个码字流对应的 PHICH映射中的 DMRS的动态循环移位参数《σΜ^ 为 0 或 2 ( 0为第一个码字流最低层的实际动态循环移位量《^^在预定动态 循环移位参数与实际动态循环移位量的对应关系 (即 LTE原始对应表 3 ) 中 对应的动态循环移位量信令值, 2 为第一个码字流最高层的实际动态循环移 位量 在 LTE原始对应表 3中对应的动态循环移位量信令值)。 需要注意的是, 如果上行传输数据只包括一个码字流时, 可以 居上述 确定第一码字流对应的 PHICH 资源映射中的动态循环移位参数的方式, 来 确定该码字流对应的 PHICH资源映射中的动态循环移位参数。 优选地, 在上行传输数据包括第二码字流时, 步骤 S402包括以下处理: 第二个码字流所在层的 PHICH 映射公式中的 DMRS 的动态循环移位参数 Μ«等于第一个码字流的参数 、^与偏移量的和, 或者, 将所述第一个码字 流的动态循环移位参数与偏移量的和模 8后的值。其中,偏移量为预定义值, 或者, 偏移量为基站配置值, 或者, 偏移量为第二个码字流对应的最低层或 最高层的索引, 或者, 偏移量为 12与总层数 L的商 Offset = \1IL , L为 2, 3 , 4 )。 以下结合实施例四描述上述优选实施过程。 实施例四 如果第一个码字流对应的 PHICH映射中的 DMRS的动态循环移位参数 为 0, 以下结合四个场景进行描述。 场景一 在偏移量( Offset ) 为预定值时, 即, 固定取值为 2; 则第二码字流对应 的 PHICH映射中的 DMRS的动态循环移位参数为 0+2 = 2; 场景二 在偏移量为基站配置值时, 基站通过信令配置偏移量为 4; 则第二码字 流对应的 PHICH映射中的 DMRS的动态循环移位参数为 0+4 = 4; 场景三 在偏移量为第二个码字流对应的最低层或最高层的索引时, 如果上行传 输为 4层, 两码字流传输, 第一个码字流对应层 0和层 1 , 第二个码字流对 应层 2和层 3; 第二个码字流对应的 PHICH映射中的 DMRS的动态循环移 位参数为 0+2 = 2 或 0+3 = 3 ( 2为第二个码字流最氏层索引, 3为第二个码 字流最高层所引)。 场景四 在偏移量为 12与总层数 L的商时, 此处总层数 L可以为 2、 3、 4。 如果 上行传输为 4层, 则第二码字流对应的 PHICH映射中的 DMRS的动态循环 移位参数为 0+12/4 =3。 优选地, 在上行传输数据还包括第二码字流时, 基站确定动态循环移位 参数可以包括以下处理: 第二个码字流所在层的最氏或最高层, 或者, 固定 层对应的 DMRS实际动态循环移位量《^^作为第二个码字流对应的 PHICH 映射公式中的 DMRS的动态循环移位参数《σΜ^。 以下结合实施例五描述上述优选实施过程。 实施例五 如果上行传输为 4层, 两码字流传输, 第一码字流映射到层 0和层 1 , 第二码字流映射到层 2和层 3 ; 当上行调度 DCI中 DMRS动态循环移位量信 令为 000时, 各层对应 DMRS的实际动态循环移位量为 0 , 3 , 6, 9; 则第 二码字流对应的 PHICH映射中的 DMRS 的动态循环移位参数《DM ^为 6 或 9; ( 6 为第二码字流最氏层的实际动态循环移位量, 9 为第二码字流最高层 的实际动态循环移位量); 优选地, 在上行传输数据还包括第二码字流时, 上述步 4聚 S402 可以进 一步包括以下处理: 第二个码字流所在层的最氏或最高层, 或者, 固定层对 应的 DMRS实际动态循环移位量 在 LTE原始对应表 3中对应的动态循 环移位量信令值(根据该信令在表 2中对应的 、^ )作为第二个码字流对应 的 PHICH映射公式中的 DMRS的动态循环移位参数《σΜ^。 以下结合实施例六描述上述优选实施过程。 实施例六 如果上行传输为 4层, 两码字流传输, 第一码字流映射到层 0和层 1 , 第二码字流映射到层 2和层 3; 当上行调度 DCI中 DMRS动态循环移位量信 令为 000时, 层 0, 层 1 , 层 2, 层 3依次对应 DMRS的实际动态循环移位 量为 0, 3 , 6, 9; 则第二码字流对应的 PHICH映射中的 DMRS的动态循环 移位参数 nDMRS为 1 或 7; ( 1 为第二码字流最低层的实际动态循环移位量 6 在 LTE原始对应表 3中对应的动态循环移位量信令值, 7为第二码字流最高 层的实际动态循环移位量 9在 LTE原始对应表 3中对应的动态循环移位量信 令值)。 需要注意的是, 可以将上述第一个码字流对应的方法和第二码字流对应 的方法任意组合构成两个码字流场景下的 PHICH映射方法。 需要注意的是, 其中第一个码字流对应的映射方法也适用于多天线场单 码字流的场景。 优选地, 上述步 4聚 S402 可以进一步包括以下处理: 基站将每个码字流 对应的最氐或最高的层索引确定为该码字流对应的 PHICH 资源映射中的动 态循环移位参数。 以下结合实施例七描述上述优选过程。 实施例七 如果上行传输为 4层, 两码字流传输, 第一码字流对应层 0和层 1 , 第 二码字流对应层 2和层 3; 则: 第一码字流对应的 PHICH映射中的 DMRS的动态循环移位参数 、^为 0或 1; ( 0为第一码字流最低层索引, 1为第一码字流最高层索引); 则第二 个码字流对应的 PHICH映射中的 DMRS的动态循环移位参数 、^为 2或 3; ( 2为第二码字流最低层索引, 3为第二码字流最高层索引)。 优选地, 上述步骤 S402可以进一步包括以下处理: 在上行传输数据包括 2个码字流时, 这 2个码字流的 PHICH资源映射 到同一 PHICH资源组 η Η中, n u&i公式中的上行调度 DCI中的 DMRS动 态循环移位域中的值直接作为第一个码字流对应的 PHICH 映射公式中的 (According to the signaling in the corresponding "(^) in Table 2 as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream. The following preferred implementation process is described in conjunction with Embodiment 3 - Embodiment 3: If the uplink transmission is 4 layers, the two codeword streams are transmitted, the first codeword stream is mapped to layer 0 and layer 1, and the second codeword stream is mapped to layer 2 and layer 3; when the uplink scheduling DCI is in the DMRS When the dynamic cyclic shift amount signaling is 000, layer 0, layer 1, layer 2, layer 3 correspond to the actual dynamic cyclic shift amount of DMRS in order of 0, 3, 6, 9; PHICH corresponding to the first codeword stream The dynamic cyclic shift parameter of the DMRS in the mapping " σΜ ^ is 0 or 2 (0 is the actual dynamic cyclic shift amount of the lowest layer of the first codeword stream "^^ in the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift The corresponding dynamic cyclic shift amount signaling value in the correspondence of the bit quantity (ie, the LTE original correspondence table 3), 2 is the actual dynamic cyclic shift amount of the highest layer of the first codeword stream corresponding to the LTE original correspondence table 3 Dynamic cyclic shift amount signaling value). It should be noted that, if the uplink transmission data includes only one codeword stream, the PHCH corresponding to the codeword stream may be determined by determining the dynamic cyclic shift parameter in the PHICH resource mapping corresponding to the first codeword stream. Dynamic cyclic shift parameters in the resource map. Preferably, when the uplink transmission data includes the second codeword stream, step S402 includes the following processing: The dynamic cyclic shift parameter DM« of the DMRS in the PHICH mapping formula of the layer where the second codeword stream is located is equal to the first codeword The sum of the parameters of the stream, ^ and the offset, or the value of the dynamic cyclic shift parameter of the first codeword stream and the sum of the offset and the modulo 8. Wherein, the offset is a predefined value, or the offset is a base station configuration value, or the offset is an index of the lowest layer or the highest layer corresponding to the second codeword stream, or the offset is 12 and The quotient of the total number of layers L is Offset = \1IL and L is 2, 3, 4). The above preferred implementation process will be described below in conjunction with Embodiment 4. Embodiment 4 If the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the first codeword stream is 0, the following describes the four scenarios. scene one When the offset (Offset) is a predetermined value, that is, the fixed value is 2; then the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the second codeword stream is 0+2=2; When the shift is the base station configuration value, the base station configures the offset by the signaling to be 4; then the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the second codeword stream is 0+4=4; When the quantity is the index of the lowest layer