WO2011127733A1 - 一种多模全频段的射频发射装置及方法 - Google Patents

一种多模全频段的射频发射装置及方法 Download PDF

Info

Publication number
WO2011127733A1
WO2011127733A1 PCT/CN2010/078916 CN2010078916W WO2011127733A1 WO 2011127733 A1 WO2011127733 A1 WO 2011127733A1 CN 2010078916 W CN2010078916 W CN 2010078916W WO 2011127733 A1 WO2011127733 A1 WO 2011127733A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
input
pin type
switch
matching circuit
Prior art date
Application number
PCT/CN2010/078916
Other languages
English (en)
French (fr)
Inventor
刘鑫
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10849742.1A priority Critical patent/EP2538563A4/en
Priority to US13/634,129 priority patent/US8725093B2/en
Publication of WO2011127733A1 publication Critical patent/WO2011127733A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages

Definitions

  • the present invention relates to radio frequency transmitting technologies, and more particularly to a multi-mode full-band radio frequency transmitting apparatus and method. Background technique
  • the RF transmission technology is applied to the RF front-end system of the mobile terminal.
  • 3G technology is basically mature, and domestic operators are also pushing various 3G mobile terminal products.
  • the mobile communication system of Time Division Synchronous Code Division Multiple Access (TD-SCDMA) is being operated by China Mobile, the largest mobile operator in China.
  • China Mobile is pushing for the next-generation mobile standard of TD-SCDMA, TDD-LTE. Therefore, it can be foreseen that in the future, mobile terminal products will have the same requirements of GSM, TD-SCDMA and LTE in the same mobile terminal, that is, the future of the RF front-end system for mobile terminals. Designed to meet the needs of multi-mode coexistence.
  • PA power amplifier
  • GSM Global System for Mobile communications
  • the radio frequency transmitting device is used as the core device in the radio frequency front-end system, and the following description of the internal PA module is as follows:
  • the existing GSM PA is generally packaged in a multi-chip module (MCM, Mlti-chip Module).
  • MCM multi-chip module
  • the PA module consists of a substrate (PCB), a main amplifier chip, a control chip, and some passive matching components. As shown in Figure 3.
  • the prior art Since the GSM system is divided into two frequency bands, the prior art has been able to combine the main amplifier chips, but the output matching circuits are still branched by different frequency bands. Moreover, SMD surface mount components are required in the matching components. If it is necessary to integrate various frequency bands such as TD and LTE into the PA module in the future, according to the above design idea of "the output matching circuit is divided into branches of different frequency bands", each frequency band will be done. An output matching circuit and multiple input/output matching circuits will increase the design complexity of the PA module.
  • the internal architecture of the existing multimode PA is shown in Figure 4. The design complexity of the PA module is increased, which inevitably leads to the complexity of the internal circuit wiring of the RF transmitting device and the complexity of the external pins of the RF transmitting device.
  • the main object of the present invention is to provide a multi-mode full-band radio frequency transmitting apparatus and method, which can fundamentally reduce system design complexity and production cost.
  • a multi-mode full-band RF transmitting device comprising: a radio frequency main amplifying chip and a control chip inside the device, the device further comprising: a radio frequency switch chip located at a rear stage of the radio frequency main amplifying chip, for integrating all solid state switches
  • the solid-state switching element includes a switching switch that is used when the variable capacitance and the variable inductance pair are large and controlled;
  • variable capacitor and the variable inductor are used to control the value of the passive components in the input switch matching circuit/output switch matching circuit to realize one input/output matching circuit.
  • variable capacitor is adapted to meet the needs of input/output matching in different frequency bands, and the required capacitance value decreases as the frequency increases;
  • variable inductor is adapted to the needs of input/output matching in different frequency bands, and as the frequency increases, the required inductance value decreases.
  • the device further comprises: a pin external to the device, the structure of the pin being adapted to an architecture inside the device; wherein the pin comprises the following pin types:
  • Pin Type 1 Pin of the RF input signal
  • Pin Type 2 Pin of the RF Transmitter Power Supply
  • Pin Type 3 Pin for transmit mode and receive mode switching
  • Pin Type 4 Pin of the analog power control input
  • Pin Type 5 The pins that select the RF band that make up the logic control bits
  • Pin Type 6 Pin of the RF signal receiving end
  • Pin Type 7 Common pin
  • Pin Type 8 The pin of the RF interface to the antenna port.
  • the pin type 1 is identified by Rfm
  • the pin type 2 is identified by Vbatt
  • the pin type 3 is identified by TX/RX
  • the pin type 4 is identified by Vr
  • the pin type 5 is Identified by BS1, BS2, BS3 and BS4
  • the pin type 6 is identified by RX1, RX2, RX3, RX4, RX5 and RX6,
  • the pin type 7 is identified by GND
  • the pin type 8 is identified by ANT.
  • the Rfm, the Vbatt, the TX/RX, the Vr, the BS1, BS2, BS3 and BS4 identifiers are located on one side of the device, and both serve as pins on the input side of the device; the RX1, RX2 , RX3, RX4, RX5 and RX6, the GND, the ANT are located on the other side of the device, and are used as pins on the output side of the device;
  • the Rfm is connected to the input switch matching circuit;
  • the input switch matching circuit is connected to the RF switch chip via the RF main amplification chip and the output switch matching circuit;
  • the Vr, the BS1, BS2, and BS3 are respectively connected to the control wafer; the control wafer is connected to the radio frequency main amplification chip, and the control chip is further connected to the radio frequency switch chip;
  • the RX1, RX2, RX3, RX4, RX5 and RX6, the ANT are respectively connected to the RF switch chip.
  • a multi-mode full-band radio frequency transmitting method comprising:
  • the solid-state switching elements are integrated by the RF switch chip; wherein the solid-state switching element includes a switching switch that is used when the variable capacitance and the variable inductance are controlled to control the value;
  • variable capacitor and the variable inductor Through the variable capacitor and the variable inductor, the value of the passive component in the input switch matching circuit/output switch matching circuit is controlled to realize one input/output matching circuit.
  • the method further includes: using the variable capacitor to adapt to the needs of input/output matching of different frequency bands, and decreasing the required capacitance value as the frequency increases;
  • the variable inductance is adapted to the needs of input/output matching in different frequency bands, and as the frequency increases, the required inductance value decreases.
  • the method further comprises: setting a pin adapted to an architecture inside the device outside the device; wherein the pin comprises the following pin types:
  • Pin Type 1 Pin of the RF input signal
  • Pin Type 2 Pin of the RF Transmitter Power Supply
  • Pin Type 3 Pin for transmit mode and receive mode switching
  • Pin Type 4 Pin of the analog power control input
  • Pin Type 5 The pins that select the RF band that make up the logic control bits
  • Pin Type 6 Pin of the RF signal receiving end
  • Pin Type 7 Common pin
  • Pin Type 8 Pin for the RF interface to the antenna port.
  • the invention integrates all the solid-state switching elements through the radio-frequency switch chip; the solid-state switching element includes a switching switch which is used when the variable capacitance and the variable inductance are controlled to control the value; the variable capacitance and the variable electric power are adopted Sense, control the value of the passive components in the input switch matching circuit/output switch matching circuit to realize one-way input/output matching circuit.
  • the multi-mode full-band RF transmitting device of the invention is mainly applied to the design of the RF front-end system of the multi-mode mobile terminal in the future, and can meet the compatibility requirements of the multi-mode coexistence and meet the integration design requirements. It can be well satisfied, and the implemented input/output matching circuit is different from the multi-channel input/output matching circuit realized by the prior art, thereby fundamentally reducing system design complexity and production cost.
  • 1 is a basic RF link architecture diagram of an existing mobile phone RF front-end system
  • Figure 2 shows the architecture of the RF front-end system of the existing TD and GSM dual-mode mobile phones
  • FIG. 5 is a schematic structural diagram of a variable capacitor according to the present invention.
  • variable inductor 6 is a schematic structural view of a variable inductor of the present invention.
  • FIG. 7 is a schematic diagram showing the internal structure of a radio frequency switch wafer according to the present invention.
  • FIG. 8 is a schematic diagram showing the internal structure and external design of the radio frequency transmitting device of the present invention. detailed description
  • the basic idea of the present invention is: integrating all solid-state switching elements by means of a radio frequency switch chip; the solid-state switching element includes a switching switch for realizing variable capacitance and variable inductance for controlling the value of the value; The capacitor and the variable inductor control the value of the passive components in the input switch matching circuit/output switch matching circuit to realize one input/output matching circuit.
  • the input/output matching circuit is first realized by the low temperature ceramic co-firing technology (LTCC), which is different from the SMD surface patch component used in the prior art.
  • LTCC low temperature ceramic co-firing technology
  • the capacitive component and the inductive component are adjustable components, so that the value of the passive component in the input/output matching circuit can be controlled to adapt to the input and output matching requirements of different frequency bands. Therefore, by introducing the control of the variable capacitor and the variable inductor, the original multi-channel input/output matching circuit in the prior art can be converted into an input/output matching circuit, that is, the compatibility is reduced. Design complexity and production costs.
  • the present invention differs from the prior art in that it corresponds to the simplified internal design of the RF transmitting device and also implements pin design external to the RF transmitting device to accommodate the internal design of the RF transmitting device. The following is specifically explained.
  • a multi-mode full-band RF transmitting device mainly includes the following contents: First, for variable capacitors and variable inductors, the following are separately explained.
