WO2011127766A1 - Method and device for obtaining configuration parameters of antenna ports of a base station - Google Patents

Method and device for obtaining configuration parameters of antenna ports of a base station Download PDF

Info

Publication number
WO2011127766A1
WO2011127766A1 PCT/CN2011/071177 CN2011071177W WO2011127766A1 WO 2011127766 A1 WO2011127766 A1 WO 2011127766A1 CN 2011071177 W CN2011071177 W CN 2011071177W WO 2011127766 A1 WO2011127766 A1 WO 2011127766A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
antenna port
port configuration
configuration parameter
changed
Prior art date
Application number
PCT/CN2011/071177
Other languages
French (fr)
Chinese (zh)
Inventor
邓云
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011127766A1 publication Critical patent/WO2011127766A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/26Reselection being triggered by specific parameters by agreed or negotiated communication parameters

Definitions

  • the 3GPP (Third Generation Partnership Projects) introduces the LTE-Advanced (Long-Term Evolution advanced) standard, LTE-Advanced for the long-term
  • LTE-Advanced Long-Term Evolution advanced
  • the evolution of the LTE (Long-Term Evolution) system retains the core of LTE.
  • a series of technologies are used to expand the frequency domain and the airspace to achieve the purpose of improving spectrum utilization and increasing system capacity.
  • the wireless relay (Relay) technology is one of the technologies in LTE-Advanced. It aims to extend the coverage of the cell, reduce the dead zone in the communication, balance the load, transfer the traffic in the hotspot area, and save the user equipment (UE, User Equipment). That is, the transmission power of the terminal.
  • a relay node (RN, Relay-Node) is added between the original base station (Door-eNB) and the UE, and the newly added RN and the Donor-eNB perform a wireless connection.
  • the radio link between the Donor-eNB and the RN is called a backhaul link, and the radio link between the RN and the UE is called an access link.
  • the downlink data arrives at the Donor-eNB first, and then passes to the RN, which then transmits the signal to the UE, and the uplink data is reversed.
  • Donor-eNB uses multi-antenna transmission technology, which can have single antenna configuration such as Antenna Port 0, dual antenna configuration such as Antenna Port 0 and Antenna Port 1, and four antennas set to 1" column Antenna Port 0 Antenna Port 1, Antenna Port 2 and Antenna Port 3 or other antenna configurations.
  • different antenna ports transmit different cell-specific reference signals and different transmission signals.
  • the UE in the connected state needs to measure the cell-specific reference signal and/or report the measurement result, and also needs to receive the signal transmitted by different antennas.
  • the UE or the RN generally decodes the main information block (MIB, Master) sent by the cell.
  • MIB main information block
  • antenna configuration parameters such as the number of antenna ports.
  • the MIB itself does not include antenna configuration parameters, but the MIB needs to be scrambled with the antenna port configuration parameters. In this way, the UE or RN can obtain the antenna port of the access cell from the MIB through blind detection. Configuration parameters.
  • the RN After the RN accesses the Donor-eNB-managed cell and is in a normal working state, it only receives the signal sent by the Donor-eNB in the downlink subframe of the backhaul link. Since the MIB is only scheduled in a specific subframe of the Donor-eNB, it is very likely The RN cannot receive the MIB sent by the Donor-eNB. For example, as shown in FIG. 2, subframe #3 and subframe #8 are downlink link downlink subframes, and subframe #0 is used for scheduling MIB, and RN can only receive Donor-eNB in subframe #3 and subframe #8.
  • the RN does not receive the MIB sent by the Donor-eNB, and thus cannot know the antenna port configuration parameters of the Donor-eNB, nor can it know the change of the antenna port configuration of the Donor-eNB, so that it cannot be effectively received.
  • the changed multi-antenna transmission signal because the antenna port configuration directly affects the signal transmission mode, the RN does not know the antenna port configuration parameters of the Donor-eNB in time, and cannot maintain the connection with the network side, and thus cannot serve the UE under coverage.
  • the network side That is, the radio resource control (RRC, Radio Resource Control) signaling that is exchanged between the base station and the UE includes the mobility control information (Mobility Control Info) carrying the configuration parameters of the target cell antenna port.
  • RRC Radio Resource Control
  • the network side does not Notifying the UE or the RN of the antenna port configuration parameter of the serving cell to which the RN is connected.
  • the RN cannot acquire the antenna port configuration parameter of the accessed Donor-eNB cell, so that the RN cannot know the changed multi-antenna transmission signal in time. Therefore, the RN cannot maintain the connection with the network side, and thus cannot serve the UE under its coverage.
  • the present invention provides a method for obtaining a base station antenna port configuration parameter, the method includes: when a base station antenna port configuration parameter is to be changed, the base station sends a dedicated signaling carrying a self antenna port configuration parameter to the relay node, where The relay node obtains the changed base station antenna port configuration parameters from the dedicated signaling.
  • the dedicated signaling is media access control layer control signaling or radio resource control layer signaling carrying the base station antenna port configuration parameter.
  • the method further includes: determining, by the base station, whether the relay node can receive a primary information block of the base station itself, and if yes, the base station does not send the dedicated signaling to the relay node, The relay node obtains the changed base station antenna port configuration parameter by parsing the received primary information block; otherwise, when the antenna port configuration parameter of the base station is to be changed, the base station sends the dedicated to the relay node Signaling.
  • the base station determines whether the relay node can receive the primary information block of the base station, and the base station: the base station checks the subframe by using the downlink scheduling subframe of the relay node and the primary information block, It is determined whether the relay node can receive the master information block of the base station itself.
  • the method further includes: the relay node applying the changed base station antenna port configuration parameter, by changing the configuration The latter antenna port performs data transmission with the base station.
  • the explicit indication is: the base station carries the time information in the dedicated signaling sent to the relay node.
  • the time information explicitly indicated is a specified system frame number, or a specified system frame number and a subframe number, or a specified time period.
  • the predefined time information includes a predefined time period, or a start time of a modification period of the next system information, or a start time of a modification period of the Nth system message, where N is greater than Or an integer equal to 1.
  • the antenna port configuration parameters of the base station include the changed number of antenna ports, and/or antenna port composition parameters, and/or the number of changed antenna ports, and/or the changed antenna port composition parameters.
  • the present invention further provides an apparatus for acquiring a configuration parameter of a base station antenna port, the apparatus comprising: a detecting unit and a sending unit, wherein: a detecting unit, configured to: start the sending when detecting that a base station antenna port configuration parameter is to be changed And a sending unit, configured to send, to the relay node, dedicated signaling that carries the changed base station antenna port configuration parameter, so that the relay node obtains the changed base station antenna port configuration parameter.
  • the device further includes: a verification unit, wherein: the verification unit is configured to determine whether the relay node can receive the main information block of the base station, and when the determination result is no, start the detection unit, Otherwise, the detection unit is not activated.
  • the device further includes: a receiving unit, configured to receive main information of the base station Blocking, or receiving the dedicated signaling sent by the sending unit.
  • the apparatus further includes: a parsing unit, configured to parse the main information block of the base station received by the receiving unit, to obtain the changed base station antenna port configuration parameter.
  • the method and device for acquiring base station antenna port configuration parameters of the present invention when the antenna port configuration parameter of the base station is to be changed, the base station sends the changed base station antenna port configuration parameter to the relay node by using dedicated signaling, so that the antenna at the base station is
  • the relay node can apply the changed base station antenna port configuration parameters in time, and complete the data signal transmission with the base station by changing the configured antenna port.
  • the invention realizes the knowledge that the relay node changes the configuration of the antenna port of the base station, so that the relay node can maintain the connection with the network side, and improves the success rate and efficiency of data signal transmission between the relay node and the base station.
  • the present invention has small changes to the existing protocol, simple implementation, and flexible configuration.
  • FIG. 1 is a schematic structural diagram of a network system in an LTE/SAE architecture in the prior art
  • FIG. 2 is a schematic diagram of downlink subframe scheduling of a relay node
  • FIG. 3 is a schematic structural diagram of an apparatus for acquiring a configuration parameter of a base station antenna port according to the present invention
  • FIG. 4 is a schematic diagram of a downlink subframe scheduling of a relay node according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic flowchart of obtaining a configuration parameter of a base station antenna port according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of a downlink subframe scheduling of a relay node according to Embodiment 2 of the present invention
  • the basic idea of the present invention is: When the configuration parameter of the antenna port of the RN accessing the Donor-eNB is changed, the RN needs to reacquire the antenna port configuration parameter of the Donor-eNB.
  • the Donor-eNB first determines the RN. Whether it can receive the main sent by the Donor-eNB The information block (MIB, Master Information Block), if yes, the RN can obtain the changed antenna port configuration parameter of the Donor-eNB by parsing the received MIB. Otherwise, the Donor-eNB sends the changed RN to the RN through dedicated signaling.
  • MIB Master Information Block
  • the antenna port configuration parameter the RN receives the dedicated signaling, and obtains the base station antenna port configuration parameter, so that the RN can apply the changed antenna port parameter of the Donor-eNB, and transmit the data signal to the Donor-eNB through the changed antenna port, And performing measurement of a cell-specific reference signal, and the like.
  • the method for obtaining the Donor-eNB antenna port configuration parameter is specifically as follows: When the antenna port configuration parameter of the Donor-eNB is to be changed, the Donor-eNB sends a dedicated signaling carrying the changed antenna port configuration parameter to the RN, the RN The dedicated signaling is received to obtain the changed Donor-eNB antenna port configuration parameters.
  • the antenna port configuration parameters of the Donor-eNB may include the number of antenna ports used by the Donor-eNB after changing the antenna port configuration, and/or the antenna port composition parameters used, and/or changes such as an increase or The number of antenna ports removed, and/or the changed antenna port composition parameters.
  • the dedicated signaling may be Medium Access Control (MAC) layer control signaling or Radio Resource Control (RRC) layer signaling.
  • MAC Medium Access Control
  • RRC Radio Resource Control
  • the method further includes: the Donor-eNB determines whether the RN can receive the Donor-eNB's own MIB, and if yes, the Donor-eNB does not send the dedicated signaling to the RN, and the RN parses The received MIB obtains the changed antenna port configuration parameter of the Donor-eNB; otherwise, when the antenna port configuration parameter of the Donor-eNB is to be changed, the Donor-eNB sends the dedicated signaling to the RN.
