WO2011129786A1 - Inhaler used for delivery of medicament in dry powder form - Google Patents

Inhaler used for delivery of medicament in dry powder form Download PDF

Info

Publication number
WO2011129786A1
WO2011129786A1 PCT/TR2011/000086 TR2011000086W WO2011129786A1 WO 2011129786 A1 WO2011129786 A1 WO 2011129786A1 TR 2011000086 W TR2011000086 W TR 2011000086W WO 2011129786 A1 WO2011129786 A1 WO 2011129786A1
Authority
WO
WIPO (PCT)
Prior art keywords
inhaler
medicament
dry powder
mouthpiece
powder form
Prior art date
Application number
PCT/TR2011/000086
Other languages
English (en)
French (fr)
Inventor
Mahmut Bilgic
Original Assignee
Mahmut Bilgic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TR2010/02877A external-priority patent/TR201002877A2/xx
Application filed by Mahmut Bilgic filed Critical Mahmut Bilgic
Priority to EA201201394A priority Critical patent/EA201201394A1/ru
Priority to JP2013504861A priority patent/JP5873477B2/ja
Priority to EP11730461A priority patent/EP2563434A1/en
Publication of WO2011129786A1 publication Critical patent/WO2011129786A1/en
Priority to US13/451,838 priority patent/US9345848B2/en
Priority to IN4985DEN2012 priority patent/IN2012DN04985A/en
Priority to US14/695,726 priority patent/US9795750B2/en
Priority to US14/695,739 priority patent/US9795751B2/en
Priority to US15/792,245 priority patent/US10842952B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • A61M15/0045Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using multiple prepacked dosages on a same carrier, e.g. blisters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0021Mouthpieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0021Mouthpieces therefor
    • A61M15/0025Mouthpieces therefor with caps
    • A61M15/0026Hinged caps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • A61M15/003Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using capsules, e.g. to be perforated or broken-up
    • A61M15/0043Non-destructive separation of the package, e.g. peeling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • A61M15/0045Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using multiple prepacked dosages on a same carrier, e.g. blisters
    • A61M15/0046Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using multiple prepacked dosages on a same carrier, e.g. blisters characterized by the type of carrier
    • A61M15/0051Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using multiple prepacked dosages on a same carrier, e.g. blisters characterized by the type of carrier the dosages being arranged on a tape, e.g. strips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • A61M15/0045Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using multiple prepacked dosages on a same carrier, e.g. blisters
    • A61M15/0053Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using multiple prepacked dosages on a same carrier, e.g. blisters characterized by the type or way of disposal
    • A61M15/0055Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using multiple prepacked dosages on a same carrier, e.g. blisters characterized by the type or way of disposal the used dosages being coiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • A61M15/0068Indicating or counting the number of dispensed doses or of remaining doses
    • A61M15/007Mechanical counters
    • A61M15/0071Mechanical counters having a display or indicator
    • A61M15/0075Mechanical counters having a display or indicator on a disc
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • A61M15/0068Indicating or counting the number of dispensed doses or of remaining doses
    • A61M15/0081Locking means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/06Solids
    • A61M2202/062Desiccants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/06Solids
    • A61M2202/064Powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/27General characteristics of the apparatus preventing use
    • A61M2205/276General characteristics of the apparatus preventing use preventing unwanted use

