WO2011132767A1 - Gas field ionization source and ion beam device - Google Patents

Gas field ionization source and ion beam device Download PDF

Info

Publication number
WO2011132767A1
WO2011132767A1 PCT/JP2011/059895 JP2011059895W WO2011132767A1 WO 2011132767 A1 WO2011132767 A1 WO 2011132767A1 JP 2011059895 W JP2011059895 W JP 2011059895W WO 2011132767 A1 WO2011132767 A1 WO 2011132767A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas field
ion source
reference surface
tip
spacer
Prior art date
Application number
PCT/JP2011/059895
Other languages
French (fr)
Japanese (ja)
Inventor
川浪義実
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2011132767A1 publication Critical patent/WO2011132767A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/15External mechanical adjustment of electron or ion optical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/1501Beam alignment means or procedures

Definitions

  • the present invention relates to a gas electrolytic ionization ion source and an ion beam apparatus using the same.
  • Patent Documents 1 and 2 are equipped with a gas field ionization ion source (Gas Field Ionization Ion Source, abbreviated as GFIS) and focused using gas ions such as hydrogen [H2], helium [He], neon [Ne], etc.
  • An ion beam (abbreviated as FIB) apparatus is disclosed.
  • gas FIB gas focused ion beams
  • gas FIB gallium [Ga: metal] focused ion beams (abbreviation: Ga--) from a liquid metal ion source (Liquid-Metal-Ion-Source, abbreviated as LMIS), which is often used at present.
  • LMIS liquid metal ion source
  • the sample does not cause gallium [Ga] contamination.
  • the gas ionization ion source GFIS is finer than the gallium focused ion beam (Ga-FIB) because of the narrow energy width of gas ions extracted from it and the small ion source size. A simple beam can be formed.
  • Patent Document 3 and Non-Patent Document 1 by forming a minute protrusion at the tip of the emitter tip of the GFIS, or by reducing the number of atoms at the tip of the emitter tip to several or less, the radiation angle current of the ion source. It is disclosed that ion source characteristics are improved, such as an increase in density.
  • a minute protrusion at the tip of the emitter chip hereinafter referred to as a nanochip
  • it is manufactured by using field evaporation from an emitter chip made of tungsten [W: metal]. It is disclosed.
  • the nanotip is one or three atoms terminating in the [111] direction of the tungsten single crystal (W single crystal).
  • a nanochip is manufactured using a second metal material (for example, iridium [Ir]) different from the first metal material (for example, tungsten [W]) of the emitter chip. Is disclosed.
  • the nanochip is a pyramid made of iridium [Ir], platinum [Pt], or the like formed at the end of the W single crystal in the [111] direction.
  • the emission angle of ions emitted from one atom at the tip of the nanotip is as narrow as about 1 °. Therefore, in an FIB apparatus equipped with a GFIS having a nanotip, means for aligning the emission direction of ions emitted from the nanochip with the optical axis of the subsequent ion optical system, that is, the ion optical axis, that is, the tilt adjustment means of the emitter chip is provided. I need it.
  • This tilt adjusting means not only simply passes the ion beam through the ion optical system, but also serves to reduce excess aberrations generated by the electrostatic lens in the ion optical system. Normally, the position of the emitter tip with respect to the ion optical axis is adjusted.
  • the tilt adjusting means of the emitter tip for ions and electrons for example, in a GFIS having a nanotip as described in Patent Document 2, an emitter is provided by a gimbal mechanism provided on the atmosphere side of the ion source chamber.
  • a method for adjusting the tilt of the tip is conventionally known.
  • the tilt adjustment of the emitter tip by this gimbal mechanism is a method generally used in the FIB apparatus using GFIS.
  • Patent Document 5 describes a method of attaching an emitter tip to a semi-fixed holder provided with a gimbal mechanism and attaching the holder to an ion source.
  • Patent Document 6 describes a method of effectively adjusting the inclination of the emitter tip by changing the electron emission direction by shifting the position of the emitter tip with respect to the extraction electrode.
  • the base pressure in the vacuum vessel in which the emitter tip is stored that is, the pressure before gas introduction
  • the vibration of the emitter tip is left as it is, which is the vibration of the ion beam on the sample, that is, the blur, and therefore, a design for suppressing the vibration of the emitter tip is necessary.
  • the gimbal mechanism generally used for adjusting the tilt of the emitter tip needs to be moved several centimeters on the atmosphere side in order to adjust the tilt of the emitter tip by several degrees. For this reason, the vacuum bellows necessary for airtightly defining the inside of the vacuum container in which the emitter chip is stored has to be large in diameter and long.
  • the surface area of the bellows is increased, so that the cost for the vacuum pump is increased to achieve ultrahigh vacuum.
  • the vacuum vessel is heated to increase the baking time for promoting the achievement of the ultra vacuum.
  • the portion that supports the emitter tip is moved away from the vessel wall of the vacuum vessel, and external low-frequency vibration is easily transmitted to the emitter tip.
  • the gimbal mechanism moves the mechanism in a state where atmospheric pressure is applied by several centimeters, the drive device becomes large.
  • the present invention has been made to solve the above-described problems, and provides a gas field ion source (GFIS) capable of adjusting the tilt of an emitter tip, stable in operation, and low in cost. Objective.
  • GFIS gas field ion source
  • the present invention provides an ion beam apparatus that facilitates adjustment of the axis of the ion beam and reduces the blur of the sample image by mounting such a gas field ion source (GFIS) in the ion beam apparatus.
  • GFIS gas field ion source
  • a gas field ion source (GFIS) includes a support having a first reference surface arranged perpendicular to the ion optical axis, and a chip assembly including an emitter tip and a base having a second reference surface. And an inclined spacer disposed between the chip assembly and the support, and the inclined spacer has a fourth reference surface and a third reference surface inclined with respect to the fourth reference surface.
  • the inclination azimuth of the ion emission direction from the emitter tip with respect to the direction perpendicular to the second reference plane of the base of the emitter tip is measured in advance.
  • the tip assembly is mounted on the third reference surface of the inclined spacer so that the inclination direction of the ion emission direction from the emitter tip coincides with the maximum inclination direction of the third reference surface of the inclined spacer. Thereby, the direction of ion emission from the emitter tip is parallel to the ion optical axis.
  • this chip assembly is associated with accessible tilt data (direction angle, tilt angle, etc.) of the fixed emitter chip.
  • an ion beam apparatus equipped with a gas field ion source (GFIS) includes an aligner with a two-stage electrostatic deflector between two stages of electrostatic lenses.
  • This aligner has a function of guiding the ion beam that has passed through the first-stage electrostatic lens to the second-stage electrostatic lens so that its source position does not move.
  • a horizontal fine movement mechanism for adjusting the horizontal position of the tip of the emitter tip and a gimbal mechanism for adjusting the inclination of the emitter tip are provided. Yes.
  • the moving amount and moving range of the movable part in the gimbal mechanism are smaller than the moving amount and moving range of the movable part in the horizontal fine movement mechanism.
  • gas field ion source GFIS
  • the adjustment of the tilt of the emitter tip is completed when the emitter tip is mounted, a complicated operation of adjusting the tilt of the emitter tip using the ion beam apparatus is not necessary. , Device cost required for the control can be reduced.
  • the vacuum degree (base vacuum degree) serving as the base of the gas field ion source (GFIS) is improved, and the emitter tip is hardly affected by external vibration. Beam stability and focusing can be improved.
  • gas field ionization ion source according to the present invention can make the movable range of the gimbal mechanism less than or equal to the movable range of the horizontal fine movement mechanism, so that the entire ion source can be made small.
  • FIG. 1 is an overall configuration diagram of an ion beam apparatus according to a first embodiment of the present invention. It is a block diagram of the gas field ionization ion source (GFIS) shown in FIG. It is a block diagram of the chip
  • GFIS gas field ionization ion source
  • GFIS gas field ionization ion source
  • FIG. 1 It is a whole block diagram of the ion beam apparatus which concerns on the 4th Embodiment of this invention. It is basic operation explanatory drawing of the two-stage aligner with which the ion beam apparatus of the 4th Embodiment was equipped. It is basic operation explanatory drawing of the two-step aligner with which the ion beam apparatus which concerns on the 5th Embodiment of this invention was equipped. It is a block diagram of the gas field ionization ion source (GFIS) of the ion beam apparatus which concerns on the 6th Embodiment of this invention.
  • GFIS gas field ionization ion source
  • FIG. 1 is an overall configuration diagram of an ion beam apparatus according to the present embodiment.
  • the ion beam apparatus 200 of the present embodiment is a conventional focused ion beam (FIB) apparatus, which uses a gas field ion source (described later) of the present invention instead of the conventional gallium-liquid metal ion source (Ga-LMIS).
  • GFIS gallium-liquid metal ion source
  • an ion beam apparatus 200 is configured such that an ion beam 5 emitted from the GFIS 100 enters an ion optical system 300, is focused by the ion optical system 300, and moves on a sample 6 placed on a sample stage 101. It is configured to irradiate.
  • the GFIS 100 includes an emitter tip 1, an extraction electrode 2, and a gas discharge port 3 of a gas supply pipe 30 that supplies an ionization gas to the tip of the emitter tip.
  • the emitter tip 1 ionizes a gas supplied from the gas discharge port 3 and located at the tip of the tip by a high voltage (for example, a positive high voltage) applied from the extraction voltage application unit 4.
  • the extraction electrode 2 extracts ions generated by the emitter tip 1 based on the extraction voltage (in this case, a negative extraction voltage) applied from the extraction voltage application unit 4, and extracts the ion beam 5 from the ion optical system 300. To release as.
  • the ion optical system 300 includes a lens system 102 including electrostatic lenses 102-1 and 102-2, a beam limiting aperture 102-3, and an aligner 102-4, and a deflection system 103 including deflectors 103-1 and 103-2. It has.
  • the ion beam 5 incident on the ion optical system 300 is focused by the electrostatic lenses 102-1 and 102-2 and irradiated onto the sample 6.
  • the irradiation position of the ion beam 5 on the sample 6 at that time is adjusted by deflecting the ion beam 5 by the deflectors 103-1 and 103-2.
  • the lens system 102 including the electrostatic lenses 102-1 and 102-2, the beam limiting aperture 102-3, and the aligner 102-4 is matched by the lens system controller 105 with the corresponding drivers 102-1 'to 102-4.
  • the drive is controlled and controlled.
  • the lens system controller 105 also controls the ion beam 5 emitted from the ion optical system 300 by driving and controlling the extraction voltage application unit 4.
  • the deflection system 103 including the deflectors 103-1 and 103-2 is controlled by the deflection system controller 106 by driving and controlling the corresponding drivers 103-1 'and 103-2'.
  • the secondary electrons 7 generated from the sample 6 by the irradiation of the ion beam 5 described above are detected by the secondary electron detector 104, converted into a digital signal via the A / D signal converter 104 ′, and
  • the display 110 including the image generation unit forms a secondary electron observation image in which the signal intensity corresponds to the deflection intensity.
  • the user can designate the position of irradiation with the ion beam 5 on the screen while viewing the secondary electron observation image using the display device 110.
  • FIG. 2 is a block diagram of the gas field ion source (GFIS) shown in FIG.
  • the atmosphere in which the emitter tip 1, the extraction electrode 2, and the gas emission port 3 are arranged is set to an ultrahigh vacuum independently of the atmosphere in the ion optical system 300 in which the lens system 102 and the deflection system 103 are arranged. I can keep it.
  • the vacuum container 10 that houses the emitter chip 1 and the like is formed by a housing that is independent from an ion optical system housing (not shown) that houses the devices of the ion optical system 300.
  • the gas field ion source (GFIS) 100 is unitized.
  • the vacuum vessel 10 includes an exhaust port 11, each mounting port 12 (ion source sub-unit mounting port 12-1, cooling head mounting port 12-2, high voltage introduction terminal mounting port 12-3, gas supply pipe introduction port 12-4. ), And a box body in which the working exhaust port 13 is formed.
  • the inside of the vacuum vessel 10 is maintained at an ultrahigh vacuum of a digit value of 10 ⁇ 8 Pa, for example, by an exhaust system (not shown) connected to the exhaust port 11.
  • the working exhaust port 13 is an opening for emitting the ion beam 5 to the ion optical system 300.
  • the vacuum vessel 10 is integrally attached to the ion optical system housing, and the internal exhaust is independent of the ion optical system 300 by the exhaust system with the working exhaust port 13 as a boundary. Is possible.
  • the working exhaust port 13 is disposed and formed on the wall portion of the vacuum vessel 10 opposite to the wall portion where the ion source subunit mounting port 12-1 is formed so as to face the ion source subunit mounting port 12-1. ing.
  • the extraction electrode 2 is provided in the vacuum vessel 10 so that the beam extraction hole is coaxial with the working exhaust port 13 and is supported by a support member 14 erected on the inner wall of the vessel. At least a part of the support member 14 is formed by an insulating member 14 ′, and insulation between the extraction electrode 2 and the vacuum vessel 10 is removed.
  • the extraction electrode 2 is connected to a high voltage introduction terminal 40-2 attached to the high voltage introduction terminal attachment port 12-3, and is supplied with an extraction voltage from the extraction voltage application unit 4.
  • the gas supply pipe 30 is introduced into the vacuum vessel 10 through the gas supply pipe introduction port 12-4, and supplies a gas to be ionized from the gas discharge port 3 disposed in the vicinity of the tip of the emitter chip 1.
  • the proximal end side of the gas supply pipe 30 is connected to a gas cylinder 31 via a valve 32.
  • the gas discharge port 3 is made of oxygen-free copper with good heat transfer, and the portion other than the gas discharge port 3 is made of stainless steel with poor heat conduction.
  • the gas discharge port 3 is supported in the vacuum vessel 10 by a heat transfer support 22-2 made of oxygen-free copper having good heat transfer.
  • a bent portion is formed in the middle portion of the gas supply pipe 30 in the vacuum vessel 10 to increase the heat conduction distance and prevent heat from entering from the outside.
  • the ion source subunit is composed of a horizontal fine movement mechanism 450, a terminal mounting portion 45 to which the high voltage introduction terminal 40-1 is mounted, and a plurality of thin stainless steel pipes to block heat from entering from the outside.
  • the chip assembly 500 includes a support 400 that is positioned and mounted with an inclined spacer 600 interposed therebetween.
  • a terminal mounting portion 45 is integrally connected and fixed to the movable portion 46 of the horizontal fine movement mechanism 450.
  • the terminal mounting portion 45 is connected and fixed integrally with the heat transfer support 22-1 with the heat insulating support 24-1 interposed therebetween.
  • the base of the heat transfer insulator 23-1 is fitted and fixed in the hole of the annular heat transfer support 22-1.
  • a support 400 is attached and fixed to the tip of the heat transfer insulator 23-1.
  • the movable portion 46 of the horizontal fine movement mechanism 450 and the heat transfer insulator 23-1 are positioned and fixed coaxially. Further, the support 400 is mounted and fixed coaxially to the heat transfer insulator 23-1.
  • the central axis of the movable portion 46 of the horizontal fine movement mechanism 450 is coaxial with the central axis of the support 400.
  • the horizontal fine movement mechanism 450 includes a disk-shaped annular base (fixed portion) 47, a movable portion 46 inserted with a gap in the central hole of the annular base, and the movable portion 46 disposed in the central hole of the annular base 47. And a positioning mechanism for adjustment.
  • a flange part for supporting the movable part 46 on the surface sliding surface 452 of the annular base is formed on the outer periphery of the movable part 46.
  • the flange portion has a larger diameter than the center hole of the annular base 47.
  • the movable portion 46 is supported by the annular base 47 so that the flange surface of the flange portion is brought into contact with the surface sliding surface 452 of the annular base 47 so as to be finely movable.
  • the positioning mechanism includes a push rod 453 and a compression spring 454 that are disposed on the annular base 47 so as to sandwich the flange portion of the movable portion 46 in the radial direction. Accordingly, the position of the movable portion in the center hole of the annular base 47 can be adjusted by adjusting and fixing the advance / retreat position of the push rod 453 against the urging force of the compression spring 454.
  • the back surface of the annular base 47 is in contact with the outer surface of the vacuum vessel 10 so that the center hole of the annular base 47 and the ion source subunit mounting port 12-1 of the vacuum vessel 10 are coaxial.
  • the vacuum vessel 10 is airtightly attached and fixed.
  • the ion source subunit mounting opening 12-1 of the vacuum vessel 10 is connected to each part of the ion source subunit arranged in the vacuum vessel 10 including the movable portion 46 and the terminal mounting portion 45 of the horizontal fine movement mechanism 450. It is formed larger than the width dimension. Therefore, the ion source subunit can be attached and fixed to the vacuum vessel 10.
  • a vacuum bellows 451 is provided between the back surface of the surface sliding surface 452 of the annular base 47 of the horizontal fine movement mechanism 450 and the terminal mounting portion 45 so as to surround the movable portion 46.
  • the vacuum bellows 451 need only be provided so as to define the surface sliding surface 452 of the annular base 47 of the horizontal fine movement mechanism 450 with respect to the inside of the vacuum vessel 10. Thereby, the surface area of the vacuum bellows 451 is suppressed.
  • An applied voltage is applied to the emitter chip 1 from the extraction voltage applying unit 4 through the high voltage introduction terminal 40-1 mounted on the terminal mounting unit 45.
  • only one wiring for applying a potential to the emitter chip 1 through the high voltage introduction terminal 40-1 is sufficient.
  • a cooling head 20 (for example, connected to a Gifford-McMahon refrigerator) is connected to the cooling head mounting port 12-2 of the vacuum container 10 from the outside of the container.
  • the cooling head 20 includes a heat transfer support 22-1 of the ion source subunit via a heat transfer net 21-1 made of oxygen-free copper and a heat transfer net 21-2 made of oxygen-free copper.
  • These heat transfer nets 21-1, 21-2, and heat transfer supports 22-1 and 22-2 are further plated with gold in order to reduce heat radiation.
  • the emitter chip 1 is connected to the cooling head 20 introduced from the outside of the vacuum vessel 10, and the heat transfer mesh wire (oxygen-free copper) 21-1 and the heat transfer support (oxygen-free copper) 22-1. , And heat exchange through the heat transfer insulator (sapphire) 23-1. Further, the gas discharge port 3 portion (oxygen-free copper) is connected to the cooling head 20 with a heat transfer network wire (oxygen-free copper) 21-2 and a heat transfer support (oxygen-free copper) 22-2. It is cooled by exchanging heat through it.
  • the emitter tip 1 and the gas discharge port 3 are cooled to substantially the same temperature.
  • heat entry from the outside is prevented by making the portions of the ion source subunit excluding the heat insulating support 24-1 and the gas outlet 3 of the gas supply pipe 30 made of stainless steel having poor thermal conductivity. Has been. Some heat shield walls may be added to keep the temperature of each part stable.
  • the iridium [Ir] is formed as the emitter tip 1 on the [111] crystal face at the tip of the single crystal of tungsten [W]. ] Which formed an atomic pyramid of Helium [He] was used as a gas to be ionized.
  • the temperatures of the emitter tip 1 and the gas discharge port 3 were maintained at about 60K.
  • the extraction voltage of ions by the extraction electrode 2 is about 4 kV.
  • the gas is emitted from the gas discharge port 3 at a certain point. Some of the gas atoms (which may be molecules) that have reached the tip of the emitter tip 1 become positive ions due to field ionization, and ion emission occurs.
  • the tilt adjustment of the emitter tip 1 of the gas field ion source (GFIS) 100 will be described.
  • the tilt adjustment of the emitter tip 1 is for adjusting (paralleling) the ion emission direction 506 from the emitter tip 1 to the ion optical axis 301 of the ion optical system 300 as shown in FIG. Refers to adjustment.
  • the direction of ion emission from the emitter tip 1 is determined by adjusting the bonding of (1) the support 400, (2) the inclined spacer 600, and (3) the tip assembly 500. Can be determined. That is, these are tilt adjusting means for the ion emission direction 506 of the emitter tip 1.
  • the support 400 is coupled to a horizontal fine movement mechanism 450 that finely moves in a plane perpendicular to the ion optical axis 301, and the horizontal fine movement mechanism 450 is a horizontal position adjusting means of the emitter chip 1.
  • the distance between the emitter tip 1 and the extraction electrode 2 is usually separated by 1 mm or more. Therefore, the ion emission direction 506 is hardly affected by the positional deviation in the horizontal plane. If both are very close, the ion emission direction 506 may be affected, but this is not desirable. The reason is that if they are brought too close together, deflection chromatic aberration is generated, leading to blurring of the sample image.
  • the ion emission direction 506 and the ion optical axis 301 are basically aligned by assembling the chip assembly 500, the inclined spacer 600, and the support body 400 with each other in an appropriate positional relationship (parallel). Can). Therefore, the mechanical axis alignment necessary for the ion beam apparatus 200 after the emitter tip 1 is attached only needs to be adjusted by the horizontal fine movement mechanism 450.
  • FIG. 3 is a configuration diagram of the chip assembly 500. In FIG. 3, it is displayed upside down from FIG. 2 so that the configuration can be easily grasped.
  • the emitter chip 1 is fixed via two filaments 503 to two terminal pins 502 inserted and erected in a base 501 as an insulator (sapphire).
  • the terminal pin 502 and the filament 503, and the filament 503 and the emitter tip 1 are connected by welding, respectively. These are heated in vacuum after welding to remove residual thermal stress.
  • the chip assembly 500 is provided with a reference for measuring the ion emission direction 506 from the emitter chip 1 in advance. This measuring method will be described later.
  • the base 501 is formed in a disk shape, and the back surface (second reference surface 504) fitted into the inclined spacer 600 on the side opposite to the surface on which the emitter chip 1 is disposed is the disk shape.
  • This is a circular surface that is orthogonal to the center axis of the base 501 and coincides with the center.
  • a predetermined position around the central axis of the base 501 that is, a predetermined radial direction (second reference direction 505) of the back surface (second reference surface 504) is provided on the outer peripheral surface or front surface of the disk-shaped base 501.
  • the reference direction mark 509 is configured by forming a notch at a peripheral surface position corresponding to the second reference direction 505 of the base outer peripheral surface.
  • the inclination of the ion emission direction 506 from the emitter tip 1 with respect to the axial direction of the base 501, that is, the direction perpendicular to the second reference plane 504 is defined as an inclination angle ( ⁇ ) 507.
  • a direction angle ( ⁇ ) 508 is an angle between a direction (inclination azimuth 510) in which the ion emission direction 506 is projected onto the second reference plane 504 and the second reference direction 505.
  • the tilt data of the emitter chip 1 is represented by these tilt angle ( ⁇ ) 507 and direction angle ( ⁇ ) 508, or expression data equivalent to these values.
  • a storage container (not shown) for individually storing each chip assembly 500 so that the tilt data of each emitter chip measured in advance can be accessed when the chip assembly 500 including the emitter chip 1 is attached to the GFIS 100.
  • the inclination data is managed in association with each chip assembly 500, that is, each emitter chip 1.
  • Each of the actual emitter tips 1 has an inclination angle ( ⁇ ) 507 suppressed to about ⁇ 2 ° by appropriately managing the crystal axis of the emitter tips 1 and welding to the terminal pins 502.
  • the reference direction mark 509 is configured by forming a notch in the base 501 in the illustrated example.
  • the present invention is not limited to this as long as it indicates the predetermined radial direction (second reference direction 505) of the second reference surface 504 of the base 501.
  • the attachment method of the filament 503 and the emitter chip 1 is made non-axisymmetric. In this case, either one of the terminal pins 502 can be substituted for the reference direction mark 509.
  • each emitter chip measured in advance is managed by directly entering the inclination data in the storage container of the chip assembly 500
  • the present invention is not limited thereto.
  • the tilt data of each emitter chip 1 may be stored in a database in association with the identification data, and the corresponding identification data may be entered as an access code to the database in each storage container of the chip assembly 500.
  • various methods such as enabling access to tilt data when the chip assembly 500 is attached can be considered.
  • FIG. 4 is a configuration diagram of the support 400. Note that FIG. 4 is also displayed upside down with respect to FIG. 2 so that the configuration can be easily grasped.
  • the support body 400 has a disk shape larger in diameter than the chip assembly 500 and the inclined spacer 600.
  • a fitting recess 410 is formed on the surface of the support 400 on the side where the chip assembly 500 and the inclined spacer 600 are disposed.
  • the back surface side (the fourth reference surface 603 side described later) of the inclined spacer 600 opposite to the mounting side of the chip assembly 500 is inserted into the fitting recess 410.
  • a wiring hole 411 is formed through the support 400.
  • the peripheral wall portion of the fitting recess 410 supports the tilted spacer 600 in a state where the tilted spacer 600 is fitted with the back surface thereof in contact with the bottom of the fitting recess.
  • the bottom portion (bottom surface) of the fitting recess with which the back surface (fourth reference surface 603 described later) of the inclined spacer 600 abuts is a first reference surface 401 that defines the axial direction of the ion optical axis 301. It has become.
  • the ion optical axis 301 extends in the direction perpendicular to the bottom surface of the fitting recess 410 and is also the central axis of the fitting recess 410.
  • the central axis of the GFIS 100 is also parallel to the ion optical axis 301, and both axes are substantially coincident with each other.
  • the first reference surface 401 that defines the axial direction of the ion optical axis 301 serves as a reference for attaching an inclined spacer 600 and a chip assembly 500 described later.
  • a first reference direction 402 is set on the support 400.
  • FIG. 5 is a configuration diagram of the inclined spacer 600.
  • 5A is an external perspective view of the inclined spacer 600
  • FIG. 5B is a cross-sectional view of the inclined spacer 600 viewed from the radial direction. Note that FIG. 5 is also displayed upside down with respect to FIG. 2 so that the configuration can be easily grasped.
  • the inclined spacer 600 has a disk shape having an outer diameter that can be fitted into the fitting recess 410 of the support 400.
  • the surface on the side where the chip assembly 500 is disposed and the back surface inserted into the fitting recess 410 of the support 400 are non-parallel.
  • the plate thickness is linearly increased or decreased in the diameter direction.
  • a fitting recess 609 is formed on the surface where the chip assembly 500 is disposed.
  • the rear surface side (second reference surface 504 side) of the base 501 of the chip assembly 500 is fitted into the fitting recess 609.
  • the peripheral wall portion of the fitting recess 609 supports the chip assembly 500 so that the base 501 of the chip assembly 500 is fitted with the second reference surface 504 on the back surface of the base 501 being in contact with the bottom of the fitting recess. To do.
  • the bottom portion (bottom surface) of the fitting recess 609 is parallel to the surface of the inclined spacer 600. When the back surface of the inclined spacer 600 is held horizontally as shown in FIG. 5B, the bottom portion (bottom surface) of the fitting recess 609 is not parallel to the surface of the inclined spacer 600, and An inclined surface is formed with respect to the back surface.
  • the bottom portion (bottom surface) of the fitting recess parallel to the surface of the inclined spacer 600 is the third reference surface 601
  • the back surface of the inclined spacer 600 is the fourth reference surface 603.
  • the third reference surface 601 is not parallel to the radial direction of the outer peripheral surface of the inclined spacer 600
  • the fourth reference surface 603 is parallel to the radial direction of the outer peripheral surface of the inclined spacer 600.
  • the center axis 611 of the third reference surface 601 on the surface of the inclined spacer 600 and the bottom portion (bottom surface) of the fitting recess 609 shown by the alternate long and short dash line in FIG. 5B is the back surface of the inclined spacer 600 (fourth reference surface 603). ) Does not match the central axis.
  • the inclination of increasing the thickness between the two surfaces is defined as a thickness increasing angle ( ⁇ ) 604.
  • a predetermined radial direction of the front surface (third reference surface 601) and the rear surface (fourth reference surface 603) is defined on the outer peripheral surface or surface of the inclined spacer 600 at a predetermined position around the axis of the inclined spacer 600.
  • a reference direction mark 605 is provided.
  • the reference direction mark 605 is configured by forming a notch at a predetermined radial direction position on the outer peripheral surface of the base, as in the case of the reference direction mark 505.