  • the Donor-eNB determines whether the RN can receive the Donor-eNB's own MIB by checking the downlink scheduling subframe of the RN and the MIB scheduling subframe. If the downlink scheduling subframe of the RN includes an MIB scheduling subframe, the RN can receive the MIB of the Donor-eNB, Otherwise, the RN does not receive the MIB of the Donor-eNB.
  • the applying the changed base station antenna port configuration parameter may be: according to the explicitly indicated or predefined time information, the RN applies the changed base station antenna port configuration parameter at a specified time. .
  • the manner of the explicit indication may be: the Donor-eNB carries the time information in the dedicated signaling sent to the relay node, so that the RN applies the changed base station antenna port configuration parameter after the specified time And receiving, by the configured antenna port, the data signal sent by the Donor-eNB, and measuring a cell-specific reference signal.
  • the time information explicitly indicated is a specified system frame number (SFN, System Frame Number), or a specified SFN and subframe number, or a specified time period.
  • the time information may also be in a predefined manner, where the predefined time information includes a predefined time period, or a start time of a modification period of the next system information, or an Nth system message.
  • the start time of the modification period where N is an integer greater than or equal to 1.
  • the present invention further provides a device for obtaining a Donor-eNB antenna port configuration parameter.
  • the device mainly includes: a detecting unit 31 and a sending unit 32, where:
  • the detecting unit 31 is configured to start the sending unit when detecting that the antenna port configuration parameter of the Donor-eNB is to be changed;
  • the sending unit 32 is configured to send, to the RN, special signaling that carries the changed antenna port configuration parameter, so that the RN can obtain the changed antenna port configuration parameter.
  • the device further includes: a verification unit 33, configured to determine whether the RN can receive the MIB of the Donor-eNB, and if the result of the determination is negative, start the detection. Unit 31, otherwise, does not activate the detection unit 31.
  • a verification unit 33 configured to determine whether the RN can receive the MIB of the Donor-eNB, and if the result of the determination is negative, start the detection. Unit 31, otherwise, does not activate the detection unit 31.
  • the verification unit 33 determines whether the RN can receive the MIB of the Donor-eNB, and if not, starts the detecting unit 31, when the detecting unit 31 detects that the antenna port configuration parameter of the Donor-eNB is to be changed.
  • the restart sending unit 32 transmits the dedicated signaling carrying the changed antenna port configuration parameter to the RN, otherwise the detecting unit 31 is not activated.
  • the device may further include: a receiving unit 34, configured to receive the MIB of the Donor-eNB, or receive the dedicated signaling sent by the sending unit 31.
  • a receiving unit 34 configured to receive the MIB of the Donor-eNB, or receive the dedicated signaling sent by the sending unit 31.
  • the Donor-eNB's MIB is sent by other parts of the Donor-eNB that have a transmitting function, or may also be sent by the transmitting unit 32.
  • the detecting unit 31, the collating unit 33, and the transmitting unit 32 in the foregoing apparatus may be disposed on the Donor-eNB side to complete transmission of the antenna port configuration parameter after the Donor-eNB change, and the receiving unit 34 and the parsing unit 35 It may be set on the RN side to complete the process of the RN acquiring the antenna port configuration parameter of the changed Donor-eNB.
  • the RN After initial power-on, the RN searches for Cell-1 of the Donor-eNB, reads the system message of the cell Cell-1 in the Donor-eNB, and obtains MIB, SIB 1, SIB2, etc. from the system message, and then obtains The MIB performs decoding to obtain an antenna port configuration parameter including the number of the antenna ports of the cell Cell-1, and the RN sends a message to the Donor-eNB according to the obtained antenna port configuration parameter of the cell Cell-1.
  • an RRC connection Initiating an RRC connection, establishing a signaling bearer and a data bearer with the Donor-eNB, and obtaining parameter configurations including an RN downlink subframe configuration parameter, such as a Fake MBSFN subframe configuration parameter, a RN-managed cell parameter, and the like, and then the RN enters a normal working state.
  • the RN In the normal working state, the RN can only receive the downlink signal sent by the Donor-eNB in the Fake MBSFN subframe.
  • the SFN numbers of the cells of the cell Cell-1 and the RN are both the same, and the subframes included in the SFN are aligned, where M is between 0 and 1023, including 0. And any integer of 1023.
  • subframe #03 and subframe #08 are used for downlink scheduling of the Donor-eNB to the RN.
  • the subframe #00 of the cell Cell-1 is used to schedule the MIB.
  • the RN needs to acquire the antenna port configuration parameter of the changed cell Cell-1, so as to continue to receive the downlink data signal sent by the Donor-eNB, as shown in FIG.
  • the process is as follows:
  • Steps 501-502 The Donor-eNB checks whether the RN can receive the Donor-eNB's own MIB by checking the downlink scheduling subframe of the RN and the MIB scheduling subframe. If yes, proceeding to step 502, the RN parses the received MIB, obtaining the antenna port configuration parameter of the changed cell Cell-1 and continuing to steps 505-506, otherwise, proceeding to step 503;
  • the RN can receive the MIB, otherwise, the RN cannot receive the MIB.
  • the result of the determination in step 501 is no.
  • Step 503 The Donor-eNB sends a dedicated signaling carrying the antenna port configuration parameter of the changed cell Cell-1 to the RN;
  • the dedicated signaling may be MAC layer control signaling or RRC layer signaling;
  • the dedicated signaling may be RRC Connection Reconfiguration, RRC Connection Reestablishment, or RRC parameter configuration signaling in the RRC layer signaling.
  • the cell for carrying the antenna port configuration parameter may be added in the RRC layer signaling as the dedicated signaling, for example, the antenna may be added in the radio resource Config Dedicated information in the RRC connection reconfiguration. The cell of the port configuration parameter.
  • the Donor-eNB sends RRC connection reconfiguration signaling to the RN, the signaling containing the change
  • the antenna port configuration parameter of the cell Cell-1 wherein the antenna port configuration parameter may include the number of antenna ports of the changed cell Cell-1, and/or the complete antenna port component parameter, and may also include the changed antenna port.
  • the number, and/or the changed antenna port composition parameters may include the number of antenna ports of the changed cell Cell-1, and/or the complete antenna port component parameter, and may also include the changed antenna port.
  • the dedicated signaling may also be MAC layer control signaling. In practical applications, it can be implemented by extending the MAC layer control signaling. Specifically, a new field for indicating an antenna port configuration parameter may be defined in the MAC layer control signaling, or an antenna port configuration parameter may be defined by an existing idle field, and the antenna port configuration parameter to be sent is written to be defined. In the new field or idle field, it is sent to the RN through MAC layer control signaling.
  • Step 504 The RN receives the dedicated signaling sent by the Donor-eNB, and obtains the antenna port configuration parameter of the changed cell Cell-1.
  • Step 505 After obtaining the antenna port configuration parameter of the changed cell Cell-1, the RN returns a response message to the Donor-eNB.
  • the response information returned by the RN to the Donor-eNB may be signaling such as RRC connection reconfiguration completion, or RRC connection reestablishment completion, or RRC parameter configuration completion.
  • Step 506 The RN applies the changed antenna port configuration parameter of the cell Cell-1, performs data signal transmission with the Donor-eNB through the antenna port 0 and the antenna port 1, and measures a cell-specific reference signal.
  • the RN uses the existing multiple input multiple output (MIMO) technology to apply the antenna port configuration parameter of the changed cell Cell-1, and receives the antenna port configuration parameter.
  • MIMO multiple input multiple output
  • the base station changes the data transmitted by the configured antenna port, and completes the measurement of the cell-specific reference signal.
  • the RN receives the antenna port 0 and the antenna port 0 after receiving the changed antenna port configuration parameter of the cell Cell-1.
  • the data signal transmitted by antenna port 1 and the measurement of the cell-specific reference signal of antenna port 0 and antenna port 1 are measured. It should be noted that the time-frequency position of the cell-specific reference signal transmitted by different antenna ports is specified by the protocol.
  • the RN may immediately apply the antenna port configuration parameter, or may return the response message after the RN returns the Donor-eNB. Apply the antenna port configuration parameters.
  • step 506 can also be performed before step 505.
  • step 505 is an optional step, and may also be omitted according to actual application requirements.
  • the SFN number of the cell Cell-1 is M
  • the SFN number of the cell under the RN is N
  • the SFN numbers are different but the subframe boundaries are aligned.
  • M and N are between 0 and 1023, including any two different integers of 0 and 1023.
  • Subframe #02 and subframe #07 are used for downlink scheduling of the Donor-eNB to the RN.
  • the RN When the RN accesses the Cell-1 of the cell under the jurisdiction of the Donor-eNB, and is in the normal working state, the cell
  • the number of antenna ports of Cell-1 is 1 and the antenna port used is antenna port 0.
  • the cell Cell-1 needs to increase the number of antenna ports. At this time, the cell
  • Steps 701-702 identical to steps 501-502; Step 703: The Donor-eNB sends, to the RN, dedicated signaling that carries the antenna port configuration parameter of the changed cell Cell-1, and the dedicated signaling further includes time information that the RN applies the antenna port configuration parameter.
  • Step 706 The RN is in the time information, and the changed antenna port configuration parameter of the cell Cell-1 is applied at a time specified by the Donor-eNB.
  • the SFN number of the cell Cell-1 is M
  • the SFN number of the cell under the RN is N
  • the subframes in the SFN are not aligned, where M and N are 0.
  • subframe #03 and subframe #08 are used for Downer-eNB downlink scheduling of the RN.
  • the Donor-eNB needs to notify the RN of the process of changing the antenna port configuration parameters of the cell 1 of the cell, and the specific procedure and the second embodiment The same is true, in this embodiment, the time information of the RN application antenna port configuration parameter is not included in the dedicated signaling of the antenna port configuration parameter sent by the Donor-eNB, but is used in advance. Defined mode settings.
  • the pre-definition of the time information may be completed by negotiation between the RN and the Donor-eNB, or may be sent to the other party after being set in either the RN or the Donor-eNB, or may be specified by a protocol.
  • the predefined time information may be absolute time information, such as a specified SFN, or may be relative time information, such as a time period after the RN receives the antenna port configuration parameter, or may be a cell Cell-1 or an RN.
  • the RN and the Donor-eNB may notify the other party's own system message by means of dedicated signaling, or may use the background operation and maintenance (0& ⁇ , Operation & Maintenance) server to learn the other party's system.
  • the modification period of the message configuration parameters such as SFN.
  • the relay node can accurately know the configuration parameters of the base station antenna port, so that the relay node can maintain the connection with the network side in real time, and improve the success rate and efficiency of data signal transmission between the relay node and the base station.
  • the invention has small changes to the existing protocol, and is simple to implement and flexible in configuration.