Definitions

  • the present invention relates to an inhaler which is appropriate for delivering the medicament in dry powder form used in the treatment of respiratory diseases, particularly in asthma and chronic obstructive pulmonary disease (COPD).
  • COPD chronic obstructive pulmonary disease
  • the present invention relates to the inhaler used to realize an effective inhalation which comprises a blister package appropriate for carrying dry powder medicament.
  • the medicament In the inhalers used to deliver the medicaments in dry powder form, the medicament is carried in reservoirs, capsules or blisters packages. It is highly significant to deliver each dose to the patient with exact accuracy and preciseness since the required medicament dose in the inhalation is very low.
  • At least 98% of the medicament in dry powder form contained in the blister pocket or the capsule should be delivered to the patient in the inhalers used for delivery of medicament in dry powder form.
  • the medicament particles called "fine particles" size of which are in the range of 1 ⁇ to 6 ⁇ can be absorbed in the lungs.
  • the active agent particles comprised in the medicament in dry powder form are fine particles, too.
  • the ratio of the measured dry powder medicament in the blister or the capsule is at least 25%, preferably more than 30% by weight. To this respect, it is desired that more than 25% of the medicament in dry powder form to be delivered to the patient is composed of fine particles for an effective inhalation to be realized.
  • the inhaler cannot be used effectively by most patients, particularly by children or in all cases.
  • the fact that the airflow resistance of the inhaler is very low causes the medicament in dry powder form to be delivered to the patient without the need to respire deeply.
  • a large portion of the medicament in dry powder form is accumulated in the mouth of the patient and cannot reach to the lungs in the case that the patient realizes the inhalation without respiring deeply.
  • some of the medicament in dry powder form accumulates in the mouthpiece of the device upon the respiration of the patient in course of inhalation and cannot be delivered to the patient.
  • an ineffective inhalation is realized as the amount of the active agent delivered to the patient's lungs is not sufficient.
  • the inhalation device marketed under the trade mark Diskus® by GlaxoSmithKlein is one of the most well-known inhalers on the market.
  • the medicament in dry powder form is carried in single doses in each blister pocket of the blister package.
  • An effective inhalation cannot be realized in this device since a large portion of the dry powder medicament delivered to the patient remains in the patient's mouth and a sufficient amount of the active agent is not delivered to the patient's lungs during the inhalation of the medicament in dry powder form upon the actuation of the inhaler resulting from the fact that the airflow resistance of this device is quite low.
  • the inhalers developed or on the market are taken into consideration, there seems a need for an inhaler which fully fulfills all the requirements mentioned above and guarantees the sufficient amount of active agent to be inhaled for an effective inhalation.
  • the present invention relates to the inhaler which is appropriate for delivery of the medicament in dry powder form and enables the delivery of the required amount of the active agent comprised in the medicament in dry powder form to the patient's lungs.
  • An inhaler suitable for delivery of the medicament in dry powder form according to the present invention comprising;
  • a blister package composed of a plurality of blister pockets each of which comprises medicament in dry powder form and which are spaced at equal intervals; - a mouthpiece enabling the patient to inhale the medicament in dry powder form from the opened blister ;
  • - a gear mechanism enabling the blister package to be indexed and the medicament in dry powder form to become ready for inhalation;
  • - a housing situated between the upper housing member and the lower housing member in which the blister package and the gear mechanism are enclosed;
  • K value is a geometric factor and it is 0,5 in the case that the cross-section instantaneously contracts while it is 1 in the case that the cross-section instantaneously expands;
  • p represents air density and it is approximately 1,3 kg/ m 3 ;
  • ⁇ (m/s) value is the average velocity of air.
  • the resistance value for each components is obtained dividing the square root of ⁇ (in kPa) value obtained from the abovementioned equation by the flow velocity (minutes/liter) of the external air entering the inhaler. Flow velocity of provided airflow is obtained by dividing the total pressure decrease induced in the inhaler by the resistance value.
  • the inventor has found that the resistance in the mouthpiece and the manifold outlet of the inhaler affects the pressure decrease, therefore the flow velocity of the air to a substantial extent and there should be a pressure decrease higher than 4 kPa in the inhaler for an effective inhalation to be realized.
  • the resistance and the airflow velocity in the manifold outlet and mouthpiece outlet are directly proportional to the average velocity of air.
  • the average velocity of air is determined according to the cross-section of the manifold outlet and the mouthpiece outlet.
  • the change in the airflow velocity induced when the ratio the cross-section of the manifold outlet to the cross-section of the mouthpiece outlet is in the range of 1:10 to 1:50 prevents the large amounts of residual dry powder medicament to accumulate in the mouthpiece and the patient's mouth.