or the highest layer corresponding to the second codeword stream, if the uplink transmission is 4 layers, the two codeword streams are transmitted, and the first codeword stream corresponds to layer 0 and layer 1, and the second codeword The stream corresponds to layer 2 and layer 3; the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the second codeword stream is 0+2 = 2 or 0+3 = 3 (2 is the second codeword stream Layer index, 3 is the highest layer of the second codeword stream). Scene 4 is when the offset is 12 and the total number of layers L, where the total number of layers L can be 2, 3, 4. If the uplink transmission is 4 layers, the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the second codeword stream is 0+12/4=3. Preferably, when the uplink transmission data further includes the second codeword stream, the determining, by the base station, the dynamic cyclic shift parameter may include the following: a highest or highest layer of the layer where the second codeword stream is located, or a DMRS corresponding to the fixed layer The actual dynamic cyclic shift amount "^^ is the dynamic cyclic shift parameter " σΜ ^ of the DMRS in the PHICH mapping formula corresponding to the second codeword stream. The above preferred implementation process will be described below in conjunction with Embodiment 5. Embodiment 5: If the uplink transmission is 4 layers, the two codeword streams are transmitted, the first codeword stream is mapped to layer 0 and layer 1, and the second codeword stream is mapped to layer 2 and layer 3; when the uplink scheduling DCI is in the DMRS dynamic loop When the shift amount signaling is 000, the actual dynamic cyclic shift amount of each layer corresponding to the DMRS is 0, 3, 6, 9; then the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the second codeword stream is " DM " ^ is 6 or 9; (6 is the actual dynamic cyclic shift amount of the highest layer of the second codeword stream, 9 is the actual dynamic cyclic shift amount of the highest layer of the second codeword stream); preferably, the uplink transmission data further includes the second In the case of the codeword stream, the above step 4 S402 may further include the following processing: the highest or highest layer of the layer where the second codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer in the LTE original correspondence table 3 The corresponding dynamic cyclic shift amount signaling value (corresponding to the signal in Table 2, ^) is the dynamic cyclic shift parameter " σΜ ^ of the DMRS in the PHICH mapping formula corresponding to the second codeword stream. The above preferred implementation process will be described below in connection with Embodiment 6. Embodiment 6: If the uplink transmission is 4 layers, the two codeword streams are transmitted, the first codeword stream is mapped to layer 0 and layer 1, and the second codeword stream is mapped to layer 2 and layer 3; when the uplink scheduling DCI is in the DMRS dynamic loop When the shift amount signaling is 000, layer 0, layer 1, layer 2, layer 3 sequentially correspond to the actual dynamic cyclic shift amount of the DMRS is 0, 3, 6, 9; then the PHICH mapping corresponding to the second codeword stream The dynamic cyclic shift parameter n DMRS of the DMRS is 1 or 7; (1 is the actual dynamic cyclic shift amount of the lowest layer of the second codeword stream 6 corresponding dynamic cyclic shift amount signaling value in the LTE original correspondence table 3 7 is the actual dynamic cyclic shift amount 9 of the highest layer of the second codeword stream and the corresponding dynamic cyclic shift amount signaling value in the LTE original correspondence table 3. It should be noted that the method corresponding to the first codeword stream and the method corresponding to the second codeword stream may be arbitrarily combined to form a PHICH mapping method in two codeword stream scenarios. It should be noted that the mapping method corresponding to the first codeword stream is also applicable to the scenario of the multi-antenna field single-codeword stream. Preferably, the foregoing step S402 may further include the following process: The base station determines a last or highest layer index corresponding to each codeword stream as a dynamic cyclic shift parameter in the PHICH resource map corresponding to the codeword stream. The above preferred process is described below in connection with embodiment 7. Example 7 If the uplink transmission is 4 layers, the two codeword streams are transmitted, the first codeword stream corresponds to layer 0 and layer 1, and the second codeword stream corresponds to layer 2 and layer 3; then: the first codeword stream corresponds to the PHICH mapping The dynamic cyclic shift parameter of the DMRS is ^0 or 1; (0 is the lowest layer index of the first codeword stream, 1 is the highest layer index of the first codeword stream); then the PHICH mapping corresponding to the second codeword stream The dynamic cyclic shift parameter of the DMRS is ^2 or 3; (2 is the lowest layer index of the second codeword stream, and 3 is the highest layer index of the second codeword stream). Preferably, the foregoing step S402 may further include the following processing: when the uplink transmission data includes two codeword streams, the PHICH resources of the two codeword streams are mapped into the same PHICH resource group η , and the uplink scheduling in the nu & i formula The value in the dynamic cyclic shift domain of the DMRS in the DCI is directly used as the PHICH mapping formula corresponding to the first codeword stream.
DMRS的动态循环移位参数 nDMRS , 第二码字流的 PHICH组公式与第一码字 流一样, 第二码字流 PHICH正交索引 " 公式中在第一码字流的参数 后 加 一 个 偏 移 量 CWOffset + CWOffset , 或 者 , The dynamic cyclic shift parameter nDMRS of the DMRS , the PHICH group formula of the second codeword stream is the same as the first codeword stream, and the second codeword stream PHICH orthogonal index" adds a bias to the parameter of the first codeword stream in the formula Shift CWOffset + CWOffset, or,
"匿 s = (nDMRS + CWOffset) modS )。 其中, 偏移量 ( C ^^" ) 为预定义值, 或者, 偏移量为基站配置值, 或者, 偏移量为第二个码字流对应的最低层或最高层的索引, 或者, 偏移量 为 12与总层数 L的商 , L可以为 2, 3 , 4 )。 以下结合实施例八描述上述优选实施过程。 实施例八 如果上行传输为 4层, 两码字流传输, 第一码字流映射到层 0和层 1 , 第二码字流映射到层 2和层 3; 当上行调度 DCI中 DMRS动态循环移位量信 令为 000时, 层 0, 层 1 , 层 2, 层 3依次对应 DMRS的实际动态循环移位 量为 0, 3 , 6, 9。 PHICH资源是由序号对 ( ; ,n CH 来标示,其中 为 PHICH组序 号, n;CH为该组内的正交序列号, 两码字流的 PHICH资源映射公式在 LTE 基础上爹正如下: " s s = (n DMRS + CWOffset) modS ), where the offset ( C ^^" ) is a predefined value, or the offset is the base station configuration value, or the offset is the second code word The index of the lowest layer or the highest layer corresponding to the stream, or the quotient of the offset 12 and the total number of layers L, L may be 2, 3, 4). The above preferred implementation process will be described below in conjunction with Embodiment 8. Embodiment 8 If the uplink transmission is 4 layers, the two codeword streams are transmitted, the first codeword stream is mapped to layer 0 and layer 1, and the second codeword stream is mapped to layer 2 and layer 3; when the uplink scheduling DCI is in the DMRS dynamic loop When the shift amount signaling is 000, layer 0, layer 1, layer 2, and layer 3 sequentially correspond to the actual dynamic cyclic shift amount of the DMRS as 0, 3, 6, 9. The PHICH resource is indicated by the sequence number pair ( ; , n CH , where is the PHICH group number, n; CH is the orthogonal sequence number in the group. The PHICH resource mapping formula of the two codeword streams is as follows on the LTE basis:
NSRO"P _ ) mGd NgWUP + I N' N S RO "P _ ) mG d N gWUP + IN'
"PHICH ^PRB RA ^ TDMRS J illl U 1 v PHICH T 1 PHICH1 v 1 PHICH "PHICH ^PRB RA ^ T DMRS J illl U 1 v PHICH T 1 PHICH 1 v 1 PHICH
PHICH  PHICH
n' cH = ( Ip nckx I NP 8ZPH + n + CWOffset) mod 2N SF n' cH = ( Ip nckx IN P 8 Z P H + n + CWOffset) mod 2N SF
"PHICH ― "PHICH ―
PHICH  PHICH
n cH =
Figure imgf000018_0001
8) mod 2N 其中, 对于与相应 PUSCH传输相关的传输块, 为在最近接收到的 DCI格式中 DMRS域的循环移位量 (根据表 2确定)。 如果对于相同传输块没有带有 DCI Format 0的 PDCCH, 而且满足以下 之一情况时, "DA^设置为 0。 情况 1、 如果对于相同传输块的初始 PUSCH是半持续调度的。 情况 2、如果对于相同传输块的初始 PUSCH是通过随机接入相应准许来 调度的。 其中, N CH为用于 PHICH调制的扩散因子; 为相应 PUSCH 传输第一个时隙的最低 PRB序号; NH 为由高层配置的 PHICH组的数目;
n cH =
Figure imgf000018_0001
8) mod 2N where, for the transport block associated with the corresponding PUSCH transmission, is the cyclic shift amount of the DMRS field in the recently received DCI format (determined according to Table 2). If there is no PDCCH with DCI Format 0 for the same transport block, and one of the following is satisfied, "DA^ is set to 0. Case 1. If the initial PUSCH for the same transport block is semi-persistently scheduled. Case 2, if The initial PUSCH for the same transport block is scheduled by random access corresponding grants, where N CH is the spreading factor for PHICH modulation; the lowest PRB sequence number of the first time slot is transmitted for the corresponding PUSCH; NH is configured by the upper layer Number of PHICH groups;
I H可以通过以下公式确定: I H can be determined by the following formula:
_ Jl 对于在子帧 4或 9中具有 PUSCH 传输的 TDD 上行 /下行配置 0 = 0 其它 _ Jl TDD upstream/downlink configuration with PUSCH transmission in subframe 4 or 9 0 = 0 other
上行调度 DCI中的 DMRS动态循环移位域中的值 000直接作为第一个 码字流对应的 PHICH映射公式中的 DMRS的动态循环移位参数 "DMRS , 第二 码字流在 公式中的 nDMRS 同第一个码字流, 在 n;CH公式中 , n ms =nDMRs + Offset, 或者, "DMRS = ("DMW+O et)mod8。 优选地, 上述步骤 S402 可以进一步包括以下处理: 各码字流对应的 PHICH映射中的 DMRS的动态循环移位参数 ^„根据固定层的 DMRS的实 际动态循环移位量获得。 其中,层 0(即第一层)的实际动态循环移位量作为第一码字流的 PHICH映 射公式中的 DMRS的动态循环移位参数 n , 层 1(即第二层)的实际动态循 环移位量作为第二码字流的 PHICH映射公式中的 DMRS的动态循环移位参 数 nDMRS。 或者, 其中,层 0的实际动态循环移位量 在预定动态循环移位参数与实际 动态循环移位量的对应关系 (即 LTE原始对应表 3 ) 中对应的动态循环移位 量信令值 (根据该信令在表 2中对应的 、^ ) 作为第一码字流的 PHICH映 射公式中的 DMRS 的动态循环移位参数 n , 层 1 的实际动态循环移位量 The value 000 in the DMRS dynamic cyclic shift domain in the uplink scheduling DCI is directly used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream. DMRS , second The codeword stream is n DMRS in the formula with the first codeword stream, in the n; CH formula, n ms = n DMRs + Offset, or, " DMRS = (" DMW + O et) mod8. Preferably, the foregoing step S402 may further include the following process: the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to each codeword stream is obtained according to the actual dynamic cyclic shift amount of the fixed layer DMRS. That is, the actual dynamic cyclic shift amount of the first layer) is used as the dynamic cyclic shift parameter n of the DMRS in the PHICH mapping formula of the first codeword stream, and the actual dynamic cyclic shift amount of the layer 1 (ie, the second layer) is taken as the first The dynamic cyclic shift parameter n DMR S of the DMRS in the PHICH mapping formula of the two code word stream. Alternatively, wherein the actual dynamic cyclic shift amount of layer 0 corresponds to the actual dynamic cyclic shift parameter and the actual dynamic cyclic shift amount The dynamic cyclic shift amount signaling value in the relationship (ie, LTE original correspondence table 3) (corresponding according to the signaling in Table 2, ^) is the dynamic loop of the DMRS in the PHICH mapping formula of the first codeword stream. Shift parameter n, the actual dynamic cyclic shift of layer 1
«^^在 LTE原始对应表 3 中对应的动态循环移位量信令值 (根据该信令在 表 2中对应的 nDMRS )作为第二码字流的 PHICH映射公式中的 DMRS的动态 循环移位参数 nDMRS。 以下结合实施例九描述上述优选过程。 实施例九 如果上行传输为 4层, 两码字流传输, 第一码字流映射到层 0和层 1, 第二码字流映射到层 2和层 3; 当上行调度 DCI中 DMRS动态循环移位量信 令为 000时, 层 0, 层 1, 层 2, 层 3依次对应 DMRS的实际动态循环移位 量为 0, 3, 6, 9。 第一个码字流对应的 PHICH映射中的 DMRS的动态循环移位参数 "DMw 为层 0 的实际动态循环移位量 0; 第二个码字流对应的 PHICH 映射中的 «^^ The dynamic cyclic shift amount signaling value corresponding to the LTE original correspondence table 3 (according to the corresponding n DMRS in Table 2 according to the signaling) as the dynamic loop of the DMRS in the PHICH mapping formula of the second codeword stream Shift parameter n DMRS . The above preferred process is described below in connection with embodiment IX. Embodiment 9: If the uplink transmission is 4 layers, the two codeword streams are transmitted, the first codeword stream is mapped to layer 0 and layer 1, and the second codeword stream is mapped to layer 2 and layer 3; when the uplink scheduling DCI is in the DMRS dynamic loop When the shift amount signaling is 000, layer 0, layer 1, layer 2, and layer 3 sequentially correspond to the actual dynamic cyclic shift amount of the DMRS as 0, 3, 6, 9. The dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the first codeword stream "DMw is the actual dynamic cyclic shift amount of layer 0; the PHICH mapping corresponding to the second codeword stream
DMRS的动态循环移位参数 M ^为层 1的实际动态循环移位量 3; 或者 第一个码字流对应的 PHICH映射中的 DMRS的动态循环移位参数 为层 0的实际动态循环移位量在表 3 中对应的动态循环移位量信令值 0; 第 二个码字流对应的 PHICH映射中的 DMRS的动态循环移位参数" σΜ ^为层 1 的实际动态循环移位量在表 3中对应的动态循环移位量信令值 2。 图 5为 居本发明实施例的 PHICH的资源映射装置的结构框图; 如图 5 所示, 该资源映射装置包括: 确定模块 52和处理模块 54。 确定模块 52 , 设置为根据码字流索 I和 /或上行调度 DCI中解调参考信 号 DMRS的动态循环移位量和 /或层索引确定 DMRS的动态循环移位参数; 资源映射模块 54 ,设置为才艮据确定的动态循环移位参数实现物理混合重 传指示信道 PHICH的资源映射。 通过上述基站的处理, 可以有效实现 UL SU-MIMO场景下 PHICH资源 的映射。 优选地, 确定模块 52 , 还设置为将上行调度 DCI中的 DMRS动态循环 移位域中的值直接作为第一个码字流对应的 PHICH映射公式中的 DMRS的 动态循环移位参数。 即, 按照表 2的对应关系, 得到 优选地, 确定模块 52 , 还设置为将第一个码字流所在层的最低或最高索 引, 或者, 固定层对应的 DMRS实际动态循环移位量作为第一个码字流对应 的 PHICH映射公式中的 DMRS的动态循环移位参数。 上述确定模块根据上行授权信息中 DMRS动态循环移位量,可以确定各 层 DMRS实际动态循环移位量, 将第一个码字流对应的最氏或最高层, 或者 固定层对应的 DMRS 实际动态循环移位量作为第一个码字流对应的 PHICH 映射中的 DMRS的动态循环移位参数 dmrs。 优选地,确定模块 52 ,还设置为将第一个码字流所在层的最低或最高层, 或者, 固定层对应的 DMRS实际动态循环移位量在预定动态循环移位参数与 实际动态循环移位量的对应关系中对应的动态循环移位量信令值作为第一个 码字流对应的 PHICH映射公式中的 DMRS的动态循环移位参数。 在优选实施过程中, 确定模块 52 , 设置为根据上行授权信息中 DMRS 动态循环移位量, 可以确定各层 DMRS实际动态循环移位量; 将第一个码字 流对应的最氏或最高层, 或者, 固定层对应的 DMRS实际动态循环移位量按 照表 3的对应关系, 查询得到动态循环移位参数 ; 将 作为第一个码 字流对应的 PHICH映射中的 DMRS的动态循环移位参数 nDMRS。 优选地,确定模块 52 ,还设置为在上行传输数据还包括第二码字流时(即 包括两个码字流, 第一码字流和第二码字流),将所述第一个码字流的动态循 环移位参数与偏移量的和作为所述第二个码字流对应的 PHICH 映射公式中 的 DMRS的动态循环移位参数。 在优选实施过程中, 第二码字流对应的 PHICH映射中的 DMRS的动态 循环移位参数 等于第一码字流的参数 r 与偏移量 ( Offset ) 的和 The dynamic cyclic shift parameter M ^ of the DMRS is the actual dynamic cyclic shift amount of layer 1; or the dynamic cyclic shift parameter of the DMRS in the PHICH map corresponding to the first codeword stream is the actual dynamic cyclic shift of layer 0. The dynamic cyclic shift amount signaling value corresponding to the value in Table 3 is 0; the dynamic cyclic shift parameter of DMRS in the PHICH mapping corresponding to the second codeword stream is " σΜ ^ is the actual dynamic cyclic shift amount of layer 1 at The corresponding dynamic cyclic shift amount signaling value 2 in Table 3. Figure 5 is a structural block diagram of a PHICH resource mapping apparatus according to an embodiment of the present invention; as shown in Figure 5, the resource mapping apparatus includes: a determining module 52 and processing Module 54. The determining module 52 is configured to determine a dynamic cyclic shift parameter of the DMRS according to a dynamic cyclic shift amount and/or a layer index of the demodulation reference signal DMRS in the codeword stream I and/or the uplink scheduling DCI; the resource mapping module 54. The resource mapping of the physical hybrid retransmission indication channel PHICH is implemented according to the determined dynamic cyclic shift parameter. The processing of the foregoing base station can effectively implement mapping of PHICH resources in the UL SU-MIMO scenario. Preferably, determining mold Block 52 is further configured to directly use the value in the DMRS dynamic cyclic shift domain in the uplink scheduling DCI as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream. Correspondingly, the determining module 52 is further configured to set the lowest or highest index of the layer where the first codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer as the first codeword stream. The dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula. The determining module can determine the actual dynamic cyclic shift amount of each layer of the DMRS according to the dynamic cyclic shift amount of the DMRS in the uplink grant information, and corresponding to the first codeword stream. The highest or highest layer, or the DMRS actual dynamic cyclic shift amount corresponding to the fixed layer, is used as the dynamic cyclic shift parameter dmrs of the DMRS in the PHICH map corresponding to the first codeword stream. Preferably, the determining module 52 is further configured to set the lowest or highest layer of the layer where the first codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer in the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift The corresponding dynamic cyclic shift amount signaling value in the correspondence of the bit amount is used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream. In a preferred implementation process, the determining module 52 is configured to determine, according to the dynamic cyclic shift amount of the DMRS in the uplink grant information, the actual dynamic cyclic shift amount of each layer of the DMRS; and the highest or highest layer corresponding to the first codeword stream. Or, the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer is queried according to the correspondence relationship of Table 3, and the dynamic cyclic shift parameter is obtained; and the dynamic cyclic shift parameter of the DMRS in the PHICH map corresponding to the first codeword stream is used. n DMRS . Preferably, the determining module 52 is further configured to: when the uplink transmission data further includes the second codeword stream (ie, includes two codeword streams, a first codeword stream and a second codeword stream), the first one The sum of the dynamic cyclic shift parameter of the codeword stream and the offset is the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the second codeword stream. In a preferred implementation, the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the second codeword stream is equal to the sum of the parameter r and the offset (Offset) of the first codeword stream.
( n l = n ^ + Offset ), 其中, 偏移量( Offset )为预定义值, 例如, 1 , 2, 3 ,( n l = n ^ + Offset ), where the offset ( Offset ) is a predefined value, for example, 1 , 2, 3 ,
4 等, 或者, 偏移量为基站配置值, 或者, 偏移量为第二个码字流对应的最 氐层或最高层的索引, 或者, 12与总层数 L的商。 优选地, 上述确定模块 52 , 还设置为将所述第二个码字流所在层的最低 或最高层索引, 或者, 固定层索引对应的 DMRS实际动态循环移位量作为所 述第二个码字流对应的 PHICH映射公式中的 DMRS的动态循环移位参数。 在优选实施过程中, 确定模块 52根据上行调度 DCI信息中 DMRS动态 循环移位量, 可以确定各层 DMRS实际动态循环移位量, 将第二个码字流对 应的最氏或最高层对应的 DMRS 实际动态循环移位量作为第二个码字流对 应的 PHICH映射中的 DMRS的动态循环移位参数 "DMRS。 优选地, 上述确定模块 52 , 还设置为在上行传输数据还包括第二码字流 时,将所述第二个码字流所在层的最氏或最高层,或者, 固定层对应的 DMRS 实际动态循环移位量 在预定动态循环移位参数与实际动态循环移位量 的对应关系中对应的动态循环移位量信令值作为所述第二个码字流对应的 PHICH映射公式中的 DMRS的动态循环移位参数。 在优选实施过程中, 确定模块 52设置为根据上行调度 DCI中 DMRS动 态循环移位量, 可以确定各层 DMRS实际动态循环移位量; 将第二个码字流 对应的最氏或最高层对应的 DMRS 实际动态循环移位量按照表 3 的对应关 系, 得到动态循环移位参数 ; 将 作为第二个码字流对应的 PHICH 映射中的 DMRS的动态循环移位参数 n 此外, 确定模块 52 , 还可以设置为将每个码字流对应的最氏或最高的层 索引确定为该码字流对应的 PHICH资源映射中的动态循环移位参数。 并且, 在上行传输数据包括第一码字流和第二码字流, 且两个码字流对 应的 PHICH资源映射在同一个 PHICH组 Η中时, 确定模块 52 , 可以将 "PHICH公式中的上行调度 DCI中的 DMRS动态循环移位域中的值直接作为第 一个码字流对应的 PHICH映射公式中的 DMRS的动态循环移位参数 ; 将第二码字流 PHICH 对应的正交索引公式中 DMRS 动态循环移位参数为 DMRS动态循环移位 i或中的值与所述偏移量之和模 8后的值。 需要注意的是, 上述各个模块相互结合的工作方式具体可以参见实施例 一至实施例九, 此处不再赘述。 综上所述, 通过本发明提供的上述实施例, 实现了 UL SU-MIMO场景 下的 PHICH资源的映射方法。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。 4, or, the offset is the base station configuration value, or the offset is the index of the last layer or the highest layer corresponding to the second codeword stream, or the quotient of 12 and the total number of layers L. Preferably, the determining module 52 is further configured to use the lowest or highest layer index of the layer where the second codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer index as the second code. The dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the word stream. In a preferred implementation process, the determining module 52 may determine the actual dynamic cyclic shift amount of each layer of the DMRS according to the dynamic cyclic shift amount of the DMRS in the uplink scheduling DCI information, and correspond to the highest or highest layer corresponding to the second codeword stream. The DMRS actual dynamic cyclic shift amount is used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to the second codeword stream. DMRS . Preferably, the determining module 52 is further configured to further include the second code in the uplink transmission data. When the word stream is used, the highest or highest layer of the layer in which the second codeword stream is located, or the DMRS corresponding to the fixed layer The dynamic cyclic shift amount signaling value corresponding to the actual dynamic cyclic shift amount in the correspondence between the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift amount is used as the PHICH mapping formula corresponding to the second codeword stream. Dynamic cyclic shift parameters of DMRS. In a preferred implementation process, the determining module 52 is configured to determine the actual dynamic cyclic shift amount of each layer of the DMRS according to the dynamic cyclic shift amount of the DMRS in the uplink scheduling DCI; and corresponding to the highest or highest layer corresponding to the second codeword stream. The actual dynamic cyclic shift amount of the DMRS is obtained according to the correspondence relationship of Table 3, and the dynamic cyclic shift parameter is obtained; the dynamic cyclic shift parameter n of the DMRS in the PHICH map corresponding to the second codeword stream is further determined by the module 52, It may also be configured to determine the highest or highest layer index corresponding to each codeword stream as the dynamic cyclic shift parameter in the PHICH resource map corresponding to the codeword stream. And, when the uplink transmission data includes the first codeword stream and the second codeword stream, and the PHICH resources corresponding to the two codeword streams are mapped in the same PHICH group, the determining module 52 may be in the PHICH formula. The value of the DMRS dynamic cyclic shift domain in the uplink scheduling DCI is directly used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream; the orthogonal index formula corresponding to the second codeword stream PHICH The DMRS dynamic cyclic shift parameter is the value of the DMRS dynamic cyclic shift i or the value of the sum of the offsets and the modulo 8. The working mode of the above-mentioned respective modules combined with each other can be referred to the embodiment. For example, the method for mapping PHICH resources in the UL SU-MIMO scenario is implemented by the foregoing embodiments provided by the present invention. Obviously, those skilled in the art should understand that The various modules or steps of the present invention described above may be implemented by a general purpose computing device, which may be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made in a single integrated circuit module. Thus, the invention is not limited to any particular combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种物理混合重传指示信道 PHICH资源映射方法,应用于上行单用户 多天线发送 UL SU-MIMO场景, 包括: A physical hybrid retransmission indication channel PHICH resource mapping method, which is applied to an uplink single-user multi-antenna transmission UL SU-MIMO scenario, including:
基站根据码字流索弓 I和 /或上行调度下行控制信息 DCI 中解调参 考信号 DMRS的动态循环移位量和 /或层索引确定 DMRS的动态循环 移位参数; 所述基站 艮据所述确定的动态循环移位参数实现所述 PHICH 的 资源映射。  Determining, by the base station, a dynamic cyclic shift parameter of the DMRS according to a dynamic cyclic shift amount and/or a layer index of the demodulation reference signal DMRS in the codeword streamer I and/or the uplink scheduling downlink control information DCI; The determined dynamic cyclic shift parameter implements resource mapping of the PHICH.
2. 根据权利要求 1所述的方法, 其中, 所述确定 DMRS的动态循环移位 参数包括: 2. The method according to claim 1, wherein the determining a dynamic cyclic shift parameter of the DMRS comprises:
^!夺上行调度 DCI中的 DMRS动态循环移位 i或中的值直接作为第一 个码字 ¾ϊ对应的 PHICH映射公式中的 DMRS的动态循环移位参数。  ^! The value of the DMRS dynamic cyclic shift in the DCI is directly used as the dynamic cyclic shift parameter of the DMRS in the corresponding PHICH mapping formula of the first codeword.
3. 根据权利要求 1所述的方法, 其中, 所述确定 DMRS的动态循环移位 参数包括: 3. The method according to claim 1, wherein the determining a dynamic cyclic shift parameter of the DMRS comprises:
将第一个码字流所在层的最低或最高层索引, 或者, 固定层索引 对应的 DMRS 实际动态循环移位量作为第一个码字流对应的 PHICH 映射公式中的 DMRS的动态循环移位参数。  The lowest or highest layer index of the layer where the first codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer index as the dynamic cyclic shift of the DMRS in the PHICH mapping formula corresponding to the first codeword stream parameter.
4. 根据权利要求 1所述的方法, 其中, 所述确定 DMRS的动态循环移位 参数包括: 4. The method according to claim 1, wherein the determining a dynamic cyclic shift parameter of the DMRS comprises:
将第一个码字流所在层的最 4氏或最高层, 或者, 固定层对应的 DMRS 实际动态循环移位量在预定动态循环移位参数与实际动态循环 移位量的对应关系中对应的动态循环移位参数作为第一个码字流对应 的 PHICH映射公式中的 DMRS的动态循环移位参数。  The most 4th or highest layer of the layer where the first codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer corresponds to the correspondence between the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift amount. The dynamic cyclic shift parameter is used as a dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the first codeword stream.
5. 根据权利要求 2至 4中任一项所述的方法, 其中, 在上行传输数据还 包括第二码字流时, 所述确定 DMRS的动态循环移位参数包括: 将所 述第一个码字流的动态循环移位参数与偏移量的和作为所述第二个码 字流对应的 PHICH映射公式中的 DMRS的动态循环移位参数。 或者, 将所述第一个码字流的动态循环移位参数与所述偏移量的和模 8后作 为所述第二个码字流对应的 PHICH映射公式中的 DMRS的动态循环 移位参数。 The method according to any one of claims 2 to 4, wherein, when the uplink transmission data further includes the second codeword stream, the determining the dynamic cyclic shift parameter of the DMRS comprises: The sum of the dynamic cyclic shift parameter of the codeword stream and the offset is the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the second codeword stream. Or, the dynamic cyclic shift parameter of the first codeword stream is followed by the sum of the offsets A dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the second codeword stream.
6. 根据权利要求 2至 4中任一项所述的方法, 其中, 在上行传输数据还 包括第二码字流时, 所述确定 DMRS的动态循环移位参数包括: 将所 述第二个码字流所在层的最氏或最高层, 或者, 固定层对应的 DMRS 实际动态循环移位量作为所述第二个码字流对应的 PHICH 映射公式 中的 DMRS的动态循环移位参数。 The method according to any one of claims 2 to 4, wherein, when the uplink transmission data further includes the second codeword stream, the determining the dynamic cyclic shift parameter of the DMRS comprises: placing the second The highest or highest layer of the layer where the codeword stream is located, or the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer is used as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the second codeword stream.
7. 根据权利要求 2至 4中任一项所述的方法, 其中, 在上行传输数据还 包括第二码字流时, 所述确定 DMRS的动态循环移位参数包括: 将所 述第二个码字流所在层的最氏或最高层, 或者, 固定层对应的 DMRS 实际动态循环移位量在预定动态循环移位参数与实际动态循环移位量 的对应关系中对应的动态循环移位参数作为所述第二个码字流对应的 PHICH映射公式中的 DMRS的动态循环移位参数。 The method according to any one of claims 2 to 4, wherein, when the uplink transmission data further includes the second codeword stream, the determining the dynamic cyclic shift parameter of the DMRS comprises: The highest or highest layer of the layer where the codeword stream is located, or the dynamic cyclic shift parameter corresponding to the actual dynamic cyclic shift amount of the DMRS corresponding to the fixed layer in the correspondence between the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift amount A dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula corresponding to the second codeword stream.
8. 根据权利要求 2所述的方法, 其中, 在上行传输数据还包括第二码字 流时, 所述第二码字流与所述第一码字流映射到同一个 PHICH组里, 第二码字流 PHICH对应的正交索引公式中 DMRS动态循环移位参数 为 DMRS 动态循环移位 i或中的值与偏移量之和, 或者, 第二码字流 PHICH对应的正交索引公式中 DMRS动态循环移位参数为 DMRS动 态循环移位域中的值与所述偏移量之和模 8后的值。 The method according to claim 2, wherein, when the uplink transmission data further includes the second codeword stream, the second codeword stream and the first codeword stream are mapped into the same PHICH group, The DMRS dynamic cyclic shift parameter in the orthogonal index formula corresponding to the PHCH of the two-codeword stream is the sum of the value of the DMRS dynamic cyclic shift i or the offset, or the orthogonal index formula corresponding to the PHCH of the second codeword stream The medium DMRS dynamic cyclic shift parameter is a value after the sum of the value of the DMRS dynamic cyclic shift domain and the offset.
9. 根据权利要求 5或 8所述的方法, 其中, 所述偏移量为以下之一: 预 定义值、 基站配置值、 所述第二个码字流对应的最低层或最高层的索 引、 12与总层数 L的商。 The method according to claim 5 or 8, wherein the offset is one of: a predefined value, a base station configuration value, an index of a lowest layer or a highest layer corresponding to the second codeword stream. , 12 and the total number of layers L quotient.
10. 根据权利要求 1所述的方法, 其中, 所述确定 DMRS的动态循环移位 参数包括: 每个码字流对应的 PHICH映射公式中的 DMRS的动态循 环移位参数为该码字流所在层的最低层或最高层的索引。 10. The method according to claim 1, wherein the determining a dynamic cyclic shift parameter of the DMRS comprises: a dynamic cyclic shift parameter of a DMRS in a PHICH mapping formula corresponding to each codeword stream is a codeword stream The index of the lowest or highest layer of the layer.
11. 根据权利要求 1所述的方法, 其中, 所述确定 DMRS的动态循环移位 参数包括: 每个码字流对应的 PHICH映射中的 DMRS的动态循环移 位参数为固定层的 DMRS的实际动态循环移位量。 The method according to claim 1, wherein the determining the dynamic cyclic shift parameter of the DMRS comprises: the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to each codeword stream is the actual of the fixed layer DMRS Dynamic cyclic shift amount.
12. 根据权利要求 11 所述的方法, 其中, 所述每个码字流对应的 PHICH 映射中的 DMRS的动态循环移位参数为固定层的 DMRS的实际动态循 环移位量包括: 将第一层的实际动态循环移位量作为第一码字流的 PHICH映射公式中的 DMRS的动态循环移位参数,将第二层的实际动 态循环移位量作为第二码字流的 PHICH映射公式中的 DMRS的动态 循环移位参数。 12. The method according to claim 11, wherein the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to each codeword stream is an actual dynamic of the fixed layer DMRS. The ring shift amount includes: taking the actual dynamic cyclic shift amount of the first layer as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula of the first codeword stream, and taking the actual dynamic cyclic shift amount of the second layer as the first The dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula of the two codeword stream.
13. 根据权利要求 11 所述的方法, 其中, 所述每个码字流对应的 PHICH 映射中的 DMRS的动态循环移位参数为固定层的 DMRS的动态循环移 位量包括: 将第一层的实际动态循环移位量在在预定动态循环移位参 数与实际动态循环移位量的对应关系中对应的动态循环移位参数作为 第一码字流的 PHICH映射公式中的 DMRS的动态循环移位参数, 第 二层的实际动态循环移位量在所述对应关系中对应的动态循环移位量 信令值作为所述第二码字流的 PHICH映射公式中的 DMRS的动态循 环移位参数。 The method according to claim 11, wherein the dynamic cyclic shift parameter of the DMRS in the PHICH mapping corresponding to each codeword stream is a dynamic cyclic shift amount of the DMRS of the fixed layer, including: The dynamic cyclic shift parameter corresponding to the actual dynamic cyclic shift amount in the correspondence between the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift amount is used as the dynamic cyclic shift of the DMRS in the PHICH mapping formula of the first codeword stream. Bit parameter, the actual dynamic cyclic shift amount of the second layer, the corresponding dynamic cyclic shift amount signaling value in the corresponding relationship, as the dynamic cyclic shift parameter of the DMRS in the PHICH mapping formula of the second codeword stream .
14. 居权利要求 4或 7或 13所述的方法, 其中, 所述预定动态循环移位 参数与实际动态循环移位量的对应关系为: 动态循环移位参数 0, 1 , 2, 3 , 4, 5 , 6, 7依次对应的实际动态循环移位量为 0, 6, 3 , 4, 2, 8, 10, 9。 The method of claim 4 or 7 or 13, wherein the correspondence between the predetermined dynamic cyclic shift parameter and the actual dynamic cyclic shift amount is: dynamic cyclic shift parameter 0, 1 , 2, 3 The actual dynamic cyclic shift amounts corresponding to 4, 5, 6, 7 are 0, 6, 3, 4, 2, 8, 10, 9.
15. —种物理混合重传指示信道 PHICH的资源映射装置,应用于上行单用 户多天线发送 UL SU-MIMO场景, 包括: 15. A physical hybrid retransmission indication channel PHICH resource mapping apparatus, which is applied to an uplink single-user multi-antenna transmission UL SU-MIMO scenario, including:
确定模块, 设置为根据码字流索引和 /或上行调度下行控制信息 DCI 中解调参考信号 DMRS 的动态循环移位量和 /或层索引确定 DMRS的动态循环移位参数;  a determining module, configured to determine a dynamic cyclic shift parameter of the DMRS according to a codeword stream index and/or an uplink cyclic control information DCI, a dynamic cyclic shift amount of the demodulation reference signal DMRS, and/or a layer index;
资源映射模块, 设置为才艮据所述确定的动态循环移位参数实现所 述 PHICH的资源映射。  The resource mapping module is configured to implement the resource mapping of the PHICH according to the determined dynamic cyclic shift parameter.
PCT/CN2011/072856 2010-04-30 2011-04-15 Method and apparatus for resources mapping of physical hybrid arq indicator channel WO2011134353A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010174881.0 2010-04-30
CN201010174881.0A CN101848544B (en) 2010-04-30 2010-04-30 Mapping method and device of PHICH resources

Publications (1)

Publication Number Publication Date
WO2011134353A1 true WO2011134353A1 (en) 2011-11-03

Family

ID=42772961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072856 WO2011134353A1 (en) 2010-04-30 2011-04-15 Method and apparatus for resources mapping of physical hybrid arq indicator channel

Country Status (2)

Country Link
CN (1) CN101848544B (en)
WO (1) WO2011134353A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101848544B (en) * 2010-04-30 2015-06-03 中兴通讯股份有限公司 Mapping method and device of PHICH resources
WO2011137578A1 (en) * 2010-05-03 2011-11-10 上海贝尔股份有限公司 Multi-codeword communication method in multi-antenna system
CN102932921B (en) * 2011-08-10 2016-01-06 华为技术有限公司 A kind of distribution method of physical mixing retransmission indicating chanel, equipment and subscriber equipment
CN103312464B (en) * 2012-03-12 2017-04-12 华为技术有限公司 Transmission method and device for physical hybrid automatic repeat request indicator channel
CN103825686A (en) * 2012-11-16 2014-05-28 联芯科技有限公司 Device and method for configuring LTE terminal uplink retransmission scheduling
WO2014137105A1 (en) * 2013-03-03 2014-09-12 엘지전자 주식회사 Method for receiving control information on epdcch
CN104301067B (en) * 2013-07-19 2018-09-21 华为技术有限公司 DM-RS patterns indicating means and device
EP3127291B1 (en) * 2014-04-04 2018-10-24 Telefonaktiebolaget LM Ericsson (publ) Controlling cyclic shift for demodulation reference symbols
US9794921B2 (en) * 2015-07-14 2017-10-17 Motorola Mobility Llc Method and apparatus for reducing latency of LTE uplink transmissions
CN106470095A (en) * 2015-08-14 2017-03-01 上海朗帛通信技术有限公司 A kind of transmission method of uplink multi-users superposition and device
EP3247067B1 (en) * 2016-05-20 2019-07-10 HTC Corporation Device and method for sharing downlink demodulation reference signals
CN107425947B (en) * 2016-05-24 2021-02-12 北京三星通信技术研究有限公司 Method and device for mapping reference signals and multiple access resources
CN107889242B (en) * 2016-09-30 2020-01-17 中国移动通信有限公司研究院 Transmission method, mobile communication terminal and network side equipment
CN110380814B (en) 2018-04-12 2021-07-20 维沃移动通信有限公司 Information indication method, terminal equipment and network equipment
CN110719151B (en) * 2018-07-11 2021-01-22 电信科学技术研究院有限公司 Method and equipment for determining demodulation reference signal parameters of uplink data channel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090196240A1 (en) * 2008-02-04 2009-08-06 Nokia Siemens Networks Oy Method, apparatus and computer program to map a cyclic shift to a channel index
US20090238131A1 (en) * 2008-03-24 2009-09-24 Qualcomm Incorporated Method and apparatus for resource management in a wireless communication system
CN101682489A (en) * 2008-02-19 2010-03-24 Lg电子株式会社 Method for mapping physical hybrid automatic repeat request indicator channel
CN101848544A (en) * 2010-04-30 2010-09-29 中兴通讯股份有限公司 Mapping method and device of PHICH resources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090196240A1 (en) * 2008-02-04 2009-08-06 Nokia Siemens Networks Oy Method, apparatus and computer program to map a cyclic shift to a channel index
CN101682489A (en) * 2008-02-19 2010-03-24 Lg电子株式会社 Method for mapping physical hybrid automatic repeat request indicator channel
US20090238131A1 (en) * 2008-03-24 2009-09-24 Qualcomm Incorporated Method and apparatus for resource management in a wireless communication system
CN101848544A (en) * 2010-04-30 2010-09-29 中兴通讯股份有限公司 Mapping method and device of PHICH resources

Also Published As

Publication number Publication date
CN101848544B (en) 2015-06-03
CN101848544A (en) 2010-09-29

Similar Documents

Publication Publication Date Title
US10841945B2 (en) Method and user equipment of transmitting uplink signal in wireless communication system, and method and base station of receiving uplink signal in wireless communication system
US10932290B2 (en) Uplink reference signal transmitting or receiving method in wireless communication system, and apparatus therefor
US10873964B2 (en) Method and apparatus for transmitting or receiving uplink signal for terminal supporting multiple TTIs, multiple subcarrier spacings, or multiple processing times in wireless communication system
WO2011134353A1 (en) Method and apparatus for resources mapping of physical hybrid arq indicator channel
KR102109411B1 (en) The method and apparatus for receiving and transmitting a singal in wireless communication system
US11395315B2 (en) Method for transmitting or receiving signal in wireless communication system and device therefor
CN107104761B (en) Method for transmitting control information and apparatus therefor
KR101925030B1 (en) Method of transmitting control information in a wireless communication system and apparatus thereof
CA2796310C (en) Method and system for mapping uplink control information
KR101541985B1 (en) Method and device for transmitting ack/nack in wireless communication system
JP5721443B2 (en) HARQ execution method in wireless communication system
CN110612765A (en) Method for transmitting uplink signal in wireless communication system and apparatus therefor
US20110243088A1 (en) Uplink ack/nack signaling in carrier aggregation environment
KR20190119917A (en) Method and apparatus for transmission and reception of signal in wireless communication system
WO2015147593A1 (en) Method and apparatus for transmitting channel state information in wireless access system supporting machine type communication
KR20190070348A (en) Method for transmitting uplink signals in a wireless communication system and apparatus therefor
JP2016531521A (en) Method and apparatus for transmitting channel state information in wireless access system supporting machine communication
KR20130031892A (en) Enhanced physical uplink control channel format resource allocation for time division duplex mode
CN102263616A (en) Method and device of indicator control channel
US11147071B2 (en) Method and apparatus for supporting multiple TTIs, multiple subcarrier spacings, or multiple processing times in wireless communication system
CN110622609B (en) Method and apparatus for receiving downlink signal in wireless communication system
WO2014180185A1 (en) Data sending and receiving method and data sending and receiving end
WO2008150124A2 (en) Methods and apparatus for mapping control channels to resources in ofdm systems
JP2021533634A (en) A method and a device for determining a transmission time in a wireless communication system.
WO2011116593A1 (en) Mapping method for physical hybrid arq indicator channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774344

Country of ref document: EP

Kind code of ref document: A1