Abstract

A method for obtaining configuration parameters of antenna ports of a base station is provided by the present invention. When the configuration parameters of antenna ports of the base station require to be changed, the base station sends the changed configuration parameters of antenna ports to a relay node by using a dedicated signaling, so that the relay node can apply the changed configuration parameters of antenna ports of the base station in time, and accomplish data signal transmission with the base station by using the antenna ports, of which the configuration is changed. A device for obtaining configuration parameters of antenna ports of a base station is also provided by the present invention. By the present invention, it is realized that the relay node obtains the change of antenna ports configuration of the base station, so that the relay node can keep the connection with the network side in real time, and the success ratio and efficiency of data signal transmission between the relay node and the base station are improved.

Description

获取基站天线端口配置参数的方法及装置 技术领域  Method and device for obtaining base station antenna port configuration parameters
本发明涉及长期演进系统中天线端口配置技术, 尤其涉及一种获取基 站天线端口配置参数的方法及装置。 背景技术  The present invention relates to antenna port configuration techniques in a long term evolution system, and more particularly to a method and apparatus for obtaining base station antenna port configuration parameters. Background technique
为了满足日益增长的大带宽高速移动接入的需求, 第三代合作伙伴计 划 ( 3GPP , Third Generation Partnership Projects ) 推出高级长期演进 ( LTE- Advanced, Long-Term Evolution advanced )标准, LTE- Advanced对 于长期演进( LTE , Long-Term Evolution ) 系统的演进保留了 LTE的核心, 在此基础上釆用一系列技术对频域、 空域进行扩充, 以达到提高频谱利用 率、 增加系统容量等目的。  In order to meet the growing demand for large-bandwidth, high-speed mobile access, the 3GPP (Third Generation Partnership Projects) introduces the LTE-Advanced (Long-Term Evolution advanced) standard, LTE-Advanced for the long-term The evolution of the LTE (Long-Term Evolution) system retains the core of LTE. On this basis, a series of technologies are used to expand the frequency domain and the airspace to achieve the purpose of improving spectrum utilization and increasing system capacity.
无线中继 (Relay )技术是 LTE- Advanced 中的技术之一, 旨在扩展小 区的覆盖范围, 减少通信中的死角地区, 平衡负载, 转移热点地区的业务, 节省用户设备(UE, User Equipment )即终端的发射功率。 如图 1所示, 在 原有的基站( Donor-eNB )和 UE之间增加一些中继节点( RN, Relay-Node ), 这些新增的 RN和 Donor-eNB进行无线连接。 其中, Donor-eNB和 RN之 间的无线链路称为回程链路( backhaul link ), RN和 UE之间的无线链路称 为接入链路(access link )。 下行数据先到达 Donor-eNB, 然后传递给 RN, RN再传输至 UE, 上行数据则反之。  The wireless relay (Relay) technology is one of the technologies in LTE-Advanced. It aims to extend the coverage of the cell, reduce the dead zone in the communication, balance the load, transfer the traffic in the hotspot area, and save the user equipment (UE, User Equipment). That is, the transmission power of the terminal. As shown in FIG. 1, a relay node (RN, Relay-Node) is added between the original base station (Door-eNB) and the UE, and the newly added RN and the Donor-eNB perform a wireless connection. The radio link between the Donor-eNB and the RN is called a backhaul link, and the radio link between the RN and the UE is called an access link. The downlink data arrives at the Donor-eNB first, and then passes to the RN, which then transmits the signal to the UE, and the uplink data is reversed.
当接入链路与回程链路共享同一个频段时, RN —方面需要与 Donor-eNB 保持连接, 完成回程链路中的上行数据交互和下行数据交互, 另一方面又需要与 UE保持连接,完成接入链路中的上行数据交互和下行数 据交互, 这将导致 RN数据处理的冲突。 为解决这个问题, 特引入回程链路 下行子帧配置, 该子帧配置可以称为伪多播广播单频网络(Fake MBSFN, Fake Multicast Broadcast Single Frequency Network )子贞, 在 Fake MBSFN 子帧, RN与 Donor-eNB进行数据交互,但不向接入链路中的 UE发送信号。 When the access link and the backhaul link share the same frequency band, the RN needs to maintain a connection with the Donor-eNB to complete the uplink data interaction and downlink data interaction in the backhaul link, and on the other hand, needs to maintain a connection with the UE. The uplink data interaction and downlink data interaction in the access link are completed, which will lead to conflict of RN data processing. In order to solve this problem, a backhaul link is introduced. The downlink subframe configuration may be referred to as a Fake MBSFN (Fake Multicast Broadcast Single Frequency Network) sub-frame. In the Fake MBSFN subframe, the RN performs data interaction with the Donor-eNB, but not Signals are sent to UEs in the access link.
在 LTE系统中, Donor-eNB釆用多天线传输技术, 可以有单天线配置 如 Antenna Port 0, 双天线配置如 Antenna Port 0和 Antenna Port 1 , 四天线 西己置 1"列 ^口 Antenna Port 0、 Antenna Port 1、 Antenna Port 2和 Antenna Port 3 或其他的天线配置。 釆用不同的天线配置, 不同的天线端口传输不同的小 区特定的参考信号 (Cell-specific reference signals )和不同的传输信号, 处 于连接状态的 UE需要测量小区特定的参考信号和 /或上报测量结果, 同时 还需要接收不同天线传输的信号。 LTE系统中, UE或 RN—般通过解码小 区发送的主信息块(MIB, Master Information Block )获得天线配置参数如 天线端口数, MIB本身不包含天线配置参数, 但 MIB需要用天线端口配置 参数加扰,这样, UE或 RN可以通过盲检测从 MIB中获得接入小区的天线 端口配置参数。  In the LTE system, Donor-eNB uses multi-antenna transmission technology, which can have single antenna configuration such as Antenna Port 0, dual antenna configuration such as Antenna Port 0 and Antenna Port 1, and four antennas set to 1" column Antenna Port 0 Antenna Port 1, Antenna Port 2 and Antenna Port 3 or other antenna configurations. 不同 Different antenna configurations, different antenna ports transmit different cell-specific reference signals and different transmission signals. The UE in the connected state needs to measure the cell-specific reference signal and/or report the measurement result, and also needs to receive the signal transmitted by different antennas. In the LTE system, the UE or the RN generally decodes the main information block (MIB, Master) sent by the cell. Information block) Obtain antenna configuration parameters such as the number of antenna ports. The MIB itself does not include antenna configuration parameters, but the MIB needs to be scrambled with the antenna port configuration parameters. In this way, the UE or RN can obtain the antenna port of the access cell from the MIB through blind detection. Configuration parameters.
当 RN接入 Donor-eNB所辖小区并处于正常工作状态后, 只在回程链 路下行子帧接收 Donor-eNB发出的信号,由于 MIB只在 Donor-eNB的特定 子帧调度, 因此很有可能 RN无法接收到 Donor-eNB发送的 MIB。 例如, 如图 2所示, 子帧 #3和子帧 #8为回程链路下行子帧, 而子帧 #0用于调度 MIB, RN只能在子帧 #3和子帧 #8接收 Donor-eNB发出的信号, 此时, RN 就接收不到 Donor-eNB发出的 MIB, 也就无法获知 Donor-eNB的天线端口 配置参数, 也不能获知 Donor-eNB的天线端口配置的变化, 以至于不能有 效接收变化后的多天线传输信号。 由于天线端口配置直接影响信号传输的 方式, RN不及时获知 Donor-eNB的天线端口配置参数,将不能保持与网络 侧的连接, 进而无法为其覆盖下的 UE服务。  After the RN accesses the Donor-eNB-managed cell and is in a normal working state, it only receives the signal sent by the Donor-eNB in the downlink subframe of the backhaul link. Since the MIB is only scheduled in a specific subframe of the Donor-eNB, it is very likely The RN cannot receive the MIB sent by the Donor-eNB. For example, as shown in FIG. 2, subframe #3 and subframe #8 are downlink link downlink subframes, and subframe #0 is used for scheduling MIB, and RN can only receive Donor-eNB in subframe #3 and subframe #8. The signal sent, at this time, the RN does not receive the MIB sent by the Donor-eNB, and thus cannot know the antenna port configuration parameters of the Donor-eNB, nor can it know the change of the antenna port configuration of the Donor-eNB, so that it cannot be effectively received. The changed multi-antenna transmission signal. Because the antenna port configuration directly affects the signal transmission mode, the RN does not know the antenna port configuration parameters of the Donor-eNB in time, and cannot maintain the connection with the network side, and thus cannot serve the UE under coverage.
另外, 在现有的协议中, 只有从当前小区切换到目标小区时, 网络侧 即基站与 UE之间交互的无线资源控制 (RRC, Radio Resource Control )信 令才包含携带有目标小区天线端口配置参数的移动控制信息 ( mobility Control Info ), 在不发生切换时, 网络侧不会通知 UE或 RN其所接入的服 务小区的天线端口配置参数,此时, RN也不能获取所接入的 Donor-eNB小 区的天线端口配置参数, 使得 RN不能及时获知变化后的多天线传输信号, 以至于 RN不能保持与网络侧的连接, 进而无法为其覆盖下的 UE服务。 发明内容 In addition, in the existing protocol, only when switching from the current cell to the target cell, the network side That is, the radio resource control (RRC, Radio Resource Control) signaling that is exchanged between the base station and the UE includes the mobility control information (Mobility Control Info) carrying the configuration parameters of the target cell antenna port. When the handover does not occur, the network side does not Notifying the UE or the RN of the antenna port configuration parameter of the serving cell to which the RN is connected. At this time, the RN cannot acquire the antenna port configuration parameter of the accessed Donor-eNB cell, so that the RN cannot know the changed multi-antenna transmission signal in time. Therefore, the RN cannot maintain the connection with the network side, and thus cannot serve the UE under its coverage. Summary of the invention