  • the inhaler pertaining to the present invention wherein the ratio of the cross-section of the manifold outlet to the cross-section of the mouthpiece outlet is in the range of 1:10 to 1:50 is preferably a manual device which is appropriate to be used for delivery of medicament in dry powder form and comprise blister package.
  • the inhaler pertaining to the present invention has a mechanism preferably triggered by the rotation of the mouthpiece cover.
  • the housing of the device pertaining to the present invention has been designed such that each component of the blister package and the gear mechanism which have a significant role in enabling the device to work properly is situated accurately and works harmoniously.
  • the housing is divided into several compartments. The used portion and the unused portion of the blister package are accommodated in separated compartments in order to prevent the medicament in dry powder form remained in the opened blister pocket to spill on the other components of the housing.
  • the housing also comprises the beak which enables the blister package to be peeled and the manifold through which the dry powder medicament in the open blister passes before reaching the mouthpiece during the inhalation.
  • the housing can be in any appropriate shape while it is preferably elliptic or circular.
  • the mouthpiece cover When the first position is on, the mouthpiece cover is completely covered and the device is in standby mode. When the mouthpiece cover is in the second position, the mouthpiece cover resides on the protrusion in the other end of the rotational path and one dose of the dry powder medicament becomes ready for inhalation upon the actuation of the device.
  • the mouthpiece cover of the device is joined with the gear mechanism via the connection points.
  • One end of the drive gear passes through the center of the lower housing member and tightly joins with the mouthpiece cover in one connection point while the other end passes through the center of the upper housing member and joins with the mouthpiece cover in the other connection point.
  • one side cover is used for each end of the drive gear.
  • the ends of the drive gear are carved such that they can tightly engage with the ends of the side covers from inside.
  • the shape of the inside faces of these carved parts on both ends of the drive gear match with the shape of the ends of the side covers that fit into its.
  • On each connection point of the mouthpiece cover there is a stabilizing resilient cover.
  • each gear of the gear mechanism in the device is directly or indirectly engages with each other.
  • the device Before the inhalation, the device is actuated by pressing on the stabilizing resilient covers on both faces of the device and rotating the mouthpiece cover along the rotational path, and the drive gear which is joined with the both connection points of the mouthpiece cover via the side covers precisely transmits the movement of the mouthpiece cover to the indexing ratchet wheel owing to the side covers upon the actuation of the device.
  • the indexing ratchet wheel which interlocks with the indexing wheel from inside thanks to its arms enables the indexing wheel to rotate.
  • the blister package indexed and it is peeled by means of the beak present in the housing. As the indexing wheel engages with the winding wheel gear and the pinion gear, these gears move upon the indexing wheel's move, too.
  • the counter gear in the device pertaining to the present invention displays the number of the unused blister pockets remained in the device.
  • the mouthpiece is uncovered, the blister package is indexed and one dose of the dry powder medicament is prepared for inhalation while the counter gear rotates as well.
  • the movement of the mouthpiece cover leads to the mouthpiece cover to be uncovered; one dose of the dry powder medicament to be ready for inhalation after the blister pocket is opened as well as providing the counter gear to rotate and display the new value of the unused blister pockets remained.
  • the counter gear On the counter gear, there exist numerals equal to the number of the blister pockets present in the device and they are spaced by equal angles. In a device comprising 60 doses, the angle between the numerals is approximately 5°.
  • the counter gear rotates as a result of the reflection of the rotation of the indexing wheel via the pinion gear and the base gear.
  • rotation of the indexing wheel by the same angle each time due to the accurate transmission of the movement of the mouthpiece to the gear mechanism via the drive gear results in the rotation of the counter wheel approximately by the same angle as well and each numeral on the counter wheel is clearly seen through the display aperture on the upper housing member. Therefore, the patient makes sure about the number of the unused blister pockets remained in the device.
  • the inhaler further comprises a blister package composed of a plurality of blister pockets each of which comprises medicament in dry powder form and which are spaced at equal intervals.
  • the blister package carries the medicament in dry powder form in one-dose portions and it is preferably a blister strip and it is preferably peelable.
  • the blister pockets comprised in the blister package are spaced in equal intervals and each of them carries one dose of the medicament in dry powder form.
  • the blister opened by the beak is situated immediately under the manifold.
  • the airflow that preferably enters the device through at least one air inlet on the upper housing member entrains the dry powder medicament in the opened blister pocket via the manifold to the mouthpiece and enables the delivery of said medicament to the patient.
  • the air inlet on the upper housing member that allows the entry of air can be in any suitable shape and size that also enable external air to enter the device easily and at convenient speed.
  • the mouthpiece is designed to fit the mouth for the patient to comfortably inhale the medicament in dry powder form.
  • the mouthpiece can be in any suitable shape or size as well as being fixed or movable. Furthermore, it could be attached or unattached to the upper and/or the lower cover.
  • the air inlet that the external airflow passes through is preferably designed not to be close where the patient holds the device in order not to prevent the air flow. Furthermore, in order to deliver the required amount of the dry powder medicament in the opened blister to the patient, the air inlet has been designed such that it allows the entry of the airflow through the air inlet by a convenient angle.
  • One end of the manifold between the opened blister and the mouthpiece communicates with the opened blister while the other end communicates with the mouthpiece.
  • the external air passes through the air inlet and enters the manifold.
  • the air which enters the inhaler through the air inlet upon the inhalation of the patient passes through one of the apertures with four sub-apertures on the end of the manifold, enters the opened blister, entrains the one dose of medicament in dry powder form; passes it through the other aperture with four sub- apertures on the end of the manifold and reaches the manifold.
  • the lid and the base sheets constituting the blister package preferably consist of a plurality of layers.
  • Each of these layers are preferably chosen from a group comprising polymeric layers that are made of various polymeric substances; aluminum foil and fluoropolymer film.
  • Fluoropolymer film is a polymeric film which is used in blister packs and provides excellent moisture barrier. This chemically inert polymeric film does not cause any change in the taste of the formulation when it is in contact with the dry powder formulation. In addition, it easily constitutes a layered structure with the other polymeric layers which are composed of various polymers. It is appropriate to be transacted with heat.
  • At least one of the polymeric layers comprises at least one desiccant agent including silica gel, zeolite, alumina, bauxite, anhydrous calcium sulfate, activated carbon and clay which has the property of water absorption in order to decrease gas and moisture permeability of the layer.
  • desiccant agent including silica gel, zeolite, alumina, bauxite, anhydrous calcium sulfate, activated carbon and clay which has the property of water absorption in order to decrease gas and moisture permeability of the layer.
  • the thickness of the aluminum foil in the lid and the base sheets of the blister package are preferably chosen to be in the range of 5 to 80 ⁇ , more preferably in the range of 15 to 65 ⁇ .
  • the polymeric layers in the lid and the base sheets of the blister pack are made of the same or different polymers.
  • the thickness of these polymeric layers varies according to the type of the polymeric substance used and its properties while they are preferably in the range of 5 to 100 ⁇ , more preferably in the range of 15 to 60 ⁇ .
  • the polymers composing the polymeric layer are preferably selected from thermoplastics such as polyethylene, polypropylene, polystyrene, polyolefin, polyamide, polyvinyl chloride, polyurethane or synthetic polymers.
  • the blister pockets in the blister package can be in any appropriate shape.
  • the plurality of blister pockets spaced at equal intervals on the base sheet of the blister package can be in the same or different shape, structure or volume.
  • Figure 1 is a perspective view of an inhaler according to the inhaler described in the present invention
  • Figure 5c is a vertical cross-sectional view of the inhaler pertaining to the present invention.
  • Figure 6c is a cross-sectional view of the communication between the mouthpiece cover, the drive gear and the stabilizing resilient covers in the inhaler pertaining to the invention
  • Figure 6d is a cross-sectional view of the communication between the mouthpiece cover, the drive gear and the stabilizing resilient covers in the inhaler pertaining to the invention
  • Figure 6e is an exploded view of the communication between the drive gear and the side covers in the inhaler pertaining to the invention.
  • Figure 6f is a cross-sectional view of the connection of the stabilizing resilient cover with the lower housing member in the inhaler pertaining to the invention
  • Figures 7a-7c are cross-sectional views of the engagement of the gears composing the gear mechanism with each other in the inhaler pertaining to the present invention
  • Figure 8 is a cross-sectional view of the blister package delaminating in course of operation of the inhaler pertaining to the present invention.
  • Figure 9 is a perspective view of the counter gear used in the inhaler pertaining to the present invention.
  • the inhaler (1) pertaining to the present invention comprises a gear mechanism situated in the housing (10) between the upper housing member (4a) and the lower housing member (4b) in order to enable the inhalation of the dry powder medicament carried in a blister package (15) as displayed in figures 1 and 2.
  • Each component of the inhaler (1) is positioned at appropriate spots of the device to guarantee their working properly and accurately.
  • the inhaler (1) pertaining to the present invention shown in Figure 1 is ready for inhalation.
  • the mouthpiece cover (2) is in the second position and the mouthpiece (14) is entirely exposed.
  • the mouthpiece cover (2) has to be rotated by holding on the carved part (2a) on one end of the mouthpiece cover (2) in order to switch to the second position from the first position wherein the mouthpiece is completely covered.