  • a third reference direction 602 is set along the maximum inclination direction of the third reference surface 601 of the inclined spacer 600.
  • a reference direction mark 605 defines a third reference direction 602.
  • the chip assembly 500 is inserted into the fitting recess 609 of the inclined spacer 600, and the second reference surface 504 of the chip assembly 500 and the third reference surface 601 at the bottom (bottom surface) of the fitting recess 609 of the inclined spacer 600 are brought into contact with each other.
  • the chip assembly 500 is fitted into the fitting recess 609 of the inclined spacer 600 so that the reference direction mark 505 of the chip assembly 500 matches the reference direction mark 605 of the inclined spacer 600.
  • FIG. 6 is an external view of the state in which the chip assembly 500 is assembled to the inclined spacer 600.
  • the chip assembly 500 is rotated by the direction angle ( ⁇ ) 508 relative to the inclined spacer 600. That is, as shown in FIG. 6, the angle between the second reference direction 505 of the chip assembly 500 and the third reference direction 602 of the inclined spacer 600 is matched with the direction angle ( ⁇ ) 508 of the emitter chip 1. Thereafter, these are fixed using fixing parts not shown. Thus, the tilt direction 510 in the ion emission direction 506 is aligned with the maximum tilt direction of the third reference surface 601 of the tilted spacer 600.
  • the increasing angle ( ⁇ ) 604 of the thickness of the inclined spacer is made the same as the inclined angle ( ⁇ ) 507 of the emitter chip 1.
  • the ion emission direction 506 coincides with the axis of the inclined spacer 600 perpendicular to the radial direction of the outer peripheral surface of the inclined spacer 600, that is, in this case, the vertical direction of the fourth reference surface 603 on the back surface of the inclined spacer 600.
  • the inclined spacer 600 to which the emitter chip 1 is fixed is inserted into the fitting recess 410 of the support 400. That is, the fourth reference surface 603 of the inclined spacer 600 and the first reference surface 401 at the bottom (bottom surface) of the fitting recess 410 of the support 400 are abutted.
  • FIG. 7 is an external view of a state in which the inclined spacer 600 to which the chip assembly 500 is fixed is assembled to the support 400.
  • the inclined spacer 600 and the support body 400 are fixed using a fixing part (not shown). Thereby, an assembly of the support 400, the inclined spacer 600, and the chip assembly 500 is obtained.
  • the fourth reference surface 603 of the inclined spacer 600 and the first reference surface 401 at the bottom (bottom surface) of the fitting recess 410 of the support body 400 are parallel to each other in the abutting state.
  • the vertical direction of the fourth reference surface 603 on the back surface of the inclined spacer 600 coincides with the axial direction of the ion optical axis 301 defined by the direction perpendicular to the first reference surface 401.
  • the ion optical axis 301 and the ion emission direction 506 are parallel to achieve the purpose of adjusting the tilt of the emitter tip 1.
  • the wiring of the terminal pin 502 of the chip assembly 500 may be considered.
  • the first reference direction 402 of the support 400 and the second reference direction 505 of the chip assembly 500 may be matched when the inclined spacer 600 is fitted into the fitting recess 410 of the support 400. Thereby, benefits such as easy wiring can be obtained.
  • the conditions for focusing the ion beam 5 on the sample 6 to a sub-nanometer unit digit value will be considered. It is assumed that the horizontal fine movement adjustment of the emitter tip 1 is properly performed by the horizontal fine movement mechanism 450.
  • the deviation angle (tilt deviation) of the ion emission direction 506 with respect to the ion optical axis 301 needs to be suppressed to about 0.1 ° or less. Further, since the tilt deviation in the manufacturing stage of the chip assembly 500 is suppressed to ⁇ 2 °, the deviation between the increase angle ( ⁇ ) 604 and the tilt angle ( ⁇ ) 507 is about 0.1 ° or less, and the rotation angle and direction.
  • the deviation of the angle ( ⁇ ) 508 needs to be about 2 ° or less.
  • inclined spacers 600 In order to reduce the number of inclined spacers 600 and improve the accuracy of adjustment, for example, inclined spacers in increments of 0.5 ° (four at 0 to 1.5 °) and inclined spacers in increments of 0.1 ° ( It is also possible to use a plurality of 5) at 0 to 0.4 °.
  • the rotation angle between the tip assembly 500 and the inclined spacer 600 was adjusted with an accuracy of 1 ° by using the assembly jig shown in FIG.
  • FIG. 8 is an explanatory diagram of adjustment of the rotation angle between the chip assembly 500 and the inclined spacer 600 by the assembly jig.
  • the assembly jig 700 includes a reference base 704 and a rotation stage 701 that is rotatably attached to the reference base 704.
  • a fitting recess 705 is formed in the rotary stage 701 in the same manner as the fitting recess 410 of the support 400 described above.
  • the back surface side (fourth reference surface side) of the inclined spacer 600 is fitted.
  • a second reference direction press 702 is fixed to the reference base 704.
  • the tip end of the second reference direction pressing member 702 engages with the notch of the reference direction mark 509 of the chip assembly 500 to prevent relative rotation of the chip assembly 500 with respect to the reference base 704.
  • a third reference direction presser 703 is fixed to the rotary stage 701.
  • the tip end of the third reference direction presser 703 engages with the notch of the reference direction mark 605 of the inclined spacer 600 to prevent relative rotation of the inclined spacer 600 with respect to the rotary stage 701.
  • the chip assembly 500 rotates relative to the inclined spacer 600 in a state of being fitted in the fitting recess 609 of the inclined spacer 600. Thereby, the rotation angle between the chip assembly 500 and the inclined spacer 600 is adjusted to the direction angle ( ⁇ ) 508. Then, the purpose is achieved by fixing the chip assembly 500 and the inclined spacer 600.
  • FIG. 9 is a configuration diagram of an ion emission direction measuring apparatus 800 used for measurement of the ion emission direction 506 of the chip assembly 500.
  • the apparatus 800 is a manufacturing apparatus that performs a process of forming the tip of the emitter chip 1 into a nanochip, and is configured to measure the ion emission direction 506 in the final process of manufacturing the emitter chip 1.
  • the chip assembly 500 is installed so that the second reference plane 504 is perpendicular to the central axis 801 of the vacuum chamber 806 and the tip of the emitter chip 1 is on the central axis 801 of the vacuum chamber 806. . At that time, the deviation of the emitter chip 1 from the central axis 801 of the vacuum chamber 806 is within 0.05 mm.
  • the chip assembly 500 is installed such that the second reference direction 505 coincides with the reference direction (measurement direction) of the optical scale 803.
  • the central axis of the optical scale 803 (that is, the zero point position on the scale) is aligned with the central axis 801 of the vacuum chamber 806. These do not have to be completely matched. In that case, the amount of deviation is measured in advance, and the measured value such as the tilt angle is corrected later.
  • the emitter tip 1 is placed in the vacuum chamber 806 of the ion emission direction measuring device 800, and nanotip processing is performed.
  • An extraction electrode (not shown) in the vacuum chamber 806 is grounded, and an appropriate positive high voltage is applied to the emitter chip 1.
  • ions are emitted from the emitter tip 1 by supplying an appropriate imaging gas.
  • the emitted ion beam is irradiated onto a microchannel plate (MCP) 802, and a fluorescent plate portion provided on the back side of the MCP 802 emits light corresponding to the irradiation position.
  • the light emitted from the fluorescent plate portion is enlarged and observed through the window 804 by the camera 805 and compared with the optical scale 803.
  • the amount of off-axis of the center axis of the chip assembly 500 and the direction of off-axis are measured. It is assumed that the chip assembly 500 coincides with the ion emission direction 506 or has a deviation within 0.05 mm. The measurement accuracy of the off-axis amount is within 0.1 mm.
  • the distance between the emitter tip 1 and the MCP 802 is 300 mm. Then, the tilt angle ( ⁇ ) 507 is obtained from the distance 300 mm and the measured off-axis amount, and the direction angle ( ⁇ ) 508 is obtained from the off-axis direction.
  • the tip processing of the tip of the emitter chip 1 is completed, and before the emitter chip 1 is attached to the GFIS 100, individual tilt data (tilt angle ( ⁇ ) 507 and Acquisition of the direction angle ( ⁇ ) 508) is completed.
  • the entire ion beam apparatus 200 is compared with the conventional case in which the gimbal mechanism is used to adjust the tilt of the emitter tip 1. This eliminates the need for complicated tilt adjustment operations using the and reduces the cost of the equipment required for the control.
  • the vacuum bellows 451 it is only necessary to provide the vacuum bellows 451 so as to define the surface sliding surface 452 of the annular base 47 of the horizontal fine movement mechanism 450 with respect to the inside of the vacuum vessel 10. Therefore, the surface area of the vacuum bellows 451 can be suppressed. Further, the size and length of the vacuum bellows can be reduced as compared with a gas field ion source (GFIS) using a gimbal mechanism. Therefore, the degree of vacuum of the gas field ion source (GFIS) can be increased, and ion emission can be more stabilized.
  • GFIS gas field ion source
  • the distance from the wall of the vacuum vessel 10 to the emitter chip 1 can be shortened. Therefore, low-frequency vibration entering from the outside is difficult to be transmitted, and there is an effect that blur of the sample image due to vibration of the emitter tip 1 can be reduced.
  • the configuration of the ion beam apparatus according to the present embodiment is substantially the same as that of the ion beam apparatus 200 according to the first embodiment shown in FIG.
  • the configuration of the gas field ion source (GFIS) is substantially the same as that of the GFIS 100 shown in FIG. 2, but the configuration of the inclined spacer 600 is different. for that reason.
  • GFIS gas field ion source
  • the description of the same or similar components as those in the first embodiment will be omitted, and only the configuration of the inclined spacer 600 having a different configuration will be described.
  • FIG. 10 is a configuration diagram of the inclined spacer 600-2 of the gas field ion source (GFIS) according to the ion beam apparatus of the present embodiment.
  • 10A is an external perspective view of the inclined spacer 600-2
  • FIG. 10B is a cross-sectional view of the inclined spacer 600-2 viewed from the radial direction. Note that, in FIG. 10, as in the case of FIG. 5, the configuration is displayed upside down from FIG.
  • the plate thickness is linearly increased or decreased in the diameter direction. Further, since the increase angle ( ⁇ ) 604 of the thickness of the inclined spacer 600 is fixed, it is necessary to prepare a plurality of types having different increase angles in order to increase the inclination adjustment accuracy.
  • the inclined spacer 600-2 according to the present embodiment is characterized in that the thickness increasing angle ( ⁇ ) 604 is adjustable.
  • One type of inclined spacer 600-2 can cope with various angles of increase ( ⁇ ) 604.
  • the inclined spacer 600-2 has a disk shape having an outer diameter that can be fitted into the fitting recess 410 of the support 400.
  • the surface (third reference surface 601) on the side where the chip assembly 500 is disposed and the surface (fourth reference surface 603) inserted into the fitting recess of the support 400 are non-parallel.
  • the inclined spacer 600-2 does not have a shape in which the plate thickness linearly increases or decreases in the radial direction. Instead, a stepped hole 610 is formed at a position off the central axis of the inclined spacer 600-2 along the thickness direction, preferably along the central axis direction of the inclined spacer 600-2.
  • An adjustment screw 607 whose overall length is shorter than the hole length of the stepped hole and whose threaded portion is longer than the hole length of the small diameter portion is screwed into the small diameter portion of the stepped hole 610.
  • a spring 608 is provided between the screw head of the adjustment screw 607 and the step portion of the stepped hole to prevent the adjustment screw 607 from rattling.
  • a notch 606 is formed on the peripheral surface opposite to the side where the stepped hole 610 is provided across the central axis of the inclined spacer 600-2.
  • the outer peripheral surface of the inclined spacer 600-2 is flat. Accordingly, the inclined spacer 600-2 adjusts the amount of protrusion of the adjusting screw 607 from the front or back surface of the inclined spacer 600-2 on the side where the small diameter portion is provided, so that the edge portion of the notch 606 is used as a fulcrum.
  • the increase angle ( ⁇ ) 604 can be changed.
  • the adjustment screw 607 is screwed into the small diameter portion of the stepped hole, so that necessary alignment accuracy can be ensured.
  • 0.05 ° is realized as the alignment accuracy of the increased angle ( ⁇ ) 604 with the notch 606 as a fulcrum.
  • a plurality of adjustment screws 607 having different lengths may be prepared as the adjustment screws 607 without using the spring 608.
  • a desired increase angle ( ⁇ ) 604 can be obtained by selecting an adjustment screw 607 having an appropriate length. However, in this case, the continuous angle adjustment of the increase angle ( ⁇ ) 604 with the notch 606 as a fulcrum is not possible.
  • the stepped hole 610 into which the adjustment screw 607 is screwed also serves as the third reference direction mark 605-2.
  • a line segment parallel to the surface (third reference surface 601) on the side where the third reference direction mark 605-2 and the chip assembly 500 are arranged passes through the central axis and intersects the notch surface of the notch 606.
  • the extending direction corresponds to the third reference direction 602.
  • the present invention is not limited to this embodiment, and various other design changes are possible.
  • the configuration of the ion beam apparatus according to the present embodiment is substantially the same as that of the ion beam apparatus 200 according to the first embodiment shown in FIG. 1, but horizontal fine movement in the gas field ion source (GFIS) 100 is performed.
  • the arrangement of the mechanism 450 is different.
  • FIG. 11 is a configuration diagram of a gas field ion source (GFIS) 100-2 according to the present embodiment.
  • the configuration of the gas field ion source (GFIS) 100-2 is substantially the same as that of the GFIS 100 shown in FIG. 2, but the arrangement of the horizontal fine movement mechanism 450 with respect to the vacuum vessel 10 is different.
  • the terminal mounting portion 45 constitutes a movable portion of the horizontal fine movement mechanism 450.
  • the vacuum bellows 451 shown in FIG. 2 is not necessary. . Further, it is not necessary to finely move the high voltage introduction terminal 40-1. By not providing the vacuum bellows 451, the distance from the wall of the vacuum vessel 10-2 to the emitter chip 1 is shortened.
  • the number of parts from the wall of the vacuum vessel 10-2 to the support 400 and the number of parts to be subjected to horizontal fine movement by the horizontal fine movement mechanism 450-2 can be reduced.
  • a high voltage introduction terminal 40-1 is fixed to the vacuum vessel 10-2. Therefore, the components that need to be finely moved are the heat insulation support (stainless steel thin pipe) 24-1, the heat transfer support (oxygen-free copper) 22-1, the heat transfer insulation (sapphire) 23-1, and the chip. It is only the support body 400 to which the assembly 500 and the inclined spacer 600 are assembled.
  • the degree of vacuum of the GFIS 100 can be increased, and ion emission is further stabilized. There is an effect to.
  • the first reference surface 401 of the support 400 is kept perpendicular to the ion optical axis 301 (that is, the central axis of the GFIS 100-2). Increases accuracy.
  • FIG. 12 is an overall configuration diagram of the ion beam apparatus 200-2 of the present embodiment.
  • the configuration of the ion beam apparatus 200-2 according to the present embodiment is substantially the same as the configuration of the ion beam apparatus 200 shown in FIG. 1, but the aligner 102-4 is different.
  • the aligner is only the aligner 102-4, which is a one-stage deflector.
  • the aligner includes an aligner 102-5 and an aligner 102-6. It is characterized by comprising two stages of electrostatic deflectors.
  • FIG. 13 is a diagram for explaining the basic operation of the two-stage aligner provided in the ion beam apparatus 200-2 of the present embodiment.
  • the ion optical axis 301 of the ion optical system 300-2 is set to a mechanical central axis depending on the assembled state of each part of the apparatus. In the tilt adjustment of the emitter tip 1, the ion emission direction 506 from the emitter tip 1 is aligned with this mechanical central axis.
  • the ion beam 5 transmitted through the first stage electrostatic lens 102-1 is caused by the above-described deviation. It does not pass through the center of the second stage electrostatic lens 102-2. Therefore, it is necessary to correct the ion beam 5 by deflecting it with an electrostatic deflector called an aligner.
  • the second stage electrostatic lens 102-2 is sufficiently away from the first stage electrostatic lens 102-1, and the ion beam 5 is incident on the center of the second stage electrostatic lens 102-2 vertically. Close to. Therefore, since the influence of coma aberration due to oblique incidence is not visible, it is not necessary to adjust the incident angle of the ion beam 5 to the second stage electrostatic lens 102-2.
  • the deflection correction of the ion beam 5 described so far can be handled in the same manner and is effective even for the slight angular deviation remaining after the tilt adjustment of the emitter tip 1 described above.
  • the ion beam 5 is focused on the sample to a sub-nanometer unit digit value, it is not sufficient to use only one aligner. This is because, in the ion beam apparatus 200-2 shown in FIG. 12, when the aligner is only one stage of the aligner 102-5 in the figure, the ion beam passes through the first stage electrostatic lens 102-1. The virtual light source No. 5 is shifted from the light source position 1010 to the light source position 1010-2. As a result, deflection chromatic aberration is generated, resulting in blurring of the sample image.
  • the ion beam 5 deflected by the first-stage aligner 102-5 is further deflected in the opposite direction by the second-stage aligner 102-6, and the ion beam 5 is then electrostatically charged by the second-stage aligner 102-6.
  • the center of the lens 102-2 is passed.
  • the blur of the sample image is improved by returning the virtual light source of the ion beam 5 that has passed through the first stage lens 102-1 from the light source position 1010-2 to the original light source position 1010.
  • control system was configured so that the deflection of the aligner 102-5 and the deflection of the aligner 102-6 were interlocked while maintaining a constant intensity ratio (deflection intensity ratio) in the opposite directions.
  • the optimum value of the deflection intensity ratio is obtained by calculation from the arrangement of the electrostatic lenses 102-1 and 102-2 and the arrangement of the aligners 102-5 and 102-6.
  • the aligner 102-5 adjusts the deflection so that the ion beam 5 scans in the vicinity of the hole of the second stage electrostatic lens 102-2, and is generated from the sample 6 in conjunction with the scanning.
  • a sample image is made using secondary electrons.
  • the deflection intensity ratio may be finely adjusted so that the blur of the sample image is minimized.
  • the deflection of the aligner 102-5 is fixed when the ion beam 5 passes through the center of the second stage electrostatic lens 102-2.
  • the deflection of the aligner 102-6 is fixed in conjunction with it.
  • the configuration of the ion beam apparatus according to the present embodiment is substantially the same as the configuration of the ion beam apparatus 200-2 shown in FIG.
  • This embodiment is characterized in that a signal (deflection signal) is given to the aligners 102-5 and 102-6 which are two-stage electrostatic deflectors.
  • the control system performs control to superimpose another signal on the signals to the aligners 102-5 and 102-6 described in the fourth embodiment.
  • FIG. 14 is a diagram for explaining the basic operation of the two-stage aligner provided in the ion beam apparatus 200-3 of the present embodiment.
  • the virtual light source of the emitter chip 1 may move between the light source position 1000 and the light source position 1001 due to the vibration of the emitter chip 1. Accordingly, the irradiation position of the ion beam 5 focused on the sample 6 through the second stage electrostatic lens 102-2 may move.
  • the ion beam 5 is used so as to cancel the movement between the light source position 1010 and the light source position 1011 of the virtual light source using the two-stage aligner 102-5 and the aligner 102-6. It is characterized by performing deflection control.
  • control system is configured to interlock the deflection of the aligner 102-5 and the deflection of the aligner 102-6 while maintaining a constant intensity ratio (deflection intensity ratio) in the same direction.
  • the optimum value of the deflection intensity ratio can be obtained by calculation from the arrangement of the electrostatic lenses 102-1 and 102-2 and the arrangement of the aligners 102-5 and 102-6.
  • the vibration of the emitter tip 1 is recognized as blur if the sample image acquisition time is long, but if the acquisition time is shortened, the image will be distorted. By analyzing this, vibration can be captured. Basically, since the vibration of the emitter tip 1 is a mechanical natural vibration, the vibration is in the same direction at a low frequency.
  • control system Based on the acquired vibration, the control system finally performs control to apply a deflection signal that vibrates in a certain direction to the aligner 102-5 so as to cancel the vibration. At the same time, the deflection of the aligner 102-6 is controlled to vibrate in conjunction with it.
  • the configuration of the ion beam apparatus according to the present embodiment is substantially the same as the configuration of the ion beam apparatus 200 according to the first embodiment shown in FIG. 1, but the configuration of the gas field ion source (GFIS) 100 is the same. Different.
  • FIG. 15 is a configuration diagram of a gas field ion source (GFIS) 100-3 according to the present embodiment.
  • the configuration of the gas field ion source (GFIS) 100-3 is substantially the same as the configuration of the GFIS 100 shown in FIG. 2, except that a gimbal mechanism 450-4 is disposed on the horizontal fine movement mechanism 450-3.
  • the movable portion of the horizontal fine movement mechanism 450-3 is divided into an upper member 46-1 and a lower member 46-2, which are in contact with each other by a sliding surface 452-4.
  • the sliding surface 452-4 is formed in a spherical shape with the emitter tip 1 as the center.
  • the upper member 46-1 can move in the circumferential direction along the sliding surface 452-4.
  • the lower member 46-2 constitutes a fixed part of the gimbal mechanism 450-4, and the upper member 46-1 constitutes a movable part of the gimbal mechanism 450-4.
  • the support 400, the chip assembly 500, and the inclined spacer 600 that support the emitter chip can be pivoted about the tip of the emitter chip by the gimbal mechanism.
  • the rotational positioning mechanism by the gimbal mechanism 450-4 includes a push rod 453-4 and a compression spring 454-4 disposed on the lower member 46-2 so as to sandwich the upper member 46-1 in the radial direction. ing. Accordingly, the position of the upper member 46-1 relative to the lower member 46-2 can be adjusted by adjusting and fixing the advance / retreat position of the push rod 453-4 against the urging force of the compression spring 454-4. .
  • a micrometer head is attached to the push rod 453-4, and the tilt angle of the emitter chip 1 can be adjusted with an accuracy of 0.1 ° or less.
  • a vacuum bellows 451 is provided between the terminal mounting portion 45 and the annular base 47 so as to surround the heat insulating support 24-1.
  • the aperture of the vacuum bellows 451 is about 100 cm 2 , and atmospheric pressure presses the terminal mounting portion 45 with a force of about 100 kg. Therefore, in order to ensure smooth movement on the sliding surface 452-4, a plurality of balls are charged between the contact surfaces.
  • fine adjustment in the horizontal direction by the horizontal fine movement mechanism 450-3 can be performed, and final adjustment of the tilt angle of the chip can be performed by the gimbal mechanism 450-4. That is, not only the tip tilt adjustment using the support 400, the chip assembly 500, and the tilt spacer 600 but also the tip tilt adjustment using the gimbal mechanism 450-4 can be performed. Therefore, compared with the case of the first embodiment, the accuracy of the tilt angle of the chip in the manufacturing stage of the chip assembly 500 can be relaxed without increasing the number of tilt spacers 600 having different angles. . Therefore, the manufacturing cost of the chip assembly 500 can be suppressed.
  • the allowable value of the tip tilt deviation in the manufacturing stage of the tip assembly 500 is ⁇ 2 ° in the first embodiment, but can be increased to ⁇ 5 ° in the present embodiment.
  • the tolerance for the deviation of the center position can be increased from ⁇ 0.05 mm to ⁇ 0.1 mm.
  • the measurement cost can be suppressed.
  • the allowable value of measurement accuracy can be relaxed from ⁇ 0.05 ° to ⁇ 0.2 °.
  • the inclined spacer 600 six different thickness increasing angles ( ⁇ ) 604 were prepared in advance from 0 ° to 5 ° in 1 ° increments. This is about half of the number of the inclined spacers 600 in the case of the first embodiment.
  • the deviation between the increase angle ( ⁇ ) 604 and the inclination angle ( ⁇ ) 507 can be made to be about 0.5 ° or less.
  • the tilt deviation of the chip in the manufacturing stage of the chip assembly 500 is shared by both the tilt adjustment using the tilt spacer 600 and the tilt adjustment using the gimbal mechanism 450-4.
  • the tip tilt deviation at the manufacturing stage of the tip assembly 500 is ⁇ 5 °.
  • the adjustment amount of the tip inclination by the gimbal mechanism 450-4 may be about ⁇ 0.7 °, not ⁇ 5 °.
  • the adjustment amount ⁇ 0.7 ° may be obtained by the mean square of the adjustment step ⁇ 0.5 ° by the inclined spacer 600 and the measurement accuracy of the tip inclination angle ⁇ 0.2 °, but here it is obtained by a simple sum. .
  • the moving amount and the movable range of the movable part in the gimbal mechanism are larger than the moving amount and the movable range of the movable part in the horizontal fine movement mechanism.
  • the horizontal movement amount and movable range of the movable part of the gimbal mechanism may be larger than twice the horizontal movement amount and movable range of the movable part of the horizontal fine movement mechanism.
  • the moving amount and the movable range of the movable part (upper member 46-1) of the gimbal mechanism 450-4 are relatively small.
  • the amount of movement and the movable range of the movable part (upper member 46-1) of the gimbal mechanism 450-4 are at least smaller than twice the amount of movement and the movable range of the movable part of the horizontal fine movement mechanism 450-3. Furthermore, the moving amount and the movable range of the movable part (upper member 46-1) of the gimbal mechanism 450-4 can be made smaller than the moving amount and the movable range of the movable part of the horizontal fine movement mechanism 450-3.
  • the distance from the sliding surface 452-4 of the gimbal mechanism 450-4 to the tip of the emitter tip 1 is about 100 mm. That is, the rotation radius of the upper member 46-1 is about 100 mm. In order to rotate the upper member 46-1 by ⁇ 0.7 ° around the rotation center, it is necessary to move the upper member 46-1 by ⁇ 1.2 mm in the direction of the sliding surface 452-4. When this is converted into the amount of movement in the horizontal direction, it is ⁇ 1 mm.
  • the horizontal fine movement mechanism 450-3 is designed such that the amount of movement in the horizontal direction on the sliding surface 452 is ⁇ 2 mm. The amount of movement of the upper member 46-1 of the movable part in the gimbal mechanism 450-4 is smaller than this.
  • the gimbal mechanism 450-4 is provided on the horizontal fine movement mechanism 450-3. Therefore, the amount of movement of the upper member 46-1 is the sum of the amount of movement due to adjustment of the horizontal fine movement mechanism 450-3 and the amount of movement due to adjustment of the gimbal mechanism 450-4. However, since the amount of movement of the upper member 46-1 in the gimbal mechanism 450-4 is small and can be absorbed by the extension of the vacuum bellows 451, there is no need to change the aperture.
  • the vacuum bellows As described above, according to the present embodiment, it is not necessary to increase the size of the vacuum bellows provided in the horizontal fine movement mechanism even if a gimbal mechanism is added. Therefore, the GFIS can be reduced in size. Further, the use of the vacuum bellows can increase the degree of vacuum inside, and has an effect of further stabilizing ion emission.
  • the gimbal mechanism 450-4 is arranged above the horizontal fine movement mechanism 450-3.
  • the movable ranges thereof are approximately the same, the same effect can be obtained even if the arrangement is reversed.
  • heat transfer support (Oxygen-free copper), 23-1 ... heat transfer insulator (sapphire), 24-1 ... heat insulation support (stainless steel thin pipe), 21 ... heat transfer net, 22 ... heat transfer support, 23 ... heat transfer Thermal insulator, 24 ... Thermal insulation support, 30 ... Gas supply pipe, 31 ... Gas cylinder, 32 ... Valve, 40- DESCRIPTION OF SYMBOLS 1,40-2 ... High voltage introduction terminal, 45 ... Terminal mounting part, 46 ... Movable part, 46-1 ... Upper member, 46-2 ... Lower member, 47 ... Annular base, 100, 100-2, 100- DESCRIPTION OF SYMBOLS 3 ... Gas field ionization ion source, 101 ... Sample stage, 102 ...
  • Lens system 102-1, 102-2 ... Electrostatic lens, 102-3 ... Beam limiting aperture, 102-4, 102-5, 102-6 ... Aligner 103 ... Deflection system 103-1, 103-2 ... Deflector 104 ... Secondary electron detector 105 ... Lens system controller 106 ... Deflection system controller 110 ... Display 200, 200-2 , 200-3 ... ion beam device, 300, 300-2 ... ion optical system, 301 ... ion optical axis, 400 ... support, 401 ... first reference plane, 402 ... first reference direction, 410 ... fitting recess, 411: Wiring hole, 450, 4 0-2, 450-3 ... Horizontal fine movement mechanism, 450-4 ...
  • Gimbal mechanism 451 ... Vacuum bellows, 452, 452-4 ... Sliding surface, 453, 453-4 ... Push rod, 454, 454-4 ... Push spring , 500 ... Chip assembly, 501 ... Base, 502 ... Terminal pin, 503 ... Filament, 504 ... Second reference plane, 505 ... Second reference direction, 506 ... Ion emission direction, 507 ... Inclination angle, 508 ... Direction angle, 509 Reference direction mark, 600, 600-2 ... Inclined spacer, 601 ... Third reference surface, 602 ... Third reference direction, 603 ... Fourth reference surface, 604 ... Thickness increase angle, 605, 605-2 ... Reference direction Mark, 606 ... Notch, 607 ...

Abstract

Disclosed is a gas field ionization source (GFIS) that enables the inclination of an emitter chip to be adjusted, and the operation of which is stable and low cost. The gas field ionization source (GFIS) comprises a support body having a first reference surface perpendicular to the ion optical axis, a chip assembly comprising a base having an emitter chip and a second reference surface, and an inclined spacer positioned between the chip assembly and the support body. The inclined spacer has a fourth reference surface and a third reference surface that is inclined in relation to the fourth reference surface.

Description

ガス電解電離イオン源、及びイオンビーム装置Gas ionization ion source and ion beam apparatus
 本発明は、ガス電解電離イオン源、及びこれを用いたイオンビーム装置に関する。 The present invention relates to a gas electrolytic ionization ion source and an ion beam apparatus using the same.
 特許文献1及び2には、ガス電解電離イオン源(Gas Field Ionization Ion Source、略称;GFIS)を搭載し、水素[H2],ヘリウム[He],ネオン[Ne]等のガスイオンを用いた集束イオンビーム(Focused Ion Beam、略称;FIB)装置が開示されている。これらのガス集束イオンビーム(略称;ガスFIB)は、現在よく使われている液体金属イオン源(Liquid Metal Ion Source、略称;LMIS)からのガリウム[Ga:金属]集束イオンビーム(略称;Ga-FIB)のように、試料にガリウム[Ga]汚染をもたらさないという利点がある。加えて、ガス電解電離イオン源(GFIS)は、そこから引き出したガスイオンのエネルギー幅が狭いこと、及びイオン発生源サイズが小さいことから、ガリウム集束イオンビーム(Ga-FIB)と較べ、より微細なビームが形成できる。 Patent Documents 1 and 2 are equipped with a gas field ionization ion source (Gas Field Ionization Ion Source, abbreviated as GFIS) and focused using gas ions such as hydrogen [H2], helium [He], neon [Ne], etc. An ion beam (abbreviated as FIB) apparatus is disclosed. These gas focused ion beams (abbreviation: gas FIB) are gallium [Ga: metal] focused ion beams (abbreviation: Ga--) from a liquid metal ion source (Liquid-Metal-Ion-Source, abbreviated as LMIS), which is often used at present. As in FIB), there is an advantage that the sample does not cause gallium [Ga] contamination. In addition, the gas ionization ion source (GFIS) is finer than the gallium focused ion beam (Ga-FIB) because of the narrow energy width of gas ions extracted from it and the small ion source size. A simple beam can be formed.
 一方、特許文献3及び非特許文献1には、GFISのエミッタチップ先端に微小な突出部を形成すること、或いはエミッタチップ先端の原子数を数個以下に下げることにより、イオン源の放射角電流密度が高くなる等、イオン源特性が良くなることが開示されている。このようなエミッタチップ先端の微小突出(以下、ナノチップと称す)の作製例として、非特許文献1及び特許文献2では、タングステン[W:金属]製のエミッタチップから電界蒸発を利用して作製することが開示されている。この場合、ナノチップは、タングステン単結晶(W単結晶)の[111]方向に終端する1又は3原子である。また、非特許文献2及び特許文献4には、エミッタチップの第1金属材料(例えば、タングステン[W])とは異なる第2金属材料(例えば、イリジウム[Ir])を用いて、ナノチップを作製することが開示されている。この場合、ナノチップは、W単結晶の[111]方向の終端部に形成したイリジウム[Ir]や白金[Pt]等からなるピラミッドである。 On the other hand, in Patent Document 3 and Non-Patent Document 1, by forming a minute protrusion at the tip of the emitter tip of the GFIS, or by reducing the number of atoms at the tip of the emitter tip to several or less, the radiation angle current of the ion source. It is disclosed that ion source characteristics are improved, such as an increase in density. As a manufacturing example of such a minute protrusion at the tip of the emitter chip (hereinafter referred to as a nanochip), in Non-Patent Document 1 and Patent Document 2, it is manufactured by using field evaporation from an emitter chip made of tungsten [W: metal]. It is disclosed. In this case, the nanotip is one or three atoms terminating in the [111] direction of the tungsten single crystal (W single crystal). In Non-Patent Document 2 and Patent Document 4, a nanochip is manufactured using a second metal material (for example, iridium [Ir]) different from the first metal material (for example, tungsten [W]) of the emitter chip. Is disclosed. In this case, the nanochip is a pyramid made of iridium [Ir], platinum [Pt], or the like formed at the end of the W single crystal in the [111] direction.
 ところで、ナノチップ先端の一原子から放出されるイオンの放出角は約1°と狭い。そのため、ナノチップを有するGFISを搭載したFIB装置では、ナノチップから放出されるイオンの放出方向を、後段のイオン光学系の光軸、すなわちイオン光軸に合わせる手段、すなわち、エミッタチップの傾斜調整手段が必要になる。この傾斜調整手段は、単にイオンビームをイオン光学系に通すだけではなく、イオン光学系内の静電レンズで発生する余分な収差を減らす働きがある。通常は、エミッタチップのイオン光軸に対する位置を調整するが、これだけでは、放出イオンが静電レンズの中心を通るように調整したとしても、ナノチップの傾きが大きい場合には、補正不可能なコマ収差が増大して、FIB装置の分解能を低下させてしまうからである。 By the way, the emission angle of ions emitted from one atom at the tip of the nanotip is as narrow as about 1 °. Therefore, in an FIB apparatus equipped with a GFIS having a nanotip, means for aligning the emission direction of ions emitted from the nanochip with the optical axis of the subsequent ion optical system, that is, the ion optical axis, that is, the tilt adjustment means of the emitter chip is provided. I need it. This tilt adjusting means not only simply passes the ion beam through the ion optical system, but also serves to reduce excess aberrations generated by the electrostatic lens in the ion optical system. Normally, the position of the emitter tip with respect to the ion optical axis is adjusted. However, even if this is adjusted so that the emitted ions pass through the center of the electrostatic lens, if the tilt of the nanotip is large, an uncorrectable coma is used. This is because the aberration increases and the resolution of the FIB apparatus is lowered.
 このようなイオン用及び電子用のエミッタチップの傾斜調整手段については、例えば、特許文献2に記載されているような、ナノチップを有するGFISにおいて、イオン源室の大気側に設けたジンバル機構によりエミッタチップの傾斜調整を行う方法が、従来から知られている。このジンバル機構によるエミッタチップの傾斜調整は、GFISを用いるFIB装置では、一般的に用いられている方法である。 As for the tilt adjusting means of the emitter tip for ions and electrons, for example, in a GFIS having a nanotip as described in Patent Document 2, an emitter is provided by a gimbal mechanism provided on the atmosphere side of the ion source chamber. A method for adjusting the tilt of the tip is conventionally known. The tilt adjustment of the emitter tip by this gimbal mechanism is a method generally used in the FIB apparatus using GFIS.
 さらに、特許文献5には、ジンバル機構が備えられている半固定のホルダにエミッタチップを取り付けて、そのホルダをイオン源に取り付ける方法が記載されている。また、特許文献6には、エミッタチップの位置を引出電極に対してずらすことで電子の放出方向を変化させ、実効的にエミッタチップの傾斜を調整する方法が記載されている。 Further, Patent Document 5 describes a method of attaching an emitter tip to a semi-fixed holder provided with a gimbal mechanism and attaching the holder to an ion source. Further, Patent Document 6 describes a method of effectively adjusting the inclination of the emitter tip by changing the electron emission direction by shifting the position of the emitter tip with respect to the extraction electrode.
特開平7-192669号公報Japanese Patent Laid-Open No. 7-192669 特表2009-517846号公報Special table 2009-517846 gazette 特開昭58―85242号公報JP 58-85242 A 特開2008-140557号公報JP 2008-140557 A 特開昭62-51134号公報JP-A-62-51134 特開2002―216686号公報Japanese Patent Laid-Open No. 2002-216686
 ガス電界電離イオン源(GFIS)を安定に動作させるには、エミッタチップが格納される真空容器内のベース圧力(すなわち、ガス導入前の圧力)を超高真空とする必要がある。また、GFISを用いた集束イオンビーム(FIB)装置では、エミッタチップの振動がそのまま、試料上のイオンビームの振動すなわちボケとなってしまうため、エミッタチップの振動を抑制する設計が必要である。 In order to operate the gas field ion source (GFIS) stably, it is necessary to set the base pressure in the vacuum vessel in which the emitter tip is stored (that is, the pressure before gas introduction) to an ultra-high vacuum. Further, in the focused ion beam (FIB) apparatus using GFIS, the vibration of the emitter tip is left as it is, which is the vibration of the ion beam on the sample, that is, the blur, and therefore, a design for suppressing the vibration of the emitter tip is necessary.
 ところが、エミッタチップの傾斜調整に一般的に用いられているジンバル機構は、エミッタチップの数°分の傾斜調整のために機構を大気側で数cm移動させる必要がある。そのため、エミッタチップが格納された真空容器内を外部に対して気密に画成するために必要な真空ベローズは、大口径でかつ長いものとならざるを得なかった。 However, the gimbal mechanism generally used for adjusting the tilt of the emitter tip needs to be moved several centimeters on the atmosphere side in order to adjust the tilt of the emitter tip by several degrees. For this reason, the vacuum bellows necessary for airtightly defining the inside of the vacuum container in which the emitter chip is stored has to be large in diameter and long.
 この結果、エミッタチップの傾斜調整をジンバル機構によって行う従来のGFISやFIB装置では、そのベローズの表面積が大きくなるため、超高真空の達成のために真空排気ポンプに掛かるコストの増加や、真空立上げの際に真空容器を加熱して超真空の達成を促進するベーキング時間の増加を招くことになる。また、このベローズが長くなった分だけ、エミッタチップを支持する部分が真空容器の容器壁部から遠くに離れてしまい、外部の低周波振動をエミッタチップに伝え易くなる。さらには、ジンバル機構は、大気圧が作用している状態の機構を数cm動かすため、その駆動装置が大型になってしまう。 As a result, in the conventional GFIS and FIB apparatus in which the tilt adjustment of the emitter tip is performed by the gimbal mechanism, the surface area of the bellows is increased, so that the cost for the vacuum pump is increased to achieve ultrahigh vacuum, During the raising, the vacuum vessel is heated to increase the baking time for promoting the achievement of the ultra vacuum. Further, as the bellows becomes longer, the portion that supports the emitter tip is moved away from the vessel wall of the vacuum vessel, and external low-frequency vibration is easily transmitted to the emitter tip. Furthermore, since the gimbal mechanism moves the mechanism in a state where atmospheric pressure is applied by several centimeters, the drive device becomes large.
 本発明は、上記のような課題を解決するためになされたものであり、エミッタチップの傾斜調整が可能で、動作が安定でかつ低コストのガス電界電離イオン源(GFIS)を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a gas field ion source (GFIS) capable of adjusting the tilt of an emitter tip, stable in operation, and low in cost. Objective.
 また、本発明は、このようなガス電界電離イオン源(GFIS)をイオンビーム装置に搭載することにより、イオンビームの軸調整を容易にするとともに、試料像のボケを小さくしたイオンビーム装置を提供することを目的とする。 In addition, the present invention provides an ion beam apparatus that facilitates adjustment of the axis of the ion beam and reduces the blur of the sample image by mounting such a gas field ion source (GFIS) in the ion beam apparatus. The purpose is to do.
 本発明に係るガス電界電離イオン源(GFIS)は、イオン光軸に対して垂直に配置される第1基準面を有する支持体と、エミッタチップと第2基準面を有するベースからなるチップアッセンブリと、チップアッセンブリと支持体の間に配置された傾斜スペーサを有し、傾斜スペーサは、第4基準面と該第4基準面に対して傾斜した第3基準面を有する。 A gas field ion source (GFIS) according to the present invention includes a support having a first reference surface arranged perpendicular to the ion optical axis, and a chip assembly including an emitter tip and a base having a second reference surface. And an inclined spacer disposed between the chip assembly and the support, and the inclined spacer has a fourth reference surface and a third reference surface inclined with respect to the fourth reference surface.
 ここで、エミッタチップのベースの第2基準面の垂直方向に対するエミッタチップからのイオン放出方向の傾斜方位を予め測定する。このエミッタチップからのイオン放出方向の傾斜方位が、傾斜スペーサの第3基準面の最大傾斜方向に一致するように、チップアッセンブリを傾斜スペーサの第3基準面上に装着する。それによって、エミッタチップからのイオン放出方向は、イオン光軸に平行となる。 Here, the inclination azimuth of the ion emission direction from the emitter tip with respect to the direction perpendicular to the second reference plane of the base of the emitter tip is measured in advance. The tip assembly is mounted on the third reference surface of the inclined spacer so that the inclination direction of the ion emission direction from the emitter tip coincides with the maximum inclination direction of the third reference surface of the inclined spacer. Thereby, the direction of ion emission from the emitter tip is parallel to the ion optical axis.
 また、このチップアッセンブリには、固定されているエミッタチップの傾斜データ(方向角と傾斜角等)がアクセス可能に関連付けられている。 Also, this chip assembly is associated with accessible tilt data (direction angle, tilt angle, etc.) of the fixed emitter chip.
 また、本発明に係るガス電界電離イオン源(GFIS)を搭載したイオンビーム装置は、2段の静電レンズの間に、2段の静電偏向器によるアライナーを備えている。このアライナーは、1段目の静電レンズを通過したイオンビームをそのソース位置が動かないようにして2段目の静電レンズに導く機能を有する。 Also, an ion beam apparatus equipped with a gas field ion source (GFIS) according to the present invention includes an aligner with a two-stage electrostatic deflector between two stages of electrostatic lenses. This aligner has a function of guiding the ion beam that has passed through the first-stage electrostatic lens to the second-stage electrostatic lens so that its source position does not move.
 また、本発明に係るガス電界電離イオン源(GFIS)では、エミッタチップの先端の水平方向の位置を調整するための水平微動機構と、エミッタチップの傾斜を調整するためのジンバル機構が設けられている。ジンバル機構における可動部の移動量及び移動範囲は、水平微動機構における可動部の移動量及び移動範囲より小さい。 In the gas field ion source (GFIS) according to the present invention, a horizontal fine movement mechanism for adjusting the horizontal position of the tip of the emitter tip and a gimbal mechanism for adjusting the inclination of the emitter tip are provided. Yes. The moving amount and moving range of the movable part in the gimbal mechanism are smaller than the moving amount and moving range of the movable part in the horizontal fine movement mechanism.
 本発明に係るガス電界電離イオン源(GFIS)によれば、エミッタチップの取付時にエミッタチップの傾斜調整が終わるので、イオンビーム装置を使っての複雑なエミッタチップの傾斜調整の操作が不要であり、その制御に必要な装置コストを削減できる。 According to the gas field ion source (GFIS) according to the present invention, since the adjustment of the tilt of the emitter tip is completed when the emitter tip is mounted, a complicated operation of adjusting the tilt of the emitter tip using the ion beam apparatus is not necessary. , Device cost required for the control can be reduced.
 また、本発明に係るイオンビーム装置によれば、ガス電界電離イオン源(GFIS)のベースとなる真空度(ベース真空度)が改善し、エミッタチップも外部振動の影響を受け難くなるため、イオンビームの安定性や集束性が改善できる。 In addition, according to the ion beam apparatus of the present invention, the vacuum degree (base vacuum degree) serving as the base of the gas field ion source (GFIS) is improved, and the emitter tip is hardly affected by external vibration. Beam stability and focusing can be improved.
 また、本発明に係るガス電界電離イオン源(GFIS)は、ジンバル機構の可動範囲を水平微動機構の可動範囲と同程度以下にできるので、イオン源全体を小型にすることができる。 Also, the gas field ionization ion source (GFIS) according to the present invention can make the movable range of the gimbal mechanism less than or equal to the movable range of the horizontal fine movement mechanism, so that the entire ion source can be made small.
本発明の第1の実施の形態に係るイオンビーム装置の全体構成図である。1 is an overall configuration diagram of an ion beam apparatus according to a first embodiment of the present invention. 図1に示したガス電界電離イオン源(GFIS)の構成図である。It is a block diagram of the gas field ionization ion source (GFIS) shown in FIG. 図2に示した電界電離イオン源(GFIS)のチップアッセンブリの構成図である。It is a block diagram of the chip | tip assembly of the field ionization ion source (GFIS) shown in FIG. 図2に示した電界電離イオン源(GFIS)の支持体の構成図である。It is a block diagram of the support body of the field ionization ion source (GFIS) shown in FIG. 図2に示した電界電離イオン源(GFIS)の傾斜スペーサの構成図である。It is a block diagram of the inclination spacer of the field ionization ion source (GFIS) shown in FIG. チップアッセンブリを傾斜スペーサに組み付けた状態の外観図である。It is an external view of the state which attached | assembled the chip assembly to the inclination spacer. チップアッセンブリが固定された傾斜スペーサを支持体に組み付けた状態の外観図である。It is an external view of the state which assembled | attached the inclination spacer to which the chip assembly was fixed to the support body. チップアッセンブリのイオン放出方向の測定に用いるイオン放出方向測定装置の構成図である。It is a block diagram of the ion emission direction measuring apparatus used for the measurement of the ion emission direction of a chip assembly. チップアッセンブリのイオン放出方向の測定に用いるイオン放出方向測定装置の構成図である。It is a block diagram of the ion emission direction measuring apparatus used for the measurement of the ion emission direction of a chip assembly. 本発明の第2の実施の形態に係るイオンビーム装置のガス電界電離イオン源(GFIS)の傾斜スペーサの構成図である。It is a block diagram of the inclination spacer of the gas field ionization ion source (GFIS) of the ion beam apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係るイオンビーム装置のガス電界電離イオン源(GFIS)の構成図である。It is a block diagram of the gas field ionization ion source (GFIS) of the ion beam apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係るイオンビーム装置の全体構成図である。It is a whole block diagram of the ion beam apparatus which concerns on the 4th Embodiment of this invention. 本実施の第4の実施の形態のイオンビーム装置に備えられた2段アライナーの基本的な動作説明図である。It is basic operation explanatory drawing of the two-stage aligner with which the ion beam apparatus of the 4th Embodiment was equipped. 本発明の第5の実施の形態に係るイオンビーム装置に備えられた2段アライナーの基本的な動作説明図である。It is basic operation explanatory drawing of the two-step aligner with which the ion beam apparatus which concerns on the 5th Embodiment of this invention was equipped. 本発明の第6の実施の形態に係るイオンビーム装置のガス電界電離イオン源(GFIS)の構成図である。It is a block diagram of the gas field ionization ion source (GFIS) of the ion beam apparatus which concerns on the 6th Embodiment of this invention.
 本発明のガス電界電離イオン源(GFIS)及びイオンビーム装置に係る実施の形態について、以下、図面と共に説明する。 Embodiments of the gas field ion source (GFIS) and ion beam apparatus according to the present invention will be described below with reference to the drawings.
<第1の実施の形態>
 図1は、本実施の形態に係るイオンビーム装置の全体構成図である。
<First Embodiment>
FIG. 1 is an overall configuration diagram of an ion beam apparatus according to the present embodiment.
 本実施の形態のイオンビーム装置200は、従来の集束イオンビーム(FIB)装置において、従来のガリウム-液体金属イオン源(Ga-LMIS)の代わりに、後述する本発明のガス電界電離イオン源(GFIS)100を組み込んで構成したものである。 The ion beam apparatus 200 of the present embodiment is a conventional focused ion beam (FIB) apparatus, which uses a gas field ion source (described later) of the present invention instead of the conventional gallium-liquid metal ion source (Ga-LMIS). GFIS) 100 is incorporated.
 図1において、イオンビーム装置200は、GFIS100から放出されたイオンビーム5が、イオン光学系300に入射し、このイオン光学系300によって集束されて、試料ステージ101に載置された試料6上を照射する構成になっている。 In FIG. 1, an ion beam apparatus 200 is configured such that an ion beam 5 emitted from the GFIS 100 enters an ion optical system 300, is focused by the ion optical system 300, and moves on a sample 6 placed on a sample stage 101. It is configured to irradiate.
 GFIS100は、エミッタチップ1と、引出電極2と、イオン化用のガスをエミッタチップ先端に供給するガス供給配管30のガス放出口3とを備えている。エミッタチップ1は、引出電圧印加部4から印加された高電圧(例えば、正の高電圧)によって、ガス放出口3から供給されてチップ先端に所在するガスをイオン化する。引出電極2は、引出電圧印加部4から印加された引出電圧(この場合は、負の引出電圧)に基づいてエミッタチップ1によって生成されたイオンを引き出し、イオン光学系300に対してイオンビーム5として放出する。 The GFIS 100 includes an emitter tip 1, an extraction electrode 2, and a gas discharge port 3 of a gas supply pipe 30 that supplies an ionization gas to the tip of the emitter tip. The emitter tip 1 ionizes a gas supplied from the gas discharge port 3 and located at the tip of the tip by a high voltage (for example, a positive high voltage) applied from the extraction voltage application unit 4. The extraction electrode 2 extracts ions generated by the emitter tip 1 based on the extraction voltage (in this case, a negative extraction voltage) applied from the extraction voltage application unit 4, and extracts the ion beam 5 from the ion optical system 300. To release as.
 イオン光学系300は、静電レンズ102-1,102-2,ビーム制限絞り102-3,アライナー102-4を含むレンズ系102と、偏向器103-1,103-2を含む偏向系103とを備えている。イオン光学系300に入射したイオンビーム5は、その中の静電レンズ102-1、102-2で集束されて試料6上に照射される。また、その際における、試料6上でのイオンビーム5の照射位置は、偏向器103-1,103-2でイオンビーム5を偏向することによって調整される。 The ion optical system 300 includes a lens system 102 including electrostatic lenses 102-1 and 102-2, a beam limiting aperture 102-3, and an aligner 102-4, and a deflection system 103 including deflectors 103-1 and 103-2. It has. The ion beam 5 incident on the ion optical system 300 is focused by the electrostatic lenses 102-1 and 102-2 and irradiated onto the sample 6. In addition, the irradiation position of the ion beam 5 on the sample 6 at that time is adjusted by deflecting the ion beam 5 by the deflectors 103-1 and 103-2.
 その際、静電レンズ102-1,102-2,ビーム制限絞り102-3,アライナー102-4を含むレンズ系102は、レンズ系制御器105により、対応するドライバ102-1’~102-4’を駆動制御されて制御される。また、レンズ系制御器105は、引出電圧印加部4を駆動制御して、イオン光学系300から放出されるイオンビーム5も制御する。一方、偏向器103-1,103-2を含む偏向系103は、偏向系制御器106により、対応するドライバ103-1’,103-2’を駆動制御されて制御される。 At that time, the lens system 102 including the electrostatic lenses 102-1 and 102-2, the beam limiting aperture 102-3, and the aligner 102-4 is matched by the lens system controller 105 with the corresponding drivers 102-1 'to 102-4. 'The drive is controlled and controlled. The lens system controller 105 also controls the ion beam 5 emitted from the ion optical system 300 by driving and controlling the extraction voltage application unit 4. On the other hand, the deflection system 103 including the deflectors 103-1 and 103-2 is controlled by the deflection system controller 106 by driving and controlling the corresponding drivers 103-1 'and 103-2'.
 そして、上述したイオンビーム5の照射により試料6から発生した2次電子7は、2次電子検出器104で検出され、A/D信号変換部104’を介してデジタル信号に変換され、更に、画像生成部を含む表示器110によって、その信号強度を偏向強度と対応させた2次電子観察像が形成される。ユーザは、表示器110を用いて2次電子観察像を見ながら、イオンビーム5を照射する位置をその画面上で指定することができる。 Then, the secondary electrons 7 generated from the sample 6 by the irradiation of the ion beam 5 described above are detected by the secondary electron detector 104, converted into a digital signal via the A / D signal converter 104 ′, and The display 110 including the image generation unit forms a secondary electron observation image in which the signal intensity corresponds to the deflection intensity. The user can designate the position of irradiation with the ion beam 5 on the screen while viewing the secondary electron observation image using the display device 110.
 なお、これらの制御器105,106と表示器110との全体制御を行う部分については、図1では図示省略してある。 Note that a portion for performing overall control of these controllers 105 and 106 and the display 110 is not shown in FIG.
 図2は、図1に示したガス電界電離イオン源(GFIS)の構成図である。本実施の形態では、エミッタチップ1,引出電極2,ガス放出口3が配置される雰囲気をレンズ系102及び偏向系103が配置されるイオン光学系300の雰囲気とは独立して超高真空に保てることができる。そのために、そのエミッタチップ1等を収容する真空容器10は、イオン光学系300の機器を収容するイオン光学系筐体(図示せず)とは独立した筐体によって形成されている。これにより、ガス電界電離イオン源(GFIS)100は、ユニット化されている。 FIG. 2 is a block diagram of the gas field ion source (GFIS) shown in FIG. In the present embodiment, the atmosphere in which the emitter tip 1, the extraction electrode 2, and the gas emission port 3 are arranged is set to an ultrahigh vacuum independently of the atmosphere in the ion optical system 300 in which the lens system 102 and the deflection system 103 are arranged. I can keep it. For this purpose, the vacuum container 10 that houses the emitter chip 1 and the like is formed by a housing that is independent from an ion optical system housing (not shown) that houses the devices of the ion optical system 300. Thereby, the gas field ion source (GFIS) 100 is unitized.
 真空容器10は、排気口11,各装着口12(イオン源サブユニット装着口12-1,冷却ヘッド装着口12-2,高電圧導入端子装着口12-3,ガス供給配管導入口12-4),作動排気口13が形成された箱体からなる。真空容器10内は、排気口11に連結された排気系(図示を省略)によって例えば10-8Paの桁値の超高真空に保たれる。作動排気口13は、イオン光学系300に対してイオンビーム5を放出するための開口である。真空容器10は、イオン光学系筐体に対して一体的に装着された状態で、この作動排気口13を境にして、排気系によってイオン光学系300と別々に独立して内部の排気が独立に可能になっている。作動排気口13は、真空容器10のイオン源サブユニット装着口12-1が形成された壁部と相対向する壁部に、イオン源サブユニット装着口12-1と対向するように配置形成されている。 The vacuum vessel 10 includes an exhaust port 11, each mounting port 12 (ion source sub-unit mounting port 12-1, cooling head mounting port 12-2, high voltage introduction terminal mounting port 12-3, gas supply pipe introduction port 12-4. ), And a box body in which the working exhaust port 13 is formed. The inside of the vacuum vessel 10 is maintained at an ultrahigh vacuum of a digit value of 10 −8 Pa, for example, by an exhaust system (not shown) connected to the exhaust port 11. The working exhaust port 13 is an opening for emitting the ion beam 5 to the ion optical system 300. The vacuum vessel 10 is integrally attached to the ion optical system housing, and the internal exhaust is independent of the ion optical system 300 by the exhaust system with the working exhaust port 13 as a boundary. Is possible. The working exhaust port 13 is disposed and formed on the wall portion of the vacuum vessel 10 opposite to the wall portion where the ion source subunit mounting port 12-1 is formed so as to face the ion source subunit mounting port 12-1. ing.
 引出電極2は、そのビーム引出孔が作動排気口13と同軸になるようにして、容器内壁部に立設された支持部材14によって支持されて、真空容器10内に設けられている。支持部材14は、少なくともその一部が絶縁部材14’によって形成され、引出電極2と真空容器10と間の絶縁がはかられている。引出電極2は、高電圧導入端子装着口12-3に装着された高電圧導入端子40-2に接続され、引出電圧印加部4から引出電圧の供給を受けるようになっている。ガス供給配管30は、ガス供給配管導入口12-4を介して真空容器10内に導入され、エミッタチップ1の先端近傍に配置されたガス放出口3から、イオン化しようとするガスを供給する。ガス供給配管30の基端側は、バルブ32を介してガスボンベ31と接続されている。ガス供給配管30は、ガス放出口3部分が伝熱の良い無酸素銅で、ガス放出口3を除く部分が熱伝導の悪いステンレスでできている。さらに、ガス放出口3部分は、真空容器10内において伝熱の良い無酸素銅でできた伝熱支持体22-2により支持されている。加えて、真空容器10内のガス供給配管30の途中部分には屈曲部が形成され、熱伝導距離を長くして外部からの熱進入を防ぐ構造になっている。 The extraction electrode 2 is provided in the vacuum vessel 10 so that the beam extraction hole is coaxial with the working exhaust port 13 and is supported by a support member 14 erected on the inner wall of the vessel. At least a part of the support member 14 is formed by an insulating member 14 ′, and insulation between the extraction electrode 2 and the vacuum vessel 10 is removed. The extraction electrode 2 is connected to a high voltage introduction terminal 40-2 attached to the high voltage introduction terminal attachment port 12-3, and is supplied with an extraction voltage from the extraction voltage application unit 4. The gas supply pipe 30 is introduced into the vacuum vessel 10 through the gas supply pipe introduction port 12-4, and supplies a gas to be ionized from the gas discharge port 3 disposed in the vicinity of the tip of the emitter chip 1. The proximal end side of the gas supply pipe 30 is connected to a gas cylinder 31 via a valve 32. In the gas supply pipe 30, the gas discharge port 3 is made of oxygen-free copper with good heat transfer, and the portion other than the gas discharge port 3 is made of stainless steel with poor heat conduction. Further, the gas discharge port 3 is supported in the vacuum vessel 10 by a heat transfer support 22-2 made of oxygen-free copper having good heat transfer. In addition, a bent portion is formed in the middle portion of the gas supply pipe 30 in the vacuum vessel 10 to increase the heat conduction distance and prevent heat from entering from the outside.
 イオン源サブユニットは、図示の例では、水平微動機構450と、高電圧導入端子40-1が装着される端子装着部45と、複数の薄肉ステンレスパイプで構成されて外部からの熱進入を遮断する熱絶縁支持体24-1と、無酸素銅により形成された環状の伝熱支持体22-1と、サファイアにより形成された中空柱状の伝熱絶縁碍子23-1と、エミッタチップ1を含むチップアッセンブリ500が傾斜スペーサ600を介在させて位置決め装着された支持体400とを含む。 In the example shown in the figure, the ion source subunit is composed of a horizontal fine movement mechanism 450, a terminal mounting portion 45 to which the high voltage introduction terminal 40-1 is mounted, and a plurality of thin stainless steel pipes to block heat from entering from the outside. A heat insulating support 24-1, an annular heat transfer support 22-1 formed of oxygen-free copper, a hollow columnar heat transfer insulator 23-1 formed of sapphire, and an emitter chip 1. The chip assembly 500 includes a support 400 that is positioned and mounted with an inclined spacer 600 interposed therebetween.