有鉴于此, 本发明的主要目的在于提供一种获取基站天线端口配置参 数的方法及装置,以解决现有技术中 RN不能及时获知基站天线端口配置的 变化, 从而不能及时获知变化后的多天线传输信号的问题。  In view of the above, the main object of the present invention is to provide a method and a device for acquiring a configuration parameter of a base station antenna port, so as to solve the problem that the RN cannot know the configuration of the antenna port of the base station in time in the prior art, so that the changed multiple antenna cannot be known in time. The problem of transmitting signals.
为达到上述目的, 本发明的技术方案是这样实现的:  In order to achieve the above object, the technical solution of the present invention is achieved as follows:
本发明提供了一种获取基站天线端口配置参数的方法, 所述方法包括: 在基站的天线端口配置参数要改变时, 基站向中继节点发送携带有自身天 线端口配置参数的专用信令, 所述中继节点从所述专用信令中获得改变后 的基站天线端口配置参数。  The present invention provides a method for obtaining a base station antenna port configuration parameter, the method includes: when a base station antenna port configuration parameter is to be changed, the base station sends a dedicated signaling carrying a self antenna port configuration parameter to the relay node, where The relay node obtains the changed base station antenna port configuration parameters from the dedicated signaling.
在上述方案中, 所述专用信令为携带有所述基站天线端口配置参数的 媒体接入控制层控制信令、 或无线资源控制层信令。  In the above solution, the dedicated signaling is media access control layer control signaling or radio resource control layer signaling carrying the base station antenna port configuration parameter.
在上述方案中, 所述方法还包括: 所述基站判断所述中继节点是否能 够接收到基站自身的主信息块, 如果是, 则基站不向所述中继节点发送所 述专用信令, 所述中继节点通过解析所接收到的主信息块获得改变后的基 站天线端口配置参数; 否则, 在基站的天线端口配置参数要改变时, 所述 基站向所述中继节点发送所述专用信令。  In the above solution, the method further includes: determining, by the base station, whether the relay node can receive a primary information block of the base station itself, and if yes, the base station does not send the dedicated signaling to the relay node, The relay node obtains the changed base station antenna port configuration parameter by parsing the received primary information block; otherwise, when the antenna port configuration parameter of the base station is to be changed, the base station sends the dedicated to the relay node Signaling.
在上述方案中, 所述基站判断所述中继节点是否能够接收到基站自身 的主信息块, 为: 所述基站通过核对所述中继节点的下行调度子帧与主信 息块调度子帧, 判断所述中继节点是否能够接收到基站自身的主信息块。 在上述方案中, 在所述中继节点获得所述改变后的基站天线端口配置 参数之后, 所述方法还包括: 所述中继节点应用所述改变后的基站天线端 口配置参数, 通过改变配置后的天线端口与所述基站进行数据传输。 In the above solution, the base station determines whether the relay node can receive the primary information block of the base station, and the base station: the base station checks the subframe by using the downlink scheduling subframe of the relay node and the primary information block, It is determined whether the relay node can receive the master information block of the base station itself. In the above solution, after the relay node obtains the changed base station antenna port configuration parameter, the method further includes: the relay node applying the changed base station antenna port configuration parameter, by changing the configuration The latter antenna port performs data transmission with the base station.
在上述方案中, 所述的应用所述改变后的基站天线端口配置参数, 为: 依据显式指示的、 或预定义的时间信息, 在指定的时间, 所述中继节点应 用所述改变后的基站天线端口配置参数。  In the above solution, the applying the changed base station antenna port configuration parameter is: according to the explicitly indicated or predefined time information, after the relay node applies the change at a specified time Base station antenna port configuration parameters.
在上述方案中, 所述显式指示为: 所述基站在发送给中继节点的所述 专用信令中携带所述时间信息。  In the above solution, the explicit indication is: the base station carries the time information in the dedicated signaling sent to the relay node.
在上述方案中, 所述显式指示的时间信息为指定的系统帧号、 或指定 的系统帧号和子帧号、 或指定的时间段。  In the above solution, the time information explicitly indicated is a specified system frame number, or a specified system frame number and a subframe number, or a specified time period.
在上述方案中, 所述预定义的时间信息包括预定义的时间段、 或下一 个系统信息的修改周期的起始时刻、 或第 N个系统消息的修改周期的起始 时刻, 其中 N为大于或等于 1的整数。  In the above solution, the predefined time information includes a predefined time period, or a start time of a modification period of the next system information, or a start time of a modification period of the Nth system message, where N is greater than Or an integer equal to 1.
在上述方案中, 所述基站的天线端口配置参数包括改变后的天线端口 数目、 和 /或天线端口组成参数、 和 /或所改变的天线端口数目、 和 /或所改变 的天线端口组成参数。  In the above solution, the antenna port configuration parameters of the base station include the changed number of antenna ports, and/or antenna port composition parameters, and/or the number of changed antenna ports, and/or the changed antenna port composition parameters.
本发明还提供了一种获取基站天线端口配置参数的装置, 所述装置包 括: 检测单元、 发送单元, 其中: 检测单元, 用于在检测到基站天线端口 配置参数要改变时, 启动所述发送单元; 发送单元, 用于向中继节点发送 携带有改变后的基站天线端口配置参数的专用信令, 使得所述中继节点获 得改变后的基站天线端口配置参数。  The present invention further provides an apparatus for acquiring a configuration parameter of a base station antenna port, the apparatus comprising: a detecting unit and a sending unit, wherein: a detecting unit, configured to: start the sending when detecting that a base station antenna port configuration parameter is to be changed And a sending unit, configured to send, to the relay node, dedicated signaling that carries the changed base station antenna port configuration parameter, so that the relay node obtains the changed base station antenna port configuration parameter.
在上述方案中, 所述装置还包括: 核对单元, 其中: 核对单元, 用于 判断所述中继节点是否能够接收到基站的主信息块, 在判断结果为否时, 启动所述检测单元, 否则, 不启动所述检测单元。  In the above solution, the device further includes: a verification unit, wherein: the verification unit is configured to determine whether the relay node can receive the main information block of the base station, and when the determination result is no, start the detection unit, Otherwise, the detection unit is not activated.
在上述方案中, 所述装置还包括: 接收单元, 用于接收基站的主信息 块, 或者接收所述发送单元发送的所述专用信令。 In the foregoing solution, the device further includes: a receiving unit, configured to receive main information of the base station Blocking, or receiving the dedicated signaling sent by the sending unit.
在上述方案中, 所述装置还包括: 解析单元, 用于将所述接收单元接 收到的基站的主信息块进行解析, 获得所述改变后的基站天线端口配置参 数。  In the above solution, the apparatus further includes: a parsing unit, configured to parse the main information block of the base station received by the receiving unit, to obtain the changed base station antenna port configuration parameter.
本发明的获取基站天线端口配置参数的方法及装置, 在基站的天线端 口配置参数要改变时, 基站通过专用信令将改变后的基站天线端口配置参 数发送给中继节点, 使得在基站的天线端口配置变化时, 中继节点能够及 时应用改变后的基站天线端口配置参数, 通过改变配置后的天线端口完成 与基站之间的数据信号传输。 通过本发明, 实现了中继节点对基站天线端 口配置变化的获知, 使得中继节点能够保持与网络侧的连接, 提高了中继 节点与基站之间数据信号传输的成功率和效率。 另外, 本发明对现有协议 改动较小, 实现简单, 配置灵活。 附图说明  The method and device for acquiring base station antenna port configuration parameters of the present invention, when the antenna port configuration parameter of the base station is to be changed, the base station sends the changed base station antenna port configuration parameter to the relay node by using dedicated signaling, so that the antenna at the base station is When the port configuration changes, the relay node can apply the changed base station antenna port configuration parameters in time, and complete the data signal transmission with the base station by changing the configured antenna port. The invention realizes the knowledge that the relay node changes the configuration of the antenna port of the base station, so that the relay node can maintain the connection with the network side, and improves the success rate and efficiency of data signal transmission between the relay node and the base station. In addition, the present invention has small changes to the existing protocol, simple implementation, and flexible configuration. DRAWINGS
图 1为现有技术中 LTE/SAE架构下的网络系统的结构示意图; 图 2为中继节点的下行子帧调度的示意图;  1 is a schematic structural diagram of a network system in an LTE/SAE architecture in the prior art; FIG. 2 is a schematic diagram of downlink subframe scheduling of a relay node;
图 3为本发明获取基站天线端口配置参数的装置的组成结构示意图; 图 4为本发明实施例一的中继节点下行子帧调度的示意图;  3 is a schematic structural diagram of an apparatus for acquiring a configuration parameter of a base station antenna port according to the present invention; FIG. 4 is a schematic diagram of a downlink subframe scheduling of a relay node according to Embodiment 1 of the present invention;
图 5为本发明实施例一中获取基站天线端口配置参数的流程示意图; 图 6为本发明实施例二的中继节点下行子帧调度的示意图;  5 is a schematic flowchart of obtaining a configuration parameter of a base station antenna port according to Embodiment 1 of the present invention; FIG. 6 is a schematic diagram of a downlink subframe scheduling of a relay node according to Embodiment 2 of the present invention;
图 7为本发明实施例二中获取基站天线端口配置参数的流程示意图。 具体实施方式  FIG. 7 is a schematic flowchart of obtaining configuration parameters of a base station antenna port according to Embodiment 2 of the present invention. detailed description
本发明的基本思想是: 在 RN接入 Donor-eNB所辖小区的天线端口的 配置参数要改变时, RN需要重新获取 Donor-eNB的天线端口配置参数,本 发明中, Donor-eNB首先判断 RN是否能够接收到该 Donor-eNB发送的主 信息块(MIB, Master Information Block ), 如果是, 则 RN可以通过解析接 收到的 MIB获得 Donor-eNB改变后的天线端口配置参数,否则, Donor-eNB 通过专用信令向 RN发送自身改变后的天线端口配置参数, RN接收该专用 信令, 获得基站天线端口配置参数, 以便于 RN可以应用 Donor-eNB改变 后的天线端口参数, 通过改变后的天线端口与 Donor-eNB进行数据信号的 传输、 以及进行小区特定参考信号的测量等。 The basic idea of the present invention is: When the configuration parameter of the antenna port of the RN accessing the Donor-eNB is changed, the RN needs to reacquire the antenna port configuration parameter of the Donor-eNB. In the present invention, the Donor-eNB first determines the RN. Whether it can receive the main sent by the Donor-eNB The information block (MIB, Master Information Block), if yes, the RN can obtain the changed antenna port configuration parameter of the Donor-eNB by parsing the received MIB. Otherwise, the Donor-eNB sends the changed RN to the RN through dedicated signaling. The antenna port configuration parameter, the RN receives the dedicated signaling, and obtains the base station antenna port configuration parameter, so that the RN can apply the changed antenna port parameter of the Donor-eNB, and transmit the data signal to the Donor-eNB through the changed antenna port, And performing measurement of a cell-specific reference signal, and the like.
本发明获取 Donor-eNB 天线端口配置参数的方法, 具体为: 在 Donor-eNB的天线端口配置参数要改变时, Donor-eNB向 RN发送携带有改 变后的天线端口配置参数的专用信令, RN接收该专用信令来获得改变后的 Donor-eNB天线端口配置参数。  The method for obtaining the Donor-eNB antenna port configuration parameter is specifically as follows: When the antenna port configuration parameter of the Donor-eNB is to be changed, the Donor-eNB sends a dedicated signaling carrying the changed antenna port configuration parameter to the RN, the RN The dedicated signaling is received to obtain the changed Donor-eNB antenna port configuration parameters.
这里, Donor-eNB的天线端口配置参数可以包含 Donor-eNB在改变天 线端口配置后所釆用的天线端口数目、 和 /或所釆用的天线端口组成参数、 和 /或所改变的如增加或删除的天线端口数目、 和 /或所改变的天线端口组成 参数。  Here, the antenna port configuration parameters of the Donor-eNB may include the number of antenna ports used by the Donor-eNB after changing the antenna port configuration, and/or the antenna port composition parameters used, and/or changes such as an increase or The number of antenna ports removed, and/or the changed antenna port composition parameters.
这里, 所述的专用信令可以为媒体接入控制 ( MAC , Medium Access Control )层控制信令、 或无线资源控制 (RRC, Radio Resource Control )层 信令。  Here, the dedicated signaling may be Medium Access Control (MAC) layer control signaling or Radio Resource Control (RRC) layer signaling.
其中, 所述方法还包括: Donor-eNB 判断所述 RN 是否能够接收到 Donor-eNB 自身的 MIB, 如果是, 则 Donor-eNB不向所述 RN发送所述专 用信令, 所述 RN通过解析所接收到的 MIB, 获得 Donor-eNB改变后的天 线端口配置参数; 否则, 在 Donor-eNB 的天线端口配置参数要改变时, Donor-eNB向所述 RN发送所述专用信令。  The method further includes: the Donor-eNB determines whether the RN can receive the Donor-eNB's own MIB, and if yes, the Donor-eNB does not send the dedicated signaling to the RN, and the RN parses The received MIB obtains the changed antenna port configuration parameter of the Donor-eNB; otherwise, when the antenna port configuration parameter of the Donor-eNB is to be changed, the Donor-eNB sends the dedicated signaling to the RN.
这里, Donor-eNB通过核对所述 RN的下行调度子帧与 MIB调度子帧 来判断所述 RN是否能够接收到 Donor-eNB 自身的 MIB。 如果所述 RN的 下行调度子帧中包含 MIB调度子帧,则 RN能够接收到 Donor-eNB的 MIB, 否则, RN接收不到 Donor-eNB的 MIB。 Here, the Donor-eNB determines whether the RN can receive the Donor-eNB's own MIB by checking the downlink scheduling subframe of the RN and the MIB scheduling subframe. If the downlink scheduling subframe of the RN includes an MIB scheduling subframe, the RN can receive the MIB of the Donor-eNB, Otherwise, the RN does not receive the MIB of the Donor-eNB.
其中,在 RN获得所述改变后的基站天线端口配置参数之后,所述方法 还包括: 所述 RN应用所获得的基站天线端口配置参数,通过改变配置后的 天线端口与 Donor-eNB进行数据传输。  After the RN obtains the changed base station antenna port configuration parameter, the method further includes: the RN applies the obtained base station antenna port configuration parameter, and performs data transmission with the Donor-eNB by changing the configured antenna port. .
这里, 所述的应用所述改变后的基站天线端口配置参数, 可以为: 依 据显式指示的、 或预定义的时间信息, 在指定的时间, RN应用所述改变后 的基站天线端口配置参数。  Here, the applying the changed base station antenna port configuration parameter may be: according to the explicitly indicated or predefined time information, the RN applies the changed base station antenna port configuration parameter at a specified time. .
这里, 所述显式指示的方式可以为: Donor-eNB 在发送给中继节点的 所述专用信令中携带所述时间信息,使得 RN在指定的时间应用改变后的基 站天线端口配置参数后, 通过配置改变后的天线端口接收所述 Donor-eNB 发送的数据信号、 以及测量小区特定的参考信号。  Here, the manner of the explicit indication may be: the Donor-eNB carries the time information in the dedicated signaling sent to the relay node, so that the RN applies the changed base station antenna port configuration parameter after the specified time And receiving, by the configured antenna port, the data signal sent by the Donor-eNB, and measuring a cell-specific reference signal.
其中,所述显式指示的时间信息为指定的系统帧号(SFN, System Frame Number ), 或指定的 SFN和子帧号、 或指定的时间段。  The time information explicitly indicated is a specified system frame number (SFN, System Frame Number), or a specified SFN and subframe number, or a specified time period.
其中, 所述的时间信息还可以釆用预定义的方式, 所述预定义的时间 信息包括预定义的时间段、 或下一个系统信息的修改周期的起始时刻、 或 第 N个系统消息的修改周期的起始时刻, 其中 N为大于或等于 1的整数。  The time information may also be in a predefined manner, where the predefined time information includes a predefined time period, or a start time of a modification period of the next system information, or an Nth system message. The start time of the modification period, where N is an integer greater than or equal to 1.
为了实现本发明的上述方法, 本发明还提供了一种获取 Donor-eNB天 线端口配置参数的装置, 如图 3所示, 该装置主要包括: 检测单元 31、 发 送单元 32, 其中:  In order to implement the above method of the present invention, the present invention further provides a device for obtaining a Donor-eNB antenna port configuration parameter. As shown in FIG. 3, the device mainly includes: a detecting unit 31 and a sending unit 32, where:
检测单元 31 ,用于在检测到 Donor-eNB的天线端口配置参数要改变时, 启动所述发送单元;  The detecting unit 31 is configured to start the sending unit when detecting that the antenna port configuration parameter of the Donor-eNB is to be changed;
发送单元 32 , 用于向 RN发送携带有改变后的天线端口配置参数的专 用信令, 使得所述 RN能够获得改变后的天线端口配置参数。  The sending unit 32 is configured to send, to the RN, special signaling that carries the changed antenna port configuration parameter, so that the RN can obtain the changed antenna port configuration parameter.
其中, 所述装置还包括: 核对单元 33 , 该核对单元用于判断所述 RN 是否能够接收到 Donor-eNB的 MIB, 在判断的结果为否时, 启动所述检测 单元 31 , 否则, 不启动所述检测单元 31。 The device further includes: a verification unit 33, configured to determine whether the RN can receive the MIB of the Donor-eNB, and if the result of the determination is negative, start the detection. Unit 31, otherwise, does not activate the detection unit 31.
具体地, 所述核对单元 33判断所述 RN是否能够接收到 Donor-eNB的 MIB, 如果否, 则启动所述检测单元 31 , 检测单元 31在检测到 Donor-eNB 的天线端口配置参数要改变时, 再启动发送单元 32向所述 RN发送携带有 改变后的天线端口配置参数的专用信令, 否则, 不启动所述检测单元 31。  Specifically, the verification unit 33 determines whether the RN can receive the MIB of the Donor-eNB, and if not, starts the detecting unit 31, when the detecting unit 31 detects that the antenna port configuration parameter of the Donor-eNB is to be changed. The restart sending unit 32 transmits the dedicated signaling carrying the changed antenna port configuration parameter to the RN, otherwise the detecting unit 31 is not activated.
另外, 所述装置还可以包括: 接收单元 34, 用于接收所述 Donor-eNB 的 MIB, 或者接收所述发送单元 31发送的所述专用信令。  In addition, the device may further include: a receiving unit 34, configured to receive the MIB of the Donor-eNB, or receive the dedicated signaling sent by the sending unit 31.
具体地, Donor-eNB的 MIB由 Donor-eNB中其他具有发送功能的部分 发送, 或者也可以由发送单元 32发送。  Specifically, the Donor-eNB's MIB is sent by other parts of the Donor-eNB that have a transmitting function, or may also be sent by the transmitting unit 32.
所述装置还可以包括: 解析单元 35 , 用于将所述接收单元 34接收到的 Donor-eNB的 MIB进行解析,获得所述改变后的基站的天线端口配置参数。  The apparatus may further include: a parsing unit 35, configured to parse the MIB of the Donor-eNB received by the receiving unit 34, and obtain an antenna port configuration parameter of the changed base station.
实际应用中, 上述装置中的检测单元 31、 核对单元 33 以及发送单元 32均可以设置于 Donor-eNB侧,完成 Donor-eNB改变后的天线端口配置参 数的发送, 而接收单元 34和解析单元 35可以设置于 RN侧, 完成 RN获取 改变后的 Donor-eNB的天线端口配置参数的过程。  In an actual application, the detecting unit 31, the collating unit 33, and the transmitting unit 32 in the foregoing apparatus may be disposed on the Donor-eNB side to complete transmission of the antenna port configuration parameter after the Donor-eNB change, and the receiving unit 34 and the parsing unit 35 It may be set on the RN side to complete the process of the RN acquiring the antenna port configuration parameter of the changed Donor-eNB.
实施例一  Embodiment 1
RN在初始上电后,搜索到 Donor-eNB所辖小区 Cell— 1 ,读取 Donor-eNB 中小区 Cell— 1的系统消息, 从该系统消息中获取 MIB、 SIB 1、 SIB2等, 再 将获取的 MIB进行解码, 获得包含小区 Cell— 1的、 包含有所釆用天线端口 的数目等信息的天线端口配置参数, RN根据获得的小区 Cell— 1的天线端口 配置参数等消息, 向 Donor-eNB发起 RRC连接, 与 Donor-eNB建立信令 承载和数据承载, 并获得包括 RN下行子帧配置参数如 Fake MBSFN子帧 配置参数、 RN所辖小区参数等的参数配置, 之后 RN进入正常工作状态, 在正常工作状态, RN只能够在 Fake MBSFN子帧接收 Donor-eNB发送的 下行信号。 本实施例中 , 参照图 4所示 , 小区 Cell— 1和 RN所辖小区的 SFN编号 相同均为 M, 且该 SFN中包含的子帧对齐, 其中, M为 0~1023之间、 包 括 0和 1023的任意整数。在 Fake MBSFN子帧配置参数中已设置,子帧 #03 和子帧 #08用于 Donor-eNB对 RN的下行调度。依据现有的协议,小区 Cell— 1 的子帧 #00用于调度 MIB。 After initial power-on, the RN searches for Cell-1 of the Donor-eNB, reads the system message of the cell Cell-1 in the Donor-eNB, and obtains MIB, SIB 1, SIB2, etc. from the system message, and then obtains The MIB performs decoding to obtain an antenna port configuration parameter including the number of the antenna ports of the cell Cell-1, and the RN sends a message to the Donor-eNB according to the obtained antenna port configuration parameter of the cell Cell-1. Initiating an RRC connection, establishing a signaling bearer and a data bearer with the Donor-eNB, and obtaining parameter configurations including an RN downlink subframe configuration parameter, such as a Fake MBSFN subframe configuration parameter, a RN-managed cell parameter, and the like, and then the RN enters a normal working state. In the normal working state, the RN can only receive the downlink signal sent by the Donor-eNB in the Fake MBSFN subframe. In this embodiment, as shown in FIG. 4, the SFN numbers of the cells of the cell Cell-1 and the RN are both the same, and the subframes included in the SFN are aligned, where M is between 0 and 1023, including 0. And any integer of 1023. It is set in the Fake MBSFN subframe configuration parameter, and subframe #03 and subframe #08 are used for downlink scheduling of the Donor-eNB to the RN. According to the existing protocol, the subframe #00 of the cell Cell-1 is used to schedule the MIB.
小区 Cell— 1的天线端口配置参数要发生变化时, RN需要获取改变后的 小区 Cell— 1的天线端口配置参数, 以便能够继续接收 Donor-eNB发送的下 行数据信号, 参照图 5所示, 具体流程如下:  When the antenna port configuration parameter of the cell Cell-1 is to be changed, the RN needs to acquire the antenna port configuration parameter of the changed cell Cell-1, so as to continue to receive the downlink data signal sent by the Donor-eNB, as shown in FIG. The process is as follows:
步骤 501-502: Donor-eNB通过核对 RN的下行调度子帧与 MIB调度子 帧, 判断 RN是否能够接收到 Donor-eNB 自身的 MIB, 如果是, 则继续步 骤 502, RN通过解析所接收到的 MIB, 获得改变后的小区 Cell— 1的天线端 口配置参数并继续步骤 505-506, 否则, 继续步骤 503;  Steps 501-502: The Donor-eNB checks whether the RN can receive the Donor-eNB's own MIB by checking the downlink scheduling subframe of the RN and the MIB scheduling subframe. If yes, proceeding to step 502, the RN parses the received MIB, obtaining the antenna port configuration parameter of the changed cell Cell-1 and continuing to steps 505-506, otherwise, proceeding to step 503;
这里, 如果 RN的下行调度子帧包含 MIB调度子帧, 则 RN能够接收 到 MIB, 否则, RN不能接收到 MIB。  Here, if the downlink scheduling subframe of the RN includes the MIB scheduling subframe, the RN can receive the MIB, otherwise, the RN cannot receive the MIB.
因此, 本实施例中, 步骤 501判断的结果为否。  Therefore, in this embodiment, the result of the determination in step 501 is no.
步骤 503: Donor-eNB向 RN发送携带有改变后的小区 Cell— 1的天线端 口配置参数的专用信令;  Step 503: The Donor-eNB sends a dedicated signaling carrying the antenna port configuration parameter of the changed cell Cell-1 to the RN;
这里, 专用信令可以是 MAC层控制信令或 RRC层信令;  Here, the dedicated signaling may be MAC layer control signaling or RRC layer signaling;
实际应用中, 所述专用信令可以是 RRC层信令中的 RRC连接重配置 ( RRC Connection Reconfiguration )、 或者 RRC连接重建 ( RRC Connection Reestablishment ), 或者 RRC参数配置等信令。 具体地, 可以在作为专用信 令的 RRC层信令中增加用于携带天线端口配置参数的信元,如可以在 RRC 连接重配置中的专用无线资源配置 ( radio Resource Config Dedicated )信息 中增加天线端口配置参数的信元。  In an actual application, the dedicated signaling may be RRC Connection Reconfiguration, RRC Connection Reestablishment, or RRC parameter configuration signaling in the RRC layer signaling. Specifically, the cell for carrying the antenna port configuration parameter may be added in the RRC layer signaling as the dedicated signaling, for example, the antenna may be added in the radio resource Config Dedicated information in the RRC connection reconfiguration. The cell of the port configuration parameter.
例如, Donor-eNB发送 RRC连接重配置信令给 RN, 该信令包含改变 后的小区 Cell— 1 的天线端口配置参数, 其中, 天线端口配置参数可以包含 改变后的小区 Cell— 1的天线端口数目、 和 /或完整的天线端口组成参数, 也 可以包含所变化的天线端口数目、 和 /或所变化的天线端口组成参数。 For example, the Donor-eNB sends RRC connection reconfiguration signaling to the RN, the signaling containing the change The antenna port configuration parameter of the cell Cell-1, wherein the antenna port configuration parameter may include the number of antenna ports of the changed cell Cell-1, and/or the complete antenna port component parameter, and may also include the changed antenna port. The number, and/or the changed antenna port composition parameters.
例如, 小区 Cell— 1 的天线端口配置变化之前, 其天线端口参数中天线 端口数目为 1 , 即釆用天线端口 0, 变化之后, 小区 Cell— 1的天线端口参数 为天线端口数目为 2, 即釆用天线端口 0和天线端口 1 , 则 Donor-eNB向 RN所发送天线端口配置参数的内容可以是: 天线端口数目为 2、 和 /或釆用 天线端口 0和天线端口 1 , 也可以是: 天线端口数目增加 1、 和 /或增加应用 天线端口 1。  For example, before the antenna port configuration of the cell Cell-1 changes, the number of antenna ports in the antenna port parameter is 1, that is, the antenna port 0 is used. After the change, the antenna port parameter of the cell Cell-1 is the number of antenna ports is 2, that is, The antenna port 0 and the antenna port 1 are used, and the content of the antenna port configuration parameter sent by the Donor-eNB to the RN may be: The number of antenna ports is 2, and/or the antenna port 0 and the antenna port 1 are used, and may also be: The number of antenna ports is increased by 1, and/or the application antenna port 1 is added.
所述的专用信令还可以是 MAC层控制信令。 实际应用中, 可以通过扩 展现有的 MAC层控制信令来实现。 具体地, 可以在 MAC层控制信令中定 义用于表示天线端口配置参数的新字段, 或者也可以定义由现有的空闲字 段携带天线端口配置参数, 将要发送的天线端口配置参数写入所定义的新 字段或空闲字段中, 通过 MAC层控制信令发送到 RN。  The dedicated signaling may also be MAC layer control signaling. In practical applications, it can be implemented by extending the MAC layer control signaling. Specifically, a new field for indicating an antenna port configuration parameter may be defined in the MAC layer control signaling, or an antenna port configuration parameter may be defined by an existing idle field, and the antenna port configuration parameter to be sent is written to be defined. In the new field or idle field, it is sent to the RN through MAC layer control signaling.
步骤 504: RN接收 Donor-eNB所发送的专用信令, 获得改变后的小区 Cell— 1的天线端口配置参数;  Step 504: The RN receives the dedicated signaling sent by the Donor-eNB, and obtains the antenna port configuration parameter of the changed cell Cell-1.
步骤 505: RN获得改变后的小区 Cell— 1 的天线端口配置参数后, 向 Donor-eNB返回响应信息;  Step 505: After obtaining the antenna port configuration parameter of the changed cell Cell-1, the RN returns a response message to the Donor-eNB.
具体的, RN向 Donor-eNB返回的响应信息可以是 RRC连接重配置完 成、 或 RRC连接重建完成、 或 RRC参数配置完成等信令。  Specifically, the response information returned by the RN to the Donor-eNB may be signaling such as RRC connection reconfiguration completion, or RRC connection reestablishment completion, or RRC parameter configuration completion.
步骤 506: RN应用改变后的小区 Cell— 1的天线端口配置参数, 通过天 线端口 0和天线端口 1与 Donor-eNB进行数据信号传输、 以及测量小区特 定的参考信号。  Step 506: The RN applies the changed antenna port configuration parameter of the cell Cell-1, performs data signal transmission with the Donor-eNB through the antenna port 0 and the antenna port 1, and measures a cell-specific reference signal.
具体地, RN 釆用现有的多输入多输出技术(MIMO , Multiple Input Multiple Output )技术应用改变后的小区 Cell— 1的天线端口配置参数, 接收 基站通过改变配置的天线端口发送的数据、 以及完成小区特定的参考信号 的测量等。 Specifically, the RN uses the existing multiple input multiple output (MIMO) technology to apply the antenna port configuration parameter of the changed cell Cell-1, and receives the antenna port configuration parameter. The base station changes the data transmitted by the configured antenna port, and completes the measurement of the cell-specific reference signal.