  • the mouthpiece (14) is completely exposed when the mouthpiece cover (2) is switched to the second position from the first position and the gear mechanism is triggered by the drive gear (12).
  • the drive gear (12) precisely transmits the movement of the mouthpiece cover (2) to the indexing ratchet wheel (3).
  • the indexing wheel (8) which engages with the indexing ratchet wheel (3) enables the blister package (15) shown in figure 3 to be indexed.
  • the blister pockets (15a) composing the blister package are received in the recesses (8a) on the indexing wheel and the blister package (15) is indexed when the indexing wheel (8) rotates.
  • shapes of the recesses (8a) on the indexing wheel (8) have been designed to match the shapes of the blister pockets (15) composing the blister package (15) for the blister package to be indexed properly.
  • the blister package (15) shown in figure 3 is composed of the lid sheet (15b) which provides impermeability and the base sheet (15c) on which the blister pockets (15a) are spaced at equal intervals.
  • Each blister pocket contains medicament in dry powder form comprising one or more active agents.
  • the blister package (15) is indexed forward while the indexing wheel (8a) rotates as the blister pockets (15a) composing the blister package (15) are received in the recesses (8a) of the indexing wheel.
  • the beak (16) in the housing (10) provides the blister package (15) to be peeled while the blister package (15) is indexed and provides one blister pocket (15a) to be opened in response to each actuation of the device (1).
  • the winding wheel gear (6) which is another component of the gear mechanism, engages with the indexing wheel (8) as displayed in figure 2.
  • the mechanism gear (5) that interlocks the winding wheel (13) from inside has arms (5a) to interlock with the interior teeth of the winding wheel gear (6).
  • the indexing wheel (12) rotates the winding wheel gear (6)
  • the winding wheel rotates unidirectionally owing to the arms of the mechanism gear (5a) which interlock with the interior teeth of the winding wheel gear (6) and the lid sheet (15b) which is peeled away while the blister package is indexed is tightly coiled on the wings (13a) of the winding wheel.
  • the base sheet (15c) of the blister package (15) where the blister pockets are spaced is accumulated in a separate part (18a) of the device.
  • FIG. 10 Different perspective views of the housing (10) wherein the gear mechanism and the other components of the inhaler (1) pertaining to the present invention are arranged are displayed in figures 4a and 4b. Furthermore, as can be seen in figures 4a and 4b, the housing (10) also comprises the other components having significant roles in the actuation of the device such as the beak (16), the manifold (20), the apertures with four sub-apertures (20a, 20b). Each component comprised in the housing is situated in appropriate parts of the housing (10) in order to enable the inhaler (1) to work properly.
  • the drive gear (12) passes through the center (21) of the housing and joins the mouthpiece cover (2) at two points.
  • the blister package (15) is in the lower part (17) of the housing as coiled up.
  • the blister package (15) is peeled by the beak (16) in the housing while being indexed by the indexing wheel (8) situated in the upper part (19) of the housing.
  • the lid sheet (15b) of the blister package (15) which provides impermeability is indexed over the beak (16) and coiled on the winding wheel (13) which is situated in the side part (18) of the housing.
  • the air passes through the air inlet with four sub-apertures (20a) under the manifold (20) into the opened blister pocket; entrains the dry powder medicament contained in the opened blister pocket (15a) in response to each actuation of the device; provides it to pass through the other aperture with four- sub-apertures (20b) and reach the mouthpiece via the manifold (20).
  • the housing (10) and the other components of the inhaler (1) pertaining to the present invention are stably kept together as the upper housing member (4a) and the lower housing member (4b) displayed in figures 5a and 5b are joined together.
  • the engagement tabs (28) on the inside surface of the lower housing member (4b) engage with the engagement recesses (27) on the inside surface of the upper housing member (4a) and the upper and lower housing members are fixed tightly. Therefore, the protrusions (23 a, 23b) on the upper housing member (4a) and the protrusions (24a, 24b) on the lower housing member (4b) are joined end to end and they define the restricted path for the rotational movement of the mouthpiece cover (2).
  • the mouthpiece cover (2) can be moved along this path.
  • the mouthpiece cover (2) When the mouthpiece cover (2) is in the first position, the mouthpiece is completely covered, the device is in standby mode and the mouthpiece cover (2) leans on the first protrusion (23a) on the upper housing member and the first protrusion (24a) on the lower housing member.
  • the mouthpiece (2) is manually slid along the rotational path with the help of the carved part to switch to the second position.
  • the mouthpiece is completely exposed when the cover is in this position, one dose of the dry powder medicament is ready for inhalation and the mouthpiece cover (2) leans on the second protrusion (23b) on the upper housing member and the second protrusion (24b) on the lower housing member.
  • one half (25a) of the tapered channel that interconnects the manifold (20) that exist in the housing (10) with the mouthpiece (14) is comprised in the upper housing member (4a) while the other half of it (25b) is comprised in the lower housing member (4b).
  • the channel is constituted as a whole when the upper (4a) and the lower (4b) housing members are joined together.
  • the air entraining the dry powder medicament to the manifold (20) entrains the medicament in dry powder form, as is seen in figure 5 c, from the manifold outlet (20c) to the mouthpiece outlet (14a) via the tapered channel (25a and 25b) and enables the delivery of the medicament in dry powder form to the patient.
  • the grids on the upper housing member (23e, 23f) and the grids on the lower housing member (24e, 24f) prevent the slips of fingers when rotating the mouthpiece cover.
  • the mouthpiece cover (2) of the inhaler pertaining to the present invention is displayed in figure 6a.
  • the carved part (2a) in one end of the device enables to easily move the mouthpiece cover manually.
  • the mouthpiece cover (2) is joined with the gear mechanism via the connection points.
  • the drive gear (12) is joined with the connection points (29, 30) of the mouthpiece cover via the side covers (31a, 31c) as it can clearly be seen in figures 6b, 6c and 6d illustrating the communication between the mouthpiece cover (2), the drive gear (12), side covers (31a, 31c) and the stabilizing resilient covers (32,33).
  • Each of these side covers (31a; 31c) passes through the center (4d) of the upper housing member or the center (4e) of the lower housing member and joins with the end (12a; 12b) of the drive gear. It can clearly be seen in figure 6d that the both ends (12a; 12b) of the drive gear is carved such that the end of the side cover (31b; 3 Id) can pass through.
  • Each end of the side covers (3 Id; 31b) passes through one of the connection points (29; 30) of the mouthpiece cover and it is received in the recess in one end (12b; 12a) of the drive gear, thus it provides to tightly and stably interconnect the mouthpiece cover (2) with the drive gear (12).
  • the mouthpiece cover (2) synchronizes with the drive gear (12) as the connection point (29; 30) of the mouthpiece cover which has a matching shape with the ends (3 Id; 31b) of the side covers that passes through it on both sides of the device and the end (12b; 12d) of the drive gear that it communicates with are on the same component.
  • the shapes of the ends (31b; 3 Id) of the side covers that are received in the carved parts on the ends of the drive gear and the shapes of the connection points (29, 30) of the mouthpiece cover are not identical since the two ends (12a, 12b) of the drive gear are not identical.
  • stabilizing resilient cover (33; 32) on each connection point (29; 30) of the mouthpiece and on each side cover, as displayed in figures 2, 6a-6d and 6f.
  • the pawls (32a, 33a) under the stabilizing resilient covers which are on the connection points (29, 30) of the mouthpiece, interlock with the mouthpiece cover (2) on both sides as clearly seen in figures 6c and 6d.
  • the pawl (33 a) under the stabilizing resilient cover that is on the first connection point (29) interlocks with the mouthpiece cover on one side (figure 6c).
  • the pawl (32a) under the stabilizing resilient cover that is on the second connection point (30) of the mouthpiece cover interlocks with the mouthpiece cover (2) on the other side (figure 6d).
  • the extensions (32b, 32c; 33b, 33c) under the stabilizing resilient covers pass through the apertures (23c, 23d; 24c, 24d) on the upper and the lower housing members illustrated in figures 5a and 5b and provide the stabilizing resilient covers to remain stable.
  • the extensions (33b; 33c) under the stabilizing resilient cover that is on the first connection point (29) of the mouthpiece cover pass through the apertures (23c; 23d) on the upper housing member and provide the stabilizing resilient cover (33) to be stably joined with the device.
  • the extensions (32b, 32c) under the stabilizing resilient cover on the second connection point (30) of the mouthpiece cover pass through the apertures (24c, 24d) on the lower housing member and provide the stabilizing resilient cover (32) to be stably joined with the device as clearly illustrated in figure 6f.
  • the resilient parts (32d, 33d) of each stabilizing resilient cover illustrated in figures 6c and 6d are pressed on for raising the pawls (32a, 33 a) and releasing the mouthpiece cover (2) in order to actuate the gear mechanism of the device to prepare one dose of dry powder medicament before inhalation.
  • the gear mechanism of the device is actuated and one blister pocket (15a) is opened for one dose of the dry powder medicament to be ready for inhalation when the resilient parts (32d, 33 d) of the stabilizing resilient covers are pressed on and the mouthpiece cover (2) is switched from the first position to the second position simultaneously.
  • FIG 7a it is displayed that the stopper (26) interlocks with the tooth of the indexing ratchet wheel (3) and hinders its rotation.
  • the rotational movement of the mouthpiece cover (2) by the same angle in response to each actuation of the device (1) is accurately transmitted to the indexing ratchet wheel (3) by the drive gear (12) which engages with the mouthpiece cover (2) on its both ends and the drive gear (12) is enabled to rotate by the same angle in each actuation of the device (1).
  • the stopper component (26) in the lower housing member (4b) prevents the backwards movement of the blister package (15) indexed by the indexing wheel (8) which synchronizes with the indexing ratchet wheel by keeping the position of the indexing ratchet wheel (3) fixed and provides the blister package (15) to be precisely positioned.
  • the lid sheet (15b) of the blister package (15) which is peeled away by the beak (16) and the base sheet (15c) are enclosed in separate compartments.
  • the lid sheet (15b) that provides impermeability is indexed over the beak (16) and tightly coiled on the wings (13a) of the winding wheel.
  • the base sheet (15c) of the blister package (15) where the blister pockets (15a) each of which carries one dose of the dry powder medicament are spaced is accumulated in the separated compartment (18a) of the housing (10).
  • one dose of the dry powder medicament which is prepared for inhalation after one blister pocket (15a) is opened and the air entering the device through the air inlet (22) upon the inhalation of the patient provides to deliver one dose of the dry powder medicament to the patient by entraining it from the blister pocket (15a) to the mouthpiece (14).
  • the rotation of the indexing wheel (8) is transmitted to the base gear (7) engaging with the pinion gear (11) by the pinion gear (11).
  • the small gear which is under the base gear (7) as attached engages with the counter gear (9) (figure 7c).
  • the movement of the indexing wheel (8) is transmitted to the counter wheel (9) shown in figure 9 by the pinion gear (11) and the base gear.
  • the counter gear rotates approximately 5° and the number of the unused blister pockets remained in the device are clearly seen through the display aperture (4c) on the lower housing member (4b).
  • the mouthpiece (14) is exposed when the mouthpiece cover (2) is slid from the first position to the second on the upper housing member (4a) and the lower housing member (4b); the gear mechanism is triggered by the drive gear (12) and one dose of dry powder medicament is prepared for inhalation; the counter gear (9) is indexed and the numeral seen through the display aperture (4c) on the lower housing member (4b) is incremented.
  • the medicament in dry powder form which is stored in blister cavities is manufactured according to the prior art.
  • the particle sizes of the active agents comprised in the dry powder medicament are smaller than 20 ⁇ , preferably smaller than 10 ⁇ .
  • the inhaler pertaining to the present invention has been designed so as to deliver the dry powder medicament used in monotherapy or combined therapy.
  • monotherapy refers to inhalation treatments in which dry powder medicaments comprising a single active agent are used whereas the term “combined therapy” refers to inhalation treatments in which dry powder medicaments comprising more than one active agents are use used.
  • the dry powder medicament delivered via the device pertaining to the present invention comprises at least one excipient in addition to the active agent or agents.
  • excipients are generally chosen from a group comprising monosaccharides (glucose, arabinose, etc.), disaccharides (lactose, saccharose, maltose, etc.), oligo- and polysaccharides (dextran, etc.), polyalcohols (sorbite, mannite, xylite), salts (sodium chloride, calcium carbonate, etc.) or combinations thereof.
  • the medicament in dry powder form comprises lactose as the excipient.
  • the medicament in dry powder form comprises fine or coarse excipients particles preferably having various particle size ranges in order to deliver the required amount to the lungs.
  • the active agent or the active agents comprised in the dry powder medicament which is stored in blister packages used in the device pertaining to the present invention can be selected from a group comprising cromolyns, anti-infectives, antihistamines, steroids, anti-inflammatories, bronchodilators, leukotirene inhibitors, PDE IV inhibitors, antitussives, diuretics, anticholinergics, hormones, xanthines and pharmaceutically acceptable combinations thereof.
  • the active agent comprised in the medicament in dry powder form delivered via the inhaler pertaining to the present invention is preferably selected from a group comprising tiotropium, oxitropium, flutropium, ipratropium, glicopironium, flunisolid, beclomethasone, budesonide, fluticasone, mometasone, ciclesonide, rofleponide, dexamethasone, montelukast, methylcyclopropane acetic acid, sodium cromoglicat, nedocromil sodium, Npropylene, teophylline, roflumilast, ariflo (cilomilast), salmeterol, salbutamol, formoterol, terbutaline, carmoterol, indacaterol, cetirizine, levocetirizine, efletirizine, fexofenadine and their racemates, free base, enantiomers or diastereomers and
  • the device pertaining to the present invention is used in the administration of the medicament in dry powder form which is utilized in the treatment of many respiratory diseases, particularly in asthma, chronic obstructive pulmonary disorder (COPD) and allergic rhinitis.
  • the respiratory diseases include, but not restricted to, allergic or non-allergic asthma at any phases, acute lung injury (ALI), acute respiratory distress syndrome (ARDS), exacerbation of airways hyperactivity, bronchiectasis, chronic obstructive pulmonary including emphysema and chronic bronchitis, airways or lung diseases (COPD, COAD or COLD), pneumoconiosis, aluminosis, anthracosis, asbestosis, chalicosis, ptilosis, siderosis, silicosis, tabacosis and byssinosis.
  • the device pertaining to the invention can be used in prophylactic or symptomatic treatment.
  • the medicament in dry powder form which is preferably used in the symptom
PCT/TR2011/000086 2009-10-20 2011-04-13 Inhaler used for delivery of medicament in dry powder form WO2011129786A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EA201201394A EA201201394A1 (ru) 2010-04-13 2011-04-13 Ингалятор для доставки лекарственного средства в виде сухого порошка
JP2013504861A JP5873477B2 (ja) 2010-04-13 2011-04-13 乾燥粉末形態の薬剤の送達に使用する吸入器
EP11730461A EP2563434A1 (en) 2010-04-13 2011-04-13 Inhaler used for delivery of medicament in dry powder form
US13/451,838 US9345848B2 (en) 2009-10-20 2012-04-20 Dry powder inhaler
IN4985DEN2012 IN2012DN04985A (ru) 2010-04-13 2012-06-06
US14/695,726 US9795750B2 (en) 2009-10-20 2015-04-24 Dry powder inhaler
US14/695,739 US9795751B2 (en) 2009-10-20 2015-04-24 Dry powder inhaler
US15/792,245 US10842952B2 (en) 2009-10-20 2017-10-24 Dry powder inhaler

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
TR2010/02877 2010-04-13
TR2010/02877A TR201002877A2 (tr) 2010-04-13 2010-04-13 Blister ambalaj içeren inhalasyon cihazı
TR2010/03091 2010-04-20
TR201003091 2010-04-20
TR201004313 2010-05-28
TR2010/04313 2010-05-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2011/000090 Continuation-In-Part WO2011129790A1 (en) 2009-10-20 2011-04-13 Inhaler which creates turbulance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2011/000095 Continuation-In-Part WO2011129795A1 (en) 2009-10-20 2011-04-13 Dry powder inhaler mouthpiece button

Publications (1)

Publication Number Publication Date
WO2011129786A1 true WO2011129786A1 (en) 2011-10-20

Family

ID=44798915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2011/000086 WO2011129786A1 (en) 2009-10-20 2011-04-13 Inhaler used for delivery of medicament in dry powder form

Country Status (5)

Country Link
EP (1) EP2563434A1 (ru)
JP (1) JP5873477B2 (ru)
EA (1) EA201201394A1 (ru)
IN (1) IN2012DN04985A (ru)
WO (1) WO2011129786A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD733287S1 (en) 2011-04-13 2015-06-30 Mahmut Bilgic Dry powder inhaler
USD744087S1 (en) 2013-10-01 2015-11-24 Mahmut Bilgic Dry powder inhaler
US10842952B2 (en) 2009-10-20 2020-11-24 Sima Patent Ve Lisanslama Hizmetleri Ltd. Sti. Dry powder inhaler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050268909A1 (en) * 2002-07-25 2005-12-08 Bonney Stanley G Medicament dispenser
US20090078252A1 (en) * 2005-05-16 2009-03-26 Anderson Gregor John Mclennan Fault indicator
US20100000528A1 (en) * 2004-12-20 2010-01-07 Glaxo Group Limited Manifold for use in medicament dispenser
US20100000529A1 (en) * 2004-12-20 2010-01-07 Glaxo Group Limited Manifold for use in medicament dispenser

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003285246A1 (en) * 2002-12-02 2004-06-23 The Governors Of The University Of Alberta Device and method for deagglomeration of powder for inhalation
JP4825138B2 (ja) * 2004-02-16 2011-11-30 グラクソ グループ リミテッド 薬剤ディスペンサー用カウンター
GB0622827D0 (en) * 2006-11-15 2006-12-27 Glaxo Group Ltd Sheet driver for use in a drug dispenser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050268909A1 (en) * 2002-07-25 2005-12-08 Bonney Stanley G Medicament dispenser
US20100000528A1 (en) * 2004-12-20 2010-01-07 Glaxo Group Limited Manifold for use in medicament dispenser
US20100000529A1 (en) * 2004-12-20 2010-01-07 Glaxo Group Limited Manifold for use in medicament dispenser
US20090078252A1 (en) * 2005-05-16 2009-03-26 Anderson Gregor John Mclennan Fault indicator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10842952B2 (en) 2009-10-20 2020-11-24 Sima Patent Ve Lisanslama Hizmetleri Ltd. Sti. Dry powder inhaler
USD733287S1 (en) 2011-04-13 2015-06-30 Mahmut Bilgic Dry powder inhaler
USD744087S1 (en) 2013-10-01 2015-11-24 Mahmut Bilgic Dry powder inhaler

Also Published As

Publication number Publication date
JP5873477B2 (ja) 2016-03-01
JP2013523376A (ja) 2013-06-17
EP2563434A1 (en) 2013-03-06
IN2012DN04985A (ru) 2015-10-02
EA201201394A1 (ru) 2013-03-29

Similar Documents

Publication Publication Date Title
US10842952B2 (en) Dry powder inhaler
EP2566549B1 (en) Dry powder inhaler mouthpiece button
EP2566546B1 (en) Dry powder inhaler mouthpiece button
EP2566551B1 (en) Inhalation device
EP2566547B1 (en) Dry powder inhaler mouthpiece button
WO2011129788A1 (en) User-friendly dry powder inhaler
EP2566548B1 (en) Inhaler comprising blister package
WO2011129787A1 (en) Dry powder inhaler mouthpiece button
WO2011129790A1 (en) Inhaler which creates turbulance
WO2011129786A1 (en) Inhaler used for delivery of medicament in dry powder form

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11730461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4985/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2013504861

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011730461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011730461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201201394

Country of ref document: EA