 このイオン源サブユニットにおいて、水平微動機構450の可動部46には端子装着部45が一体的に接続固定されている。端子装着部45は熱絶縁支持体24-1を介在させて伝熱支持体22-1と一体的に接続固定されている。環状の伝熱支持体22-1の孔部には伝熱絶縁碍子23-1の基部が嵌合固定されている。伝熱絶縁碍子23-1の先端部には支持体400が装着固定される構成になっている。そして、これらの一体的な接続固定状態で、水平微動機構450の可動部46と伝熱絶縁碍子23-1とは同軸に位置決め固定されている。さらに支持体400は伝熱絶縁碍子23-1に対して同軸に装着固定されるようになっている。これにより、水平微動機構450の可動部46の中心軸は、支持体400の中心軸と同軸になるようになっている。 In this ion source subunit, a terminal mounting portion 45 is integrally connected and fixed to the movable portion 46 of the horizontal fine movement mechanism 450. The terminal mounting portion 45 is connected and fixed integrally with the heat transfer support 22-1 with the heat insulating support 24-1 interposed therebetween. The base of the heat transfer insulator 23-1 is fitted and fixed in the hole of the annular heat transfer support 22-1. A support 400 is attached and fixed to the tip of the heat transfer insulator 23-1. In these integrally connected and fixed states, the movable portion 46 of the horizontal fine movement mechanism 450 and the heat transfer insulator 23-1 are positioned and fixed coaxially. Further, the support 400 is mounted and fixed coaxially to the heat transfer insulator 23-1. As a result, the central axis of the movable portion 46 of the horizontal fine movement mechanism 450 is coaxial with the central axis of the support 400.
 水平微動機構450は、盤状の環状ベース(固定部)47と、環状ベースの中心孔に隙間を有して挿通された可動部46と、可動部46を環状ベース47の中心孔内で配置調整するための位置決め機構とを含む。可動部46の外周には、環状ベースの表面滑り面452に可動部46を支持させるためのフランジ部が形成されている。フランジ部は環状ベース47の中心孔よりも大きな径を有する。可動部46は、フランジ部のフランジ面を環状ベース47の表面滑り面452に当接させて、環状ベース47に微動可能に支持されている。位置決め機構は、可動部46のフランジ部をその径方向に挟持するように環状ベース47に配置された押し棒453と圧縮バネ454とから構成されている。これにより、押し棒453の進退位置を圧縮バネ454の付勢力に抗して調整固定することにより、環状ベース47の中心孔内における可動部の位置を調整することができる。 The horizontal fine movement mechanism 450 includes a disk-shaped annular base (fixed portion) 47, a movable portion 46 inserted with a gap in the central hole of the annular base, and the movable portion 46 disposed in the central hole of the annular base 47. And a positioning mechanism for adjustment. On the outer periphery of the movable part 46, a flange part for supporting the movable part 46 on the surface sliding surface 452 of the annular base is formed. The flange portion has a larger diameter than the center hole of the annular base 47. The movable portion 46 is supported by the annular base 47 so that the flange surface of the flange portion is brought into contact with the surface sliding surface 452 of the annular base 47 so as to be finely movable. The positioning mechanism includes a push rod 453 and a compression spring 454 that are disposed on the annular base 47 so as to sandwich the flange portion of the movable portion 46 in the radial direction. Accordingly, the position of the movable portion in the center hole of the annular base 47 can be adjusted by adjusting and fixing the advance / retreat position of the push rod 453 against the urging force of the compression spring 454.
 水平微動機構450では、環状ベース47の中心孔と真空容器10のイオン源サブユニット装着口12-1とが同軸になるように、環状ベース47の裏面が、真空容器10の外面に当接して、真空容器10に気密に取り付け固定されている。その際、真空容器10のイオン源サブユニット装着口12-1は、水平微動機構450の可動部46,端子装着部45をはじめとする真空容器10内に配置されるイオン源サブユニットの各部の幅寸法よりも大きく形成されている。そのため、イオン源サブユニットを、真空容器10に対して取付固定することができる。また、水平微動機構450の環状ベース47の表面滑り面452の裏面と端子装着部45との間には、可動部46を囲繞するように真空ベローズ451が設けられている。これにより、真空ベローズ451は、真空容器10内部に対して、水平微動機構450の環状ベース47の表面滑り面452を画成するように設けるだけで済む。それにより、真空ベローズ451の表面積の抑制がはかられている。 In the horizontal fine movement mechanism 450, the back surface of the annular base 47 is in contact with the outer surface of the vacuum vessel 10 so that the center hole of the annular base 47 and the ion source subunit mounting port 12-1 of the vacuum vessel 10 are coaxial. The vacuum vessel 10 is airtightly attached and fixed. At that time, the ion source subunit mounting opening 12-1 of the vacuum vessel 10 is connected to each part of the ion source subunit arranged in the vacuum vessel 10 including the movable portion 46 and the terminal mounting portion 45 of the horizontal fine movement mechanism 450. It is formed larger than the width dimension. Therefore, the ion source subunit can be attached and fixed to the vacuum vessel 10. In addition, a vacuum bellows 451 is provided between the back surface of the surface sliding surface 452 of the annular base 47 of the horizontal fine movement mechanism 450 and the terminal mounting portion 45 so as to surround the movable portion 46. Thus, the vacuum bellows 451 need only be provided so as to define the surface sliding surface 452 of the annular base 47 of the horizontal fine movement mechanism 450 with respect to the inside of the vacuum vessel 10. Thereby, the surface area of the vacuum bellows 451 is suppressed.
 エミッタチップ1には、端子装着部45に装着された高電圧導入端子40-1を介して、引出電圧印加部4から印加電圧が印加される。イオン化のためには、高電圧導入端子40-1を介してエミッタチップ1へ電位を与える配線は1本で足りる。本実施の形態では、エミッタチップ1の根元のフィラメント部加熱用に配線が2本になっている。 An applied voltage is applied to the emitter chip 1 from the extraction voltage applying unit 4 through the high voltage introduction terminal 40-1 mounted on the terminal mounting unit 45. For ionization, only one wiring for applying a potential to the emitter chip 1 through the high voltage introduction terminal 40-1 is sufficient. In the present embodiment, there are two wires for heating the filament part at the base of the emitter chip 1.
 真空容器10の冷却ヘッド装着口12-2には容器外部から冷却ヘッド20(例えば、Gifford-McMahon冷凍機に接続されている)が接続される。冷却ヘッド20は、無酸素銅でできた伝熱用網線21-1を介してイオン源サブユニットの伝熱支持体22-1と、無酸素銅でできた伝熱用網線21-2を介してガス放出口3部分を支持する伝熱支持体22-2とにそれぞれ接続されている。これら伝熱用網線21-1,21-2,伝熱支持体22-1,22-2は、熱輻射を減らすため、さらに金でメッキされている。 A cooling head 20 (for example, connected to a Gifford-McMahon refrigerator) is connected to the cooling head mounting port 12-2 of the vacuum container 10 from the outside of the container. The cooling head 20 includes a heat transfer support 22-1 of the ion source subunit via a heat transfer net 21-1 made of oxygen-free copper and a heat transfer net 21-2 made of oxygen-free copper. To the heat transfer support 22-2 that supports the gas discharge port 3 portion. These heat transfer nets 21-1, 21-2, and heat transfer supports 22-1 and 22-2 are further plated with gold in order to reduce heat radiation.
 これにより、エミッタチップ1は、真空容器10外部から導入された冷却ヘッド20との間で、伝熱用網線(無酸素銅)21-1,伝熱支持体(無酸素銅)22-1,及び伝熱絶縁碍子(サファイア)23-1を介して熱交換を行うことによって冷却される。また、ガス放出口3部分(無酸素銅)は、冷却ヘッド20との間で、伝熱用網線(無酸素銅)21-2,及び伝熱支持体(無酸素銅)22-2を介して熱交換を行うことによって冷却される。 As a result, the emitter chip 1 is connected to the cooling head 20 introduced from the outside of the vacuum vessel 10, and the heat transfer mesh wire (oxygen-free copper) 21-1 and the heat transfer support (oxygen-free copper) 22-1. , And heat exchange through the heat transfer insulator (sapphire) 23-1. Further, the gas discharge port 3 portion (oxygen-free copper) is connected to the cooling head 20 with a heat transfer network wire (oxygen-free copper) 21-2 and a heat transfer support (oxygen-free copper) 22-2. It is cooled by exchanging heat through it.
 この結果、それぞれの部材の伝熱が良いために、エミッタチップ1とガス放出口3部分とは略同じ温度に冷却される。加えて、外部からの熱進入は、イオン源サブユニットの熱絶縁支持体24-1,及びガス供給配管30のガス放出口3を除く部分を、熱伝導性が悪いステンレス製とすることにより防止されている。また、各部の温度を安定に保つために幾つかの熱シールド壁を追加してもよい。 As a result, since the heat transfer of each member is good, the emitter tip 1 and the gas discharge port 3 are cooled to substantially the same temperature. In addition, heat entry from the outside is prevented by making the portions of the ion source subunit excluding the heat insulating support 24-1 and the gas outlet 3 of the gas supply pipe 30 made of stainless steel having poor thermal conductivity. Has been. Some heat shield walls may be added to keep the temperature of each part stable.
 上述のように構成された本実施の形態のガス電界電離イオン源(GFIS)100においては、エミッタチップ1として、タングステン[W]の単結晶の先端の[111]結晶面の上にイリジウム[Ir]の原子状ピラミッドを形成したものを使用した。イオン化するガスとしては、ヘリウム[He]を使用した。また、エミッタチップ1とガス放出口3部分の温度は約60Kに保った。この場合、引出電極2によるイオンの引出電圧は4kV程度である。その上で、GFIS100では、引出電圧印加部4によりエミッタチップ1に正の印加電圧を、引出電極2に負の引出電圧をそれぞれ印加していくと、あるところで、ガス放出口3から放出されてエミッタチップ1の先端に達したガス原子(分子の場合もある)の一部が電界電離により正のイオンとなり、イオン放出が起きる。 In the gas field ion source (GFIS) 100 of the present embodiment configured as described above, the iridium [Ir] is formed as the emitter tip 1 on the [111] crystal face at the tip of the single crystal of tungsten [W]. ] Which formed an atomic pyramid of Helium [He] was used as a gas to be ionized. The temperatures of the emitter tip 1 and the gas discharge port 3 were maintained at about 60K. In this case, the extraction voltage of ions by the extraction electrode 2 is about 4 kV. In addition, in the GFIS 100, when a positive applied voltage is applied to the emitter tip 1 and a negative extracted voltage is applied to the extraction electrode 2 by the extraction voltage application unit 4, the gas is emitted from the gas discharge port 3 at a certain point. Some of the gas atoms (which may be molecules) that have reached the tip of the emitter tip 1 become positive ions due to field ionization, and ion emission occurs.
 次に、本実施の形態に係るガス電界電離イオン源(GFIS)100の、エミッタチップ1の傾斜調整について説明する。ここで、エミッタチップ1の傾斜調整とは、図7に示されているように、エミッタチップ1からのイオン放出方向506をイオン光学系300のイオン光軸301に合わせる(平行にする)ための調整を指すものである。 Next, the tilt adjustment of the emitter tip 1 of the gas field ion source (GFIS) 100 according to the present embodiment will be described. Here, the tilt adjustment of the emitter tip 1 is for adjusting (paralleling) the ion emission direction 506 from the emitter tip 1 to the ion optical axis 301 of the ion optical system 300 as shown in FIG. Refers to adjustment.
 エミッタチップ1からのイオン放出方向は、本実施の形態に係るGFIS100では、(1)支持体400と、(2)傾斜スペーサ600と、(3)チップアッセンブリ500と、の接合調整により、その方向を定めることができる。すなわち、これらがエミッタチップ1のイオン放出方向506の傾斜調整手段になっている。 In the GFIS 100 according to the present embodiment, the direction of ion emission from the emitter tip 1 is determined by adjusting the bonding of (1) the support 400, (2) the inclined spacer 600, and (3) the tip assembly 500. Can be determined. That is, these are tilt adjusting means for the ion emission direction 506 of the emitter tip 1.
 また、支持体400は、イオン光軸301に対して垂直方向の面内で微動する水平微動機構450に結合しており、水平微動機構450はエミッタチップ1の水平位置調整手段になっている。 The support 400 is coupled to a horizontal fine movement mechanism 450 that finely moves in a plane perpendicular to the ion optical axis 301, and the horizontal fine movement mechanism 450 is a horizontal position adjusting means of the emitter chip 1.
 ここで、真空容器10内では、エミッタチップ1と引出電極2との間の距離は通常1mm以上離してある。そのため、イオン放出方向506は、それらの水平面内での位置ずれにほとんど影響を受けない。両者を非常に近づければイオン放出方向506に影響を与える可能性はあるが、望ましくない。その理由は、両者を近づけ過ぎると、偏向色収差が発生して試料像のボケにつながるためである。 Here, in the vacuum vessel 10, the distance between the emitter tip 1 and the extraction electrode 2 is usually separated by 1 mm or more. Therefore, the ion emission direction 506 is hardly affected by the positional deviation in the horizontal plane. If both are very close, the ion emission direction 506 may be affected, but this is not desirable. The reason is that if they are brought too close together, deflection chromatic aberration is generated, leading to blurring of the sample image.
 本実施の形態のGFIS100では、基本的に、チップアッセンブリ500,傾斜スペーサ600,支持体400を互いの配置関係を適正にして組み立てることで、イオン放出方向506とイオン光軸301とを合わせる(平行にする)ことができる。そのため、エミッタチップ1を取り付けた後のイオンビーム装置200で必要な機械的な軸合わせは、水平微動機構450による調整だけで済むようになる。 In the GFIS 100 of the present embodiment, the ion emission direction 506 and the ion optical axis 301 are basically aligned by assembling the chip assembly 500, the inclined spacer 600, and the support body 400 with each other in an appropriate positional relationship (parallel). Can). Therefore, the mechanical axis alignment necessary for the ion beam apparatus 200 after the emitter tip 1 is attached only needs to be adjusted by the horizontal fine movement mechanism 450.
 図3は、チップアッセンブリ500の構成図である。なお、図3においては、その構成把握が容易なように、図2とは上下逆の状態で表示してある。 FIG. 3 is a configuration diagram of the chip assembly 500. In FIG. 3, it is displayed upside down from FIG. 2 so that the configuration can be easily grasped.
 エミッタチップ1は、碍子(サファイア)としてのベース501に挿通・立設された2本の端子ピン502に、フィラメント503を介して固定されている。端子ピン502とフィラメント503、及びフィラメント503とエミッタチップ1は、それぞれ溶接によって接続されている。これらは溶接後に真空中で過熱され、残留熱応力を除去してある。そして、このチップアッセンブリ500には、予めエミッタチップ1からのイオン放出方向506を測定するための基準が設けられている。なお、この測定方法については後述する。 The emitter chip 1 is fixed via two filaments 503 to two terminal pins 502 inserted and erected in a base 501 as an insulator (sapphire). The terminal pin 502 and the filament 503, and the filament 503 and the emitter tip 1 are connected by welding, respectively. These are heated in vacuum after welding to remove residual thermal stress. The chip assembly 500 is provided with a reference for measuring the ion emission direction 506 from the emitter chip 1 in advance. This measuring method will be described later.
 図示の例では、ベース501は円板状に形成され、エミッタチップ1が配置された表面とは反対側の、傾斜スペーサ600に嵌入される裏面(第2基準面504)は、この円板状のベース501の中心軸と直交し、中心が一致する円形面になっている。その上で、この円板状のベース501の外周面若しくは表面には、当該ベース501の中心軸周りの所定位置、すなわち裏面(第2基準面504)の所定半径方向(第2基準方向505)を規定するための基準方向マーク509が設けられている。図示の例では、基準方向マーク509は、ベース外周面の第2基準方向505に該当する周面位置に切り欠きを形成して構成されている。 In the illustrated example, the base 501 is formed in a disk shape, and the back surface (second reference surface 504) fitted into the inclined spacer 600 on the side opposite to the surface on which the emitter chip 1 is disposed is the disk shape. This is a circular surface that is orthogonal to the center axis of the base 501 and coincides with the center. In addition, a predetermined position around the central axis of the base 501, that is, a predetermined radial direction (second reference direction 505) of the back surface (second reference surface 504) is provided on the outer peripheral surface or front surface of the disk-shaped base 501. Is provided with a reference direction mark 509. In the illustrated example, the reference direction mark 509 is configured by forming a notch at a peripheral surface position corresponding to the second reference direction 505 of the base outer peripheral surface.
 ここで、ベース501の軸方向、すなわち第2基準面504の垂直方向に対するエミッタチップ1からのイオン放出方向506の傾きを傾斜角(θ)507とする。また、このイオン放出方向506を第2基準面504への投影した方向(傾斜方位510)と、第2基準方向505との間の角度を方向角(φ)508とする。この場合、エミッタチップ1の傾斜データは、これら傾斜角(θ)507と方向角(φ)508、若しくはこれら値と同等の表現データにより表されることになる。 Here, the inclination of the ion emission direction 506 from the emitter tip 1 with respect to the axial direction of the base 501, that is, the direction perpendicular to the second reference plane 504 is defined as an inclination angle (θ) 507. In addition, a direction angle (φ) 508 is an angle between a direction (inclination azimuth 510) in which the ion emission direction 506 is projected onto the second reference plane 504 and the second reference direction 505. In this case, the tilt data of the emitter chip 1 is represented by these tilt angle (θ) 507 and direction angle (φ) 508, or expression data equivalent to these values.
 そのため、予め測定されたエミッタチップ個別の傾斜データは、当該エミッタチップ1を含むチップアッセンブリ500をGFIS100に取り付けるときにアクセスできるように、例えば各チップアッセンブリ500を個別に保管するための保管容器(図示しない)に記入されてよい。こうして傾斜データは、チップアッセンブリ500個々、すなわちエミッタチップ1個々と対応づけられて管理される。実際のエミッタチップ1それぞれは、エミッタチップ1の結晶軸と端子ピン502への溶接とを適正に管理することで、傾斜角(θ)507は±2°程度に抑えられている。 For this reason, for example, a storage container (not shown) for individually storing each chip assembly 500 so that the tilt data of each emitter chip measured in advance can be accessed when the chip assembly 500 including the emitter chip 1 is attached to the GFIS 100. Not). Thus, the inclination data is managed in association with each chip assembly 500, that is, each emitter chip 1. Each of the actual emitter tips 1 has an inclination angle (θ) 507 suppressed to about ± 2 ° by appropriately managing the crystal axis of the emitter tips 1 and welding to the terminal pins 502.
 なお、基準方向マーク509は、図示の例ではベース501に切り欠きを形成して構成した。しかしながら、ベース501の第2基準面504の所定半径方向(第2基準方向505)を示すものであれば、これに限るものではない。例えば、フィラメント503の一方の端子ピン502側寄りの側面にエミッタチップ1を取り付けることにより、フィラメント503とエミッタチップ1の取り付け方を非軸対称にする。この場合、基準方向マーク509は、どちらか一方の端子ピン502で代用することもできる。 The reference direction mark 509 is configured by forming a notch in the base 501 in the illustrated example. However, the present invention is not limited to this as long as it indicates the predetermined radial direction (second reference direction 505) of the second reference surface 504 of the base 501. For example, by attaching the emitter chip 1 to the side surface of the filament 503 closer to one terminal pin 502, the attachment method of the filament 503 and the emitter chip 1 is made non-axisymmetric. In this case, either one of the terminal pins 502 can be substituted for the reference direction mark 509.
 また、予め測定されたエミッタチップ個別の傾斜データについても、チップアッセンブリ500の保管容器に傾斜データを直接記入することで管理する場合を説明したが、それに限定されない。エミッタチップ1それぞれの傾斜データを識別データと対応づけてデータベースに保管し、チップアッセンブリ500それぞれの保管容器には該当する識別データをデータベースへのアクセスコードとして記入してもよい。これ以外にも、チップアッセンブリ500の取り付け時に、傾斜データへのアクセスを可能にする等の種々の方法が考えられる。 In addition, although the case where the inclination data of each emitter chip measured in advance is managed by directly entering the inclination data in the storage container of the chip assembly 500 has been described, the present invention is not limited thereto. The tilt data of each emitter chip 1 may be stored in a database in association with the identification data, and the corresponding identification data may be entered as an access code to the database in each storage container of the chip assembly 500. In addition to this, various methods such as enabling access to tilt data when the chip assembly 500 is attached can be considered.
 図4は、支持体400の構成図である。なお、図4においても、その構成把握が容易なように、図2とは上下逆の状態で表示してある。 FIG. 4 is a configuration diagram of the support 400. Note that FIG. 4 is also displayed upside down with respect to FIG. 2 so that the configuration can be easily grasped.
 支持体400は、図示の場合、チップアッセンブリ500及び傾斜スペーサ600よりも大径な円板状になっている。支持体400のチップアッセンブリ500及び傾斜スペーサ600が配置される側の表面には、嵌合凹部410が形成されている。嵌合凹部410に、チップアッセンブリ500の取付側とは反対の傾斜スペーサ600の裏面側(後述の第4基準面603側)が嵌入される。支持体400には、配線孔411が貫通して形成されている。 In the illustrated case, the support body 400 has a disk shape larger in diameter than the chip assembly 500 and the inclined spacer 600. A fitting recess 410 is formed on the surface of the support 400 on the side where the chip assembly 500 and the inclined spacer 600 are disposed. The back surface side (the fourth reference surface 603 side described later) of the inclined spacer 600 opposite to the mounting side of the chip assembly 500 is inserted into the fitting recess 410. A wiring hole 411 is formed through the support 400.
 嵌合凹部410の周壁部分は、傾斜スペーサ600がその裏面を嵌合凹部の底部に当接させて嵌入された状態で、傾斜スペーサ600を支持する。また、図示の例では、この傾斜スペーサ600の裏面(後述の第4基準面603)が当接する嵌合凹部の底部(底面)は、イオン光軸301の軸方向を規定する第1基準面401になっている。この場合、イオン光軸301は、嵌合凹部410の底面に対して垂直方向に延び、嵌合凹部410の中心軸にもなっている。さらに、GFIS100の中心軸もイオン光軸301と平行になっており、両軸が略一致するようになっている。 The peripheral wall portion of the fitting recess 410 supports the tilted spacer 600 in a state where the tilted spacer 600 is fitted with the back surface thereof in contact with the bottom of the fitting recess. In the illustrated example, the bottom portion (bottom surface) of the fitting recess with which the back surface (fourth reference surface 603 described later) of the inclined spacer 600 abuts is a first reference surface 401 that defines the axial direction of the ion optical axis 301. It has become. In this case, the ion optical axis 301 extends in the direction perpendicular to the bottom surface of the fitting recess 410 and is also the central axis of the fitting recess 410. Further, the central axis of the GFIS 100 is also parallel to the ion optical axis 301, and both axes are substantially coincident with each other.
 このイオン光軸301の軸方向を規定する第1基準面401は、後述する傾斜スペーサ600とチップアッセンブリ500とを取り付ける際の基準となる。支持体400に第1基準方向402を設定する。 The first reference surface 401 that defines the axial direction of the ion optical axis 301 serves as a reference for attaching an inclined spacer 600 and a chip assembly 500 described later. A first reference direction 402 is set on the support 400.
 図5は、傾斜スペーサ600の構成図である。図5(A)は、傾斜スペーサ600の外観斜視図を、図5(B)は、傾斜スペーサ600の径方向から眺めた断面図である。なお、図5においても、その構成把握が容易なように、図2とは上下逆の状態で表示してある。 FIG. 5 is a configuration diagram of the inclined spacer 600. 5A is an external perspective view of the inclined spacer 600, and FIG. 5B is a cross-sectional view of the inclined spacer 600 viewed from the radial direction. Note that FIG. 5 is also displayed upside down with respect to FIG. 2 so that the configuration can be easily grasped.
 傾斜スペーサ600は、図示の場合、支持体400の嵌合凹部410に嵌入可能な外径を有する円板状になっている。チップアッセンブリ500が配置される側の表面と、支持体400の嵌合凹部410に嵌入される裏面とが、非平行になっている。図5(B)に示すように、その直径方向に板厚がリニアに増加又は減少変化する形状になっている。チップアッセンブリ500が配置される側の表面には、嵌合凹部609が形成されている。嵌合凹部609に、チップアッセンブリ500のベース501の裏面側(第2基準面504側)が嵌入される。 In the illustrated case, the inclined spacer 600 has a disk shape having an outer diameter that can be fitted into the fitting recess 410 of the support 400. The surface on the side where the chip assembly 500 is disposed and the back surface inserted into the fitting recess 410 of the support 400 are non-parallel. As shown in FIG. 5B, the plate thickness is linearly increased or decreased in the diameter direction. A fitting recess 609 is formed on the surface where the chip assembly 500 is disposed. The rear surface side (second reference surface 504 side) of the base 501 of the chip assembly 500 is fitted into the fitting recess 609.
 嵌合凹部609の周壁部分は、チップアッセンブリ500のベース501がその裏面の第2基準面504を嵌合凹部の底部に当接させて嵌入された状態で、チップアッセンブリ500を回動可能に支持する。そして、嵌合凹部609の底部(底面)は、傾斜スペーサ600の表面と平行になっている。傾斜スペーサ600の裏面を、図5(B)に示すように、水平に保持した場合、嵌合凹部609の底部(底面)は、傾斜スペーサ600の表面と同様に非平行で、傾斜スペーサ600の裏面に対して傾斜面を構成する。 The peripheral wall portion of the fitting recess 609 supports the chip assembly 500 so that the base 501 of the chip assembly 500 is fitted with the second reference surface 504 on the back surface of the base 501 being in contact with the bottom of the fitting recess. To do. The bottom portion (bottom surface) of the fitting recess 609 is parallel to the surface of the inclined spacer 600. When the back surface of the inclined spacer 600 is held horizontally as shown in FIG. 5B, the bottom portion (bottom surface) of the fitting recess 609 is not parallel to the surface of the inclined spacer 600, and An inclined surface is formed with respect to the back surface.
 ここでは、傾斜スペーサ600の表面と平行な嵌合凹部の底部(底面)を第3基準面601とし、傾斜スペーサ600の裏面を第4基準面603とする。その上で、理解容易のため、第3基準面601は、傾斜スペーサ600の外周面の径方向と非平行であり、第4基準面603は傾斜スペーサ600の外周面の径方向に平行である。図5(B)において一点鎖線で示した、傾斜スペーサ600の表面及び嵌合凹部609の底部(底面)の第3基準面601の中心軸611は、傾斜スペーサ600の裏面(第4基準面603)の中心軸とは一致していない。 Here, the bottom portion (bottom surface) of the fitting recess parallel to the surface of the inclined spacer 600 is the third reference surface 601, and the back surface of the inclined spacer 600 is the fourth reference surface 603. In addition, for easy understanding, the third reference surface 601 is not parallel to the radial direction of the outer peripheral surface of the inclined spacer 600, and the fourth reference surface 603 is parallel to the radial direction of the outer peripheral surface of the inclined spacer 600. . The center axis 611 of the third reference surface 601 on the surface of the inclined spacer 600 and the bottom portion (bottom surface) of the fitting recess 609 shown by the alternate long and short dash line in FIG. 5B is the back surface of the inclined spacer 600 (fourth reference surface 603). ) Does not match the central axis.
 その上で、まず、2つの面間の厚さが増加する傾きを厚みの増加角(α)604とする。また、傾斜スペーサ600の外周面若しくは表面には、当該傾斜スペーサ600の軸周りの所定位置に、すなわち表面(第3基準面601)及び裏面(第4基準面603)の所定半径方向を規定するための基準方向マーク605が設けられている。図示の例では、基準方向マーク605は、基準方向マーク505の場合と同様に、ベース外周面の所定半径方向位置に切り欠きを形成して構成してある。傾斜スペーサ600の第3基準面601の最大傾斜方向に沿って第3基準方向602を設定する。基準方向マーク605は第3基準方向602を規定する。 On that basis, first, the inclination of increasing the thickness between the two surfaces is defined as a thickness increasing angle (α) 604. Further, a predetermined radial direction of the front surface (third reference surface 601) and the rear surface (fourth reference surface 603) is defined on the outer peripheral surface or surface of the inclined spacer 600 at a predetermined position around the axis of the inclined spacer 600. A reference direction mark 605 is provided. In the illustrated example, the reference direction mark 605 is configured by forming a notch at a predetermined radial direction position on the outer peripheral surface of the base, as in the case of the reference direction mark 505. A third reference direction 602 is set along the maximum inclination direction of the third reference surface 601 of the inclined spacer 600. A reference direction mark 605 defines a third reference direction 602.
 次に、図6及び図7に基づいて、チップアッセンブリ500、傾斜スペーサ600、支持体400を適正に組み立てる方法について説明する。 Next, a method for properly assembling the chip assembly 500, the inclined spacer 600, and the support 400 will be described with reference to FIGS.
 まず、チップアッセンブリ500を傾斜スペーサ600の嵌合凹部609に嵌入し、チップアッセンブリ500の第2基準面504と傾斜スペーサ600の嵌合凹部609の底部(底面)の第3基準面601とを突き合わせる。即ち、チップアッセンブリ500の基準方向マーク505が傾斜スペーサ600の基準方向マーク605に一致するように、チップアッセンブリ500を傾斜スペーサ600の嵌合凹部609に嵌入する。 First, the chip assembly 500 is inserted into the fitting recess 609 of the inclined spacer 600, and the second reference surface 504 of the chip assembly 500 and the third reference surface 601 at the bottom (bottom surface) of the fitting recess 609 of the inclined spacer 600 are brought into contact with each other. The That is, the chip assembly 500 is fitted into the fitting recess 609 of the inclined spacer 600 so that the reference direction mark 505 of the chip assembly 500 matches the reference direction mark 605 of the inclined spacer 600.
 図6は、チップアッセンブリ500を傾斜スペーサ600に組み付けた状態の外観図である。 FIG. 6 is an external view of the state in which the chip assembly 500 is assembled to the inclined spacer 600.
 次に、この状態で、チップアッセンブリ500を傾斜スペーサ600に対して相対的に方向角(φ)508だけ回転させる。即ち、図6に示すように、チップアッセンブリ500の第2基準方向505と傾斜スペーサ600の第3基準方向602との間の角度を、エミッタチップ1の方向角(φ)508に整合させる。その後に、これらを図示省略した固定部品を用いて固定する。こうしてイオン放出方向506の傾斜方位510は、傾斜スペーサ600の第3基準面601の最大傾斜方向に整合する。 Next, in this state, the chip assembly 500 is rotated by the direction angle (φ) 508 relative to the inclined spacer 600. That is, as shown in FIG. 6, the angle between the second reference direction 505 of the chip assembly 500 and the third reference direction 602 of the inclined spacer 600 is matched with the direction angle (φ) 508 of the emitter chip 1. Thereafter, these are fixed using fixing parts not shown. Thus, the tilt direction 510 in the ion emission direction 506 is aligned with the maximum tilt direction of the third reference surface 601 of the tilted spacer 600.
 さらに、この状態で傾斜スペーサの厚みの増加角(α)604をエミッタチップ1の傾斜角(θ)507と同一にする。それによって、イオン放出方向506と、傾斜スペーサ600の外周面の径方向に垂直な傾斜スペーサ600の軸、すなわち、この場合は傾斜スペーサ600の裏面の第4基準面603の垂直方向とが一致する。 Furthermore, in this state, the increasing angle (α) 604 of the thickness of the inclined spacer is made the same as the inclined angle (θ) 507 of the emitter chip 1. Thereby, the ion emission direction 506 coincides with the axis of the inclined spacer 600 perpendicular to the radial direction of the outer peripheral surface of the inclined spacer 600, that is, in this case, the vertical direction of the fourth reference surface 603 on the back surface of the inclined spacer 600. .
 その上で、さらに、このエミッタチップ1が固定された傾斜スペーサ600を支持体400の嵌合凹部410に嵌入する。即ち、傾斜スペーサ600の第4基準面603と支持体400の嵌合凹部410の底部(底面)の第1基準面401とを突き合わせる。 Further, the inclined spacer 600 to which the emitter chip 1 is fixed is inserted into the fitting recess 410 of the support 400. That is, the fourth reference surface 603 of the inclined spacer 600 and the first reference surface 401 at the bottom (bottom surface) of the fitting recess 410 of the support 400 are abutted.
 図7は、チップアッセンブリ500が固定された傾斜スペーサ600を支持体400に組み付けた状態の外観図である。 FIG. 7 is an external view of a state in which the inclined spacer 600 to which the chip assembly 500 is fixed is assembled to the support 400.
 次に、この状態で、傾斜スペーサ600と支持体400とを図示省略した固定部品を用いて固定する。それによって、支持体400、傾斜スペーサ600及びチップアッセンブリ500の組み立て体が得られる。この場合、傾斜スペーサ600の第4基準面603と支持体400の嵌合凹部410の底部(底面)の第1基準面401とは、互いの突き合わせ状態において互いが平行になる。傾斜スペーサ600の裏面の第4基準面603の垂直方向は、第1基準面401に垂直な方向で規定されているイオン光軸301の軸方向に一致する。これにより、イオン光軸301とイオン放出方向506が平行となって、エミッタチップ1の傾斜調整の目的が達せられる。 Next, in this state, the inclined spacer 600 and the support body 400 are fixed using a fixing part (not shown). Thereby, an assembly of the support 400, the inclined spacer 600, and the chip assembly 500 is obtained. In this case, the fourth reference surface 603 of the inclined spacer 600 and the first reference surface 401 at the bottom (bottom surface) of the fitting recess 410 of the support body 400 are parallel to each other in the abutting state. The vertical direction of the fourth reference surface 603 on the back surface of the inclined spacer 600 coincides with the axial direction of the ion optical axis 301 defined by the direction perpendicular to the first reference surface 401. As a result, the ion optical axis 301 and the ion emission direction 506 are parallel to achieve the purpose of adjusting the tilt of the emitter tip 1.
 なお、エミッタチップ1の傾斜調整には無関係であるが、チップアッセンブリ500の端子ピン502の配線を考慮するとよい。例えば、支持体400の第1基準方向402とチップアッセンブリ500の第2基準方向505とを、傾斜スペーサ600を支持体400の嵌合凹部410に嵌入する際に合わせておくよい。それによって、配線が容易になる等の利益が得られる。 Although not related to the tilt adjustment of the emitter chip 1, the wiring of the terminal pin 502 of the chip assembly 500 may be considered. For example, the first reference direction 402 of the support 400 and the second reference direction 505 of the chip assembly 500 may be matched when the inclined spacer 600 is fitted into the fitting recess 410 of the support 400. Thereby, benefits such as easy wiring can be obtained.
 ここで、イオンビーム5を試料6上でサブナノメータ単位の桁値まで集束させるための条件を考察する。エミッタチップ1の水平微動調整が水平微動機構450によって適正に行われることを前提にする。イオン放出方向506のイオン光軸301に対するずれ角度(傾斜ずれ)は約0.1°以下に抑制する必要がある。また、チップアッセンブリ500の製造段階における傾斜ずれは±2°に抑えてあるので、増加角(α)604と傾斜角(θ)507とのズレを約0.1°以下に、回転角と方向角(φ)508のずれを約2°以下にする必要がある。 Here, the conditions for focusing the ion beam 5 on the sample 6 to a sub-nanometer unit digit value will be considered. It is assumed that the horizontal fine movement adjustment of the emitter tip 1 is properly performed by the horizontal fine movement mechanism 450. The deviation angle (tilt deviation) of the ion emission direction 506 with respect to the ion optical axis 301 needs to be suppressed to about 0.1 ° or less. Further, since the tilt deviation in the manufacturing stage of the chip assembly 500 is suppressed to ± 2 °, the deviation between the increase angle (α) 604 and the tilt angle (θ) 507 is about 0.1 ° or less, and the rotation angle and direction. The deviation of the angle (φ) 508 needs to be about 2 ° or less.
 傾斜スペーサ600の厚みの増加角(α)604を用いた調整について説明する。図5Aと図5Bに示した傾斜スペーサ600として、厚みの増加角(α)604が0°から2°まで0.2°刻みで異なる11個のものを予め用意した。この中から適正な傾斜スペーサ600を選ぶことで、増加角(α)604と傾斜角(θ)507とのズレを約0.1°以下に抑えることができた。 The adjustment using the increasing angle (α) 604 of the thickness of the inclined spacer 600 will be described. As the inclined spacer 600 shown in FIGS. 5A and 5B, eleven spacers having thickness increase angles (α) 604 that differ in increments of 0.2 ° from 0 ° to 2 ° were prepared in advance. By selecting an appropriate inclined spacer 600 from these, the deviation between the increase angle (α) 604 and the inclination angle (θ) 507 could be suppressed to about 0.1 ° or less.
 傾斜スペーサ600の数を減らし、且つ、調整の精度を向上させるために、例えば、0.5°刻みの傾斜スペーサ(0~1.5°で4個)と0.1°刻みの傾斜スペーサ(0~0.4°で5個)を複数重ね合わせて使うこともできる。 In order to reduce the number of inclined spacers 600 and improve the accuracy of adjustment, for example, inclined spacers in increments of 0.5 ° (four at 0 to 1.5 °) and inclined spacers in increments of 0.1 ° ( It is also possible to use a plurality of 5) at 0 to 0.4 °.
 また、エミッタチップ1の方向角(φ)508の調整については、チップアッセンブリ500と傾斜スペーサ600との間の回転角を、図8に示す組立治具を用いることより精度1°で調整した。 Further, regarding the adjustment of the direction angle (φ) 508 of the emitter tip 1, the rotation angle between the tip assembly 500 and the inclined spacer 600 was adjusted with an accuracy of 1 ° by using the assembly jig shown in FIG.
 図8は、組立治具によるチップアッセンブリ500と傾斜スペーサ600との間の回転角の調整説明図である。 FIG. 8 is an explanatory diagram of adjustment of the rotation angle between the chip assembly 500 and the inclined spacer 600 by the assembly jig.
 組立治具700は、基準ベース704と、この基準ベース704に対して回動可能に取り付けられている回転ステージ701とを備える。回転ステージ701には、前述した支持体400の嵌合凹部410と同様に嵌合凹部705が形成されている。嵌合凹部705には、傾斜スペーサ600の裏面側(第4基準面側)が嵌入される。基準ベース704には第2基準方向押さえ702が固定されている。第2基準方向押さえ702の先端は、チップアッセンブリ500の基準方向マーク509の切り欠きに係合し、基準ベース704に対するチップアッセンブリ500の相対回動を阻止する。回転ステージ701には第3基準方向押さえ703が固定されている。第3基準方向押さえ703の先端は、傾斜スペーサ600の基準方向マーク605の切り欠きに係合し、回転ステージ701に対する傾斜スペーサ600の相対回動を阻止する。 The assembly jig 700 includes a reference base 704 and a rotation stage 701 that is rotatably attached to the reference base 704. A fitting recess 705 is formed in the rotary stage 701 in the same manner as the fitting recess 410 of the support 400 described above. In the fitting recess 705, the back surface side (fourth reference surface side) of the inclined spacer 600 is fitted. A second reference direction press 702 is fixed to the reference base 704. The tip end of the second reference direction pressing member 702 engages with the notch of the reference direction mark 509 of the chip assembly 500 to prevent relative rotation of the chip assembly 500 with respect to the reference base 704. A third reference direction presser 703 is fixed to the rotary stage 701. The tip end of the third reference direction presser 703 engages with the notch of the reference direction mark 605 of the inclined spacer 600 to prevent relative rotation of the inclined spacer 600 with respect to the rotary stage 701.
 回転角の調整方法を説明する。まず、チップアッセンブリ500の裏面側(第2基準面側)を傾斜スペーサ600の嵌合凹部609に嵌入し、固定部品を用いて固定する前の仮組み立てをする。これを、回転ステージ701の嵌合凹部705に嵌入する。チップアッセンブリ500,傾斜スペーサ600それぞれの基準方向マーク509,605の切り欠きに、第2基準方向押さえ702,第3基準方向押さえ703の先端を係合させる。その上で、回転ステージ701を方向角(φ)508の分だけ基準ベース704に対して相対回転させる。傾斜スペーサ600は回転ステージ701と一体的に回転するが、チップアッセンブリ500は、傾斜スペーサ600の嵌合凹部609に嵌入した状態で傾斜スペーサ600に対して相対的に回転する。それにより、チップアッセンブリ500と傾斜スペーサ600との間の回転角が方向角(φ)508に調整される。その後、チップアッセンブリ500と傾斜スペーサ600とを固定することで目的が達せられる。 説明 Explain how to adjust the rotation angle. First, the rear surface side (second reference surface side) of the chip assembly 500 is fitted into the fitting recess 609 of the inclined spacer 600, and temporary assembly is performed before fixing using the fixing component. This is inserted into the fitting recess 705 of the rotary stage 701. The tips of the second reference direction presser 702 and the third reference direction presser 703 are engaged with the notches of the reference direction marks 509 and 605 of the chip assembly 500 and the inclined spacer 600, respectively. Then, the rotary stage 701 is rotated relative to the reference base 704 by the direction angle (φ) 508. Although the inclined spacer 600 rotates integrally with the rotary stage 701, the chip assembly 500 rotates relative to the inclined spacer 600 in a state of being fitted in the fitting recess 609 of the inclined spacer 600. Thereby, the rotation angle between the chip assembly 500 and the inclined spacer 600 is adjusted to the direction angle (φ) 508. Then, the purpose is achieved by fixing the chip assembly 500 and the inclined spacer 600.
 ここで、チップアッセンブリ500のイオン放出方向506を予め測定しておく方法について説明する。 Here, a method for measuring the ion emission direction 506 of the chip assembly 500 in advance will be described.
 図9は、チップアッセンブリ500のイオン放出方向506の測定に用いるイオン放出方向測定装置800の構成図である。 FIG. 9 is a configuration diagram of an ion emission direction measuring apparatus 800 used for measurement of the ion emission direction 506 of the chip assembly 500.
 この装置800は、エミッタチップ1の先端をナノチップ化する処理を行う製造装置であり、エミッタチップ1の製造の最終工程でイオン放出方向506を計測する構成になっている。チップアッセンブリ500は、真空チャンバ806の中心軸801に対してその第2基準面504が垂直となるように、かつエミッタチップ1の先端が真空チャンバ806の中心軸801上にくるように設置される。その際におけるエミッタチップ1の真空チャンバ806の中心軸801からのズレは0.05mm以内となっている。また、チップアッセンブリ500は、その第2基準方向505を光学スケール803の基準方向(測長方向)と一致するように設置される。そして、光学スケール803の中心軸(すなわち、スケールにおける零点位置)は真空チャンバ806の中心軸801と合わせてある。これらは、完全に一致させなくても良い。その場合は、ズレ量を予め測定しておき、傾斜角等の測定値を後で補正する。 The apparatus 800 is a manufacturing apparatus that performs a process of forming the tip of the emitter chip 1 into a nanochip, and is configured to measure the ion emission direction 506 in the final process of manufacturing the emitter chip 1. The chip assembly 500 is installed so that the second reference plane 504 is perpendicular to the central axis 801 of the vacuum chamber 806 and the tip of the emitter chip 1 is on the central axis 801 of the vacuum chamber 806. . At that time, the deviation of the emitter chip 1 from the central axis 801 of the vacuum chamber 806 is within 0.05 mm. The chip assembly 500 is installed such that the second reference direction 505 coincides with the reference direction (measurement direction) of the optical scale 803. The central axis of the optical scale 803 (that is, the zero point position on the scale) is aligned with the central axis 801 of the vacuum chamber 806. These do not have to be completely matched. In that case, the amount of deviation is measured in advance, and the measured value such as the tilt angle is corrected later.
 このようにエミッタチップ1を、イオン放出方向測定装置800の真空チャンバ806内に配置し、ナノチップ化処理を行なう。真空チャンバ806内の図示しない引出電極を接地して、エミッタチップ1に適当な正の高電圧を印加する。更に、適当なイメージングガスを供給することで、エミッタチップ1からイオンが放出される。放出されたイオンビームはマイクロチャネルプレート(MCP)802に照射され、その照射位置に対応してMCP802の後ろ側に設けられた蛍光板部が発光する。この蛍光板部の発光を、カメラ805により窓804を介して拡大観察し、光学スケール803と比較する。それによって、チップアッセンブリ500の中心軸の離軸量、並びに離軸方向を測定する。チップアッセンブリ500は、イオン放出方向506に一致しているか、又は0.05mm以内のズレを有するものとする。この離軸量の測定精度は0.1mm以内である。また、ここでは、エミッタチップ1とMCP802との間の距離は300mmとしてある。そして、この距離300mmと測定した離軸量から傾斜角(θ)507が求まり、離軸方向から方向角(φ)508が求まる。 In this way, the emitter tip 1 is placed in the vacuum chamber 806 of the ion emission direction measuring device 800, and nanotip processing is performed. An extraction electrode (not shown) in the vacuum chamber 806 is grounded, and an appropriate positive high voltage is applied to the emitter chip 1. Furthermore, ions are emitted from the emitter tip 1 by supplying an appropriate imaging gas. The emitted ion beam is irradiated onto a microchannel plate (MCP) 802, and a fluorescent plate portion provided on the back side of the MCP 802 emits light corresponding to the irradiation position. The light emitted from the fluorescent plate portion is enlarged and observed through the window 804 by the camera 805 and compared with the optical scale 803. Thereby, the amount of off-axis of the center axis of the chip assembly 500 and the direction of off-axis are measured. It is assumed that the chip assembly 500 coincides with the ion emission direction 506 or has a deviation within 0.05 mm. The measurement accuracy of the off-axis amount is within 0.1 mm. Here, the distance between the emitter tip 1 and the MCP 802 is 300 mm. Then, the tilt angle (θ) 507 is obtained from the distance 300 mm and the measured off-axis amount, and the direction angle (φ) 508 is obtained from the off-axis direction.
 本実施の形態によれば、エミッタチップ1の先端のナノチップ化処理が終了し、エミッタチップ1をGFIS100に取り付ける前の段階で、そのエミッタチップ1に関する個別の傾斜データ(傾斜角(θ)507と方向角(φ)508)の取得が完了する。 According to the present embodiment, the tip processing of the tip of the emitter chip 1 is completed, and before the emitter chip 1 is attached to the GFIS 100, individual tilt data (tilt angle (θ) 507 and Acquisition of the direction angle (φ) 508) is completed.
 したがって、本実施の形態によるガス電界電離イオン源(GFIS)100及びイオンビーム装置200によれば、エミッタチップ1の傾斜調整のためにジンバル機構を使う従来の場合と比べて、イオンビーム装置200全体を使っての複雑な傾斜調整の操作が不要であり、その制御に必要な装置コストが削減できる。 Therefore, according to the gas field ionization ion source (GFIS) 100 and the ion beam apparatus 200 according to the present embodiment, the entire ion beam apparatus 200 is compared with the conventional case in which the gimbal mechanism is used to adjust the tilt of the emitter tip 1. This eliminates the need for complicated tilt adjustment operations using the and reduces the cost of the equipment required for the control.
 また、真空ベローズ451を、真空容器10内部に対して、水平微動機構450の環状ベース47の表面滑り面452を画成するように設けるだけでよい。従って、真空ベローズ451の表面積の抑制をはかることができる。また、ジンバル機構を使うガス電界電離イオン源(GFIS)と比べて、真空ベローズの大きさと長さを小さくできる。したがって、ガス電界電離イオン源(GFIS)の真空度を高められ、イオン放出がより安定化する効果がある。 Further, it is only necessary to provide the vacuum bellows 451 so as to define the surface sliding surface 452 of the annular base 47 of the horizontal fine movement mechanism 450 with respect to the inside of the vacuum vessel 10. Therefore, the surface area of the vacuum bellows 451 can be suppressed. Further, the size and length of the vacuum bellows can be reduced as compared with a gas field ion source (GFIS) using a gimbal mechanism. Therefore, the degree of vacuum of the gas field ion source (GFIS) can be increased, and ion emission can be more stabilized.
 また、真空容器10の壁からエミッタチップ1までの距離を短くできる。そのため、外部から進入する低周波の振動が伝わり難く、エミッタチップ1の振動による試料像のボケが低減できる効果がある。 Moreover, the distance from the wall of the vacuum vessel 10 to the emitter chip 1 can be shortened. Therefore, low-frequency vibration entering from the outside is difficult to be transmitted, and there is an effect that blur of the sample image due to vibration of the emitter tip 1 can be reduced.
<第2の実施の形態>
 本実施の形態に係るイオンビーム装置の構成は、図1に示した第1の実施の形態によるイオンビーム装置200と略同じである。また、ガス電界電離イオン源(GFIS)の構成も、図2に示したGFIS100の構成と略同じであるが、その傾斜スペーサ600の構成が異なる。そのため。本実施の形態の説明にあたっては、第1の実施の形態と同一若しくは同様な構成部分についてはその説明を省略し、構成が異なる傾斜スペーサ600の構成についてのみ説明する。
<Second Embodiment>
The configuration of the ion beam apparatus according to the present embodiment is substantially the same as that of the ion beam apparatus 200 according to the first embodiment shown in FIG. The configuration of the gas field ion source (GFIS) is substantially the same as that of the GFIS 100 shown in FIG. 2, but the configuration of the inclined spacer 600 is different. for that reason. In the description of the present embodiment, the description of the same or similar components as those in the first embodiment will be omitted, and only the configuration of the inclined spacer 600 having a different configuration will be described.
 図10は、本実施の形態のイオンビーム装置に係るガス電界電離イオン源(GFIS)の傾斜スペーサ600-2の構成図である。図10(A)は、傾斜スペーサ600-2の外観斜視図を、図10(B)は、傾斜スペーサ600-2の径方向から眺めた断面図である。なお、図10においても、その構成把握が容易なように、図5の場合と同様に、図2とは上下逆の状態で表示してある。 FIG. 10 is a configuration diagram of the inclined spacer 600-2 of the gas field ion source (GFIS) according to the ion beam apparatus of the present embodiment. 10A is an external perspective view of the inclined spacer 600-2, and FIG. 10B is a cross-sectional view of the inclined spacer 600-2 viewed from the radial direction. Note that, in FIG. 10, as in the case of FIG. 5, the configuration is displayed upside down from FIG.
 図5に示した傾斜スペーサ600では、板厚がその直径方向にリニアに増加又は減少変化する形状になっている。また、傾斜スペーサ600の厚みの増加角(α)604が固定であるため、傾斜調整精度を高めるために、増加角の異なる複数種類のものを用意しておく必要があった。 In the inclined spacer 600 shown in FIG. 5, the plate thickness is linearly increased or decreased in the diameter direction. Further, since the increase angle (α) 604 of the thickness of the inclined spacer 600 is fixed, it is necessary to prepare a plurality of types having different increase angles in order to increase the inclination adjustment accuracy.
 これに対して、本実施の形態に係る傾斜スペーサ600-2は、厚みの増加角(α)604を調整可能に構成されていることが特徴である。1種類の傾斜スペーサ600-2で様々な厚みの増加角(α)604に対応できるものである。 In contrast, the inclined spacer 600-2 according to the present embodiment is characterized in that the thickness increasing angle (α) 604 is adjustable. One type of inclined spacer 600-2 can cope with various angles of increase (α) 604.
 図10に示すように、傾斜スペーサ600-2は、支持体400の嵌合凹部410に嵌入可能な外径を有する円板状になっている。傾斜スペーサ600-2において、チップアッセンブリ500が配置される側の面(第3基準面601)と、支持体400の嵌合凹部に嵌入される面(第4基準面603)とは非平行である。しかしながら、傾斜スペーサ600-2は、その径方向に板厚がリニアに増加又は減少変化する形状になっていない。その代わりに、傾斜スペーサ600-2の中心軸から外れた位置には、板厚方向、好ましくは傾斜スペーサ600-2の中心軸方向に沿って、段付き孔610が形成されている。段付き孔610の小径部には、全長が段付き孔の孔長さよりも短く、そのネジ切り部分が当該小径部の孔長さよりも長い調整ネジ607が螺合して設けられている。また、調整ネジ607のネジ頭と段付き孔の段部との間には、調整ネジ607のガタつきを防止するためのバネ608が設けられている。 As shown in FIG. 10, the inclined spacer 600-2 has a disk shape having an outer diameter that can be fitted into the fitting recess 410 of the support 400. In the inclined spacer 600-2, the surface (third reference surface 601) on the side where the chip assembly 500 is disposed and the surface (fourth reference surface 603) inserted into the fitting recess of the support 400 are non-parallel. is there. However, the inclined spacer 600-2 does not have a shape in which the plate thickness linearly increases or decreases in the radial direction. Instead, a stepped hole 610 is formed at a position off the central axis of the inclined spacer 600-2 along the thickness direction, preferably along the central axis direction of the inclined spacer 600-2. An adjustment screw 607 whose overall length is shorter than the hole length of the stepped hole and whose threaded portion is longer than the hole length of the small diameter portion is screwed into the small diameter portion of the stepped hole 610. In addition, a spring 608 is provided between the screw head of the adjustment screw 607 and the step portion of the stepped hole to prevent the adjustment screw 607 from rattling.
 さらに、傾斜スペーサ600-2の中心軸を挟んで段付き孔610が設けられた側と反対側の周面には、切り欠き606が形成されている。切り欠き606の部分では、傾斜スペーサ600-2の外周面は、平坦になっている。これにより、傾斜スペーサ600-2は、小径部が設けられた側の傾斜スペーサ600-2の表面若しくは裏面からの調整ネジ607の突出量を調整することで、切り欠き606のエッジ部分を支点として増加角(α)604を変更できる。その際、調整ネジ607の突出量を調整して増加角(α)604を計測しながら、調整ネジ607を段付き孔の小径部に螺合することで、必要な合わせ精度を確保できる。ここでは、調整ネジ607の回転角調整の精度から、切り欠き606を支点とする増加角(α)604の合わせ精度として0.05°を実現した。 Further, a notch 606 is formed on the peripheral surface opposite to the side where the stepped hole 610 is provided across the central axis of the inclined spacer 600-2. In the portion of the notch 606, the outer peripheral surface of the inclined spacer 600-2 is flat. Accordingly, the inclined spacer 600-2 adjusts the amount of protrusion of the adjusting screw 607 from the front or back surface of the inclined spacer 600-2 on the side where the small diameter portion is provided, so that the edge portion of the notch 606 is used as a fulcrum. The increase angle (α) 604 can be changed. At that time, by adjusting the protruding amount of the adjustment screw 607 and measuring the increase angle (α) 604, the adjustment screw 607 is screwed into the small diameter portion of the stepped hole, so that necessary alignment accuracy can be ensured. Here, from the accuracy of adjusting the rotation angle of the adjusting screw 607, 0.05 ° is realized as the alignment accuracy of the increased angle (α) 604 with the notch 606 as a fulcrum.
 なお、傾斜スペーサ600-2の第4基準面603は熱接触が取り難いため、傾斜スペーサ600-2と支持体400を固定する図示しない部品においては熱接触が十分とれるように配慮することが必要である。 Since the fourth reference surface 603 of the inclined spacer 600-2 is difficult to be in thermal contact, it is necessary to consider that the thermal contact is sufficient for a component (not shown) that fixes the inclined spacer 600-2 and the support 400. It is.
 また、バネ608を使わずに、調整ネジ607として長さが異なる複数の調整ネジ607を用意してもよい。適当な長さの調整ネジ607を選択することにより所望の増加角(α)604を得ることができる。但し、この場合には、切り欠き606を支点とする増加角(α)604の連続的な角度調整はできない。 Also, a plurality of adjustment screws 607 having different lengths may be prepared as the adjustment screws 607 without using the spring 608. A desired increase angle (α) 604 can be obtained by selecting an adjustment screw 607 having an appropriate length. However, in this case, the continuous angle adjustment of the increase angle (α) 604 with the notch 606 as a fulcrum is not possible.
 また、本実施の形態に係る傾斜スペーサ600-2では、調整ネジ607が螺合している段付き孔610が、第3の基準方向マーク605-2を兼ねる。そして、第3の基準方向マーク605-2,チップアッセンブリ500が配置される側の表面(第3基準面601)に平行でその中心軸を通り、切り欠き606の切り欠き面と交差する線分の延設方向が、第3基準方向602に該当する。 Further, in the inclined spacer 600-2 according to the present embodiment, the stepped hole 610 into which the adjustment screw 607 is screwed also serves as the third reference direction mark 605-2. A line segment parallel to the surface (third reference surface 601) on the side where the third reference direction mark 605-2 and the chip assembly 500 are arranged passes through the central axis and intersects the notch surface of the notch 606. The extending direction corresponds to the third reference direction 602.
 本実施の形態のイオンビーム装置に係る傾斜スペーサ600-2によれば、図5に示した傾斜スペーサ600と比べれば、必要な材料が少なくなる効果がある。 According to the inclined spacer 600-2 according to the ion beam apparatus of the present embodiment, there is an effect that a necessary material is reduced as compared with the inclined spacer 600 shown in FIG.
 以上、第1及び第2のガス電界電離イオン源(GFIS)、及びイオンビーム装置においては、その傾斜スペーサ600‐2として、厚みの増加角αを連続的に調整可能とする構成について説明した。しかしながら、本実施の形態に限らず他にも種々の設計変更が可能である。 As described above, in the first and second gas field ionization ion sources (GFIS) and the ion beam apparatus, the configuration in which the increase angle α of the thickness can be continuously adjusted as the inclined spacer 600-2 has been described. However, the present invention is not limited to this embodiment, and various other design changes are possible.
<第3の実施の形態>
 本実施の形態に係るイオンビーム装置の構成は、図1に示した第1の実施の形態によるイオンビーム装置200の構成と略同じであるが、ガス電界電離イオン源(GFIS)100における水平微動機構450の配置が異なる。
<Third Embodiment>
The configuration of the ion beam apparatus according to the present embodiment is substantially the same as that of the ion beam apparatus 200 according to the first embodiment shown in FIG. 1, but horizontal fine movement in the gas field ion source (GFIS) 100 is performed. The arrangement of the mechanism 450 is different.
 図11は、本実施の形態のガス電界電離イオン源(GFIS)100-2の構成図である。図において、ガス電界電離イオン源(GFIS)100-2の構成は、図2に示したGFIS100の構成と略同じであるが、真空容器10に対しての水平微動機構450の配置構成が異なる。本例では、端子装着部45が水平微動機構450の可動部を構成している。 FIG. 11 is a configuration diagram of a gas field ion source (GFIS) 100-2 according to the present embodiment. In the figure, the configuration of the gas field ion source (GFIS) 100-2 is substantially the same as that of the GFIS 100 shown in FIG. 2, but the arrangement of the horizontal fine movement mechanism 450 with respect to the vacuum vessel 10 is different. In this example, the terminal mounting portion 45 constitutes a movable portion of the horizontal fine movement mechanism 450.
 本実施の形態に係るGFIS100-2では、図11の水平微動機構450-2の滑り面452が、真空容器10-2の容器内にあるため、図2に示した真空ベローズ451が不要である。また、高電圧導入端子40-1を水平微動する必要がない。真空ベローズ451を設けないことにより、真空容器10-2の壁からエミッタチップ1までの距離が短くなっている。 In the GFIS 100-2 according to the present embodiment, since the sliding surface 452 of the horizontal fine movement mechanism 450-2 in FIG. 11 is in the container of the vacuum container 10-2, the vacuum bellows 451 shown in FIG. 2 is not necessary. . Further, it is not necessary to finely move the high voltage introduction terminal 40-1. By not providing the vacuum bellows 451, the distance from the wall of the vacuum vessel 10-2 to the emitter chip 1 is shortened.
 また、真空容器10-2の壁から支持体400までの部品数も、水平微動機構450-2による水平微動の対象となる部品点数も、少なくすることができる。高電圧導入端子40-1が真空容器10-2に固定されている。そのため、水平微動する必要となる部品は、熱絶縁支持体(ステンレス薄肉パイプ)24-1,伝熱支持体(無酸素銅)22-1,伝熱絶縁碍子(サファイア)23-1,及びチップアッセンブリ500及び傾斜スペーサ600が組み付けられた支持体400だけである。 Further, the number of parts from the wall of the vacuum vessel 10-2 to the support 400 and the number of parts to be subjected to horizontal fine movement by the horizontal fine movement mechanism 450-2 can be reduced. A high voltage introduction terminal 40-1 is fixed to the vacuum vessel 10-2. Therefore, the components that need to be finely moved are the heat insulation support (stainless steel thin pipe) 24-1, the heat transfer support (oxygen-free copper) 22-1, the heat transfer insulation (sapphire) 23-1, and the chip. It is only the support body 400 to which the assembly 500 and the inclined spacer 600 are assembled.
 以上のように、本実施の形態によれば、エミッタチップ1の傾斜調整及び水平位置調整のために大きな真空ベローズを用いないので、GFIS100の真空度を高めることができ、イオン放出もより安定化する効果がある。 As described above, according to the present embodiment, since a large vacuum bellows is not used for the tilt adjustment and horizontal position adjustment of the emitter tip 1, the degree of vacuum of the GFIS 100 can be increased, and ion emission is further stabilized. There is an effect to.
 また、真空容器10-2の壁からエミッタチップ1までの距離が短いので、外部から進入する低周波の振動が伝わり難く、エミッタチップ1の振動による試料像のボケが低減できる効果がある。 Further, since the distance from the wall of the vacuum vessel 10-2 to the emitter tip 1 is short, low frequency vibration entering from the outside is difficult to be transmitted, and there is an effect that the blur of the sample image due to the vibration of the emitter tip 1 can be reduced.
 また、真空容器10-2の壁から支持体400までの部品数が少ないため、支持体400の第1基準面401をイオン光軸301(すなわちGFIS100-2の中心軸)に対して垂直に保つ精度が高くなる。 Further, since the number of parts from the wall of the vacuum vessel 10-2 to the support 400 is small, the first reference surface 401 of the support 400 is kept perpendicular to the ion optical axis 301 (that is, the central axis of the GFIS 100-2). Increases accuracy.
 さらに、エミッタチップ1の傾斜調整精度が向上するので、イオンビーム5の集束性が高まる効果がある。 Furthermore, since the tilt adjustment accuracy of the emitter tip 1 is improved, there is an effect that the focusing property of the ion beam 5 is enhanced.
<第4の実施の形態>
 図12は、本実施の形態のイオンビーム装置200-2の全体構成図である。本実施の形態によるイオンビーム装置200-2の構成は、図1に示したイオンビーム装置200の構成と略同じであるが、アライナー102-4の部分が異なる。
<Fourth embodiment>
FIG. 12 is an overall configuration diagram of the ion beam apparatus 200-2 of the present embodiment. The configuration of the ion beam apparatus 200-2 according to the present embodiment is substantially the same as the configuration of the ion beam apparatus 200 shown in FIG. 1, but the aligner 102-4 is different.
 図1では、アライナーは、1段の偏向器であるアライナー102-4だけであるが、本実施の形態では、図12に示すように、アライナーは、アライナー102-5とアライナー102-6との2段の静電偏向器で構成したことが特徴である。 In FIG. 1, the aligner is only the aligner 102-4, which is a one-stage deflector. However, in the present embodiment, as shown in FIG. 12, the aligner includes an aligner 102-5 and an aligner 102-6. It is characterized by comprising two stages of electrostatic deflectors.
 以下、図13を用いて、本実施の形態のイオンビーム装置200-2の動作について説明する。 Hereinafter, the operation of the ion beam apparatus 200-2 of the present embodiment will be described with reference to FIG.
 図13は、本実施の形態のイオンビーム装置200-2に備えられた2段アライナーの基本的な動作説明図である。 FIG. 13 is a diagram for explaining the basic operation of the two-stage aligner provided in the ion beam apparatus 200-2 of the present embodiment.
 通常、イオン光学系300-2のイオン光軸301は、装置各部の組み付け状態に依存した、機械的な中心軸に設定される。エミッタチップ1の傾斜調整では、エミッタチップ1からのイオン放出方向506をこの機械的な中心軸に合わせていることになる。 Usually, the ion optical axis 301 of the ion optical system 300-2 is set to a mechanical central axis depending on the assembled state of each part of the apparatus. In the tilt adjustment of the emitter tip 1, the ion emission direction 506 from the emitter tip 1 is aligned with this mechanical central axis.
 しかし、実際には、図12に示したイオンビーム装置200-2のように、静電レンズが2段の場合、それぞれの静電レンズ102-1,102-2の間では、個体の違いや組み付け状態等によって、水平方向(レンズ中心軸の垂直方向)に僅かなズレが残っている。これは、静電レンズが2段よりも多い場合についても同様である。 However, in reality, as in the ion beam apparatus 200-2 shown in FIG. 12, when there are two stages of electrostatic lenses, there are individual differences between the electrostatic lenses 102-1 and 102-2. A slight misalignment remains in the horizontal direction (the vertical direction of the lens center axis) depending on the assembled state or the like. The same applies to the case where there are more than two stages of electrostatic lenses.
 そのため、初段(1段目)の静電レンズ102-1の中心に垂直にイオンビーム5を通したとしても、初段の静電レンズ102-1を透過したイオンビーム5は、上述したズレにより、2段目の静電レンズ102-2の中心を通らない。そこで、アライナーと呼ぶ静電偏向器でイオンビーム5を偏向して補正する必要がある。 Therefore, even if the ion beam 5 passes through the center of the first stage (first stage) electrostatic lens 102-1 perpendicularly, the ion beam 5 transmitted through the first stage electrostatic lens 102-1 is caused by the above-described deviation. It does not pass through the center of the second stage electrostatic lens 102-2. Therefore, it is necessary to correct the ion beam 5 by deflecting it with an electrostatic deflector called an aligner.
 通常、2段目の静電レンズ102-2は、初段の静電レンズ102-1から十分に離れており、2段目の静電レンズ102-2の中心へのイオンビーム5の入射は垂直に近い。そのため、斜め入射によるコマ収差の影響が見えないので、2段目の静電レンズ102-2へのイオンビーム5の入射角まで調整する必要はない。 Normally, the second stage electrostatic lens 102-2 is sufficiently away from the first stage electrostatic lens 102-1, and the ion beam 5 is incident on the center of the second stage electrostatic lens 102-2 vertically. Close to. Therefore, since the influence of coma aberration due to oblique incidence is not visible, it is not necessary to adjust the incident angle of the ion beam 5 to the second stage electrostatic lens 102-2.
 ここまで説明したイオンビーム5の偏向補正は、上述したエミッタチップ1の傾斜調整後に僅かに残る角度ずれに対しても全く同様に扱え、かつ有効である。 The deflection correction of the ion beam 5 described so far can be handled in the same manner and is effective even for the slight angular deviation remaining after the tilt adjustment of the emitter tip 1 described above.
 ところが、試料上でイオンビーム5をサブナノメータ単位の桁値まで集束させることを考慮すると、アライナーが1段だけでは十分とは言えない。何故ならば、図12に示したイオンビーム装置200-2において、アライナーが図中のアライナー102-5の1段だけの場合には、1段目の静電レンズ102-1を通ったイオンビーム5の仮想光源は、光源位置1010から光源位置1010-2にずれる。それにより偏向色収差が発生して、試料像のボケとなる。 However, considering that the ion beam 5 is focused on the sample to a sub-nanometer unit digit value, it is not sufficient to use only one aligner. This is because, in the ion beam apparatus 200-2 shown in FIG. 12, when the aligner is only one stage of the aligner 102-5 in the figure, the ion beam passes through the first stage electrostatic lens 102-1. The virtual light source No. 5 is shifted from the light source position 1010 to the light source position 1010-2. As a result, deflection chromatic aberration is generated, resulting in blurring of the sample image.
 そこで、本実施の形態では、1段目のアライナー102-5で偏向したイオンビーム5をさらに2段目のアライナー102-6で反対方向に偏向して、イオンビーム5を2段目の静電レンズ102-2の中心を通す。それとともに、1段目のレンズ102-1を通ったイオンビーム5の仮想光源を、光源位置1010-2から元の光源位置1010に戻すことで、試料像のボケを改善する。 Therefore, in this embodiment, the ion beam 5 deflected by the first-stage aligner 102-5 is further deflected in the opposite direction by the second-stage aligner 102-6, and the ion beam 5 is then electrostatically charged by the second-stage aligner 102-6. The center of the lens 102-2 is passed. At the same time, the blur of the sample image is improved by returning the virtual light source of the ion beam 5 that has passed through the first stage lens 102-1 from the light source position 1010-2 to the original light source position 1010.
 このために、アライナー102-5の偏向とアライナー102-6の偏向とを、反対向きの一定の強度比(偏向強度比)に保って連動させるように制御系を構成した。この制御系において、この偏向強度比の最適値は、静電レンズ102-1,102-2の配置とアライナー102-5,102-6の配置とから計算で求められる。 For this purpose, the control system was configured so that the deflection of the aligner 102-5 and the deflection of the aligner 102-6 were interlocked while maintaining a constant intensity ratio (deflection intensity ratio) in the opposite directions. In this control system, the optimum value of the deflection intensity ratio is obtained by calculation from the arrangement of the electrostatic lenses 102-1 and 102-2 and the arrangement of the aligners 102-5 and 102-6.
 より正確を期すためには、アライナー102-5によって、イオンビーム5が2段目の静電レンズ102-2の孔付近で走査するように偏向調整し、その走査と連動して試料6から発生する2次電子を使って試料像を作る。その上で、この試料像のボケが最小となるように、偏向強度比を微調整すればよい。 For more accuracy, the aligner 102-5 adjusts the deflection so that the ion beam 5 scans in the vicinity of the hole of the second stage electrostatic lens 102-2, and is generated from the sample 6 in conjunction with the scanning. A sample image is made using secondary electrons. In addition, the deflection intensity ratio may be finely adjusted so that the blur of the sample image is minimized.
 このようにして、最終的にはアライナー102-5の偏向をイオンビーム5が2段目の静電レンズ102-2の中心を通るところで固定する。これと併せて、アライナー102-6の偏向も連動して固定される。 In this way, finally, the deflection of the aligner 102-5 is fixed when the ion beam 5 passes through the center of the second stage electrostatic lens 102-2. At the same time, the deflection of the aligner 102-6 is fixed in conjunction with it.
<第5の実施の形態>
 本実施の形態によるイオンビーム装置の構成は、図12に示したイオンビーム装置200-2の構成と略同じである。
<Fifth embodiment>
The configuration of the ion beam apparatus according to the present embodiment is substantially the same as the configuration of the ion beam apparatus 200-2 shown in FIG.
 本実施の形態では、2段の静電偏向器であるアライナー102-5と102-6への信号(偏向信号)の与え方に特徴である。 This embodiment is characterized in that a signal (deflection signal) is given to the aligners 102-5 and 102-6 which are two-stage electrostatic deflectors.
 制御系は、第4の実施の形態で説明したアライナー102-5,102-6それぞれへの信号に対して、別の信号を重畳する制御を行う。 The control system performs control to superimpose another signal on the signals to the aligners 102-5 and 102-6 described in the fourth embodiment.
 以下、図14を用いて、本実施の形態のイオンビーム装置200-3の動作について説明する。図14は、本実施の形態のイオンビーム装置200-3に備えられた2段アライナーの基本的な動作説明図である。 Hereinafter, the operation of the ion beam apparatus 200-3 according to the present embodiment will be described with reference to FIG. FIG. 14 is a diagram for explaining the basic operation of the two-stage aligner provided in the ion beam apparatus 200-3 of the present embodiment.
 前述した第1~3の実施の形態の構造を採用することにより、イオンビーム装置200-3における、エミッタチップ1の機械的なずれは抑制される。しかしながら、エミッタチップ1の吊り下げ構造に起因した機械的な振動はゼロになるわけではない。そのため、エミッタチップ1の振動により、エミッタチップ1の仮想光源は光源位置1000と光源位置1001との間で動く可能性がある。これに伴い、2段目の静電レンズ102-2を通って試料6上で集束されるイオンビーム5の照射位置も動く可能性がある。 By adopting the structures of the first to third embodiments described above, mechanical displacement of the emitter tip 1 in the ion beam apparatus 200-3 is suppressed. However, the mechanical vibration due to the suspended structure of the emitter tip 1 is not zero. Therefore, the virtual light source of the emitter chip 1 may move between the light source position 1000 and the light source position 1001 due to the vibration of the emitter chip 1. Accordingly, the irradiation position of the ion beam 5 focused on the sample 6 through the second stage electrostatic lens 102-2 may move.
 そこで、本実施の形態では、2段のアライナー102-5とアライナー102-6とを使って、仮想光源の光源位置1010と光源位置1011の間での動きをキャンセルするように、イオンビーム5を偏向する制御を行うことが特徴である。 Therefore, in this embodiment, the ion beam 5 is used so as to cancel the movement between the light source position 1010 and the light source position 1011 of the virtual light source using the two-stage aligner 102-5 and the aligner 102-6. It is characterized by performing deflection control.
 このために、制御系は、アライナー102-5の偏向とアライナー102-6の偏向とを、同じ向きの一定の強度比(偏向強度比)に保って連動させるように構成されている。 For this reason, the control system is configured to interlock the deflection of the aligner 102-5 and the deflection of the aligner 102-6 while maintaining a constant intensity ratio (deflection intensity ratio) in the same direction.
 偏向強度比の最適値は、静電レンズ102-1,102-2の配置とアライナー102-5,102-6の配置とから計算で求められる。 The optimum value of the deflection intensity ratio can be obtained by calculation from the arrangement of the electrostatic lenses 102-1 and 102-2 and the arrangement of the aligners 102-5 and 102-6.
 エミッタチップ1の振動は試料像の取得時間が長いと、ボケと認識されるが、取得時間を短くすると像の歪みとなる。これを解析することで振動を捉えることができる。基本的には、エミッタチップ1の振動は機械的固有振動なので低周波の同じ向きの振動である。 The vibration of the emitter tip 1 is recognized as blur if the sample image acquisition time is long, but if the acquisition time is shortened, the image will be distorted. By analyzing this, vibration can be captured. Basically, since the vibration of the emitter tip 1 is a mechanical natural vibration, the vibration is in the same direction at a low frequency.
 この取得した振動に基づいて、制御系は、最終的に、これをキャンセルするように一定方向に振動する偏向信号をアライナー102-5に加える制御を行う。これと併せて、アライナー102-6の偏向も連動して振動するよう制御する。 Based on the acquired vibration, the control system finally performs control to apply a deflection signal that vibrates in a certain direction to the aligner 102-5 so as to cancel the vibration. At the same time, the deflection of the aligner 102-6 is controlled to vibrate in conjunction with it.
<第6の実施の形態>
 本実施の形態に係るイオンビーム装置の構成は、図1に示した第1の実施の形態によるイオンビーム装置200の構成と略同じであるが、ガス電界電離イオン源(GFIS)100の構成が異なる。
<Sixth Embodiment>
The configuration of the ion beam apparatus according to the present embodiment is substantially the same as the configuration of the ion beam apparatus 200 according to the first embodiment shown in FIG. 1, but the configuration of the gas field ion source (GFIS) 100 is the same. Different.
 図15は、本実施の形態のガス電界電離イオン源(GFIS)100-3の構成図である。ガス電界電離イオン源(GFIS)100-3の構成は、図2に示したGFIS100の構成と略同じであるが、水平微動機構450-3の上に、ジンバル機構450-4を配置する構造が異なる。水平微動機構450-3の可動部は上側部材46-1と下側部材46-2に分割されており、両者は、滑り面452-4によって互いに接触している。滑り面452-4は、エミッタチップ1を中心とする球面状に形成されている。上側部材46-1は滑り面452-4に沿って、円周方向に移動することができる。下側部材46-2は、ジンバル機構450-4の固定部を構成し、上側部材46-1は、ジンバル機構450-4の可動部を構成する。 FIG. 15 is a configuration diagram of a gas field ion source (GFIS) 100-3 according to the present embodiment. The configuration of the gas field ion source (GFIS) 100-3 is substantially the same as the configuration of the GFIS 100 shown in FIG. 2, except that a gimbal mechanism 450-4 is disposed on the horizontal fine movement mechanism 450-3. Different. The movable portion of the horizontal fine movement mechanism 450-3 is divided into an upper member 46-1 and a lower member 46-2, which are in contact with each other by a sliding surface 452-4. The sliding surface 452-4 is formed in a spherical shape with the emitter tip 1 as the center. The upper member 46-1 can move in the circumferential direction along the sliding surface 452-4. The lower member 46-2 constitutes a fixed part of the gimbal mechanism 450-4, and the upper member 46-1 constitutes a movable part of the gimbal mechanism 450-4.
 ジンバル機構によって、エミッタチップを支持する支持体400、チップアッセンブリ500、及び、傾斜スペーサ600は、エミッタチップ先端を中心として枢動することができるように構成されている。 The support 400, the chip assembly 500, and the inclined spacer 600 that support the emitter chip can be pivoted about the tip of the emitter chip by the gimbal mechanism.
 ジンバル機構450-4による回転位置決め機構は、上側部材46-1をその径方向に挟持するように下側部材46-2に配置された押し棒453-4と圧縮バネ454-4とから構成されている。これにより、押し棒453-4の進退位置を圧縮バネ454-4の付勢力に抗して調整固定することにより、下側部材46-2に対する上側部材46-1の位置を調整することができる。押し棒453-4には、マイクロメータヘッドが装着されており、エミッタチップ1の傾斜角を0.1°以下の精度で調整することができる。 The rotational positioning mechanism by the gimbal mechanism 450-4 includes a push rod 453-4 and a compression spring 454-4 disposed on the lower member 46-2 so as to sandwich the upper member 46-1 in the radial direction. ing. Accordingly, the position of the upper member 46-1 relative to the lower member 46-2 can be adjusted by adjusting and fixing the advance / retreat position of the push rod 453-4 against the urging force of the compression spring 454-4. . A micrometer head is attached to the push rod 453-4, and the tilt angle of the emitter chip 1 can be adjusted with an accuracy of 0.1 ° or less.
 端子装着部45と環状ベース47の間には、熱絶縁支持体24-1を囲繞するように真空ベローズ451が設けられている。真空ベローズ451の口径は100cm程度であり、大気圧が端子装着部45を100kg程度の力で押し付けている。そのため、すべり面452-4における移動の滑らかさを確保するために、接触面の間に複数のボールを仕込んである。 A vacuum bellows 451 is provided between the terminal mounting portion 45 and the annular base 47 so as to surround the heat insulating support 24-1. The aperture of the vacuum bellows 451 is about 100 cm 2 , and atmospheric pressure presses the terminal mounting portion 45 with a force of about 100 kg. Therefore, in order to ensure smooth movement on the sliding surface 452-4, a plurality of balls are charged between the contact surfaces.
 本実施の形態では、イオンビーム装置を組み立てた後に、水平微動機構450-3による水平方向の微調整を行い、ジンバル機構450-4によって、チップの傾斜角の最終調整を行うことができる。即ち、支持体400、チップアッセンブリ500、及び、傾斜スペーサ600を用いたチップの傾斜調整ばかりでなく、ジンバル機構450-4を用いたチップの傾斜調整を行うことができる。従って、第1の実施の形態の場合と比較して、角度の異なる傾斜スペーサ600の数を増加させることなしに、チップアッセンブリ500の製造段階における、チップの傾斜角の精度を緩和することができる。そのため、チップアッセンブリ500の製造コストを抑制することができる。チップアッセンブリ500の製造段階におけるチップの傾斜ずれの許容値は、第1の実施の形態では±2°であったが、本実施の形態では±5°に増加させることができる。中心位置のずれの許容値を、±0.05mmから±0.1mmに増加させることができる。さらに、本実施の形態では、チップ傾斜角度の測定精度を緩和することができるから、その測定コストを抑制することができる。例えば、本実施の形態では、測定精度の許容値を±0.05°から±0.2°に緩和することができる。 In this embodiment, after the ion beam apparatus is assembled, fine adjustment in the horizontal direction by the horizontal fine movement mechanism 450-3 can be performed, and final adjustment of the tilt angle of the chip can be performed by the gimbal mechanism 450-4. That is, not only the tip tilt adjustment using the support 400, the chip assembly 500, and the tilt spacer 600 but also the tip tilt adjustment using the gimbal mechanism 450-4 can be performed. Therefore, compared with the case of the first embodiment, the accuracy of the tilt angle of the chip in the manufacturing stage of the chip assembly 500 can be relaxed without increasing the number of tilt spacers 600 having different angles. . Therefore, the manufacturing cost of the chip assembly 500 can be suppressed. The allowable value of the tip tilt deviation in the manufacturing stage of the tip assembly 500 is ± 2 ° in the first embodiment, but can be increased to ± 5 ° in the present embodiment. The tolerance for the deviation of the center position can be increased from ± 0.05 mm to ± 0.1 mm. Furthermore, in this embodiment, since the measurement accuracy of the tip tilt angle can be relaxed, the measurement cost can be suppressed. For example, in the present embodiment, the allowable value of measurement accuracy can be relaxed from ± 0.05 ° to ± 0.2 °.
 ここで、傾斜スペーサ600として、厚みの増加角(α)604が0°から5°まで1°刻みで異なる6個を予め用意した。これは、第1の実施の形態の場合の傾斜スペーサ600の個数の約半分である。この中から適正な傾斜スペーサ600を選ぶことで、増加角(α)604と傾斜角(θ)507のズレを約0.5°以下にできる。 Here, as the inclined spacer 600, six different thickness increasing angles (α) 604 were prepared in advance from 0 ° to 5 ° in 1 ° increments. This is about half of the number of the inclined spacers 600 in the case of the first embodiment. By selecting an appropriate inclined spacer 600 from these, the deviation between the increase angle (α) 604 and the inclination angle (θ) 507 can be made to be about 0.5 ° or less.
 本実施の形態では、チップアッセンブリ500の製造段階におけるチップの傾斜ずれを、傾斜スペーサ600等を用いた傾斜調整とジンバル機構450-4を用いた傾斜調整の両者によって分担する。例えば、チップアッセンブリ500の製造段階におけるチップの傾斜ずれが±5°であったとする。この場合、ジンバル機構450-4によるチップの傾斜の調整量は、±5°ではなく、±0.7°程度でよい。この調整量±0.7°は、傾斜スペーサ600による調整刻み±0.5°とチップ傾斜角の測定精度±0.2°の二乗平均によって求めてもよいが、ここでは単純和によって求めた。 In the present embodiment, the tilt deviation of the chip in the manufacturing stage of the chip assembly 500 is shared by both the tilt adjustment using the tilt spacer 600 and the tilt adjustment using the gimbal mechanism 450-4. For example, it is assumed that the tip tilt deviation at the manufacturing stage of the tip assembly 500 is ± 5 °. In this case, the adjustment amount of the tip inclination by the gimbal mechanism 450-4 may be about ± 0.7 °, not ± 5 °. The adjustment amount ± 0.7 ° may be obtained by the mean square of the adjustment step ± 0.5 ° by the inclined spacer 600 and the measurement accuracy of the tip inclination angle ± 0.2 °, but here it is obtained by a simple sum. .
 通常、ジンバル機構における可動部の移動量及び可動範囲は、水平微動機構における可動部の移動量及び可動範囲より大きい。例えば、ジンバル機構の可動部の水平方向の移動量及び可動範囲が、水平微動機構の可動部の水平方向の移動量及び可動範囲の2倍より大きい場合もある。しかしながら、本例では、ジンバル機構450-4によるチップの傾斜の調整量が少ないから、ジンバル機構450-4の可動部(上側部材46-1)の移動量及び可動範囲は比較的小さい。本例では、ジンバル機構450-4の可動部(上側部材46-1)の移動量及び可動範囲は、少なくとも、水平微動機構450-3の可動部の移動量及び可動範囲の2倍より小さい。更に、ジンバル機構450-4の可動部(上側部材46-1)の移動量及び可動範囲を、水平微動機構450-3の可動部の移動量及び可動範囲より小さくすることができる。 Usually, the moving amount and the movable range of the movable part in the gimbal mechanism are larger than the moving amount and the movable range of the movable part in the horizontal fine movement mechanism. For example, the horizontal movement amount and movable range of the movable part of the gimbal mechanism may be larger than twice the horizontal movement amount and movable range of the movable part of the horizontal fine movement mechanism. However, in this example, since the adjustment amount of the tip inclination by the gimbal mechanism 450-4 is small, the moving amount and the movable range of the movable part (upper member 46-1) of the gimbal mechanism 450-4 are relatively small. In this example, the amount of movement and the movable range of the movable part (upper member 46-1) of the gimbal mechanism 450-4 are at least smaller than twice the amount of movement and the movable range of the movable part of the horizontal fine movement mechanism 450-3. Furthermore, the moving amount and the movable range of the movable part (upper member 46-1) of the gimbal mechanism 450-4 can be made smaller than the moving amount and the movable range of the movable part of the horizontal fine movement mechanism 450-3.
 ジンバル機構450-4のすべり面452-4からエミッタチップ1の先端までの距離は約100mmである。即ち、上側部材46-1の回転半径は約100mmである。上側部材46-1を、回転中心周りに±0.7°回転させるには、上側部材46-1を、すべり面452-4方向に±1.2mm動かす必要がある。これを水平方向の移動量に換算すると、±1mmである。水平微動機構450-3は、すべり面452における水平方向の移動量が±2mmであると設計されている。ジンバル機構450-4における可動部の上側部材46-1の移動量は、これより小さい。 The distance from the sliding surface 452-4 of the gimbal mechanism 450-4 to the tip of the emitter tip 1 is about 100 mm. That is, the rotation radius of the upper member 46-1 is about 100 mm. In order to rotate the upper member 46-1 by ± 0.7 ° around the rotation center, it is necessary to move the upper member 46-1 by ± 1.2 mm in the direction of the sliding surface 452-4. When this is converted into the amount of movement in the horizontal direction, it is ± 1 mm. The horizontal fine movement mechanism 450-3 is designed such that the amount of movement in the horizontal direction on the sliding surface 452 is ± 2 mm. The amount of movement of the upper member 46-1 of the movable part in the gimbal mechanism 450-4 is smaller than this.
 本例では、水平微動機構450-3の上にジンバル機構450-4が設けられている。従って、上側部材46-1の移動量は、水平微動機構450-3の調整による移動量とジンバル機構450-4の調整による移動量の和である。しかしながら、ジンバル機構450-4おける上側部材46-1の移動量は僅かであり、真空ベローズ451の伸びによって吸収できるため、その口径を変更する必要はない。 In this example, the gimbal mechanism 450-4 is provided on the horizontal fine movement mechanism 450-3. Therefore, the amount of movement of the upper member 46-1 is the sum of the amount of movement due to adjustment of the horizontal fine movement mechanism 450-3 and the amount of movement due to adjustment of the gimbal mechanism 450-4. However, since the amount of movement of the upper member 46-1 in the gimbal mechanism 450-4 is small and can be absorbed by the extension of the vacuum bellows 451, there is no need to change the aperture.
 以上のように、本実施の形態によれば、ジンバル機構を追加しても水平微動機構に設けられた真空ベローズの寸法を大きくする必要が無い。そのため、GFISを小型にすることができる。また、真空ベローズを用いることにより内部の真空度を高めることができ、イオン放出がより安定化する効果がある。 As described above, according to the present embodiment, it is not necessary to increase the size of the vacuum bellows provided in the horizontal fine movement mechanism even if a gimbal mechanism is added. Therefore, the GFIS can be reduced in size. Further, the use of the vacuum bellows can increase the degree of vacuum inside, and has an effect of further stabilizing ion emission.
 なお、本実施の形態ではジンバル機構450-4を水平微動機構450-3の上方に配置したが、それらの可動範囲が同程度なので、それらの配置を逆転しても同様の効果が得られる。 In this embodiment, the gimbal mechanism 450-4 is arranged above the horizontal fine movement mechanism 450-3. However, since the movable ranges thereof are approximately the same, the same effect can be obtained even if the arrangement is reversed.
1…エミッタチップ、2…引出電極、3…ガス放出口、4…引出電圧印加部、5…イオンビーム、6…試料、7…2次電子、10,10-2,10-3…真空容器、11…排気口、12-1…イオン源サブユニット装着口、12-2…冷却ヘッド装着口、12-3…高電圧導入端子装着口、12-4…ガス供給配管導入口、13…作動排気口、14…支持部材、14’…絶縁部材、20…冷却ヘッド、21-1,21-2…伝熱用網線(無酸素銅)、22-1,22-2…伝熱支持体(無酸素銅)、23-1…伝熱絶縁碍子(サファイア)、24-1…熱絶縁支持体(ステンレス薄肉パイプ)、21…伝熱用網線、22…伝熱支持体、23…伝熱絶縁碍子、24…熱絶縁支持体、30…ガス供給配管、31…ガスボンベ、32…バルブ、40-1,40-2…高電圧導入端子、45…端子装着部、46…可動部、46-1…上側部材、46-2…下側部材、47…環状ベース、100,100-2,100-3…ガス電界電離イオン源、101…試料ステージ、102…レンズ系、102-1,102-2…静電レンズ、102-3…ビーム制限絞り、102-4,102-5,102-6…アライナー、103…偏向系、103-1,103-2…偏向器、104…2次電子検出器、105…レンズ系制御器、106…偏向系制御器、110…表示器、200,200-2,200-3…イオンビーム装置、300,300-2…イオン光学系、301…イオン光軸、400…支持体、401…第1基準面、402…第1基準方向、410…嵌合凹部、411…配線孔、450,450-2,450-3…水平微動機構、450-4…ジンバル機構、451…真空ベローズ、452,452-4…滑り面、453,453-4…押し棒、454,454-4…押しバネ、500…チップアッセンブリ、501…ベース、502…端子ピン、503…フィラメント、504…第2基準面、505…第2基準方向、506…イオン放出方向、507…傾斜角、508…方向角、509…基準方向マーク、600,600-2…傾斜スペーサ、601…第3基準面、602…第3基準方向、603…第4基準面、604…厚みの増加角、605,605-2…基準方向マーク、606…切り欠き、607…ネジ、608…バネ、700…組立治具、701…回転ステージ、702,703…基準方向押さえ、800…イオン放出方向測定装置、801…中心軸、802…MCP、803…光学スケール、804…窓、805…カメラ、1000,1001…エミッタチップの仮想光源、1010,1010-2,1011…初段(1段目)の静電レンズを通ったイオンビームの仮想光源。 DESCRIPTION OF SYMBOLS 1 ... Emitter tip, 2 ... Extraction electrode, 3 ... Gas discharge port, 4 ... Extraction voltage application part, 5 ... Ion beam, 6 ... Sample, 7 ... Secondary electron, 10, 10-2, 10-3 ... Vacuum container , 11 ... Exhaust port, 12-1 ... Ion source subunit installation port, 12-2 ... Cooling head installation port, 12-3 ... High voltage introduction terminal installation port, 12-4 ... Gas supply pipe introduction port, 13 ... Operation Exhaust port, 14 ... support member, 14 '... insulating member, 20 ... cooling head, 21-1, 21-2 ... heat transfer mesh wire (oxygen-free copper), 22-1, 22-2 ... heat transfer support (Oxygen-free copper), 23-1 ... heat transfer insulator (sapphire), 24-1 ... heat insulation support (stainless steel thin pipe), 21 ... heat transfer net, 22 ... heat transfer support, 23 ... heat transfer Thermal insulator, 24 ... Thermal insulation support, 30 ... Gas supply pipe, 31 ... Gas cylinder, 32 ... Valve, 40- DESCRIPTION OF SYMBOLS 1,40-2 ... High voltage introduction terminal, 45 ... Terminal mounting part, 46 ... Movable part, 46-1 ... Upper member, 46-2 ... Lower member, 47 ... Annular base, 100, 100-2, 100- DESCRIPTION OF SYMBOLS 3 ... Gas field ionization ion source, 101 ... Sample stage, 102 ... Lens system, 102-1, 102-2 ... Electrostatic lens, 102-3 ... Beam limiting aperture, 102-4, 102-5, 102-6 ... Aligner 103 ... Deflection system 103-1, 103-2 ... Deflector 104 ... Secondary electron detector 105 ... Lens system controller 106 ... Deflection system controller 110 ... Display 200, 200-2 , 200-3 ... ion beam device, 300, 300-2 ... ion optical system, 301 ... ion optical axis, 400 ... support, 401 ... first reference plane, 402 ... first reference direction, 410 ... fitting recess, 411: Wiring hole, 450, 4 0-2, 450-3 ... Horizontal fine movement mechanism, 450-4 ... Gimbal mechanism, 451 ... Vacuum bellows, 452, 452-4 ... Sliding surface, 453, 453-4 ... Push rod, 454, 454-4 ... Push spring , 500 ... Chip assembly, 501 ... Base, 502 ... Terminal pin, 503 ... Filament, 504 ... Second reference plane, 505 ... Second reference direction, 506 ... Ion emission direction, 507 ... Inclination angle, 508 ... Direction angle, 509 Reference direction mark, 600, 600-2 ... Inclined spacer, 601 ... Third reference surface, 602 ... Third reference direction, 603 ... Fourth reference surface, 604 ... Thickness increase angle, 605, 605-2 ... Reference direction Mark, 606 ... Notch, 607 ... Screw, 608 ... Spring, 700 ... Assembly jig, 701 ... Rotation stage, 702, 703 ... Reference direction pressing, 800 ... Ion emission Direction measuring device, 801 ... center axis, 802 ... MCP, 803 ... optical scale, 804 ... window, 805 ... camera, 1000, 1001 ... virtual light source of emitter chip, 1010, 1010-2, 1011 ... first stage (first stage) Virtual light source of ion beam through the electrostatic lens.

Claims (20)

  1.  針状の先端を有するエミッタチップと、
     該エミッタチップの先端近傍にガスを供給するガス供給系と、
     前記エミッタチップの先端に離間して設けられた引出電極と、
     前記ガスをイオン化して放出するために前記エミッタチップと該引出電極との間に引出電圧を印加して電界を形成する引出電圧印加部と、
     少なくとも前記エミッタチップと前記引出電極を収納し、内部が真空排気される真空容器と、
    を有するガス電界電離イオン源において、
     イオン光軸に対して垂直に配置される第1基準面を有する支持体と、
     前記エミッタチップと該エミッタチップを支持するベースを有し、該ベースは前記エミッタチップが装着された面と反対側に第2基準面を有する、チップアッセンブリと、
     第3基準面と該第3基準面と反対側の第4基準面を有し、前記第3基準面は前記第4基準面に対して傾斜した、傾斜スペーサと、を備え、
     前記支持体の第1基準面に前記傾斜スペーサの第4基準面が接触し、前記傾斜スペーサの第3基準面に前記ベースの第2基準面が接触するように、前記支持体と前記チップアッセンブリの間に前記傾斜スペーサが配置されていることを特徴とするガス電界電離イオン源。
    An emitter tip having a needle-like tip;
    A gas supply system for supplying gas to the vicinity of the tip of the emitter tip;
    An extraction electrode provided at a tip of the emitter tip, and
    An extraction voltage application unit that applies an extraction voltage between the emitter tip and the extraction electrode to ionize and release the gas, thereby forming an electric field;
    A vacuum vessel containing at least the emitter tip and the extraction electrode, the inside of which is evacuated;
    In a gas field ion source having
    A support having a first reference surface disposed perpendicular to the ion optical axis;
    A chip assembly having a base for supporting the emitter chip and the emitter chip, the base having a second reference surface on a side opposite to the surface on which the emitter chip is mounted;
    An inclined spacer having a third reference surface and a fourth reference surface opposite to the third reference surface, wherein the third reference surface is inclined with respect to the fourth reference surface;
    The support and the chip assembly are arranged such that the fourth reference surface of the inclined spacer contacts the first reference surface of the support and the second reference surface of the base contacts the third reference surface of the inclined spacer. The gas field ion source is characterized in that the inclined spacer is disposed between the two.
  2.  請求項1に記載のガス電界電離イオン源であって、
     前記ベースの第2基準面の垂直方向に対する前記エミッタチップからのイオン放出方向の傾斜方位が前記傾斜スペーサの第3基準面の最大傾斜方向に一致するように、前記チップアッセンブリは前記傾斜スペーサの第3基準面上に配置されていることを特徴とするガス電界電離イオン源。
    A gas field ion source according to claim 1,
    The tip assembly is arranged so that the tilt direction of the ion emission direction from the emitter tip with respect to the direction perpendicular to the second reference plane of the base coincides with the maximum tilt direction of the third reference plane of the tilt spacer. 3. A gas field ion source characterized by being arranged on a reference plane.
  3.  請求項2に記載のガス電界電離イオン源であって、
     前記第4基準面に対する前記第3基準面の傾斜を表す前記傾斜スペーサの厚みの増加角が、前記ベースの第2基準面の垂直方向に対する前記エミッタチップからのイオン放出方向の傾斜角θに対応するように、前記傾斜スペーサが選択されていることを特徴とするガス電界電離イオン源。
    A gas field ion source according to claim 2,
    The increasing angle of the thickness of the inclined spacer representing the inclination of the third reference surface with respect to the fourth reference surface corresponds to the inclination angle θ of the ion emission direction from the emitter tip with respect to the direction perpendicular to the second reference surface of the base. The gas field ion source is characterized in that the inclined spacer is selected.
  4.  請求項2に記載のガス電界電離イオン源であって、
     前記ベースには前記ベースの回転位置を示す基準方向マークが形成され、前記傾斜スペーサには前記第3基準面の最大傾斜方向を示す基準方向マークが形成されていることを特徴とするガス電界電離イオン源。
    A gas field ion source according to claim 2,
    A gas field ionization is characterized in that a reference direction mark indicating the rotational position of the base is formed on the base, and a reference direction mark indicating the maximum inclination direction of the third reference surface is formed on the inclined spacer. Ion source.
  5.  請求項1に記載のガス電界電離イオン源であって、
     前記支持体には前記傾斜スペーサが係合する凹部が形成され、前記傾斜スペーサには前記ベースが係合する凹部が形成されていることを特徴とするガス電界電離イオン源。
    A gas field ion source according to claim 1,
    The gas field ionization ion source according to claim 1, wherein a concave portion with which the inclined spacer is engaged is formed on the support, and a concave portion with which the base is engaged is formed on the inclined spacer.
  6.  請求項1に記載のガス電界電離イオン源であって、
     前記傾斜スペーサは、前記第4基準面に対する前記第3基準面の傾斜が調整可能に構成されていることを特徴とするガス電界電離イオン源。
    A gas field ion source according to claim 1,
    The gas field ion source is characterized in that the inclined spacer is configured such that an inclination of the third reference plane with respect to the fourth reference plane can be adjusted.
  7.  請求項1に記載のガス電界電離イオン源であって、
     前記真空容器には、前記エミッタチップ先端の水平方向の位置を調整するための水平微動機構が設けられ、該水平微動機構は、前記支持体に接続された支持部に設けられた可動部と、該可動部に対して平面状の滑り面を介して接触している固定部とを有することを特徴とするガス電界電離イオン源。
    A gas field ion source according to claim 1,
    The vacuum vessel is provided with a horizontal fine movement mechanism for adjusting the horizontal position of the tip of the emitter chip, and the horizontal fine movement mechanism includes a movable part provided in a support part connected to the support, A gas field ionization ion source comprising: a fixed portion that is in contact with the movable portion via a planar sliding surface.
  8.  請求項7に記載のガス電界電離イオン源であって、
     前記真空容器には、前記エミッタチップ先端を中心として前記支持体を枢動させるためのジンバル機構が設けられ、該ジンバル機構は、前記支持体に接続された支持部に設けられた可動部と、該可動部に対して球面状の滑り面を介して接触している固定部とを有することを特徴とするガス電界電離イオン源。
    A gas field ion source according to claim 7,
    The vacuum container is provided with a gimbal mechanism for pivoting the support body around the tip of the emitter chip, and the gimbal mechanism includes a movable part provided in a support part connected to the support body, A gas field ionization ion source comprising: a fixed portion in contact with the movable portion via a spherical sliding surface.
  9.  請求項8に記載のガス電界電離イオン源であって、
     前記ジンバル機構の前記可動部の可動範囲は、前記水平微動機構の前記可動部の可動範囲より小さいことを特徴とするガス電界電離イオン源。
    A gas field ion source according to claim 8,
    The gas field ion source is characterized in that the movable range of the movable part of the gimbal mechanism is smaller than the movable range of the movable part of the horizontal fine movement mechanism.
  10.  請求項7に記載のガス電界電離イオン源であって、
     前記支持体に接続された支持部と前記水平微動機構の平面状の滑り面の間に、前記支持部を囲むように真空ベローズが設けられていることを特徴とするガス電界電離イオン源。
    A gas field ion source according to claim 7,
    A gas field ionization ion source, wherein a vacuum bellows is provided between the support connected to the support and a planar sliding surface of the horizontal fine movement mechanism so as to surround the support.
  11.  エミッタチップと引出電極との間に引出電圧を印加することによって電界を形成し、該電界によって、前記エミッタチップ先端に供給されたガスをイオン化して放出するガス電界電離イオン源の組み立て方法において、
     針状の先端を有するエミッタチップをベースに装着することによってチップアッセンブリを形成するステップと、
     前記ベースの垂直方向に対する前記エミッタチップからのイオン放出方向の傾斜角及び傾斜方位を測定するステップと、
     底面と該底面に対して傾斜した傾斜面を有する傾斜スペーサを用意するステップと、
     前記イオン放出方向の傾斜方位が前記傾斜スペーサの傾斜面の最大傾斜方向に一致するように、前記チップアセンブリを前記傾斜スペーサの傾斜面に装着するステップと、
     前記チップアッセンブリが装着された前記傾斜スペーサを支持体に装着するステップと、
     前記チップアッセンブリ、前記傾斜スペーサ及び前記支持体からなる構造体を真空容器内に装着するステップと、
     前記真空容器に設けられた水平微動機構を用いて、前記イオン放出方向がイオン光軸に整合するように、前記エミッタチップの水平方向の位置を調整するステップと、
     を有するガス電界電離イオン源の組み立て方法。
    In an assembling method of a gas field ion source that forms an electric field by applying an extraction voltage between an emitter tip and an extraction electrode, and ionizes and releases the gas supplied to the tip of the emitter chip by the electric field.
    Forming a tip assembly by attaching an emitter tip having a needle-like tip to the base; and
    Measuring an inclination angle and an inclination direction of an ion emission direction from the emitter tip with respect to a vertical direction of the base;
    Providing an inclined spacer having a bottom surface and an inclined surface inclined with respect to the bottom surface;
    Mounting the chip assembly on the inclined surface of the inclined spacer so that the inclination direction of the ion emission direction matches the maximum inclination direction of the inclined surface of the inclined spacer;
    Mounting the inclined spacer mounted with the chip assembly on a support;
    Mounting a structure composed of the chip assembly, the inclined spacer and the support in a vacuum vessel;
    Using a horizontal fine movement mechanism provided in the vacuum vessel, adjusting the horizontal position of the emitter tip so that the ion emission direction is aligned with the ion optical axis;
    A method for assembling a gas field ion source having:
  12.  請求項11に記載のガス電界電離イオン源の組み立て方法であって、
     前記真空容器に設けられたジンバル機構を用いて、前記イオン放出方向がイオン光軸に整合するように、前記支持体を前記エミッタチップの先端の周りに枢動させるステップと、
     を有するガス電界電離イオン源の組み立て方法。
    A method for assembling a gas field ion source according to claim 11,
    Pivoting the support around the tip of the emitter tip so that the ion emission direction is aligned with the ion optical axis using a gimbal mechanism provided in the vacuum vessel;
    A method for assembling a gas field ion source having:
  13.  請求項11に記載のガス電界電離イオン源の組み立て方法であって、
     前記傾斜スペーサを用意するステップは、底面に対する傾斜面の角度が、前記ベースの垂直方向に対する前記エミッタチップからのイオン放出方向の傾斜角に整合するように、前記傾斜スペーサを選択するステップを含むことを特徴とするガス電界電離イオン源の組み立て方法。
    A method for assembling a gas field ion source according to claim 11,
    The step of preparing the inclined spacer includes the step of selecting the inclined spacer so that the angle of the inclined surface with respect to the bottom surface matches the inclination angle of the ion emission direction from the emitter tip with respect to the vertical direction of the base. A method for assembling a gas field ion source characterized by the following.
  14.  請求項13に記載のガス電界電離イオン源の組み立て方法であって、
     前記傾斜スペーサを選択するステップは、
     底面に対する傾斜面の角度が異なる複数の傾斜スペーサを予め用意するステップと、
     前記複数の傾斜スペーサより、底面に対する傾斜面の角度が前記イオン放出方向の傾斜角に最も近い傾斜スペーサを選択するステップと、を有することを特徴とするガス電界電離イオン源の組み立て方法。
    A method for assembling a gas field ion source according to claim 13,
    The step of selecting the inclined spacer includes
    Preparing in advance a plurality of inclined spacers with different angles of the inclined surface with respect to the bottom surface;
    A method of assembling a gas field ion source, comprising: selecting an inclined spacer having an angle of an inclined surface with respect to a bottom surface closest to an inclination angle in the ion emission direction from the plurality of inclined spacers.
  15.  請求項11に記載のガス電界電離イオン源の組み立て方法であって、
     前記チップアセンブリを前記傾斜スペーサの傾斜面に装着するステップは、
     前記傾斜スペーサに前記傾斜面の最大傾斜方向を示す基準方向マークを形成するステップと、
     前記ベースに前記ベースの回転位置を示す基準方向マークを形成するステップと、
     前記ベースの基準方向マークから前記エミッタチップからのイオン放出方向の傾斜方位までの角度である方向角を測定するステップと、
     前記ベースの基準方向マークが前記傾斜スペーサの基準方向マークに整合するように、前記チップアッセンブリを前記傾斜スペーサの傾斜面に配置するステップと、
     前記チップアッセンブリを前記傾斜スペーサの傾斜面上にて前記方向角だけ回転させるステップと、を有することを特徴とするガス電界電離イオン源の組み立て方法。
    A method for assembling a gas field ion source according to claim 11,
    The step of attaching the chip assembly to the inclined surface of the inclined spacer comprises:
    Forming a reference direction mark indicating the maximum inclination direction of the inclined surface on the inclined spacer;
    Forming a reference direction mark indicating the rotational position of the base on the base;
    Measuring a direction angle that is an angle from a reference direction mark of the base to a tilt azimuth of an ion emission direction from the emitter tip;
    Disposing the chip assembly on the inclined surface of the inclined spacer such that the reference direction mark of the base is aligned with the reference direction mark of the inclined spacer;
    Rotating the tip assembly on the inclined surface of the inclined spacer by the direction angle, and assembling the gas field ion source.
  16.  請求項11に記載のガス電界電離イオン源の組み立て方法であって、
     前記傾斜スペーサを支持体に装着するステップは、前記傾斜スペーサの基準方向マークが前記支持体に形成された基準方向マークに整合するように、前記傾斜スペーサを支持体に装着することを特徴とするガス電界電離イオン源の組み立て方法。
    A method for assembling a gas field ion source according to claim 11,
    The step of attaching the inclined spacer to the support includes attaching the inclined spacer to the support so that a reference direction mark of the inclined spacer is aligned with a reference direction mark formed on the support. A method for assembling a gas field ion source.
  17.  試料上に照射するイオンビームを生成するガス電界電離イオン源と、
     前記ガス電界電離イオン源から放出されるイオンビームを集束するレンズ系と、
     前記ガス電界電離イオン源から放出されるイオンビームを偏向する偏向系と、
     イオンビームの照射によって試料から放出される2次粒子を検出する2次粒子検出器と、
     該2次粒子検出器からの2次粒子信号をイオンビームの偏向と対応させて2次粒子画像を形成する画像生成部と、
     を有するイオンビーム装置において、
     前記ガス電界電離イオン源は、
     イオン光軸に対して垂直に配置される第1基準面を有する支持体と、
     前記エミッタチップと該エミッタチップを支持するベースを有し、該ベースは前記エミッタチップが装着された面と反対側に第2基準面を有する、チップアッセンブリと、
     第3基準面と該第3基準面と反対側の第4基準面を有し、前記第3基準面は前記第4基準面に対して傾斜した、傾斜スペーサと、を備え、
     前記支持体の第1基準面に前記傾斜スペーサの第4基準面が接触し、前記傾斜スペーサの第3基準面に前記ベースの第2基準面が接触するように、前記支持体と前記チップアッセンブリの間に前記傾斜スペーサが配置されており、
     前記レンズ系は、
     2段の静電レンズと、
     該静電レンズの間に設けられた2段の静電偏向器によって構成されるアライナーと、を含み、
     前記1段目のアライナーによって偏向したイオンビームを前記2段目のアライナーによって反対方向に偏向することによって、イオンビームが前記2段目の静電レンズの中心を通り、それによって前記2段の静電レンズの間のずれに起因した収差を補正するように構成されているイオンビーム装置。
    A gas field ion source that generates an ion beam that irradiates the sample;
    A lens system for focusing an ion beam emitted from the gas field ion source;
    A deflection system for deflecting an ion beam emitted from the gas field ion source;
    A secondary particle detector for detecting secondary particles emitted from the sample by irradiation of an ion beam;
    An image generation unit that forms a secondary particle image by associating the secondary particle signal from the secondary particle detector with the deflection of the ion beam;
    In an ion beam apparatus having
    The gas field ion source is:
    A support having a first reference surface disposed perpendicular to the ion optical axis;
    A chip assembly having a base for supporting the emitter chip and the emitter chip, the base having a second reference surface on a side opposite to the surface on which the emitter chip is mounted;
    An inclined spacer having a third reference surface and a fourth reference surface opposite to the third reference surface, wherein the third reference surface is inclined with respect to the fourth reference surface;
    The support and the chip assembly are arranged such that the fourth reference surface of the inclined spacer contacts the first reference surface of the support and the second reference surface of the base contacts the third reference surface of the inclined spacer. The inclined spacer is disposed between
    The lens system is
    A two-stage electrostatic lens;
    An aligner constituted by two stages of electrostatic deflectors provided between the electrostatic lenses,
    By deflecting the ion beam deflected by the first-stage aligner in the opposite direction by the second-stage aligner, the ion beam passes through the center of the second-stage electrostatic lens, and thereby the second-stage static lens. An ion beam device configured to correct aberration due to a shift between electrolenses.
  18.  請求項17に記載のイオンビーム装置であって、
     前記アライナーは、前記エミッタチップの振動に起因するイオンビームの振動をキャンセルするように、イオンビームに対して一定方向に振動する偏向を加えることを特徴とするイオンビーム装置。
    An ion beam device according to claim 17,
    The ion beam apparatus according to claim 1, wherein the aligner applies a deflection that vibrates in a certain direction to the ion beam so as to cancel the vibration of the ion beam caused by the vibration of the emitter tip.
  19.  チップアッセンブリと傾斜スペーサと支持体とを有し、ガス電界電離イオン源に装着される組み立て体であって、
     前記支持体は、イオン光軸に対して垂直に配置される第1基準面と、回転位置を示す基準方向マークが形成され、
     前記チップアッセンブリは、エミッタチップと該エミッタチップを支持するベースを有し、該ベースは前記エミッタチップが装着された面と反対側に第2基準面を有し、
     前記傾斜スペーサは、第3基準面と該第3基準面と反対側の第4基準面を有し、前記第3基準面は前記第4基準面に対して傾斜し、
     前記支持体の第1基準面に前記傾斜スペーサの第4基準面が接触し、前記傾斜スペーサの第3基準面に前記ベースの第2基準面が接触するように、前記支持体と前記チップアッセンブリの間に前記傾斜スペーサが配置されていることを特徴とするガス電界電離イオン源に装着される組み立て体。
    An assembly having a chip assembly, an inclined spacer, and a support, and attached to a gas field ion source,
    The support is formed with a first reference surface arranged perpendicular to the ion optical axis, and a reference direction mark indicating a rotational position,
    The chip assembly has an emitter tip and a base that supports the emitter tip, and the base has a second reference surface on a side opposite to the surface on which the emitter tip is mounted,
    The inclined spacer has a third reference surface and a fourth reference surface opposite to the third reference surface, and the third reference surface is inclined with respect to the fourth reference surface,
    The support and the chip assembly are arranged such that the fourth reference surface of the inclined spacer contacts the first reference surface of the support and the second reference surface of the base contacts the third reference surface of the inclined spacer. An assembly to be mounted on a gas field ion source, wherein the inclined spacer is disposed between the two.
  20.  請求項19に記載のガス電界電離イオン源に装着される組み立て体であって、
     前記ベースの第2基準面の垂直方向に対する前記エミッタチップからのイオン放出方向の傾斜方位が前記傾斜スペーサの第3基準面の最大傾斜方向に一致するように、前記チップアッセンブリは前記傾斜スペーサの第3基準面上に配置されていることを特徴とするガス電界電離イオン源に装着される組み立て体。
    An assembly to be mounted on the gas field ion source according to claim 19,
    The tip assembly is arranged so that the tilt direction of the ion emission direction from the emitter tip with respect to the direction perpendicular to the second reference plane of the base coincides with the maximum tilt direction of the third reference plane of the tilt spacer. 3. An assembly mounted on a gas field ion source characterized by being disposed on a reference plane.
PCT/JP2011/059895 2010-04-22 2011-04-22 Gas field ionization source and ion beam device WO2011132767A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-099208 2010-04-22
JP2010099208 2010-04-22
JP2010198036 2010-09-03
JP2010-198036 2010-09-03

Publications (1)

Publication Number Publication Date
WO2011132767A1 true WO2011132767A1 (en) 2011-10-27

Family

ID=44834281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059895 WO2011132767A1 (en) 2010-04-22 2011-04-22 Gas field ionization source and ion beam device

Country Status (1)

Country Link
WO (1) WO2011132767A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061625A1 (en) * 2012-10-16 2014-04-24 株式会社日立ハイテクノロジーズ Charged particle beam device equipped with cooling mechanism for charged particle beam source, and charged particle beam source
CN104851774A (en) * 2015-05-22 2015-08-19 华中师范大学 Micro-fluidic three-dimensional focusing technology based nitrogen purging high-resolution mass spectrum electrospray ionization source and mass spectrum detection method
EP2991095A1 (en) * 2014-08-25 2016-03-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. High voltage feedthrough assembly, electron diffraction apparatus and method of electrode manipulation in a vacuum environment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251134A (en) * 1985-08-29 1987-03-05 Fujitsu Ltd Field ionization type gas ion source
JPH01154436A (en) * 1987-12-10 1989-06-16 Sony Corp Ion beam device
JPH0757678A (en) * 1993-08-06 1995-03-03 Hitachi Ltd Sample observing device
WO2009147894A1 (en) * 2008-06-05 2009-12-10 株式会社日立ハイテクノロジーズ Ion beam device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251134A (en) * 1985-08-29 1987-03-05 Fujitsu Ltd Field ionization type gas ion source
JPH01154436A (en) * 1987-12-10 1989-06-16 Sony Corp Ion beam device
JPH0757678A (en) * 1993-08-06 1995-03-03 Hitachi Ltd Sample observing device
WO2009147894A1 (en) * 2008-06-05 2009-12-10 株式会社日立ハイテクノロジーズ Ion beam device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061625A1 (en) * 2012-10-16 2014-04-24 株式会社日立ハイテクノロジーズ Charged particle beam device equipped with cooling mechanism for charged particle beam source, and charged particle beam source
EP2991095A1 (en) * 2014-08-25 2016-03-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. High voltage feedthrough assembly, electron diffraction apparatus and method of electrode manipulation in a vacuum environment
WO2016030004A3 (en) * 2014-08-25 2016-04-21 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. High voltage feedthrough assembly, time-resolved transmission electron microscope and method of electrode manipulation in a vacuum environment
US20170229276A1 (en) * 2014-08-25 2017-08-10 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E. V. High voltage feedthrough assembly, time-resolved transmission electron microscope and method of electrode manipulation in a vacuum environment
JP2017529661A (en) * 2014-08-25 2017-10-05 マツクス−プランク−ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウMAX−PLANCK−GESELLSCHAFT ZUR FOeRDERUNG DER WISSENSCHAFTEN E.V. High voltage feedthrough assembly, time-resolved transmission electron microscope, and method of electrode manipulation in a vacuum environment
US10366861B2 (en) 2014-08-25 2019-07-30 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. High voltage feedthrough assembly, time-resolved transmission electron microscope and method of electrode manipulation in a vacuum environment
CN104851774A (en) * 2015-05-22 2015-08-19 华中师范大学 Micro-fluidic three-dimensional focusing technology based nitrogen purging high-resolution mass spectrum electrospray ionization source and mass spectrum detection method

Similar Documents

Publication Publication Date Title
US7582885B2 (en) Charged particle beam apparatus
US9640360B2 (en) Ion source and ion beam device using same
JP6093752B2 (en) Ion beam equipment
US8044370B2 (en) Gas ion source with high mechanical stability
US8455841B2 (en) Ion microscope
US7939800B2 (en) Arrangement and method for compensating emitter tip vibrations
US20090289186A1 (en) Small electron gun
JP6267543B2 (en) Aberration corrector and charged particle beam apparatus using the same
JP5715866B2 (en) Multipole and aberration corrector or charged particle beam apparatus using the same
JP2014239037A (en) Method for imaging sample in charged particle apparatus
WO2011001797A1 (en) Gas field ionization ion source device and scanning charged particle microscope equipped with same
US8101922B2 (en) Modular gas ion source
US9640361B2 (en) Emitter structure, gas ion source and focused ion beam system
WO2011132767A1 (en) Gas field ionization source and ion beam device
US20220319802A1 (en) Sample Holder, Method for Using Sample Holder, Projection Amount Adjustment Jig, Projection Amount Adjustment Method and Charged Particle Beam Device
JP6370085B2 (en) Ion beam equipment
JP6568627B2 (en) Ion beam equipment
TW201837957A (en) Focused ion beam apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11772098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP