WO2011130902A1 - 提高线路驱动器的功率输出效率的方法和装置 - Google Patents
提高线路驱动器的功率输出效率的方法和装置 Download PDFInfo
- Publication number
- WO2011130902A1 WO2011130902A1 PCT/CN2010/071884 CN2010071884W WO2011130902A1 WO 2011130902 A1 WO2011130902 A1 WO 2011130902A1 CN 2010071884 W CN2010071884 W CN 2010071884W WO 2011130902 A1 WO2011130902 A1 WO 2011130902A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control signal
- mode
- line driver
- signal
- power
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M11/00—Telephonic communication systems specially adapted for combination with other electrical systems
- H04M11/06—Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
- H04M11/062—Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data
Definitions
- the force of the line driver's power transmission efficiency is improved.
- the invention relates to the field of network communication technologies, and relates to xDSL MJ board technology.
- Digital Subscriber Loop (x Digital Subscriber Loop, xDSL) technology includes: Asymmetrical Digital Subscriber
- VDSL2 Very-high-speed Digital Subscriber Iine2
- the line driver of the xDSLHJ board such as the VDSL2W board, is usually a Class A line driver (also known as a CLASS AB line driver).
- the supply voltages (V+ and V-) of Class A and B line drivers are usually required to meet the most human voltage swing of the output signal.
- the output signal of the VDSL2 board is a small voltage swing signal, and the proportion of the human voltage swing signal is small. Therefore, the line driver of the VDSL2 subscriber line board currently has problems such as low power output efficiency.
- the current methods include: Using a sinusoidal line driver (also known as a CLASS H line driver) as a line driver for the VDSL2 subscriber board, the imaginary line driver Includes: Class A and B line drivers and signal detection and charge pump circuits.
- the signal detection and charge pump circuit is used to detect the input signal voltage swing. When the input signal voltage swing exceeds a predetermined threshold, the signal detection and charge pump circuit linearly adjust the supply voltage of the Class A line driver according to the excess signal waveform. , so that the supply voltage of the Class A and B line drivers can follow the rolling waveform of the output signal.
- the power supply voltage of the class A and B line driver is a lower voltage value, thereby improving the power output efficiency of the class B and the line driver, and reducing the VDSL2 subscriber board. Energy consumption.
- an x-DSL user board such as a V-port of a VDSL2 subscriber board generally supports multiple operating modes (such as 12a, 17a, 8b and ADSL2+ specified in the ITU standard), and The maximum transmission power and voltage peak-to-average ratio of the signal of the user port in different 1: mode are different, but the supply voltage and the predetermined threshold provided to the symplectic line driver are fixed, which cannot be made.
- the user ports of the xDSL subscriber board such as the VDSL2 subscriber board, achieve optimal power output efficiency in a variety of operating modes.
- the static power consumption of the sinusoidal line driver including the signal detection and charge pump circuit is the static power consumption of the high-powered class-A line driver, so that when the user port outputs a small power signal, the power consumption of the symplectic line driver It is higher than the power consumption of the Class A and B line drivers.
- the method and device for improving the power output efficiency of the line driver provided by the embodiments of the present invention can improve the power output efficiency of the line driver in the xDSL user board, thereby reducing the energy consumption of the xDSL user board such as the VDSL2 user board.
- Obtaining a current working parameter of the xDSL user board where the current working parameter includes: at least one of a working mode configured by a user port of the xDSL user board and a current output power of the user port;
- the control signal includes: a first control signal, a second control Signal and third control signal At least one of the first control signals H ⁇ control a minimum non-fire S supply voltage supplied to the line driver; the second control signal chuan ⁇ ⁇ control line driver signal detection and load s circuit The predetermined threshold ⁇ ; the third control signal wrr controls the ⁇ start/close signal detection and the load pump circuit.
- the acquisition unit, D. obtains the current parameter of the xDSL network board, and the current I: parameters include: x: IDSL port of the Kawato port configuration I: for the current output power of the investment and the port at least one;
- the control unit determines a control signal for the line driver in the xDSLHJ board that matches the current parameter, and outputs the control signal, where the control signal includes: At least one of a control signal, a second control signal, and a second control signal; the first control signal is controlled by T to provide a minimum misfire supply voltage to the line driver; and the second control signal is controlled The signal detection of the line driver and the predetermined threshold level in the load pump circuit; the second control signal controls the on/off signal detection and the charge pump circuit.
- An xDSLW board provided by an embodiment of the present invention includes a line driver and a power module, the line driver includes a signal detection and a load pump circuit, and the power module provides a minimum undistorted voltage for the line driver, and the user board further
- the method includes: a control module, configured to obtain a current I: parameter of the xDSL user board, where the current: T: the parameter includes: at least one of a configured working mode of the user port of the xDSL user board and a current output power of the user port And determining, according to the current working parameter, a control signal for the line driver in the xDSL user board that matches the current working parameter, and outputting the control signal, where the control signal includes: a first control signal, a second control signal And at least one of the second control signals; the first control signal is used to control a minimum undistorted supply voltage provided by the power supply module to the line driver; the second control signal is used to control the signal detection and the charge pump circuit
- the predetermined control signal is used to control the
- the control signal is generated by using at least one of the T. mode and the current output power configured by the user port of the xDSL subscriber board, and the minimum undistorted power supply voltage of the line driver is controlled by using the control signal.
- the control signal when it is possible to avoid excessive power supply to the line driver, it is unnecessary to waste energy; when using the control signal to control the signal detection and the predetermined threshold level in the charge pump circuit, different modes can be avoided: Corresponding to the same predetermined threshold level, the power supply voltage of the line driver is unnecessary or unable to follow the output signal waveform in time; when the control signal is used to control the signal detection and the charge pump circuit is turned on/off, it can be avoided.
- the above technical solution can make the minimum undistorted supply voltage, predetermined threshold level or signal detection and charge pump circuit on/off and user port configuration Operating mode and current output power To match at least one parameter, so that the above-described technical solutions to improve the output efficiency of the line driver of the xDSL subscriber board, reducing the energy consumption of the xDSL subscriber board.
- FIG. 1 is a flow chart of a method for improving power output efficiency of a line driver according to Embodiment 1 of the present invention
- 2 is a flow chart of a method for improving power output efficiency of a line driver according to a second embodiment of the present invention
- FIG. 3 is a flow chart of a method for improving power efficiency of a line driver according to a third embodiment of the present invention
- Figure 3A is a schematic diagram of a J1. body VDSL2 Chuanhu board
- 3B is a schematic diagram showing the relationship between the waveform of the output signal and the power supply voltage according to the embodiment of the present invention.
- FIG. 4 is a flow chart of a method for improving power output efficiency of a line driver according to Embodiment 4 of the present invention.
- 4A is a schematic diagram showing the relationship between the waveform of the output signal and the supply voltage according to the fourth embodiment of the present invention.
- FIG. 5 is a flow chart of a method for improving power output efficiency of a line driver according to Embodiment 5 of the present invention.
- 5A is a schematic diagram showing the relationship between the waveform of an output signal and a supply voltage according to Embodiment 5 of the present invention.
- FIG. 6 is a schematic diagram of an apparatus S for improving the power output efficiency of a line driver according to Embodiment 6 of the present invention.
- FIG. 7 is a schematic diagram of an xDSL user board according to Embodiment 7 of the present invention.
- FIG. 7A is a schematic diagram of a VDSL2 user board according to Embodiment 7 of the present invention. Mode for carrying out the invention
- the following uses the embodiment to generate a control signal for at least one of the operating mode and the current output power of the configuration of the user port of the xDSL subscriber board, and uses the control signal to detect the minimum undistorted power supply voltage and signal provided to the line driver.
- the specific implementation process of controlling the predetermined threshold in the charge pump circuit and/or the signal detection and the on/off of the charge pump circuit is exemplified. It will be apparent that the embodiments described below are a part of the embodiments of the invention, rather than all of the embodiments. All of the other embodiments obtained by those skilled in the art without creative efforts are within the scope of the present invention.
- Embodiment 1 A method for improving the power output efficiency of a line driver. The flow of the method is shown in Figure 1.
- the current operating parameters include: at least one of a working mode of the configured user port of the xDSL subscriber board and a current output power of the subscriber port.
- the configured working mode can be obtained before the user port of the xDSL user board is initialized. If the xDSL user board can change the working mode of the user port configuration during the working process, the changed working mode of the configuration can be used during the normal working process of the user port. If the activation is successful, you can obtain the working mode of the user port configuration through timing acquisition.
- the current output power of the user port can be obtained during the initialization of the user port, or it can be obtained by real-time acquisition during the normal working process of the user port.
- the current output power of the user port here can be obtained by detecting the actual output of the user port, or by estimating the input signal.
- the control signal herein includes at least one of a first control signal, a second control signal, and a third control signal.
- the first control signal is used to control the minimum undistorted supply voltage provided to the line driver (such as the minimum undistorted supply voltage provided to the symplectic line driver), ie, the first control signal is to control the power module that supplies the voltage to the line driver , the power module is provided with a corresponding supply voltage for the line driver according to the first control signal.
- the second control signal is used to control the signal detection and a predetermined threshold level in the charge pump circuit, the predetermined threshold being leveled so that the supply voltage of the line driver (eg, the Class A line driver in the sinus line driver) follows the output signal.
- the voltage threshold of the input signal of the voltage waveform that is, when the input signal voltage swing exceeds the predetermined gate
- the supply of the Class A and B circuit drivers of the symplectic drive ⁇ ) k follows the output signal ⁇ waveform.
- the third control signal W ⁇ controls the on/off 1 signal detection and the load circuit, that is, the second control signal 1 ⁇ 2 controls the signal 4 and the load pump circuit I: .
- the letter detection and the load-and-charge circuit are detected by the letter detection circuit and the charge pump circuit.
- control signal current I parameter matching, ie xDSLchuan board
- the power supply voltage provided to the line driver can be matched with the configuration mode of the W port configuration.
- the supply voltage provided to the line driver in the xDSLHJ board can match the power of the Chuanhu port before the mountain transmission, signal detection and detection.
- the predetermined threshold in the pump circuit can be matched with the port configuration of the port: the signal detection and the opening and closing state of the pumping circuit can be matched with the mode of the port configuration.
- the detection and opening and closing states of the pumping circuit can be matched with the W-port port mode and the user port pre-output power.
- the line driver's I: can be matched to the current I: state of the xDSLW board, which can reduce the unnecessary power consumption of the line driver in the xDSL board.
- the unnecessary power consumption of the line driver here can be generated by the signal detection and the charge pump circuit without having to play the "I:"; it can also be generated by the line driver providing a supply voltage higher than the current output power; The signal detection and shunting pump circuit unnecessarily causes the supply driver voltage of the line driver to follow the output signal waveform in accordance with a predetermined threshold level.
- Example of the first A-body implementation of S 1 10 pre-setting the mapping relationship of the user port to the minimum undistorted supply voltage provided by the line driver, before the user port of the xDSL user board is initialized, according to the The preset correspondence determines the minimum non-fire supply voltage corresponding to the working mode of the user port configuration, and outputs the first control signal according to the minimum undistorted supply voltage corresponding to the configured I: mode to control the power module as the line driver.
- the supplied power supply voltage is the minimum corresponding to the configured working mode.
- the minimum non-fire true supply voltage is sufficient to meet the minimum voltage requirements for line drivers (such as sinus line drivers including signal detection and charge pump circuits and Class A).
- the minimum undistorted power supply voltage of the line driver in the above correspondence is preset for the signal characteristics of the user port in the mode ,, where the signal characteristics such as the maximum output power of the user port in one operating mode, The voltage peak-to-average ratio of the output signal, the voltage drop of the diode, the headroom voltage of the Class A and B line drivers connected to the signal detection and charge pump circuit, and voltage fluctuations.
- the specific arrangement of the minimum undistorted supply voltage in the correspondence relationship is exemplified in the following embodiments in combination with a specific circuit.
- An example of the second specific implementation of S1 10 pre-set the correspondence between the working mode of the user port and the signal detection and the predetermined threshold level in the charge pump circuit, and determine the work of the user port configuration according to the preset correspondence relationship a predetermined threshold level corresponding to the mode, outputting a second control signal according to a predetermined threshold level corresponding to the configured working mode, to control the signal detection and the predetermined threshold level in the charge pump circuit to be a predetermined correspondence corresponding to the configured working mode Threshold level.
- the predetermined threshold level in the above correspondence is preset for the minimum undistorted supply voltage supplied to the line driver in the operational mode.
- the predetermined threshold level here can be the signal detection and the starting voltage of the charge pump circuit to boost the supply voltage of the Class A line driver.
- An example of the third specific implementation of S1 10 when it is determined that the working mode of the user port configuration is the first mode, the output signal detection and the third control signal of the charge pump circuit are output to control the signal detection and the charge pump circuit is stopped.
- the first mode described above is: an operating mode in which the frequency of the user port output signal is high and the maximum output power of the output signal is low. The higher and lower here can be measured using whether it is above the frequency threshold and below the power threshold.
- the frequency threshold and the power threshold can be set according to the actual application of the xDSL user board. For example, the frequency threshold can be based on the signal detection and charge pump in the xDSL user board.
- the power-pushing performance is set to a, and the power threshold can be set according to the small and low-voltage voltage provided by the xDSL network board to the line driver, so that the power consumption of the signal detection and the charging circuit is reduced.
- the power consumption of the T-type B line driver is ' ⁇ ,.
- An example of setting the frequency threshold If the frequency of the output signal of the Kawago port is higher than a certain frequency, the signal detection and the pumping circuit cannot push the voltage supply v+ and V- of the Class A line driver in time. It is guaranteed that the output voltages of the rolling v+ and V-person rolling swings are synchronized in time, and then one of the above frequencies is the frequency threshold.
- the initial default state of the signal detection and charge pump circuit is ON. For example, during the initialization of the W port, the signal detection and the load pump circuit are not received. It is always in the on state when the signal detection and the second control signal of the pumping circuit are turned off.
- Example of the fourth implementation of S 1 10 When it is determined that the mode of the user port configuration is the first mode and the obtained front output power is small: ⁇ the predetermined power value corresponding to the first-type investment The output close signal detection and the third control signal of the charge pump circuit are used to control the signal detection and the charge pump circuit at the stop/stop. I h: J: state.
- the conditions for outputting the off signal detection and the second control signal of the load pump circuit may be further increased by one condition: that is, the signal detection and the charge pump circuit are currently in the on state: that is, in the judgment that the configured operation mode is In the second mode, when the current output power obtained is less than the predetermined power value corresponding to the second mode and the signal detection and the load pump circuit are currently in the on state, the signal detection and the third control signal of the charge pump circuit are output.
- the small T here can also be changed to less than ⁇ .
- the second mode described above is: I: the mode in which the frequency of the user port output signal is low and the maximum output power of the output signal is high.
- the lower and higher can be used below or below the frequency threshold and whether the high-power threshold is used to balance ii.
- the above-mentioned frequency threshold and power threshold can be set according to the actual situation of the xDSL user board, as described above.
- the second mode herein includes at least one operation mode, and when the second module includes a plurality of operation modes, the predetermined power values corresponding to each of the operation modes included in the second mode may be different. At this time, the predetermined power value corresponding to the second mode is a predetermined power value corresponding to the configured mode.
- Example of the fifth A-body implementation of s 1 10 When it is determined that the working mode of the user port configuration is the second mode and the current output power acquired is not less than the predetermined power value corresponding to the second mode, the output is turned on. And the third control signal of the charge pump circuit is controlled by the signal and the charge pump circuit is in the lower state.
- the condition of the output enable signal detection and the third control signal of the charge pump circuit may be further increased by one condition: that is, the signal detection and the charge pump circuit are currently in a stop state, that is, it is determined that the configured operation mode is the second mode, and the above acquired
- the third signal of the turn-on signal detection and the charge pump circuit is output.
- the above not less than can also be converted to be greater than.
- the fourth concrete implementation example and the fifth concrete implementation example described above can be used in parallel as two branches. In the case of such parallel use, in the fourth concrete implementation example When the small-transform is less than or equal to, the not less than the fifth concrete implementation example should be transformed to be greater than.
- An example of the sixth specific implementation of S1 10 after the signal detection and charge pump circuit is turned off, if the third signal of the shutdown signal detection and the charge pump circuit is output, the current output power of the user port is calculated and supplied to the line driver.
- the minimum undistorted supply voltage outputs a first control signal according to the calculated minimum undistorted supply voltage to control the supply voltage supplied by the power supply module to the line driver to be the minimum undistorted supply voltage calculated according to the current output power.
- S 1 10 may include any one or any of a plurality of or all of the six specific implementation examples exemplified above.
- S1 10 includes the six specific implementation examples of the above examples, the power consumption of the xDSL subscriber board can be minimized.
- the 3 ⁇ 4 3 ⁇ 4xDSLW board contains a plurality of household ports, and the technical content of the description is described. For each household door, you can apply W separately.
- multiple W-ports in the xDSLW board can be used for the same I. For investment, or for I: for different types. Each port can correspond to each port.
- Line drivers (such as sinusoidal line drivers that include signal detection and load pumping and Class AB line drivers), that is, the number of line drivers can be the same as the number of W ports. This embodiment does not limit the implementation of the 1% body of the W port and the line driver in the xDSL board.
- the control signal is generated by using at least one of the configuration mode of the user port of the Lichuan xDSLW client board and the front output power of the user port, and the minimum supply of the control signal pair to the line driver is provided.
- the pressure is controlled, it is possible to avoid the excessive power consumption of the line driver and the unnecessary waste of energy consumption.
