WO2011132978A2 - Fluorescence polarization analysis apparatus including dual light source - Google Patents

Fluorescence polarization analysis apparatus including dual light source Download PDF

Info

Publication number
WO2011132978A2
WO2011132978A2 PCT/KR2011/002912 KR2011002912W WO2011132978A2 WO 2011132978 A2 WO2011132978 A2 WO 2011132978A2 KR 2011002912 W KR2011002912 W KR 2011002912W WO 2011132978 A2 WO2011132978 A2 WO 2011132978A2
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
sample chamber
vertical
disposed
Prior art date
Application number
PCT/KR2011/002912
Other languages
French (fr)
Korean (ko)
Other versions
WO2011132978A3 (en
Inventor
김성우
김덕중
류호선
신수정
Original Assignee
나노바이오시스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노바이오시스(주) filed Critical 나노바이오시스(주)
Publication of WO2011132978A2 publication Critical patent/WO2011132978A2/en
Publication of WO2011132978A3 publication Critical patent/WO2011132978A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6445Measuring fluorescence polarisation

Definitions

  • the present invention relates to a fluorescence polarization analyzer for analyzing a sample solution containing a target material.
  • Fluorescence Polarization (FP) measurement which measures the degree of fluorescence polarization generated when a fluorescent substance is irradiated with polarized light in a sample solution, was devised by Perrin in 1926. Thereafter, the measurement method is very useful for quantitative and qualitative analysis of materials present in a sample solution by detecting a change in fluorescence signal according to a change in material properties. In particular, it can be usefully applied to the detection of chemical or biological or biochemical materials, and is widely used for analysis and diagnostic purposes in the fields of life sciences, genetic engineering and medicine, environment, food, military, marine, and livestock.
  • the present invention is to provide a fluorescence polarization analyzer that can exert an excellent performance in analyzing the target material contained in the sample solution.
  • One embodiment of the present invention comprises a sample chamber of a light transparent material for placing a sample solution containing a target material; A first light source and a second light source disposed separately from the sample chamber and disposed to emit light toward the sample chamber; A first vertical polarizer disposed between the sample chamber and the first light source and polarizing the vertical light of the light emitted from the first light source; A first horizontal polarizer disposed between the sample chamber and the second light source and polarizing horizontal light of light emitted from the second light source; A light detector spaced apart from the sample chamber; And a second vertical or horizontal polarizer disposed between the sample chamber and the light detector and polarizing the vertical or horizontal light of the light emitted from the sample chamber.
  • the target material may be selected from the group consisting of chemicals, sugars, peptides, nucleic acids, proteins, viruses, cells and organelles.
  • the target material may be a compound capable of forming a fluorescent material and a target material-fluorescent material complex.
  • the target substance-fluorescent substance complex may be an antigen-antibody complex.
  • the light transparent material is a plastic selected from the group consisting of polymethyl methacrylate (polymethylmethacrylate, PMMA), polycarbonate (PC), cycloolefin copolymer (COC) It may be a material or a glass material.
  • the sample chamber may further include a disposable sample container including the sample solution, which is removable within the sample chamber and has a light transparent material.
  • the first light source and the second light source may be a light emitting diode (LED) or a laser light source.
  • the first light source and the second light source may be spaced apart from the sample chamber at the same distance.
  • the first and second light sources may be spaced apart from each other to be symmetrical about the sample chamber.
  • the light detector may be spaced apart from the sample chamber perpendicular to the connection axis of the first light source and the second light source.
  • the light source may further include a first optical lens disposed between the first light source and the first vertical polarizer and configured to collect light emitted from the first light source. It may further include a second optical lens disposed between the horizontal polarizer, for collecting the light emitted from the second light source.
  • the light is disposed between the first optical lens and the first vertical polarizer and selects light having a predetermined wavelength with respect to the first light source from the light passing through the first optical lens.
  • a first light filter disposed between the second optical lens and the first horizontal polarizer, for selecting light of a predetermined wavelength with respect to the second light source from light passing through the second optical lens. It may further comprise a second light filter.
  • the light emitting device may further include a third optical lens disposed between the sample chamber and the second vertical or horizontal polarizer and collecting light emitted from the sample chamber.
  • a predetermined wavelength is disposed between the third optical lens and the second vertical or horizontal polarizer and is related to the first light source or the second light source from the light passing through the third optical lens. It may further include a third light filter for selecting the light.
  • the light emitting device may further include a fourth optical lens disposed between the second vertical or horizontal polarizers and collecting light emitted from the second vertical or horizontal polarizers.
  • FIG. 1 illustrates a fluorescence polarization analyzer according to an embodiment of the present invention.
  • FIG. 2 illustrates detailed modules included in a fluorescence polarization analyzer according to an embodiment of the present invention.
  • FIG. 3 is a comparison of the results of analyzing a target material included in a sample solution using another fluorescence polarization analyzer commercially available with a fluorescence polarization analyzer according to an embodiment of the present invention.
  • FIG. 1 illustrates a fluorescence polarization analyzer according to an embodiment of the present invention.
  • the fluorescence polarization analyzer 1 includes a sample chamber 100 made of a light transparent material for disposing a sample solution containing a target material; A first light source (200) and a second light source (300) disposed separately from the sample chamber (100) and disposed to emit light toward the sample chamber; A first vertical polarizer 400 disposed between the sample chamber 100 and the first light source 200 to polarize the vertical light of the light emitted from the first light source 200; A first horizontal polarizer (500) disposed between the sample chamber (100) and the second light source (300) and polarizing horizontal light of light emitted from the second light source (300); A light detector 600 spaced apart from the sample chamber 100; And a second vertical or horizontal polarizer 700 disposed between the sample chamber 100 and the light detector 100 and polarizing the vertical or horizontal light of the light emitted from the sample chamber 100.
  • the fluorescence polarization analyzer 1 includes a sample chamber 100 of a light transparent material for placing a sample solution (not shown) containing a target material (not shown).
  • the fluorescence polarization generally emits light having the same directionality as the received light when the fluorescent material receives light having a specific directionality, in which case the molecular weight of the fluorescent material and the viscosity of the solution containing the target material Or a phenomenon in which the directionality of the emitted light is different from the directionality of the received light according to a property including the density of the fluorescent material and the like.
  • the fluorescence polarization analyzer 1 refers to a device for measuring and analyzing a target substance included in a sample solution based on the principle of fluorescence polarization.
  • the fluorescence polarization analyzer 1 irradiates light (polarization) having a specific directionality to a sample solution containing a fluorescent material, and measures the degree of change in the directionality of light emitted from the sample solution (polarization degree) and An apparatus for analyzing to measure and analyze the target substance in the sample solution. Therefore, the fluorescence polarization analysis apparatus 1 according to an embodiment of the present invention is an apparatus including modules for performing the fluorescence polarization analysis reaction, and the detailed modules not described herein perform the fluorescence polarization analysis reaction. It is assumed on the premise that all of them are disclosed in the prior art for the following and provided in the obvious range.
  • the sample solution includes a target material and a fluorescent material.
  • the target material refers to any material to be measured and analyzed in the sample solution, and specifically, the target material includes a chemical or biological or biochemical target material.
  • the target material may include one selected from the group consisting of chemicals, sugars, peptides, nucleic acids, proteins, viruses, cells, and organelles.
  • the fluorescent material includes all materials that emit light having a specific direction according to the fluorescence polarization principle when light having a specific direction is irradiated.
  • the fluorescent material may be introduced into the sample solution to bind with the target material, form a target material-fluorescent material complex, and the target material-fluorescent material complex may be an antigen-antibody complex through an antigen-antibody reaction. Therefore, when light having a specific directionality is irradiated, the degree of polarization is changed by the change in the properties of the target material-fluorescent material composite, and the degree of polarization can be measured.
  • the sample chamber 100 may be made of a light transparent material or may include a light transparent material as a whole.
  • the light transparent material may be a plastic material or a glass material selected from the group consisting of polymethylmethacrylate (PMMA), polycarbonate (PC), and cycloolefin copolymer (COC). Can be.
  • the sample chamber 100 may directly receive a sample solution containing the target material.
  • the sample chamber 100 may further include a disposable sample container (not shown) including the sample solution, which is removable in the sample chamber 100 and has a light transparent material.
  • the disposable sample container may be made of a light transparent material or may include a light transparent material as a whole.
  • the light transparent material is a light transparent plastic, for example, a plastic material selected from the group consisting of polymethylmethacrylate (PMMA), polycarbonate (PC) or cycloolefin copolymer (COC) or It may be a glass material, but is not limited thereto.
  • the disposable sample container has an outer wall designed to be detachable from the sample chamber 100, and includes a receiving portion for accommodating the sample solution.
  • the outer wall is designed to minimize reflection or scattering of vertical light or horizontal light, and may have, for example, a cylindrical shape such as a cylindrical, triangular, or square pillar.
  • the disposable sample container may include a single or a plurality of receivers to contain a single or a plurality of sample solutions by injection molding or glass manufacturing method.
  • the fluorescence polarization analyzer 1 may be spaced apart from the sample chamber 100, and the first light source 200 and the first light source 200 disposed to emit light toward the sample chamber 100. 2 includes a light source 300.
  • the first light source 200 and the second light source 300 includes all light sources capable of emitting light.
  • the first light source and the second light source may be a light emitting diode (LED) or a laser light source. Can be.
  • LED light emitting diode
  • the fluorescence polarization analyzer 1 is disposed between the sample chamber 100 and the first light source 200 and polarizes vertical light of light emitted from the first light source 200.
  • a first horizontal polarizer 400 and a first horizontal polarizer disposed between the sample chamber 100 and the second light source 300 and polarizing horizontal light of light emitted from the second light source 300 ( 500).
  • the polarizers 400 and 500 polarize the light emitted from the light sources 200 and 300 to have a specific direction.
  • the first polarizer 400 polarizes vertical light of light emitted from the first light source 200
  • the second polarizer 500 polarizes horizontal light of light from the second light source 300.
  • a fluorescence polarization analyzer includes a single polarizer that polarizes light emitted from a single light source. Therefore, there is a need for a separate drive device for adjusting a single polarizer in a vertically polarized state or a horizontally polarized state in order to obtain light having a specific directionality, for example, vertical light or horizontal light from a single light source.
  • the first vertical polarizer 400 and the second horizontal polarizer 500 are the sample chamber 100 and the first light source 200.
  • the fluorescence polarization analyzer 1 By being disposed between and between the sample chamber 100 and the second light source 300, there is no need to adjust the position of the single polarizer, so that a separate polarizer for adjusting the single polarizer to the vertical polarization state or the horizontal polarization state is therefore required. Since no driving device is required, the fluorescence polarization analyzer can be miniaturized.
  • the first vertical polarizer 400 and the second horizontal polarizer 500 are the sample chamber 100 and the first light source 200. Between and between the sample chamber 100 and the second light source 300, respectively, the vertical light of the light emitted from the first light source 200 and the horizontal light of the light emitted from the second light source 300 Since the light is directly irradiated to the sample chamber 100, the light emitted from the target material in the sample chamber 100 may be individually measured.
  • the fluorescence polarization analyzer 1 is disposed between the photo detector 600 and the sample chamber 100 and the photo detector 100 spaced apart from the sample chamber 100, And a second vertical or horizontal polarizer 700 for polarizing the vertical or horizontal light of the light emitted from the sample chamber 100.
  • the light detector 600 measures and analyzes light emitted from the sample chamber 100.
  • the second vertical or horizontal polarizer 700 is disposed between the sample chamber 100 and the light detector 100.
  • the light emitted from the first light source 200 is vertical by the first vertical polarizer 400. Only the vertical light is polarized with light to be irradiated to the sample chamber 100 and thus has various directional light emitted from the sample chamber 100, for example, vertical light and horizontal light.
  • the light emitted from the second light source 300 is irradiated to the light detector 600 by a vertical polarizer, and is polarized into horizontal light by the first horizontal polarizer 500 and irradiated to the sample chamber 100.
  • the light detector 100 has two kinds of directional light irradiated to the sample chamber 100, that is, light having a single directional light emitted from a fluorescent material coupled to a target material from vertical light and horizontal light. That is, vertical light can be received as a detection signal.
  • the second horizontal polarizer 700 is disposed between the sample chamber 100 and the light detector 100, the light emitted from the first light source 200 is transmitted to the first vertical polarizer 400.
  • Polarized light into vertical light and irradiated to the sample chamber 100 and thus, only horizontal light among light having various directions, for example, vertical light and horizontal light emitted from the sample chamber 100, is
  • the light emitted from the second light source 300 is irradiated to the light detector 600 by a second horizontal polarizer, and the light is polarized into horizontal light by the first horizontal polarizer 500 and irradiated to the sample chamber 100.
  • the light detector 100 has two kinds of directional light irradiated to the sample chamber 100, that is, light having a single directional light emitted from a fluorescent material coupled to a target material from vertical light and horizontal light. That is, horizontal light can be received as a detection signal.
  • the light detector 600 receives an optical signal polarized by the second vertical or horizontal polarizer and measures and analyzes a target material included in the sample solution. Specifically, when the target solution is included in the sample solution included in the sample chamber 100, the material properties of the target material-fluorescent material composite are changed by the combination of the target material and the fluorescent material, and thus the sample chamber ( The direction of light emitted from the sample chamber 100 is changed relative to the direction of light irradiated to 100, and the light detector 600 measures and analyzes a change in polarization degree accordingly.
  • the polarization degree P of light emitted from the fluorescent material is represented by the following equation (1).
  • I H refers to the intensity of emitted light having the same polarization as incident light to the sample solution
  • I V refers to the intensity of emitted light having polarization perpendicular to the incident light to the sample solution. That is, the I H and I V are divided based on the polarization measurement direction of the light detector 600.
  • the sample chamber 100 Based on the first light source 200 passed through the second vertical polarizer 700 from the sample chamber 100 having the same polarization as the incident light (vertical light) passing through the first vertical polarizer 400.
  • the intensity of the emitted light (vertical light) is defined as I H and is perpendicular to the incident light (horizontal light) passing from the second light source 300 through the second horizontal polarizer 400 with respect to the sample chamber 100.
  • the intensity of the emitted light (vertical light) passing through the second vertical polarizer 700 from the sample chamber 100 having one polarization is defined as I V.
  • the first vertical light source 200 may be moved from the first light source 200 based on the sample chamber 100.
  • the intensity of the emitted light (horizontal light) passing through the second horizontal polarizer 700 from the sample chamber 100 having polarization perpendicular to the incident light (vertical light) passing through the polarizer 400 is defined as I V.
  • the intensity of the emitted light (horizontal light) passing through the polarizer 700 is defined as I H.
  • the polarization degree P has a specific value depending on the presence of the target substance in the sample solution, and the specific range according to the amount of the target substance in the sample solution, for example, the concentration. Will have the value of. For example, as the concentration of the target material in the sample solution increases, the degree of polarization P decreases.
  • FIG. 2 shows detailed modules included in the fluorescence polarization analyzer 1 according to an embodiment of the present invention.
  • the first light source 200 and the second light source 300 may be spaced apart from the sample chamber 100 by various distances, but are preferably spaced apart by the same distance, due to the characteristics of the optical system.
  • the first light source 200 and the second light source 300 may be spaced apart from each other so as to be symmetrical about the sample chamber 100.
  • the light detector 600 may be spaced apart from the sample chamber 100 at various distances, but in view of the characteristics of the optical system, preferably, the connection axis of the first light source 200 and the second light source 300 is Spaced vertically relative to.
  • the fluorescence polarization analyzer 1 may include first to fourth optical lenses 810, 820, 830, and 840.
  • the first to fourth optical lenses 810, 820, 830, and 840 collect the incident light and increase the intensity of the emitted light.
  • the first optical lens 810 is disposed between the first light source 200 and the first vertical polarizer 400, collects the light emitted from the first light source 200
  • the second optical lens ( 820 is disposed between the second light source 300 and the first horizontal polarizer 500, and collects the light emitted from the second light source 300
  • the third optical lens 830 is the sample chamber.
  • the fourth optical lens 840 is connected to the second vertical or horizontal polarizer 700.
  • the light is disposed between the light detectors 600 and collects light passing through the second vertical or horizontal polarizer 700.
  • the fluorescence polarization analyzer 1 may include first to third light filters 910, 920, and 930.
  • the first to third light filters 910, 920, and 930 select and emit light having a specific wavelength from incident light having various wavelength bands, and the light to the first to third light filters 910, 920, and 930. It may be variously selected depending on the light source to provide.
  • the first light filter 910 is disposed between the first optical lens 810 and the first vertical polarizer 400, and from the light passing through the first optical lens 810, the first light source 200. Select light with a predetermined wavelength with respect to For example, only light of the 488 nm wavelength band of light emitted from the first light source 200 may be passed.
  • the second light filter 920 is disposed between the second optical lens 820 and the first horizontal polarizer 500, and from the light passing through the second optical lens 820, the second light source ( Select light of a predetermined wavelength with respect to 300). For example, only light of the 488 nm wavelength band of light emitted from the second light source 300 may be passed.
  • the third light filter 930 is disposed between the third optical lens 830 and the second vertical or horizontal polarizer 700, and the third optical filter 930 is disposed from the light passing through the third optical lens 830.
  • the light of the predetermined wavelength with respect to the first light source 200 or the second light source 300 is selected. For example, only light having a wavelength of 533 nm may pass through light passing through the third optical lens 830.
  • FIG. 3 is a comparison of the results of analyzing a target material included in a sample solution by using a fluorescence polarization analyzer of another company commercialized with a fluorescence polarization analyzer according to an embodiment of the present invention.
  • the fluorescence polarization analyzer of another company used Sentry 100 of Diachemix was used for the fluorescence polarization reaction.
  • an Alftoxin kit (Kit) containing a control solution, an antibody solution, and an apratoxin FP tracer (including a flatoxin fluorescence polarization tracer) was used for the fluorescence polarization reaction.
  • the fluorescence polarization analysis reaction was performed by the fluorescence polarization analyzer according to an embodiment of the present invention.
  • About 200 ⁇ l of a solution containing about 20 ppb of Aflatoxin as a target substance about 100 ⁇ l of a solution containing about 10 ppb of apratoxin, and about 1 apratoxin in about 1 ml of the antibody solution.
  • About 10 ⁇ l of the solution containing ppb was added to prepare a control solution for each concentration of the target material. Thereafter, each of the control solutions was introduced into the sample chamber of the fluorescence polarization analyzer according to one embodiment of the present invention by about 300 ⁇ l, and each polarization degree (mP) was measured.
  • mP polarization degree
  • the fluorescence polarization analysis reaction by the fluorescence polarization analyzer of the other company was performed.
  • About 200 ⁇ l of a solution containing about 20 ppb of Aflatoxin as a target substance about 100 ⁇ l of a solution containing about 10 ppb of apratoxin, and about 1 apratoxin in about 1 ml of the antibody solution.
  • About 10 ⁇ l of the solution containing ppb was added to prepare a control solution for each concentration of the target material. Thereafter, 1.2 ml of each of the control solutions was introduced into the sample chamber of the third-party fluorescence polarization analyzer, and each polarization degree (mP) was measured.
  • mP polarization degree
  • the polarization value is lowered as the concentration of the target material increases. That is, the slopes of the first-order curves of equations (1) and (2) both have negative numbers.
  • the polarization degree value of the same concentration of the target material is higher by the fluorescence polarization analyzer according to an embodiment of the present invention. That is, when compared with the results of the fluorescence polarization analyzer of the other company, it can be seen that the fluorescence polarization analyzer according to an embodiment of the present invention is more sensitive to the same concentration of the target material.