例如, 改变后的小区 Cell— 1的天线端口数目为 2、 釆用天线端口 0和 天线端口 1 , 则 RN在接收到改变后的小区 Cell— 1的天线端口配置参数后, 接收天线端口 0和天线端口 1发送的数据信号, 并测量天线端口 0和天线 端口 1 的小区特定的参考信号的测量。 需要说明的是, 不同天线端口传输 的小区特定的参考信号的时频位置由协议规定。  For example, after the changed number of antenna ports of the cell Cell-1 is 2, the antenna port 0 and the antenna port 1 are used, the RN receives the antenna port 0 and the antenna port 0 after receiving the changed antenna port configuration parameter of the cell Cell-1. The data signal transmitted by antenna port 1 and the measurement of the cell-specific reference signal of antenna port 0 and antenna port 1 are measured. It should be noted that the time-frequency position of the cell-specific reference signal transmitted by different antenna ports is specified by the protocol.
实际应用中, RN在接收到 Donor-eNB发送的改变后的小区 Cell— 1的 天线端口配置参数后, 可以立即应用该天线端口配置参数, 或者也可以在 RN向 Donor-eNB返回响应消息后再应用该天线端口配置参数。 本实施例 中, 步骤 506也可以在步骤 505之前进行。 另外, 步骤 505为可选步骤, 也可以根据实际应用需要省去。  In an actual application, after receiving the changed antenna port configuration parameter of the cell Cell-1 sent by the Donor-eNB, the RN may immediately apply the antenna port configuration parameter, or may return the response message after the RN returns the Donor-eNB. Apply the antenna port configuration parameters. In this embodiment, step 506 can also be performed before step 505. In addition, step 505 is an optional step, and may also be omitted according to actual application requirements.
实施例二  Embodiment 2
本实施例中 , 参照图 6所示, 小区 Cell— 1的 SFN编号为 M, RN所辖 小区的 SFN编号为 N, 两者 SFN编号不同但其中的子帧边界对齐, 其中, In this embodiment, as shown in FIG. 6, the SFN number of the cell Cell-1 is M, and the SFN number of the cell under the RN is N, and the SFN numbers are different but the subframe boundaries are aligned.
M和 N为 0~1023之间、 包括 0和 1023的任意两个不同的整数。 子帧 #02 和子帧 #07用于 Donor-eNB对 RN的下行调度。 M and N are between 0 and 1023, including any two different integers of 0 and 1023. Subframe #02 and subframe #07 are used for downlink scheduling of the Donor-eNB to the RN.
RN接入 Donor-eNB所辖小区 Cell— 1 , 并处于正常工作状态时, 小区 When the RN accesses the Cell-1 of the cell under the jurisdiction of the Donor-eNB, and is in the normal working state, the cell
Cell— 1 的天线端口数为 1 , 所应用的天线端口为天线端口 0。 为增加小区 Cell— 1 的业务吞吐量, 小区 Cell— 1需要增加天线端口的数量, 此时, 小区The number of antenna ports of Cell-1 is 1 and the antenna port used is antenna port 0. In order to increase the service throughput of the cell Cell-1, the cell Cell-1 needs to increase the number of antenna ports. At this time, the cell
Cell— 1的天线端口配置要发生变化,将小区 Cell— 1的天线端口数目增加到 4 个, 所应用的天线端口更改为天线端口 0、 天线端口 1、 天线端口 2、 天线 端口 3。 Donor-eNB需要通知 RN改变后的小区 Cell— 1的天线端口配置参数, 参照图 7所示, 具体流程如下: The antenna port configuration of Cell-1 needs to be changed. The number of antenna ports of cell Cell-1 is increased to four, and the applied antenna port is changed to antenna port 0, antenna port 1, antenna port 2, and antenna port 3. The Donor-eNB needs to notify the RN of the changed antenna port configuration parameters of the cell Cell-1, as shown in Figure 7, the specific process is as follows:
步骤 701-702: 与步骤 501-502完全相同; 步骤 703: Donor-eNB向 RN发送携带有改变后的小区 Cell— 1的天线端 口配置参数的专用信令,该专用信令中还包含 RN应用该天线端口配置参数 的时间信息; Steps 701-702: identical to steps 501-502; Step 703: The Donor-eNB sends, to the RN, dedicated signaling that carries the antenna port configuration parameter of the changed cell Cell-1, and the dedicated signaling further includes time information that the RN applies the antenna port configuration parameter.
其中, 专用信令包含的时间信息可以是绝对的时间信息, 也可以是相 对的时间信息。 其中, 绝对的时间信息可以是指定的 SFN, 或者是指定的 SFN和子帧, 例如, 可以指定在小区 Cell— 1或 RN所辖小区的 SFN为 20 时, RN应用改变后的小区 Cell— 1的天线端口配置参数, 或者, 可以指定在 SFN为 30且子帧为 05时, RN应用改变后的小区 Cell— 1的天线端口配置参 数; 相对时间信息可以是一个时间段, RN在接收到专用信令的该时间段之 后, 再应用改变后的小区 Cell— 1 的天线端口配置, 例如, 相对时间设置为 20毫秒时, RN则在接收到所述专用信令的 20毫秒之后, 应用改变后的小 区 Cell— 1的天线端口配置参数。  The time information included in the dedicated signaling may be absolute time information or relative time information. The absolute time information may be a specified SFN, or a specified SFN and a subframe. For example, the RN may apply to the changed cell 1-1 when the cell SF-1 or the SFN of the cell under the RN is 20 The antenna port configuration parameter may be specified. When the SFN is 30 and the subframe is 05, the RN applies the antenna port configuration parameter of the changed cell Cell-1; the relative time information may be a time period, and the RN receives the dedicated message. After the time period of the command, the antenna port configuration of the changed cell Cell-1 is applied. For example, when the relative time is set to 20 milliseconds, the RN applies the changed after receiving the dedicated signaling for 20 milliseconds. Antenna port configuration parameters of cell Cell-1.
步骤 704-705: 与步骤 504-505完全相同;  Steps 704-705: identical to steps 504-505;
步骤 706: RN 居所述时间信息, 在 Donor-eNB指定的时间应用改变 后的小区 Cell— 1的天线端口配置参数。  Step 706: The RN is in the time information, and the changed antenna port configuration parameter of the cell Cell-1 is applied at a time specified by the Donor-eNB.
具体地,本实施例中, RN在 Donor-eNB指定的时间应用改变后的小区 Cell— 1的天线端口配置参数之后 , 分别接收 Donor-eNB的 4个天线端口发 送的数据信号, 测量 4个天线端口上的小区特定的参考信号。  Specifically, in this embodiment, after applying the changed antenna port configuration parameter of the cell Cell-1 at the time specified by the Donor-eNB, the RN separately receives the data signals sent by the four antenna ports of the Donor-eNB, and measures four antennas. Cell-specific reference signal on the port.
实施例三  Embodiment 3
本实施例中 , 如图 2所示, 小区 Cell— 1的 SFN编号为 M, RN所辖小 区的 SFN编号为 N, 且两者 SFN中的子帧没有对齐关系, 其中, M和 N 为 0~1023之间、包括 0和 1023的任意两个不同的整数,子帧 #03和子帧 #08 用于 Donor-eNB对 RN的下行调度。  In this embodiment, as shown in FIG. 2, the SFN number of the cell Cell-1 is M, and the SFN number of the cell under the RN is N, and the subframes in the SFN are not aligned, where M and N are 0. Between ~1023, including any two different integers of 0 and 1023, subframe #03 and subframe #08 are used for Downer-eNB downlink scheduling of the RN.
小区 Cell— 1 的天线端口配置要发生变化时, Donor-eNB需要通知 RN 改变后的小区 Cell 1 的天线端口配置参数的过程, 具体流程与实施例二基 本相同, 所不同的是, 本实施例中, 所述的 RN应用天线端口配置参数的时 间信息没有包含在 Donor-eNB所发送的携带天线端口配置参数的专用信令 中, 而是釆用预定义的方式设置。 When the antenna port configuration of the cell Cell-1 is to be changed, the Donor-eNB needs to notify the RN of the process of changing the antenna port configuration parameters of the cell 1 of the cell, and the specific procedure and the second embodiment The same is true, in this embodiment, the time information of the RN application antenna port configuration parameter is not included in the dedicated signaling of the antenna port configuration parameter sent by the Donor-eNB, but is used in advance. Defined mode settings.
具体的, 时间信息的预定义可以由 RN与 Donor-eNB之间通过协商完 成, 或者在 RN和 Donor-eNB两者中任意一个中设置后发送给对方, 或者 还可以通过协议规定。  Specifically, the pre-definition of the time information may be completed by negotiation between the RN and the Donor-eNB, or may be sent to the other party after being set in either the RN or the Donor-eNB, or may be specified by a protocol.
其中, 预定义的时间信息可以是绝对的时间信息如指定的 SFN等, 也 可以是相对的时间信息,如 RN接收到天线端口配置参数后的时间段,还可 以是小区 Cell— 1或 RN所辖小区的下一个系统信息修改周期的起始时刻或 第 N个系统消息的修改周期的起始时刻, 其中 N为大于或等于 1的整数。  The predefined time information may be absolute time information, such as a specified SFN, or may be relative time information, such as a time period after the RN receives the antenna port configuration parameter, or may be a cell Cell-1 or an RN. The start time of the next system information modification period of the jurisdiction or the start time of the modification period of the Nth system message, where N is an integer greater than or equal to 1.
本实施例中, RN和 Donor-eNB之间可以通过专用信令通知对方自身的 系统消息的^ ί'爹改周期, 也可以通过后台操作和维护 (0&Μ , Operation & Maintenance )服务器获知对方的系统消息的修改周期、 SFN等配置参数。  In this embodiment, the RN and the Donor-eNB may notify the other party's own system message by means of dedicated signaling, or may use the background operation and maintenance (0&Μ, Operation & Maintenance) server to learn the other party's system. The modification period of the message, configuration parameters such as SFN.
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。 工业实用性  The above description is only for the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included. Within the scope of protection of the present invention. Industrial applicability
釆用本发明后, 中继节点可以准确获知基站天线端口配置参数, 使得 中继节点能够实时保持与网络侧的连接, 提高了中继节点与基站之间数据 信号传输的成功率和效率。 本发明对现有协议改动较小, 并且实现简单, 配置灵活。  After the invention is used, the relay node can accurately know the configuration parameters of the base station antenna port, so that the relay node can maintain the connection with the network side in real time, and improve the success rate and efficiency of data signal transmission between the relay node and the base station. The invention has small changes to the existing protocol, and is simple to implement and flexible in configuration.

Claims

权利要求书 Claim
1、 一种获取基站天线端口配置参数的方法, 其特征在于, 所述方法包 括:  A method for obtaining a configuration parameter of a base station antenna port, the method comprising:
在基站的天线端口配置参数要改变时, 基站向中继节点发送携带有自 身天线端口配置参数的专用信令, 所述中继节点从专用信令中获得改变后 的基站天线端口配置参数。  When the antenna port configuration parameter of the base station is to be changed, the base station transmits dedicated signaling carrying the self antenna port configuration parameter to the relay node, and the relay node obtains the changed base station antenna port configuration parameter from the dedicated signaling.
2、 根据权利要求 1所述的获取基站天线端口配置参数的方法, 其特征 在于,  2. The method for obtaining base station antenna port configuration parameters according to claim 1, wherein:
所述专用信令为携带有所述基站天线端口配置参数的媒体接入控制层 控制信令、 或无线资源控制层信令。  The dedicated signaling is media access control layer control signaling or radio resource control layer signaling carrying the base station antenna port configuration parameters.
3、 根据权利要求 1或 2所述的获取基站天线端口配置参数的方法, 其 特征在于, 所述方法还包括:  The method for obtaining a base station antenna port configuration parameter according to claim 1 or 2, wherein the method further comprises:
所述基站判断所述中继节点是否能够接收到基站自身的主信息块, 如 果是, 则基站不向所述中继节点发送所述专用信令, 所述中继节点通过解 析所接收到的主信息块, 获得改变后的基站天线端口配置参数; 否则, 在 基站的天线端口配置参数要改变时, 所述基站向所述中继节点发送所述专 用信令。  Determining, by the base station, whether the relay node can receive a primary information block of the base station itself, and if yes, the base station does not send the dedicated signaling to the relay node, and the relay node parses the received The master information block obtains the changed base station antenna port configuration parameter; otherwise, when the antenna port configuration parameter of the base station is to be changed, the base station sends the dedicated signaling to the relay node.
4、 根据权利要求 3所述的获取基站天线端口配置参数的方法, 其特征 在于, 所述基站判断所述中继节点是否能够接收到基站自身的主信息块, 为:  The method for obtaining a base station antenna port configuration parameter according to claim 3, wherein the base station determines whether the relay node can receive the master information block of the base station, as follows:
所述基站通过核对所述中继节点的下行调度子帧与主信息块调度子 帧, 判断所述中继节点是否能够接收到基站自身的主信息块。  The base station determines whether the relay node can receive the master information block of the base station by checking the downlink scheduling subframe of the relay node and the primary information block scheduling subframe.
5、 根据权利要求 1所述的获取基站天线端口配置参数的方法, 其特征 在于, 在所述中继节点获得所述改变后的基站天线端口配置参数之后, 所 述方法还包括: 所述中继节点应用所述改变后的基站天线端口配置参数, 通过改变配 置后的天线端口与所述基站进行数据传输。 The method for obtaining a base station antenna port configuration parameter according to claim 1, wherein after the relay node obtains the changed base station antenna port configuration parameter, the method further includes: The relay node applies the changed base station antenna port configuration parameter, and performs data transmission with the base station by changing the configured antenna port.
6、 根据权利要求 5所述的获取基站天线端口配置参数的方法, 其特征 在于, 所述的应用所述改变后的基站天线端口配置参数, 为: 依据显式指 示的、 或预定义的时间信息, 在指定的时间, 所述中继节点应用所述改变 后的基站天线端口配置参数。  The method for acquiring base station antenna port configuration parameters according to claim 5, wherein the applying the changed base station antenna port configuration parameter is: according to an explicitly indicated or predefined time Information, the relay node applies the changed base station antenna port configuration parameter at a specified time.
7、 根据权利要求 6所述的获取基站天线端口配置参数的方法, 其特征 在于, 所述显式指示具体为: 所述基站在发送给中继节点的所述专用信令 中携带所述时间信息。  The method for obtaining a base station antenna port configuration parameter according to claim 6, wherein the explicit indication is specifically: the base station carries the time in the dedicated signaling sent to the relay node information.
8、 根据权利要求 7所述的获取基站天线端口配置参数的方法, 其特征 在于, 所述显式指示的时间信息为指定的系统帧号、 或指定的系统帧号和 子帧号、 或指定的时间段。  The method for acquiring base station antenna port configuration parameters according to claim 7, wherein the explicitly indicated time information is a specified system frame number, or a specified system frame number and a subframe number, or a specified one. period.
9、 根据权利要求 6所述的获取基站天线端口配置参数的方法, 其特征 在于, 所述预定义的时间信息包括预定义的时间段、 或下一个系统信息的 修改周期的起始时刻、 或第 N个系统消息的修改周期的起始时刻, 其中 N 为大于或等于 1的整数。  The method for obtaining a base station antenna port configuration parameter according to claim 6, wherein the predefined time information comprises a predefined time period, or a start time of a modification period of a next system information, or The start time of the modification period of the Nth system message, where N is an integer greater than or equal to 1.
10、 根据权利要求 1 所述的获取基站天线端口配置参数的方法, 其特 征在于, 所述基站的天线端口配置参数包括改变后的天线端口数目、 和 /或 天线端口组成参数、 和 /或所改变的天线端口数目、 和 /或所改变的天线端口 组成参数。  The method for obtaining base station antenna port configuration parameters according to claim 1, wherein the antenna port configuration parameters of the base station include a changed number of antenna ports, and/or antenna port composition parameters, and/or The number of antenna ports changed, and/or the changed antenna port composition parameters.
11、 一种获取基站天线端口配置参数的装置, 其特征在于, 所述装置 包括: 检测单元、 发送单元, 其中:  A device for obtaining a configuration parameter of a base station antenna port, the device comprising: a detecting unit and a sending unit, wherein:
检测单元, 用于在检测到基站天线端口配置参数要改变时, 启动所述 发送单元;  a detecting unit, configured to start the sending unit when detecting that a base station antenna port configuration parameter is to be changed;
发送单元, 用于向中继节点发送携带有改变后的基站天线端口配置参 数的专用信令, 使得所述中继节点获得改变后的基站天线端口配置参数。a sending unit, configured to send, to the relay node, a configuration of a base station antenna port carrying the changed base station The number of dedicated signaling causes the relay node to obtain the changed base station antenna port configuration parameters.
12、 根据权利要求 11所述的获取基站天线端口配置参数的装置, 其特 征在于, 所述装置还包括: 核对单元, 其中: The device for acquiring a base station antenna port configuration parameter according to claim 11, wherein the device further comprises: a check unit, wherein:
核对单元, 用于判断所述中继节点是否能够接收到基站的主信息块, 在判断结果为否时, 启动所述检测单元, 否则, 不启动所述检测单元。  And a verification unit, configured to determine whether the relay node can receive the primary information block of the base station, and when the determination result is no, start the detection unit, otherwise, the detection unit is not activated.
13、 根据权利要求 11或 12所述的获取基站天线端口配置参数的装置, 其特征在于, 所述装置还包括:  The device for acquiring the antenna port configuration parameter of the base station according to claim 11 or 12, wherein the device further comprises:
接收单元, 用于接收所述基站的主信息块, 或者接收所述发送单元发 送的所述专用信令。  And a receiving unit, configured to receive a primary information block of the base station, or receive the dedicated signaling sent by the sending unit.
14、 根据权利要求 13所述的获取基站天线端口配置参数的装置, 其特 征在于, 所述装置还包括:  The device for acquiring base station antenna port configuration parameters according to claim 13, wherein the device further comprises:
解析单元, 用于将所述接收单元接收到的基站的主信息块进行解析, 获得所述改变后的基站天线端口配置参数。  And a parsing unit, configured to parse the main information block of the base station received by the receiving unit, to obtain the changed base station antenna port configuration parameter.
PCT/CN2011/071177 2010-04-13 2011-02-22 Method and device for obtaining configuration parameters of antenna ports of a base station WO2011127766A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010146354.9 2010-04-13
CN201010146354.9A CN102223648B (en) 2010-04-13 2010-04-13 Method and device for acquiring configuration parameters of antenna port of base station

Publications (1)

Publication Number Publication Date
WO2011127766A1 true WO2011127766A1 (en) 2011-10-20

Family

ID=44780046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071177 WO2011127766A1 (en) 2010-04-13 2011-02-22 Method and device for obtaining configuration parameters of antenna ports of a base station

Country Status (2)

Country Link
CN (1) CN102223648B (en)
WO (1) WO2011127766A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114363932B (en) * 2022-03-11 2022-05-24 深圳市孚邦无线技术有限公司 Automatic sending and receiving system for intelligent antenna parameter configuration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751248A (en) * 2001-12-27 2006-03-22 高通股份有限公司 Use of mobile stations for determination of base station location parameters in a wireless mobile communication system
US20080064353A1 (en) * 2006-09-07 2008-03-13 Motorola, Inc. Method and apparatus for base station directed selection of a multiple antenna configuration
CN101388696A (en) * 2007-09-11 2009-03-18 中兴通讯股份有限公司 Multi-antenna mode selection method in process of relay network switching process
CN101432988A (en) * 2006-04-27 2009-05-13 京瓷株式会社 Radio communication method, radio communication device, and radio communication system
CN101541063A (en) * 2009-04-27 2009-09-23 中兴通讯股份有限公司 Transmission method and device of downlink control signaling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101317344A (en) * 2005-09-30 2008-12-03 松下电器产业株式会社 Wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751248A (en) * 2001-12-27 2006-03-22 高通股份有限公司 Use of mobile stations for determination of base station location parameters in a wireless mobile communication system
CN101432988A (en) * 2006-04-27 2009-05-13 京瓷株式会社 Radio communication method, radio communication device, and radio communication system
US20080064353A1 (en) * 2006-09-07 2008-03-13 Motorola, Inc. Method and apparatus for base station directed selection of a multiple antenna configuration
CN101388696A (en) * 2007-09-11 2009-03-18 中兴通讯股份有限公司 Multi-antenna mode selection method in process of relay network switching process
CN101541063A (en) * 2009-04-27 2009-09-23 中兴通讯股份有限公司 Transmission method and device of downlink control signaling

Also Published As

Publication number Publication date
CN102223648B (en) 2017-02-08
CN102223648A (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP6798582B2 (en) UE and its method
US9854525B2 (en) Method and apparatus for performing a handover in an evolved universal terrestrial radio access network
US9398511B2 (en) Timing and cell specific system information handling for handover in evolved UTRA
WO2014023266A1 (en) Access method and apparatus in heterogeneous network
WO2009076803A1 (en) Method for sending, transmitting and scheduling system message in long term evolution system
CN108024334A (en) mobile wireless device and operating method
AU2016308701A1 (en) Provisioning transmission pools for inter-carrier prose direct discovery
US20220014901A1 (en) Method and apparatus for identifying user equipment capability in sidelink transmission
WO2014019228A1 (en) Information transmission method, terminal, and base station
WO2014154184A1 (en) Signal transmission method and device
US20230309155A1 (en) Methods and apparatus for radio connection
WO2011153864A1 (en) Method for resource scheduling/authorization
WO2011127766A1 (en) Method and device for obtaining configuration parameters of antenna ports of a base station
WO2021229510A1 (en) Aligning transmission timing on different carrier frequencies
WO2014186958A1 (en) Uplink information transmission method and device after measuring gap
WO2023065358A1 (en) Mg configuration method and apparatus in multi-sim scenario, device, and storage medium
WO2022077179A1 (en) Bandwidth part switching method and apparatus
JP2024050826A (en) Communications system
WO2014071615A1 (en) Method and apparatus for information transmission
WO2014075264A1 (en) Processing method of uplink control information, transmission point and terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768378

Country of ref document: EP

Kind code of ref document: A1