- the Icheon control signal controls the signal detection and the predetermined threshold level in the charge pump circuit, Avoid the phenomenon that different I: the mode corresponds to the same predetermined limit and the power supply voltage of the line driver does not need to be followed by the output signal waveform; the signal detection and the charge pump circuit are opened by the control signal When the control is turned off, the signal detection and the wasted energy consumption of the pump circuit can be avoided.
- the minimum non-fire supply voltage, signal detection and charge pump circuit provided to the line driver can be eliminated.
- Embodiment - A method of improving the power output efficiency of a line driver. The flow of the method is shown in Figure 2.
- the S200 may further include: obtaining the current output power of the user port during the normal operation of the W-port.
- S210 Output a control signal 1 (ie, the first control signal) according to the configured mode, and use the control signal 1 to control the power module to provide a line driver (such as a sinus line driver) corresponding to the Sichuan port in the xDSL board.
- the voltage is the minimum non-fire true supply voltage VS+ corresponding to the operating mode of the user port configuration.
- the working mode of the user port configuration is the first mode, then go to S230, otherwise, go to S220.
- the minimum undistorted supply voltage VS+ corresponding to the configured mode can be determined according to a preset relationship between the preset I: mode and the minimum undistorted supply voltage.
- S220 Determine whether the current output power of the user port is a small power-configured T.
- the predetermined power value corresponding to the working mode of the user port configuration may be determined according to a preset relationship between the mode and the predetermined power value. If the current output power of the user port is not obtained in S200, in S220, the current output power of the user port can be obtained in real time and the predetermined power value corresponding to the working mode of the current output power user port configuration is compared. If the current output power is less than the predetermined power value corresponding to the mode of operation of the user port configuration, then go to S230, otherwise, go to S240.
- control signal 3 ie, the third control signal
- the control signal 3 can cause the signal detection and the charge pump circuit to be inoperative (at outputting the control signal 3) Previously, the signal detection and charge pump circuits were on).
- the Ishikawa control letter is used to control the supply of the line driver corresponding to the user port in the xDSLW board.
- the voltage is calculated according to the output power of the bank. The minimum is not fired for ff.vs+.
- the output signal detection and the control signal 3 of the sputum pump circuit are turned on, that is, the control signal 3 can make the signal detection and the load pump circuit ⁇ . Go to S241. It should be noted that in the process of initializing the W-port port of the xDSL Sichuan household board, if the signal detection and the pumping pump circuit have been turned on, the output control can be stopped. Signal 3.
- the S24 K outputs a control signal 2 (ie, the above-mentioned first control signal) according to the I: mode of the Kawato port, and controls the signal detection and the predetermined threshold level in the load pump circuit as the I configured by the user port: The predetermined threshold level corresponding to the mode.
- the matching of the predetermined threshold I can be determined according to the preset I'. It should be noted that in the normal I: process after the initialization of the Kasuga port of the xDSL chuanhu board, if the signal detection and the pumping of the pumping pump do not change between the on and off states, the first output is performed. After the control signal 2, the control signal 2 can be outputted without S complex.
- the control signal is generated by using the operating mode of the W-port configuration of the xDSL bank board and the current output power of the user port, and when the minimum non-fire power supply voltage supplied to the line driver is controlled by the control signal, Avoiding excessive power supply for the line driver and causing unnecessary energy waste; when the control signal is used to control the signal detection and the predetermined threshold level in the charge pump circuit, different working modes can be avoided to correspond to the same predetermined gate. Limiting the level and generating the line driver's supply voltage does not need to follow the phenomenon of the output signal waveform; the signal can be avoided when the control signal is detected and the charge pump circuit is turned on/off.
- the detection and charge pump circuit eliminates unnecessary energy waste; therefore, the second embodiment enables the minimum undistorted supply voltage supplied to the line driver, the signal detection and the predetermined threshold level in the charge pump circuit, and the signal detection and charge pump.
- Embodiment 2 the method for improving the power output efficiency of the line driver will be described in detail through Embodiment 2 to Embodiment 5. It should be noted that the embodiment of the present invention can also be applied to other xDSL user boards provided with a signal detection and charge pump circuit and a line driver (such as a class B circuit driver) connected to the signal detection and charge pump circuit.
- a line driver such as a class B circuit driver
- Embodiment 3 A method for improving the power output efficiency of a line driver for a user port 17 3 operating mode. The flow of the method is shown in Figure 3.
- S300 detects the user port configuration in the VDSL2 user board: 1: The current output power of the mode and the user port.
- S310 After detecting that the user port configuration in the VDSL2 user board is in the 17& working mode, the control signal 1 is output, and the control signal 1 is used to control the power supply voltage provided by the power module for the line driver to be the minimum corresponding to the working mode of 17a. Distortion supply voltage VS+ (eg 14V).
- the 8310 and 8320 may not have a sequence of execution.
- the S310 and the S320 may be executed in parallel, or the S320 may be executed first and then the S310.
- the VDSL2W board shown in FIG. 3A includes: a power module and an sinus line driver, wherein the sinus line driver includes: a signal detection and charge pump circuit, a class A line driver, a series resistor RS, a transformer T, and a load. Impedance RL, etc.
- the most human output power characteristic The maximum output power of the output signal of the Kawago port is usually 14.5dBm, and the above 14.5dBm is the most human signal power on the load impedance RL.
- Peak-to-peak ratio characteristics of the rolling peak The voltage peak-to-average ratio of the W-port-sending mountain signal is usually high, as is usually 6.3.
- Frequency characteristics The frequency of the W-port output signal is higher, such as ⁇ .
- the signal detection and the charge pump circuit are difficult to push the voltage supply V+ and V- of the class A line driver in time, that is, the signal detection and charge pump. It is difficult to ensure that V+ and V- are synchronized with the human voltage swing output signal in time, so that the signal detection and charge pump circuit cannot meet the supply voltage requirement of the human voltage swing output signal.
- the maximum output power of the output signal from the D-port is not very high. 14.5dBm is not very high. If this is the case, if the sinus line driver is used as a Class A line driver, the power loss value of the Class A and B line driver will not be large. Moreover, if the symplectic line driver is still used as a symplectic line driver, the a signal detection and the sump pump circuit can cause the Class A line driver to operate at a lower supply pressure to reduce The power loss of the Class A and B line drivers, however, the increased power loss caused by the signal detection and charge pump circuit operation may exceed the above reduced power loss, which in turn will reduce the overall power output efficiency of the symplectic line driver.
- the control signal 1 is required to control the power supply voltage provided by the power module for the symplectic line driver to be 17a":
- the mode corresponds to the minimum undistorted supply voltage VS+ (such as 14V).
- the calculation process of the minimum undistorted supply voltage VS + 14 V corresponding to the 17al mode is described below with reference to a specific VDSL2 user board shown in FIG. 3A. :
- the calculation process of the minimum undistorted power supply voltage VS+ corresponding to the 17& ⁇ mode is 14V is as follows: First, the maximum output power of the output signal of the user port in the 17aT mode is 14.5dBm is converted into the load impedance. Power PRL(W) on RL: RL ( W ) 10 10 x 0 .001 w
- the rms current IRL (RMS) at the load impedance RL is:
- Vpk3 Vpk2 + 2*RS*IRL(RMS)*n*PARs9.4V.
- the supply pressure of the Class A and B line drivers is:
- (VS+) - (VS-) is approximately equal to 14V.
- the minimum undistorted supply voltage VS+ for the 17a mode is 14V.
- the horizontal axis of Fig. 3B is time t, and the coordinate axis is voltage V (volt).
- the power module provides the minimum of the symplectic line driver that turns off the signal detection and charge pump.
- the undistorted power supply voltage VS+ is 14V.
- the 14V power supply voltage can meet the maximum output power of the user port at 14.5dBm without the voltage boost of the charge pump circuit.
- the maximum voltage swing of the signal is required for the power supply voltage (V+&V-). .
- the calculation process of calculating the minimum undistorted supply voltage VS + supplied to the line driver according to the current output power of the user port is as follows: First, the current output signal of the W port in the 17aJ: mode The output power PRL (dBtn) is converted into the power PRL(W) on the load impedance RL :
- the root mean square voltage VRL(RMS) at the load impedance RL is: r RL ( RMS ) —— - 1 RL ⁇ W ) ⁇ Line
- IRL(RMS) V RL (RMS)/RL;
- Vpkl V RL (RMS) * PAR
- Vpk2 Vpkl * l/n*(l +5%)/l ;
- Vpk3 Vpk2 + 2*RS*IRL(RMS)*n*PAR
- the source voltage fluctuation range can also be considered in the process of calculating the minimum misfire supply voltage VS + supplied to the line driver based on the current output power of the user port.
- the minimum undistorted supply voltage provided to the line driver by the power module is controlled by the control signal 1 when the user port of the VDSL2 subscriber board is in the 17a_active mode, and the signal is closed by the control signal 3.
- the detection and charge pump circuit avoids the waste of power consumption in the mode of 17a: l: in the mode, so that the second embodiment can maximize the user port of the VDSL2 subscriber board at 17aT. Under the power output efficiency, the optimal power output efficiency of the 17a I: mode is obtained, and finally the power consumption of the VDSL2 user board's user port under the mode 17a is minimized.
- Embodiment 4 A method for improving the power output efficiency of a line driver for ADSL2+-I: mode. The flow of the method is shown in Figure 4.
- S400 detects the working mode of the ffl account configuration and the current output power of the user port in the VDSL2.
- S410 When detecting that the working mode of the user port in the VDSL2W card is in the ADSL2+I: mode, output a control signal 1, and control the signal provided by the power module to the symplectic line driver to be ADSL2+I through the control signal 1. : The mode corresponds to the minimum undistorted supply voltage VS+ (eg 1 1 V).
- S420 Determine whether the current output power of the user port in the VDSL2 user board is smaller than a predetermined power value corresponding to the ADSL2+ mode, if the D-, to S430, otherwise, to S440.
- Output control signal 3 controls the signal detection in the symplectic line driver and the charge pump circuit is turned off by the control signal 3. Go to S431.
- S43 outputs a control signal 1 according to the current output power of the user port, and controls the power supply voltage provided by the power module for the line driver to be the minimum undistorted power supply voltage VS+ corresponding to the current output power of the user port.
- S440 outputting the control signal 3, and controlling the signal detection and the ⁇ load circuit to be turned on by the control signal 3. Go to S441. 3 ⁇ 4 It is explained that, if the signal detection and the load pump circuit are already turned on before the output control, the control signal 3 may not be output.
- control signal 2 control the signal detection and the predetermined threshold level in the load pump circuit by the control factor 42 is ADSL2+ ⁇ .
- the predetermined threshold corresponding to the mode is leveled.
- the current output power of the port can be less than the predetermined power value of the ADSL2+I:
- the signal detection and the charge pump circuit are not in the state of I: in the case where the current output power is not small, ⁇ 08 ⁇ 2+ ⁇ : the predetermined power value corresponding to the mode is made, the signal detection and the charge pump circuit are at: I : State.
- the surface of the VDSL2HJ board shown in Figure 3 is shown in Figure 3: ADSL2+ I: Modeling the 'on/off signal detection and the original flash of the pumping pump circuit:
- Figure 3 shows the user port of the VDSL2 subscriber board.
- the characteristics of the .W port output signal include:
- the maximum output power of the user port output signal is usually 19.8dBm.
- the above 19.8dBm is the maximum signal power at the load impedance RL.
- Voltage peak-to-average ratio characteristics The peak-to-peak ratio of the output voltage of the user port is usually 5.5, which is smaller than the voltage-to-peak ratio of the mode F of 17a T.
- Frequency characteristics The frequency of the W-port output signal is usually low, such as only 2.2MHz, which is lower than the frequency of 17a-1: mode.
- the frequency of the output signal from the T-port is 2.2MHz, which is the lower frequency. If this is the case, the signal detection and charge pump circuit can push the voltage supply V+ and V- of the Class A line driver in time, that is, the signal detection and the load.
- the pump circuit ensures that the V+ and V- are synchronized with the large voltage swing output signal in time, so that the signal detection and charge pump circuit can meet the supply voltage requirement of the large voltage swing output signal.
- the output power of the output signal from the Dinghu port is higher than 19.8dBm, which is flashing. If the current output power is high (high-butyl-ADSL2+ 1: the predetermined power value corresponding to the mode), the analog line driver is ordinary. If the symplectic line driver mode is used, the power loss value of the class A and B line driver is reduced by the signal detection and the charge pump circuit to reduce the minimum misfire true voltage VS+. The signal detection and charge pump circuit are in the I: state. The energy consumed during the time.
- the signal detection and charge pump circuit can make the Class A line driver _ ⁇ . at a lower supply voltage to reduce the power consumption of the Class A line driver.
- the signal detection and the load pump circuit are in the ⁇ : the increased power consumption may exceed the above reduced power consumption, which in turn will reduce the overall power output efficiency of the symplectic line driver.
- the control signal is detected and the charge pump circuit is in the state when the user port outputs a high-power signal (ie, the octine line is applied).
- Drive mode and when the user port outputs a small power signal, the control signal detection and the charge pump circuit are in an inactive state (ie, the application of the Class A line driver mode) is a technical solution that can improve the power output efficiency of the line driver.
- the control signal 1 needs to be used to control the voltage provided by the power module for the symplectic line driver to be the minimum corresponding to the 1ADSL2+ working mode.
- the calculation of 1 V is too simple.
- & set RS 5.1 ohm
- L 100 ohm
- diode D has a jhP of 0.4V
- transformer T has a ratio l: n of 1:1.4
- the output signal has a peak-to-peak ratio of 5.5
- the signal from the transformer The damage rate is 5%
- the most human signal power on the load impedance RL is 19.8dBm
- the net and the same ' ⁇ pressure of the Class A and B line driver are 1.5V
- the fluctuation range of the source voltage is +/-5%
- VS- Ground the fluctuation range of the source voltage
- the ADS L2+ ⁇ . mode calculated by the above formula 2 is the minimum non-fire.
- the power supply voltage (VS+MVS-) can be 10.025V, considering the source of +/- 5%.
- ADSL2+ [: the mode does not correspond to the minimum non-fire true supply pressure (VS + MVS-) can be 10.5V.
- (VS+HVS-) can be set to 1 1 V, taking into account the voltage accuracy provided by the source module. From Ding-VS-grounding, the minimum undistorted power supply voltage corresponding to the ADSL2+ mode is VS + 1 1V.
- the horizontal coordinate axis of Fig. 4A is time t, and the coordinate axis is voltage V (volt).
- the minimum non-fire supply voltage VS+ supplied to the symplectic line driver of the power supply module is 1 IV.
- the maximum output voltage of the output signal can be satisfied when the maximum output power of the W port is 19.8 dBm in the ADSL2+ I: mode.
- the swing requires a supply voltage.
- the charge pump circuit will push the voltage supply V+ and V- of the class A line driver to make the class A and B.
- the line driver's supply voltage follows the voltage waveform of the user port output signal. If the imaginary line driver gain is 10V/V, the predetermined threshold corresponding to the ADSL2+ mode in the signal detection circuit can be 0.86V. That is to say, in the ADSL2+ I: mode, when the input signal iH swings to a voltage greater than a predetermined threshold level of 0.86V, the input signal of the voltage swing exceeding the portion can be intercepted for rail-to-rail voltage amplification, and then passed.
- the charge pump circuit superimposes the amplified waveform voltage on the supply voltage of the Class A circuit driver, so that the power supply voltage waveform of the Class A circuit driver can follow the voltage waveform of the output signal of the user port and keep synchronized with the voltage waveform of the output signal of the user port. The same is true for the negative voltage swing of the output signal.
- the charge pump circuit enhances the supply voltage V+ and V-volt values of the Class A and B line drivers. It can meet the demand of the most fire pressure swing of the signal at the current output power for the supply voltages V+ and V-. Therefore, signal detection And the charge pump circuit can be in the state of being closed (ie not working).
- the minimum undistorted supply voltage vs + provided by the power module is adjusted according to the current output power output control signal 1 of the user port, so that the minimum undistorted supply voltage provided by the voltage module vs + It can meet the demand of the supply voltage + and V- of the current fire voltage swing of the current output power F signal, avoiding unnecessary energy consumption.
- ADSL2+ I Under the investment mode, ⁇ source block.
- the 3 ⁇ 4 detection and the pumping pump provide a small amount of fire, the true supply pressure is 1 IV, the test is 5% to the source fluctuation, the letter detection
- the 13dBm obtained by the above calculation is the predetermined power value corresponding to the ADSL2+ mode.
- the fourth embodiment can maximize the power output efficiency of the WDSL port of the VDSL2 subscriber board in the ADSL2+ mode, and can obtain the optimal power output efficiency in the ADSL2+ working mode, and finally reduce the VDSL2.
- the user port is in the ADSL2+ I: mode of energy consumption.
- Embodiment 5 A method for improving the power output efficiency of a line driver for an 8b mode of operation. The flow of the method is shown in Figure 5.
- the S500 detects the working mode of the user port configuration in the VDSL2 user board and the current output power of the user port. S510.
- the control signal 1 When detecting that the working mode of the user port configuration in the VDSL2 user board is the 8b working mode, outputting the control signal 1, and controlling the signal provided by the power module for the symplectic line driver to be 8 bl Distortion supply voltage VS+ (eg 12V).
- S520 Determine whether the current output power of the user port in the VDSL2 user board is less than a predetermined power value corresponding to the 8b mode. If it is less than, go to S530, otherwise, go to S540.
- the mountain control signal 3 is detected by the control signal 3 and the charge pump circuit is in a closed state. Go to S531.
- S531 Output a control signal 1 according to a current output power of the user port, and control, by using the control signal 1, a power supply voltage provided by the power module for the symplectic line driver to a minimum undistorted power supply voltage VS+ corresponding to a current output power of the user port.