  • Variable Capacitor When designing the input/output matching circuit, as the frequency increases, the required capacitance value decreases. When the frequency band is sorted according to the frequency from low to high, the frequency band 1, the frequency band 2 frequency band nl, the frequency band n, correspondingly, the design selects C1 as the capacitance of the frequency band n, C1+C2 as the capacitance of the frequency band n-1, and so on. C1+C2+ ... +Cn-1+Cn is the capacitance of band 1.
  • the architecture of the variable capacitor is shown in Figure 5.
  • variable inductance When designing the input/output matching circuit, as the frequency increases, the required inductance value decreases.
  • the frequency band is sorted according to the frequency from low to high, the frequency band 1, the frequency band 2 frequency band nl, the frequency band n, correspondingly, the design selects L1 as the inductance of the frequency band 1, L1 parallels the L2 as the inductance of the frequency band 2, and so on, LI, L2... Ln are all connected in parallel to the inductance of band n.
  • the architecture of the variable inductance is shown in Figure 6.
  • the adjustable switches used to control the magnitude of the values are all implemented on a single wafer, which is the RF switch chip of FIG.
  • Figure 8 shows the internal structure of the RF transmitter and the external pin design.
  • Figure 7 shows the internal structure of the switch in the RF switch chip.
  • variable capacitor and the variable inductor are controlled by a series of switching switches, and the switching switch is integrated into the RF switch chip, that is, the control
  • the switch of variable capacitance and variable inductance is in the RF switch chip, while the other parts of the variable capacitor and variable inductor are outside the RF switch chip, as shown in FIG.
  • the entire RF transmitting device uses LTCC as the substrate and contains only three wafers, respectively Chip, RF amplified main chip and RF switch chip.
  • the internal structure of the entire RF transmitter integrated with n frequency bands and the schematic diagram of the external pin design are shown in Figure 8.
  • the pins can also be called input and output terminal pins.
  • the pin structure includes a variety of pin types, and the function description of each pin type designed is as follows:
  • RFin a unified input terminal for RF signals
  • Vbatt RF transmitter power supply
  • TX/RX Transmit mode and receive mode switch
  • Vr analog power control input, in the GSM mode, as the analog control terminal of the output power; in the TD and LTE modes, as the switching control terminal of the PA high and low power files;
  • BS1, BS2, BS3, BS4 selected radio frequency bands that form logical control bits
  • RX1, RX2, RX3, RX4, RX5, RX6 RF signal receiving end
  • GND Common, indicating ground or 0 line
  • the RF is connected to the antenna port, and then directly connected to the antenna.
  • the multi-mode full-band radio frequency transmitting device of the present invention reasonably utilizes the radio frequency switch chip of the post-stage of the radio frequency main amplifying chip as a carrier of the solid-state switch, and passes through the radio frequency switch chip.
  • the switch control effectively controls the variable capacitor and the variable inductor, and realizes the control of the value of the passive component in the matching circuit, so as to adapt to the input and output matching requirements of different frequency bands.
  • the design of the external pins of the RF transmitting device corresponding to the internal structure design of the RF transmitting device is proposed, so that the internal and external designs of the RF transmitting device can be designed to be simplified to the utmost.
  • the solid switch is all the switching elements in the RF switch chip as shown in FIG. 7, including implementing variable capacitors and variable inductor pairs. The switch used for control.
  • a multi-mode full-band radio frequency transmitting method mainly includes the following contents:
  • the solid-state switching elements are integrated by the RF switch chip; wherein the solid-state switching element includes a switching switch that is used when the variable capacitance and the variable inductance are controlled to control the value.
  • the value of the passive component in the input switch matching circuit/output switch matching circuit is controlled to realize one-way input/output matching circuit.
  • the method further includes: ⁇ using a variable capacitor to adapt to the needs of input/output matching in different frequency bands, and decreasing the required capacitance value as the frequency increases; ⁇ adapting the variable inductance to different frequency band input/output The need for matching, and as the frequency increases, the required inductance value decreases.
  • the method further includes: setting a pin adapted to an architecture inside the device outside the device; wherein the pin includes the following pin types:
  • Pin Type 1 Pin of the RF input signal
  • Pin Type 2 Pin of the RF Transmitter Power Supply
  • Pin Type 3 Pin for transmit mode and receive mode switching
  • Pin Type 4 Pin of the analog power control input
  • Pin Type 5 The pins that select the RF band that make up the logic control bits
  • Pin Type 6 Pin of the RF signal receiving end
  • Pin Type 7 Common pin
  • Pin Type 8 Pin for the RF interface to the antenna port.
  • ANT means antenna
  • RF switch can be represented by RF Switch
  • SAW means surface acoustic filter
  • RF transceiver can be represented by RF Transceiver
  • GSM and TD dual mode RF transceiver can Expressed in GSM & TD Dual Mode RF Transceiver.

Abstract

本发明公开了一种多模全频段的射频发射装置,该装置包括:位于射频主放大晶片后级的射频开关晶片,用于集成所有固体开关元件;所述固体开关元件中包括实现可变电容和可变电感对取值大小进行控制时所采用的切换开关;所述可变电容和可变电感,用于对输入开关匹配电路/输出开关匹配电路中无源元件的取值大小进行控制,实现一路的输入/输出匹配电路。本发明还公开了一种多模全频段的射频发射方法,该方法包括:通过可变电容和可变电感,对输入开关匹配电路/输出开关匹配电路中无源元件的取值大小进行控制,实现一路的输入/输出匹配电路。采用本发明的装置及方法,能从根本上降低系统设计复杂度和生产成本。

Description

一种多模全频段的射频发射装置及方法 技术领域
本发明涉及射频发射技术, 尤其涉及一种多模全频段的射频发射装置 及方法。 背景技术
射频发射技术是应用于移动终端的射频前端系统的, 以下对移动终端 的射频前端系统架构说明如下:
目前 3G技术已经基本成熟, 国内的运营商也正在主推各种制式的 3G 移动终端产品。 其中, 时分同步码分多址(TD-SCDMA )制式的移动通信 系统正在由国内最大的移动运营商中国移动运营。 目前, 中移正在着力推 进 TD-SCDMA的下一代移动制式标准—— TDD-LTE。 因此,可以预见在未 来的艮长一段时间内, 移动终端产品将会有 GSM、 TD-SCDMA 以及 LTE 三种制式共存于同一移动终端的需求, 也就是说, 未来对移动终端的射频 前端系统的设计, 要满足多模制式共存的需求。
常见的移动终端, 比如手机中通常都有功率放大器(PA ), PA是射频 前端系统的硬件电路中非常核心的部件。 PA负责将最终的射频调制信号放 大到足够大的功率, 以便后端的天线发射。 整个手机射频前端系统的基本 射频链路架构如图 1所示, 图 1的手机支持 GSM或者 TDD制式。
目前市场上的 PA产品全部都是单一制式的。如果手机需要支持多模制 式, 那么必须使用多个分别支持不同类型制式的 PA。 下面以 TD、 GSM双 模手机的射频前端系统为例, 其架构示意图如图 2所示。
综上所述, 如果未来需要设计满足多模制式共存需求的移动终端, 比 如兼容 GSM、 TD以及 LTE的移动终端, 按照以上现有的单一制式的设计 思路, 对于多个制式, 将会使用至少三个分立的 PA模块, 以分别支持各自 的制式。 这无疑会增加整个射频前端系统的设计难度和生产成本。 因此, 为了避免 PA 的设计复杂度导致整个射频前端系统的设计复杂度和生产成 本的提高, 作为设计这种射频前端系统的设备制造商, 在考虑多模制式共 存的兼容性这一基础上, 进而还需要将集成性的设计需求作为将来的设计 趋势, 即为: 既能满足多模制式共存的兼容性需求, 又能满足集成性的设 计需求。
其中, 针对现有移动终端射频前端系统中的射频发射装置而言, 该射 频发射装置作为射频前端系统中的核心装置,以下对其内部的 PA模块说明 下:
现有 GSM PA一般釆用多晶片模块( MCM, Mlti-chip Module )的封装 方式。 该 PA模块由基板(PCB )、 主放大晶片、 控制晶片以及一些无源匹 配元件所组成。 如图 3所示。
由于 GSM制式分为两个频段,现有技术已经能够将主放大晶片做在一 起, 但是输出的匹配电路仍然是分不同频段的支路走的。 而且匹配元件中 需要 SMD表面贴片元件。 如果未来需要将 TD、 以及 LTE等各个频段均集 成到该 PA模块中的话, 按照以上现有的 "输出的匹配电路分不同频段的支 路走" 这一设计思路, 则每个频段都将做一个输出匹配电路, 多路的输入 / 输出匹配电路会导致 PA模块的设计复杂度增大, 现有多模 PA内部架构如 图 4所示。 而 PA模块的设计复杂度增大, 必然会导致射频发射装置内部电 路走线的复杂度, 以及射频发射装置外部引脚的复杂度随之增大。
综上所述, 由于釆用现有技术, 针对既能满足多模制式共存的兼容性 需求, 又能满足集成性的设计需求, 都无法很好的得到满足, 从而无法从 根本上降低系统设计复杂度和生产成本, 因此, 目前迫切需要一种新的射 频发射装置, 来更好地满足这一需求, 以便从根本上降低系统设计复杂度 和生产成本。 发明内容
有鉴于此, 本发明的主要目的在于提供一种多模全频段的射频发射装 置及方法, 能从根本上降低系统设计复杂度和生产成本。
为达到上述目的, 本发明的技术方案是这样实现的:
一种多模全频段的射频发射装置, 该装置包括装置内部的射频主放大 晶片和控制晶片, 该装置还包括: 位于所述射频主放大晶片后级的射频开 关晶片, 用于集成所有固体开关元件; 所述固体开关元件中包括实现可变 电容和可变电感对取值大 、进行控制时所釆用的切换开关;
所述可变电容和可变电感, 用于对输入开关匹配电路 /输出开关匹配电 路中无源元件的取值大小进行控制, 实现一路的输入 /输出匹配电路。
其中, 所述可变电容, 用于适应不同频段输入 /输出匹配的需要, 并随 着频率的升高, 所需的电容值减小;
所述可变电感, 用于适应不同频段输入 /输出匹配的需要, 并随着频率 的升高, 所需的电感值减小。
其中, 该装置还包括: 装置外部的引脚, 所述引脚的架构适应于所述 装置内部的架构; 其中, 所述引脚包括以下引脚类型:
引脚类型 1 : 射频信号统一输入端的引脚;
引脚类型 2: 射频发射装置电源的引脚;
引脚类型 3 : 发射模式和接收模式切换的引脚;
引脚类型 4: 模拟功率控制输入端的引脚;
引脚类型 5: 组成逻辑控制位的选择射频频段的引脚;
引脚类型 6: 射频信号接收端的引脚;
引脚类型 7: 公共端的引脚;
引脚类型 8: 射频接天线端口的引脚。 其中, 所述引脚类型 1 以 Rfm标识、 所述引脚类型 2以 Vbatt标识、 所述引脚类型 3 以 TX/RX标识、 所述引脚类型 4以 Vr标识、 所述引脚类 型 5以 BS1 , BS2 , BS3和 BS4标识、 所述引脚类型 6以 RX1 , RX2 , RX3 , RX4, RX5和 RX6标识、 所述引脚类型 7以 GND标识、 所述引脚类型 8 以 ANT标识的情况下,
所述 Rfm、 所述 Vbatt、 所述 TX/RX、 所述 Vr、 所述 BS1 , BS2, BS3 和 BS4标识位于所述装置的一侧, 皆作为装置输入侧的引脚; 所述 RX1 , RX2, RX3 , RX4, RX5和 RX6、 所述 GND、 所述 ANT位于所述装置的 另一侧, 皆作为装置输出侧的引脚; 其中,
所述 Rfm与所述输入开关匹配电路相连; 所述输入开关匹配电路, 经 由所述射频主放大晶片和所述输出开关匹配电路与所述射频开关晶片相 连;
所述 Vr、 所述 BS1 , BS2和 BS3分别与所述控制晶片相连; 所述控制 晶片与所述所述射频主放大晶片相连, 且所述控制晶片还与所述射频开关 晶片相连;
所述 RX1 , RX2 , RX3 , RX4, RX5和 RX6、 所述 ANT分别与所述射 频开关晶片相连。
一种多模全频段的射频发射方法, 该方法包括:
在装置内部, 通过射频开关晶片集成所有固体开关元件; 其中, 所述 固体开关元件中包括实现可变电容和可变电感对取值大小进行控制时所釆 用的切换开关;
通过所述可变电容和可变电感, 对输入开关匹配电路 /输出开关匹配电 路中无源元件的取值大小进行控制, 实现一路的输入 /输出匹配电路。
其中, 该方法还包括: 釆用所述可变电容适应不同频段输入 /输出匹配 的需要, 并随着频率的升高, 所需的电容值减小; 釆用所述可变电感适应不同频段输入 /输出匹配的需要, 并随着频率的 升高, 所需的电感值减小。
其中, 该方法还包括: 在装置外部, 设置适应于所述装置内部的架构 的引脚; 其中, 所述引脚包括以下引脚类型:
引脚类型 1 : 射频信号统一输入端的引脚;
引脚类型 2: 射频发射装置电源的引脚;
引脚类型 3: 发射模式和接收模式切换的引脚;
引脚类型 4: 模拟功率控制输入端的引脚;
引脚类型 5: 组成逻辑控制位的选择射频频段的引脚;
引脚类型 6: 射频信号接收端的引脚;
引脚类型 7: 公共端的引脚;
引脚类型 8: 射频接天线端口的引脚。
本发明通过射频开关晶片集成所有固体开关元件; 所述固体开关元件 中包括实现可变电容和可变电感对取值大小进行控制时所釆用的切换开 关; 通过可变电容和可变电感, 对输入开关匹配电路 /输出开关匹配电路中 无源元件的取值大小进行控制, 实现一路的输入 /输出匹配电路。
本发明的多模全频段的射频发射装置, 主要应用于未来多模制式移动 终端的射频前端系统设计, 针对既能满足多模制式共存的兼容性需求, 又 能满足集成性的设计需求, 都能很好的得到满足, 所实现的一路的输入 /输 出匹配电路, 区别于现有技术所实现的多路的输入 /输出匹配电路, 从而, 能从根本上降低系统设计复杂度和生产成本。 附图说明
图 1为现有手机射频前端系统的基本射频链路架构图;
图 2为现有 TD、 GSM双模手机的射频前端系统架构图;
图 3为现有 GSM PA的内部架构图; 图 4为现有多模 PA的内部架构图;
图 5为本发明可变电容的架构示意图;
图 6为本发明可变电感的架构示意图;
图 7为本发明射频开关晶片的内部架构示意图;
图 8为本发明射频发射装置的内部架构及外部 )脚设计的示意图。 具体实施方式
本发明的基本思想是: 通过射频开关晶片集成所有固体开关元件; 所 述固体开关元件中包括实现可变电容和可变电感对取值大小进行控制时所 釆用的切换开关; 通过可变电容和可变电感, 对输入开关匹配电路 /输出开 关匹配电路中无源元件的取值大小进行控制, 实现一路的输入 /输出匹配电 路。
下面结合附图对技术方案的实施作进一步的详细描述。
本发明的设计思路主要是: 就射频发射装置的内部而言, 首先利用低 温陶瓷共烧技术(LTCC )实现输入 /输出匹配电路, 区别于现有技术中釆用 的 SMD表面贴片元件。 并且针对输入 /输出匹配电路, 电容元件、 电感元 件均为可调元件, 从而可以对输入 /输出匹配电路中无源元件的取值大小进 行控制, 以便使其适应不同频段输入输出匹配的要求, 从而, 通过引入可 变电容和可变电感的控制, 可以将现有技术中原本多路的输入 /输出匹配电 路转化为一路输入 /输出匹配电路, 也就是说在保证兼容性的基础上降低了 设计复杂度和生产成本。 然后, 考虑到集成性, 将包括控制电容元件及电 感元件的切换开关等固体开关元件集成到射频开关晶片中, 可以进一步降 低设计复杂度和生产成本。 本发明区别于现有技术, 相应于射频发射装置 简化的内部设计, 还在射频发射装置的外部实现了引脚的设计, 以适应于 射频发射装置的内部设计。 以下具体阐述。
一种多模全频段的射频发射装置, 主要包括以下内容: 一、 针对可变电容和可变电感而言, 以下分别阐述。
1 )可变电容: 设计输入 /输出匹配电路时, 随着频率的升高, 所需的电 容值减小。 当频段按照频率从低往高排序依次为频段 1、 频段 2 频段 n-l、 频段 n时, 相应地, 设计选取 C1为频段 n的电容、 C1+C2为频段 n-1 的电容, 以此类推, C1+C2+ ... ... +Cn-1+Cn为频段 1 的电容。 可变电容的 架构如图 5所示。
2 )可变电感: 设计输入 /输出匹配电路时, 随着频率的升高, 所需的电 感值减小。 当频段按照频率从低往高排序依次为频段 1、 频段 2 频段 n-l、 频段 n时, 相应地, 设计选取 L1为频段 1的电感、 L1并联 L2为频 段 2的电感, 以此类推, LI , L2... ... Ln全部并联为频段 n的电感。 可变电 感的架构如图 6所示。
二、 针对将所有固体开关元件集成到射频开关晶片而言, 以下具体阐 述。
将 PA外部的各个射频开关器件,即所述固体开关元件集成到射频发射 装置中, 具体为: 在射频发射装置内部, 将射频通路的单刀七置开关、 以 及实现可变电容和可变电感这种可调元件对取值大小进行控制时所釆用的 切换开关全部做到一个晶片上, 该晶片即为图 8中的射频开关晶片。如图 8 所示为射频发射装置的内部结构及外部引脚设计的示意图; 如图 7所示为 射频开关晶片中开关内部的结构示意图。 这里需要指出的是: 可变电容和 可变电感是通过一系列的切换开关, 来实现对取值大小的调整控制, 切换 开关是被集成到射频开关晶片中去的, 也就是说, 控制可变电容和可变电 感的该切换开关在射频开关晶片中, 而可变电容和可变电感的其他部分是 在射频开关晶片外的, 如图 7所示。
三、 针对整个射频发射装置而言, 以下具体阐述。
整个射频发射装置以 LTCC为基板, 只包含 3个晶片, 分别为控制晶 片, 射频放大主晶片以及射频开关晶片。 集成了 n个频段的整个射频发射 装置的内部结构及外部引脚设计的示意图如图 8 所示, 引脚也可以称为输 入输出端子引脚。
其中, 引脚的架构中包括多种引脚类型, 所设计的每个引脚类型的功 能描述如下所示:
RFin: 射频信号统一输入端;
Vbatt: 射频发射装置电源;
TX/RX: 发射模式和接收模式切换;
Vr: 模拟功率控制输入端, 在 GSM模式时, 作为输出功率的模拟控制 端; 在 TD和 LTE模式时, 作为 PA高低功率档的切换控制端;
BS1 , BS2 , BS3 , BS4: 组成逻辑控制位的选择射频频段;
RX1 , RX2, RX3 , RX4, RX5 , RX6: 射频信号接收端;
GND: 公共端, 表示地线或 0线;
ANT: 射频接天线端口, 后直接接天线。
这里需要指出的是: 上述引脚类型均为必选项。
综上所述, 可见: 如图 8所示, 本发明的多模全频段的射频发射装置, 合理地利用了射频主放大晶片后级的射频开关晶片作为固体开关的载体, 通过射频开关晶片中的切换开关对可变电容和可变电感的有效控制, 实现 对匹配电路中无源元件取值大小的控制, 以便使其适应不同频段输入输出 匹配的要求。 同时也提出了与射频发射装置内部结构设计相对应的、 射频 发射装置外部引脚的设计, 从而, 使射频发射装置的内、 外部的设计都能 得到最大程度的简化设计。 釆用本发明, 极大的降低了未来多模移动终端 射频前端系统的设计复杂度和生产成本, 可以为将来的更高制式的移动终 端的兼容和集成的普及作出贡献。 其中, 所述固体开关即为如图 7所示射 频开关晶片中的所有开关元件, 包括实现可变电容和可变电感对取值大小 进行控制时所釆用的切换开关。
一种多模全频段的射频发射方法, 该方法主要包括以下内容:
一、 在装置内部, 通过射频开关晶片集成所有固体开关元件; 其中, 所述固体开关元件中包括实现可变电容和可变电感对取值大小进行控制时 所釆用的切换开关。
二、 通过可变电容和可变电感, 对输入开关匹配电路 /输出开关匹配电 路中无源元件的取值大小进行控制, 实现一路的输入 /输出匹配电路。
这里, 该方法还包括: 釆用可变电容适应不同频段输入 /输出匹配的需 要, 并随着频率的升高, 所需的电容值减小; 釆用可变电感适应不同频段 输入 /输出匹配的需要, 并随着频率的升高, 所需的电感值减小。
这里, 该方法还包括: 在装置外部, 设置适应于所述装置内部的架构 的引脚; 其中, 引脚包括以下引脚类型:
引脚类型 1 : 射频信号统一输入端的引脚;
引脚类型 2: 射频发射装置电源的引脚;
引脚类型 3: 发射模式和接收模式切换的引脚;
引脚类型 4: 模拟功率控制输入端的引脚;
引脚类型 5: 组成逻辑控制位的选择射频频段的引脚;
引脚类型 6: 射频信号接收端的引脚;
引脚类型 7: 公共端的引脚;
引脚类型 8: 射频接天线端口的引脚。
这里需要指出的是: 上述引脚类型均为必选项。
这里, 对附图中所涉及的英文进行说明: ANT表示天线; 射频开关可 以用 RF Switch表示; SAW表示声表面滤波器; 射频收发器可以用 RF Transceiver表示; GSM和 TD双模射频收发器可以用 GSM&TD Dual Mode RF Transceiver表示。 以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种多模全频段的射频发射装置, 该装置包括装置内部的射频主放 大晶片和控制晶片, 其特征在于, 该装置还包括: 位于射频主放大晶片后 级的射频开关晶片, 用于集成所有固体开关元件; 所述固体开关元件中包 括实现可变电容和可变电感对取值大 d、进行控制时所釆用的切换开关; 所述可变电容和可变电感, 用于对输入开关匹配电路 /输出开关匹配电 路中无源元件的取值大小进行控制, 实现一路的输入 /输出匹配电路。
2、 根据权利要求 1所述的装置, 其特征在于, 所述可变电容, 用于适 应不同频段输入 /输出匹配的需要, 并随着频率的升高, 所需的电容值减小; 所述可变电感, 用于适应不同频段输入 /输出匹配的需要, 并随着频率 的升高, 所需的电感值减小。
3、 根据权利要求 1或 2所述的装置, 其特征在于, 该装置还包括: 装 置外部的引脚, 所述引脚的架构适应于所述装置内部的架构; 其中, 所述 引脚包括以下引脚类型:
引脚类型 1 : 射频信号统一输入端的引脚;
引脚类型 2: 射频发射装置电源的引脚;
引脚类型 3: 发射模式和接收模式切换的引脚;
引脚类型 4: 模拟功率控制输入端的引脚;
引脚类型 5: 组成逻辑控制位的选择射频频段的引脚;
引脚类型 6: 射频信号接收端的引脚;
引脚类型 7: 公共端的引脚;
引脚类型 8: 射频接天线端口的引脚。
4、 根据权利要求 3所述的装置, 其特征在于, 所述引脚类型 1 以 Rfm 标识、 所述引脚类型 2以 Vbatt标识、 所述引脚类型 3以 TX/RX标识、 所 述引脚类型 4以 Vr标识、 所述引脚类型 5以 BS1 , BS2 , BS3和 BS4标识、 所述引脚类型 6以 RXl , RX2, RX3 , RX4, RX5和 RX6标识、 所述引脚 类型 7以 GND标识、 所述引脚类型 8以 ANT标识的情况下,
所述 Rfm、 所述 Vbatt、 所述 TX/RX、 所述 Vr、 所述 BS1 , BS2, BS3 和 BS4标识位于所述装置的一侧, 皆作为装置输入侧的引脚; 所述 RX1 , RX2, RX3 , RX4, RX5和 RX6、 所述 GND、 所述 ANT位于所述装置的 另一侧, 皆作为装置输出侧的引脚; 其中,
所述 Rfm与所述输入开关匹配电路相连; 所述输入开关匹配电路, 经 由所述射频主放大晶片和所述输出开关匹配电路与所述射频开关晶片相 连;
所述 Vr、 所述 BS1 , BS2和 BS3分别与所述控制晶片相连; 所述控制 晶片与所述所述射频主放大晶片相连, 且所述控制晶片还与所述射频开关 晶片相连;
所述 RXl , RX2 , RX3 , RX4, RX5和 RX6、 所述 ANT分别与所述射 频开关晶片相连。
5、 一种多模全频段的射频发射方法, 其特征在于, 该方法包括: 在装置内部, 通过射频开关晶片集成所有固体开关元件; 其中, 所述 固体开关元件中包括实现可变电容和可变电感对取值大小进行控制时所釆 用的切换开关;
通过所述可变电容和可变电感, 对输入开关匹配电路 /输出开关匹配电 路中无源元件的取值大小进行控制, 实现一路的输入 /输出匹配电路。
6、 根据权利要求 5所述的方法, 其特征在于, 该方法还包括: 釆用所 述可变电容适应不同频段输入 /输出匹配的需要, 并随着频率的升高, 所需 的电容值减小;
釆用所述可变电感适应不同频段输入 /输出匹配的需要, 并随着频率的 升高, 所需的电感值减小。
7、 根据权利要求 5或 6所述的方法, 其特征在于, 该方法还包括: 在 装置外部, 设置适应于所述装置内部的架构的引脚; 其中, 所述引脚包括 以下引脚类型:
引脚类型 1 : 射频信号统一输入端的引脚;
引脚类型 2: 射频发射装置电源的引脚;
引脚类型 3 : 发射模式和接收模式切换的引脚;
引脚类型 4: 模拟功率控制输入端的引脚;
引脚类型 5: 组成逻辑控制位的选择射频频段的引脚;
引脚类型 6: 射频信号接收端的引脚;
引脚类型 7: 公共端的引脚;
引 类型 8: 射频接天线端口的引脚。
PCT/CN2010/078916 2010-04-14 2010-11-19 一种多模全频段的射频发射装置及方法 WO2011127733A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10849742.1A EP2538563A4 (en) 2010-04-14 2010-11-19 DEVICE AND METHOD FOR RADIO FREQUENCY TRANSMISSION WITH COMPLETE FREQUENCY BAND AND MULTIPLE MODE
US13/634,129 US8725093B2 (en) 2010-04-14 2010-11-19 Radio frequency transmission device and method with multi-mode and full frequency band

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010148417.4 2010-04-14
CN201010148417.4A CN101814927B (zh) 2010-04-14 2010-04-14 一种多模全频段的射频发射装置及方法

Publications (1)

Publication Number Publication Date
WO2011127733A1 true WO2011127733A1 (zh) 2011-10-20

Family

ID=42622062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078916 WO2011127733A1 (zh) 2010-04-14 2010-11-19 一种多模全频段的射频发射装置及方法

Country Status (4)

Country Link
US (1) US8725093B2 (zh)
EP (1) EP2538563A4 (zh)
CN (1) CN101814927B (zh)
WO (1) WO2011127733A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860878A4 (en) * 2012-07-11 2015-07-01 Zte Corp RF FRONT END SWITCHING OF MULTIBAND TERMINAL AND MULTIBAND TERMINAL

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814927B (zh) 2010-04-14 2014-07-02 中兴通讯股份有限公司 一种多模全频段的射频发射装置及方法
CN102184917B (zh) * 2011-03-25 2013-04-03 锐迪科创微电子(北京)有限公司 采用四方扁平无引脚封装的gsm射频发射前端模块
CN102394668A (zh) * 2011-09-14 2012-03-28 中兴通讯股份有限公司 移动终端及移动终端的处理方法
US10461799B2 (en) * 2012-11-08 2019-10-29 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated transmitter and receiver front end module, transceiver, and related method
CN103475386A (zh) * 2013-09-25 2013-12-25 小米科技有限责任公司 一种射频前端模块和终端设备
CN103634019A (zh) * 2013-11-08 2014-03-12 小米科技有限责任公司 一种射频前端和通信设备
CN104486845A (zh) * 2014-12-19 2015-04-01 北京中科汉天下电子技术有限公司 一种多模多频通信系统
CN109428505A (zh) * 2017-09-04 2019-03-05 北京泰龙电子技术有限公司 一种可调带宽的射频电源
CN107846560A (zh) * 2017-12-12 2018-03-27 江苏德是和通信科技有限公司 一种uhf频段用可调发射机功放机构
CN213937872U (zh) * 2018-06-11 2021-08-10 株式会社村田制作所 高频模块和通信装置
WO2019240095A1 (ja) * 2018-06-11 2019-12-19 株式会社村田製作所 高周波モジュールおよび通信装置
CN109947010A (zh) * 2019-01-14 2019-06-28 杭州威力克通信系统有限公司 一种有源通路馈电控制装置,微带功分器以及合路器
CN114696862B (zh) * 2021-09-22 2023-12-19 浙江利尔达物联网技术有限公司 一种TDD的Cat.1bis电路及电路模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062193A1 (en) * 1998-05-22 1999-12-02 Telefonaktiebolaget Lm Ericsson (Publ) Improved power amplifier matching in a dual band mobile phone
CN1954489A (zh) * 2004-04-19 2007-04-25 德州仪器公司 多频带低噪声放大器系统
CN101502004A (zh) * 2006-07-28 2009-08-05 飞思卡尔半导体公司 可重构的阻抗匹配和谐波滤波器系统
CN101505168A (zh) * 2009-03-20 2009-08-12 东南大学 多模多频带射频前端机载通信系统
CN101814927A (zh) * 2010-04-14 2010-08-25 中兴通讯股份有限公司 一种多模全频段的射频发射装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690251B2 (en) * 2001-04-11 2004-02-10 Kyocera Wireless Corporation Tunable ferro-electric filter
US6774718B2 (en) * 2002-07-19 2004-08-10 Micro Mobio Inc. Power amplifier module for wireless communication devices
US20040242289A1 (en) 2003-06-02 2004-12-02 Roger Jellicoe Configuration driven automatic antenna impedance matching
US20070135062A1 (en) 2005-12-14 2007-06-14 Samsung Electronics Co., Ltd. Apparatus for automatically matching frequency of antenna in wireless terminal and method thereof
CN101162928A (zh) * 2006-10-13 2008-04-16 松下电器产业株式会社 高频功率放大器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062193A1 (en) * 1998-05-22 1999-12-02 Telefonaktiebolaget Lm Ericsson (Publ) Improved power amplifier matching in a dual band mobile phone
CN1954489A (zh) * 2004-04-19 2007-04-25 德州仪器公司 多频带低噪声放大器系统
CN101502004A (zh) * 2006-07-28 2009-08-05 飞思卡尔半导体公司 可重构的阻抗匹配和谐波滤波器系统
CN101505168A (zh) * 2009-03-20 2009-08-12 东南大学 多模多频带射频前端机载通信系统
CN101814927A (zh) * 2010-04-14 2010-08-25 中兴通讯股份有限公司 一种多模全频段的射频发射装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860878A4 (en) * 2012-07-11 2015-07-01 Zte Corp RF FRONT END SWITCHING OF MULTIBAND TERMINAL AND MULTIBAND TERMINAL
US9473196B2 (en) 2012-07-11 2016-10-18 Zte Corporation Radio-frequency front-end circuit of multiband terminal and multiband terminal

Also Published As

Publication number Publication date
US20130040589A1 (en) 2013-02-14
US8725093B2 (en) 2014-05-13
EP2538563A1 (en) 2012-12-26
CN101814927B (zh) 2014-07-02
EP2538563A4 (en) 2014-01-22
CN101814927A (zh) 2010-08-25

Similar Documents

Publication Publication Date Title
WO2011127733A1 (zh) 一种多模全频段的射频发射装置及方法
CN108292793B (zh) 用于多频功率检测的电磁耦合器
EP2999125B1 (en) Multi-band device with reduced band loading
US9178555B2 (en) World band radio frequency front end module, system and method thereof
US20180123621A1 (en) Multi-mode multi-band transceiver, radio frequency front-end circuit and radio frequency system using the same
US8843083B2 (en) CMOS switching circuitry of a transmitter module
US9515615B2 (en) World band radio frequency front end module, system and method thereof
WO2009029768A2 (en) Balun signal splitter
WO2006130969A1 (en) Device and methods for high isolation and interference suppression switch-filter
US11451248B2 (en) Front-end systems with a shared back switch
JP2012191426A (ja) 高周波電力増幅装置
US10461785B2 (en) Apparatus and methods for front-end systems with reactive loopback
EP2860878B1 (en) Radio-frequency front-end circuit of multiband terminal and multiband terminal
CN108432146A (zh) 可再配置的多工器
CN108377151B (zh) 一种多模多频无线射频前端模块、芯片及通信终端
CN105305985A (zh) 一种射频放大装置
EP3657685B1 (en) B41-based full-band radio frequency device and communication terminal
US20140254568A1 (en) Semiconductor module
CN112400281B (zh) 高频模块和通信装置
US20220345103A1 (en) Single antenna inductor to match all bands in a front-end module
CN107911142B (zh) 一种支持802.11ac和蓝牙功能的车载无线通信模组及其实现方法
CN115811337A (zh) 高级发送架构中的多耦合器布置
KR20130031668A (ko) 셀룰러 통신용 코어 모듈
GB2376383A (en) Antenna switch arrangement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849742

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13634129

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010849742

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE