WO2011134180A1 - 终端上行信道的传输方法和终端 - Google Patents

终端上行信道的传输方法和终端 Download PDF

Info

Publication number
WO2011134180A1
WO2011134180A1 PCT/CN2010/073772 CN2010073772W WO2011134180A1 WO 2011134180 A1 WO2011134180 A1 WO 2011134180A1 CN 2010073772 W CN2010073772 W CN 2010073772W WO 2011134180 A1 WO2011134180 A1 WO 2011134180A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
terminal
priority
information
transmission
Prior art date
Application number
PCT/CN2010/073772
Other languages
English (en)
French (fr)
Inventor
鲁照华
刘锟
刘向宇
陈宪明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011134180A1 publication Critical patent/WO2011134180A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • a base station is a device that provides a service to a terminal, and the base station communicates with the terminal through an uplink and downlink link, wherein a downlink (referred to as DL, also referred to as a forward link) refers to a downlink (Downlink, hereinafter referred to as a forward link)
  • DL downlink
  • Downlink Downlink
  • the uplink UpLink, also referred to as UL, also referred to as the reverse link
  • UpLink also referred to as UL, also referred to as the reverse link
  • Multiple terminals can simultaneously transmit data to the base station through the uplink, or can simultaneously receive data from the base station through the downlink.
  • resources allocated to system resources, etc. are usually scheduled by a base station.
  • Time Division Duplex (TDD) or Frequency Division Duplex (FDD) is used in Orthogonal Frequency Division Multiplex Access (OFDMA) technology.
  • OFDMA Orthogonal Frequency Division Multiplex Access
  • the transmission power of the terminal is limited. If the terminal needs to simultaneously transmit the content of multiple channels, the terminal may have insufficient transmission power, that is, the power of the terminal is insufficient to support simultaneous transmission according to a specific quality of service.
  • the terminal needs to determine which channels of content should be preferentially transmitted with the problem that the transmission power is insufficient.
  • the transmission priority of the terminal to different uplink channels is given, as shown in Table 1, wherein the priority order of each channel in Table 1 is the highest priority of the channel in the first row, and finally The priority of a line is the worst. Table 1
  • Hybrid adaptive retransmission feedback channel (HARQ Feedback Channel)
  • Synchronization Concept 1 giant channel (Synchronized Ranging Channel)
  • the transmission power is allocated according to the priority of the channel. Taking the priority sequence shown in Table 1 as an example, the priority transmission is performed. HARQ feedback channel, fast feedback channel, and so on.
  • this method provides a processing method when the transmission power of the terminal is insufficient, the method of allocating the transmission power according to a preset priority order may cause the urgent content to be sent on some channels to be unable to be sent in time in some cases. The problem. It can be seen that the scheduling flexibility of the above processing manner is poor, and the requirements for delay of some real-time services cannot be met.
  • a primary object of the present invention is to provide a method and a terminal for transmitting a terminal uplink channel to at least solve the above problems.
  • a method for transmitting a terminal uplink channel including: a transmission power of a terminal can only be used for all or a part of a high priority channel above a certain priority, and a priority of the terminal
  • the priority channel below a certain priority needs to transmit information, including the following steps: the terminal transmits the information using a high priority channel; or stops the transmission of one or more high priority channels, and enables the low priority channel to transmit the information information.
  • a method for transmitting a terminal uplink channel including: transmitting, by a terminal, information of multiple channels including a hybrid adaptive retransmission feedback channel that transmits NAK information, and performing hybrid adaptation of transmitting NAK information
  • the retransmission feedback channel has the lowest transmission priority.
  • a method for transmitting a terminal uplink channel including: transmitting, by a terminal, information of a plurality of channels including a hybrid adaptive retransmission feedback channel that transmits ACK information, and transmitting a mixture of ACK information.
  • the adaptive retransmission feedback channel has the highest transmission priority.
  • a terminal including: a state determining module, where a transmit power for the terminal can only be used simultaneously for a high priority channel above a certain priority, and determining that a priority is The low priority channel below the specific priority needs to send information; the first transmission module is configured to send the information by using a high priority channel; or the transmission of one or more high priority channels is stopped, and the low priority is enabled The channel sends this information.
  • a terminal including: a second transmission module, configured to simultaneously transmit information of a plurality of channels including a hybrid adaptive retransmission feedback channel that transmits NAK information, and send a mixed NAK information The transmission retransmission feedback channel has the lowest transmission priority.
  • a terminal including: a third transmission module, configured to simultaneously transmit information of a plurality of channels including a hybrid adaptive retransmission feedback channel that transmits ACK information, and send an ACK information
  • the transmission retransmission feedback channel has the highest transmission priority.
  • the information of the low priority channel is preferentially transmitted by using the high transmission priority channel in the case of insufficient transmission power, or the transmission of a high priority channel is stopped, and the information of the low priority channel is enabled to be transmitted; or
  • the transmission priority of the hybrid adaptive retransmission feedback channel that transmits the NAK information is set to be relatively low, the problem that the important content cannot be transmitted reasonably and efficiently when the transmission power is insufficient is solved, thereby improving the performance of the entire wireless communication system.
  • FIG. 1 is a flowchart of a method for transmitting a terminal uplink channel according to a first embodiment of the present invention
  • FIG. 2 is a flowchart of a method for transmitting bandwidth request information when a terminal transmits insufficient power according to Embodiment 2 of the present invention
  • FIG. 4 is a flowchart of a method for transmitting a terminal uplink channel according to Embodiment 11 of the present invention
  • FIG. 5 is a flowchart of a method for transmitting a terminal uplink channel according to Embodiment 11 of the present invention
  • FIG. 6 is a block diagram of a terminal structure of the thirteenth embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for transmitting a terminal uplink channel according to an embodiment of the present invention. The method includes the following steps: Step S102: The transmit power of the terminal can only meet the high priority of a specific priority or higher.
  • the channels are used at the same time, and a low priority channel of the terminal whose priority is below a certain priority needs to send information; the priority of the channel can be set by the base station, for example, set to the priority order shown in Table 1; the terminal needs to send
  • the method may further include: first determining whether the information is emergency information that requires real-time performance higher than a set duration, and if yes, performing step S104, if not, allocating the transmission according to priority order The power is sufficient; step S104, the terminal sends the information by using one of the high priority channels; or stops transmitting the one or more high priority channels, and enables the low priority channel to send the information (for example, one of the above high
  • the power of the priority channel is allocated for use by the low priority channel to transmit information on the low priority channel
  • the low priority channel in this embodiment may be a bandwidth request channel, and the information sent thereon is bandwidth request information for a service flow that requires high real-time performance; or, considering the service quality requirements in different network environments Differently,
  • FIG. 2 shows a method for transmitting bandwidth request information when the terminal transmits insufficient power.
  • the specific steps include: Step S202: In a specific time region, the terminal needs to simultaneously transmit multiple channels in one or several consecutive subframes.
  • the content includes the requirement to send the bandwidth request information through the bandwidth request channel, but when the transmit power is allocated according to the priority order of the channel, the terminal does not transmit the transmit power to the bandwidth request channel; wherein, the specific time zone refers to a subframe, or a frame, Or superframe; step S204, the terminal sends the bandwidth request information in a channel with other high transmission priority.
  • the bandwidth request information is included in the channel with other high transmission priority, and the problem that the bandwidth request information cannot be transmitted in time when the transmission power is insufficient is solved, thereby improving the whole The performance of wireless communication systems.
  • the third embodiment takes the IEEE 802.16m system as an example, and the terminal needs to simultaneously transmit the hybrid adaptive retransmission feedback channel, the data channel and the bandwidth request channel in one or several consecutive subframes; according to the uplink channel transmission shown in Table 1.
  • the terminal sequentially allocates transmit power to the hybrid adaptive retransmission feedback channel, the data channel, and the bandwidth request channel, but when the terminal allocates transmit power to the data channel, no remaining transmit power can be allocated to the bandwidth request channel.
  • the terminal transmits the bandwidth request information through the data channel, for example, the bandwidth request information is placed in the media access control header (MAC Header), thereby preventing the terminal from transmitting the bandwidth request through the bandwidth request channel in time when the transmission power is insufficient. Information problem.
  • MAC Header media access control header
  • the bandwidth request information is bandwidth request information of a service flow that requires high latency, such as real-time services such as VoIP (voice over IP) and online games.
  • Table 1 only gives an example of the priority of the uplink channel transmission, and does not exclude other transmission priority arrangements that use the data channel over the bandwidth request channel.
  • the bandwidth request information is used. It is included in the data channel to solve the problem that the bandwidth request information cannot be transmitted in time when the transmission power is insufficient, thereby improving the performance of the entire wireless communication system.
  • the terminal needs to simultaneously transmit a hybrid adaptive retransmission feedback channel, a fast feedback channel, and a bandwidth request channel on one or several consecutive subframes.
  • the terminal sequentially allocates the transmission power to the hybrid adaptive retransmission feedback channel, the fast feedback channel, and the bandwidth request channel, but when the terminal allocates the transmission power to the data channel, there is no remaining transmission.
  • the power can be allocated to the bandwidth request channel.
  • the terminal transmits the bandwidth request information through the fast feedback channel. This avoids the problem that the terminal cannot send the bandwidth request information through the bandwidth request channel in time when the transmission power is insufficient.
  • the bandwidth request information is bandwidth request information of a service flow that requires high latency, for example
  • Real-time services such as VoIP (voice over IP) and online games.
  • Table 1 only gives an example of the priority of the uplink channel transmission, and does not exclude other transmission priority arrangements that use the fast feedback channel over the bandwidth request channel.
  • the bandwidth request information is included in the fast feedback channel, and the problem that the bandwidth request information cannot be transmitted in time when the transmission power is insufficient is solved, thereby improving the entire wireless communication system. performance.
  • the fifth embodiment takes the IEEE 802.16m system as an example, and the terminal needs to simultaneously transmit the fast feedback channel, the data channel and the bandwidth request channel in one or several consecutive subframes.
  • the terminal sequentially allocates the transmission power to the fast feedback channel, the data channel, and the bandwidth request channel, but when the terminal allocates the transmission power to the data channel, no remaining transmission power can be allocated to the bandwidth.
  • the channel is requested to be used.
  • the terminal transmits the bandwidth request information through the data channel, for example, the bandwidth request information is placed in the media access control header (MAC Header), thereby preventing the terminal from failing to pass the bandwidth request when the transmission power is insufficient.
  • the bandwidth request information is bandwidth request information of a service flow that requires high latency, such as real-time services such as VoIP (voice over IP) and online games.
  • Table 1 only gives an example of the priority of the uplink channel transmission, and does not exclude other transmission priority arrangements that use the data channel over the bandwidth request channel.
  • the bandwidth request information is included in the data channel, and the problem that the bandwidth request information cannot be transmitted in time when the transmission power is insufficient is solved, thereby improving the performance of the entire wireless communication system.
  • the sixth embodiment takes the IEEE 802.16m system as an example, and the terminal needs to simultaneously transmit the fast feedback channel, the data channel and the bandwidth request channel in one or several consecutive subframes.
  • the terminal sequentially allocates the transmission power to the fast feedback channel, the data channel, and the bandwidth request channel, but when the terminal allocates the transmission power to the data channel, no remaining transmission power can be allocated to the bandwidth.
  • the request channel is used.
  • the terminal transmits the bandwidth request information through the fast feedback channel, thereby avoiding the problem that the terminal cannot timely send the bandwidth request information through the bandwidth request channel if the transmission power is insufficient.
  • the bandwidth request information is bandwidth request information of a service flow that requires high latency, such as real-time services such as VoIP (voice over IP) and online games. Table 1 only gives an example of the priority of the uplink channel transmission, and does not exclude other transmission priority arrangements that use the data channel over the bandwidth request channel.
  • the bandwidth request information is included in the fast feedback channel, and the problem that the bandwidth request information cannot be transmitted in time when the transmission power is insufficient is solved, thereby improving the entire wireless communication system. performance.
  • the seventh embodiment takes the IEEE 802.16m system as an example, and the terminal needs to simultaneously transmit the hybrid adaptive retransmission feedback channel and the bandwidth request channel on one or several consecutive subframes. According to the uplink channel transmission priority shown in Table 1, the terminal sequentially allocates the transmission power to the hybrid adaptive retransmission feedback channel and the bandwidth request channel, but after the terminal allocates the transmission power to the hybrid adaptive retransmission feedback channel, there is no remaining.
  • sufficient transmit power can be allocated for use by the bandwidth request channel, and the NAK information is transmitted on the hybrid adaptive retransmission feedback channel (the terminal does not successfully receive the relevant downlink content sent by the base station), and the terminal can preferentially allocate the transmit power to the bandwidth. Request channel use.
  • the transmit power is allocated to the bandwidth request channel for use, and the terminal has remaining transmit power, the remaining transmit power may be allocated to the hybrid adaptive retransmission feedback channel to transmit the NAK information.
  • the terminal needs to use the hybrid adaptive retransmission feedback channel feedback to successfully receive the persistent resource allocation signaling, even if the mixed adaptive retransmission feedback channel feeds back the NAK information, the terminal should prioritize the transmission power according to the priority of Table 1.
  • the bandwidth request channel may also be one of the channels in Table 1 whose transmission priority is lower than the mixed adaptive retransmission feedback channel or a combination thereof. Table 1 only gives an example of the priority of the uplink channel transmission, and does not exclude the use of other channel transmission priority arrangements.
  • the transmission power is preferentially allocated to the bandwidth request channel to transmit the bandwidth request information, thereby solving the problem that the bandwidth request information cannot be transmitted in time when the transmission power is insufficient, thereby improving the entire wireless. The performance of the communication system.
  • the eighth embodiment takes the IEEE 802.16m system as an example, and the terminal needs to simultaneously transmit the hybrid adaptive retransmission feedback channel, the sounding channel, the data channel, and the bandwidth request channel in one or several consecutive subframes.
  • the terminal sequentially allocates the transmission power to the hybrid adaptive retransmission feedback channel, the Sounding channel, and the data channel, but after the terminal allocates the transmission power to the Sounding channel, there is no remaining or sufficient
  • the transmit power can be allocated to the data channel, and the NAK information is transmitted on the hybrid adaptive retransmission feedback channel (the terminal does not successfully receive the relevant downlink content sent by the base station), and the terminal can preferentially allocate the transmit power to the data channel for use.
  • the remaining transmit power may be allocated to the hybrid adaptive retransmission feedback channel to transmit the NAK information.
  • the terminal needs to use the hybrid adaptive retransmission feedback channel feedback to successfully receive the persistent resource allocation signaling, even if the mixed adaptive retransmission feedback channel feeds back the NAK information, the terminal should prioritize the transmission power according to the priority of Table 1. Assigned to the hybrid adaptive retransmission feedback channel for use. Table 1 only gives an example of the priority of the uplink channel transmission, and does not exclude the use of other channels. Transmission priority ranking.
  • Embodiment 9 Taking the IEEE 802.16m system as an example, the terminal needs to simultaneously transmit a hybrid adaptive retransmission feedback channel, a Sounding channel, a data channel, and a bandwidth request channel on one or several consecutive subframes.
  • the terminal sequentially allocates power to the hybrid adaptive retransmission feedback channel, the Sounding channel, and the data channel, but when the terminal allocates the transmission power to the Sounding channel, there is no remaining or sufficient transmission.
  • the power can be allocated to the data channel, and the NAK information is transmitted on the hybrid adaptive retransmission feedback channel (the terminal does not successfully receive the relevant downlink content sent by the base station), and the terminal can preferentially allocate the transmission power to the data channel for use.
  • the terminal has remaining transmission power, and the remaining transmission power can be allocated to the bandwidth request channel.
  • the terminal should prioritize the power according to the priority of Table 1. Used for hybrid adaptive retransmission feedback channels. Table 1 only gives an example of the priority of the uplink channel transmission, and does not exclude the use of other channel transmission priority arrangements.
  • FIG. 3 is a flowchart of a method for a base station to direct a terminal to allocate transmit power on different channels, where the method includes the following steps: Step S302: The base station informs the terminal to allocate transmit power on the uplink channel by using downlink signaling.
  • the base station notifies the terminal to mix the adaptive retransmission feedback channel (first priority), the Sounding channel (second priority), and the data by using downlink signaling (eg, media access control message, or superframe header, etc.)
  • the transmission priority of the channel (third priority), that is, after the terminal receives the signaling, when it is required to simultaneously transmit the hybrid adaptive retransmission feedback channel, the Sounding channel, the data channel, and the bandwidth request channel, if the terminal
  • the transmission power is insufficient to support simultaneous transmission of four channels, and the terminal performs transmission power allocation according to the transmission order of the hybrid adaptive retransmission feedback channel, the Sounding channel, the data channel, and the bandwidth request channel.
  • Step S304 The terminal receives the downlink signaling.
  • the terminal After receiving the downlink signaling sent by the base station, the terminal sends corresponding response information to the base station to notify the base station that it has successfully received the signaling.
  • the base station may also notify the terminal of the transmission priority of all uplink channels (as shown in Table 1) by using downlink signaling (such as a medium access control message, or a superframe header, etc.), that is, after receiving the signaling, the terminal
  • downlink signaling such as a medium access control message, or a superframe header, etc.
  • FIG. 4 is a flowchart of a method for transmitting a terminal uplink channel, and the specific steps include: Step S402: The terminal needs to transmit information on multiple channels.
  • step S404 the channel with the lowest transmission priority is a hybrid adaptive retransmission feedback channel that transmits the information.
  • the priority order of the channels can be seen in Table 2.
  • Synchronization Concept 1 giant channel (Synchronized Ranging Channel)
  • the hybrid adaptive retransmission feedback channel for transmitting NAK information is exemplified by the IEEE 802.16m system, and is assumed to be in accordance with the standard default configuration or the uplink channel transmission priority indicated by the base station, as shown in Table 2, the hybrid adaptive weight of the transmitted NAK information.
  • the feedback feedback channel is the channel with the highest transmission priority.
  • the terminal needs to simultaneously transmit the hybrid adaptive retransmission feedback channel, the Sounding channel, and the data channel that transmit the NAK information, the channel with the lowest transmission priority is the mixed NAK information.
  • the available power is preferentially allocated to the Sounding channel and the data channel, and finally the power is allocated to the hybrid adaptive retransmission feedback channel that transmits the NAK information.
  • the priority order of the channels can be seen in Table 3.
  • Hybrid adaptive retransmission feedback channel for transmitting ACK information or for feedback terminal successfully receiving permanent resource allocation signaling
  • Synchronization Concept 1 giant channel (Synchronized Ranging Channel)
  • the hybrid adaptive retransmission feedback channel for transmitting NAK information is exemplified by the IEEE 802.16m system, and is assumed to follow the standard default configuration or the uplink channel transmission priority indicated by the base station, as shown in Table 3, when the terminal needs to simultaneously transmit and transmit NAK information.
  • the hybrid adaptive retransmission feedback channel, the Sounding channel, and the data channel are used to implicitly indicate that the feedback terminal successfully receives the permanent resource allocation signaling
  • the channel with the lowest transmission priority is the data channel, that is, When the transmission power of the terminal is insufficient, the allocated transmission power for transmitting the NAK information (for implicitly indicating that the feedback terminal successfully receives the permanent resource allocation signaling) is preferentially given.
  • the channel with the lowest transmission priority is set as the hybrid adaptive retransmission feedback channel for transmitting the NAK information, so that the transmission power preferentially satisfies the use of other channels, thereby improving the performance of the system.
  • Embodiment 12 The terminal of this embodiment simultaneously transmits information of a plurality of channels including a hybrid adaptive retransmission feedback channel that transmits ACK information, wherein a mixed adaptive retransmission feedback channel that transmits ACK information has the highest transmission priority.
  • FIG. 5 is a flowchart of a method for transmitting a terminal uplink channel. In this embodiment, when different content is transmitted on the same channel, the transmission power is allocated according to the priority of the transmission content, and the embodiment is adaptive.
  • the retransmission feedback channel is taken as an example for description.
  • the specific steps include: Step S502: The terminal needs to transmit information on multiple channels; Step S504, the mixed adaptive retransmission feedback channel transmission priority of the ACK information is better than the transmission of the NAK information.
  • the priority order of the channels can be seen in Table 4. Table 4
  • the hybrid adaptive retransmission feedback channel for transmitting NAK information is exemplified by the IEEE 802.16m system, which is assumed to be in accordance with the standard default configuration or the uplink channel transmission priority indicated by the base station, as shown in Table 4.
  • the hybrid adaptive retransmission feedback channel that transmits the NAK information is the channel with the highest transmission priority, and the terminal needs to simultaneously transmit the hybrid adaptive retransmission feedback channel that transmits the NAK information, and the hybrid adaptive retransmission of the ACK information.
  • the channel with the lowest transmission priority is a hybrid adaptive retransmission feedback channel that transmits NAK information, that is, when the terminal transmits insufficient power, the mixed adaptive retransmission feedback channel that transmits the ACK information is preferentially allocated for available transmission. power.
  • the priority order of the channels in this embodiment can be seen in Table 5.
  • a hybrid adaptive retransmission feedback channel for transmitting ACK information or a hybrid adaptive retransmission feedback channel for transmitting a persistent resource allocation signaling for a feedback terminal to transmit NAK information is exemplified by an IEEE 802.16m system, assuming a standard default configuration or a base station.
  • Indicated uplink channel transmission priority as shown in Table 5, when the terminal needs to simultaneously transmit and transmit NAK information (used to implicitly indicate whether the feedback terminal successfully receives permanent resource allocation signaling), a hybrid adaptive retransmission feedback channel, and send a NAK
  • the channel with the lowest transmission priority is the NAK information (not used to implicitly indicate whether the feedback terminal successfully receives the permanent).
  • Hybrid adaptive retransmission feedback channel of resource allocation signaling that is, when the terminal transmits insufficient power, it preferentially gives a mixture of sending NAK information (for implicitly indicating whether the feedback terminal successfully receives permanent resource allocation signaling)
  • the adaptive retransmission feedback channel is allocated to transmit transmission power.
  • the transmit power is preferentially allocated to the hybrid adaptive retransmission feedback channel that sends the ACK information, so that the ACK information can be transmitted in time.
  • the embodiment provides a terminal, where the terminal includes: a state determining module 60, where the transmit power of the terminal can only be used simultaneously for a high priority channel above a certain priority, and A low priority channel with a priority below the specific priority needs to send information; a first transmission module 62 for transmitting the above information using a high priority channel; or stopping transmission of a high priority channel, and enabling priority
  • the level channel sends this information.
  • the low priority channel may be a bandwidth request channel.
  • the foregoing information is bandwidth request information
  • the high priority channel includes one of the following: a hybrid adaptive retransmission feedback channel, a fast feedback channel, a synchronous ranging channel, and a sounding channel. Or data channel.
  • the priority channel is a data channel
  • the high priority channel includes one of the following: a hybrid adaptive retransmission feedback channel, a fast feedback channel, a synchronous ranging channel, or a sounding channel.
  • the first transmission module 62 can send the bandwidth request information on the data channel through the medium access control header.
  • the priority of the channel in this embodiment is that the base station notifies the terminal by using the downlink signaling, and after receiving the downlink signaling, the terminal sends the response information to the base station through the uplink channel.
  • the uplink channel includes at least one of a hybrid adaptive retransmission feedback channel, a fast feedback channel, a synchronous ranging channel, a sounding channel, a data channel, and a bandwidth request channel.
  • the channel with the highest priority may be set as a hybrid adaptive retransmission feedback channel that transmits NAK information, and the NAK information is not used to feedback whether the terminal successfully receives the permanent resource score.
  • the first transmission module 62 includes: a power allocation unit, configured to allocate transmission power to the different content according to a priority of the transmission content when transmitting different content on the same channel. For example, the hybrid adaptive retransmission feedback channel that transmits the ACK information has a higher priority than the hybrid adaptive retransmission feedback channel that transmits the NAK information.
  • the terminal further includes: a determining unit, configured to: when the information on the priority channel needs to be sent, determine whether the information is urgent information that requires real-time performance higher than a set duration, and if yes, trigger the first transmission module 62 .
  • the terminal in this embodiment determines that the transmit power can only be used simultaneously for the high priority channel above the specific priority, and the low priority channel with the priority below the specific priority needs to send the information when using the high priority channel.
  • the above information or stopping the transmission of a high priority channel, and enabling the low priority channel to transmit the information; solving the problem that the important content cannot be transmitted in time when the transmission power is insufficient, and improving the performance of the system.
  • the present embodiment further provides another terminal, where the terminal includes: a second transmission module, configured to simultaneously transmit information of multiple channels including a hybrid adaptive retransmission feedback channel that transmits NAK information, where the transmission of the NAK information is mixed.
  • the adaptive retransmission feedback channel has the lowest transmission priority.
  • the embodiment further provides another terminal, where the terminal includes: a third transmission module, configured to simultaneously transmit information of multiple channels including a hybrid adaptive retransmission feedback channel that sends ACK information, where the ACK information is mixed.
  • the adaptive retransmission feedback channel has the highest transmission priority.
  • the low priority channel needs to send the above information when using a high priority channel; or stop the transmission of a high priority channel and enable the low priority channel to transmit the information;
  • the problem of content improves the performance of the system.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

终端上 4亍信道的传输方法和终端 技术领域 本发明涉及无线通信领域, 具体而言, 涉及一种终端上行信道的传输方 法和终端。 背景技术 无线通信系统中, 基站是指给终端提供服务的设备, 基站通过上下行链 路与终端进行通信, 其中, 下行链路 (DownLink, 简称为 DL, 也称作前向 链路) 是指基站到终端的方向, 上行链路 ( UpLink , 简称为 UL , 也称作反 向链路) 是指终端到基站的方向。 多个终端可同时通过上行链路向基站发送 数据, 也可以通过下行链路同时从基站接收数据。 在釆用基站调度控制的数据传输系统中,通常由基站调度分配系统资源, 的资源等。 在釆用正交频分多址接入 ( Orthogonal Frequency Division Multiplex Access, 简称为 OFDMA )技术的时分双工 ( Time Division Duplex, 简称为 TDD )或频分双工( Frequency Division Duplex, 简称为 FDD )无线通信系统 中, 终端的发射功率是受限的, 如果终端需要同时传输多个信道的内容时, 则终端可能会出现发射功率不足的情况, 即终端的功率不足以按照特定服务 质量支持同时传输多个信道上的内容, 特别是对处于小区边缘位置的终端, 因此, 终端需要确定哪些信道的内容应该优先传送以克月艮发射功率不足的问 题。 在 IEEE 802.16系列标准中, 给出了终端对不同上行信道的发送优先级, 如表 1所示, 其中, 表 1中各信道的优先级高低顺序为第一行中信道的优先 级最高, 最后一行的优先级最氐。 表 1
"混和自适应重传反馈信道 ( HARQ Feedback Channel )
快速反馈信道 ( Fast Feedback Channel )
同步观1 ^巨信道 ( Synchronized Ranging Channel )
Sounding信道 数据信道 ( Data Channel )
带宽请求信道 ( Bandwidth Request Channel ) 在终端需要同时传输多个信道的内容且发射功率不足时, 按照信道的优 先级进行发射功率的分配,以表 1所示的优先级顺序为例,则优先传输 HARQ 反馈信道、 快速反馈信道, 以此类推。 这种方式虽然提供了终端发射功率不 足时的处理方法,但是这种按照预先设定的优先级顺序分配发射功率的方法, 在某些情况下会导致一些信道上需要发送的紧急内容无法及时发送的问题。 可见, 上述处理方式的调度灵活性较差, 不能满足一些实时业务对时延的要 求。 发明内容 本发明的主要目的在于提供一种终端上行信道的传输方法和终端, 以至 少解决上述问题。 才艮据本发明的一个方面, 提供了一种终端上行信道的传输方法, 包括: 终端的发射功率仅能满足特定优先级以上的全部或部分高优先级信道同时使 用, 且终端的一个优先级在特定优先级以下的氏优先级信道需要发送信息, 包括以下步骤: 终端使用一个高优先级信道发送该信息; 或者停止一个或多 个高优先级信道的发送, 并启用低优先级信道发送该信息。 根据本发明的另一方面,提供了一种种终端上行信道的传输方法, 包括: 终端同时传输包含发送 NAK信息的混和自适应重传反馈信道的多个信道的 信息, 发送 NAK信息的混和自适应重传反馈信道的传输优先级最低。 才艮据本发明的再一方面, 提供了一种终端上行信道的传输方法, 包括: 终端同时传输包含发送 ACK信息的混和自适应重传反馈信道的多个信道的 信息, 发送 ACK信息的混和自适应重传反馈信道的传输优先级最高。 才艮据本发明的又一方面, 提供了一种终端, 包括: 状态确定模块, 用于 该终端的发射功率仅能满足特定优先级以上的高优先级信道同时使用, 确定 有一个优先级在所述特定优先级以下的低优先级信道需要发送信息; 第一传 输模块, 用于使用一个高优先级信道发送该信息; 或者停止一个或多个高优 先级信道的发送, 并启用低优先级信道发送该信息。 根据本发明的还一方面, 提供了一种终端, 包括: 第二传输模块, 用于 同时传输包含发送 NAK信息的混和自适应重传反馈信道的多个信道的信息, 发送 NAK信息的混和自适应重传反馈信道的传输优先级最低。 根据本发明的还一方面, 提供了一种终端, 包括: 第三传输模块, 用于 同时传输包含发送 ACK信息的混和自适应重传反馈信道的多个信道的信息, 发送 ACK信息的混和自适应重传反馈信道的传输优先级最高。 通过本发明, 釆用在发射功率不足的情况下利用高传输优先级信道优先 传输低优先级信道的信息, 或者停止一个高优先级信道的发送, 并启用低优 先级信道发送其信息; 或者, 通过将发送 NAK信息的混和自适应重传反馈 信道的传输优先级设置的比较低, 解决了发射功率不足时不能合理高效地传 输重要内容的问题, 从而提高整个无线通信系统的性能。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据本发明实施例一的终端上行信道的传输方法流程图; 图 2是根据本发明实施例二的终端发射功率不足时带宽请求信息的传输 方法流程图; 图 3是根据本发明实施例十的基站指导终端在不同信道上分配发射功率 的方法流程图; 图 4是根据本发明实施例十一的终端上行信道的传输方法流程图; 图 5是根据本发明实施例十二的终端上行信道的传输方法流程图; 以及 图 6是 居本发明实施例十三的终端结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在使用 OFDMA技术的无线通信系统中, 包括基站和终端, 终端的发射 功率是受限制的, 本发明实施例给出了在终端功率不足的情况下灵活传输不 同信道内容的方案。 下面介绍本发明的各个实施例都以该无线通信系统为基 石出予以实施。 实施例一 图 1示出了根据本发明实施例的终端上行信道的传输方法流程图, 该方 法包括以下步 4聚: 步骤 S 102,终端的发射功率仅能满足特定优先级以上的高优先级信道同 时使用, 且该终端的一个优先级在特定优先级以下的低优先级信道需要发送 信息; 信道的优先级可以由基站进行设置,例如设置为表 1所示的优先级顺序; 终端需要发送低优先级信道上的信息时, 还可以包括: 先判断该信息是 否为对实时性要求高于设定时长的紧急信息, 如果是, 执行步骤 S 104, 如果 不是, 按照优先级的顺序分配发射功率即可; 步骤 S 104, 终端使用一个上述高优先级信道发送该信息; 或者停止一个 或多个上述高优先级信道的发送, 并启用低优先级信道发送该信息 (例如, 将一个上述高优先级信道的功率分配给低优先级信道使用, 用以发送该低优 先级信道上的信息); 本实施例的低优先级信道可以为带宽请求信道, 其上发送的信息为对实 时性要求很高的业务流的带宽请求信息; 或者, 考虑到不同网络环境下对服 务质量要求的侧重点不同, 同一信道传输不同内容时其重要程度也会不同, 如果此时发射功率不足以使同一信道的不同内容同时传输时, 可以先传输重 要且对时延要求比较高的内容。 本实施例通过在终端发射功率不足时, 使用高优先级信道发送低优先级 信道上的信息; 或者停止一个高优先级信道的发送, 并启用低优先级信道发 送该信息; 解决了不能合理高效地传输重要内容的问题, 从而提高了整个无 线通信系统的性能。 实施例二 图 2给出了一种终端发射功率不足时带宽请求信息的传输方法, 具体步 骤包括: 步骤 S202, 在特定时间区域中, 终端在一个或连续几个子帧上需要同时 传输多个信道的内容, 其中包括需要通过带宽请求信道发送带宽请求信息, 但按照信道的优先级顺序分配发射功率时, 该终端没有发射功率分配给带宽 请求信道; 其中, 特定时间区域指子帧、 或帧、 或超帧; 步骤 S204 , 终端将带宽请求信息包含在其它高传输优先级的信道中发 送。 本实施例在终端没有发射功率分配给带宽请求信道时, 将带宽请求信息 包含在其它高传输优先级的信道中发送, 解决了发射功率不足时无法及时传 输带宽请求信息的问题, 从而提高了整个无线通信系统的性能。 实施例三 以 IEEE 802.16m系统为例,個—设终端在一个或连续几个子帧上需要同时 传输混和自适应重传反馈信道、 数据信道和带宽请求信道; 按照表 1所示的上行信道传输优先级, 终端依次分配发射功率给混和自 适应重传反馈信道、 数据信道和带宽请求信道, 但是当终端将发射功率分配 给数据信道后, 没有剩余的发射功率可分配给带宽请求信道使用, 此时终端 将带宽请求信息通过数据信道传送, 例如将带宽请求信息放到媒体接入控制 头中 (MAC Header ), 这样就避免了终端在发射功率不足的情况下无法通过 带宽请求信道及时发送带宽请求信息的问题。 优选地, 带宽请求信息为对时延要求高的业务流的带宽请求信息, 例如 VoIP ( Voice over IP )、 在线游戏等实时业务。 表 1只是给出了上行信道传输优先级的一个示例, 不排除使用数据信道 优于带宽请求信道的其它传输优先级排列方式。 本实施例在终端没有发射功率分配给带宽请求信道时, 将带宽请求信息 包含在数据信道中发送, 解决了发射功率不足时无法及时传输带宽请求信息 的问题, 从而提高了整个无线通信系统的性能。 实施例四
以 IEEE 802.16m系统为例,^ _设终端在一个或连续几个子帧上需要同时 传输混和自适应重传反馈信道、 快速反馈信道和带宽请求信道。 按照表 1所示的上行信道传输优先级, 终端依次分配发射功率给混和自 适应重传反馈信道、 快速反馈信道和带宽请求信道, 但是当终端将发射功率 分配给数据信道后, 没有剩余的发射功率可分配给带宽请求信道使用, 此时 终端将带宽请求信息通过快速反馈信道传送, 这样就避免了终端在发射功率 不足的情况下无法通过带宽请求信道及时发送带宽请求信息的问题。 优选地, 带宽请求信息为对时延要求高的业务流的带宽请求信息, 例如
VoIP ( Voice over IP )、 在线游戏等实时业务。 表 1只是给出了上行信道传输优先级的一个示例, 不排除使用快速反馈 信道优于带宽请求信道的其它传输优先级排列方式。 本实施例在终端没有发射功率分配给带宽请求信道时, 将带宽请求信息 包含在快速反馈信道中发送, 解决了发射功率不足时无法及时传输带宽请求 信息的问题, 从而提高了整个无线通信系统的性能。 实施例五 以 IEEE 802.16m系统为例,^ _设终端在一个或连续几个子帧上需要同时 传输快速反馈信道、 数据信道和带宽请求信道。 按照表 1所示的上行信道传输优先级, 终端依次分配发射功率给快速反 馈信道、 数据信道和带宽请求信道, 但是当终端将发射功率分配给数据信道 后, 没有剩余的发射功率可分配给带宽请求信道使用, 此时终端将带宽请求 信息通过数据信道传送, 例如将带宽请求信息放到媒体接入控制头中 (MAC Header ),这样就避免了终端在发射功率不足的情况下无法通过带宽请求信道 及时发送带宽请求信息的问题。 优选地, 带宽请求信息为对时延要求高的业务流的带宽请求信息, 例如 VoIP ( Voice over IP )、 在线游戏等实时业务。 表 1只是给出了上行信道传输优先级的一个示例, 不排除使用数据信道 优于带宽请求信道的其它传输优先级排列方式。 本实施例在终端没有发射功率分配给带宽请求信道时, 将带宽请求信息 包含在数据信道中发送, 解决了发射功率不足时无法及时传输带宽请求信息 的问题, 从而提高了整个无线通信系统的性能。 实施例六 以 IEEE 802.16m系统为例,^ _设终端在一个或连续几个子帧上需要同时 传输快速反馈信道、 数据信道和带宽请求信道。 按照表 1所示的上行信道传输优先级, 终端依次分配发射功率给快速反 馈信道、 数据信道和带宽请求信道, 但是当终端将发射功率分配给数据信道 后, 没有剩余的发射功率可分配给带宽请求信道使用, 此时终端将带宽请求 信息通过快速反馈信道传送, 这样就避免了终端在发射功率不足的情况下无 法通过带宽请求信道及时发送带宽请求信息的问题。 优选地, 带宽请求信息为对时延要求高的业务流的带宽请求信息, 例如 VoIP ( Voice over IP )、 在线游戏等实时业务。 表 1只是给出了上行信道传输优先级的一个示例, 不排除使用数据信道 优于带宽请求信道的其它传输优先级排列方式。 本实施例在终端没有发射功率分配给带宽请求信道时, 将带宽请求信息 包含在快速反馈信道中发送, 解决了发射功率不足时无法及时传输带宽请求 信息的问题, 从而提高了整个无线通信系统的性能。 实施例七 以 IEEE 802.16m系统为例,^ _设终端在一个或连续几个子帧上需要同时 传输混和自适应重传反馈信道、 带宽请求信道。 按照表 1所示的上行信道传输优先级, 终端依次分配发射功率给混和自 适应重传反馈信道、 带宽请求信道, 但是当终端将发射功率分配给混和自适 应重传反馈信道后, 没有剩余的或足够的发射功率可分配给带宽请求信道使 用, 且混和自适应重传反馈信道上传送的是 NAK信息 (终端没有成功接收 基站发送的相关下行内容),则终端可优先将发射功率分配给带宽请求信道使 用。 优选地, 如果将发射功率分配给带宽请求信道使用后, 终端还有剩余发 射功率, 可以将剩余发射功率分配给混和自适应重传反馈信道来传送 NAK 信息。 当终端需要利用混和自适应重传反馈信道反馈是否成功接收到对永久资 源分配信令时, 即使混和自适应重传反馈信道反馈的是 NAK信息, 终端应 将发射功率按照表 1的优先级优先分配给混和自适应重传反馈信道使用。 其中, 带宽请求信道也可以是表 1中其它传输优先级低于混和自适应重 传反馈信道的信道之一或其组合。 表 1只是给出了上行信道传输优先级的一 个示例, 不排除使用其它信道传输优先级排列方式。 本实施例在终端没有发射功率分配给带宽请求信道时, 优先为带宽请求 信道分配发射功率, 以传输带宽请求信息, 解决了发射功率不足时无法及时 传输带宽请求信息的问题, 从而提高了整个无线通信系统的性能。 实施例八 以 IEEE 802.16m系统为例,個—设终端在一个或连续几个子帧上需要同时 传输混和自适应重传反馈信道、 探测 (Sounding ) 信道、 数据信道、 带宽请 求信道。 按照表 1所示的上行信道传输优先级, 终端依次分配发射功率给混和自 适应重传反馈信道、 Sounding信道、 数据信道、 但是当终端将发射功率分配 给 Sounding信道后, 没有剩余的或足够的发射功率可分配给数据信道使用, 且混和自适应重传反馈信道上传送的是 NAK信息 (终端没有成功接收基站 发送的相关下行内容), 则终端可优先将发射功率分配给数据信道使用。 优选地, 如果将功率分配给带宽请求信道使用后, 终端还有剩余功率, 可以将剩余发射功率分配给混和自适应重传反馈信道来传送 NAK信息。 当终端需要利用混和自适应重传反馈信道反馈是否成功接收到对永久资 源分配信令时, 即使混和自适应重传反馈信道反馈的是 NAK信息, 终端应 将发射功率按照表 1的优先级优先分配给混和自适应重传反馈信道使用。 表 1只是给出了上行信道传输优先级的一个示例, 不排除使用其它信道 传输优先级排列方式。 本实施例在终端没有发射功率分配给数据信道时, 优先为数据信道分配 发射功率, 然后再将剩余的发射功率分配给带宽请求信道, 解决了发射功率 不足时无法及时传输数据信道上的信息的问题, 从而提高了整个无线通信系 统的性能。 实施例九 以 IEEE 802.16m系统为例,^ _设终端在一个或连续几个子帧上需要同时 传输混和自适应重传反馈信道、 Sounding信道、 数据信道、 带宽请求信道。 按照表 1所示的上行信道传输优先级, 终端依次分配功率给混和自适应 重传反馈信道、 Sounding 信道、 数据信道、 但是当终端将发射功率分配给 Sounding信道后, 没有剩余的或足够的发射功率可分配给数据信道使用, 且 混和自适应重传反馈信道上传送的是 NAK信息 (终端没有成功接收基站发 送的相关下行内容), 则终端可优先将发射功率分配给数据信道使用。 优选地, 如果将发射功率分配给数据信道使用后, 终端还有剩余发射功 率, 可以将剩余发射功率分配给带宽请求信道。 优选地, 如果将功率分配给带宽请求信道使用后, 终端还有剩余功率, 可以将剩余功率分配给混和自适应重传反馈信道来传送 NAK信息。 当终端需要利用混和自适应重传反馈信道反馈是否成功接收到对永久资 源分配信令时, 即使混和自适应重传反馈信道反馈的是 NAK信息, 终端应 将功率按照表 1的优先级优先分配给混和自适应重传反馈信道使用。 表 1只是给出了上行信道传输优先级的一个示例, 不排除使用其它信道 传输优先级排列方式。 本实施例在终端没有发射功率分配给数据信道时, 优先为数据信道分配 发射功率, 然后再将剩余的发射功率分配给带宽请求信道, 解决了发射功率 不足时无法及时传输数据信道上的信息的问题, 从而提高了整个无线通信系 统的性能。 实施例十 图 3 给出了一种基站指导终端在不同信道上分配发射功率的方法流程 图, 该方法包括以下步 4聚: 步骤 S302,基站通过下行信令通知终端在上行信道上分配发射功率的优 先级; 例如, 基站通过下行信令(例如媒体接入控制消息, 或超帧头等) 通知 终端混和自适应重传反馈信道(第一优先级)、 Sounding信道(第二优先级)、 数据信道 (第三优先级) 的传输优先级, 也就是说, 终端收到该信令后, 当 需要同时传输混和自适应重传反馈信道、 Sounding信道、 数据信道、 带宽请 求信道时, 如果终端的发射功率不足以支持四个信道的同时发送, 则终端按 照混和自适应重传反馈信道、 Sounding信道、 数据信道、 带宽请求信道的传 输次序进行发射功率分配。 步骤 S304 , 终端接收上述下行信令。 终端收到基站发送的下行信令后, 发送相应的响应信息给基站, 通知基 站它已成功接收该信令。 基站也可以通过下行信令(例如媒体接入控制消息, 或超帧头等) 通知 终端全部上行信道 (如表 1所示) 的传输优先级, 也就是说, 终端收到该信 令后, 当需要同时传输混和自适应重传反馈信道、 Sounding信道、 数据信道 时, 如果终端的发射功率不足以支持三个信道的同时发送, 则终端按照混和 自适应重传反馈信道、 Sounding信道、 数据信道的传输次序进行功率分配。 本实施例给出了基站指导终端在不同信道上分配发射功率时, 按照之前 通知给终端上行信道优先级的顺序进行分配, 解决了发射功率不足时的处理 问题, 提高了系统的性能。 实施例十一 本实施例的终端同时传输包含发送 NAK信息的混和自适应重传反馈信 道的多个信道的信息, 其中, 发送 NAK信息的混和自适应重传反馈信道的 传输优先级最低。 图 4给出了一种终端上行信道的传输方法流程图, 具体步骤包括: 步骤 S402 , 终端需要传输多个信道上的信息; 步骤 S404 , 传输优先级最低的信道是发送 ΝΑΚ信息的混和自适应重传 反馈信道。 信道的优先级顺序可以参见表 2所示。 表 2
—H ACK信息的混和自适应重传反馈信道
快速反馈信道 ( Fast Feedback Channel )
同步观1 ^巨信道 ( Synchronized Ranging Channel )
Sounding信道
数据信道 ( Data Channel )
带宽请求信道 ( Bandwidth Request Channel )
_发送 NAK信息的混和自适应重传反馈信道 以 IEEE 802.16m系统为例,假设按照标准缺省配置或基站指示的上行信 道传输优先级, 如表 2所示, 发送 NAK信息的混和自适应重传反馈信道为 传输优先级最氐的信道, 则当终端需要同时传输发送 NAK信息的混和自适 应重传反馈信道、 Sounding信道、 数据信道时, 传输优先级最低的信道是发 送 NAK信息的混和自适应重传反馈信道, 也就是说, 当终端发射功率不足 时, 优先给 Sounding信道、 数据信道分配可用功率, 最后给发送 NAK信息 的混和自适应重传反馈信道分配功率。 或者, 信道的优先级顺序可以参见表 3所示。 表 3
发送 ACK信息或用于反馈终端成功接收永久资源分配信令的混和 自适应重传反馈信道
快速反馈信道 ( Fast Feedback Channel )
同步观1 ^巨信道 ( Synchronized Ranging Channel )
Sounding信道
数据信道 ( Data Channel )
带宽请求信道 ( Bandwidth Request Channel )
_发送 NAK信息的混和自适应重传反馈信道 以 IEEE 802.16m系统为例,假设按照标准缺省配置或基站指示的上行信 道传输优先级, 如表 3所示, 当终端需要同时传输发送 NAK信息 (用于隐 含指示反馈终端成功接收永久资源分配信令 ) 的混和自适应重传反馈信道、 Sounding信道、数据信道时, 传输优先级最低的信道是数据信道, 也就是说, 当终端发射功率不足时, 优先给发送 NAK信息 (用于隐含指示反馈终端成 功接收永久资源分配信令) 的分配发射功率。 本实施例根据上行信道传输的内容, 将传输优先级最低的信道设置为发 送 NAK信息的混和自适应重传反馈信道, 以使发射功率优先满足其它信道 使用, 提高了系统的性能。 实施例十二 本实施例的终端同时传输包含发送 ACK信息的混和自适应重传反馈信道 的多个信道的信息, 其中发送 ACK信息的混和自适应重传反馈信道的传输优 先级最高。 图 5给出了一种终端上行信道的传输方法流程图, 本实施例中同一信道 上传输不同的内容时, 按照传输内容的优先级为不同的内容分配发射功率, 本实施例以混和自适应重传反馈信道为例进行说明, 具体步骤包括: 步骤 S502, 终端需要传输多个信道上的信息; 步骤 S504, 发送 ACK信息的混和自适应重传反馈信道传输优先级优于 发送 NAK信息的混和自适应重传反馈信道的传输优先级。 信道的优先级顺序可以参见表 4所示。 表 4
—H ACK信息的混和自适应重传反馈信道 发送 NAK信息的混和自适应重传反馈信道 以 IEEE 802.16m系统为例,假设按照标准缺省配置或基站指示的上行信 道传输优先级, 如表 4所示, 发送 NAK信息的混和自适应重传反馈信道为 传输优先级最氐的信道, 则当终端需要同时传输发送 NAK信息的混和自适 应重传反馈信道、 发送 ACK信息的混和自适应重传反馈信道时, 传输优先 级最低的信道是发送 NAK信息的混和自适应重传反馈信道, 也就是说, 当 终端发射功率不足时, 优先给发送 ACK信息的混和自适应重传反馈信道分 配可用发射功率。 或者, 本实施例的信道的优先级顺序可以参见表 5所示。 表 J
发送 ACK信息或用于反馈终端成功接收永久资源分配信令的混和 自适应重传反馈信道 发送 NAK信息的混和自适应重传反馈信道 以 IEEE 802.16m系统为例,假设按照标准缺省配置或基站指示的上行信 道传输优先级, 如表 5所示, 当终端需要同时传输发送 NAK信息 (用于隐 含指示反馈终端是否成功接收永久资源分配信令) 的混和自适应重传反馈信 道、 发送 NAK信息 (不用于隐含指示反馈终端是否成功接收永久资源分配 信令) 的混和自适应重传反馈信道时, 传输优先级最低的信道是发送 NAK 信息 (不用于隐含指示反馈终端是否成功接收永久资源分配信令) 的混和自 适应重传反馈信道, 也就是说, 当终端发射功率不足时, 优先给发送 NAK 信息 (用于隐含指示反馈终端是否成功接收永久资源分配信令) 的混和自适 应重传反馈信道分配传输发射功率。 本实施例的混和自适应重传反馈信道上同时传输 ACK信息和 NAK信息 时, 优先将发射功率分配给发送 ACK信息的混和自适应重传反馈信道, 确 保 ACK信息能够及时进行传输。 实施例十三 参见图 6, 本实施例提供了一种终端, 该终端包括: 状态确定模块 60 ,用于该终端的发射功率仅能满足特定优先级以上的高 优先级信道同时使用, 确定有一个优先级在该特定优先级以下的低优先级信 道需要发送信息; 第一传输模块 62 , 用于使用一个高优先级信道发送上述信息; 或者停止 一个高优先级信道的发送, 并启用 氏优先级信道发送该信息。 其中, 低优先级信道可以为带宽请求信道, 此时, 上述信息为带宽请求 信息, 高优先级信道包括以下之一: 混和自适应重传反馈信道、 快速反馈信 道、 同步测距信道、 探测信道或数据信道。 或者, 氏优先级信道为数据信道, 高优先级信道包括以下之一: 混和自 适应重传反馈信道、 快速反馈信道、 同步测距信道、 或探测信道。 第一传输模块 62 可以通过媒体接入控制头在数据信道上发送上述带宽 请求信息。 本实施例的信道的优先级是基站通过下行信令通知给该终端的, 该终端 收到此下行信令后, 通过上行信道向基站发送响应信息。 其中, 上行信道至 少包括混和自适应重传反馈信道、 快速反馈信道、 同步测距信道、 探测信道、 数据信道、 带宽请求信道中的一个或多个。 优先地, 可以将优先级最氏的信道设置为发送 NAK信息的混和自适应 重传反馈信道, 该 NAK信息不用于反馈该终端是否成功接收到永久资源分
SM言 。 第一传输模块 62 包括: 功率分配单元, 用于同一信道上传输不同的内 容时, 按照传输内容的优先级为所述不同的内容分配发射功率。 例如, 发送 ACK信息的混和自适应重传反馈信道的优先级高于发送 NAK信息的混和自 适应重传反馈信道的优先级。 终端还包括: 判断单元, 用于需要发送所述氏优先级信道上的信息时, 判断所述信息是否为对实时性要求高于设定时长的紧急信息, 如果是, 触发 第一传输模块 62。 本实施例的终端确定发射功率仅能满足特定优先级以上的高优先级信道 同时使用, 有一个优先级在该特定优先级以下的低优先级信道需要发送信息 时, 使用一个高优先级信道发送上述信息; 或者停止一个高优先级信道的发 送, 并启用低优先级信道发送该信息; 解决了发射功率不足时不能及时传输 重要内容的问题, 提高了系统的性能。 本实施例还提供了另一种终端, 该终端包括: 第二传输模块, 用于同时 传输包含发送 NAK信息的混和自适应重传反馈信道的多个信道的信息, 其 中, 发送 NAK信息的混和自适应重传反馈信道的传输优先级最低。 本实施例还提供了又一种终端, 该终端包括: 第三传输模块, 用于同时 传输包含发送 ACK信息的混和自适应重传反馈信道的多个信道的信息, 其 中, 发送 ACK信息的混和自适应重传反馈信道的传输优先级最高。 这两种终端可以将不重要的 NAK信息最后发送, 以保证其它重要信息 能够被分配发射功率, 提高了系统的性能。 从以上的描述中可以看出, 本发明实现了如下技术效果: 以上实施例在 终端的发射功率仅能满足特定优先级以上的高优先级信道同时使用, 有一个 优先级在该特定优先级以下的低优先级信道需要发送信息时, 使用一个高优 先级信道发送上述信息; 或者停止一个高优先级信道的发送, 并启用低优先 级信道发送该信息; 解决了发射功率不足时不能及时传输重要内容的问题, 提高了系统的性能。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种终端上行信道的传输方法, 其特征在于, 所述终端的发射功率仅能 满足特定优先级以上的全部或部分高优先级信道同时使用, 且所述终端 的一个优先级在所述特定优先级以下的低优先级信道需要发送信息, 包 括以下步 4聚:
所述终端使用一个所述高优先级信道发送所述信息; 或者停止一个 或多个所述高优先级信道的发送, 并启用所述低优先级信道发送所述信 息。
2. 根据权利要求 1所述的方法, 其特征在于, 所述低优先级信道为带宽请 求信道, 所述信息为带宽请求信息, 所述高优先级信道至少包括以下之 混和自适应重传反馈信道、 快速反馈信道、 同步测距信道、 探测信 道或数据信道。
3. 根据权利要求 2所述的方法, 其特征在于, 所述终端使用一个所述高优 先级信道发送所述信息包括: 所述终端通过媒体接入控制头在所述数据 信道上发送所述带宽请求信息。
4. 根据权利要求 1所述的方法, 其特征在于, 信道的优先级是基站通过下 行信令通知给所述终端的; 或信道的优先级是由标准缺省配置的。
5. 根据权利要求 1所述的方法, 其特征在于, 所述低优先级信道为数据信 道, 所述高优先级信道至少包括以下之一:
混和自适应重传反馈信道、 快速反馈信道、 同步测距信道、 探测信 道。
6. 根据权利要求 1所述的方法, 其特征在于, 同一信道上传输不同的内容 时, 按照传输内容的优先级为所述不同的内容分配发射功率。
7. 居权利要求 6所述的方法, 其特征在于, 所述同一信道为混和自适应 重传反馈信道,发送 ACK信息的混和自适应重传反馈信道的优先级高于 发送 NAK信息的混和自适应重传反馈信道的优先级。
8. 根据权利要求 1-7任一项所述的方法, 其特征在于, 所述终端需要发送 所述低优先级信道上的信息时, 所述方法还包括: 判断所述信息是否为 对实时性要求高于设定时长的紧急信息, 如果是, 执行所述使用一个所 述高优先级信道发送所述信息; 或者停止一个或多个所述高优先级信道 的发送, 并启用所述氏优先级信道发送所述信息的步骤。
9. 一种终端上行信道的传输方法, 其特征在于, 包括:
所述终端同时传输包含发送 NAK信息的混和自适应重传反馈信道 的多个信道的信息, 所述发送 NAK信息的混和自适应重传反馈信道的 传输优先级最低。
10. 根据权利要求 9所述的方法, 其特征在于, 所述 NAK信息用于反馈除 所述终端是否成功接收到永久资源分配信令之外的信令。
11. 一种终端上行信道的传输方法, 其特征在于, 包括:
所述终端同时传输包含发送 ACK信息的混和自适应重传反馈信道 的多个信道的信息, 所述发送 ACK信息的混和自适应重传反馈信道的 传输优先级最高。
12. 根据权利要求 11所述的方法, 其特征在于, 所述多个信道至少还包括以 下之一:
快速反馈信道、 同步测距信道、 探测信道、 数据信道、 带宽请求信 道、 发送 NAK信息的混和自适应重传反馈信道。
13. 根据权利要求 12所述的方法, 其特征在于, 所述 NAK信息用于反馈除 所述终端是否成功接收到永久资源分配信令之外的信令。
14. 根据权利要求 11所述的方法, 其特征在于, 用于反馈所述终端成功接收 到永久资源分配信令的混和自适应重传反馈信道的传输优先级等于所述 发送 ACK信息的混和自适应重传反馈信道的传输优先级。
15. —种终端, 其特征在于, 所述终端包括:
状态确定模块, 用于所述终端的发射功率仅能满足特定优先级以上 的高优先级信道同时使用, 确定有一个优先级在所述特定优先级以下的 低优先级信道需要发送信息; 第一传输模块, 用于使用一个所述高优先级信道发送所述信息; 或 者停止一个或多个所述高优先级信道的发送, 并启用所述低优先级信道 发送所述信息。
16. 根据权利要求 15所述的终端, 其特征在于, 所述第一传输模块包括: 功 率分配单元, 用于同一信道上传输不同的内容时, 按照传输内容的优先 级为所述不同的内容分配发射功率。
17. 根据权利要求 15或 16所述的终端, 其特征在于, 所述终端还包括: 判 断单元, 用于需要发送所述低优先级信道上的信息时, 判断所述信息是 否为对实时性要求高于设定时长的紧急信息, 如果是, 触发所述第一传 输模块。
18. —种终端, 其特征在于, 所述终端包括:
第二传输模块, 用于同时传输包含发送 NAK信息的混和自适应重 传反馈信道的多个信道的信息, 所述发送 NAK信息的混和自适应重传 反馈信道的传输优先级最低。
19. 一种终端, 其特征在于, 所述终端包括:
第三传输模块, 用于同时传输包含发送 ACK信息的混和自适应重 传反馈信道的多个信道的信息, 所述发送 ACK信息的混和自适应重传 反馈信道的传输优先级最高。
PCT/CN2010/073772 2010-04-30 2010-06-10 终端上行信道的传输方法和终端 WO2011134180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010170175.9 2010-04-30
CN201010170175.9A CN102238644B (zh) 2010-04-30 2010-04-30 终端上行信道的传输方法和终端

Publications (1)

Publication Number Publication Date
WO2011134180A1 true WO2011134180A1 (zh) 2011-11-03

Family

ID=44860789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073772 WO2011134180A1 (zh) 2010-04-30 2010-06-10 终端上行信道的传输方法和终端

Country Status (2)

Country Link
CN (1) CN102238644B (zh)
WO (1) WO2011134180A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936300A (zh) * 2014-03-20 2015-09-23 中兴通讯股份有限公司 上行信道处理方法、终端、基站和系统
CN106465289A (zh) * 2014-05-08 2017-02-22 富士通株式会社 上行信道的功率控制方法、用户设备以及通信系统
CN104066193A (zh) * 2014-06-06 2014-09-24 电信科学技术研究院 一种调度方法及装置
CN105307010B (zh) * 2015-11-14 2018-01-26 华中科技大学 一种云视频直播平台的视频上传系统及方法
CN108811151B (zh) * 2017-05-05 2020-09-29 华为技术有限公司 一种发送上行信息的方法、终端设备以及接入网设备
JP7140847B2 (ja) 2018-05-11 2022-09-21 オッポ広東移動通信有限公司 アップリンク信号の送信方法及び端末機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1411182A (zh) * 2001-09-27 2003-04-16 华为技术有限公司 基于混合自动重传机制的功率控制方法
CN1997180A (zh) * 2006-01-05 2007-07-11 中兴通讯股份有限公司 集群无线通讯系统中前向媒体流发送方法
CN101478787A (zh) * 2009-01-15 2009-07-08 重庆重邮信科通信技术有限公司 一种td-hsupa资源调度方法
CN101651518A (zh) * 2009-05-22 2010-02-17 中山大学 一种hsdpa系统的快速分组调度方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3847737B2 (ja) * 2003-08-12 2006-11-22 松下電器産業株式会社 通信端末装置及び送信電力制御方法
KR101122079B1 (ko) * 2004-08-11 2012-03-15 엘지전자 주식회사 상향링크 패킷 전송에 있어서 수신성공여부신호 전송 방법및 수신성공여부 판단 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1411182A (zh) * 2001-09-27 2003-04-16 华为技术有限公司 基于混合自动重传机制的功率控制方法
CN1997180A (zh) * 2006-01-05 2007-07-11 中兴通讯股份有限公司 集群无线通讯系统中前向媒体流发送方法
CN101478787A (zh) * 2009-01-15 2009-07-08 重庆重邮信科通信技术有限公司 一种td-hsupa资源调度方法
CN101651518A (zh) * 2009-05-22 2010-02-17 中山大学 一种hsdpa系统的快速分组调度方法

Also Published As

Publication number Publication date
CN102238644B (zh) 2016-08-03
CN102238644A (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
US11722256B2 (en) Method and user equipment (UE) for managing HARQ procedure for multiple numerologies
US11818694B2 (en) Terminal and communication method
WO2019091233A1 (zh) 一种带宽切换方法及装置
US8804756B2 (en) Method and apparatus for improving interaction between scheduling request procedure and random access procedure
US10904919B2 (en) Information feedback method, base station, terminal and storage medium
RU2754679C2 (ru) Система, устройство и способ передачи данных
US20130301582A1 (en) Method for semi-persistent scheduling, user equipment and network device
WO2019174499A1 (zh) 下行、上行传输方法、装置及基站、终端、存储介质
WO2012022239A1 (zh) 一种控制信道传输和资源确定方法、基站及用户设备
WO2011134180A1 (zh) 终端上行信道的传输方法和终端
EP4274271A2 (en) Internet of vehicles data transmission method, transmission terminal and network side device
CN114009122A (zh) 用于多个配置授权的方法、通信装置和基础设施设备
CN107371246B (zh) 一种业务数据的传输方法、终端及网络侧设备
CN106301444A (zh) 射频处理设备及处理方法
WO2017054545A1 (zh) 一种数据传输方法及装置
WO2013135018A1 (zh) 一种时分双工自适应帧结构的重传方法及网络侧设备
CN114499771B (zh) Mbs的ack/nack信息的反馈与重传方法和装置
US20240008054A1 (en) Method and apparatus for hybrid automatic retransmission request
CN113708898A (zh) 一种通信方法及装置
WO2012071872A1 (zh) 数据传输方法及通信节点
WO2010108313A1 (zh) 一种信道分配方法及装置
EP3487100A1 (en) Harq response information transmission method and device
CN116471698A (zh) 一种信道复用传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850512

Country of ref document: EP

Kind code of ref document: A1