- S540 output control letter 3, control ⁇ 3 to control the ⁇ ⁇ 'detection and load ⁇ ⁇ ⁇ state. Go to S541. It should be noted that, if the output control signal ''3'' ⁇ , the signal detection and the ⁇ I pump circuit have been turned on, the control signal 3 may not be output.
- the current power value of the current mountain power can be used as the mode corresponding to the predetermined power value.
- the signal detection and the load pump circuit are not in the state of the current state.
- the current output power is not small. 8 (5_ ⁇ .
- the signal detection and the load pump are used.
- the road is ⁇ I: state. The following describes the on/off signal detection and the original W of the load pump circuit in the 8b ⁇ . mode of the VDSL2HJ board shown in Figure 3A:
- Figure 3A shows the port of the VDSL2 home port.
- I For the mode of 8b I: mode, the characteristics of the output signal of the Kawaguchi port include:
- the maximum output power of the user port output signal is usually 20.4dBm, and 20.4dBm is the maximum signal power at the load impedance RL.
- Voltage peak-to-average ratio characteristics The peak-to-peak ratio of the W-port output signal is usually 6.3, which is equivalent to the 3 ⁇ 4 peak in the 17aT. mode.
- Frequency characteristics The frequency of the output signal of the port is usually low, such as 8MHz, which is lower than the frequency of 17a l: mode.
- the frequency of the output signal from the Tawakawa port is 8MHz, which belongs to the lower frequency.
- the signal detection and the pump circuit can promptly push the supply voltages V+ and V- of the Class A line driver, that is, the signal detection and charge pump circuit can It is guaranteed that V+ and V- are synchronized with the large voltage swing output signal in time, so that the signal detection and charge pump circuit can meet the demand of the human voltage swing output signal for the supply voltage.
- the output power of the signal output by the Tawakawa port is higher than 20.4dBm. Therefore, if the current output power is higher (higher than the predetermined power value corresponding to the 8b mode), the symplectic line driver is used as the symplectic line.
- the driver mode is used, the power loss value of the Class A line driver reduced by the signal detection and charge pump circuit to reduce the minimum misfire voltage VS+ is higher than the power consumed when the signal detection and charge pump circuit are in operation.
- the signal detection and charge pump circuit can enable the Class A line driver: I: at a lower supply voltage to reduce the power consumption of the Class A line driver, but The increased power consumption of the signal detection and charge pump circuit in the I: state may exceed the above-mentioned reduced power consumption, which in turn will reduce the overall power output efficiency of the symplectic line driver.
- the control signal detection and the charge pump circuit are in a state of being activated (ie, the symplectic line driver mode is applied).
- the control signal detection and the ⁇ inactive state at the load pump circuit ie, the application of the Class A line driver mode
- the control signal detection and the ⁇ inactive state at the load pump circuit is a technical solution that can improve the power output efficiency of the line driver.
- the control signal 1 needs to be used to control the power module to provide a signal for the signal detection and the charge pump circuit to be 8 bl.
- Corresponding minimum undistorted power supply iUH VS+ (such as 12V), the lower fii combined with the attached ⁇ 3 ⁇ ⁇ ⁇ 1 ⁇ .
- the minimum undistorted supply for the 8b operating mode can be approximately 1.85V.
- (VS+)-(VS-) can be set to 12V. Due to VS-grounding, flashing, ADSL2+ I: The mode corresponds to the minimum undistorted power supply voltage VS + is 12V.
- the relationship between the waveform of the user port output signal and the supply voltage is as shown in Figure 5A.
- the horizontal coordinate axis of Fig. 5A is time t, and the 3 ⁇ 4 straight coordinate axis is voltage V (volt).
- the minimum non-fire power supply voltage VS+ supplied to the symplectic line driver of the power supply module is At 12V, the supply voltages V+ and V- of the Class A and B line drivers can be increased by the charge pump circuit to meet the maximum voltage swing of the output signal when the user's maximum output power in the 8bT mode is 20.4dBm. Demand for supply voltage.
- the charge pump circuit will push up the supply voltages V+ and V- of the class B line driver, so that the class B circuit driver
- the supply voltage follows the voltage waveform of the user port output signal.
- the predetermined threshold level corresponding to the operating mode of the 81) signal detection circuit can be 0.978V. That is to say, in the 8b ⁇ . mode, when the input signal is positively oscillating the swing and the predetermined threshold is 0.978V, the input signal with the voltage swing exceeding the part can be intercepted for rail-to-rail voltage amplification.
- the igniting waveform voltage is superimposed on the supply voltage of the class A and B line driver through the charge pump circuit, so that the power supply voltage waveform of the class A and B line driver can follow the voltage waveform of the output signal of the user port, and the output signal is pressed with the user port.
- the waveform remains synchronized. The same is true for the negative voltage swing of the output signal.
- the charge pump circuit when the 8bT mode and the minimum undistorted power supply voltage are 12V, when the current output power of the user port is less than the predetermined power value corresponding to the mode of 8b, the charge pump circuit is not required to be upgraded.
- the supply voltage V+ and V-volt values of the Class A and B line drivers can meet the demand of the most voltage swing of the signal at the current output power for the supply voltages V+ and V-. Therefore, the signal detection and charge pump circuit can In the state of being closed (ie not working).
- the minimum undistorted supply voltage VS + of the line driver provided by the power module is adjusted according to the current output power output control signal 1 of the user port, so that the minimum undistorted supply voltage provided by the voltage module is provided.
- VS+ can meet the demand of the maximum voltage swing of the signal at the current output power for the supply voltage + and V-, avoiding unnecessary energy consumption.
- the calculation process of the predetermined power value corresponding to the 8bl mode is the same as the ADSL2+ described in the fourth embodiment.
- the work power of the corresponding predetermined power ⁇ is calculated by the wood phase, A is not described in detail.
- the profit control signal 1 controls the minimum non-i'i. supply ⁇ )-k provided to the line driver, Lichuan
- the control signal 2 controls the signal detection and the predetermined threshold level in the load pump circuit
- the control signal 3 controls the signal detection and the on/off of the load circuit, and avoids f 8b ⁇ as much as possible.
- the power consumption efficiency of the HJ port of the VDSL2 board is improved in 8b ⁇ .
- the power output efficiency of the mode is obtained, and 8b ⁇ can be obtained.
- the optimal power output efficiency in the mode is finally reduced by the most people to the energy consumption of the VB2 Chuanhu port of the Kawasaki port at 8b.
- Embodiment 6 is to install the ffi for improving the power output efficiency of the line driver.
- the structure of the package S is as shown in Fig. 6.
- the package B in Fig. 6 includes: an acquisition unit 600 and a control unit 610.
- the obtaining unit 600, the current I: parameter of the xDSL chuan board, the current I: parameter comprises: the port of the xDSLW board configured: I: the mode and the current output power of the user port at least one.
- the obtaining unit 600 can obtain the user port configuration before the initialization of the W-port port of the xDSLW client board. If the xDSLW client board can change the user port configuration during the operation: I: the mode and the changed configuration The I: mode can be successfully activated during the user port termination process: the acquisition unit 600 can obtain the port configuration of the port by the timing acquisition method:]: mode.
- the obtaining unit 600 can obtain the current output power of the user port during the initialization process of the port of the port, or obtain the current output power of the port by acquiring the real-time acquisition in the normal process of the user port.
- the obtaining unit 600 can obtain the current mountain power of the user port by detecting the actual output of the user port, and can also obtain the current output power of the user port according to the small input of the input signal.
- the control unit 610 determines the control signal for the line driver in the xDSL subscriber board according to the current I: parameter obtained by the acquisition unit 600, and outputs a control signal.
- the control signal herein includes at least one of a first control signal, a first control signal, and a second control signal.
- the first control signal is used to control the minimum undistorted supply voltage supplied to the line driver, and the minimum undistorted supply voltage can be used by the signal detection and charge pump circuit in a line driver connected to the signal detection and charge pump circuit (eg, A and B) Class line driver). It can also be said that the first control signal is to control the power supply module that supplies the voltage to the line driver, so that the power supply module provides the corresponding power supply voltage to the line driver according to the first control signal.
- the second control signal is used to control the signal detection and predetermined threshold leveling in the load pump circuit, the predetermined threshold level being such that the line driver supply voltage follows the output signal waveform threshold.
- the second control signal is used to control the on/off signal detection and charge pump circuit, that is, the third control signal controls whether the signal detection and the charge pump circuit need to work.
- the principle that the control unit 610 determines the control signal for the signal detection and the charge pump circuit in the xDSL user board according to the current processing parameters acquired by the obtaining unit 600 may be: the control signal matches the current operating parameter, that is, the control unit 610 may provide according to the The first control signal is outputted on the principle that the minimum undistorted supply voltage of the line driver matches the operating mode of the user port configuration, and the control unit 610 can output according to the principle that the supply voltage supplied to the line driver matches the current output power of the user port.
- control unit 610 can output the second control signal according to the principle that the signal detection and the predetermined threshold level in the charge pump circuit match the working mode of the user port configuration, and the control unit 610 can detect and charge the pump circuit according to the signal.
- the principle that the on and off states match the operating mode of the user port configuration outputs a third control signal.
- control unit 610 can reduce unnecessary power consumption in the xDSL subscriber board by matching the control signals to the current operating parameters of the xDSL subscriber board.
- the control unit 610 includes a first group of subunits i": the storage subunit 61 1 and the first control unit 612.
- the minimum misfire provided to the line driver in the above correspondence is pre-set for the signal characteristics of the J-port 1: for the investment type, where the signal characteristics such as the port of the port are in the ⁇ .
- the minimum misfire in the correspondence relationship is as follows. In the second embodiment, the ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
- the first control sub-unit 612 in the initialization of the user port of the xDSLW client board, determines the minimum undistorted supply voltage corresponding to the I: mode of the user port configuration according to the corresponding relationship stored in the storage sub-unit 61 1 And outputting the first control signal according to the minimum undistorted supply voltage corresponding to the working mode of the above configuration, so as to control the power supply module to provide the voltage supply for the line driver as the configuration. Pressure.
- the first group of units included in the control unit 610 may be: stored in the unit 61 1 and the first control unit 613.
- the predetermined threshold level here can be used for signal detection and charge pump circuit to increase the starting point of the voltage supply of the Class A line driver.
- the second control sub-unit 613 determines a predetermined threshold level corresponding to the working mode of the user port configuration according to the corresponding relationship stored by the storage sub-unit 61 1 , and outputs the first threshold level according to the configured I: mode corresponding to the threshold level -
- the control signal is configured to control the signal detection and the predetermined threshold level in the charge pump circuit as the configured threshold: the predetermined threshold corresponding to the mode is leveled.
- control unit 610 can be: second control subunit 614.
- the third control sub-unit 614 when the mode of the S port of the household port is the first mode, outputs a third control signal of the off signal detection and the load pump circuit, so that the control signal detection and the charge pump circuit are at Stop I: status.
- the first mode described above is: a mode in which the frequency of the output signal of the user port is high and the output power of the output signal is low, such as al: mode.
- the higher and lower here can be measured using whether it is above the frequency threshold and below the power threshold.
- the frequency threshold and the power threshold may be set according to the actual application condition of the xDSL user board. For example, the frequency threshold may be set according to the signal detection in the xDSL user board and the high performance of the charge pump circuit voltage.
- the power threshold may be based on the xDSL user.
- the minimum undistorted voltage supplied to the line driver in the board is set to S, so that the power consumption of the signal detection and charge pump circuit is not high, and the power consumption of the circuit breaker is not high.
- the method of setting the frequency threshold is described in the above-mentioned first embodiment, and the description thereof will not be repeated here.
- the fourth group of subunits included in the control unit 610 may be: a storage subunit 61 1 and a fourth control subunit 615.
- the storage unit 61 1 is used to store the correspondence between the mode of the user port and the predetermined power value.
- the fourth control sub-unit 615 is configured to: when the working mode configured in the port of the port is the second mode and determine, according to the corresponding relationship stored by the storage subunit 61 1 , that the current output power is less than a predetermined power value corresponding to the second mode, the output is closed.
- the signal detection and the third control signal of the charge pump circuit are used to control the signal detection and the charge pump circuit to perform the state of the stop-stop I:.
- the smaller here can also be changed to less than 3 ⁇ 4 : TO
- the above second investment method is: Chuanhu end II loss; II letter frequency is lower W.
- Output letter 4 people have higher output power, such as ADSL2 + work caster 8b work investment.
- the lower and lower ⁇ of this 'i!' can be compared to whether the low frequency threshold and the power threshold are balanced.
- the above-mentioned frequency threshold and power threshold il'i can be set according to the actual MJ condition of the xDSL chuan board, and the A-body is as described in the first embodiment above. It is no longer repeated here.
- the first-injection method includes at least one type I, and when the second module includes a plurality of types, the storage unit unit 61 1 stores each of the modes included in the second mode.
- the predetermined powers respectively corresponding to each of the ⁇ : predetermined power values corresponding to the investment type may be different.
- the fourth control unit 615 the output of the ON signal is detected when the I: mode of the Chuanto port is the second vote type and the front output power of the port of the port is not less than the predetermined power value corresponding to the second mode.
- the second control signal of the pumping circuit is controlled by the signal detection and the state of the load pump circuit.
- the condition that the fourth control unit 615 outputs the second signal of the turn-on signal detection and the charge pump circuit can be further increased by one condition: the signal detection and the charge pump are in front of the circuit, and the stop is stopped.
- I the state, that is, the fifth controller
- the unit 616 determines that the configured mode is the second mode, the current output power acquired by the obtaining unit 600 is not smaller than the predetermined power value corresponding to the second mode, and the signal detection and the load pump circuit are currently stopped.
- I h_ I When the state is set, the signal detection and the second control signal of the charge pump circuit are output. The above not less than can also be converted into a person--.
- Control unit 610 can include any one of the four sets of subunits described above and any plurality of sets of unit.
- the control unit 610 may further include a fifth control subunit 616 on the basis that the control unit 610 includes: a storage unit 61 1 and a fourth control unit 615.
- the third control sub-unit 616 after the signal detection and charge pump circuit is turned off, if the second signal of the shutdown signal detection and the load pump circuit is output, the calculation is provided according to the current output power of the port of the port.
- the minimum non-fire of the line driver is supplied with the voltage, according to the calculated minimum misfire.
- the supply voltage outputs the first control signal to control the power supply voltage provided by the power module for the line driver to be calculated based on the current output power. Minimum distortion-free supply voltage.
- control unit 610 may include: a storage subunit 61 1. a first control subunit 612 and a second control subunit.
- control unit 610 can minimize the power consumption of the xDSL network board.
- the obtaining unit 600 in the foregoing sixth embodiment generates a control signal by acquiring at least one of an operating mode configured by a user port of the xDSL subscriber board and a current output power of the subscriber port, so that the control unit 610 can output a control signal according to the acquired parameter.
- the control unit 610 controls the minimum undistorted supply voltage supplied to the line driver by using the control signal, it is possible to avoid excessive power consumption of the line driver to generate unnecessary energy waste; the control unit 610 utilizes the control signal pair.
- the signal detection and the predetermined threshold level in the charge pump circuit are controlled, it can be avoided that different supply modes correspond to the same predetermined threshold level, and the supply voltage of the line driver does not need to be played or cannot follow the output signal waveform in time.
- the sixth embodiment can provide the line to the circuit.
- Minimum distortion of the drive The predetermined threshold level in the electrical voltage, signal detection, and charge pump circuits or signal detection and on/off of the charge pump circuit matches at least one of the operating mode of the user port configuration and the current output power of the user port. Therefore, the sixth embodiment can improve the power output efficiency of the xDSL user board, and ultimately reduce the power consumption of the xDSL user board.
- Embodiment 7 xDSL user board.
- the structure of the xDSL subscriber board is shown in Figure 7.
- the xDSL subscriber board of FIG. 7 includes: a line driver 700, a power module 710, and a control module 720.
- Line driver 700 includes Signal detection and load pump circuit 701. The line driver 700 can also be used to detect the type A and B line drivers connected to the load port 701.
- the power source block 710 provides a minimum non-fire A for the line driver 700.
- the signal detection and charge pump circuit 701 detects the input signal voltage swing. When the input signal voltage swing exceeds a predetermined limit, the signal detection and charge pump circuit 701 linearly adjusts the connected line driver according to the signal waveform of the mountain portion. For example, the supply voltage of the Class A and B line drivers enables the voltage supply of the Class A and B line drivers to follow the waveform of the output signal.
- the current I: parameter of the DSLW board includes: at least one of the I: mode of the xDSL port of the bank and the current output power of the port of the port.
- the control module 720 determines a control signal for the line driver 700 in the xDSL bank board according to the first I: parameter, and outputs a control signal, where the control signal includes: the first control signal, the second control signal, the second control The first control signal is used to control the minimum power supply voltage of the line driver 700, that is, the first control signal is to control the power module 710, so that the power module 710 is configured according to the first control signal.
- the line driver 700 is provided with a corresponding supply voltage; the second control signal is used for control signal detection and predetermined threshold leveling in the charge pump circuit 701, the predetermined limit is 3 ⁇ 4 level for the supply voltage of the class A line driver to follow the output signal The threshold value of the waveform; the second control signal is used to control the on/off signal detection and the load pump circuit 701, that is, the second control Whether the signal is a signal detection and charge pump circuit 701 performs control required for playing K.
- the control module 720 can obtain the "user mode" of the user port configuration before the initialization of the W-port port of the xDSL client board. If the xDSL U-card can be changed during the process of the user port configuration, the I: mode and the changed configuration are changed.
- the operation mode of the user port configuration can be obtained by the control module 720 by means of timing acquisition, etc.
- the control module 720 can obtain the current port of the port of Sichuan using real-time acquisition or the like. Output Power.
- the control module 720 determines the control signal for the line driver 700 in the xDSLff1 board according to the obtained current parameter: the control signal may be matched with the current: parameter, that is, the control module 720 may provide the line driver according to the The minimum undistorted power supply voltage of 700 and the user port is equipped with S - I: the first control signal is outputted in accordance with the principle of matching, and the control module 720 can be based on the supply voltage supplied to the line driver 700 and the current output of the user port.
- the principle of power matching outputs a first control signal
- the control module 720 can output a second control signal according to a principle that the signal detection and the predetermined threshold level in the charge pump circuit 701 match the configured operating mode of the user port
- the control module 720 The third control signal can be output according to the principle of signal detection and matching of the on and off states of the charge pump circuit 701 and the operating mode of the user port configuration.
- the control module 720 can reduce the unnecessary power consumption in the xDSL subscriber board by matching the control signals with the current operating parameters of the xDSL subscriber board.
- the unnecessary energy consumption here can be generated by the signal detection and the operation of the charge pump circuit 701; the power supply module 710 can also generate the line driver 700 with a higher than the current output power requirement; or can be generated by the signal
- the detection and charge pump circuit 701 is generated by causing the supply voltage of the class AB circuit driver to follow the output signal waveform unnecessarily according to a predetermined threshold level.
- control module 720 The structure of the control module 720 is as described in the above embodiment 6, and the description thereof will not be repeated here.
- the xDSL subscriber board is a VDSL2 subscriber board
- a specific example of the VDSL2 subscriber board is shown in Figure 7A.
- the VDSL2 subscriber board of the mountain shown in FIG. 7A includes: a control module, a power module, and an analog line driver, etc., wherein the symplectic line driver includes: a signal detection and a charge pump circuit, a class A line driver, and a diode D.
- the control signal 1 outputted by the control module acts on the power module, and the control signal 2 and the control signal 3 outputted by the control module are used for signal detection and charge pump circuits.
- VDSL2 The in-board can also be in other forms, and the embodiment does not limit the VDSL2 Chuanhu board;
- the present invention is implemented by means of software plus necessary hardware A-table, but also implemented by hardware, but many The former is a better implementation.
- all of the components of the technical aspects of the present invention that contribute to the background art can be embodied in the form of a software product that can perform the method flow described above.
- the computer software product may be stored in a storage medium, such as a ROM/RAM, a magnetic disk, an optical disk, or the like, including a thousand instructions Mj such that a computer device (which may be a personal computer, a server, a network device) performs various implementations of the present invention.
- a computer device which may be a personal computer, a server, a network device
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Devices For Supply Of Signal Current (AREA)
- Interface Circuits In Exchanges (AREA)
- Dc-Dc Converters (AREA)
Description
提高线路驱动器的功率输 111效率的力'法和装 a
技术领域
本发明涉及网络通讯技术领域, 体涉及 xDSL MJ户板技术。
发明背景
Digital Subscriber Loop ( x 数字用户环线, xDSL ) 技术包括: Asymmetrical Digital Subscriber
Loop (非对称数字 MJ户环线, ADSL) 技术和 Very-high-speed Digital Subscriber Iine2 (甚高速数字 户线, VDSL2 ) 技术 。 其中的 VDSL2技术在宽带接入设备中的应川日趋广泛。
xDSLHJ户板如 VDSL2W户板的线路驱动器通常为甲乙类线路驱动器(也称 CLASS AB线路驱动 器)。 甲乙类线路驱动器的供电电压(V+和 V- )通常需耍满足输出信号的最人电压摆幅耍求。然而, 由丁 人多数情况下 VDSL2 户板输出信号是小电压摆幅信号, 人电压摆幅信号所 比例较小, 因 此, 目前 VDSL2用户线路板的线路驱动器存在功率输出效率低等问题。
为提高 xDSL用户板如 VDSL2川户板中线路驱动器的功率输出效率, 目前采用的方法包括: 采用 辛类线路驱动器 (也称 CLASS H线路驱动器) 作为 VDSL2用户板的线路驱动器, 该辛类线路驱动器 包括: 甲乙类线路驱动器和信号检测及电荷泵电路。 信号检测及电荷泵电路用于检测输入信号电压 摆幅, 当输入信号屯压摆幅超过预定门限屯平时, 信号检测及电荷泵屯路根据超出部分信号波形线 性调整甲乙类线路驱动器的供屯电压, 使甲乙类线路驱动器的供屯屯压能够跟随输出信号的屯压波 形。 这样, 在 VDSL2用户板的用户端口输出小屯压摆幅信号时, 甲乙类线路驱动器的供电电压为一 个较低的电压值, 从而提高了甲乙类线路驱动器的功率输出效率, 降低了 VDSL2用户板的能耗。
在实现本发明的过程中, 发明人发现: xDSL用户板如 VDSL2用户板的 W户端口通常支持多种工 作模式 (如 ITU标准中规定的 12a、 17a, 8b和 ADSL2+等 Γ作模式) , 且用户端口在不同 1:作模式下 的信号最大传输功率和电压峰均比会存在较大差异, 但是提供给辛类线路驱动器的供电电压和预定 门限屯平是 定不变的,从而不能够使 xDSL用户板如 VDSL2用户板的用户端口在多种工作模式下都 获得最优的功率输出效率。 另外, 包含有信号检测及电荷泵电路的辛类线路驱动器的静态功耗耍高 丁-甲乙类线路驱动器的静态功耗, 这样, 在用户端口输出小功率信号时, 辛类线路驱动器的功耗要 高于甲乙类线路驱动器的功耗。 发明内容
本发明实施方式提供的提高线路驱动器功率输出效率的方法和装置, 可提高 xDSL用户板中的线 路驱动器的功率输出效率, 从而降低了 xDSL用户板如 VDSL2用户板的能耗。
本发明实施方式提供的提高线路驱动器功率输出效率的方法, 包括:
获取 xDSL用户板的当前工作参数, 所述当前工作参数包括: xDSL用户板的用户端口配置的工 作模式和用户端口的当前输出功率中的至少一个;
根据所述当前工作参数确定与所述当前 I:作参数匹配的针对 xDSL用户板中的线路驱动器的控 制信号, 并输出所述控制信号, 所述控制信号包括: 第一控制信号、 第二控制信号和第三控制信号
中的至少一个; 所述第一控制信 ) H Γ控制提供给线路驱动器的最小不火 S供屯屯压; 所述第二控 制信 川 τ·控制线路驱动器的信 检测及屯荷 s屯路中的预定门限屯 ; 所述第三控制信 wrr控 制幵启 /关 ι 信号检测及屯荷泵屯路。
本发明实施方式提供的提高线路驱动器功率输出效率的装 s, 包括:
获取单元, 丁 ·获取 xDSL川户板的当前 Γ.作参数, 所述当前 I:作参数包括: xDSL川户板的川 户端口配置的 I:作投式和 户端口的当前输出功率中的至少一个;
控制单元, W Τ·根据所述当前 I:作参数确定 所述当前 Γ.作参数匹配的针对 xDSLHJ户板中的线 路驱动器的控制信号, 并输出所述控制信号, 所述控制信号包括: 第一控制信号、 第二控制信号和 第二控制信号中的至少一个;所述第一控制信号用 T控制提供给线路驱动器的最小不火真供屯屯压; 所述第二控制信号 W于控制线路驱动器的信号检测及屯荷泵屯路中的预定 ί j限电平; 所述第二控制 信号川丁控制开启 /关闭信号检测及电荷泵电路。
本发明实施方式提供的 xDSLW户板, 包括线路驱动器和电源模块, 所述线路驱动器包括信号检 测及屯荷泵电路, 所述电源模块为所述线路驱动器提供最小不失真电压, 所述用户板还包括: 控制模块, 用于获取 xDSL用户板的当前 I:作参数, 所述当前: T:作参数包括: xDSL用户板的用 户端口的配置的工作模式和用户端口的当前输出功率中的至少一个; 根据所述当前工作参数确定与 所述当前 作参数匹配的针对 xDSL用户板中的线路驱动器的控制信号, 并输出所述控制信号, 所述 控制信号包括: 第一控制信号、 第二控制信号和第二控制信号中的至少一个; 所述第一控制信号用 于控制屯源模块提供给线路驱动器的最小不失真供电电压; 所述第二控制信号用于控制信号检测及 电荷泵电路中的预定 Π限屯平; 所述第二控制信号用于控制开启 /关闭信号检测及电荷泵电路。
通过上述技术方案的描述可知, 通过利用 xDSL用户板的用户端口配置的 T.作模式和当前输出功 率中的至少一个参数产生控制信号, 在利用控制信号对线路驱动器的最小不失真供电电压进行控制 时, 可以避免为线路驱动器提供过高电压而产生不必耍的能耗浪费现象; 在利用控制信号对信号检 测及电荷泵电路中的预定门限电平进行控制时, 可以避免不同 Ί:作模式对应同一预定门限电平而产 生线路驱动器的供电电压不必要的或不能够及时的跟随输出信号波形的现象; 在利用控制信号对信 号检测及电荷泵电路的开启 /关闭进行控制时, 可以避免信号检测及电荷泵电路不必耍的能耗浪费现 象; 由此可知, 上述技术方案能够使最小不失真供电电压、 预定 ΙΊ限电平或者信号检测及电荷泵电 路的开启 /关闭与用户端口的配置的工作模式和当前输出功率中的至少一个参数相匹配, 从而上述技 术方案提高了 xDSL用户板的线路驱动器的功率输出效率, 降低了 xDSL用户板的能耗。 附图简要说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现有技术描述中 所需耍使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对 于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附 图。
图 1是本发明实施例一的提高线路驱动器的功率输出效率的方法流程图;
图 2 本发明实施例二的提,; ¾线路驱动器的功率输出效率的方法流 图; 图 3是本发明实施例三的提高线路驱动器的功率输 l l i效率的方法流程阁;
图 3A是一个 J1.体的 VDSL2川户板示意图;
图 3B是本发明实施例 的输出信号的波形和供电电压的关系示意图;
图 4是本发明实施例四的提高线路驱动器的功率输出效率的方法流程 ;
图 4A是本发明实施例四的输出信号的波形和供屯 压的关系示意图;
图 5是本发明实施例五的提高线路驱动器的功率输出效率的方法流程图;
图 5A是本发明实施例五的输出信号的波形和供 电压的关系示意图;
图 6是本发明实施例六的提高线路驱动器功率输出效率的装 S示意图;
图 7是本发明实施例七的 xDSL用户板示意图;
图 7A是本发明实施例七的 VDSL2用户板示意图。 实施本发明的方式
下面通过实施例对本发明利用 xDSL用户板的用户端口的配置的工作模式和当前输出功率中的 至少一个参数产生控制信号, 并利用该控制信号对提供给线路驱动器的最小不失真供电电压、 信号 检测及屯荷泵屯路中的预定门限屯平和 /或信号检测及电荷泵电路的开启 /关闭进行控制的具体实现 过程进行举例说明。 显然, 下面所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基 丁-本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范闱。
实施例一、 提高线路驱动器功率输出效率的方法。 该方法的流程如附图 1所示。
图 1中, S100、 获取 xDSLl!J户板的当前下作参数。 当前丄作参数包括: xDSL用户板的用户端口 配置的工作模式和用户端口的当前输出功率中的至少一个。
配置的工作模式可以在 xDSL用户板的用户端口初始化之前获取, 如果 xDSL用户板可以在工作 过程中变更用户端口配置的丄作模式且变更后的配置的工作模式可以在用户端口正常工作过程中被 成功激活, 则可以通过定时获取等方式获取用户端口配置的工作模式。 用户端口的当前输出功率可 以在用户端口初始化过程中获取, 也可以在用户端口的正常工作过程中采用实时获取等方式获取。 这里的用户端口的当前输出功率可以通过检测用户端口的实际输出获得, 也可以根据输入信号的人 小推算获得。
S1 10、 根据上述获取的当前 Π作参数确定针对 xDSL用户板中的线路驱动器的控制信号, 并输出 该控制信号。 这里的控制信号包括: 第一控制信号、 第二控制信号和第三控制信号中的至少一个。 第一控制信号用于控制提供给线路驱动器的最小不失真供电电压 (如提供给辛类线路驱动器的最小 不失真供电电压) , 即第一控制信号是对为线路驱动器提供电压的电源模块进行控制, 使电源模块 根据第一控制信号为线路驱动器提供相应的供电电压。 第二控制信号用于控制信号检测及电荷泵电 路中的预定门限电平, 该预定门限屯平为使线路驱动器(如辛类线路驱动器中的甲乙类线路驱动器) 的供电电压跟随输出信号屯压波形的输入信^的电压门限值, 即当输入信号电压摆幅超过该预定门
限屯平时, 辛类驱动器屮的甲乙类线路驱动器的供屯屯) k跟随输出信号屯 波形。 第三控制信 W Γ控制讣启 /关 1 信号检测及 荷 屯路, 即第 Ξ控制信 ½对信 4检测及屯荷泵电路是否 I:作进行 控制。 信 检测及屯荷 ¾屯路即信 检测屯路和屯荷泵 路。
