WO2011131801A1 - Semiconductor material to be used as an active/absorbent layer in photovoltaic devices, method for preparing said active layer, and photovoltaic cell incorporating said layer - Google Patents

Semiconductor material to be used as an active/absorbent layer in photovoltaic devices, method for preparing said active layer, and photovoltaic cell incorporating said layer Download PDF

Info

Publication number
WO2011131801A1
WO2011131801A1 PCT/ES2010/070254 ES2010070254W WO2011131801A1 WO 2011131801 A1 WO2011131801 A1 WO 2011131801A1 ES 2010070254 W ES2010070254 W ES 2010070254W WO 2011131801 A1 WO2011131801 A1 WO 2011131801A1
Authority
WO
WIPO (PCT)
Prior art keywords
chosen
layer
thin sheet
semiconductor material
active layer
Prior art date
Application number
PCT/ES2010/070254
Other languages
Spanish (es)
French (fr)
Inventor
Verónica BERMUDEZ BENITO
Carmen Maria Ruiz Herrero
Edgardo Saucedo Silva
Original Assignee
Bermudez Benito Veronica
Carmen Maria Ruiz Herrero
Edgardo Saucedo Silva
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bermudez Benito Veronica, Carmen Maria Ruiz Herrero, Edgardo Saucedo Silva filed Critical Bermudez Benito Veronica
Priority to PCT/ES2010/070254 priority Critical patent/WO2011131801A1/en
Publication of WO2011131801A1 publication Critical patent/WO2011131801A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1832Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Definitions

  • the present invention relates to photovoltaic devices and in particular to the manufacture of a compound of groups II-VI of the table.
  • the newspaper with intermediate band or intra-band impurity properties in the form of a thin sheet for application as an active layer in said photovoltaic devices.
  • Photovoltaic technology offers great potential as an alternative source of energy or electricity. This potential has not yet been fully exploited due to the difficulty of making photovoltaic devices that efficiently transform light.
  • PV photovoltaic cells
  • the invention aims to develop a polycrystalline semiconductor material with intermediate band or intraband impurity (BI) properties based on the absorption of two photons and with a variable prohibited band energy .
  • BI intraband impurity
  • the electronic structure of the BI material must have certain specific characteristics.
  • the intermediate band level should be a truly delocalized band (even if it is relatively narrow), not a discrete or localized level, to minimize undesirable non-radiative recombination. It should not overlap with the BC or BV, to prevent the de-excitation of the electrons or the holes through the thermalization of the BI (which would produce an energy expenditure), and should be partially occupied by electrons in a way that both low energy transitions (from the BV to the intermediate band BI, and from the BI to the BC) can take place at a similar rate, as required in the scheme.
  • the invention is defined in claim 1.
  • the semiconductor material with BI properties has as a general formula M x Cdi- X Tei- and A y : D z , being .
  • M an element chosen from groups IIB or VIIB of the periodic table;
  • said semiconductor material M is chosen from a group that includes Zn, Mn and Hg, A being chosen from a group
  • the dopant is chosen from Bi, Ga and Sb.
  • the semiconductor material has as a general formula Zn x Cdi- x Te: Bi z , where x varies between 0 and 1 and 0 finding the concentration z of the Bi-dopant in the range of 10 15 to 10 20 atoms / cm 3 .
  • a further object of the invention is a method for forming an active layer with intermediate band properties based on a semiconductor material according to the characteristics indicated in claim 4.
  • said method consists of steps of:
  • the formation of the melt / sintered temperature is kept low enough to prevent the melting of the particles and / or nanoparticles in the melt.
  • the melting of the starting material is carried out by means of melt and / or steam growth techniques such as Bridgman, Czochralski, VHF, Markov, THM.
  • the formation of the dust of particles and / or nanoparticles of the melt of the starting material is carried out by laser ablation, mechanical grinding, scorching, nucleation from steam, heat treatment, sonolysis, pulsed radiolysis, electrochemical reduction or chemical reduction.
  • the step of forming a thin sheet on a substrate / superstratum is carried out by spin-coating, near space evaporation (CSS), near vapor phase physical transport (CSVT), plasma, pyrolysis spray, electrodeposition, electroplating.
  • CSS near space evaporation
  • CSVT near vapor phase physical transport
  • plasma pyrolysis spray
  • electrodeposition electroplating
  • the step of forming the thin sheet includes an annealing operation in atmospheric conditions or in a Cl or freon gas atmosphere.
  • the annealing step includes heat the sheet to a temperature sufficient to cause a crystallization of the deposition powder preferably in a range of 200 to 600 ° C.
  • the substrate / superstratum is subjected to rapid cooling in the range of 20 to 200 ° C / min, for rapid solidification of the sheet.
  • the thickness of the thin sheet is adjusted to be in the range of 0.2 to 8 micrometers.
  • the adjustment of the thickness of the thin sheet includes the modification of the morphology of
  • the substrate / superstratum is chosen from: glass, metal, polymer, glass coated with a transparent conductive oxide (TCO), metal coated with a metal, glass coated with a metal , polymer coated with a metallic layer, aluminum, molybdenum, stainless steel, transparent or opaque plastic sheet coated or not with a transparent conductive oxide that can withstand the processing temperature of the thin sheet.
  • TCO transparent conductive oxide
  • Still another object of the invention is a solar cell as indicated in claim 15.
  • Figure 1 is a graph showing the variation of the absorbency of an active layer with respect to the wavelength of the light radiation for a semiconductor control material without doping and a semiconductor material doped according to the invention.
  • Figure 2 is a graph showing the variation of the photoluminescence in arbitrary units of photons received in the measurement detector, and the energy level in the band prohibited for a semiconductor control material without doping and a semiconductor material doped according to the invention .
  • Figures 3A and 3B show schematic views of preferred photovoltaic cell structures according to the invention.
  • the starting material of this type of devices is a powder from previously sintered material. Sintering is preferably carried out by means of steam growth techniques or from a melt (typically Bridgman Czochralski, VHG, THM, 5Markov, etc.). The previously sintered material is milled to obtain the particle size necessary for deposition from said ground material of the thin sheet that will serve as IB absorbing material.
  • the starting material for such devices is a
  • a thin sheet of a thickness of between 0.2 and 5 microns is deposited on a glass, metallic or polymeric substrate that can be found in the form of substrate / metal or Well substrate / TCO (being a TCO lOun transparent conductive oxide).
  • the powder deposition technique that has been previously sintered is any technique that allows the deposition of a thin sheet of said starting material with the required thickness. Said absorber or active layer in conventional structures
  • the increase in photo sensitivity is due to the structure of this defect and is related to its efficient absorption in the infrared region of the spectrum.
  • FIGS. 3 A and 3B show schematically typical structures of a PV cell, designated by general reference 1.
  • the PV cell 1 is formed with a sheet of

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention relates to a semiconductor material to be used as an active/absorbent layer in photovoltaic devices, to a method for preparing said active layer, and to a photovoltaic cell incorporating said layer. According to the invention, the semiconductor material has the general formula Mx Cd1-X Te1-y Ay:Dz, with: M chosen from the HB or VIIB groups of the periodic table; A chosen from the VIA group of the periodic table; and D, a doping agent chosen from the elements in groups IIIA or VA of the periodic table, and where x and y vary between 0 and 1 such that the semiconductor prohibited energy band varies between 1.5 and 2.4 eV, the concentration z of the doping agent D being from 1015 to 1020 atoms/cm3. Preferably, M is chosen from among Zn, Mn and Hg; A can be chosen from between Se and S; and the doping agent is chosen from among Bi, Ga and Sb. An especially preferred material has the formula ZnxCd1-xTe: Biz. Furthermore, the method includes preparing a particle or nanoparticle cast/sinter with atoms of the starting material; preparing a powder/solid mixture from the cast; preparing a thin film via deposition of said powder/solid mixture on a substrate/superstrate; and processing said thin film in one or more steps.

Description

DESCRIPCION  DESCRIPTION
Título Title
5 Material semiconductor para utilizar como capa activa/absorbedor de dispositivos fotovoltaicos , método para formar dicha capa activa, así como célula fotovoltaica que incorpora dicha capa. lOÁmbito y técnica anterior 5 Semiconductor material for use as an active / absorber layer of photovoltaic devices, a method for forming said active layer, as well as a photovoltaic cell incorporating said layer. Prior scope and technique
La presente invención está relacionada con los dispositivos fotovoltaicos y en particular con la fabricación de un compuesto de los grupos II-VI de la tablaThe present invention relates to photovoltaic devices and in particular to the manufacture of a compound of groups II-VI of the table.
15periódica con propiedades de banda intermedia o impureza intrabanda, en forma de lámina delgada para su aplicación como capa activa en dichos dispositivos fotovoltaicos . The newspaper with intermediate band or intra-band impurity properties, in the form of a thin sheet for application as an active layer in said photovoltaic devices.
La tecnología fotovoltaica ofrece un gran potencial como fuente alternativa de energía o electricidad. Dicho 0potencial no ha sido aún completamente explotado debido a la dificultad que existe en realizar dispositivos fotovoltaicos que transformen eficientemente la luz.  Photovoltaic technology offers great potential as an alternative source of energy or electricity. This potential has not yet been fully exploited due to the difficulty of making photovoltaic devices that efficiently transform light.
El concepto de células fotovoltaicas (FV) basadas en procesos a dos fotones se ha propuesto recientemente en la 5literatura técnica por A. Luque y A. Martí, Phys. Rev. Lett. 78 (1997) 5014.  The concept of photovoltaic cells (PV) based on two-photon processes has recently been proposed in technical literature by A. Luque and A. Martí, Phys. Rev. Lett. 78 (1997) 5014.
La eficiencia de una célula FV con una capa activa fabricada a partir de un compuesto con propiedades de absorción a dos fotones está limitada, debido al hecho de The efficiency of a PV cell with an active layer made from a compound with two photon absorption properties is limited, due to the fact
30que solo se pueden usar los fotones con energía superior a la energía de banda prohibida del semiconductor (Eg) y el voltaje generado no puede producir una energía por electrón superior al Eg. Si Eg es grande, solo se podrán usar una pequeña parte de los fotones, y la corriente obtenida entonces será pequeña; si Eg es pequeña entonces el voltaje útil lo será también. En este sentido existe un compromiso, y la máxima eficiencia de conversión de energía solar que 5se puede obtener es, en el caso ideal para un Eg ¾ 1.1 eV, de solo del 40,7% (el límite de Queisser para concentración total) . 30 that only photons with energy greater than the prohibited band energy of the semiconductor (Eg) can be used and the generated voltage cannot produce an energy per electron higher than Eg. If Eg is large, only one can be used small part of the photons, and the current obtained will then be small; If Eg is small then the useful voltage will be too. In this sense there is a compromise, and the maximum efficiency of solar energy conversion that can be obtained is, in the ideal case for an Eg ¾ 1.1 eV, of only 40.7% (the Queisser limit for total concentration).
Las eficiencias que se consiguen en la práctica son inferiores; usando silicio de alta calidad cristalina, como lOen la mayoría de dispositivos FV presentes en el mercado, las eficiencias de conversión se encuentran cercanas al 25% en el laboratorio y al 18% a nivel industrial.  The efficiencies achieved in practice are lower; using high quality crystalline silicon, as in most PV devices on the market, conversion efficiencies are close to 25% in the laboratory and 18% at the industrial level.
Se ha descrito por A. Luque y A. Martí, Phys. Rev. Lett . 78 (1997) 5014, que se pueden alcanzar eficiencias de It has been described by A. Luque and A. Martí, Phys. Rev. Lett. 78 (1997) 5014, that efficiencies of
15conversión más elevadas usando capas activas/absorbedores que, incluyendo una estrecha banda de energía en la banda de energía prohibida de un semiconductor, permiten la excitación de un electrón en la banda prohibida no solo con un fotón de energía superior a Eg, sino también 0adicionalmente, la absorción de dos fotones de energía inferior que inducen excitaciones a través de la banda de energía en el interior del gap del semiconductor, como se refiere en diversa literatura técnica como por ejemplo, R. Lucena et al., Chem. Mater. 20 (2008) 5125-5127, P. 5Palacios et al., Phys. Rev. Lett. 101 (2008) 046403 y K.M. Yu et al., J. Appl. Phys. 2004, 95, 6232; ibid. Appl . Phys. Lett. 2006, 88, 092110. Higher conversion using active layers / absorbers that, including a narrow band of energy in the forbidden energy band of a semiconductor, allow the excitation of an electron in the prohibited band not only with a photon of energy greater than Eg, but also additionally , the absorption of two lower energy photons that induce excitations through the energy band inside the semiconductor gap, as referred to in various technical literature such as R. Lucena et al., Chem. Mater. 20 (2008) 5125-5127, P. 5 Palacios et al., Phys. Rev. Lett. 101 (2008) 046403 and K.M. Yu et al., J. Appl. Phys. 2004, 95, 6232; ibid Appl. Phys. Lett. 2006, 88, 092110.
Por lo tanto se pueden obtener mayores corrientes sin sacrificar el voltaje de salida; la eficiencia ideal que Therefore, higher currents can be obtained without sacrificing the output voltage; the ideal efficiency that
30se puede alcanzar es entonces de 63,2%, si el semiconductor en el que se crea la nueva banda alcanza tiene una energía de banda prohibida de Eg~1.93 eV (ver A. Luque y A. Martí, Phys. Rev. Lett. 78 (1997) 5014). Estos datos se establecen para concentración total. En el caso de iluminación a 1 sol, sin concentración los valores de eficiencia total se ven reducidos, pero se permite la entrada a los materiales de banda intermedia depositados en forma de lámina delgadacomo se ha descrito por 5 Marti et al. J. Appl . Phys. 2008, 103, 073706. 30 can be achieved is then 63.2%, if the semiconductor in which the new band is created has a prohibited band energy of Eg ~ 1.93 eV (see A. Luque and A. Martí, Phys. Rev. Lett. 78 (1997) 5014). This data is established. for total concentration. In the case of lighting at 1 sun, without concentration the total efficiency values are reduced, but entry into the intermediate band materials deposited in the form of a thin sheet is allowed as described by 5 Marti et al. J. Appl. Phys. 2008, 103, 073706.
Los dispositivos fotovoltaicos FV actuales pueden usar la luz a través de un proceso en el que la absorción de un fotón por un semiconductor se encuentra en el origen de de1a promoción de un electrón de la banda de valencia (BV) a la banda de conducción (BC) con la subsecuente producción de corriente eléctrica. En este tipo de mecanismos de conversión, los fotones de energía más baja que la energía de banda prohibida Eq no se pueden utilizar.  Current PV photovoltaic devices can use light through a process in which the absorption of a photon by a semiconductor is at the origin of the promotion of an electron from the valence band (BV) to the conduction band ( BC) with the subsequent production of electric current. In this type of conversion mechanism, photons of energy lower than the banned band energy Eq cannot be used.
Recientemente se ha propuesto (ver A. Luque y A. Recently it has been proposed (see A. Luque and A.
Martí, Phys. Rev. Lett . 78 (1997) 5014) que la inserción de un nivel adicional, la banda intermedia (BI) en la banda prohibida podría dar lugar a un camino adicional para alcanzar la misma excitación final a través de la absorciónde dos fotones con energía más baja que la Eq, parecido a lo que ocurre con la fotosíntesis. Martí, Phys. Rev. Lett. 78 (1997) 5014) that the insertion of an additional level, the intermediate band (BI) in the prohibited band could give rise to an additional path to achieve the same final excitation through the absorption of two photons with lower energy than the Eq, similar to what happens with photosynthesis.
SUMARIO DE LA INVENCION Partiendo del estado de la técnica precedentemente descrito la invención se plantea como objetivo el desarrollo de un material semiconductor policristalino con propiedades de banda intermedia o impureza intrabanda (BI) basadas en la absorción a dos fotones y con una energía debanda prohibida variable. SUMMARY OF THE INVENTION Starting from the state of the art described above, the invention aims to develop a polycrystalline semiconductor material with intermediate band or intraband impurity (BI) properties based on the absorption of two photons and with a variable prohibited band energy .
La introducción en la banda prohibida de una banda intermedia o impureza intrabanda (IB) daría lugar a un camino adicional para alcanzar la misma excitación final a través de la absorción de dos fotones con una energía más baja que la Eg. Los electrones y huecos fotogenerados son entonces extraídos de la BV y de la BC al correspondiente potencial: en una célula fotovoltaica con contactos 5eléctricos que tienen los apropiados niveles de Fermi . The introduction into the prohibited band of an intermediate band or intraband impurity (IB) would result in an additional path to achieve the same final excitation at through the absorption of two photons with a lower energy than Eg. The electrons and photogenerated holes are then extracted from the BV and the BC to the corresponding potential: in a photovoltaic cell with 5 electrical contacts that have the appropriate Fermi levels.
Por lo tanto un gran número de portadores de carga fotogenerados serían capaces de producir corriente eléctrica sin hacer disminuir el voltaje, y el espectro solar podría ser usado más amplia y efectivamente. En lOdispositivos FV esto podría dar lugar a un límite ideal superior en la eficiencia de conversión de la energía fotovoltaica del orden del 63%, mientras que con un semiconductor normal este mismo límite estaría en aproximadamente el 41%.  Therefore a large number of photogenerated charge carriers would be able to produce electric current without lowering the voltage, and the solar spectrum could be used more broadly and effectively. In PV devices this could lead to an ideal upper limit on the conversion efficiency of photovoltaic energy of the order of 63%, while with a normal semiconductor this same limit would be approximately 41%.
15 Para alcanzar la eficiencia deseada, la estructura electrónica del material de BI debe tener ciertas características específicas. El nivel de banda intermedia debería ser una banda verdaderamente deslocalizada (incluso aunque sea relativamente estrecha) , no un nivel discreto 0localizado, para minimizar la indeseable recombinación no radiativa. No debería tener solapamiento con la BC o la BV, para prevenir la de-excitación de los electrón o los huecos por medio de la termalización de la BI (lo que produciría un gasto de energía) , y debería estar parcialmente ocupada 5por electrones de forma que ambas transiciones de baja energía (desde la BV a la banda intermedia BI, y desde la BI a la BC) puedan tener lugar a un ritmo similar, tal y como se requiere en el esquema.  15 To achieve the desired efficiency, the electronic structure of the BI material must have certain specific characteristics. The intermediate band level should be a truly delocalized band (even if it is relatively narrow), not a discrete or localized level, to minimize undesirable non-radiative recombination. It should not overlap with the BC or BV, to prevent the de-excitation of the electrons or the holes through the thermalization of the BI (which would produce an energy expenditure), and should be partially occupied by electrons in a way that both low energy transitions (from the BV to the intermediate band BI, and from the BI to the BC) can take place at a similar rate, as required in the scheme.
Un material que cumple estos requisitos conforme a la A material that meets these requirements in accordance with the
30invención se define en la reivindicación 1. The invention is defined in claim 1.
El material semiconductor con propiedades de BI tiene como formula general Mx Cdi-X Tei-y Ay:Dz, siendo . M, un elemento elegido de los grupos IIB ó VIIB de la tabla periódica; The semiconductor material with BI properties has as a general formula M x Cdi- X Tei- and A y : D z , being . M, an element chosen from groups IIB or VIIB of the periodic table;
A un elemento elegido del grupo VIA de la tabla periódica, y  To an element chosen from the VIA group of the periodic table, and
5 . D, un dopante elegido entre elementos de los grupos 5 . D, a dopant chosen among elements of the groups
IIIA ó VA de la tabla periódica, y IIIA or VA of the periodic table, and
donde x e y varían entre 0 y 1 de tal forma que la banda de energía prohibida del semiconductor varía entre 1,5 eV y 2,4 eV, encontrándose la concentración z del dopante D en lOel rango de 1015 a 1020 átomos/cm3. where x and y vary between 0 and 1 in such a way that the band of prohibited energy of the semiconductor varies between 1.5 eV and 2.4 eV, finding the concentration z of doping D in the range of 10 15 to 10 20 atoms / cm 3 .
De manera más particular de acuerdo con una característica adicional de la invención en el citado material semiconductor M se elige de entre un grupo que incluye Zn, Mn y Hg, pudiendo elegirse A de entre un grupo More particularly according to an additional feature of the invention in said semiconductor material M is chosen from a group that includes Zn, Mn and Hg, A being chosen from a group
15constituido por Se y S, y el dopante se elige de entre Bi, Ga y Sb. 15 constituted by Se and S, and the dopant is chosen from Bi, Ga and Sb.
Aún de acuerdo con una característica adicional de la invención el material semiconductor tiene como formula general ZnxCdi-xTe : Biz, donde x varía entre 0 y 1 y 0encontrándose la concentración z del Bi dopante en el rango de 1015 a 1020 átomos/cm3. Even in accordance with a further feature of the invention, the semiconductor material has as a general formula Zn x Cdi- x Te: Bi z , where x varies between 0 and 1 and 0 finding the concentration z of the Bi-dopant in the range of 10 15 to 10 20 atoms / cm 3 .
Un objeto adicional de la invención es un método para formar una capa activa con propiedades de banda intermedia a base de un material semiconductor conforme a las 5características indicadas en la reivindicación 4.  A further object of the invention is a method for forming an active layer with intermediate band properties based on a semiconductor material according to the characteristics indicated in claim 4.
Según la invención dicho método consta de etapas de: According to the invention said method consists of steps of:
- formar un fundido/sinterizado a partir de partículas o nanoparticulas con uno o más átomos del material de partida; - forming a melt / sinter from particles or nanoparticles with one or more atoms of the starting material;
30 - formar un polvo/mezcla sólida a partir de dicho fundido ; formación sobre un sustrato/superestrato de una lámina delgada a partir de la deposición dicho polvo/mezcla sólida; y 30 - forming a solid powder / mixture from said melt; formation on a substrate / superstratum of a thin sheet from the deposition said powder / solid mixture; Y
- procesar dicha lámina delgada en una o más etapas . De acuerdo con una característica adicional de la invención en este método la formación del fundido/sinterizado la temperatura se mantiene suficientemente baja para evitar la fusión de las partículas y/o nanoparticulas en el fundido.  - processing said thin sheet in one or more stages. In accordance with an additional feature of the invention in this method the formation of the melt / sintered temperature is kept low enough to prevent the melting of the particles and / or nanoparticles in the melt.
Aún de acuerdo con una característica adicional de este método, el fundido del material de partida se lleva a cabo mediante técnicas de crecimiento de fundido y/o vapor tales como Bridgman, Czochralski, VHF, Markov, THM.  Even according to an additional feature of this method, the melting of the starting material is carried out by means of melt and / or steam growth techniques such as Bridgman, Czochralski, VHF, Markov, THM.
También de acuerdo con una característica adicional de1a invención en este método la formación del polvo de partículas y/o nanopartículas del fundido del material de partida se realiza por ablación láser, molido mecánico, abrasado, nucleación a partir de vapor, tratamiento térmicos, sonólisis, radiólisis pulsada, reducciónelectroquímica o reducción química.  Also according to an additional feature of the invention in this method, the formation of the dust of particles and / or nanoparticles of the melt of the starting material is carried out by laser ablation, mechanical grinding, scorching, nucleation from steam, heat treatment, sonolysis, pulsed radiolysis, electrochemical reduction or chemical reduction.
Conforme a una característica adicional de la invención en este método la etapa de formación de una lámina delgada sobre un substrato/superestrato se lleva a cabo mediante técnicas de spin-coating, evaporación enespacio cercano (CSS) , transporte físico cercano en fase de vapor (CSVT) , plasma, spray pirólisis, electrodeposición, electroplating .  According to an additional feature of the invention in this method the step of forming a thin sheet on a substrate / superstratum is carried out by spin-coating, near space evaporation (CSS), near vapor phase physical transport ( CSVT), plasma, pyrolysis spray, electrodeposition, electroplating.
Aún de acuerdo con una característica adicional de la invención en el método la etapa de formación de la láminadelgada incluye una operación de recocido en condiciones atmosféricas o en una atmósfera de Cl o del gas freón.  Even in accordance with a further feature of the invention in the method the step of forming the thin sheet includes an annealing operation in atmospheric conditions or in a Cl or freon gas atmosphere.
También de acuerdo con una característica adicional de la invención en este método la etapa de recocido incluye calentar la lámina a una temperatura suficiente para originar una cristalización del polvo de deposición de preferencia en un margen de 200 a 600° C. Also according to an additional feature of the invention in this method the annealing step includes heat the sheet to a temperature sufficient to cause a crystallization of the deposition powder preferably in a range of 200 to 600 ° C.
De acuerdo con una característica adicional de la 5invención en este método el sustrato/superestrato es sometido a un enfriamiento rápido en el rango de 20 a 200° C/min, para una rápida solidificación de la lámina.  According to an additional feature of the invention in this method, the substrate / superstratum is subjected to rapid cooling in the range of 20 to 200 ° C / min, for rapid solidification of the sheet.
Aún de acuerdo con una característica adicional de la invención en el método el espesor de la lámina delgada se lOajusta para que esté comprendido en el rango de 0,2 a 8 micrómetros .  Even in accordance with an additional feature of the invention in the method the thickness of the thin sheet is adjusted to be in the range of 0.2 to 8 micrometers.
También de acuerdo con una característica adicional de la invención en este método el ajuste del espesor de la lámina delgada incluye la modificación de la morfología de Also according to an additional feature of the invention in this method the adjustment of the thickness of the thin sheet includes the modification of the morphology of
151a superficie de la capa activa. 151st surface of the active layer.
Aún de acuerdo con una característica adicional de la invención en el método el sustrato/superestrato se elige de entre: vidrio, metal, polímero, vidrio recubierto con un óxido conductor transparente (TCO) , metal recubierto con un 0metal, vidrio recubierto con un metal, polímero recubierto con una capa metálica, aluminio, molibdeno, acero inoxidable, lámina de plástico transparente u opaca recubierta o no de un óxido conductor transparente que pueda soportar la temperatura de procesamiento de la lámina 5delgada .  Even according to a further feature of the invention in the method the substrate / superstratum is chosen from: glass, metal, polymer, glass coated with a transparent conductive oxide (TCO), metal coated with a metal, glass coated with a metal , polymer coated with a metallic layer, aluminum, molybdenum, stainless steel, transparent or opaque plastic sheet coated or not with a transparent conductive oxide that can withstand the processing temperature of the thin sheet.
Aún constituye otro objeto de la invención una célula solar conforme se indica en la reivindicación 15.  Still another object of the invention is a solar cell as indicated in claim 15.
Breve descripción de los dibujos Brief description of the drawings
30  30
Otras características y ventajas de la invención resultarán más claramente de la descripción que sigue realizada con la ayuda de los dibujos anexos, referidos a un ejemplo de ejecución no limitativo y en los que: Other features and advantages of the invention will result more clearly from the following description. made with the help of the attached drawings, referring to an example of non-limiting execution and in which:
La figura 1 es un gráfico que muestra la variación de la absorbencia de una capa activa respecto de la longitud 5de onda de la radiación luminosa para un material semiconductor de control sin dopar y un material semiconductor dopado conforme a la invención.  Figure 1 is a graph showing the variation of the absorbency of an active layer with respect to the wavelength of the light radiation for a semiconductor control material without doping and a semiconductor material doped according to the invention.
La figura 2 es un gráfico que muestra la variación de la fotoluminiscencia en unidades arbitrarias de fotones lOrecibidos en el detector de medida, y el nivel energía en la banda prohibida para un material semiconductor de control sin dopar y un material semiconductor dopado conforme a la invención.  Figure 2 is a graph showing the variation of the photoluminescence in arbitrary units of photons received in the measurement detector, and the energy level in the band prohibited for a semiconductor control material without doping and a semiconductor material doped according to the invention .
Las figuras 3A y 3B muestran vistas esquemáticas de 15estructuras de célula fotovoltaica conforme a la invención preferidas .  Figures 3A and 3B show schematic views of preferred photovoltaic cell structures according to the invention.
Descripción detallada de una realización preferida 0 El material de partida de este tipo de dispositivos es un polvo proveniente de material previamente sinterizado. La sinterización se realiza preferentemente por medio de técnicas de crecimiento en fase vapor o bien a partir de un fundido (típicamente Bridgman Czochralski, VHG, THM, 5Markov, etc..) . El material previamente sinterizado se muele para obtener el tamaño de partícula necesario para la deposición a partir de dicho material molido de la lámina delgada que hará las veces de material absorbedor de IB. El material de partida para ese tipo de dispositivos es unDetailed description of a preferred embodiment 0 The starting material of this type of devices is a powder from previously sintered material. Sintering is preferably carried out by means of steam growth techniques or from a melt (typically Bridgman Czochralski, VHG, THM, 5Markov, etc.). The previously sintered material is milled to obtain the particle size necessary for deposition from said ground material of the thin sheet that will serve as IB absorbing material. The starting material for such devices is a
30polvo del compuesto con la formula general MxCdi-xTei-yAy : Bi , donde M es cualquier elemento capaz de sustituir el Cd (como por ejemplo el Mn) , y A es cualquier elemento capaz de sustituir el Te (como por ejemplo el Se) , y donde x e y varían entre 0 y 1 de tal forma que la banda de energía prohibida del semiconductor varía entre 1.5 eV y 2.4 eV; el dopante Bi se encuentra en el rango de concentraciones 1015 a 1020 at./cm3 . The powder of the compound with the general formula M x Cdi- x Tei- and A y : Bi, where M is any element capable of substituting Cd (such as Mn), and A is any element capable of substituting Te (as for example the Se), and where x and y they vary between 0 and 1 in such a way that the band of prohibited energy of the semiconductor varies between 1.5 eV and 2.4 eV; Bi dopant is in the concentration range 10 15 to 10 20 at./cm 3 .
5 A partir del producto de la molienda del compuesto 5 From the compound grinding product
MxCdi-xTei-yAy : Biz, se deposita una lámina delgada de un espesor de entre 0,2 y 5 mieras sobre un sustrato de vidrio, metálico o polimérico que puede encontrarse en la forma de sustrato/metal o bien sustrato/TCO (siendo un TCO lOun oxido conductor transparente) . La técnica de deposición del polvo que se ha sinterizado previamente es cualquier técnica que permita la deposición de una lámina delgada de dicho material de partida con el espesor requerido. Dicho absorbedor o capa activa en las convencionales estructurasM x Cdi- x Tei- and A y : Bi z , a thin sheet of a thickness of between 0.2 and 5 microns is deposited on a glass, metallic or polymeric substrate that can be found in the form of substrate / metal or Well substrate / TCO (being a TCO lOun transparent conductive oxide). The powder deposition technique that has been previously sintered is any technique that allows the deposition of a thin sheet of said starting material with the required thickness. Said absorber or active layer in conventional structures
15de células de lámina delgada basadas en CdTe puede dar lugar a un incremento cercano al 20% en la corriente fotogenerada respecto al valor teórico de los dispositivos de CdTe de base. Este incremento del 20% en la corriente fotogenerada se traduce directamente en un incremento del15 of thin-film cells based on CdTe can lead to a near 20% increase in the photogenerated current with respect to the theoretical value of the base CdTe devices. This 20% increase in photogenerated current translates directly into an increase in
2020% en la eficiencia final. 2020% in final efficiency.
El incremento en la corriente fotogenerada se encuentra directamente relacionado con el incremento en la absorción como se muestra en la figura 2, en la que claramente se observa como el material dopado presenta una The increase in the photogenerated current is directly related to the increase in absorption as shown in Figure 2, which clearly shows how the doped material has a
25absorción óptica más elevada que el material sin dopar. 25 optical absorption higher than the undoped material.
El desplazamiento del valor de la banda prohibida hacia energías más pequeñas, y por lo tanto el incremento en la absorción en el rango 1000-1750 nm, se debe a la presencia de un nivel profundo a una energía de la banda de The displacement of the value of the prohibited band towards smaller energies, and therefore the increase in the absorption in the range 1000-1750 nm, is due to the presence of a deep level to an energy of the band of
30conducción Ec = (0.71-0.73) eV, tal y como confirman los espectros de fotoluminiscencia como se muestra en la figura 3. La formación de este nivel de este nivel profundo está relacionada con la relajación de la red introducida debido al ajuste de fases entre el dopante (Bi en este caso) , y el átomo al que sustituye (Cd y/o Zn en este caso), a través de un mecanismo previamente descrito en la literatura (ver E. Saucedo et al., J. Appl . Phys . 2008, 103, 094901). Conduction E c = (0.71-0.73) eV, as confirmed by the photoluminescence spectra as shown in Figure 3. The formation of this level of this deep level is related to the relaxation of the introduced network due to to the phase adjustment between the dopant (Bi in this case), and the atom it replaces (Cd and / or Zn in this case), through a mechanism previously described in the literature (see E. Saucedo et al., J. Appl. Phys. 2008, 103, 094901).
5 Se reclama que este tipo de defectos introducidos en este tipo de semiconductores es útil para su uso en dispositivos fotovoltaicos basados en capa intermedia o impureza intrabanda, incrementando la absorción en la región infrarroja del espectro como se ha mostrado en la lOfigura 2, e incrementando por lo tanto la corriente de corto circuito de la célula sin sacrificar en voltaje de circuito abierto de dicho dispositivo.  5 It is claimed that this type of defects introduced in this type of semiconductor is useful for use in photovoltaic devices based on intermediate layer or intraband impurity, increasing the absorption in the infrared region of the spectrum as shown in Figure 2, and increasing therefore the short circuit current of the cell without sacrificing in open circuit voltage of said device.
La fotoconductividad en este tipo de materiales es muy alta si los comparamos con los valores de fotoconductividad The photoconductivity in this type of materials is very high if we compare them with the photoconductivity values
15proporcionados por los mismos materiales sin dopar. El incremento en la foto sensibilidad se debe a la estructura de este defecto y está relacionado con su absorción eficiente en la región infrarroja del espectro. 15provided by the same materials without doping. The increase in photo sensitivity is due to the structure of this defect and is related to its efficient absorption in the infrared region of the spectrum.
Además las propiedades de transporte eléctrico para un 0dopante en concentración entre 1015 y 1020 at/cm3 se encuentran maximizadas mientras que para otras concentraciones disminuyen, se pueden obtener valores de μ*τ = (5-6) xl0~3 cm2/V (el valor es comúnmente (1-2) xl0~3 cm2/V para materiales sin dopar) contribuyendo también a la 5mejora de la corriente de corto circuito. In addition, the electrical transport properties for a 0dopante in concentration between 10 15 and 10 20 at / cm 3 are maximized while for other concentrations decrease, values of μ * τ = (5-6) xl0 ~ 3 cm 2 can be obtained / V (the value is commonly (1-2) xl0 ~ 3 cm 2 / V for non-doping materials) also contributing to the improvement of the short-circuit current.
En las figuras 3 A y 3B se muestra de manera esquemática, estructuras típicas de una célula FV, designada con la referencia general 1.  Figures 3 A and 3B show schematically typical structures of a PV cell, designated by general reference 1.
La célula FV 1, está formada con una lámina de The PV cell 1 is formed with a sheet of
30contacto delantero 10, una capa tampón 11 que permite asegurar una correcta unión p-n, una capa activa 12 constituida a base del material semiconductor de la invención y formada de acuerdo con el método previamente descrito, una lámina de contacto trasero 13 y un substrato 14, que está previsto bien como un sustrato propiamente dicho, figura 3A o como superestrato como se ilustra en la figura 3B. 30 front contact 10, a buffer layer 11 that allows to ensure a correct pn junction, an active layer 12 constituted based on the semiconductor material of the invention and formed according to the method previously described, a rear contact sheet 13 and a substrate 14, which is provided either as a substrate itself, Figure 3A or as a superstratch as illustrated in Figure 3B.
5 Debe mencionarse que este tipo de estructura electrónica podría ser útil también para otras aplicaciones, tales como por ejemplo, nuevos detectores de radiación IR o convertidores fotónicos.  5 It should be mentioned that this type of electronic structure could also be useful for other applications, such as, for example, new IR radiation detectors or photonic converters.
Como resultará fácilmente comprendido por las personas lOversadas en el arte, lo anteriormente descrito es meramente ilustrativo de un modo de realización preferido de la invención de modo que son posibles modificaciones técnicas de toda índole.  As will be readily understood by the people discussed in the art, the foregoing is merely illustrative of a preferred embodiment of the invention so that technical modifications of all kinds are possible.
15BIBLIOGRAFIA_ 15BIBLIOGRAPHY_
1 A. Luque y A. Martí, Phys . Rev. Lett . 78 (1997) 5014 1 A. Luque and A. Martí, Phys. Rev. Lett. 78 (1997) 5014
2 R. Lucena et al., Chem. Mater. 20 (2008) 5125-5127. 2 R. Lucena et al., Chem. Mater. 20 (2008) 5125-5127.
3 P. Palacios et al., Phys. Rev. Lett. 101 (2008) 046403. 04 K.M. Yu et al., J. Appl . Phys. 2004, 95, 6232; ibid. 3 P. Palacios et al., Phys. Rev. Lett. 101 (2008) 046403. 0 4 KM Yu et al., J. Appl. Phys. 2004, 95, 6232; ibid
Appl. Phys. Lett. 2006, 88, 092110 Appl. Phys. Lett. 2006, 88, 092110
5 Marti et al. J. Appl. Phys. 2008, 103, 073706 5 Marti et al. J. Appl. Phys. 2008, 103, 073706
6 E. Saucedo et al., J. Appl. Phys. 2008, 103, 094901 6 E. Saucedo et al., J. Appl. Phys. 2008, 103, 094901

Claims

REIVINDICACIONES
1. Material semiconductor para utilizar como capa activa/absorbedor de dispositivos fotovoltaicos de alta1. Semiconductor material to use as active layer / absorber of high-voltage photovoltaic devices
5eficiencia dopado con iones pesados con formula general Mx Cdi Tei-y Ay:Dz, siendo 5 doped efficiency with heavy ions with general formula M x Cdi Tei-y A y : D z , being
. M, un elemento elegido de los grupos IIB ó VIIB de la tabla periódica;  . M, an element chosen from groups IIB or VIIB of the periodic table;
A un elemento elegido del grupo VIA de la tabla lOperiódica, y  To an element chosen from the VIA group of the newspaper table, and
. D, un dopante elegido entre elementos de los grupos IIIA ó VA de la tabla periódica, y  . D, a dopant chosen from elements of groups IIIA or VA of the periodic table, and
donde x e y varían entre 0 y 1 de tal forma que la banda de energía prohibida del semiconductor varía entre 1,5 eV y 152,4 eV, encontrándose la concentración z del dopante D en el rango de 1015 a 1020 átomos/cm3 where x and y vary between 0 and 1 in such a way that the band of prohibited energy of the semiconductor varies between 1.5 eV and 152.4 eV, finding the concentration z of doping D in the range of 10 15 to 10 20 atoms / cm 3
2. Material semiconductor de acuerdo con la primera reivindicación caracterizado porque M se elige de entre un grupo que incluye Zn, Mn y Hg, pudiendo elegirse A de entre 0un grupo constituido por Se y S, y el dopante se elige de entre Bi, Ga y Sb .  2. Semiconductor material according to the first claim characterized in that M is chosen from a group that includes Zn, Mn and Hg, A being able to be chosen from 0 a group consisting of Se and S, and the dopant is chosen from Bi, Ga and Sb.
3. Material semiconductor de acuerdo con la reivindicación 1, caracterizado porque tiene como formula general 3. Semiconductor material according to claim 1, characterized in that it has as a general formula
5 ZnxCdi-xTe : Biz, donde x varía entre 0 y 1 y encontrándose la concentración z del Bi dopante en el rango de 1015 a 1020 átomos/cm3. 5 Zn x Cdi- x Te: Bi z , where x varies between 0 and 1 and finding the concentration z of the bi-dopant in the range of 10 15 to 10 20 atoms / cm 3 .
4. Método para formar una capa activa con propiedades de banda intermedia a base de un material semiconductor de 30partida de acuerdo con al menos una de las reivindicaciones 4. Method for forming an active layer with intermediate band properties based on a semiconductor material according to at least one of the claims
1 a 3, caracterizado por cuanto comprende etapas de: - formar un fundido/sinterizado a partir de partículas o nanoparticulas con uno o más átomos del material de partida; 1 to 3, characterized in that it comprises stages of: - forming a melt / sinter from particles or nanoparticles with one or more atoms of the starting material;
formar un polvo/mezcla sólida a partir de dichofundido ;  form a solid powder / mixture from dichofused;
formación sobre un sustrato/superestrato de una lámina delgada a partir de la deposición dicho polvo/mezcla sólida; y  formation on a substrate / superstratum of a thin sheet from the deposition said powder / solid mixture; Y
- procesar dicha lámina delgada en una o más etapas .  - processing said thin sheet in one or more stages.
5. Método de acuerdo con la reivindicación 4, caracterizado por que durante la formación del fundido/sinterizado la temperatura se mantiene suficientemente baja para evitar la fusión de las partículas y/o nanopartículas en el fundido. 5. Method according to claim 4, characterized in that during melting / sintering the temperature is kept low enough to prevent the melting of the particles and / or nanoparticles in the melt.
6. Método de acuerdo con las reivindicaciones precedentes caracterizado por que el fundido del material de partida se lleva a cabo mediante técnicas de crecimiento de fundido y/o vapor tales como Bridgman, Czochralski, VHF, Markov, THM .  Method according to the preceding claims characterized in that the melting of the starting material is carried out by means of melt and / or steam growth techniques such as Bridgman, Czochralski, VHF, Markov, THM.
7. Método de acuerdo con la reivindicación 4, caracterizado por que la formación del polvo de partículas y/o nanopartículas del fundido del material de partida se realiza por ablación láser, molido mecánico, abrasado, nucleación a partir de vapor, tratamiento térmicos,sonólisis, radiólisis pulsada, reducción electroquímica o reducción química.  7. Method according to claim 4, characterized in that the formation of the dust of particles and / or nanoparticles of the melt of the starting material is carried out by laser ablation, mechanical grinding, scorching, nucleation from steam, heat treatment, sonolysis , pulsed radiolysis, electrochemical reduction or chemical reduction.
8. Método según la reivindicación 4, caracterizado por que la etapa de formación de una lámina delgada sobre un substrato/superestrato se lleva a cabo mediante técnicas despin-coating, evaporación en espacio cercano (CSS) , transporte físico cercano en fase vapor (CSVT) , plasma, spray pirólisis, electrodeposición, electroplating . Method according to claim 4, characterized in that the step of forming a thin sheet on a substrate / superstratum is carried out by depin-coating techniques, near space evaporation (CSS), near vapor phase physical transport (CSVT ), plasma, pyrolysis spray, electrodeposition, electroplating.
9. Método según las reivindicaciones 4 y 8, caracterizado por que la etapa de formación de la lámina delgada incluye una operación de recocido en condiciones atmosféricas, en una atmósfera de Cl o del gas freón. Method according to claims 4 and 8, characterized in that the step of forming the thin sheet includes an annealing operation in atmospheric conditions, in an atmosphere of Cl or of the freon gas.
10. Método de acuerdo con la reivindicación 9, la etapa de recocido incluye calentar la lámina a una temperatura suficiente para originar una cristalización del polvo de deposición de preferencia en un margen de 200 a 600° C.  10. Method according to claim 9, the annealing step includes heating the sheet to a temperature sufficient to cause a crystallization of the deposition powder preferably in a range of 200 to 600 ° C.
11. Método de acuerdo con las reivindicaciones 4 y 8, caracterizado por que el sustrato/superestrato es sometido a un enfriamiento rápido en el rango de 20 a 200° C/min, para una rápida solidificación de la lámina.  11. Method according to claims 4 and 8, characterized in that the substrate / superstratum is subjected to rapid cooling in the range of 20 to 200 ° C / min, for rapid solidification of the sheet.
12. Método según las reivindicaciones 4 y 8,caracterizado por que el espesor de la lámina delgada se ajusta para que está comprendido en el rango de 0,2 a 5 micrómetros .  12. Method according to claims 4 and 8, characterized in that the thickness of the thin sheet is adjusted so that it is in the range of 0.2 to 5 micrometers.
13. Método de la reivindicación 12 caracterizado por que el ajuste del espesor de la lámina delgada incluye lamodificación de la morfología de la superficie de la capa activa .  13. The method of claim 12 characterized in that the adjustment of the thickness of the thin sheet includes the modification of the morphology of the surface of the active layer.
14. Método según la reivindicación 4 caracterizado por que el sustrato/superestrato se elige de entre: vidrio, metal, polímero, vidrio recubierto con un óxido conductortransparente (TCO) , metal recubierto con un metal, vidrio recubierto con un metal, polímero recubierto con una capa metálica, aluminio, molibdeno, acero inoxidable, lámina de plástico transparente u opaca recubierta o no de un óxido conductor transparente que pueda soportar la temperatura deprocesamiento de la lámina delgada.  14. Method according to claim 4 characterized in that the substrate / superstratum is chosen from: glass, metal, polymer, glass coated with a conductortransparent oxide (TCO), metal coated with a metal, glass coated with a metal, polymer coated with a metallic layer, aluminum, molybdenum, stainless steel, transparent or opaque plastic sheet coated or not with a transparent conductive oxide that can withstand the processing temperature of the thin sheet.
15. Célula solar que incluye una capa activa formada de acuerdo con el método de las reivindicaciones 4 a 14.  15. Solar cell including an active layer formed according to the method of claims 4 to 14.
PCT/ES2010/070254 2010-04-22 2010-04-22 Semiconductor material to be used as an active/absorbent layer in photovoltaic devices, method for preparing said active layer, and photovoltaic cell incorporating said layer WO2011131801A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070254 WO2011131801A1 (en) 2010-04-22 2010-04-22 Semiconductor material to be used as an active/absorbent layer in photovoltaic devices, method for preparing said active layer, and photovoltaic cell incorporating said layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070254 WO2011131801A1 (en) 2010-04-22 2010-04-22 Semiconductor material to be used as an active/absorbent layer in photovoltaic devices, method for preparing said active layer, and photovoltaic cell incorporating said layer

Publications (1)

Publication Number Publication Date
WO2011131801A1 true WO2011131801A1 (en) 2011-10-27

Family

ID=42671693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070254 WO2011131801A1 (en) 2010-04-22 2010-04-22 Semiconductor material to be used as an active/absorbent layer in photovoltaic devices, method for preparing said active layer, and photovoltaic cell incorporating said layer

Country Status (1)

Country Link
WO (1) WO2011131801A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462959A (en) * 1982-04-05 1984-07-31 Texas Instruments HgCdTe Bulk doping technique
US4950615A (en) * 1989-02-06 1990-08-21 International Solar Electric Technology, Inc. Method and making group IIB metal - telluride films and solar cells
US20060112984A1 (en) * 2004-11-29 2006-06-01 Wladyslaw Walukiewcz Multiband semiconductor compositions for photovoltaic devices
US20080163928A1 (en) * 2005-03-09 2008-07-10 Hans-Josef Sterzel Photovoltaic Cell Containing a Semiconductor Photovoltaically Active Material
US20090133744A1 (en) * 2004-10-26 2009-05-28 Basf Aktiengesellschaft Photovoltaic cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462959A (en) * 1982-04-05 1984-07-31 Texas Instruments HgCdTe Bulk doping technique
US4950615A (en) * 1989-02-06 1990-08-21 International Solar Electric Technology, Inc. Method and making group IIB metal - telluride films and solar cells
US20090133744A1 (en) * 2004-10-26 2009-05-28 Basf Aktiengesellschaft Photovoltaic cell
US20060112984A1 (en) * 2004-11-29 2006-06-01 Wladyslaw Walukiewcz Multiband semiconductor compositions for photovoltaic devices
US20080163928A1 (en) * 2005-03-09 2008-07-10 Hans-Josef Sterzel Photovoltaic Cell Containing a Semiconductor Photovoltaically Active Material

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
A. LUQUE Y; A. MARTI, PHYS. REV. LETT., vol. 78, 1997, pages 5014
A. LUQUE; A. MARTI, PHYS. REV. LETT., vol. 78, 1997, pages 5014
A. LUQUE; A.MARTI, PHYS. REV. LETT., vol. 78, 1997, pages 5014
APPL. PHYS. LETT., vol. 88, 2006, pages 092110
APPL. PHYS. LETT., vol. 88, no. 092110, 2006
E. SAUCEDO ET AL., J. APPL. PHYS., vol. 103, 2008, pages 094901
K. M. YU ET AL., J. APPL. PHYS., vol. 95, 2004, pages 6232
K.M. YU ET AL., J. APPL. PHYS., vol. 95, 2004, pages 6232
LUCENA ET AL., CHEM. MATER., vol. 20, 2008, pages 5125 - 5127
LUQUE Y A. MARTI, PHYS. REV. LETT., vol. 78, 1997, pages 5014
MARTI ET AL., J. APPL. PHYS., vol. 103, 2008, pages 073706
P. PALACIOS ET AL., PHYS. REV. LETT., vol. 101, 2008, pages 046403
R. LUCENA ET AL., CHEM. MATER., vol. 20, 2008, pages 5125 - 5127

Similar Documents

Publication Publication Date Title
CN108369991B (en) Mixed cation perovskites
Zhang et al. Two-dimensional (PEA) 2 PbBr 4 perovskite single crystals for a high performance UV-detector
Zeng et al. Antimony selenide thin-film solar cells
Zhang et al. High-quality perovskite MAPbI3 single crystals for broad-spectrum and rapid response integrate photodetector
Ng et al. Crystal engineering for low defect density and high efficiency hybrid chemical vapor deposition grown perovskite solar cells
Noel et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications
Pan et al. Substrate structured Sb2S3 thin film solar cells fabricated by rapid thermal evaporation method
Patel et al. Magnetron sputtered Cu doped SnS thin films for improved photoelectrochemical and heterojunction solar cells
Zhu et al. Antisolvent‐induced fastly grown all‐inorganic perovskite CsPbCl3 microcrystal films for high‐sensitive UV photodetectors
Baby et al. The effect of in-situ and post deposition annealing towards the structural optimization studies of RF sputtered SnS and Sn2S3 thin films for solar cell application
Pan et al. Recent progress in p-type doping and optical properties of SnO2 nanostructures for optoelectronic device applications
Deng et al. Cu-doped CdS and its application in CdTe thin film solar cell
Li et al. Recent progress on synthesis, intrinsic properties and optoelectronic applications of perovskite single crystals
Wang et al. Metal halide perovskite photodetectors: Material features and device engineering
Long et al. Photosensitive and temperature-dependent I–V characteristics of p-NiO film/n-ZnO nanorod array heterojunction diode
Pan et al. Structural, optical and electrical characterization of gadolinium and indium doped cadmium oxide/p-silicon heterojunctions for solar cell applications
Lai et al. Direct drop-casting synthesis of all-inorganic lead and lead-free halide perovskite microcrystals for high-performance photodetectors
Hwang et al. High-performance organic/inorganic hybrid ultraviolet p-NiO/PVK/n-ZnO heterojunction photodiodes with a poly (N-vinylcarbazole) insertion layer
Wei et al. Metal halide perovskite alloy: fundamental, optoelectronic properties and applications
Wu et al. Narrow bandgap metal halide perovskites: synthesis, characterization, and optoelectronic applications
Saha et al. Investigation of Yttrium (Y)-doped ZnO (Y: ZnO)–Ga2O3 core-shell nanowire/Si vertical heterojunctions for high-performance self-biased wideband photodetectors
Xu et al. High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Jiang et al. Phase evolution and fluorescence stability of CsPb 2 Br 5 microwires and their application in stable and sensitive photodetectors
Zheng et al. ZnO‐Based Ultraviolet Photodetectors with Tunable Spectral Responses
Ahmad et al. Physisorption of oxygen in SnO 2 nanoparticles for perovskite solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10724885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10724885

Country of ref document: EP

Kind code of ref document: A1