Abstract

According to the present invention, a fluorescence polarization analysis apparatus including a dual light source is disclosed. According to the fluorescence polarization analysis apparatus of the present invention, a target material included in a sample solution can be efficiently analyzed.

Description

듀얼 광원을 포함하는 형광 편광 분석 장치Fluorescence polarization analyzer including dual light source
본 발명은 표적 물질을 포함하는 샘플 용액을 분석하기 위한 형광 편광 분석 장치에 관한 것이다.The present invention relates to a fluorescence polarization analyzer for analyzing a sample solution containing a target material.
샘플 용액 내에 형광 물질를 편광으로 조사했을 때 발생하는 형광 편광도를 측정하는 형광 편광(Fluorescence Polarization, FP) 측정법은 1926년 페린(Perrin)에 의해 고안되었다. 그 후 상기 측정법은 물질 특성 변화에 따른 형광 신호의 변화를 감지하여 샘플 용액 내에 존재하는 물질의 정량 및 정성 분석에 매우 유용하게 사용되고 있다. 특히, 화학적 또는 생물학적 또는 생화학적 물질의 검출에 유용하게 응용될 수 있어서, 생명과학, 유전공학 및 의료, 환경, 식품, 군사, 해양, 농축산 분야 등에서 분석 및 진단 목적으로 널리 사용되고 있다.Fluorescence Polarization (FP) measurement, which measures the degree of fluorescence polarization generated when a fluorescent substance is irradiated with polarized light in a sample solution, was devised by Perrin in 1926. Thereafter, the measurement method is very useful for quantitative and qualitative analysis of materials present in a sample solution by detecting a change in fluorescence signal according to a change in material properties. In particular, it can be usefully applied to the detection of chemical or biological or biochemical materials, and is widely used for analysis and diagnostic purposes in the fields of life sciences, genetic engineering and medicine, environment, food, military, marine, and livestock.
이에 따라, 샘플 용액 내에 존재하는 표적 물질을 분석하는데 있어서, 감도가 높고, 소형화된 형광 편광 분석 장치가 요구되고 있는 실정이다.Accordingly, there is a need for a highly sensitive and miniaturized fluorescence polarization analyzer for analyzing target substances present in sample solutions.
본 발명은 샘플 용액에 포함된 표적 물질을 분석하는데 탁월한 성능을 발휘할 수 있는 형광 편광 분석 장치를 제공하고자 한다.The present invention is to provide a fluorescence polarization analyzer that can exert an excellent performance in analyzing the target material contained in the sample solution.
본 발명의 일 구체예는 표적 물질을 포함하는 샘플 용액을 배치시키기 위한 광투명한 재질의 샘플 챔버; 상기 샘플 챔버으로부터 각각 이격 배치되고, 상기 샘플 챔버를 향하여 광을 방출하도록 배치된 제1 광원 및 제2 광원; 상기 샘플 챔버와 상기 제1 광원 사이에 배치되고, 상기 제1 광원으로부터 방출되는 광의 수직광을 편광하는 제1 수직 편광자; 상기 샘플 챔버와 상기 제2 광원 사이에 배치되고, 상기 제2 광원으로부터 방출되는 광의 수평광을 편광하는 제1 수평 편광자; 상기 샘플 챔버로부터 이격 배치된 광 검출부; 및 상기 샘플 챔버와 상기 광 검출부 사이에 배치되고, 상기 샘플 챔버로부터 방출되는 광의 수직광 또는 수평광을 편광하는 제2 수직 또는 수평 편광자를 포함하는 형광 편광 분석 장치를 제공한다.One embodiment of the present invention comprises a sample chamber of a light transparent material for placing a sample solution containing a target material; A first light source and a second light source disposed separately from the sample chamber and disposed to emit light toward the sample chamber; A first vertical polarizer disposed between the sample chamber and the first light source and polarizing the vertical light of the light emitted from the first light source; A first horizontal polarizer disposed between the sample chamber and the second light source and polarizing horizontal light of light emitted from the second light source; A light detector spaced apart from the sample chamber; And a second vertical or horizontal polarizer disposed between the sample chamber and the light detector and polarizing the vertical or horizontal light of the light emitted from the sample chamber.
본 발명의 일 구체예에 따르면, 상기 표적 물질은 화학물질, 당, 펩티드, 핵산, 단백질, 바이러스, 세포 및 세포소기관으로 구성되는 군으로부터 선택되는 것일 수 있다.According to one embodiment of the invention, the target material may be selected from the group consisting of chemicals, sugars, peptides, nucleic acids, proteins, viruses, cells and organelles.
본 발명의 일 구체예에 따르면, 상기 표적 물질은 형광 물질과 표적 물질-형광 물질 복합체를 형성할 수 있는 화합물일 수 있다.According to an embodiment of the present invention, the target material may be a compound capable of forming a fluorescent material and a target material-fluorescent material complex.
본 발명의 일 구체예에 따르면, 상기 표적 물질-형광 물질 복합체는 항원-항체 복합체일 수 있다.According to one embodiment of the invention, the target substance-fluorescent substance complex may be an antigen-antibody complex.
본 발명의 일 구체예에 따르면, 상기 광투명한 재질은 폴리메틸메타크릴레이트(polymethylmethacrylate, PMMA), 폴리카보네이트(polycarbonate, PC), 사이클로올레핀 코폴리머(cycloolefin copolymer, COC)로 구성된 군으로부터 선택되는 플라스틱 재질 또는 유리 재질일 수 있다. 본 발명의 일 구체예에 따르면, 상기 샘플 챔버는 상기 샘플 챔버 내부에 탈착 가능하고, 광투명한 재질을 갖는, 상기 샘플 용액을 포함하는 일회용 샘플 용기를 더 포함하는 것일 수 있다.According to one embodiment of the invention, the light transparent material is a plastic selected from the group consisting of polymethyl methacrylate (polymethylmethacrylate, PMMA), polycarbonate (PC), cycloolefin copolymer (COC) It may be a material or a glass material. According to an embodiment of the present invention, the sample chamber may further include a disposable sample container including the sample solution, which is removable within the sample chamber and has a light transparent material.
본 발명의 일 구체예에 따르면, 상기 제1 광원 및 제2 광원은 LED(Light Emitting Diode) 또는 레이저 광원일 수 있다.According to one embodiment of the invention, the first light source and the second light source may be a light emitting diode (LED) or a laser light source.
본 발명의 일 구체예에 따르면, 상기 제1 광원 및 제2 광원은 상기 샘플 챔버로부터 동일한 거리로 이격 배치될 수 있다.According to one embodiment of the invention, the first light source and the second light source may be spaced apart from the sample chamber at the same distance.
본 발명의 일 구체예에 따르면, 상기 제1 광원 및 제2 광원은 상기 샘플 챔버를 중심으로 대칭되도록 이격 배치될 수 있다.According to one embodiment of the present invention, the first and second light sources may be spaced apart from each other to be symmetrical about the sample chamber.
본 발명의 일 구체예에 따르면, 상기 광 검출부는 상기 샘플 챔버로부터 상기 제1 광원과 제2 광원의 연결 축에 대하여 수직으로 이격 배치될 수 있다.According to one embodiment of the invention, the light detector may be spaced apart from the sample chamber perpendicular to the connection axis of the first light source and the second light source.
본 발명의 일 구체예에 따르면, 상기 제1 광원과 제1 수직 편광자 사이에 배치되고, 상기 제1 광원으로부터 방출되는 광을 포집하는 제1 광 렌즈를 더 포함하고, 상기 제2 광원과 제1 수평 편광자 사이에 배치되고, 상기 제2 광원으로부터 방출되는 광을 포집하는 제2 광 렌즈를 더 포함할 수 있다.According to an embodiment of the present invention, the light source may further include a first optical lens disposed between the first light source and the first vertical polarizer and configured to collect light emitted from the first light source. It may further include a second optical lens disposed between the horizontal polarizer, for collecting the light emitted from the second light source.
본 발명의 일 구체예에 따르면, 상기 제1 광 렌즈와 제1 수직 편광자 사이에 배치되고, 상기 제1 광 렌즈를 통과한 광으로부터, 상기 제1 광원에 관한 미리 결정된 파장을 갖는 광을 선택하는 제1 광 여과기를 더 포함하고, 상기 제2 광 렌즈와 상기 제1 수평 편광자 사이에 배치되고, 상기 제2 광 렌즈를 통과한 광으로부터, 상기 제2 광원에 관한 미리 결정된 파장의 광을 선택하는 제2 광 여과기를 더 포함할 수 있다.According to an embodiment of the present invention, the light is disposed between the first optical lens and the first vertical polarizer and selects light having a predetermined wavelength with respect to the first light source from the light passing through the first optical lens. And a first light filter, disposed between the second optical lens and the first horizontal polarizer, for selecting light of a predetermined wavelength with respect to the second light source from light passing through the second optical lens. It may further comprise a second light filter.
본 발명의 일 구체예에 따르면, 상기 샘플 챔버와 상기 제2 수직 또는 수평 편광자 사이에 배치되고, 상기 샘플 챔버로부터 방출되는 광을 포집하는 제3 광 렌즈를 더 포함할 수 있다.According to an embodiment of the present invention, the light emitting device may further include a third optical lens disposed between the sample chamber and the second vertical or horizontal polarizer and collecting light emitted from the sample chamber.
본 발명의 일 구체예에 따르면, 상기 제3 광 렌즈와 상기 제2 수직 또는 수평 편광자 사이에 배치되고, 상기 제3 광 렌즈를 통과한 광으로부터 상기 제1 광원 또는 제2 광원에 관한 미리 결정된 파장의 광을 선택하는 제3 광 여과기를 더 포함할 수 있다.According to an embodiment of the present invention, a predetermined wavelength is disposed between the third optical lens and the second vertical or horizontal polarizer and is related to the first light source or the second light source from the light passing through the third optical lens. It may further include a third light filter for selecting the light.
본 발명의 일 구체예에 따르면, 상기 제2 수직 또는 수평 편광자 사이에 배치되고, 상기 제2 수직 또는 수평 편광자로부터 방출된 광을 포집하는 제4 광 렌즈를 더 포함할 수 있다.According to an embodiment of the present invention, the light emitting device may further include a fourth optical lens disposed between the second vertical or horizontal polarizers and collecting light emitted from the second vertical or horizontal polarizers.
본 발명에 따른 듀얼 광원을 포함하는 형광 편광 분석 장치를 제공함으로써 샘플 용액에 포함된 표적 물질을 효율적으로 분석할 수 있다.By providing a fluorescence polarization analyzer including a dual light source according to the present invention it is possible to efficiently analyze the target material contained in the sample solution.
도 1은 본 발명의 일 실시예에 따른 형광 편광 분석 장치를 도시한다.1 illustrates a fluorescence polarization analyzer according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 형광 편광 분석 장치에 포함된 상세한 모듈들을 도시한다.2 illustrates detailed modules included in a fluorescence polarization analyzer according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 형광 편광 분석 장치와 상용화된 다른 형광 편광 분석 장치를 이용하여, 샘플 용액에 포함된 표적 물질을 분석한 결과를 비교하여 도시한다.3 is a comparison of the results of analyzing a target material included in a sample solution using another fluorescence polarization analyzer commercially available with a fluorescence polarization analyzer according to an embodiment of the present invention.
이하, 도면을 참조하여 실시예들을 상세히 설명한다.Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 형광 편광 분석 장치를 도시한다.1 illustrates a fluorescence polarization analyzer according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 형광 편광 분석 장치(1)는 표적 물질을 포함하는 샘플 용액을 배치시키기 위한 광투명한 재질의 샘플 챔버(100); 상기 샘플 챔버(100)으로부터 각각 이격 배치되고, 상기 샘플 챔버를 향하여 광을 방출하도록 배치된 제1 광원(200) 및 제2 광원(300); 상기 샘플 챔버(100)와 상기 제1 광원(200) 사이에 배치되고, 상기 제1 광원(200)으로부터 방출되는 광의 수직광을 편광하는 제1 수직 편광자(400); 상기 샘플 챔버(100)와 상기 제2 광원(300) 사이에 배치되고, 상기 제2 광원(300)으로부터 방출되는 광의 수평광을 편광하는 제1 수평 편광자(500); 상기 샘플 챔버(100)로부터 이격 배치된 광 검출부(600); 및 상기 샘플 챔버(100)와 상기 광 검출부(100) 사이에 배치되고, 상기 샘플 챔버(100)로부터 방출되는 광의 수직광 또는 수평광을 편광하는 제2 수직 또는 수평 편광자(700)를 포함한다.The fluorescence polarization analyzer 1 according to an embodiment of the present invention includes a sample chamber 100 made of a light transparent material for disposing a sample solution containing a target material; A first light source (200) and a second light source (300) disposed separately from the sample chamber (100) and disposed to emit light toward the sample chamber; A first vertical polarizer 400 disposed between the sample chamber 100 and the first light source 200 to polarize the vertical light of the light emitted from the first light source 200; A first horizontal polarizer (500) disposed between the sample chamber (100) and the second light source (300) and polarizing horizontal light of light emitted from the second light source (300); A light detector 600 spaced apart from the sample chamber 100; And a second vertical or horizontal polarizer 700 disposed between the sample chamber 100 and the light detector 100 and polarizing the vertical or horizontal light of the light emitted from the sample chamber 100.
본 발명의 일 실시예에 따른 형광 편광 분석 장치(1)는 표적 물질(도시되지 않음)을 포함하는 샘플 용액(도시되지 않음)을 배치시키기 위한 광투명한 재질의 샘플 챔버(100)를 포함한다.The fluorescence polarization analyzer 1 according to an embodiment of the present invention includes a sample chamber 100 of a light transparent material for placing a sample solution (not shown) containing a target material (not shown).
상기 형광 편광(fluorescence polarization)은 일반적으로 형광 물질이 특정 방향성을 갖는 광을 수용하면 상기 수용된 광과 동일한 방향성을 갖는 광을 방출하는데, 이 경우 상기 형광 물질의 분자량, 표적 물질을 포함하는 용액의 점도, 또는 상기 형광 물질의 밀도 등을 포함하는 특성에 따라 상기 방출되는 광의 방향성이 상기 수용된 광의 방향성과 달라지는 현상을 말한다. 따라서, 상기 형광 편광 분석 장치(1)는 상기 형광 편광의 원리를 기초로, 샘플 용액에 포함된 표적 물질을 측정 및 분석하기 위한 장치를 말한다. 구체적으로, 상기 형광 편광 분석 장치(1)는 형광 물질이 들어 있는 샘플 용액에 특정 방향성을 갖는 광(편광)을 조사하고, 상기 샘플 용액으로부터 방출되는 광의 방향성의 변화 정도(편광도)를 측정 및 분석하여 상기 샘플 용액 내에 표적 물질을 측정 및 분석하기 위한 장치를 포함한다. 따라서, 본 발명의 일 구체예에 따른 형광 편광 분석 장치(1)는 상기 형광 편광 분석 반응을 수행하기 위한 모듈들을 포함하는 장치이며, 본 명세서에 기재되지 아니한 세부적인 모듈들은 형광 편광 분석 반응을 수행하기 위한 종래 기술 중 개시되고 자명한 범위에서 모두 구비하고 있는 것을 전제로 한다.The fluorescence polarization generally emits light having the same directionality as the received light when the fluorescent material receives light having a specific directionality, in which case the molecular weight of the fluorescent material and the viscosity of the solution containing the target material Or a phenomenon in which the directionality of the emitted light is different from the directionality of the received light according to a property including the density of the fluorescent material and the like. Accordingly, the fluorescence polarization analyzer 1 refers to a device for measuring and analyzing a target substance included in a sample solution based on the principle of fluorescence polarization. Specifically, the fluorescence polarization analyzer 1 irradiates light (polarization) having a specific directionality to a sample solution containing a fluorescent material, and measures the degree of change in the directionality of light emitted from the sample solution (polarization degree) and An apparatus for analyzing to measure and analyze the target substance in the sample solution. Therefore, the fluorescence polarization analysis apparatus 1 according to an embodiment of the present invention is an apparatus including modules for performing the fluorescence polarization analysis reaction, and the detailed modules not described herein perform the fluorescence polarization analysis reaction. It is assumed on the premise that all of them are disclosed in the prior art for the following and provided in the obvious range.
상기 샘플 용액은 표적 물질 및 형광 물질을 포함한다. 상기 표적 물질은 상기 샘플 용액 내에서 측정 및 분석하고자 하는 모든 물질을 말하며, 구체적으로 상기 표적 물질은 화학적 또는 생물학적 또는 생화학적 표적 물질을 포함한다. 예를 들어, 상기 표적 물질은 화학물질, 당, 펩티드, 핵산, 단백질, 바이러스, 세포 및 세포소기관으로 구성되는 군으로부터 선택되는 것을 포함할 수 있다. 또한, 상기 형광 물질은 상기 형광 편광 원리에 의해, 특정 방향성을 갖는 광이 조사된 경우 그에 따라 특정 방향성을 갖는 광을 방출하는 모든 물질을 포함한다. 상기 형광 물질은 상기 샘플 용액에 도입되어 표적 물질과 결합하고, 표적 물질-형광 물질 복합체를 형성할 수 있고, 상기 표적 물질-형광 물질 복합체는 항원-항체 반응을 통한 항원-항체 복합체일 수 있다. 따라서, 특정 방향성을 갖는 광이 조사될 경우 상기 표적 물질-형광 물질 복합체의 특성 변화에 의해 편광도가 변하게 되고, 그러한 편광도를 측정할 수 있다.The sample solution includes a target material and a fluorescent material. The target material refers to any material to be measured and analyzed in the sample solution, and specifically, the target material includes a chemical or biological or biochemical target material. For example, the target material may include one selected from the group consisting of chemicals, sugars, peptides, nucleic acids, proteins, viruses, cells, and organelles. In addition, the fluorescent material includes all materials that emit light having a specific direction according to the fluorescence polarization principle when light having a specific direction is irradiated. The fluorescent material may be introduced into the sample solution to bind with the target material, form a target material-fluorescent material complex, and the target material-fluorescent material complex may be an antigen-antibody complex through an antigen-antibody reaction. Therefore, when light having a specific directionality is irradiated, the degree of polarization is changed by the change in the properties of the target material-fluorescent material composite, and the degree of polarization can be measured.
상기 샘플 챔버(100)는 광투명한 재질로 구성되거나 또는 광투명한 재질을 포함하여 전체적으로 광투과성을 갖는다. 예를 들어, 상기 광투명한 재질은 폴리메틸메타크릴레이트(polymethylmethacrylate, PMMA), 폴리카보네이트(polycarbonate, PC), 사이클로올레핀 코폴리머(cycloolefin copolymer, COC)로 구성된 군으로부터 선택되는 플라스틱 재질 또는 유리 재질일 수 있다. 또한, 상기 샘플 챔버(100)는 상기 표적 물질을 포함하는 샘플 용액을 직접 수용할 수 있다. 또한, 상기 샘플 챔버(100)는 상기 샘플 챔버(100) 내부에 탈착 가능하고, 광투명한 재질을 갖는, 상기 샘플 용액을 포함하는 일회용 샘플 용기(도시되지 않음)를 더 포함할 수 있다. 상기 일회용 샘플 용기는 광투명한 재질로 구성되거나 또는 광투명한 재질을 포함하여 전체적으로 광투과성을 갖는다. 상기 광투명한 재질은 광투명한 플라스틱, 예를 들어, 폴리메틸메타크릴레이트(polymethylmethacrylate, PMMA), 폴리카보네이트(polycarbonate, PC) 또는 사이클로올레핀 코폴리머(cycloolefin copolymer, COC)로 구성된 군으로부터 선택된 플라스틱 재질 또는 유리 재질일 수 있으나, 이에 제한되지는 않는다. 또한 상기 일회용 샘플 용기는 상기 샘플 챔버(100)에 탈착 가능하도록 그 외벽이 설계되고, 샘플 용액을 수용하기 위한 수용부를 포함한다. 상기 외벽은 수직광 또는 수평광의 반사 또는 산란을 최소화하기 위한 구조로 설계되고, 예를 들어 원통형, 삼각 또는 사각기둥과 같은 각통형 형상을 가질 수 있다. 또한, 상기 일회용 샘플 용기는 사출성형 또는 유리 제조 방법 등에 의해 단일 또는 복수의 샘플 용액을 포함하도록 단일 또는 복수의 수용부를 포함할 수 있다. 상기 일회용 샘플 용기를 사용함으로써, 상기 형광 편광 분석 장치(1)의 사용 수명을 늘리고, 상기 형광 편광 반응의 신뢰성을 더욱 확보할 수 있다.The sample chamber 100 may be made of a light transparent material or may include a light transparent material as a whole. For example, the light transparent material may be a plastic material or a glass material selected from the group consisting of polymethylmethacrylate (PMMA), polycarbonate (PC), and cycloolefin copolymer (COC). Can be. In addition, the sample chamber 100 may directly receive a sample solution containing the target material. In addition, the sample chamber 100 may further include a disposable sample container (not shown) including the sample solution, which is removable in the sample chamber 100 and has a light transparent material. The disposable sample container may be made of a light transparent material or may include a light transparent material as a whole. The light transparent material is a light transparent plastic, for example, a plastic material selected from the group consisting of polymethylmethacrylate (PMMA), polycarbonate (PC) or cycloolefin copolymer (COC) or It may be a glass material, but is not limited thereto. In addition, the disposable sample container has an outer wall designed to be detachable from the sample chamber 100, and includes a receiving portion for accommodating the sample solution. The outer wall is designed to minimize reflection or scattering of vertical light or horizontal light, and may have, for example, a cylindrical shape such as a cylindrical, triangular, or square pillar. In addition, the disposable sample container may include a single or a plurality of receivers to contain a single or a plurality of sample solutions by injection molding or glass manufacturing method. By using the said disposable sample container, the service life of the said fluorescence polarization analyzer 1 can be extended, and the reliability of the said fluorescence polarization reaction can be ensured further.
본 발명의 일 실시예에 따른 형광 편광 분석 장치(1)는 상기 샘플 챔버(100)으로부터 각각 이격 배치되고, 상기 샘플 챔버(100)를 향하여 광을 방출하도록 배치된 제1 광원(200) 및 제2 광원(300)을 포함한다. The fluorescence polarization analyzer 1 according to the exemplary embodiment of the present invention may be spaced apart from the sample chamber 100, and the first light source 200 and the first light source 200 disposed to emit light toward the sample chamber 100. 2 includes a light source 300.
상기 제1 광원(200) 및 제2 광원(300)은 광을 방출할 수 있는 모든 광원을 포함하며, 예를 들어, 상기 제1 광원 및 제2 광원은 LED(Light Emitting Diode) 또는 레이저 광원일 수 있다.The first light source 200 and the second light source 300 includes all light sources capable of emitting light. For example, the first light source and the second light source may be a light emitting diode (LED) or a laser light source. Can be.
본 발명의 일 실시예에 따른 형광 편광 분석 장치(1)는 상기 샘플 챔버(100)와 상기 제1 광원(200) 사이에 배치되고, 상기 제1 광원(200)으로부터 방출되는 광의 수직광을 편광하는 제1 수직 편광자(400), 및 상기 샘플 챔버(100)와 상기 제2 광원(300) 사이에 배치되고, 상기 제2 광원(300)으로부터 방출되는 광의 수평광을 편광하는 제1 수평 편광자(500)를 포함한다.The fluorescence polarization analyzer 1 according to an exemplary embodiment of the present invention is disposed between the sample chamber 100 and the first light source 200 and polarizes vertical light of light emitted from the first light source 200. A first horizontal polarizer 400 and a first horizontal polarizer disposed between the sample chamber 100 and the second light source 300 and polarizing horizontal light of light emitted from the second light source 300 ( 500).
상기 편광자(400, 500)는 상기 광원(200, 300)으로부터 방출되는 광을 특정 방향성을 갖도록 편광하는 것이다. 상기 제1 편광자(400)는 상기 제1 광원(200)으로부터 방출되는 광의 수직광을 편광하는 것이고, 상기 제2 편광자(500)는 상기 제2 광원(300)으로부터 광의 수평광을 편광하는 것이다. 일반적으로, 형광 편광 분석 장치는 단일 광원으로부터 방출되는 광을 편광하는 단일 편광자를 포함한다. 따라서, 단일 광원으로부터 특정 방향성을 갖는 광, 예를 들어, 수직광 또는 수평광을 얻기 위해 수직 편광 상태 또는 수평 편광 상태로 단일 편광자를 조절하는 별도의 구동 장치가 요구되고, 이러한 별도의 구동 장치에 의해 형광 편광 분석 장치의 전체 크기가 커지는 단점을 갖는다. 그러나, 본 발명의 일 실시예에 따른 형광 편광 분석 장치(1)에 따르면, 제1 수직 편광자(400) 및 제2 수평 편광자(500)는 상기 샘플 챔버(100)와 상기 제1 광원(200) 사이 및 상기 샘플 챔버(100)와 상기 제2 광원(300) 사이에 각각 배치됨으로써, 단일 편광자의 위치 조절이 요구되지 않고, 이에 따라 단일 편광자를 수직 편광 상태 또는 수평 편광 상태로 조절하기 위한 별도의 구동 장치가 요구되지 않기 때문에 형광 편광 분석 장치의 소형화가 가능하다. 또한, 본 발명의 일 실시예에 따른 형광 편광 분석 장치(1)에 따르면, 제1 수직 편광자(400) 및 제2 수평 편광자(500)는 상기 샘플 챔버(100)와 상기 제1 광원(200) 사이 및 상기 샘플 챔버(100)와 상기 제2 광원(300) 사이에 각각 배치됨으로써, 상기 제1 광원(200)으로부터 방출되는 광의 수직광 및 상기 제2 광원(300)으로터 방출되는 광의 수평광이 상기 샘플 챔버(100)에 직접 조사되기 때문에 상기 샘플 챔버(100) 내의 표적 물질로부터 방출되는 광을 개별적으로 측정할 수 있다.The polarizers 400 and 500 polarize the light emitted from the light sources 200 and 300 to have a specific direction. The first polarizer 400 polarizes vertical light of light emitted from the first light source 200, and the second polarizer 500 polarizes horizontal light of light from the second light source 300. In general, a fluorescence polarization analyzer includes a single polarizer that polarizes light emitted from a single light source. Therefore, there is a need for a separate drive device for adjusting a single polarizer in a vertically polarized state or a horizontally polarized state in order to obtain light having a specific directionality, for example, vertical light or horizontal light from a single light source. This has the disadvantage of increasing the overall size of the fluorescence polarization analyzer. However, according to the fluorescence polarization analyzer 1 according to an embodiment of the present invention, the first vertical polarizer 400 and the second horizontal polarizer 500 are the sample chamber 100 and the first light source 200. By being disposed between and between the sample chamber 100 and the second light source 300, there is no need to adjust the position of the single polarizer, so that a separate polarizer for adjusting the single polarizer to the vertical polarization state or the horizontal polarization state is therefore required. Since no driving device is required, the fluorescence polarization analyzer can be miniaturized. In addition, according to the fluorescence polarization analyzer 1 according to an embodiment of the present invention, the first vertical polarizer 400 and the second horizontal polarizer 500 are the sample chamber 100 and the first light source 200. Between and between the sample chamber 100 and the second light source 300, respectively, the vertical light of the light emitted from the first light source 200 and the horizontal light of the light emitted from the second light source 300 Since the light is directly irradiated to the sample chamber 100, the light emitted from the target material in the sample chamber 100 may be individually measured.
본 발명의 일 실시예에 따른 형광 편광 분석 장치(1)는 상기 샘플 챔버(100)로부터 이격 배치된 광 검출부(600) 및 상기 샘플 챔버(100)와 상기 광 검출부(100) 사이에 배치되고, 상기 샘플 챔버(100)로부터 방출되는 광의 수직광 또는 수평광을 편광하는 제2 수직 또는 수평 편광자(700)를 포함한다.The fluorescence polarization analyzer 1 according to an embodiment of the present invention is disposed between the photo detector 600 and the sample chamber 100 and the photo detector 100 spaced apart from the sample chamber 100, And a second vertical or horizontal polarizer 700 for polarizing the vertical or horizontal light of the light emitted from the sample chamber 100.
상기 광 검출부(600)는 상기 샘플 챔버(100)로부터 방출된 광을 측정 및 분석하는 것이다. 상기 제2 수직 또는 수평 편광자(700)는 상기 샘플 챔버(100)와 상기 광 검출부(100) 사이에 배치된다.The light detector 600 measures and analyzes light emitted from the sample chamber 100. The second vertical or horizontal polarizer 700 is disposed between the sample chamber 100 and the light detector 100.
만약 상기 샘플 챔버(100)와 상기 광 검출부(100) 사이에 제2 수직 편광자(700)가 배치되면, 상기 제1 광원(200)으로부터 방출되는 광은 상기 제1 수직 편광자(400)에 의해 수직광으로 편광되어 상기 샘플 챔버(100)에 조사되고, 그에 따라 상기 샘플 챔버(100)로부터 방출되는 다양한 방향성을 갖는 광들, 예를 들어 수직광 및 수평광을 포함하는 광들 중 수직광만이 상기 제2 수직 편광자에 의해 광 검출부(600)으로 조사되고, 상기 제2 광원(300)으로부터 방출되는 광은 상기 제1 수평 편광자(500)에 의해 수평광으로 편광되어 상기 샘플 챔버(100)에 조사되고, 그에 따라 상기 샘플 챔버(100)로부터 방출되는 다양한 방향성을 갖는 광들, 예를 들어 수직광 및 수평광을 포함하는 광들 중 수직광만이 상기 제2 수직 편광자에 의해 광 검출부(600)으로 조사될 수 있다. 따라서, 이 경우 상기 광 검출부(100)는 상기 샘플 챔버(100)에 조사된 두 종류의 방향성을 갖는 광, 즉 수직광 및 수평광으로부터 표적 물질에 결합된 형광 물질로부터 방출되는 단일 방향성을 갖는 광, 즉 수직광을 검출 신호로 받아들일 수 있다.If the second vertical polarizer 700 is disposed between the sample chamber 100 and the light detector 100, the light emitted from the first light source 200 is vertical by the first vertical polarizer 400. Only the vertical light is polarized with light to be irradiated to the sample chamber 100 and thus has various directional light emitted from the sample chamber 100, for example, vertical light and horizontal light. The light emitted from the second light source 300 is irradiated to the light detector 600 by a vertical polarizer, and is polarized into horizontal light by the first horizontal polarizer 500 and irradiated to the sample chamber 100. Accordingly, only vertical light among light having various directional light emitted from the sample chamber 100, for example, vertical light and horizontal light, may be irradiated to the light detector 600 by the second vertical polarizer. . Therefore, in this case, the light detector 100 has two kinds of directional light irradiated to the sample chamber 100, that is, light having a single directional light emitted from a fluorescent material coupled to a target material from vertical light and horizontal light. That is, vertical light can be received as a detection signal.
또한, 만약 상기 샘플 챔버(100)와 상기 광 검출부(100) 사이에 제2 수평 편광자(700)가 배치되면, 상기 제1 광원(200)으로부터 방출되는 광은 상기 제1 수직 편광자(400)에 의해 수직광으로 편광되어 상기 샘플 챔버(100)에 조사되고, 그에 따라 상기 샘플 챔버(100)로부터 방출되는 다양한 방향성을 갖는 광들, 예를 들어 수직광 및 수평광을 포함하는 광들 중 수평광만이 상기 제2 수평 편광자에 의해 광 검출부(600)으로 조사되고, 상기 제2 광원(300)으로부터 방출되는 광은 상기 제1 수평 편광자(500)에 의해 수평광으로 편광되어 상기 샘플 챔버(100)에 조사되고, 그에 따라 상기 샘플 챔버(100)로부터 방출되는 다양한 방향성을 갖는 광들, 예를 들어 수직광 및 수평광을 포함하는 광들 중 수평광만이 상기 제2 수평 편광자에 의해 광 검출부(600)으로 조사될 수 있다. 따라서, 이 경우 상기 광 검출부(100)는 상기 샘플 챔버(100)에 조사된 두 종류의 방향성을 갖는 광, 즉 수직광 및 수평광으로부터 표적 물질에 결합된 형광 물질로부터 방출되는 단일 방향성을 갖는 광, 즉 수평광을 검출 신호로 받아들일 수 있다.In addition, if the second horizontal polarizer 700 is disposed between the sample chamber 100 and the light detector 100, the light emitted from the first light source 200 is transmitted to the first vertical polarizer 400. Polarized light into vertical light and irradiated to the sample chamber 100, and thus, only horizontal light among light having various directions, for example, vertical light and horizontal light emitted from the sample chamber 100, is The light emitted from the second light source 300 is irradiated to the light detector 600 by a second horizontal polarizer, and the light is polarized into horizontal light by the first horizontal polarizer 500 and irradiated to the sample chamber 100. Therefore, only horizontal light among light having various directional light emitted from the sample chamber 100, for example, vertical light and horizontal light, may be irradiated to the light detector 600 by the second horizontal polarizer. Can be. Therefore, in this case, the light detector 100 has two kinds of directional light irradiated to the sample chamber 100, that is, light having a single directional light emitted from a fluorescent material coupled to a target material from vertical light and horizontal light. That is, horizontal light can be received as a detection signal.
상기 광 검출부(600)는 상기 제2 수직 또는 수평 편광자에 의해 편광된 광 신호를 받아들여 상기 샘플 용액에 포함된 표적 물질을 측정 및 분석한다. 구체적으로, 상기 샘플 챔버(100)에 포함된 샘플 용액에 표적 물질이 포함된 경우 상기 표적 물질과 형광 물질의 결합에 의해 상기 표적 물질-형광 물질 복합체의 물질 특성이 변하고, 이에 따라 상기 샘플 챔버(100)에 조사되는 광의 방향성 대비 상기 샘플 챔버(100)로부터 방출되는 광의 방향성은 변하고, 이에 따른 편광도의 변화를 상기 광 검출부(600)는 측정 및 분석한다.The light detector 600 receives an optical signal polarized by the second vertical or horizontal polarizer and measures and analyzes a target material included in the sample solution. Specifically, when the target solution is included in the sample solution included in the sample chamber 100, the material properties of the target material-fluorescent material composite are changed by the combination of the target material and the fluorescent material, and thus the sample chamber ( The direction of light emitted from the sample chamber 100 is changed relative to the direction of light irradiated to 100, and the light detector 600 measures and analyzes a change in polarization degree accordingly.
일반적으로 형광 물질로부터 방출되는 광의 편광도(P)는 하기 식 (1)과 같다.In general, the polarization degree P of light emitted from the fluorescent material is represented by the following equation (1).
Figure PCTKR2011002912-appb-I000001
Figure PCTKR2011002912-appb-I000001
식 (1)Formula (1)
상기 IH는 샘플 용액에 대한 입사광과 동일한 편광을 갖는 방출광의 세기를 의미하고, 상기 IV는 샘플 용액에 대한 입사광과 수직한 편광을 갖는 방출광의 세기를 의미한다. 즉, 상기 IH 및 IV는 상기 광 검출부(600)의 편광 측정 방향을 기준으로 구분된다.I H refers to the intensity of emitted light having the same polarization as incident light to the sample solution, and I V refers to the intensity of emitted light having polarization perpendicular to the incident light to the sample solution. That is, the I H and I V are divided based on the polarization measurement direction of the light detector 600.
본 발명의 일 실시예에 따른 형광 편광 장치(1)에 따르면, 만약 상기 샘플 챔버(100)와 상기 광 검출부(100) 사이에 제2 수직 편광자(700)가 배치되면, 상기 샘플 챔버(100)을 기준으로 상기 제1 광원(200)으로부터 상기 제1 수직 편광자(400)를 통과한 입사광(수직광)과 동일한 편광을 갖는 상기 샘플 챔버(100)로부터 상기 제2 수직 편광자(700)을 통과한 방출광(수직광)의 세기는 IH로 정의되고, 상기 샘플 챔버(100)을 기준으로 상기 제2 광원(300)으로부터 상기 제2 수평 편광자(400)를 통과한 입사광(수평광)과 수직한 편광을 갖는 상기 샘플 챔버(100)로부터 상기 제2 수직 편광자(700)을 통과한 방출광(수직광)의 세기는 IV로 정의된다. 또한, 만약 상기 샘플 챔버(100)와 상기 광 검출부(100) 사이에 제2 수평 편광자(700)가 배치되면, 상기 샘플 챔버(100)을 기준으로 상기 제1 광원(200)으로부터 상기 제1 수직 편광자(400)를 통과한 입사광(수직광)과 수직한 편광을 갖는 상기 샘플 챔버(100)로부터 상기 제2 수평 편광자(700)을 통과한 방출광(수평광)의 세기는 IV로 정의되고, 상기 샘플 챔버(100)을 기준으로 상기 제2 광원(300)으로부터 상기 제2 수평 편광자(400)를 통과한 입사광(수평광)과 동일한 편광을 갖는 상기 샘플 챔버(100)로부터 상기 제2 수평 편광자(700)을 통과한 방출광(수평광)의 세기는 IH로 정의된다.According to the fluorescent polarizer 1 according to the exemplary embodiment of the present invention, if the second vertical polarizer 700 is disposed between the sample chamber 100 and the light detector 100, the sample chamber 100 Based on the first light source 200 passed through the second vertical polarizer 700 from the sample chamber 100 having the same polarization as the incident light (vertical light) passing through the first vertical polarizer 400. The intensity of the emitted light (vertical light) is defined as I H and is perpendicular to the incident light (horizontal light) passing from the second light source 300 through the second horizontal polarizer 400 with respect to the sample chamber 100. The intensity of the emitted light (vertical light) passing through the second vertical polarizer 700 from the sample chamber 100 having one polarization is defined as I V. In addition, if the second horizontal polarizer 700 is disposed between the sample chamber 100 and the light detector 100, the first vertical light source 200 may be moved from the first light source 200 based on the sample chamber 100. The intensity of the emitted light (horizontal light) passing through the second horizontal polarizer 700 from the sample chamber 100 having polarization perpendicular to the incident light (vertical light) passing through the polarizer 400 is defined as I V. And the second horizontal from the sample chamber 100 having the same polarization as the incident light (horizontal light) passing through the second horizontal polarizer 400 from the second light source 300 with respect to the sample chamber 100. The intensity of the emitted light (horizontal light) passing through the polarizer 700 is defined as I H.
따라서, 상기 식 (1)에 따르면, 편광도(P)는 상기 샘플 용액 내에 표적 물질의 존재에 따라 특정 값을 갖게 되고, 상기 샘플 용액 내에 표적 물질의 양, 예를 들어, 농도에 따라 특정 범위의 값을 갖게 된다. 예를 들어, 상기 샘플 용액 내에 표적 물질의 농도가 증가하면, 상기 편광도(P)는 감소하게 된다.Therefore, according to Equation (1), the polarization degree P has a specific value depending on the presence of the target substance in the sample solution, and the specific range according to the amount of the target substance in the sample solution, for example, the concentration. Will have the value of. For example, as the concentration of the target material in the sample solution increases, the degree of polarization P decreases.
도 2는 본 발명의 일 실시예에 따른 형광 편광 분석 장치(1)에 포함된 상세한 모듈들을 도시한다.2 shows detailed modules included in the fluorescence polarization analyzer 1 according to an embodiment of the present invention.
상기 제1 광원(200) 및 제2 광원(300)는 상기 샘플 챔버(100)로부터 다양한 거리로 이격 배치될 수 있으나, 광학 시스템의 특성상, 바람직하게는 동일한 거리로 이격 배치된다. 또한, 상기 제1 광원(200) 및 제2 광원(300)은 상기 샘플 챔버(100)를 중심으로 대칭되도록 이격 배치될 수 있다. 또한, 상기 광 검출부(600)는 상기 샘플 챔버(100)로부터 다양한 거리로 이격 배치될 수 있으나, 광학 시스템의 특성상, 바람직하게는 상기 제1 광원(200)과 제2 광원(300)의 연결 축에 대하여 수직으로 이격 배치된다.The first light source 200 and the second light source 300 may be spaced apart from the sample chamber 100 by various distances, but are preferably spaced apart by the same distance, due to the characteristics of the optical system. In addition, the first light source 200 and the second light source 300 may be spaced apart from each other so as to be symmetrical about the sample chamber 100. In addition, the light detector 600 may be spaced apart from the sample chamber 100 at various distances, but in view of the characteristics of the optical system, preferably, the connection axis of the first light source 200 and the second light source 300 is Spaced vertically relative to.
본 발명의 일 실시예에 따른 형광 편광 분석 장치(1)는 제1 내지 제4 광 렌즈(810, 820, 830, 840)를 포함할 수 있다. 상기 제1 내지 제4 광 렌즈(810, 820, 830, 840)는 그 입사광을 포집하여 그 방출광의 강도를 증가시키는 역할을 수행한다. 상기 제1 광 렌즈(810)는 상기 제1 광원(200)과 제1 수직 편광자(400) 사이에 배치되고, 상기 제1 광원(200)으로부터 방출되는 광을 포집하고, 상기 제2 광 렌즈(820)는 상기 제2 광원(300)과 제1 수평 편광자(500) 사이에 배치되고, 상기 제2 광원(300)으로부터 방출되는 광을 포집하고, 상기 제3 광 렌즈(830)는 상기 샘플 챔버(100)와 상기 제2 수직 또는 수평 편광자(700) 사이에 배치되고, 상기 샘플 챔버(100)로부터 방출되는 광을 포집하며, 상기 제4 광 렌즈(840)는 상기 제2 수직 또는 수평 편광자와 상기 광 검출부(600) 사이에 배치되고, 상기 제2 수직 또는 수평 편광자(700)를 통과한 광을 포집한다.The fluorescence polarization analyzer 1 according to the exemplary embodiment of the present invention may include first to fourth optical lenses 810, 820, 830, and 840. The first to fourth optical lenses 810, 820, 830, and 840 collect the incident light and increase the intensity of the emitted light. The first optical lens 810 is disposed between the first light source 200 and the first vertical polarizer 400, collects the light emitted from the first light source 200, and the second optical lens ( 820 is disposed between the second light source 300 and the first horizontal polarizer 500, and collects the light emitted from the second light source 300, and the third optical lens 830 is the sample chamber. Disposed between the second vertical or horizontal polarizer 700 and collecting light emitted from the sample chamber 100, wherein the fourth optical lens 840 is connected to the second vertical or horizontal polarizer 700. The light is disposed between the light detectors 600 and collects light passing through the second vertical or horizontal polarizer 700.
본 발명의 일 실시예에 따른 형광 편광 분석 장치(1)는 제1 내지 제3 광 여과기(910, 920, 930)를 포함할 수 있다. 상기 제1 내지 제3 광 여과기(910, 920, 930)는 다양한 파장대를 갖는 입사광 중 특정 파장의 광을 선택하여 방출하는 것으로, 상기 제1 내지 제3 광 여과기(910, 920, 930)에 광을 제공하는 광원에 따라 다양하게 선택될 수 있다.The fluorescence polarization analyzer 1 according to the exemplary embodiment of the present invention may include first to third light filters 910, 920, and 930. The first to third light filters 910, 920, and 930 select and emit light having a specific wavelength from incident light having various wavelength bands, and the light to the first to third light filters 910, 920, and 930. It may be variously selected depending on the light source to provide.
상기 제1 광 여과기(910)는 상기 제1 광 렌즈(810)와 제1 수직 편광자(400) 사이에 배치되고, 상기 제1 광 렌즈(810)를 통과한 광으로부터, 상기 제1 광원(200)에 관한 미리 결정된 파장을 갖는 광을 선택한다. 예를 들어, 상기 제1 광원(200)으로부터 방출되는 광 중 488 nm 파장대의 광만을 통과시킬 수 있다.The first light filter 910 is disposed between the first optical lens 810 and the first vertical polarizer 400, and from the light passing through the first optical lens 810, the first light source 200. Select light with a predetermined wavelength with respect to For example, only light of the 488 nm wavelength band of light emitted from the first light source 200 may be passed.
상기 제2 광 여과기(920)는 상기 제2 광 렌즈(820)와 상기 제1 수평 편광자(500) 사이에 배치되고, 상기 제2 광 렌즈(820)를 통과한 광으로부터, 상기 제2 광원(300)에 관한 미리 결정된 파장의 광을 선택한다. 예를 들어, 상기 제2 광원(300)으로부터 방출되는 광 중 488 nm 파장대의 광만을 통과시킬 수 있다. 또한, 상기 제3 광 여과기(930)는 상기 제3 광 렌즈(830)와 상기 제2 수직 또는 수평 편광자(700) 사이에 배치되고, 상기 제3 광 렌즈(830)를 통과한 광으로부터 상기 제1 광원(200) 또는 제2 광원(300)에 관한 미리 결정된 파장의 광을 선택한다. 예를 들어, 상기 제3 광 렌즈(830)를 통과한 광 중 533 nm 파장대의 광만을 통과시킬 수 있다.The second light filter 920 is disposed between the second optical lens 820 and the first horizontal polarizer 500, and from the light passing through the second optical lens 820, the second light source ( Select light of a predetermined wavelength with respect to 300). For example, only light of the 488 nm wavelength band of light emitted from the second light source 300 may be passed. In addition, the third light filter 930 is disposed between the third optical lens 830 and the second vertical or horizontal polarizer 700, and the third optical filter 930 is disposed from the light passing through the third optical lens 830. The light of the predetermined wavelength with respect to the first light source 200 or the second light source 300 is selected. For example, only light having a wavelength of 533 nm may pass through light passing through the third optical lens 830.
도 3은 본 발명의 일 실시예에 따른 형광 편광 분석 장치와 상용화된 타사의 형광 편광 분석 장치를 이용하여, 샘플 용액에 포함된 표적 물질을 분석한 결과를 비교하여 도시한다.3 is a comparison of the results of analyzing a target material included in a sample solution by using a fluorescence polarization analyzer of another company commercialized with a fluorescence polarization analyzer according to an embodiment of the present invention.
타사의 형광 편광 분석 장치는 Diachemix 사의 Sentry 100을 사용하였다. 상기 형광 편광 반응을 위해 대조군 용액, 항체 용액 및 아프라톡신 FP 트레이서(Aflatoxin Fluorescence Polarization tracer, 형광 물질 포함)를 포함하는 Alftoxin 키트(Kit)를 사용하였다.The fluorescence polarization analyzer of another company used Sentry 100 of Diachemix. For the fluorescence polarization reaction, an Alftoxin kit (Kit) containing a control solution, an antibody solution, and an apratoxin FP tracer (including a flatoxin fluorescence polarization tracer) was used.
먼저, 본 발명의 일 실시예에 따른 형광 편광 분석 장치에 의한 형광 편광 분석 반응을 수행하였다. 상기 항체 용액 약 1 ㎖에 표적 물질인 상기 아프라톡신(Aflatoxin) 약 20 ppb를 포함하는 용액 약 200 ㎕, 상기 아프라톡신 약 10 ppb를 포함하는 용액 약 100 ㎕, 및 상기 아프라톡신 약 1 ppb를 포함하는 용액 약 10 ㎕를 각각 첨가하여 표적 물질의 농도별 대조군 용액을 준비하였다. 그 후, 상기 각각의 대조군 용액을 본 발명의 일 실시예에 따른 형광 편광 분석 장치의 샘플 챔버에 약 300 ㎕씩 도입하고, 각각의 편광도(mP)를 측정하였다. 그 후, 상기 편광도를 측정한 각각의 대조군 용액에 아프라톡신 FP 트레이서 약 30 ㎕를 첨가하고, 약 2분 동안 상온에서 배양한 후 다시 각각의 편광도(mP)를 측정하였다. 측정 결과, 대조군 용액의 형광 신호는 관찰되지 않았고, 상기 트레이서를 포함하는 용액의 형광 신호는 관찰되었다. 따라서, 상기 트레이서를 포함하는 용액에 대한 형광 편광 반응은 신뢰할 수 있으며, 측정된 편광도는 도 3의 식 (1)의 1차 곡선으로 나타났다.First, the fluorescence polarization analysis reaction was performed by the fluorescence polarization analyzer according to an embodiment of the present invention. About 200 μl of a solution containing about 20 ppb of Aflatoxin as a target substance, about 100 μl of a solution containing about 10 ppb of apratoxin, and about 1 apratoxin in about 1 ml of the antibody solution. About 10 μl of the solution containing ppb was added to prepare a control solution for each concentration of the target material. Thereafter, each of the control solutions was introduced into the sample chamber of the fluorescence polarization analyzer according to one embodiment of the present invention by about 300 μl, and each polarization degree (mP) was measured. Thereafter, about 30 μl of apratoxin FP tracer was added to each of the control solutions for measuring the degree of polarization, and after incubation at room temperature for about 2 minutes, each polarization degree (mP) was measured again. As a result of the measurement, no fluorescence signal of the control solution was observed, and a fluorescence signal of the solution including the tracer was observed. Thus, the fluorescence polarization response to the solution containing the tracer is reliable, and the measured polarization degree is shown by the first-order curve of equation (1) of FIG. 3.
뒤이어, 상기 타사의 형광 편광 분석 장치에 의한 형광 편광 분석 반응을 수행하였다. 상기 항체 용액 약 1 ㎖에 표적 물질인 상기 아프라톡신(Aflatoxin) 약 20 ppb를 포함하는 용액 약 200 ㎕, 상기 아프라톡신 약 10 ppb를 포함하는 용액 약 100 ㎕, 및 상기 아프라톡신 약 1 ppb를 포함하는 용액 약 10 ㎕를 각각 첨가하여 표적 물질의 농도별 대조군 용액을 준비하였다. 그 후, 상기 각각의 대조군 용액을 상기 타사의 형광 편광 분석 장치의 샘플 챔버에 1.2 ㎖씩 도입하고, 각각의 편광도(mP)를 측정하였다. 그 후, 상기 편광도를 측정한 각각의 대조군 용액에 아프라톡신 FP 트레이서 약 100 ㎕를 첨가하고, 약 2분 동안 상온에서 배양한 후 다시 각각의 편광도(mP)를 측정하였다. 측정 결과, 대조군 용액의 형광 신호는 관찰되지 않았고, 상기 트레이서를 포함하는 용액의 형광 신호는 관찰되었다. 따라서, 상기 트레이서를 포함하는 용액에 대한 형광 편광 반응은 신뢰할 수 있으며, 측정된 편광도는 도 3의 식 (2)의 1차 곡선으로 나타났다.Subsequently, the fluorescence polarization analysis reaction by the fluorescence polarization analyzer of the other company was performed. About 200 μl of a solution containing about 20 ppb of Aflatoxin as a target substance, about 100 μl of a solution containing about 10 ppb of apratoxin, and about 1 apratoxin in about 1 ml of the antibody solution. About 10 μl of the solution containing ppb was added to prepare a control solution for each concentration of the target material. Thereafter, 1.2 ml of each of the control solutions was introduced into the sample chamber of the third-party fluorescence polarization analyzer, and each polarization degree (mP) was measured. Thereafter, about 100 μl of the apratoxin FP tracer was added to each of the control solutions for measuring the polarization degree, and incubated at room temperature for about 2 minutes, and the respective polarization degrees (mP) were measured again. As a result of the measurement, no fluorescence signal of the control solution was observed, and a fluorescence signal of the solution including the tracer was observed. Thus, the fluorescence polarization response to the solution containing the tracer is reliable, and the measured polarization degree is shown by the first-order curve of equation (2) of FIG. 3.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 형광 편광 분석 장치와 상기 타사의 형광 편광 분석 장치에 의한 경우 표적 물질의 농도가 증가할수록 편광도 값은 낮아진다. 즉, 식 (1) 및 식 (2)의 1차 곡선의 기울기는 모두 음수를 갖는다. 그러나, 표적 물질의 동일 농도 대비 편광도 값은 본 발명의 일 실시예에 따른 형광 편광 분석 장치에 의한 경우가 더 높다. 즉, 상기 타사의 형광 편광 분석 장치에 의한 결과와 비교했을 때, 본 발명의 일 실시예에 따른 형광 편광 분석 장치는 표적 물질의 동일 농도에 대한 민감도가 더욱 높다는 것을 확인할 수 있다.As shown in FIG. 3, in the case of the fluorescence polarization analyzer according to the exemplary embodiment of the present invention and the fluorescence polarization analyzer of another company, the polarization value is lowered as the concentration of the target material increases. That is, the slopes of the first-order curves of equations (1) and (2) both have negative numbers. However, the polarization degree value of the same concentration of the target material is higher by the fluorescence polarization analyzer according to an embodiment of the present invention. That is, when compared with the results of the fluorescence polarization analyzer of the other company, it can be seen that the fluorescence polarization analyzer according to an embodiment of the present invention is more sensitive to the same concentration of the target material.

Claims (15)

  1. 표적 물질을 포함하는 샘플 용액을 배치시키기 위한 광투명한 재질의 샘플 챔버;A sample chamber of light transparent material for disposing a sample solution containing a target material;
    상기 샘플 챔버으로부터 각각 이격 배치되고, 상기 샘플 챔버를 향하여 광을 방출하도록 배치된 제1 광원 및 제2 광원;A first light source and a second light source disposed separately from the sample chamber and disposed to emit light toward the sample chamber;
    상기 샘플 챔버와 상기 제1 광원 사이에 배치되고, 상기 제1 광원으로부터 방출되는 광의 수직광을 편광하는 제1 수직 편광자;A first vertical polarizer disposed between the sample chamber and the first light source and polarizing the vertical light of the light emitted from the first light source;
    상기 샘플 챔버와 상기 제2 광원 사이에 배치되고, 상기 제2 광원으로부터 방출되는 광의 수평광을 편광하는 제1 수평 편광자;A first horizontal polarizer disposed between the sample chamber and the second light source and polarizing horizontal light of light emitted from the second light source;
    상기 샘플 챔버로부터 이격 배치된 광 검출부; 및A light detector spaced apart from the sample chamber; And
    상기 샘플 챔버와 상기 광 검출부 사이에 배치되고, 상기 샘플 챔버로부터 방출되는 광의 수직광 또는 수평광을 편광하는 제2 수직 또는 수평 편광자;A second vertical or horizontal polarizer disposed between the sample chamber and the light detector and configured to polarize vertical or horizontal light of light emitted from the sample chamber;
    를 포함하는 형광 편광 분석 장치.Fluorescence polarization analysis device comprising a.
  2. 제1항에 있어서, 상기 표적 물질은 화학물질, 당, 펩티드, 핵산, 단백질, 바이러스, 세포 및 세포소기관으로 구성되는 군으로부터 선택되는 것을 특징으로 하는 형광 편광 분석 장치.The apparatus of claim 1, wherein the target material is selected from the group consisting of chemicals, sugars, peptides, nucleic acids, proteins, viruses, cells, and organelles.
  3. 제1항에 있어서, 상기 표적 물질은 형광 물질과 표적 물질-형광 물질 복합체를 형성할 수 있는 화합물인 것을 특징으로 하는 형광 편광 분석 장치.The apparatus of claim 1, wherein the target material is a compound capable of forming a fluorescent material and a target material-fluorescent material complex.
  4. 제3항에 있어서, 상기 표적 물질-형광 물질 복합체는 항원-항체 복합체인 것을 특징으로 하는 형광 편광 분석 장치.The apparatus of claim 3, wherein the target substance-fluorescent substance complex is an antigen-antibody complex.
  5. 제1항에 있어서, 상기 광투명한 재질은 폴리메틸메타크릴레이트(polymethylmethacrylate, PMMA), 폴리카보네이트(polycarbonate, PC), 사이클로올레핀 코폴리머(cycloolefin copolymer, COC)로 구성된 군으로부터 선택되는 플라스틱 재질 또는 유리 재질인 것을 특징으로 하는 형광 편광 분석 장치.The method of claim 1, wherein the transparent material is a plastic material or glass selected from the group consisting of polymethylmethacrylate (PMMA), polycarbonate (PC), cycloolefin copolymer (COC) Fluorescence polarization analyzer, characterized in that the material.
  6. 제1항에 있어서, 상기 샘플 챔버는 상기 샘플 챔버 내부에 탈착 가능하고, 광투명한 재질을 갖는, 상기 샘플 용액을 포함하는 일회용 샘플 용기를 더 포함하는 것을 특징으로 하는 형광 편광 분석 장치.The apparatus of claim 1, wherein the sample chamber further includes a disposable sample container including the sample solution, the sample chamber being detachable within the sample chamber and having a light transparent material.
  7. 제1항에 있어서, 상기 제1 광원 및 제2 광원은 LED(Light Emitting Diode) 또는 레이저 광원인 것을 특징으로 하는 형광 편광 분석 장치.The apparatus of claim 1, wherein the first and second light sources are LEDs or laser light sources.
  8. 제1항에 있어서, 상기 제1 광원 및 제2 광원은 상기 샘플 챔버로부터 동일한 거리로 이격 배치된 것을 특징으로 하는 형광 편광 분석 장치.The apparatus of claim 1, wherein the first light source and the second light source are spaced apart from the sample chamber by the same distance.
  9. 제1항에 있어서, 상기 제1 광원 및 제2 광원은 상기 샘플 챔버를 중심으로 대칭되도록 이격 배치된 것을 특징으로 하는 형광 편광 분석 장치.The apparatus of claim 1, wherein the first light source and the second light source are spaced apart from each other so as to be symmetrical about the sample chamber.
  10. 제9항에 있어서, 상기 광 검출부는 상기 샘플 챔버로부터 상기 제1 광원과 제2 광원의 연결 축에 대하여 수직으로 이격 배치된 것을 특징으로 하는 형광 편광 분석 장치.The apparatus of claim 9, wherein the light detector is spaced apart from the sample chamber in a vertical direction with respect to a connection axis between the first light source and the second light source.
  11. 제1항에 있어서, 상기 제1 광원과 제1 수직 편광자 사이에 배치되고, 상기 제1 광원으로부터 방출되는 광을 포집하는 제1 광 렌즈를 더 포함하고, 상기 제2 광원과 제1 수평 편광자 사이에 배치되고, 상기 제2 광원으로부터 방출되는 광을 포집하는 제2 광 렌즈를 더 포함하는 것을 특징으로 하는 형광 편광 분석 장치.The light emitting device of claim 1, further comprising a first optical lens disposed between the first light source and the first vertical polarizer, the first optical lens collecting light emitted from the first light source, and between the second light source and the first horizontal polarizer. And a second optical lens disposed at and collecting light emitted from the second light source.
  12. 제11항에 있어서, 상기 제1 광 렌즈와 제1 수직 편광자 사이에 배치되고, 상기 제1 광 렌즈를 통과한 광으로부터, 상기 제1 광원에 관한 미리 결정된 파장을 갖는 광을 선택하는 제1 광 여과기를 더 포함하고, 상기 제2 광 렌즈와 상기 제1 수평 편광자 사이에 배치되고, 상기 제2 광 렌즈를 통과한 광으로부터, 상기 제2 광원에 관한 미리 결정된 파장의 광을 선택하는 제2 광 여과기를 더 포함하는 것을 특징으로 하는 형광 편광 분석 장치.12. The first light of claim 11, wherein the first light is disposed between the first optical lens and the first vertical polarizer and selects light having a predetermined wavelength with respect to the first light source from the light passing through the first optical lens. A second light, further comprising a filter, disposed between the second optical lens and the first horizontal polarizer, for selecting light of a predetermined wavelength with respect to the second light source from light passing through the second optical lens A fluorescence polarization analyzer, characterized in that it further comprises a filter.
  13. 제1항에 있어서, 상기 샘플 챔버와 상기 제2 수직 또는 수평 편광자 사이에 배치되고, 상기 샘플 챔버로부터 방출되는 광을 포집하는 제3 광 렌즈를 더 포함하는 것을 특징으로 하는 형광 편광 분석 장치.The apparatus of claim 1, further comprising a third optical lens disposed between the sample chamber and the second vertical or horizontal polarizer and configured to collect light emitted from the sample chamber.
  14. 제13항에 있어서, 상기 제3 광 렌즈와 상기 제2 수직 또는 수평 편광자 사이에 배치되고, 상기 제3 광 렌즈를 통과한 광으로부터 상기 제1 광원 또는 제2 광원에 관한 미리 결정된 파장의 광을 선택하는 제3 광 여과기를 더 포함하는 것을 특징으로 하는 형광 편광 분석 장치.The light source of claim 13, wherein the light of a predetermined wavelength with respect to the first light source or the second light source is disposed from the light passing through the third optical lens and the second vertical or horizontal polarizer. And a third light filter to select.
  15. 제1항에 있어서, 상기 제2 수직 또는 수평 편광자와 상기 광 검출부 사이에 배치되고, 상기 제2 수직 또는 수평 편광자를 통과한 광을 포집하는 제4 광 렌즈를 더 포함하는 것을 특징으로 하는 형광 편광 분석 장치.2. The fluorescence polarization of claim 1, further comprising a fourth optical lens disposed between the second vertical or horizontal polarizer and the light detector and configured to collect light passing through the second vertical or horizontal polarizer. Analysis device.
PCT/KR2011/002912 2010-04-23 2011-04-22 Fluorescence polarization analysis apparatus including dual light source WO2011132978A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0037961 2010-04-23
KR1020100037961A KR101037790B1 (en) 2010-04-23 2010-04-23 Device for fluorescence polarization-based analysis comprising dual light source

Publications (2)

Publication Number Publication Date
WO2011132978A2 true WO2011132978A2 (en) 2011-10-27
WO2011132978A3 WO2011132978A3 (en) 2012-03-08

Family

ID=44366759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002912 WO2011132978A2 (en) 2010-04-23 2011-04-22 Fluorescence polarization analysis apparatus including dual light source

Country Status (2)

Country Link
KR (1) KR101037790B1 (en)
WO (1) WO2011132978A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014176136A1 (en) * 2013-04-21 2014-10-30 Mobileoct, Ltd. A polarized light imaging apparatus and methods thereof for separating light from a surface of a sample its deeper diffuse layers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776776B1 (en) 2011-05-31 2017-09-11 삼성전자주식회사 Fluorescence detecting optical system and multi-channel fluorescence detection apparatus having the same
KR101680451B1 (en) 2015-03-03 2016-11-28 충북대학교 산학협력단 System for measuring fluorescence anisotropy
KR101674018B1 (en) * 2016-05-16 2016-11-08 (주)글로리바이오텍 Hiv diagnosis method using cd4, cd8 cell information
PL233602B1 (en) * 2017-10-16 2019-11-29 Inst Biologii Doswiadczalnej Im M Nenckiego Polskiej Akademii Nauk Device for imaging transparent objects

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020024668A1 (en) * 2000-05-26 2002-02-28 Jean-Louis Stehle Method and apparatus for ellipsometric metrology for a sample contained in a chamber or the like
JP2002139423A (en) * 2000-11-01 2002-05-17 Fuji Electric Co Ltd Oil film detector
US20070200073A1 (en) * 2003-09-10 2007-08-30 Thermo Electron Oy Polarisation Fluorometer
US20080044919A1 (en) * 2004-08-13 2008-02-21 Dowben Robert M Analyte Detection Using Time-Resolved Photon Counting Fluorescence
KR20090000474A (en) * 2007-06-28 2009-01-07 (주)바이오니아 Real-time pcr monitoring apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822810B1 (en) 2004-11-25 2008-04-18 한국과학기술연구원 Fluorescence Polarization Measurement Method and Apparatus For Lab-on-a-chip
JP2009511094A (en) * 2005-09-01 2009-03-19 ルミダイム インコーポレイテッド Biometric sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020024668A1 (en) * 2000-05-26 2002-02-28 Jean-Louis Stehle Method and apparatus for ellipsometric metrology for a sample contained in a chamber or the like
JP2002139423A (en) * 2000-11-01 2002-05-17 Fuji Electric Co Ltd Oil film detector
US20070200073A1 (en) * 2003-09-10 2007-08-30 Thermo Electron Oy Polarisation Fluorometer
US20080044919A1 (en) * 2004-08-13 2008-02-21 Dowben Robert M Analyte Detection Using Time-Resolved Photon Counting Fluorescence
KR20090000474A (en) * 2007-06-28 2009-01-07 (주)바이오니아 Real-time pcr monitoring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014176136A1 (en) * 2013-04-21 2014-10-30 Mobileoct, Ltd. A polarized light imaging apparatus and methods thereof for separating light from a surface of a sample its deeper diffuse layers
CN105814434A (en) * 2013-04-21 2016-07-27 莫拜尔欧西特有限公司 Polarized light imaging apparatus and methods thereof for separating light from surface of sample its deeper diffuse layers
US9921148B2 (en) 2013-04-21 2018-03-20 Mobileodt Ltd. Polarized light imaging apparatus and methods thereof for separating light from a surface of a sample its deeper diffuse layers
AU2014257297B2 (en) * 2013-04-21 2018-04-05 Mobileodt Ltd A polarized light imaging apparatus and methods thereof for separating light from a surface of a sample its deeper diffuse layers

Also Published As

Publication number Publication date
KR101037790B1 (en) 2011-05-27
WO2011132978A3 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
US20230164299A1 (en) Detecting and using light representative of a sample
JP7227202B2 (en) Detecting and using light representative of the sample
RU2728427C2 (en) Apparatus and system for collecting and analyzing steam condensate, in particular an exhaled air condensate, as well as a method for use thereof
KR101266244B1 (en) Multi-functional and configurable assays
CA2716575C (en) Optical measuring instrument
WO2011132978A2 (en) Fluorescence polarization analysis apparatus including dual light source
KR20000053341A (en) Analytical apparatus
KR20120026581A (en) Imaging system comrpising microlenses and associated device for detecting a sample
US10324020B2 (en) Fluidic optical cartridge
JP2011038922A (en) Light detection chip, and light detection device using the same
CA3135299A1 (en) Bead-based analysis of a sample
KR20090128891A (en) Analysing apparatus using rotatable microfluidic disk
US11016028B2 (en) Parallel imaging system
US20220299436A1 (en) Microscopy unit
CA3179549A1 (en) Bead-based analysis of a sample
RU2442973C2 (en) Immunoturbidimetric flatbed analyzer
KR101560639B1 (en) Channel substrate
EP2422184B1 (en) Unit comprising an array of sample containers
EP0945718A1 (en) A method for characterizing samples by determination of a function of at least one specific property of units of said sample
WO2018074832A1 (en) Biosensor
CN110770552A (en) High-sensitivity optical detection system
US20020055179A1 (en) Ultrahigh throughput fluorescent screening
CN1854716B (en) Integrated and light-source variable electrophoretic separating analyzer and its usage
CN102507523A (en) OLED (Organic Light-Emitting Diode)- and OPD (Organic Photodetector)-based cascading vertical integration capillary electrophoresis chip
WO2022182023A1 (en) Gadget for measuring retroreflective signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772266

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11772266

Country of ref document: EP

Kind code of ref document: A2