在 S 1 10中, 根据获取的^前 I .作参数确定针对 xDSL川户板中的线路驱动器的控制信兮的原则可 以为: 控制信号 当前 I:作参数相匹配, 即 xDSL川户板中提供给线路驱动器的供电屯压可以和 W户 端口配置的 Γ.作模式相匹配, xDSLHJ户板中提供给线路驱动器的供屯电压可以和川户端口 前输山 功率相匹配, 信号检测及屯荷泵屯路中的预定门限屯平可以和 户端口配置的 Ί :作模式相匹配, 信 号检测及屯荷泵屯路的开启和关闭状态可以和 户端口配置的 I .作模式相匹配, 信号检测及屯荷泵 屯路的开启和关闭状态可以和 W户端口配 ¾的 Γ.作模式和用户端口 前输出功率相匹配。 通过使控 制信号 当前 Ί :作参数相匹配, 可以使线路驱动器的 I:作状态 xDSLW户板的当前 I:作参数相匹 配, 从而可以减少 xDSL 户板中的线路驱动器的不必耍能耗。 这里的线路驱动器的不必耍能耗可以 由信号检测及电荷泵电路不必耍的― I:作而产生; 也可以由为线路驱动器提供了高于当前输出功率耍 求的供电电压而产生; 还可以由信号检测及屯荷泵电路根据预定门限电平不必要的使线路驱动器的 供屯电压跟随输出信号波形而产生。
S 1 10的第一个 A体实现的例亍: 预先设置用户端口的丄作模式 提供给线路驱动器的最小不失 真供屯屯压的对应关系, 在 xDSL用户板的用户端口初始化之前, 根据该预先设置的对应关系确定用 户端口配置的工作模式对应的最小不火真供屯电压, 根据配置的 I:作模式对应的最小不失真供屯电 压输出第一控制信号, 以控制电源模块为线路驱动器提供的供电电压为配置的工作模式对应的最小 不失哀.供屯屯压。 最小不火真供电电压即能够满足线路驱动器 (如包括信号检测及电荷泵电路和甲 乙类在内的辛类线路驱动器) 屯压需求的最小电压值。 上述对应关系中的线路驱动器的最小不失真 供电屯压是针对用户端口在. ί:作模式 Κ的信号特征预设置的, 这里的信号特征如用户端口在一种工 作模式下的最大输出功率、 输出信号的电压峰均比、 —极管压降值、 与信号检测及电荷泵电路连接 的甲乙类线路驱动器的净空电压、 以及电压波动等。 对应关系中的最小不失真供电电压的具体设置 方式在下述实施例中有结合具体屯路的举例说明。
S1 10的第二个具体实现的例子: 预先设置有用户端口的工作模式与信号检测及电荷泵电路中的 预定门限电平的对应关系, 根据该预先设置的对应关系确定用户端口配置的工作模式对应的预定门 限电平, 根据配置的工作模式对应的预定门限电平输出第二控制信号, 以控制信号检测及电荷泵电 路中的预定门限电平为配置的工作模式对应的预定门限电平。 上述对应关系中的预定门限电平是针 对在工作模式下提供给线路驱动器的最小不失真供电电压预设置的。 这里的预定门限电平可以为信 号检测及电荷泵电路提升甲乙类线路驱动器供电电压的起点电压。
S1 10的第三个具体实现的例子: 在判断出用户端口配置的工作模式为第一模式时, 输出关闭信 号检测及电荷泵电路的第三控制信号, 以控制信号检测及电荷泵电路处于停止工作状态。 上述第一 模式为: 用户端口输出信号的频率较高且输出信号的最大输出功率较低的工作模式。 这里的较高和 较低可以使用是否高于频率阈值和是否低于功率阈值来衡量。 上述频率阈值和功率阈值的大小可以 根据 xDSL用户板的实际应用情况来设置, 如频率阈值可以根据 xDSL用户板中的信号检测及电荷泵
路屯压推髙性能来设 a, 功率阈值可以根据 xDSL川户板屮提供给线路驱动器的 ϋ小不火 ¾电压来 设置, 以使信¾检测及屯荷¾屯路的功率消粍小髙 T甲乙类线路驱动器的功耗 'ιϊ 、。 设置频率阈值 的一个例子: 如 川户端口输出信号的频率高 Γ某个频率时, 信 检测及屯荷泵屯路不能够及时推 高甲乙类线路驱动器的供屯屯压 v+和 V-,以保证供屯屯压 v+和 V- 人屯压摆幅输出信号在时间上同 步, 则上述的某个频率即为频率阈值。
针对上述第二个 A体例于需耍说明的是, 信号检测及电荷泵屯路的初始默认状态为开启, 例如, 在 W户端口初始化过程中, 信号检测及屯荷泵屯路在没冇接收到关闭信号检测及屯荷泵 路的第二 控制信号之前始终处 Τ·开启状态。
S 1 10的第四个 Λ·体实现的例亍: 在判断出用户端口配置的 Γ.作模式为第—模式且上述获取的 前输出功率小: Ρ第—投式对应的预定功率值时, 输出关闭信号检测及电荷泵电路的第三控制信号, 以控制信号检测及电荷泵屯路处 Τ·停. I h: J:作状态。 输出关闭信号检测及屯荷泵电路的第二控制信号 的条件可以再增加一个条件: 即信号检测及电荷泵屯路当前处于开启 I:作状态, 也就是说, 在判断 出配置的工作模式为第二模式、 上述获取的当前输出功率小于第二模式对应的预定功率值且信号检 测及屯荷泵电路当前处于开启丄作状态时, 输出关闭信号检测及电荷泵电路的第三控制信号。 这里 的小 T也可以变换为小于^于。 上述第二模式为: 用户端口输出信号的频率较低且输出信号的最大 输出功率较高的 I:作模式。 这里的较低和较高可以使用是否低于频率阚值和是否高丁-功率阈值来衡 ii 上述频率阈值和功率阈值的人小可以根据 xDSL用户板的实际应 W情况来设置, 具体如上述第三 个 Λ体实现的例子中的描述。 在此不再重复说明。 另外, 这里的第二模式包括至少一种丄作模式, 在第二模块包括多种工作模式时, 第二模式包括的每 --种 Π作模式对应的预定功率值可以不同。 此 时, 上述第二模式对应的预定功率值为配置的丁作模式对应的预定功率值。
s 1 10的第五个 A-体实现的例子: 在判断出用户端口配置的工作模式为第二模式且上述获取的当 前输出功率不小于第二模式对应的预定功率值时,输出开启信号检测及电荷泵电路的第三控制信号, 以控制信号检测及电荷泵屯路处于下作状态。 输出开启信号检测及电荷泵电路的第三控制信号的条 件可以再增加一个条件: 即信号检测及电荷泵电路当前处于停止工作状态, 即在判断出配置的工作 模式为第二模式、 上述获取的当前输出功率不小于第二模式对应的预定功率值且信号检测及电荷泵 电路当前处于停止工作状态时, 输出开启信号检测及电荷泵电路的第三控制信号。 上述不小于也可 以变换为大于。 需耍说明的是, 上述第四个具体实现的例亍和第五个具体实现的例子可以作为两个 分支并行使用, 在这种并行使用的情况下, 当第四个具体实现的例子中的小丁-变换为小于等于时, 第五个具体实现的例子中的不小于应该变换为大于。
S1 10的第六个具体实现的例子: 在关闭信号检测及电荷泵电路后, 如输出了关闭信号检测及电 荷泵电路的第三控制信号后, 根据用户端口的当前输出功率计算提供给线路驱动器的最小不失真供 电电压, 根据计算出的最小不失真供电电压输出第一控制信号, 以控制电源模块提供给线路驱动器 的供电电压为根据当前输出功率计算出的最小不失真供电电压。
S 1 10可以包括上述举例的六个具体实现的例亍中的任意一个或者任意多个或者全部。 当 S1 10包 括了上述举例的六个具体实现的例亍时, 可以在最大程度上减小 xDSL用户板的能耗。
需耍说明的是, 实施例 '是针对 xDSL川户板屮的一个川户端 I I进行说明的, ¾ ¾xDSLW户板 中包含冇多个 户端口, 则卜.述¾施例 ΰ载的技术内容针对每 个 户端门都可以分别适 W。 另外, xDSLW户板中的多个 W户端口可以 Γ.作在相同的 I .作投式卜, 也可以 I:作在不同的 Γ.作投式下, 每 一个川户端口可以分别对应 个线路驱动器 (如包含有信号检测及屯荷泵 路和甲乙类线路驱动器 的辛类线路驱动器) , 即线路驱动器的数 ¾可以和 W户端口的数 相同。 本实施例不限制 xDSL 户 板中 W户端口及线路驱动器 的 1%体实现方式。
上述实施例一通过利川 xDSLW户板的 户端口配置的 Γ.作模式和用户端口的 前输出功率中 的至少一个参数产生控制信号, 在利川控制信号对提供给线路驱动器的最小不火真供屯屯压进行控 制时, 可以避免为线路驱动器提供过高 压而产生不必耍的能耗浪费现象 ·, 在利川控制信号对信号 检测及屯荷泵屯路中的预定门限电平进行控制时, 可以避免不同 I:作模式对应同一预定 Π限屯平而 产生线路驱动器的供电电压不必耍的成者不能够及时的跟随输出信号波形的现象; 在利用控制信号 对信号检测及电荷泵屯路的开启 /关闭进行控制时, 可以避免信号检测及屯荷泵电路不必耍的能耗浪 费现象; 冈此, 实施例一能够使提供给线路驱动器的最小不火真供电电压、 信号检测及电荷泵电路 中的预定门限电平或者信号检测及电荷泵电路的开启 /关闭 用户端口配置的」:作模式和当前输出 功率中的至少一个参数相匹配,从而实施例一能够提高 xDSL用户板的功率输出效率,最终降低 xDSL W户板的能耗。
实施例—、 提高线路驱动器功率输出效率的方法。 该方法的流程如附图 2所示。
图 2中, S200、 xDSLW户板的川户端口初始化之前, 检测 xDSLW户板的用户端口配置的工作模 式。 S200还可以包括: 在 W户端口正常. T.作过程中, 获取用户端口的当前输出功率。
S210、 根据配置的丁作模式输出控制信号 1 (即上述第一控制信号) , 利用控制信号 1来控制电 源模块为 xDSL 户板中该川户端口对应的线路驱动器(如辛类线路驱动器)提供的电压为用户端口 配置的工作模式对应的最小不火真供电电压 VS+。另外,如果用户端口配置的工作模式为第一模式, 则到 S230, 否则, 到 S220。
在 S210中, 可以根据预先设置的 I:作模式与最小不失真供电电压的对应关系确定配置的 Γ作模 式对应的最小不失真供电电压 VS+。
S220、 判断用户端口的当前输出功率是否小丁-配置的 T.作模式对应的预定功率值。 用户端口不 同的 .1 :作模式可以对应不同的预定功率值。 可以根据预先设置的 Ί :作模式和预定功率值的对应关系 确定用户端口配置的工作模式对应的预定功率值。如果在 S200中没有获取用户端口的当前输出功率, 则在 S220中, 可以实时获取用户端口的当前输出功率并进行当前输出功率 用户端口配置的工作模 式对应的预定功率值的比较。 如果当前输出功率小于用户端口配置的丄作模式对应的预定功率值, 则到 S230, 否则, 到 S240。
S230、 输出使信号检测及屯荷泵电路处丁关闭状态的控制信号 3 (即上述第三控制信号) , 即该 控制信号 3可以使信号检测及电荷泵电路不工作 (在输出该控制信号 3之前, 信号检测及电荷泵电路 处于开启状态) 。 到 S231。 需耍说明的是, 在 xDSL用户板的用户端口初始化后的正常工作过程中, 如果信号检测及电荷泵电路已经处于关闭状态, 则可以不再重复的输出控制信号 3。
S23 K 根据川户端口的 输出功率输 i控制信 l, 利川控制信 来控制屯源投块为 xDSLW 户板中该用户端口对应的线路驱动器捉供的供 压为根据该川户端 输出功率计算出的最小 不火真供屯屯 ff.vs+。
S240、 输出使信 检测及屯荷泵电路处 Γ开启状态的控制信兮 3, 即该控制信号 3可以使信号检 测及屯荷泵屯路 Γ.作。 到 S241。 需耍说明的是, 在 xDSL川户板的 W户端口初始化后的 常 Γ.作过程 中, 如果信号检测及屯荷泵屯路己经处 Γ幵启状态, 则可以不再 复的输出控制信号 3。
S24 K 根据川户端口配 B的 I:作模式输出控制信号 2 (即上述第—控制信号) , 以控制信号检测 及屯荷泵屯路中的预定门限电平为用户端口配置的 I:作模式对应的预定门限电平。 可以根据预先设 置的 I '.作投式 预定门限屯平的对应关系确定配 a的: I:作投式对应的预定门限屯平。需耍说明的是, 在 xDSL川户板的川户端口初始化后的正常 I:作过程中,如果信号检测及屯荷泵屯路不发生开启与关 闭的状态切换, 则在第一次输出了控制信号 2之后, 可以不再 S复的输出控制信号 2。
上述实施例—通过利用 xDSL川户板的 W户端口配置的丄作模式和用户端口当前输出功率产生 控制信号, 在利用控制信号对提供给线路驱动器的最小不火真供电电压进行控制时, 可以避免为线 路驱动器提供过高电压而产生不必耍的能耗浪费现象; 在利 ffl控制信号对信号检测及电荷泵电路中 的预定门限电平进行控制时, 可以避免不同工作模式对应同一预定门限电平而产生线路驱动器的供 屯屯压不必耍的成不及时的跟随输出信号波形的现象; 在利 ffl控制信号对信号检测及电荷泵电路的 幵启 /关闭进行控制时, 可以避免信号检测及电荷泵屯路不必耍的能耗浪费现象; 因此, 实施例二能 够使提供给线路驱动器的最小不失真供电电压、 信号检测及电荷泵电路中的预定门限电平和信号检 测及电荷泵电路的开启 /关闭与川户端口配置的 1:作模式和用户端口当前输出功率相匹配, 从而实施 例二能够最人程度的提高 xDSL用户板的功率输出效率, 最终在最人程度上降低了 xDSL用户板的能 耗。
卜.面以 VDSL2用户板为例, 通过实施例二至实施例五对提高线路驱动器功率输出效率的方法进 行详细说明。 需耍说明的是, 本发明实施例还可以适用丁 ·其它设置有信号检测及电荷泵电路以及与 信号检测及电荷泵电路连接的线路驱动器 (如甲乙类线路驱动器) 的 xDSL用户板。
实施例三、 针对用户端口 173工作模式的提高线路驱动器的功率输出效率的方法。 该方法的流程 如附图 3所示。
图 3中, S300、 检测 VDSL2用户板中用户端口配置的: 1:作模式和用户端口的当前输出功率。 S310、 在检测到 VDSL2用户板中用户端口配置的丁作模式为 17&工作模式后, 输出控制信号 1 , 通过控制信号 1来控制电源模块为线路驱动器提供的供电电压为 17a工作模式对应的最小不失真供电 电压 VS+ (如 14V) 。
S320、 输出控制信号 3, 通过控制信号 3来控制信号检测及电荷泵电路处于关闭状态 (在输出该 控制信号 3之前, 信号检测及电荷泵电路处丁 ·开启状态)。 需耍说明的是, 8310和8320可以没有执行 的先后顺序, 例如, S310和 S320可以并行执行, 也可以先执行 S320再执行 S310。
S330、 根据用户端口的当前输出功率输出控制信号 1 , 通过控制信号 1来控制电源模块为线路驱 动器提供的供电屯压为根据用户端口当前输出功率计算获得的最小不失真供电电压 VS +。
从上述实施例三的描述可知, hVDSL2W户板屮) lj户端 Π工作 17a I:作模式卜, 需耍关 W信号 检测及屯荷泵屯路, 下面结合附图 3A小-出的 -个几体的 VDSL2川户板对关闭信号检测及电荷泵屯路 的原闪进行说明:
附图 3A示出的 VDSL2W户板包括: 电源模块和辛类线路驱动器, 其中的辛类线路驱动器包括: 信兮检测及电荷泵屯路、 甲乙类线路驱动器、 串联屯阻 RS、 变压器 T和负载阻抗 RL等。 该 VDSL2用 户板的川户端口 I:作在 17a I:作模式下时, 户端口输出信号的特征包括如卜二个特征:
最人输出功率特征: 川户端口输出信号的最大输出功率通常为 14.5dBm, 上述 14.5dBm即为负载 阻抗 RL上的最人信号功率。
屯压峰均比特征: W户端口输山信号的电压峰均比通常很高, 如通常为 6.3。
频率特征: W户端口输出信号的频率较高, 如可以达到 ΠΜΗζ。
由 Τ· 户端口输出信号的频率 ΠΜΗζ属于较高频率, 闪此, 信号检测及电荷泵屯路难以及时的 推高甲乙类线路驱动器的供屯屯压 V+和 V-,即信号检测及电荷泵屯路难以保证 V+和 V-与人电压摆幅 输出信号在时间上保持同步, 从而信号检测及电荷泵屯路并不能够满足人电压摆幅输出信号对供电 电压的需求。
由丁 户端口输出信号的最大输出功率 14.5dBm不是很高, 闪此,如果将辛类线路驱动器当做甲 乙类线路驱动器来使用的话, 甲乙类线路驱动器的功率损耗值并不会很大。 而且, 如果将辛类线路 驱动器仍然当作 通的辛类线路驱动器来使用的话, a然信号检测及屯荷泵屯路能够使甲乙类线路 驱动器丄作在更低的供屯屯压, 以减少甲乙类线路驱动器的功率损耗, 但是, 信号检测及电荷泵屯 路处于工作状态所增加的功率损耗可能会超过上述降低的功率损耗, 最终反而会降低该辛类线路驱 动器整体的功率输出效率。
由此可知, 在 VDSL2用户板的川户端口工作在 17a_r:作模式的情况下, 关闭信号检测及电荷泵电 路, VDSL2用户板中的辛类线路驱动器被当作甲乙类线路驱动器来使用是一种可以提高线路驱动器 功率输出效率的技术方案。
从上述实施例二的描述可知, 在 VDSL2用户板中用户端口 1:作在 17a丁作模式下时, 需耍通过控 制信号 1来控制电源模块为辛类线路驱动器提供的供电电压为 17a「:作模式对应的最小不失真供电电 压 VS+ (如 14V ) , 下面结合附图 3A示出的一个具体的 VDSL2用户板对 17al作模式对应的最小不 失真供电电压 VS +为 14 V的计算过程进行说明:
设定 RS=5.1ohm, RL=100ohm, 二极管 D的压降为 0.4V, 变压器 T的变比 l :n为 1 :1.4, 输出信号的 电压峰均比 (PAR ) 为 6.3, 变压器丁带来的信号损失率为 5% , 负载阻抗 RL上的最大信号功率为 14.5dBm, 甲乙类线路驱动器的净空电压为 1.5V, 电源电压的波动范围为 +/-5%, VS-接地。
在上述设定的情况下, 17&丄作模式对应的最小不失真供电电压 VS+为 14V的计算过程如下: 首先, 将用户端口在 17aT作模式下输出信号的最人输出功率 14.5dBm换算成负载阻抗 RL上的功 率 PRL(W):
RL ( W ) 10 10 x 0 .001 w
PRL(W)s0.02818W;
VRL(RMS) s 1 .68Vrms;
之后, 计算在负载阻抗 RL上的均方根电压 VR1 RMS)的情况卜, 负载阻抗 RL上的均方根电流 IRL(RMS)为:
IRL(RMS)= VRL(RMS)/RL = 0.0168Arms;
之后, 计算负载阻抗 RL上的信号峰值屯压 Vpkl为:
Vpkl = VRL(RMS)*PAR = 1.68*6.3~10.58V;
之后, 计算变压器 T次级的信号峰值电压 Vpk2为:
Vpk2=Vpkl * l /n*(l +5%)/l = 10.58/1.4* 105/100 7.9V;
之后, 计算甲乙类线路驱动器输出信号的峰值电压 Vpk3为:
Vpk3 =Vpk2 + 2*RS*IRL(RMS)*n*PARs9.4V。
其中的甲乙类线路驱动器的供屯屯压为:
(V+ - V-) pk-= Vpk3 +(1.5*2)= 9.4V + (1.5*2)=12.4V;
最后,计算电源模块为信号检测及屯荷泵电路提供的最小不失真供给电压为: (VS+)-(VS-)=(V+ - V-) pk +(0.4*2)=13.2V;
在考虑了 +/-5%的电源电压波动范围后, (VS+)— (VS-)大约等于 14V。
由于 VS-接地, 因此, 17a丁作模式对应的最小不失真供电电压 VS+为 14V。
当用户端口 Ί:作在 17al:作模式下且关闭了信号检测及电荷泵电路后, 用户端口输出信号的波形 和供电电压的关系如附图 3B所示。
图 3B的水平坐标轴为时间 t, 垂 ϊί坐标轴为电压 V (伏) , 从图 3Β示出的内容可知, 电源模块提 供给关闭了信号检测及电荷泵¾路的辛类线路驱动器的最小不失真供电电压 VS+为 14V, 该 14V电源 电压无需经过电荷泵电路进行电压提升就能够满足用户端口的最大输出功率 14.5dBm时,信号最大电 压摆幅对供电屯压 (V+&V- ) 的需求。
在 17a:丄:作模式下, 根据用户端口的当前输出功率计算提供给线路驱动器的的最小不失真供电电 压 VS +的计算过程如下: 首先, 将 W户端口在 17aJ:作模式下当前输出信号的输出功率 PRL(dBtn)换 算成负载阻抗 RL上的功率 PRL(W):
PRL ( dBm )
之后, 计算在负载阻抗 RL上的功率 PRL(W)的情况下, 负载阻抗 RL上的均方根电压 VRL(RMS)为:
r RL ( RMS ) ― - 1 RL { W ) ^ Line
之后, 计算在负载阻抗 RL I:的均力-根 1 压 VRL( MS)的怙况卜, 负载阻抗 RL上的均方根屯流 IRL(RMS)为:
IRL(RMS) = VRL(RMS)/RL;
之后, 计算负载阻抗 RL上的信号峰值屯压 Vpkl为:
Vpkl = VRL(RMS) * PAR
之后, 计算变压器 T次级的信号峰值屯压 Vpk2为:
Vpk2= Vpkl * l/n*(l +5%)/l ;
之后, 计算甲乙类线路驱动器输出信号的峰值电压 Vpk3为:
Vpk3 = Vpk2 + 2*RS*IRL(RMS)*n*PAR
其中的甲乙类线路驱动器的供屯屯压为- (V+ - V-) pk-= Vpk3 +(1.5*2) ;
最后,计算屯源模块为信号检测及电荷泵电路提供的最小不火真供给电压为:(VS+)— (VS-)=(V+ - V-) pk +(0.4*2)
在根据用户端口的当前输出功率计算提供给线路驱动器的最小不火真供电屯压 VS +的过程中 同样可以考虑屯源电压波动范闱。
上述实施例二通过在 VDSL2用户板的用户端口 Ί '.作在 17a_ Γ作模式时, 利用控制信号 1对电源模 块提供给线路驱动器的最小不失真供屯电压进行控制, 利用控制信号 3关闭信号检测及电荷泵电路, 尽可能的避免了 17a: l:作模式下的所冇不必耍的功率消耗浪费现象,从而实施例二能够在最大程度上 提高 VDSL2用户板的用户端口在 17aT.作模式下的功率输出效率, 获得了 17a I:作模式下的最优功率 输出效率, 最终在最大程度上降低了 VDSL2用户板的用户端口在 17a下作模式- 的能耗。
实施例四、针对 ADSL2+— I:作模式的提高线路驱动器的功率输出效率的方法。该方法的流程如附 图 4所示。
图 4中, S400、 检测 VDSL2川户板中 ffl户端口配置的丄作模式和用户端口的当前输出功率。 S410、 在检测到 VDSL2W户板中用户端口的配置的工作模式为 ADSL2+ I:作模式时, 输出控制 信号 1,通过控制信号 1来控制电源模块提供给辛类线路驱动器的供屯电压为 ADSL2+ I:作模式对应的 最小不失真供电电压 VS+ (如 1 1 V) 。
S420、 判断 VDSL2用户板中用户端口的当前输出功率是否小于 ADSL2+丄作模式对应的预定功 率值, 如果小丁-, 到 S430, 否则, 到 S440。
S430、 输出控制信号 3, 通过控制信号 3来控制辛类线路驱动器中的信号检测及电荷泵电路处于 关闭状态。 到 S431。
S43 根据用户端口的当前输出功率输出控制信号 1, 通过控制信号 1来控制电源模块为线路驱 动器提供的供电电压为用户端口的当前输出功率对应的最小不失真供电电压 VS+。
S440、 输出控制信号 3, 通过控制信 3来控制信号检测及屯荷 屯路处 Γ开启状态。 到 S441。 ¾耍说明的是, 如¾在输出控制 之前, 信 检测及屯荷泵屯路已经处 Γ开启状态, 则可以不输 出控制信 3。
S441、 输出控制信号 2, 通过控制倍 42来控制信号检测及屯荷泵屯路中的预定门限电平为 ADSL2+ Γ.作模式对应的预定门限屯平。
从上述实施例四的描述可知, 在 VDSL2W户板中川户端口 I .作在 ADSL2+ 1 :作模式下时, 可以 在川户端口的当前输出功率小于 ADSL2+ I:作投式对应的预定功率值的情况卜使信号检测及电荷泵 屯路处 不 I:作状态,在当前输出功率不小丁 ·Α08ί2+ Ι :作模式对应的预定功率值的情况下使信号检 测及屯荷泵屯路处于: I:作状态。 卜面结合附图 3Α示出的一个 Α·体的 VDSL2HJ户板对 ADSL2+ I:作模 式卜'开启 /关闭信号检测及屯荷泵屯路的原闪进行说明:
附图 3Α示出的 VDSL2用户板的用户端口 Γ.作在 ADSL2+ I:作模式下时, .W户端口输出信号的特 征包括:
最大输出功率特征: 用户端口输出信号的最大输出功率通常为 19.8dBm, 上述 19.8dBm即为负载 阻抗 RL上的最大信号功率。
电压峰均比特征:用户端口输出信号的屯压峰均比通常为 5.5 ,比 17a T.作模式 F的电压峰均比小。 频率特征: W户端口输出信号的频率通常较低, 如只达到 2.2MHz, 比 17a—l :作模式下的频率低。 由 T 户端口输出信号的频率 2.2MHz属丁较低频率, 闪此, 信号检测及电荷泵电路能够及时的 推高甲乙类线路驱动器的供屯屯压 V+和 V-,即信号检测及屯荷泵电路能够保证 V+和 V-与大电压摆幅 输出信号在时间上保持同步, 从而信号检测及电荷泵电路能够满足大电压摆幅输出信号对供电电压 的需求。
由丁 户端口输出信号的最人输出功率 19.8dBm较高, 闪此, 如果在当前输出功率较高 (高丁- ADSL2+ 1:作模式对应的预定功率值)时,将辛类线路驱动器以普通的辛类线路驱动器模式使用的话, 通过信号检测及电荷泵电路降低最小不火真供屯电压 VS+所减少的甲乙类线路驱动器的功率损耗值 高于信号检测及电荷泵屯路处于 I:作状态时所消耗的能耗。 而如果在当前输出功率较低时, 将辛类 线路驱动器当做甲乙类线路驱动器来使用的话, 甲乙类线路驱动器的功率损耗值并不会很大, 而且, 如果在当前输山功率较低时, 仍然将辛类线路驱动器当作辛类线路驱动器来使用的话, 虽然信号检 测及电荷泵电路能够使甲乙类线路驱动器_ Γ.作在更低的供电电压, 以减少甲乙类线路驱动器的功率 消耗, 但是, 信号检测及屯荷泵电路处于 Ί :作状态所增加的功率消耗可能会超过上述降低的功率消 耗, 最终反而会降低辛类线路驱动器整体的功率输出效率。
由此可知, 在 VDSL2用户板的用户端口 1:作在 ADSL2+T.作模式的情况下, 在用户端口输出大 功率信号时控制信号检测及电荷泵电路处 丄作状态 (即应用辛类线路驱动器模式) , 而在用户端 口输出小功率信号时控制信号检测及电荷泵屯路处于不丄作状态 (即应用甲乙类线路驱动器模式) 是一种可以提高线路驱动器功率输出效率的技术方案。
从上述实施例四的描述可知, 在 VDSL2用户板中用户端口 I:作在 ADSL2+工作模式下时, 需要 通过控制信号 1来控制电源模块为辛类线路驱动器提供的电压为 1ADSL2+工作模式对应的最小不失
i 供屯 压 VS+ (如 1 1 V ) , 卜'面结合附 I冬 I3A不出的 '个 Π·体的 VDSL2川户板对 ADSL2+ I:作投式 对应的最小不火 Κ供 ffiVS+为 1 1 V的计算过 进 简^说明:
&定 RS=5.1 ohm, L=100ohm , 二极管 D的 jhP 为 0.4V , 变压器 T的变比 l :n为 1 : 1 .4, 输出信号的 压峰均比为 5.5, 变压器丁带来的信号损火率为 5%, 负载阻抗 RL上的最人信号功率为 19.8dBm, 甲 乙类线路驱动器的净仝'屯压为 1.5V, 屯源屯压的波动范围为 +/-5%, VS-接地。
17士:上述设定的情况 , ADSL2+ I:作投式对应的最小不火真供屯屯压 VS +为 1 I V的计算过; ^ ;上 述实施例二中的 17a I:作投式对应的最小不火真供屯屯压 VS +为 1 1 V的计算过程基本相问,在此不再 详细说明。
利 上述实施例二中记载的公式计算出的 A D S L2+ Γ.作模式对应的最小不火哀.供电电压 (VS+MVS- )可以为 10.025V, 在考虑了 +/-5%的屯源屯压波动范围后, ADSL2+ [:作模式对应的最小 不火真供屯屯压 (VS+MVS-)可以为 10.5V。在实际应用中, 考虑到屯源模块提供的电压精确程度, 可 使 (VS+HVS-)设置为 1 1 V。 由丁 -VS-接地, 冈此, ADSL2+ 作模式对应的最小不失真供电屯压 VS + 为 1 1V。
当用户端口工作在 ADSL2+ I:作模式时, 用户端口输出信号的波形和供屯电压的关系如附图 4A 所示。
图 4A的水平坐标轴为时间 t, ^直坐标轴为电压 V (伏) , 从图 4A示出的内容可知, 在电源模块 提供给辛类线路驱动器的最小不火 供电屯压 VS+为 1 I V时, 甲乙类线路驱动器的供电电压 V+和 V- 经过屯荷泵电路的提升后, 能够满足 W户端口在 ADSL2+ I:作模式下的最人输出功率为 19.8dBm时, 输出信号的最大屯压摆幅对供电电压的需求。
从图 4A示出的内容还可知, 当用户端口输出信号的正向电压摆幅大于 8.6V时, 电荷泵电路将推 高甲乙类线路驱动器的供屯屯压 V+和 V-, 以使甲乙类线路驱动器的供电电压跟随用户端口输出信号 的电压波形。 如果辛类线路驱动器增益为 10V/V, 则信号检测电路中 ADSL2+ 作模式对应的预定门 限屯平可以为 0.86V。 也就是说, 在 ADSL2+ I:作模式卜, 输入信号 iH向电压摆幅大于预定门限电平 0.86V时, 则可以截取电压摆幅超过部分的输入信号进行轨到轨的电压放大, 然后通过电荷泵电路将 放大波形电压叠加到甲乙类线路驱动器的供电电压上, 使甲乙类线路驱动器的供电电压波形能够跟 随用户端口输出信号的电压波形, 并与用户端口输出信号的电压波形保持同步。 输出信号的负向电 压摆幅也是如此。
从图 4A示出的内容还可知, 在 ADSL2+ j:作模式和最小不失真供电电压为 1 1V的情况下, 用户端 口当前输出功率小于 ADSL2+丄作投式对应的预定功率值时,在不需要电荷泵电路提升甲乙类线路驱 动器的供电电压 V+和 V-伏值的情况卜',就可以满足当前输出功率下信号最火屯压摆幅对供电电压 V+ 和 V-的需求, 因此, 信号检测及屯荷泵电路可以处丁 ·关闭 (即不丄作) 状态。 在信号检测及电荷泵 屯路关闭态下,通过根据用户端口当前输出功率输出控制信号 1来调整电源模块提供的最小不失真供 屯电压 vs +,使电压模块提供的最小不失真供电电压 vs +能够刚好满足当前输出功率 F信号最火电 压摆幅对供电电压 +和 V-的需求, 避免了不必耍的能耗。
上述 ADSL2+工作模式对应的预定功率值的计算过程可以如下:
ADSL2+ I :作投式下, ^源投块. 信¾检测及屯荷泵屯路提供的 ϋ小不火真供 ΐ屯压为 1 I V 时, 考虚到 5 %的屯源波动, 信 检测及 荷泵屯路的供 /k的人约为 10.5V , 即 (VS+)— (VS — )= 10.5V。 此时, 甲乙类线路驱动器的供屯屯 ff:人约为 9.7V , 即 (V+ - V— ) = (VS+)— (VS— )— (0.4*2)=9.7V。
在关闭了信号检测及屯荷泵屯路且在 9.7V供屯电压情况卜', 甲乙类线路驱动器能够输山的不火
S信号的最人屯压摆幅 Vpk3为:
Vpk3=[(VS+)—(VS— )]— 1.5 *2 =6.7V;
此时, 变压器 T的次级信号的最人屯压摆幅 Vpk2为:
Vpk2=Vpk3*[ (RL/n A2)/( L/nA2+RS*2)]=5.584V;
此时, 变压器 T的初级信号的最人屯压摆幅 Vpkl为:
Vpkl=Vpk2* n *( 100% - 5%)=(5.584* 1.4)*( 100% - 5%) =7.43 V;
负载阻抗 RL上的均值屯压 VRL(rms)为:
VRL(rms)=Vpkl/PAR =7.82V/5.5=1.35 V;
负载阻抗 RL上的信号功率为:
PRL(W) = VRL(rms)A2 / RL =0.018W ;
负载阻抗 RL上信号功率换算成 dBm, 则 PRL(dBm)为:
PRL(dBm) = 1 Olog(PRL(w)* 1000) = 13dBm。
上述计算获得的 13dBm即为 ADSL2+丁作模式对应的预定功率值。
上述实施例四通过在 VDSL2用户板的用户端口: I:作在 ADSL2+ I:作模式时, 利用控制信号 1对线 路驱动器的最小不失真供电屯压进行控制,利用控制信号 2对信号检测及电荷泵电路中的预定门限电 平进行控制, 利用控制信号 3对信号检测及屯荷泵电路的开启 /关闭进行控制, 尽可能的避免了 ADSL2+. 1:作模式下所有不必耍的能耗浪费现象, 从而实施例四能够在最大程度上提高 VDSL2用户 板的 W户端口在 ADSL2+ :作模式下的功率输出效率, 能够获得 ADSL2+工作模式下最优的功率输出 效率, 最终降低了 VDSL2川户板的用户端口在 ADSL2+ I:作模式下的能耗。
实施例五、针对 8b工作模式的提高线路驱动器的功率输出效率的方法。该方法的流程如附图 5所 示。
图 5中, S500、 检测 VDSL2用户板中用户端口配置的工作模式和用户端口的当前输出功率。 S510、 在检测到 VDSL2用户板中用户端口配置的工作模式为 8b工作模式时, 输出控制信号 1, 通 过控制信号 1来控制电源模块为辛类线路驱动器提供的电压为 8bl作模式对应的最小不失真供电电 压 VS+ (如 12V) 。
S520、 判断 VDSL2用户板中用户端口的当前输出功率是否小于 8b丄作模式对应的预定功率值, 如果小于, 到 S530, 否则, 到 S540。
S530、 输山控制信号 3 , 通过控制信号 3来信号检测及电荷泵电路处于关闭状态。 到 S531。 S531、 根据用户端口的当前输出功率输出控制信号 1, 通过控制信号 1来控制电源模块为辛类线 路驱动器提供的供电屯压为用户端口的当前输出功率对应的最小不失真供电电压 VS+。
S540、 输出控制信 3, 通过控制佶兮 3来控制 ίίΤ' 检测及 荷 ¾屯路处 Γ幵启状态。 到 S541。 需耍说明的是, 如¾在输出控制信 '' 3之 ιϊίί , 信 检测及 ^ I泵屯路己经处 Γ开启状态, 则可以不输 出控制信号 3。
S54 K 输山控制信号 2, 通过控制信号 2来控制信号检测及屯荷泵屯路中的预定 Π限屯平为 8b I: 作模式对应的预定门限屯平。
从上述实施例五的描述可知, 在 VDSL2用户板中 W户端口 I:作在 8b I:作模式卜时, 可以在当前 输山功率小丁 ·8ΐ3_ 作模式对应的预定功率值的情况卜使信号检测及屯荷泵屯路处丁 '不 Γ.作状态, 在 当前输出功率不小丁 ·8(5_ Γ.作投式对应的预定功率值的情况卜'使信号检测及屯荷泵屯路处 Τ· I:作状 态。下面结合附图 3Α示出的一个 I体的 VDSL2HJ户板对 8b Γ.作模式下开启 /关闭信号检测及屯荷泵电 路的原 W进行说明:
附图 3A示出的 VDSL2 户板的川户端口 I:作在 8b I:作模式卜时, 川户端口输出信号的特征包 括:
最人输山功率特征: 用户端口输出信号的最大输出功率通常为 20.4dBm, 20.4dBm即为负载阻抗 RL上的最大信号功率。
电压峰均比特征: W户端口输出信号的 压峰均比通常为 6.3,与 17aT.作模式下的 ¾压峰均相当。 频率特征: 户端口输出信号的频率通常较低, 如 8MHz, 比 17a l :作模式下的频率低。
由 T川户端口输出信号的频率 8MHz属于较低频率, 闪此, 信号检测及屯荷泵电路能够及时的推 髙甲乙类线路驱动器的供电电压 V+和 V-,即信号检测及电荷泵电路能够保证 V+和 V-与大电压摆幅输 出信号在时间上保持同步, 从而信号检测及电荷泵屯路能够满足人电压摆幅输出信号对供电电压的 需求。
由 T川户端口输出信号的最人输出功率 20.4dBm较高, 因此, 如果在当前输出功率较高(高于 8b Γ作模式对应的预定功率值) 时, 将辛类线路驱动器以辛类线路驱动器模式使用的话, 通过信号检 测及电荷泵电路降低最小不火真供屯电压 VS+所减少的甲乙类线路驱动器的功率损耗值高于信号检 测及电荷泵屯路处于工作状态时所消耗的功率。 而如果在当前输出功率较低时, 将辛类线路驱动器 当做甲乙类线路驱动器来使用的话, 甲乙类线路驱动器的功率消耗值并不会很大, 而且, 如果在当 前输出功率较低时, 仍然将辛类线路驱动器当作辛类线路驱动器来使用的话, 虽然信号检测及电荷 泵电路能够使甲乙类线路驱动器: I:作在更低的供电电压, 以减少甲乙类线路驱动器的功率消耗, 但 是, 信号检测及电荷泵电路处于 I:作状态所增加的功率消耗可能会超过上述降低的功率消耗, 最终 反而会降低辛类线路驱动器整体的功率输出效率。
由此可知, 在 VDSL2用户板的 户端口工作在 8bl作模式的情况下, 在用户端口输出大功率信 号时控制信号检测及电荷泵屯路处于丄作状态 (即应用辛类线路驱动器模式) , 而在用户端口输出 小功率信号时控制信号检测及屯荷泵电路处 τ·不工作状态 (即应用甲乙类线路驱动器模式) 是一种 可以提高线路驱动器功率输出效率的技术方案。
从上述实施例五的描述可知, 在 VDSL2用户板中用户端口 Τ:作在 8bl作模式下时, 需要通过控 制信号 1来控制电源模块为信号检测及电荷泵屯路提供的电压为 8bl作模式对应的最小不失真供电
iUH VS+ (如 12V ) , 下 fii结合附 Ι 3Α ί Ι 1的 个 Π.体的 VDSL2川户板对 8b I:作投式对应的最小不 火 ¾供 屯压 VS +为 12 V的计^过 进 ί Γ简单说明:
设定 RS=5.1 ohm, RL=100ohm , ―.极管 D的压降为 0.4V, 变压器 T的变比 l :n¾ l : 1.4, 输出信号的 屯压峰均比为 6.3, 转换损火率为 5% (即变压器 T带来的信号损火率为 5% ) , 负载阻抗 RL上的最人 信号功率为 20.4dBm, 甲乙类线路驱动器的净空电压为 1.5V, 屯源屯压的波动范闱为 +/-5%, VS_接 地。
在上述设定的情况下, 8b I:作投式对应的最小不火真供电电压 VS+为 12V的计算过程 上述实 施例二中的 17a I:作模式对应的最小不火 ¾供电屯压 VS+为 1 1 V的计算过程基本相同,在此不再详细 说明。
利用上述实施例二中记载的公式计算出的 8b I:作投式对应的最小不火 ¾供电电压 (VS+)— (VS
-)=(18.3+(0.4*2))/2=22.57/2V, 即 1 1.285V。 在考虑了 +/-5%的电源屯压波动范围后, 8b工作模式 对应的最小不失真供屯屯压人约可以为 1 1.85V。 在实际应用中, 考虑到屯源模块提供的电压精确禾 度, 可使 (VS+)— (VS— )设 ¾为 12V。 由于 VS—接地, 闪此, ADSL2+ I:作模式对应的最小不失真供 电屯压 VS +为 12V。
当 W户端口工作在 8b: 作模式时, 用户端口输出信号的波形和供屯电压的关系如附图 5A所示。 图 5A的水平坐标轴为时间 t, ¾直坐标轴为电压 V (伏) , 从图 5A示出的内容可知, 在屯源模块 提供给辛类线路驱动器的最小不火真供电屯压 VS+为 12V时, 甲乙类线路驱动器的供 电压 V+和 V- 经过屯荷泵电路的提升后,能够满足用户端口在 8bT作模式下的最人输出功率为 20.4dBm时,输出信 号的最大电压摆幅对供电电压的需求。
从图 5A示出的内容还可知, 当用户端口输出信号的正向电压摆幅大于 9.78V时, 电荷泵电路将推 高甲乙类线路驱动器的供电电压 V+和 V-, 以使甲乙类线路驱动器的供电电压跟随用户端口输出信号 的电压波形。 如果辛类线路驱动器增益为 10V/V, 则信号检测电路中 81)工作模式对应的预定门限电 平可以为 0.978V。 也就是说, 在 8b Γ.作模式下, 输入信号正向屯压摆幅人丁 ·预定门限屯平 0.978V时, 则可以截取电压摆幅超过部分的输入信号进行轨到轨的电压放大, 然后通过电荷泵电路将放火波形 电压叠加到甲乙类线路驱动器的供屯屯压上, 使甲乙类线路驱动器的供电电压波形能够跟随用户端 口输出信号的电压波形, 并与用户端口输出信号的屯压波形保持同步。 输出信号的负向电压摆幅也 是如此。
从图 5A示出的内容还可知, 在 8bT作模式和最小不失真供电电压为 12V的情况下, 用户端口当 前输出功率小于 8bl作模式对应的预定功率值时, 在不需耍电荷泵电路提升甲乙类线路驱动器的供 电电压 V+和 V-伏值的情况-卜,就可以满足当前输出功率下信号最人电压摆幅对供电电压 V+和 V-的需 求, 因此, 信号检测及电荷泵电路可以处 Τ关闭 (即不丄作) 状态。 在信号检测及电荷泵电路关闭 态下,通过根据用户端口当前输出功率输出控制信号 1来调整电源模块提供的线路驱动器的最小不失 真供屯电压 VS +,使电压模块提供的最小不失真供电电压 VS+能够刚好满足当前输出功率下信号最 大电压摆幅对供电电压 +和 V-的需求, 避免了不必耍的能耗。
在上述实施例五中, 8bl作模式对应的预定功率值的计算过程与上述实施例四中记载的 ADSL2+
工作投式对应的预定功率佰的计兌过 木相问, A此不在洋细说明。
上述实施例五通过在 VDSL2川 &的川广端 I I工作十: 8b工作投式时,利 W控制信号 1对提供给线 路驱动器的最小不 i'i.供屯屯)- k进行控制,利川控制信 2对信号检测及屯荷泵屯路中的预定门限屯 平进行控制, 利 控制信兮 3对信 检测及屯荷 ^ 路的幵启 /关 进行控制, 尽可能的避免 f 8b Γ. 作模式卜所冇不必耍的能耗浪费现象, 从而实施例五能够在最人 ¾度上提高了 VDSL2 户板的 HJ户 端口在 8b Γ.作投式卜的功率输出效率, 能够获得 8b Γ.作模式下最优的功率输出效率, 最终在最人程 度上降低了 VDSL2川户板的川户端口在 8b Γ.作投式卜 '的能耗。
实施例六、 提高线路驱动器功率输出效率的装 ffi。 该装 S的结构如附图 6所示。
图 6中的装 B包括: 获取单元 600和控制单元 610。
获取单元 600, 川丁 ·获取 xDSL川户板的当前 I:作参数, 所述当前 I:作参数包括: xDSLW户板的 户端口配置的: I:作模式和用户端口的当前输出功率中的至少一个。
获取单元 600可以在 xDSLW户板的 W户端口初始化之前获取用户端口配置的」:作模式, 如果 xDSLW户板可以在丄作过程中变更用户端口配置的: I:作模式且变更后的配置的 I:作模式可以在用 户端口止常 I:作过程中被成功激活,则获取单元 600可以通过定时获取等方式获取川户端口配置的:]: 作模式。获取单元 600可以在川户端口初始化过程中获取用户端口的当前输出功率, 也可以在用户端 口的正常过程中采 W实时获取等方式获取 户端口的当前输出功率。获取单元 600可以通过检测用户 端口的实际输出获得用户端口的当前输山功率, 也可以根据输入信号的人小推算获得用户端口的当 前输出功率。
控制单元 610, 用丁 ·根据获取单元 600获取的当前 I:作参数确定针对 xDSL用户板中的线路驱动器 的控制信号, 并输出控制信号。 这里的控制信号包括: 第一控制信号、 第―控制信号和第二控制信 号中的至少一个。 第一控制信号用于控制提供给线路驱动器的最小不失真供电电压, 该最小不失真 供电电压可以通过信号检测及电荷泵电路作 W在与信号检测及电荷泵屯路连接的线路驱动器 (如甲 乙类线路驱动器) 上。 也可以说第一控制信号是对为线路驱动器提供电压的电源模块进行控制, 使 屯源投 '块根据第一控制信号为线路驱动器提供相应的供电电压。 第二控制信号用于控制信号检测及 屯荷泵电路中的预定门限屯平, 该预定门限电平为使线路驱动器的供电电压跟随输出信号波形的门 限值。 第二控制信号用于控制开启 /关闭信号检测及电荷泵电路, 即第三控制信号是对信号检测及电 荷泵电路是否需耍工作进行控制。
控制单元 610根据获取单元 600获取的当前 Γ作参数确定针对 xDSL用户板中的信号检测及电荷 泵电路的控制信号的原则可以为: 控制信号与当前工作参数相匹配, 即控制单元 610可以根据提供给 线路驱动器的最小不失真供电电压和用户端口配置的工作模式相匹配的原则输出第一控制信号, 控 制单元 610可以根据提供给线路驱动器的供电电压和用户端口的当前输出功率相匹配的原则输出第 一控制信号,控制单元 610可以根据信号检测及电荷泵电路中的预定门限电平和用户端口配置的工作 模式相匹配的原则输出第二控制信号,控制单元 610可以根据信号检测及电荷泵电路的开启和关闭状 态和用户端口配置的工作模式相匹配的原则输出第三控制信号。这样, 控制单元 610通过使控制信号 与 xDSL用户板的当前工作参数相匹配, 可以减少 xDSL用户板中的不必要能耗。 这里的不必要能耗
"ί以山信 检测及屯 泵屯路不必耍的 I:作而产 也可以屮为线路驱动器提供了卨 前输出功 率耍求的屯压而产 ; 还可以山倍1,)检测及 ¾屯路根据 限 甲 -不必耍的使线路驱动器的 供屯屯压跟随输出信号波形而产 ^。
控制单元 610包括的第 组子单元 i」了以为: 存储子单元 61 1和第一控制于单元 612。
存储子单元 61 1, ^ 存储用户端口的 Γ.作投式 提供给线路驱动器的最小不火真供屯屯压的对 应关系。 上述对应关系中的提供给线路驱动器的最小不火真供屯屯压是针对 J户端口 1 :作投式卜 '的 信号特征预设置的, 这里的信号特征如川户端口在 -种 Γ.作模式卜的最人输出功率、 输出信号的屯 压峰均比、 二极管压降值、 信^检测及屯荷泵屯路连接的甲乙类线路驱动器的净空屯压、 以及屯 压波动 。 对应关系中的最小不火 ¾供电屯压的 A.体设 方式在上述实施例二中冇结合 Λ体屯路的 举例说明。
第一控制子单元 612, m丁_在 xDSLW户板的用户端口初始化过 中, 根据存储子单元 61 1中存储 的对应关系确定用户端口配置的 I:作模式对应的最小不失真供屯电压, 并根据上述配置的工作模式 对应的最小不失真供屯屯压输出第一控制信号, 以控制电源模块为线路驱动器提供的供屯屯压为配 置的 Γ.作模式对应的最小不火真供电屯压。
控制单元 610包括的第—组于单元可以为: 存储于单元 61 1和第—控制子单元 613。
存储子单元 61 1 , W丁存储用户端口的_ I:作模式 信号检测及电荷泵电路中的预定门限屯平的对 应关系。 这里的预定门限屯平可以为信号检测及电荷泵电路提升甲乙类线路驱动器供屯电压的起点 屯压。
第二控制子单元 613, 根据存储子单元 61 1存储的对应关系确定用户端口配置的 Γ作模式对 应的预定门限电平, 并根据配置的 I:作模式对应的预定门限电平输出第—控制信号, 以控制信号检 测及电荷泵电路中的预定门限屯平为配置的 Ί:作模式对应的预定门限屯平。
控制单元 610包括的第三组子单元可以为: 第二控制子单元 614。
第三控制子单元 614, W于在 户端口配 S的 作模式为第一模式时, 输出关闭信号检测及屯荷 泵屯路的第三控制信号, 以控制信号检测及屯荷泵屯路处于停止 I:作状态。 上述第一模式为: 用户 端口输出信号的频率较高且输出信号的最人输出功率较低的丄作模式, 如 al:作模式等。这里的较 高和较低可以使用是否高于频率阈值和是否低于功率阈值来衡量。 上述频率阈值和功率阈值的大小 可以根据 xDSL用户板的实际应用情况来设 S, 如频率阈值可以根据 xDSL用户板中的信号检测及电 荷泵电路电压推高性能来设置,功率阈值可以根据 xDSL用户板中提供给线路驱动器的最小不失真电 压来设 S, 以使信号检测及电荷泵屯路的功率消耗不高丁 ·甲乙类线路驱动器的功耗节省。 设置频率 阈值的 .体例于在上述实施例一中冇记载, 在此不再重复说明。
控制单元 610包括的第四组子单元可以为: 存储子单元 61 1和第四控制子单元 615。
存储亍单元 61 1, 用于存储用户端口的 I:作模式与预定功率值的对应关系。
第四控制子单元 615, 用于在川户端口配置的工作模式为第二模式且根据存储子单元 61 1存储的 对应关系确定出当前输出功率小于第二模式对应的预定功率值时, 输出关闭信号检测及电荷泵电路 的第三控制信号, 以控制信号检测及电荷泵电路处丁 -停止 I:作状态。 这里的小于也可以变换为小于
¾: TO 上述第二投式为: 川户端 I I输; I I信 的频率较低 W.输出信 4的 人输出功率较高的工作投式, 如 ADSL2 +工作投式 者 8b工作投 Λ 。 这' i!的较低和较 Α可以使 是否低 Τ频率阈值和是否卨 功率阈值来衡 ¾。 上述频率阈值和功率阈 il'i的人小可以根据 xDSL川户板的实际应 MJ情况来设¾, A- 体如上述实施例一中的描述。 在此不再 ¾复说明。 另外, 这里的第—投式包括至少一种 I作投式, 在第二模块包括多种 Γ.作投式时,存储子单元 61 1存储有第二模式包括的每一种 Γ.作模式分别对应的 预定功率, 每一种 Ί :作投式对应的预定功率值可以不同。
第四控制于单元 615,还川丁在川户端口配置的 I:作模式为第二投式且川户端口的 前输出功率 不小 Τ·第二模式对应的预定功率值时, 输出开启信号检测及屯荷泵屯路的第二控制信号, 以控制信 号检测及屯荷泵电路处丁 · Γ.作状态。第四控制于单元 615输出开启信号检测及电荷泵屯路的第二控制 信号的条件可以再增加一个条件: 信号检测及电荷泵屯路 前处 Γ·停止 I:作状态, 即第五控制子单 元 616在判断出配置的 作模式为第二模式、 获取单元 600获取的当前输出功率不小丁 ·第二模式对应 的预定功率值且信号检测及屯荷泵屯路当前处于停. I h_ I:作状态时, 输出开启信号检测及电荷泵电路 的第二控制信号。 上述不小于也可以变换为人丁-。
控制单元 610可以包括上述四组子单元中的任意一组子单元和任意多组亍单元。 在控制单元 610 包括: 存储亍单元 61 1和第四控制亍单元 615的基础上, 控制单元 610还可以包括第五控制子单元 616。
第 ¾控制子单元 616, ^丁在关 1¾信号检测及电荷泵电路后, 如输出了关闭信号检测及屯荷泵电 路的第二控制信号后, 根据所述川户端口的当前输出功率计算提供给线路驱动器的最小不火真供 屯压, 根据计算出的最小不火真.供电电压输出第一控制信号, 以控制屯源模块为线路驱动器提供的 供电屯压为根据当前输出功率计算出的最小不失真供屯电压。
需耍说明的是, 控制单元 610可以包括: 存储子单元 61 1、 第一控制子单元 612、 第二控制子单元
613、 第三控制亍单元 614、 第四控制子单元 615和第五控制子单元 616中的所有子单元。 在这种情况 下, 控制单元 610可以在最大程度上减小 xDSL川户板的能耗。
上述实施例六中的获取单元 600通过获取 xDSL用户板的用户端口配置的工作模式和用户端口的 当前输出功率中的至少一个参数产生控制信号, 使控制单元 610可以根据获取的参数输出控制信号, 在控制单元 610利用控制信号对提供给线路驱动器的最小不失真供电电压进行控制时,可以避免为线 路驱动器提供过高屯压而产生不必耍的能耗浪费现象;在控制单元 610利用控制信号对信号检测及电 荷泵电路中的预定门限电平进行控制时, 可以避免不同丁作模式对应同一预定门限电平而产生线路 驱动器的供电电压不必耍的或者不能够及时的跟随输出信号波形的现象;在控制单元 610利用控制信 号对信号检测及电荷泵电路的开启 /关闭进行控制时, 可以避免信号检测及电荷泵电路不必耍的能耗 浪费现象; 因此, 实施例六能够使提供给线路驱动器的最小不失真供电电压、 信号检测及电荷泵电 路中的预定门限电平或者信号检测及电荷泵电路的开启 /关闭与用户端口配置的工作模式和用户端 口的当前输出功率中的至少 --个参数相匹配, 从而实施例六能够提高 xDSL用户板的功率输出效率, 最终降低 xDSL用户板的能耗。
实施例七、 xDSL用户板。 xDSL用户板的结构如附图 7所示。
图 7中的 xDSL用户板包括: 线路驱动器 700、 电源模块 710和控制模块 720。 线路驱动器 700包括
信号检测及屯荷泵屯路 701。线路驱动器 700还可以包拈 信 检测及屯荷 ¾屯路 701迕接的甲乙类线 路驱动器。
屯源投块 710为线路驱动器 700提供最小不火 A供屯屯压。
信号检测及 荷泵 路 701检测输入信号电压摆幅, 当输入信号屯压摆幅超过预定 ί J限屯平时, 信号检测及屯荷泵电路 701根据超山部分信号波形线性调整 其连接的线路驱动器如甲乙类线路驱 动器的供屯电压, 使甲乙类线路驱动器的供 屯压能够跟随输出信号的波形。
控制投块 720, Γ·获取) DSLW户板的当前 I:作参数, 当前 I:作参数包括: xDSL川户板的 户 端口配置的 I:作模式和 户端口的当前输出功率中的至少一个;控制模块 720根据 前 I:作参数确定 针对 xDSL川户板中的线路驱动器 700的控制信号, 并输出控制信号, 这里的控制信号包括: 第一控 制信号、第二控制信号成者第二控制信号;第一控制信号用丁 -控制屯源模块 700提供给线路驱动器 700 的最小不火真供屯电压, 即第一控制信号是对电源模块 710进行控制, 使电源模块 710根据第一控制 信号为线路驱动器 700提供相应的供屯电压; 第二控制信号用于控制信号检测及电荷泵电路 701中的 预定门限屯平, 该预定 Π限 ¾平为使甲乙类线路驱动器的供电电压跟随输出信号波形的门限值; 第 二控制信号用于控制开启 /关闭信号检测及屯荷泵电路 701, 即第二控制信号是对信号检测及电荷泵 电路 701是否需耍 K作进行控制。
控制模块 720可以在 xDSL 户板的 W户端口初始化之前获取用户端口配置的「.作模式, 如果 xDSL U户板可以在 Ί :作过程中变更用户端口配置的 I:作模式且变更后的配置的 Ί :作模式可以在正 常 [:作过程中被成功激活, 则控制模块 720可以通过定时获取等方式获取用户端口配置的工作模式。 控制模块 720可以采用实时获取等方式获取川户端口的当前输出功率。
控制模块 720根据获取的当前 Π:作参数确定针对 xDSLffl户板中的线路驱动器 700的控制信号的 原则可以为: 控制信号与当前: Γ作参数相匹配, 即控制模块 720可以根据提供给线路驱动器 700的最 小不失真供电屯压和用户端口配 S的— I:作投式相匹配的原则输出第一控制信号,控制模块 720可以根 据提供给线路驱动器 700的供屯电压和用户端口的当前输出功率相匹配的原则输出第一控制信号,控 制模块 720可以根据信号检测及电荷泵电路 701中的预定门限电平和用户端口的配置的工作模式相匹 配的原则输出第二控制信号, 控制模块 720可以根据信号检测及电荷泵电路 701的开启和关闭状态和 用户端口配置的工作模式相匹配的原则输出第三控制信号。 这样, 控制模块 720通过使控制信号与 xDSL用户板的当前工作参数相匹配, 可以减少 xDSL用户板中的不必耍能耗。 这里的不必要能耗可 以由信号检测及电荷泵电路 701不必耍的工作而产生;也可以由电源模块 710为线路驱动器 700提供了 高于当前输出功率要求的屯压而产生;还可以由信号检测及电荷泵电路 701根据预定门限电平不必要 的使甲乙类线路驱动器的供电电压跟随输出信号波形而产生。
控制模块 720的结构如上述实施例六的描述, 在此不再重复说明。
当 xDSL用户板为 VDSL2用户板的情况下, VDSL2用户板的一个具体例子如附图 7A所示。
图 7A中示山的 VDSL2用户板包括: 控制模块、 电源模块和辛类线路驱动器等, 其中的辛类线路 驱动器包括: 信号检测及屯荷泵电路、 甲乙类线路驱动器和二极管 D等。 控制模块输出的控制信号 1 作用于电源模块上, 控制模块输出的控制信号 2和控制信号 3作 W于信号检测及电荷泵电路。 VDSL2
in户板也可以 y'j其它形式, 本实施例不限制 VDSL2川户板的; I体结构。
通过以上的实施方式的描述, 本観的技术人 可以清楚地 T解到本发明 ¾丁借助软件加必需的 硬件甲 -台的方式来实现, 然也 W以全部通过硬件来实施, 但很多怙况卜前者是更佳的实施方式。 基 Γ这样的理解, 本发明的技术方¾对背景技术做出贡献的全部成者部分可以以软件产品的形式体 现出来, 所述的软件产品在可以 W Γ执行上述的方法流 。 该计算机软件产品可以存储在存储介质 中, 如 ROM/RAM、 磁碟、 光盘等, 包括若千指令 Mj以使得一台计算机设备 (可以是个人计算机, 服务器, 者网络设备 ) 执行本发明各个实施例成者实施例的某些部分所述的方法。
然通过实施例描绘了本发明, 本领域^通技术人员知道, 本发明有许多变形和变化而不脱离 本发明的精神, 本发明的中 ·文件的权利耍求包括这些变形和变化。
Claims
权利要求 i、 一种提高线路驱动器功率输出效率的力'法, 特征 .土 Γ, 包括:
获取 xDSLW户板的 前 I:作参数, 所述^前 I -作参数包括: xDSLW户板的川户端口配置的 I . 作模式和川户端口的当前输出功率中的至少一个;
根据所述当前 I:作参数确定 所述当前 I作参数匹配的针对 xDSL川户板中的线路驱动器的控 制信号, 并输出所述控制信号, 所述控制信号包括: 第一控制信号、 第二控制信号和第三控制信号 中的至少一个; 所述第一控制信号川 T控制提供给线路驱动器的最小不火哀.供电屯压; 所述第二控 制信号川丁控制线路驱动器的信号检测及屯荷泵屯路中的预定门限 平; 所述第二控制信号 丁-控 制开启 /关闭信号检测及 荷泵 路。
2、 如权利耍求 1所述的方法, 其特征在丁 ·, 所述根据所述当前 I:作参数确定 所述当前 I:作参 数匹配的针对 xDSL 户板中的线路驱动器的控制信号, 并输出所述控制信号包括:
在 xDSLW户板的川户端口初始化之前, 根据预先设置的用户端口的: Γ作模式与提供给线路驱动 器的最小不火真供电屯压的对应关系确定所述配置的 Γ.作模式对应的最小不失真供电电压, 根据所 述配置的 . 1:作模式对应的最小不火真供电电压输出第一控制信号。
3、 如权利耍求 1所述的方法, 其特征在丁 ·, 所述根据所述当前 I:作参数确定与所述当前 1 :作参 数匹配的针对 xDSL 户板中的线路驱动器的控制信号, 并输出所述控制信号包括:
根据预先设置的 户端口的 :作模式 信号检测及屯荷泵电路中的预定门限电平的对应关系确 定所述配置的丄作模式对应的预定门限屯平, 根据所述配置的工作投式对应的预定门限电平输出第 二控制信号。
4、 如权利耍求 1或 2或 3所述的方法, 其特征在于, 所述根据所述当前工作参数确定 所述当 前工作参数匹配的针对 xDSL ffl户板中的线路驱动器的控制信号, 并输出所述控制信号包括下述至 少一个步骤:
在所述配置的 : 1 :作模式为第一模式时, 输出关闭信号检测及电荷泵电路的第三控制信号; 在所述配置的工作模式为第二模式且所述当前输出功率小丁 -第二模式对应的预定功率值时, 输 出关闭信号检测及电荷泵屯路的第三控制信号;
在所述配置的工作模式为第二模式且所述当前输出功率不小于第二模式对应的预定功率值时, 输出开启信号检测及电荷泵电路的第三控制信号;
所述第二模式包括至少一种丁.作模式, 且所述第―模式包括的每一种工作模式对应的预定功率 值不同。
5、 如权利耍求 4所述的方法, 其特征在丁 ·, 所述根据所述当前工作参数确定与所述当前工作参 数匹配的针对 xDSL W户板中的线路驱动器的控制信号, 并输出所述控制信号还包括:
在关闭信号检测及电荷泵电路后, 根据所述用户端口的当前输出功率计算提供给线路驱动器的 最小不失真供屯 压, 根据所述计算出的最小不失真供电电压输出第一控制信号。
6、 种提高线路驱动器功率输出效率的装 , 其特征在 Γ, 包括:
获取单元, 丁_获取 xDSLW户板的 工作参数, 所述 前工作参数包拈: xDSLW户板的川 户端 [J配置的 I:作投式和川户端 Π的 前输出功率屮的至少 -个;
控制单元, 川丁 -根据所述 前 I作参数确定 所述 前 Γ.作参数匹配的针对 xDSL用户板中的线 路驱动器的控制信号, 并输出所述控制信号, 所述控制信号包括: 第一控制信号、 第二控制信号和 第二控制信号中的至少一个;所述第 控制信号 丁控制提供给线路驱动器的最小不火真供屯屯压; 所述第二控制信兮川 控制线路驱动器的信号检测及屯荷泵屯路屮的预定 I' j限屯平; 所述第二控制 信号 W Γ控制开启 /关闭信号检测及屯荷泵屯路。
7、 如权利耍求 6所述的装 ffi, 其特征在丁 ·, 所述控制单元包括:
存储亍单元, 存储 W户端口的 I:作模式 提供给线路驱动器的最小不火真供电屯压的对应 关系;
第一控制亍单元, 用丁 ixDSLW户板的用户端口初始化之前, 根据所述存储子单元存储的对应 关系确定所述配置的工作模式对应的最小不火哀供屯屯压, 根据所述配置的工作模式对应的最小不 火真供电电压输出第一控制信号。
8、 如权利耍求 6所述的装 ffi, 其特征在丁 ·, 所述述控制单元包括:
存储子单元, 用 T存储川户端口的 _ I:作模式 信号检测及电荷泵屯路中的预定门限屯平的对应 关系;
第二控制子单元, 用亍根据所述存储亍单元存储的对应关系确定所述配置的工作模式对应的预 定门限电平, 根据所述配置的丄作模式对应的预定门限电平输出第—控制信号。
9、 如权利耍求 6或 7成 8所述的装置, 其特征在丁 ·, 所述控制单元包括:
第三控制子单元, 用于在所述配置的: Ί:作模式为第一模式时, 输出关闭信号检测及电荷泵电路 的第二控制信号; 和 /或
存储子单元, 用于存储 W户端口的丄作模式与预定功率值的对应关系; 和
第四控制子单元, 用丁 -在所述配置的工作模式为第二模式且根据存储子单元存储的所述对应关 系确定出所述当前输出功率小 Γ第—模式对应的预定功率值时, 输出关闭信号检测及电荷泵电路的 第三控制信号; 在所述配置的工作模式为第二模式且所述当前输出功率不小于第二模式对应的预定 功率值时, 输出开启信号检测及电荷泵电路的第三控制信号;
所述第二模式包括至少一种 1:作模式, 且所述第二模式包括的每一种丄作模式对应的预定功率 值不同。
10、 如权利耍求 9所述的装置, 其特征在于, 所述控制单元还包括:
第五控制子单元, 在关闭信号检测及电荷泵电路后, 根据所述当前输出功率计算提供给线 路驱动器的最小不失真供屯电压, 根据所述计算出的最小不失真供电电压输出第一控制信号。
1 1、 一种 xDSL用户板, 包括线路驱动器和电源模块, 所述线路驱动器包括信号检测及电荷泵 ι乜路, 所述屯源投块为所述线路驱动器提供 M小不'人 It.屯 , 其特征在 Γ, 所述川户板还包括: 控制投块, )U T获取 xDSL川户板的' ' 前 I:作参数, 所述 前 I作参数包括: xDSL川户板的川 户端口的配 S的 I:作投式和用户端口的当 1¾ '输出功率中的至少一个; 根据所述当前 I:作参数确定 所述当前 I:作参数匹配的针对 xDSL 户板中的线路驱动器的控制信号, 并输出所述控制信号, 所 述控制信号包括: 第一控制信号、 第二控制信号和第三控制信号中的至少一个; 所述第一控制信号 m Γ控制屯源投块提供给线路驱动器的最小不火 K供屯屯压; 所述第一控制信号 HJ丁-控制信号检测 及屯荷泵 路中的预定门限屯平; 所述第二控制信号川 控制开启 /关闭信号检测及电荷泵电路。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010800034243A CN102217205B (zh) | 2010-04-19 | 2010-04-19 | 提高线路驱动器的功率输出效率的方法和装置 |
PCT/CN2010/071884 WO2011130902A1 (zh) | 2010-04-19 | 2010-04-19 | 提高线路驱动器的功率输出效率的方法和装置 |
EP10850036.4A EP2515474A4 (en) | 2010-04-19 | 2010-04-19 | METHOD AND DEVICE FOR INCREASING THE OUTPUT EFFICIENCY OF A LINE DRIVER PERFORMANCE |
US13/565,532 US8600041B2 (en) | 2010-04-19 | 2012-08-02 | Method and apparatus for improving power output efficiency of line driver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2010/071884 WO2011130902A1 (zh) | 2010-04-19 | 2010-04-19 | 提高线路驱动器的功率输出效率的方法和装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/565,532 Continuation US8600041B2 (en) | 2010-04-19 | 2012-08-02 | Method and apparatus for improving power output efficiency of line driver |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011130902A1 true WO2011130902A1 (zh) | 2011-10-27 |
Family
ID=44746739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/071884 WO2011130902A1 (zh) | 2010-04-19 | 2010-04-19 | 提高线路驱动器的功率输出效率的方法和装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8600041B2 (zh) |
EP (1) | EP2515474A4 (zh) |
CN (1) | CN102217205B (zh) |
WO (1) | WO2011130902A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012103826A2 (zh) * | 2012-03-15 | 2012-08-09 | 华为技术有限公司 | 一种线路驱动方法与装置 |
US9235543B2 (en) * | 2012-11-26 | 2016-01-12 | International Business Machines Corporation | Systems for signal detection |
CN110233806B (zh) * | 2018-03-05 | 2020-10-16 | 华为技术有限公司 | 一种线路驱动装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101359932A (zh) * | 2008-09-03 | 2009-02-04 | 华为技术有限公司 | 一种数字用户线线路驱动装置、方法和接入系统 |
CN101453336A (zh) * | 2007-11-28 | 2009-06-10 | 华为技术有限公司 | 一种降低数字用户线功耗的方法、装置和系统 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10038374C2 (de) * | 2000-08-07 | 2002-07-04 | Infineon Technologies Ag | Treiberschaltung für Teilnehmerendgeräte |
US6633751B1 (en) * | 2000-09-21 | 2003-10-14 | Skyworks Solutions, Inc. | System for a dual feedback translation loop for power amplifier feedback control |
US6531902B1 (en) * | 2001-01-11 | 2003-03-11 | Globespanvirata, Inc. | Line driver operative from a single supply and method for supplying voltages to a load |
US6498521B1 (en) | 2001-11-29 | 2002-12-24 | Lsi Logic Corporation | Dynamic supply control for line driver |
US6931108B2 (en) * | 2003-03-17 | 2005-08-16 | Intersil Americas Inc. | Integrated POTS/DSL line driver with floating supply voltage |
DE102004039022B4 (de) * | 2004-08-11 | 2007-09-27 | Infineon Technologies Ag | xDSL-Multistandard-Treiberschaltung |
US20060171527A1 (en) * | 2004-12-30 | 2006-08-03 | Mills Michael J | Switched supply coupling for driver |
US8344761B2 (en) * | 2008-09-19 | 2013-01-01 | Ikanos Communications, Inc. | 3-level line driver |
US20100080380A1 (en) * | 2008-09-30 | 2010-04-01 | Yan Zhou | Method and Apparatus for Supplying DC Feed to a Subscriber Line |
US20100080381A1 (en) * | 2008-09-30 | 2010-04-01 | Tesu Ion C | Method and Apparatus for Supplying DC Feed to a Subscriber Line |
EP2955890B1 (en) | 2009-04-07 | 2017-06-14 | Huawei Technologies Co., Ltd. | Improving power efficiency of a line driver |
-
2010
- 2010-04-19 EP EP10850036.4A patent/EP2515474A4/en not_active Withdrawn
- 2010-04-19 WO PCT/CN2010/071884 patent/WO2011130902A1/zh active Application Filing
- 2010-04-19 CN CN2010800034243A patent/CN102217205B/zh active Active
-
2012
- 2012-08-02 US US13/565,532 patent/US8600041B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101453336A (zh) * | 2007-11-28 | 2009-06-10 | 华为技术有限公司 | 一种降低数字用户线功耗的方法、装置和系统 |
CN101359932A (zh) * | 2008-09-03 | 2009-02-04 | 华为技术有限公司 | 一种数字用户线线路驱动装置、方法和接入系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2515474A4 * |
Also Published As
Publication number | Publication date |
---|---|
US8600041B2 (en) | 2013-12-03 |
CN102217205B (zh) | 2013-08-07 |
CN102217205A (zh) | 2011-10-12 |
EP2515474A4 (en) | 2013-06-19 |
US20120294438A1 (en) | 2012-11-22 |
EP2515474A1 (en) | 2012-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011130902A1 (zh) | 提高线路驱动器的功率输出效率的方法和装置 | |
US9071212B2 (en) | Audio amplifier | |
CN105554605A (zh) | 一种自动调节蓝牙耳机音量的电路及实现方法 | |
CN101990038A (zh) | 提升音频功率放大器效率的方法及使用该方法的手机 | |
CN102202137A (zh) | 移动终端及其通话音质的调整方法 | |
CN106249793B (zh) | 电源稳压器电路 | |
WO2020168993A1 (zh) | 信号处理电路及音频功率放大电路 | |
CN110062315A (zh) | 一种阻抗自适应功放电路及扬声器 | |
CN108200519A (zh) | 一种麦克风及提升过载声压方法 | |
CN113054928B (zh) | D类功放动态升压闭环控制器及动态升压的d类功放 | |
CN108988795A (zh) | 栅压自适应调整设备、方法及其装置 | |
CN107230993A (zh) | 基于输入输出模块的消防总线远距离恒压供电方法 | |
CN208548872U (zh) | 一种音频功率放大电路和音频功率放大器 | |
CN101534463B (zh) | 杂音消除装置 | |
WO2019169929A1 (zh) | 一种线路驱动装置 | |
CN201243295Y (zh) | 调音台 | |
CN209314036U (zh) | 一种音频功放中的开关机静音控制电路 | |
WO2014043873A1 (zh) | 信息处理方法、设备和系统 | |
US9065887B2 (en) | Method, apparatus, and system for reducing power consumption on xDSL subscriber board | |
CN207766229U (zh) | 一种用于井下语音广播终端的音频功率放大模块 | |
CN114025285B (zh) | 一种高效音频电源 | |
CN203027418U (zh) | 自适应送话器 | |
CN108134974A (zh) | 一种麦克风及提升过载声压方法 | |
CN217037446U (zh) | 一种家用和车用两用高保真低音炮功放电路 | |
CN209201159U (zh) | 一种电话会议用扩音电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080003424.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10850036 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010850036 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |