WO2011125919A1 - Novel triarylamines and use thereof - Google Patents

Novel triarylamines and use thereof Download PDF

Info

Publication number
WO2011125919A1
WO2011125919A1 PCT/JP2011/058379 JP2011058379W WO2011125919A1 WO 2011125919 A1 WO2011125919 A1 WO 2011125919A1 JP 2011058379 W JP2011058379 W JP 2011058379W WO 2011125919 A1 WO2011125919 A1 WO 2011125919A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
tris
amine
compound
formula
Prior art date
Application number
PCT/JP2011/058379
Other languages
French (fr)
Japanese (ja)
Inventor
英樹 則定
信隆 赤司
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Publication of WO2011125919A1 publication Critical patent/WO2011125919A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/68Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/74Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B

Definitions

  • the present invention relates to novel triarylamines and their use, and more specifically to, for example, an organic electroluminescence device having at least one functional layer containing the triarylamines.
  • organic electroluminescence elements have low voltage direct current drive, high efficiency, high luminance, and can be thinned, so that they are being put to practical use as display devices in addition to backlights and illumination devices.
  • This organic electroluminescence element typically has a transparent substrate, for example, a glass substrate on which an anode made of a transparent electrode such as an ITO film (indium oxide-tin oxide film) is laminated.
  • a hole injection layer, a hole transport layer and a light emitting layer, which are functional layers, and a cathode made of a metal electrode are laminated in this order, and the anode and the cathode are connected to an external power source. It is connected.
  • organic electroluminescence elements having various layer configurations including electrodes are known (see, for example, Patent Document 1).
  • the functional layer of a hole injection layer or a hole transport layer is often a low molecular weight organic compound that can form an amorphous film by itself. (See, for example, Patent Documents 2 and 3).
  • Patent Documents 2 and 3 See, for example, Patent Documents 2 and 3.
  • an expensive vapor deposition apparatus is required, and it is difficult to form a large-area layer, and productivity is poor.
  • low molecular weight organic compounds that can themselves form amorphous films are soluble in many organic solvents, and therefore, when such low molecular weight organic compounds are vacuum deposited to form functional layers, many In this case, if a layer is formed by further applying a solution containing an organic solvent thereon, the functional layer may be dissolved to impair its performance. Therefore, in recent years, the development of low molecular weight organic compounds and high molecular weight organic polymers that have functions as hole injecting agents and hole transporting agents and that can be dissolved in polar solvents such as water, alcohol, and mixed solvents thereof has been promoted. It has been.
  • PEDOT 3,4-polyethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • the present invention has been made to solve the above-described problems in conventional organic electroluminescence devices, and belongs to a so-called starburst compound, but has at least one hydroxyl group or at least one hydroxyl group in the molecule.
  • a novel triarylamine capable of forming a functional layer consisting of a thin film, and at least one functional layer, preferably a hole transporting and / or injecting layer, formed by a coating method, for example.
  • the aim is to provide an organic electroluminescence device having high performance. To.
  • the general formula (I) (In the formula, A 1 to A 3 are each independently a phenylene group which may have a substituent, and X 1 to X 3 are each independently a formula (II) Wherein R 1 to R 5 are each independently an aliphatic carbon having a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms, a hydroxyl group, or at least one hydroxyl group.
  • a hydrogen group (hereinafter simply referred to as a hydroxy hydrocarbon group for the sake of simplicity), m, n and p are each independently 0, 1 or 2.)
  • m, n and p are each independently 0, 1 or 2.
  • R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon group.
  • the triarylamine represented by these is provided.
  • Preferred triarylamines according to the invention are those of the general formula (I) (In the formula, A 1 to A 3 are each independently a phenylene group which may have a substituent, and X 1 to X 3 are each independently a formula (II) Wherein R 1 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms, a hydroxyl group or a hydroxy hydrocarbon group, and m, n And p are each independently 0, 1 or 2.) In any of X 1 to X 3 , at least one of R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon group.
  • the phenylene groups A 1 to A 3 are each independently a p-phenylene group which may have a substituent
  • the general formula (II) R 1 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, preferably a methyl group having 1 to 4 carbon atoms, an ethyl group, a propyl group, or A butyl group, a cycloalkyl group having 5 or 6 carbon atoms, preferably a cyclohexyl group, a hydroxyl group or a hydroxy hydrocarbon group, and m, n and p are each independently 0, 1 or 2.
  • the phenyl groups X 1 to X 3 are each independently a phenyl group having a substituent or not having a substituent. X 1 to X 3 may be each referred to as a (substituted) phenyl group.
  • an organic electronic material containing the triarylamines, an organic electroluminescent device having at least one functional layer containing the organic electronic material, Or the organic electroluminescent element used as an injection agent is provided.
  • the triarylamines according to the present invention function as an organic electronic material, and in particular, have an excellent function as a hole injection and / or transport agent and have at least one hydroxyl group or hydroxyhydrocarbon group in the molecule. It does not dissolve in non-polar solvents, but dissolves in polar solvents such as alcohols. Therefore, the triarylamines according to the present invention are dissolved in a polar solvent to form a solution, and a thin film or a functional layer can be formed on an appropriate base material by applying the solution.
  • a hole injection and / or transport layer and other functional layers can be formed by a coating method.
  • FIG. 1 is a cross-sectional view showing a preferred example of an organic electroluminescence device according to the present invention.
  • FIG. 2 is an FT-IR spectrum of tris (4′-hydroxybiphenylyl) amine (compound of formula (15)) according to the present invention.
  • FIG. 3 is an FT-IR spectrum of tris (3′-hydroxybiphenylyl) amine (compound of formula (16)) according to the present invention.
  • FIG. 4 is an FT-IR spectrum of tris (4′-hydroxy-3 ′, 5′-dimethylbiphenylyl) amine (compound of formula (17)) according to the present invention.
  • FIG. 5 is a DSC chart of tris (4′-hydroxy-3 ′, 5′-dimethylbiphenylyl) amine (compound of formula (17)) according to the present invention.
  • FIG. 6 is a TG / DTA chart of tris (4′-hydroxy-3 ′, 5′-dimethylbiphenylyl) amine (compound of formula (17)) according to the present invention.
  • FIG. 7 is an FT-IR spectrum of tris (4′-hydroxymethylbiphenylyl) amine (compound of formula (18)) according to the present invention.
  • FIG. 8 is a DSC chart of tris (4′-hydroxymethylbiphenylyl) amine (compound of formula (18)) according to the present invention.
  • FIG. 9 is a TG / DTA chart of tris (4′-hydroxymethylbiphenylyl) amine (compound of formula (18)) according to the present invention.
  • FIG. 10 is an FT-IR spectrum of tris (3′-hydroxymethylbiphenylyl) amine (compound of formula (19)) according to the present invention.
  • FIG. 11j is a DSC chart of tris (3′-hydroxymethylbiphenylyl) amine (compound of formula (19)) according to the present invention.
  • FIG. 12 is a TG / DTA chart of tris (3′-hydroxymethylbiphenylyl) amine (compound of formula (19)) according to the present invention.
  • FIG. 10 is an FT-IR spectrum of tris (3′-hydroxymethylbiphenylyl) amine (compound of formula (19)) according to the present invention.
  • FIG. 11j is a DSC chart of tris (3′-hydroxymethylbiphenylyl) amine (compound of formula (19
  • FIG. 13 is an FT-IR spectrum of tris (4 ′′ -hydroxymethylterphenylyl) amine (compound of formula (32)) according to the present invention.
  • FIG. 14 is a DSC chart of tris (4 ′′ -hydroxymethylterphenylyl) amine (compound of formula (32)) according to the present invention.
  • FIG. 15 is a TG / DTA chart of tris (4 ′′ -hydroxymethylterphenylyl) amine (compound of formula (32)) according to the present invention.
  • FIG. 16 is an FT-IR spectrum of bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine (compound of formula (8)) according to the present invention.
  • FIG. 17 is a DSC chart of bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine (compound of formula (8)) according to the present invention.
  • FIG. 18 is a TG / DTA chart of bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine (compound of formula (8)) according to the present invention.
  • FIG. 19 is an FT-IR spectrum of bis (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine (compound of formula (50)) according to the present invention.
  • FIG. 20 is a DSC chart of bis (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine (compound of formula (50)) according to the present invention.
  • novel triarylamines according to the invention have the general formula (I) (In the formula, A 1 to A 3 are each independently a phenylene group which may have a substituent, and X 1 to X 3 are each independently a formula (II) Wherein R 1 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms, a hydroxyl group or a hydroxy hydrocarbon group, and m, n And p are each independently 0, 1 or 2.) In at least one of X 1 to X 3 , at least one of R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon group.
  • Such triarylamines have at least one hydroxyl group or hydroxy hydrocarbon group in the molecule.
  • the substituents that the phenylene groups A 1 to A 3 may have are not particularly limited, but examples thereof include a hydroxyl group and a hydroxyl group.
  • the aliphatic hydrocarbon group having the hydroxyl group may be the same as the hydroxy hydrocarbon group described later.
  • preferred specific examples include, for example, hydroxymethyl group, hydroxyethyl group, hydroxypropyl group, 1-methyl- Examples thereof include a 1-hydroxyethyl group and a 1,2-dihydroxyethyl group.
  • a methyl group, an ethyl group, a propyl group, a butyl group etc. can be mentioned, for example.
  • the alkyl group having 3 or more carbon atoms may be linear or branched.
  • a cyclohexyl group can be mentioned, for example.
  • the phenylene groups A 1 to A 3 are preferably p-phenylene groups which may each independently have a substituent.
  • M, n, and p that define the number of p-phenylene groups are each independently 0, 1, or 2, and when m, n, or p is 0, X 1 , X 2, or X 3 are each a molecule (Substituted) phenyl group directly bonded to the central nitrogen atom. That is, as described above, in the triarylamines represented by the general formula (I), the (substituted) phenyl groups X 1 to X 3 each independently have a substituent or a phenyl having no substituent.
  • n or p when n or p is 1, X 1, X 2 or X 3 together with A 1, A 2 or A 3 each forms a (substituted) biphenylyl group, m, n or p is 2 when it is, X 1, X 2 or X 3 forms a (substituted) terphenylyl group together with a 1, a 2 or a 3, respectively.
  • R 1 to R 5 are each independently an alkyl group having 1 to 6 carbon atoms
  • specific examples of the alkyl group include, for example, methyl, An ethyl, propyl, butyl, pentyl or hexyl group can be mentioned, and an alkyl group having 3 or more carbon atoms may be linear or branched.
  • the alkyl group is preferably an alkyl group having 1 to 4 carbon atoms, and specific examples of such an alkyl group include methyl, ethyl, propyl, and butyl groups.
  • the alkyl group having 3 or more carbon atoms may be linear or branched.
  • R 1 to R 5 are each independently a cycloalkyl group
  • the cycloalkyl group is a cyclopentyl or cyclohexyl group, and preferably a cyclohexyl group.
  • the phenyl group represented by the general formula (II) when at least one of R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon group, the phenyl of the hydroxyl group or hydroxy hydrocarbon group
  • the bonding position in the group is not particularly limited, and may be any o-, m-, or p-position with respect to the bonding position of the phenylene group A 1 , A 2, or A 3 .
  • the hydroxy hydrocarbon group when at least one of R 1 to R 5 is an aliphatic hydrocarbon group having at least one hydroxyl group, that is, a hydroxy hydrocarbon group, the hydroxy hydrocarbon group is Preferably, the general formula (III) (In the formula, R is an (h + 1) -valent aliphatic hydrocarbon group, and h is 1, 2 or 3.) It is represented by Therefore, as a preferable specific example of such a hydroxy hydrocarbon group, for example, Etc.
  • the hydroxy hydrocarbon group is not limited to the above examples, but preferred examples thereof include hydroxymethyl group (III-1), hydroxyethyl group (III-2), and hydroxy.
  • a propyl group (III-3), a 1-methyl-1-hydroxyethyl group (III-5), a 1,2-dihydroxyethyl group (III-8) and the like can be mentioned.
  • Preferred triarylamines according to the invention are those of the general formula (I) (In the formula, A 1 to A 3 are each independently a phenylene group which may have a substituent, and X 1 to X 3 are each independently a formula (II) Wherein R 1 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms, a hydroxyl group or a hydroxy hydrocarbon group, and m, n And p are each independently 0, 1 or 2.) In any of X 1 to X 3 , at least one of R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon group.
  • Such preferred triarylamines according to the present invention are the illustrated triarylamines according to the present invention, that is, at least one of X 1 to X 3 in the general formula (I), R 1 to R 5 Compared to triarylamines in which at least one is a hydroxyl group or a hydroxy hydrocarbon group, in any one of X 1 to X 3 in the general formula (I), at least one of R 1 to R 5 is a hydroxyl group or The same except that it is a hydroxy hydrocarbon group.
  • the phenylene groups A 1 to A 3 the substituents that these phenylene groups may have, and the R 1 to R that the phenyl group represented by the above general formula (I) has Specific examples when 5 is independently an alkyl group having 1 to 6 carbon atoms, and when the phenyl group represented by the above general formula (I) has at least one hydroxyl group or hydroxy hydrocarbon group, the hydroxyl group
  • the bonding position of the group or the hydroxy hydrocarbon group, when at least one of R 1 to R 5 is an aliphatic hydrocarbon group having at least one hydroxyl group, including the specific examples and the like, Since they are the same, repeated description here is omitted.
  • triarylamines according to the present invention are the above preferred triarylamines, wherein (a) m is 0 and n and p are both 1 or 2, or (b) m, n and p Are all 1, or (c) m, n, and p are all 2.
  • the triarylamines according to the present invention can be obtained, for example, as follows. First, triarylamines having three hydroxyl groups or hydroxy hydrocarbon groups in the molecule can be obtained, for example, as shown in Scheme 1. In the following scheme 1, X is, for example, a halogen atom such as an iodine atom or a bromine atom, and the same applies to the following schemes 2 and 3.
  • triarylamines having two hydroxyl groups or hydroxy hydrocarbon groups in the molecule can be obtained, for example, as shown in Scheme 3 below. That is, 1 mol part of tris (4-halogenated phenyl) amine (A) and 1 mol part of phenylboronic acid (B2) in which none of R ′ 1 to R ′ 5 is a hydroxyl group or a hydroxy hydrocarbon group.
  • Compound F is obtained by reaction under heating with a base and a palladium catalyst in an alcohol / water mixed solvent, and then any one of R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon in 1 mol part of compound F
  • the compound G can be obtained by reacting 2 mol parts of phenylboronic acid (B1) as a group in the same manner.
  • Triarylamines having 4, 5, 6 or more hydroxyl or hydroxy hydrocarbon groups in the molecule may also be one, two or three hydroxyl groups or hydroxy hydrocarbons in the molecule. It is obvious that the above schemes 1 to 3 showing the method for producing a triarylamine having a group can be easily obtained by appropriately changing the schemes.
  • the triarylamines according to the present invention have at least one hydroxyl group or hydroxyhydrocarbon group in the molecule, and according to a preferred embodiment, have a plurality of hydroxyl groups and / or hydroxyhydrocarbon groups in the molecule. For example, it dissolves in a polar solvent such as an aliphatic alcohol such as 1-butanol or an aromatic alcohol such as benzyl alcohol, but does not dissolve in a nonpolar solvent such as toluene.
  • a polar solvent such as an aliphatic alcohol such as 1-butanol or an aromatic alcohol such as benzyl alcohol
  • the triarylamines according to the present invention are useful as organic electronic materials, particularly as an organic electronic material for forming a hole injection layer and / or a transport layer, which is a functional layer in an organic electroluminescence device, and a light emitting layer.
  • it can be suitably used as a hole injecting agent and / or a transporting agent for forming a hole injecting layer and / or a transporting layer. Therefore, for example, in the production of an organic electroluminescence device, a solution obtained by dissolving the triarylamines according to the present invention in a polar solvent is applied onto an appropriate substrate and dried, so that the hole injection layer and / or A transport layer can be formed.
  • the use of the triarylamines according to the present invention is not limited to the above hole injecting agent and / or transporting agent.
  • a transparent anode 2 made of ITO is closely adhered and supported on a transparent substrate 1 such as glass.
  • a hole injection layer 3a, a hole transport layer 3b, a light emitting layer 4, and a cathode 5 made of a metal or a compound thereof are laminated on the anode in this order.
  • the anode and cathode are connected to an external power source 6.
  • an organic electroluminescence device holes are easily injected from the anode through the hole injection layer and the hole transport layer into the light emitting layer, and electrons are injected from the cathode into the light emitting layer, In this light emitting layer, electrons injected from the cathode and holes injected from the anode recombine to generate light, and light emitted from the light emitting layer is emitted to the outside through the transparent electrode (anode) and the transparent substrate.
  • an electron transport layer may be laminated between the light emitting layer and the cathode, and in order to prevent excess holes from escaping to the cathode side.
  • a blocking layer may be provided.
  • the layer structure of the organic electroluminescence element is not particularly limited.
  • the organic electroluminescence device according to the present invention has at least one functional layer containing the above-described triarylamines according to the present invention, and preferably the hole injection and / or transport layer is composed of the above-described triarylamines. Includes hole injection and / or transport agents.
  • the triarylamines according to the present invention are dissolved in a polar solvent such as alcohol as described above, for example, the alcohol solution is applied on the transparent electrode and dried to form holes. An injection layer can be formed.
  • a conventionally known low molecular weight organic compound is vacuum-deposited on a transparent electrode to form a hole injection layer, and then an alcohol solution of the triarylamine according to the present invention is applied thereon.
  • the hole transport layer can be formed by drying.
  • the low molecular weight organic compound forming the hole injection layer is usually dissolved in the nonpolar solvent but not in the polar solvent, so that the present invention is formed on the hole injection layer. Even if the alcohol solution of triarylamines is applied, the hole injection layer is not dissolved in the polar solvent.
  • the film thickness of both the hole injection layer and the hole transport layer is usually in the range of 10 to 200 nm, and preferably in the range of 20 to 100 nm.
  • a single hole injection transport layer made of the triarylamines according to the present invention can be formed on the transparent electrode.
  • a hole injection layer is formed on the transparent electrode, and on the positive electrode made of a known hole transport agent according to a conventional method.
  • An organic electroluminescent element can be obtained by laminating a hole transport layer and further laminating a light emitting layer and a cathode thereon.
  • an organic electroluminescence device can be obtained by laminating a hole transport layer made of triarylamines according to the present invention on a suitably formed hole injection layer, and further laminating a light emitting layer and a cathode thereon.
  • the organic electroluminescent device according to the present invention has at least one layer comprising the triarylamines according to the present invention, and preferably has a hole injection and / or transport layer comprising the triarylamines according to the present invention. Yes.
  • at least one functional layer comprising the triarylamines according to the invention preferably a layer other than a hole injection and / or transport layer comprising the triarylamines according to the invention, ie a transparent substrate, a book
  • a normal hole injection and / or transport layer, an anode, a light emitting layer, an electron transport layer and an electrode those conventionally known are appropriately used.
  • a transparent electrode made of indium oxide-tin oxide (ITO) is preferably used as the anode, and a single metal such as aluminum, magnesium, indium, silver, or an alloy thereof such as an Al—Mg alloy, Ag—is used as the cathode. Mg alloy, lithium fluoride or the like is used, and a glass substrate is usually used as the transparent substrate.
  • ITO indium oxide-tin oxide
  • a normal hole transporting agent conventionally known low molecular weight organic compounds, for example, ⁇ -NPD (4,4′-bis (N- (1-naphthyl) -N-phenyl) as described above Amino) biphenyl) and TPD (4,4′-bis (3-methylphenyl) -N-phenylamino) biphenyl are used. Tris (p-terphenyl-4-yl) amine is also used as a hole transporting agent. As a normal hole injecting agent, copper phthalocyanine or the like is used.
  • the film thickness is usually in the range of 10 to 200 nm, preferably in the range of 20 to 100 nm.
  • tris (8-quinolinol) aluminum (Alq 3 ) is used for the organic light emitting layer, and the film thickness is usually in the range of 10 to 200 nm, and preferably in the range of 20 to 100 nm. Further, when the organic electroluminescence element includes an electron transport layer, the film thickness is usually in the range of 10 to 200 nm, and preferably in the range of 20 to 100 nm.
  • the triarylamines according to the present invention are not limited at all in their applications. In addition to the hole injecting agent, hole transporting agent, and host agent in the light emitting layer in the above-described organic electroluminescence device, for example, in solar cells. It can also be suitably used for charge transport materials in organic semiconductors and electrophotographic devices. In particular, the triarylamines according to the present invention having an ionization potential in the range of 5.1 to 5.8 eV can be suitably used as a hole injection and / or transport agent in an organic electroluminescence device.
  • Example 1 As shown in the following scheme 4, tris (4′-hydroxybiphenylyl) amine (the compound of the formula (15)) was obtained. That is, 2.0 g of tris (4-iodophenyl) amine (a), 1.5 g of 4-hydroxyphenylboronic acid (b), 0.007 g of palladium (II) acetate, 0.017 g of triphenylphosphine, sodium carbonate 1. 5 g and 21 mL of a mixed solvent of ethanol / water (volume ratio 2/1) were charged into a 100 mL three-necked flask, heated to 78 ° C.
  • Example 4 As shown in the following scheme 6, tris (4′-hydroxymethylbiphenylyl) amine (the compound of the formula (18)) was obtained. That is, 4.5 g of tris (4-iodophenyl) amine (a), 3.7 g of 4- (hydroxymethyl) phenylboronic acid (b2), 0.016 g of palladium (II) acetate, 0.038 g of triphenylphosphine, carbonic acid 3.5 g of sodium and 49 mL of ethanol / water (volume ratio 2/1) mixed solvent were charged into a 100 mL three-necked flask, heated to 78 ° C. while stirring, and reacted at this temperature with stirring for 4 hours.
  • tris (4′-hydroxymethylbiphenylyl) amine can be suitably used as a hole injection and / or transport agent in an organic electroluminescence device. Solubility test in organic solvents: Tris (4′-hydroxymethylbiphenylyl) amine (5 mg) was added to toluene, 1-butanol and benzyl alcohol so that each amount would be 2% by weight, and the mixture was heated to 100 ° C. to determine whether it was dissolved.
  • Example 5 3.0 g of tris (4-iodophenyl) amine, 2.4 g of 3- (hydroxymethyl) phenylboronic acid, 0.011 g of palladium (II) acetate, 0.025 g of triphenylphosphine, 2.3 g of sodium carbonate and ethanol / water (Volume ratio 2/1) 32 mL of a mixed solvent was charged into a 100 mL three-necked flask, heated to 78 ° C. with stirring, and reacted at this temperature with stirring for 10 hours. After completion of the reaction, the resulting reaction mixture was washed with water and purified by silica gel chromatography.
  • the DSC chart of tris (3′-hydroxymethylbiphenylyl) amine had a melting point of 201.2 ° C. and a glass transition point of 78.6 ° C.
  • Ionization potential The ionization potential of the tris (3′-hydroxymethylbiphenylyl) amine thin film measured in the same manner as in Example 4 was 5.60 eV.
  • tris (3′-hydroxymethylbiphenylyl) amine can be suitably used as a hole injection and / or transport agent in an organic electroluminescence device.
  • Solubility measurement in organic solvents As described above, in the same manner as the tris (4′-hydroxymethylbiphenylyl) amine (the compound of the formula (18)), the tris (3′-hydroxymethylbiphenylyl) amine can be added to an organic solvent. A solubility test was performed. The results are shown in Table 1.
  • Example 6 As shown in the following scheme 7, tris (4 ′′ -hydroxymethylterphenylyl) amine (the compound of the above formula (32)) was obtained.
  • the obtained purified product was recrystallized from a toluene / hexane mixed solvent to obtain 0.33 g of tris (4′-bromobiphenylyl) amine (c).
  • a 2N aqueous potassium carbonate solution (5.2 g) and tetrahydrofuran (4 mL) were charged into a 100 mL three-necked flask, heated to 63 ° C.
  • Ionization potential The ionization potential of the tris (4 ′′ -hydroxymethylterphenylyl) amine thin film measured in the same manner as in Example 4 was 5.60 eV. Therefore, tris (4 ′′ -hydroxymethylterphenylyl) amine
  • the compound (32) can be suitably used as a hole injection and / or transport agent in an organic electroluminescence device.
  • Example 7 As shown in the following scheme 8, bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine (the compound of the formula (8)) was obtained.
  • tbdms represents a t-butyldimethylsilyl group as in Scheme 8.
  • FIG. 16 shows an FT-IR spectrum of bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine.
  • Molecular weight by mass spectrometry ((M + 1) / Z): 489
  • DSC Differential scanning calorimetry
  • Thermogravimetry / Differential calorimetry (TG / DTA): As shown in the TG / DTA chart of bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine in FIG. 18, the decomposition temperature was 418.0 ° C.
  • Ionization potential The ionization potential of the thin film of bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine measured in the same manner as in Example 4 was 5.64 eV. Accordingly, bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine can be suitably used as a hole injection and / or transport agent in an organic electroluminescence device.
  • Ionization potential The ionization potential of the tris (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine thin film measured in the same manner as in Example 4 was 5.76 eV. Accordingly, tris (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine can be suitably used as a hole injection and / or transport agent in an organic electroluminescence device. Solubility measurement in organic solvents: As described above, in the same manner as the tris (4′-hydroxymethylbiphenylyl) amine (the compound of the formula (18)), the tris (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine is A solubility test in an organic solvent was conducted.
  • Example 9 Tris (4′-hydroxymethylbiphenylyl) amine (the compound of the above formula (18)) was dissolved in tetrahydrofuran at a concentration of 1.5% by weight. A solution of tris (4′-hydroxymethylbiphenylyl) amine (compound of formula (18)) in tetrahydrofuran was applied onto the ITO transparent electrode (anode) by spin coating, heated to 120 ° C., dried, A hole injection layer having a thickness of 40 nm was formed. Next, tris (p-terphenyl-4-yl) amine was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 60 nm.
  • a 75 nm thick light emitting layer made of tris (8-quinolinol) aluminum (Alq 3 ) is formed on this hole transport layer, and a 0.75 nm thick lithium fluoride layer and a 100 nm thick light emitting layer are further formed thereon.
  • Al layers were sequentially deposited and laminated to form a cathode, thus obtaining an organic electroluminescence device.
  • the organic electroluminescence device thus obtained was examined for luminance current efficiency (cd / A), luminous power efficiency (lm / W), and maximum luminance (cd / m 2 ) at a current density of 25 mA / cm 2. It was. The results are shown in Table 2.
  • an organic electroluminescence device was obtained in the same manner as in Example 8.
  • the organic electroluminescence device thus obtained was examined for luminance current efficiency (cd / A), luminous power efficiency (lm / W), and maximum luminance (cd / m 2 ) at a current density of 25 mA / cm 2. It was.
  • the results are shown in Table 2.
  • the organic electroluminescence device according to the present invention is superior to the organic electroluminescence device according to the comparative example in all of luminance current efficiency, light emission power efficiency, luminance half life and maximum luminance.
  • the triarylamines according to the present invention have at least one hydroxyl group or hydroxyhydrocarbon group in the molecule and, according to a preferred embodiment, have a plurality of hydroxyl groups and / or hydroxyhydrocarbons in the molecule. Easily dissolved in polar solvents such as alcohols, preferably 1-butanol and benzyl alcohol, but not in nonpolar solvents such as toluene, while triarylamines according to the present invention are organic As an electronic material, for example, since it has excellent hole injecting property and / or transporting property, it can be suitably used as a hole injecting agent and / or a transporting agent, for example, in the production of an organic electroluminescence device.
  • a hole injection is performed by applying a solution obtained by dissolving the triarylamine according to the present invention in a polar solvent on an appropriate substrate and drying it, that is, by a coating method.
  • Layer and / or transport layer and in such a case, even if the substrate contains an organic compound that dissolves in the nonpolar solvent but does not dissolve in the polar solvent, such a group can be formed.
  • a functional layer containing the triarylamines according to the present invention on the material by a coating method, an organic electroluminescence device having excellent performance can be obtained.
  • the hole transport layer is dissolved in a nonpolar organic solvent. Even when the solution of the light emitting material is applied, the hole transport layer is not dissolved in the nonpolar organic solvent, and thus does not hinder the formation of the light emitting layer by the application method.

Abstract

Disclosed are triarylamines represented by general formula (I). (In the formula, A1 to A3 each represents an optionally substituted phenylene group; X1 to X3 each independently represents a (substituted) phenyl group, and at least one of the (substituted) phenyl groups has, as a substituent, at least one hydroxyl group or at least one aliphatic hydrocarbon group that has a hydroxyl group.)

Description

新規なトリアリールアミン類とその利用Novel triarylamines and their use
 本発明は、新規なトリアリールアミン類とその利用、詳しくは、例えば、そのトリアリールアミン類を含む機能層を少なくとも1つ有する有機エレクトロルミネッセンス素子に関する。 The present invention relates to novel triarylamines and their use, and more specifically to, for example, an organic electroluminescence device having at least one functional layer containing the triarylamines.
 近年、有機エレクトロルミネッセンス素子は、低電圧直流駆動、高効率、高輝度を有し、また、薄型化できるので、バックライトや照明装置のほか、ディスプレイ装置として、その実用化が進められている。
 この有機エレクトロルミネッセンス素子は、代表的には、透明基板、例えば、ガラス基板上にITO膜(酸化インジウム−酸化スズ膜)のような透明電極からなる陽極が積層され、この陽極上に、例えば、いずれも機能層である正孔注入層、正孔輸送層及び発光層と、更に、金属電極からなる陰極とがこの順序にて積層されてなるものであり、上記陽極と陰極は外部の電源に接続されている。このほかにも、電極を含めて、種々の層構成を有する有機エレクトロルミネッセンス素子が知られている(例えば、特許文献1参照)。
 従来、このような有機エレクトロルミネッセンス素子の製作においては、例えば、正孔注入層や正孔輸送層の機能層は、多くの場合、それ自体でアモルファス膜を形成し得る低分子量有機化合物を蒸着法によって陽極上に製膜して形成している(例えば、特許文献2及び3参照)。しかし、一般に、このような蒸着法によって機能層を形成するためには、高価な蒸着装置を必要とするうえに、大面積の層を形成し難く、また、生産性が悪いという問題がある。
 更に、一般に、それ自体、アモルファス膜を形成し得る低分子量有機化合物は、多くの有機溶剤に溶解し、従って、そのような低分子量有機化合物を真空蒸着して、機能層を形成したとき、多くの場合、その上に更に有機溶剤を含む溶液を塗布して層を形成すれば、上記機能層を溶解させて、その性能を損なうおそれがある。
 そこで、近年、正孔注入剤や正孔輸送剤としての機能を有すると共に、水やアルコール、これらの混合溶媒のような極性溶媒に溶解する低分子量有機化合物や高分子量有機重合体の開発が進められている。例えば、正孔輸送剤として機能し、水に溶解する高分子量有機重合体として、代表的には、ドーパントとしてポリスチレンスルホン酸(PSS)を有する3,4−ポリエチレンジオキシチオフェン(PEDOT)からなるポリマー混合物が知られているが(特許文献4参照)、しかし、その正孔輸送剤としての性能は十分であるとはいい難い。
In recent years, organic electroluminescence elements have low voltage direct current drive, high efficiency, high luminance, and can be thinned, so that they are being put to practical use as display devices in addition to backlights and illumination devices.
This organic electroluminescence element typically has a transparent substrate, for example, a glass substrate on which an anode made of a transparent electrode such as an ITO film (indium oxide-tin oxide film) is laminated. In any case, a hole injection layer, a hole transport layer and a light emitting layer, which are functional layers, and a cathode made of a metal electrode are laminated in this order, and the anode and the cathode are connected to an external power source. It is connected. In addition, organic electroluminescence elements having various layer configurations including electrodes are known (see, for example, Patent Document 1).
Conventionally, in the production of such an organic electroluminescence device, for example, the functional layer of a hole injection layer or a hole transport layer is often a low molecular weight organic compound that can form an amorphous film by itself. (See, for example, Patent Documents 2 and 3). However, in general, in order to form a functional layer by such a vapor deposition method, an expensive vapor deposition apparatus is required, and it is difficult to form a large-area layer, and productivity is poor.
Furthermore, in general, low molecular weight organic compounds that can themselves form amorphous films are soluble in many organic solvents, and therefore, when such low molecular weight organic compounds are vacuum deposited to form functional layers, many In this case, if a layer is formed by further applying a solution containing an organic solvent thereon, the functional layer may be dissolved to impair its performance.
Therefore, in recent years, the development of low molecular weight organic compounds and high molecular weight organic polymers that have functions as hole injecting agents and hole transporting agents and that can be dissolved in polar solvents such as water, alcohol, and mixed solvents thereof has been promoted. It has been. For example, a polymer composed of 3,4-polyethylenedioxythiophene (PEDOT), which typically functions as a hole transporting agent and dissolves in water, typically having polystyrene sulfonic acid (PSS) as a dopant. A mixture is known (see Patent Document 4), but it is difficult to say that its performance as a hole transporting agent is sufficient.
特開平6−1972号公報JP-A-6-1972 特開2001−335543号公報JP 2001-335543 A 特開2006−22052号公報Japanese Patent Laid-Open No. 2006-22052 特開2008−031496号公報JP 2008-031496 A
 本発明は、従来の有機エレクトロルミネッセンス素子における上述した問題を解決するためになされたものであって、所謂スターバースト化合物に属するが、分子内に少なくとも1つのヒドロキシル基又は少なくとも1つのヒドロキシル基を有する脂肪族炭化水素基を有し、例えば、1−ブタノール等の脂肪族アルコールや、ベンジルアルコール等の芳香族アルコールのような極性溶媒に溶解するので、その極性溶媒に溶解させた溶液を用いる塗布法によって薄膜からなる機能層を形成することができる新規なトリアリールアミン類と、例えば、そのように塗布法によって形成された少なくとも1つの機能層、好ましくは、正孔輸送及び/又は注入層を備えながら、高い性能を有する有機エレクトロルミネッセンス素子を提供することを目的とする。 The present invention has been made to solve the above-described problems in conventional organic electroluminescence devices, and belongs to a so-called starburst compound, but has at least one hydroxyl group or at least one hydroxyl group in the molecule. Application method using a solution having an aliphatic hydrocarbon group and dissolved in a polar solvent such as an aliphatic alcohol such as 1-butanol or an aromatic alcohol such as benzyl alcohol. A novel triarylamine capable of forming a functional layer consisting of a thin film, and at least one functional layer, preferably a hole transporting and / or injecting layer, formed by a coating method, for example. However, the aim is to provide an organic electroluminescence device having high performance. To.
 本発明によれば、一般式(I)
Figure JPOXMLDOC01-appb-I000005
(式中、AからAはそれぞれ独立に置換基を有していてもよいフェニレン基であり、XからXはそれぞれ独立に一般式(II)
Figure JPOXMLDOC01-appb-I000006
(式中、RからRはそれぞれ独立に水素原子、炭素原子数1から6のアルキル基、炭素原子数5若しくは6のシクロアルキル基、ヒドロキシル基又は少なくとも1つのヒドロキシル基を有する脂肪族炭化水素基(以下、簡単のために、単に、ヒドロキシ炭化水素基という。)であり、m、n及びpはそれぞれ独立に0、1又は2である。)
で表されるフェニル基を示し、XからXの少なくとも1つにおいて、RからRの少なくとも1つはヒドロキシル基又はヒドロキシ炭化水素基である。)
で表されるトリアリールアミン類が提供される。
 本発明による好ましいトリアリールアミン類は、一般式(I)
Figure JPOXMLDOC01-appb-I000007
(式中、AからAはそれぞれ独立に置換基を有していてもよいフェニレン基であり、XからXはそれぞれ独立に一般式(II)
Figure JPOXMLDOC01-appb-I000008
(式中、RからRはそれぞれ独立に水素原子、炭素原子数1から6のアルキル基、炭素原子数5若しくは6のシクロアルキル基、ヒドロキシル基又はヒドロキシ炭化水素基であり、m、n及びpはそれぞれ独立に0、1又は2である。)
で表されるフェニル基を示し、XからXのいずれにおいても、RからRの少なくとも1つはヒドロキシル基又はヒドロキシ炭化水素基である。)
で表される。
 本発明の好ましい態様によれば、上記一般式(I)において、フェニレン基AからAは、それぞれ独立に置換基を有していてもよいp−フェニレン基であり、上記一般式(II)で表されるフェニル基において、RからRはそれぞれ独立に水素原子、炭素原子数1から6のアルキル基、好ましくは、炭素原子数1から4のメチル基、エチル基、プロピル基又はブチル基、炭素原子数5若しくは6のシクロアルキル基、好ましくは、シクロヘキシル基、ヒドロキシル基又はヒドロキシ炭化水素基であり、m、n及びpはそれぞれ独立に0、1又は2である。
 即ち、上記一般式(I)で表されるトリアリールアミン類において、フェニル基XからXはそれぞれ独立に置換基を有し、又は置換基を有しないフェニル基であり、従って、フェニル基XからXをそれぞれ(置換)フェニル基ということがある。
また、本発明によれば、上記トリアリールアミン類を含む有機電子材料、この有機電子材料を含む少なくとも1つの機能層を有する有機エレクトロルミネッセンス素子、更には、上記有機電子材料を正孔輸送及び/又は注入剤として用いてなる有機エレクトロルミネッセンス素子が提供される。
According to the invention, the general formula (I)
Figure JPOXMLDOC01-appb-I000005
(In the formula, A 1 to A 3 are each independently a phenylene group which may have a substituent, and X 1 to X 3 are each independently a formula (II)
Figure JPOXMLDOC01-appb-I000006
Wherein R 1 to R 5 are each independently an aliphatic carbon having a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms, a hydroxyl group, or at least one hydroxyl group. A hydrogen group (hereinafter simply referred to as a hydroxy hydrocarbon group for the sake of simplicity), m, n and p are each independently 0, 1 or 2.)
In at least one of X 1 to X 3 , at least one of R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon group. )
The triarylamine represented by these is provided.
Preferred triarylamines according to the invention are those of the general formula (I)
Figure JPOXMLDOC01-appb-I000007
(In the formula, A 1 to A 3 are each independently a phenylene group which may have a substituent, and X 1 to X 3 are each independently a formula (II)
Figure JPOXMLDOC01-appb-I000008
Wherein R 1 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms, a hydroxyl group or a hydroxy hydrocarbon group, and m, n And p are each independently 0, 1 or 2.)
In any of X 1 to X 3 , at least one of R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon group. )
It is represented by
According to a preferred embodiment of the present invention, in the general formula (I), the phenylene groups A 1 to A 3 are each independently a p-phenylene group which may have a substituent, and the general formula (II) R 1 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, preferably a methyl group having 1 to 4 carbon atoms, an ethyl group, a propyl group, or A butyl group, a cycloalkyl group having 5 or 6 carbon atoms, preferably a cyclohexyl group, a hydroxyl group or a hydroxy hydrocarbon group, and m, n and p are each independently 0, 1 or 2.
That is, in the triarylamines represented by the general formula (I), the phenyl groups X 1 to X 3 are each independently a phenyl group having a substituent or not having a substituent. X 1 to X 3 may be each referred to as a (substituted) phenyl group.
Further, according to the present invention, an organic electronic material containing the triarylamines, an organic electroluminescent device having at least one functional layer containing the organic electronic material, Or the organic electroluminescent element used as an injection agent is provided.
 本発明によるトリアリールアミン類は、有機電子材料として機能し、特に、正孔注入及び/又は輸送剤としてすぐれた機能を有すると共に、分子内に少なくとも1つのヒドロキシル基又はヒドロキシ炭化水素基を有するので、非極性溶媒には溶解しないが、例えば、アルコールのような極性溶媒に溶解する。従って、本発明によるトリアリールアミン類を極性溶媒に溶解して溶液とし、これを塗布することによって適宜の基材上に薄膜乃至機能層を形成することができる。例えば、好ましい一態様によれば、有機エレクトロルミネッセンス素子の製作において、塗布法によって、正孔注入及び/又は輸送層やその他の機能層を形成することができる。 The triarylamines according to the present invention function as an organic electronic material, and in particular, have an excellent function as a hole injection and / or transport agent and have at least one hydroxyl group or hydroxyhydrocarbon group in the molecule. It does not dissolve in non-polar solvents, but dissolves in polar solvents such as alcohols. Therefore, the triarylamines according to the present invention are dissolved in a polar solvent to form a solution, and a thin film or a functional layer can be formed on an appropriate base material by applying the solution. For example, according to a preferred embodiment, in the production of an organic electroluminescence element, a hole injection and / or transport layer and other functional layers can be formed by a coating method.
 図1は本発明による有機エレクトロルミネッセンス素子の好ましい一例を示す断面図である。
 図2は本発明によるトリス(4’−ヒドロキシビフェニリル)アミン(式(15)の化合物)のFT−IRスペクトルである。
 図3は本発明によるトリス(3’−ヒドロキシビフェニリル)アミン(式(16)の化合物)のFT−IRスペクトルである。
 図4は本発明によるトリス(4’−ヒドロキシ−3’,5’−ジメチルビフェニリル)アミン(式(17)の化合物)のFT−IRスペクトルである。
 図5は本発明によるトリス(4’−ヒドロキシ−3’,5’−ジメチルビフェニリル)アミン(式(17)の化合物)のDSCチャートである。
 図6は本発明によるトリス(4’−ヒドロキシ−3’,5’−ジメチルビフェニリル)アミン(式(17)の化合物)のTG/DTAチャートである。
 図7は本発明によるトリス(4’−ヒドロキシメチルビフェニリル)アミン(式(18)の化合物)のFT−IRスペクトルである。
 図8は本発明によるトリス(4’−ヒドロキシメチルビフェニリル)アミン(式(18)の化合物)のDSCチャートである。
 図9は本発明によるトリス(4’−ヒドロキシメチルビフェニリル)アミン(式(18)の化合物)のTG/DTAチャートである。
 図10は本発明によるトリス(3’−ヒドロキシメチルビフェニリル)アミン(式(19)の化合物)のFT−IRスペクトルである。
 図11jは本発明によるトリス(3’−ヒドロキシメチルビフェニリル)アミン(式(19)の化合物)のDSCチャートである。
 図12は本発明によるトリス(3’−ヒドロキシメチルビフェニリル)アミン(式(19)の化合物)のTG/DTAチャートである。
 図13は本発明によるトリス(4”−ヒドロキシメチルターフェニリル)アミン(式(32)の化合物)のFT−IRスペクトルである。
 図14は本発明によるトリス(4”−ヒドロキシメチルターフェニリル)アミン(式(32)の化合物)のDSCチャートである。
 図15は本発明によるトリス(4”−ヒドロキシメチルターフェニリル)アミン(式(32)の化合物)のTG/DTAチャートである。
 図16は本発明によるビス(4’−ヒドロキシメチルビフェニリル)−4−ヒドロキシフェニルアミン(式(8)の化合物)のFT−IRスペクトルである。
 図17は本発明によるビス(4’−ヒドロキシメチルビフェニリル)−4−ヒドロキシフェニルアミン(式(8)の化合物)のDSCチャートである。
 図18は本発明によるビス(4’−ヒドロキシメチルビフェニリル)−4−ヒドロキシフェニルアミン(式(8)の化合物)のTG/DTAチャートである。
 図19は本発明によるビス(4’−(1,2−ジヒドロキシエチル)ビフェニリル)アミン(式(50)の化合物)のFT−IRスペクトルである。
 図20は本発明によるビス(4’−(1,2−ジヒドロキシエチル)ビフェニリル)アミン(式(50)の化合物)のDSCチャートである。
FIG. 1 is a cross-sectional view showing a preferred example of an organic electroluminescence device according to the present invention.
FIG. 2 is an FT-IR spectrum of tris (4′-hydroxybiphenylyl) amine (compound of formula (15)) according to the present invention.
FIG. 3 is an FT-IR spectrum of tris (3′-hydroxybiphenylyl) amine (compound of formula (16)) according to the present invention.
FIG. 4 is an FT-IR spectrum of tris (4′-hydroxy-3 ′, 5′-dimethylbiphenylyl) amine (compound of formula (17)) according to the present invention.
FIG. 5 is a DSC chart of tris (4′-hydroxy-3 ′, 5′-dimethylbiphenylyl) amine (compound of formula (17)) according to the present invention.
FIG. 6 is a TG / DTA chart of tris (4′-hydroxy-3 ′, 5′-dimethylbiphenylyl) amine (compound of formula (17)) according to the present invention.
FIG. 7 is an FT-IR spectrum of tris (4′-hydroxymethylbiphenylyl) amine (compound of formula (18)) according to the present invention.
FIG. 8 is a DSC chart of tris (4′-hydroxymethylbiphenylyl) amine (compound of formula (18)) according to the present invention.
FIG. 9 is a TG / DTA chart of tris (4′-hydroxymethylbiphenylyl) amine (compound of formula (18)) according to the present invention.
FIG. 10 is an FT-IR spectrum of tris (3′-hydroxymethylbiphenylyl) amine (compound of formula (19)) according to the present invention.
FIG. 11j is a DSC chart of tris (3′-hydroxymethylbiphenylyl) amine (compound of formula (19)) according to the present invention.
FIG. 12 is a TG / DTA chart of tris (3′-hydroxymethylbiphenylyl) amine (compound of formula (19)) according to the present invention.
FIG. 13 is an FT-IR spectrum of tris (4 ″ -hydroxymethylterphenylyl) amine (compound of formula (32)) according to the present invention.
FIG. 14 is a DSC chart of tris (4 ″ -hydroxymethylterphenylyl) amine (compound of formula (32)) according to the present invention.
FIG. 15 is a TG / DTA chart of tris (4 ″ -hydroxymethylterphenylyl) amine (compound of formula (32)) according to the present invention.
FIG. 16 is an FT-IR spectrum of bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine (compound of formula (8)) according to the present invention.
FIG. 17 is a DSC chart of bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine (compound of formula (8)) according to the present invention.
FIG. 18 is a TG / DTA chart of bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine (compound of formula (8)) according to the present invention.
FIG. 19 is an FT-IR spectrum of bis (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine (compound of formula (50)) according to the present invention.
FIG. 20 is a DSC chart of bis (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine (compound of formula (50)) according to the present invention.
 本発明による新規なトリアリールアミン類は、一般式(I)
Figure JPOXMLDOC01-appb-I000009
(式中、AからAはそれぞれ独立に置換基を有していてもよいフェニレン基であり、XからXはそれぞれ独立に一般式(II)
Figure JPOXMLDOC01-appb-I000010
(式中、RからRはそれぞれ独立に水素原子、炭素原子数1から6のアルキル基、炭素原子数5若しくは6のシクロアルキル基、ヒドロキシル基又はヒドロキシ炭化水素基であり、m、n及びpはそれぞれ独立に0、1又は2である。)
で表されるフェニル基を示し、XからXの少なくとも1つにおいて、RからRの少なくとも1つはヒドロキシル基又はヒドロキシ炭化水素基である。)
で表される。
 このようなトリアリールアミン類は、分子内に少なくとも1つのヒドロキシル基又はヒドロキシ炭化水素基を有する。
 上記一般式(I)で表されるトリアリールアミン類において、フェニレン基AからAが有してもよい置換基は、特に限定されるものではないが、例えば、ヒドロキシル基、ヒドロキシル基を有する脂肪族炭化水素基、炭素原子数1~6のアルキル基、炭素原子数5又は6のシクロアルキル基等を挙げることができる。
 上記ヒドロキシル基を有する脂肪族炭化水素基は、後述するヒドロキシ炭化水素基と同じであってよく、従って、好ましい具体例として、例えば、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、1−メチル−1−ヒドロキシエチル基、1,2−ジヒドロキシエチル基等を挙げることができる。
 上記アルキル基としては、例えば、例えば、メチル基、エチル基、プロピル基、ブチル基等を挙げることができる。炭素原子数3以上のアルキル基は直鎖状でも、分岐鎖状でもよい。また、上記シクロアルキル基としては、例えば、シクロヘキシル基を挙げることができる。
 また、上記一般式(I)で表されるトリアリールアミン類において、フェニレン基AからAは、好ましくは、それぞれ独立に置換基を有していてもよいp−フェニレン基である。このp−フェニレン基の数を規定するm、n及びpはそれぞれ独立に0、1又は2であり、m、n又はpが0であるときは、X、X又はXはそれぞれ分子の中央の窒素原子に直接に結合している(置換)フェニル基である。
 即ち、前述したように、上記一般式(I)で表されるトリアリールアミン類において、(置換)フェニル基XからXはそれぞれ独立に置換基を有し、又は置換基を有しないフェニル基である。
 一方、m、n又はpが1であるとき、X、X又はXはそれぞれA、A又はAと共に(置換)ビフェニリル基を形成しており、m、n又はpが2であるとき、X、X又はXはそれぞれA、A又はAと共に(置換)ターフェニリル基を形成している。
 更に、上記一般式(II)で表されるフェニル基において、RからRがそれぞれ独立に炭素原子数1から6のアルキル基であるとき、そのアルキル基の具体例として、例えば、メチル、エチル、プロピル、ブチル、ペンチル又はヘキシル基を挙げることができ、炭素原子数3以上のアルキル基は直鎖状でも分岐鎖状でもよい。アルキル基は、好ましくは、炭素原子数1から4のアルキル基であり、そのようなアルキル基の具体例として、例えば、メチル、エチル、プロピル、ブチル基を挙げることができる。炭素原子数3以上であるアルキル基は直鎖状でもよく、分岐鎖状でもよい。また、RからRがそれぞれ独立にシクロアルキル基であるとき、そのシクロアルキル基はシクロペンチル又はシクロヘキシル基であり、好ましくは、シクロヘキシル基である。
 本発明によれば、上記一般式(II)で表されるフェニル基において、RからRの少なくとも1つがヒドロキシル基又はヒドロキシ炭化水素基であるとき、そのヒドロキシル基又はヒドロキシ炭化水素基のフェニル基における結合位置は、特に限定されず、フェニレン基A、A又はAの結合位置に対してo−、m−又はp−位置のいずれでもよい。
 本発明において、一般式(II)において、RからRの少なくとも1つが少なくとも1つのヒドロキシル基を有する脂肪族炭化水素基、即ち、ヒドロキシ炭化水素基であるとき、このヒドロキシ炭化水素基は、好ましくは、一般式(III)
Figure JPOXMLDOC01-appb-I000011
(式中、Rは(h+1)価の脂肪族炭化水素基であり、hは1、2又は3である。)
で表される。
 従って、このようなヒドロキシ炭化水素基の好ましい具体例として、例えば、
Figure JPOXMLDOC01-appb-I000012
等を挙げることができる。
 本発明において、ヒドロキシ炭化水素基は上記例示に限定されるものではないが、上記したなかでは、好ましいものとして、例えば、ヒドロキシメチル基(III−1)、ヒドロキシエチル基(III−2)、ヒドロキシプロピル基(III−3)、1−メチル−1−ヒドロキシエチル基(III−5)、1,2−ジヒドロキシエチル基(III−8)等を挙げることができる。本発明による好ましいトリアリールアミン類は、一般式(I)
Figure JPOXMLDOC01-appb-I000013
(式中、AからAはそれぞれ独立に置換基を有していてもよいフェニレン基であり、XからXはそれぞれ独立に一般式(II)
Figure JPOXMLDOC01-appb-I000014
(式中、RからRはそれぞれ独立に水素原子、炭素原子数1から6のアルキル基、炭素原子数5若しくは6のシクロアルキル基、ヒドロキシル基又はヒドロキシ炭化水素基であり、m、n及びpはそれぞれ独立に0、1又は2である。)
で表されるフェニル基を示し、XからXのいずれにおいても、RからRの少なくとも1つはヒドロキシル基又はヒドロキシ炭化水素基である。)
で表される。
 このような本発明による好ましいトリアリールアミン類は、図示した本発明によるトリアリールアミン類、即ち、前記一般式(I)中、XからXの少なくとも1つにおいて、RからRの少なくとも1つがヒドロキシル基又はヒドロキシ炭化水素基であるトリアリールアミン類と比べて、前記一般式(I)中、XからXのいずれにおいても、RからRの少なくとも1つがヒドロキシル基又はヒドロキシ炭化水素基であることを除いて、同じである。
 従って、本発明による好ましいトリアリールアミン類において、フェニレン基AからA、これらフェニレン基が有してもよい置換基、上記一般式(I)で表されるフェニル基が有するRからRがそれぞれ独立に炭素原子数1から6のアルキル基であるときの具体例、上記一般式(I)で表されるフェニル基が少なくとも1つのヒドロキシル基又はヒドロキシ炭化水素基を有するとき、そのヒドロキシル基又はヒドロキシ炭化水素基の結合位置、RからRの少なくとも1つが少なくとも1つのヒドロキシル基を有する脂肪族炭化水素基であるとき、その具体例等を含め、すべてが先に説明したものと同じであるので、ここで繰り返して説明することは省略する。
 本発明による最も好ましいトリアリールアミン類は、上述した好ましいトリアリールアミン類において、(a)mが0であり、n及びpがいずれも1又は2であるか、(b)m、n及びpがいずれも1であるか、(c)m、n及びpがいずれも2であるものである。
 本発明によるトリアリールアミン類は、例えば、以下のようにして得ることができる。先ず、分子中に3つのヒドロキシル基又はヒドロキシ炭化水素基を有するトリアリールアミン類は、例えば、スキーム1に示すようにして得ることができる。下記スキーム1において、Xは、例えば、ヨウ素原子や臭素原子のようなハロゲン原子であり、以下のスキーム2及び3においても同じである。
Figure JPOXMLDOC01-appb-I000015
 即ち、トリス(4−ハロゲン化フェニル)アミン(A)1モル部とRからRのいずれか1つがヒドロキシル基又はヒドロキシ炭化水素基であるフェニルボロン酸(B1)3モル部をアルコール/水混合溶媒中、塩基とパラジウム触媒を用いて加熱下に反応させることによって、化合物(C)として得ることができる。
 分子中に1つのヒドロキシル基又はヒドロキシ炭化水素基を有するトリアリールアミン類は、例えば、スキーム2に示すようにして得ることができる。
Figure JPOXMLDOC01-appb-I000016
 即ち、トリス(4−ハロゲン化フェニル)アミン(A)1モル部とR’からR’のいずれもがヒドロキシル基とヒドロキシ炭化水素基のいずれでもないフェニルボロン酸(B2)2モル部をアルコール/水混合溶媒中、塩基とパラジウム触媒を用いて加熱下に反応させることによって化合物Dを得、次いで、この化合物D1モル部にRからRのいずれか1つがヒドロキシル基又はヒドロキシ炭化水素基であるフェニルボロン酸(B1)1モル部を同様に反応させることによって、化合物Eとして得ることができる。
 同様に、分子中に2つのヒドロキシル基又はヒドロキシ炭化水素基を有するトリアリールアミン類は、例えば、下記スキーム3に示すようにして得ることができる。
Figure JPOXMLDOC01-appb-I000017
 即ち、トリス(4−ハロゲン化フェニル)アミン(A)1モル部とR’からR’のいずれもがヒドロキシル基とヒドロキシ炭化水素基のいずれでもないフェニルボロン酸(B2)1モル部をアルコール/水混合溶媒中、塩基とパラジウム触媒を用いて加熱下に反応させることによって化合物Fを得、次いで、この化合物F1モル部にRからRのいずれか1つがヒドロキシル基又はヒドロキシ炭化水素基であるフェニルボロン酸(B1)2モル部を同様に反応させることによって、化合物Gとして得ることができる。
 分子中に4個、5個、6個又はそれ以上の数のヒドロキシル基又はヒドロキシ炭化水素基を有するトリアリールアミン類も、分子中に1個、2個又は3個のヒドロキシル基又はヒドロキシ炭化水素基を有するトリアリールアミン類の製造方法を示す上記スキーム1~3を適宜に変更することによって容易に得ることができることは明らかである。
 従って、本発明による好ましいトリアリールアミン類の具体例として、例えば、次式(1)
Figure JPOXMLDOC01-appb-I000018
で表される化合物(1)、次式(2)
Figure JPOXMLDOC01-appb-I000019
で表される化合物(2)、次式(3)
Figure JPOXMLDOC01-appb-I000020
で表される化合物(3)、次式(4)
Figure JPOXMLDOC01-appb-I000021
で表される化合物(4)、次式(5)
Figure JPOXMLDOC01-appb-I000022
で表される化合物(5)、次式(6)
Figure JPOXMLDOC01-appb-I000023
で表される化合物(6)、次式(7)
Figure JPOXMLDOC01-appb-I000024
で表される化合物(7)、次式(8)
Figure JPOXMLDOC01-appb-I000025
で表される化合物(8)、次式(9)
Figure JPOXMLDOC01-appb-I000026
で表される化合物(9)、次式(10)
Figure JPOXMLDOC01-appb-I000027
で表される化合物(10)、次式(11)
Figure JPOXMLDOC01-appb-I000028
で表される化合物(11)、次式(12)
Figure JPOXMLDOC01-appb-I000029
で表される化合物(12)、次式(13)
Figure JPOXMLDOC01-appb-I000030
で表される化合物(13)、次式(14)
Figure JPOXMLDOC01-appb-I000031
で表される化合物(14)、次式(15)
Figure JPOXMLDOC01-appb-I000032
で表される化合物(15)、次式(16)
Figure JPOXMLDOC01-appb-I000033
で表される化合物(16)、次式(17)
Figure JPOXMLDOC01-appb-I000034
で表される化合物(17)、次式(18)
Figure JPOXMLDOC01-appb-I000035
で表される化合物(18)、次式(19)
Figure JPOXMLDOC01-appb-I000036
で表される化合物(19)、次式(20)
Figure JPOXMLDOC01-appb-I000037
で表される化合物(20)、次式(21)
Figure JPOXMLDOC01-appb-I000038
で表される化合物(21)、次式(22)
Figure JPOXMLDOC01-appb-I000039
で表される化合物(22)、次式(23)
Figure JPOXMLDOC01-appb-I000040
で表される化合物(23)、次式(24)
Figure JPOXMLDOC01-appb-I000041
で表される化合物(24)、次式(25)
Figure JPOXMLDOC01-appb-I000042
で表される化合物(25)、次式(26)
Figure JPOXMLDOC01-appb-I000043
で表される化合物(26)、次式(27)
Figure JPOXMLDOC01-appb-I000044
で表される化合物(27)、次式(28)
Figure JPOXMLDOC01-appb-I000045
で表される化合物(28)、次式(29)
Figure JPOXMLDOC01-appb-I000046
で表される化合物(29)、次式(30)
Figure JPOXMLDOC01-appb-I000047
で表される化合物(30)、次式(31)
Figure JPOXMLDOC01-appb-I000048
で表される化合物(31)、次式(32)
Figure JPOXMLDOC01-appb-I000049
で表される化合物(32)、次式(33)
Figure JPOXMLDOC01-appb-I000050
で表される化合物(33)、次式(34)
Figure JPOXMLDOC01-appb-I000051
で表される化合物(34)、次式(35)
Figure JPOXMLDOC01-appb-I000052
で表される化合物(35)、次式(36)
Figure JPOXMLDOC01-appb-I000053
で表される化合物(36)、次式(37)
Figure JPOXMLDOC01-appb-I000054
で表される化合物(37)、次式(38)
Figure JPOXMLDOC01-appb-I000055
で表される化合物(38)、次式(39)
Figure JPOXMLDOC01-appb-I000056
で表される化合物(39)、次式(40)
Figure JPOXMLDOC01-appb-I000057
で表される化合物(40)、次式(41)
Figure JPOXMLDOC01-appb-I000058
で表される化合物(41)、次式(42)
Figure JPOXMLDOC01-appb-I000059
で表される化合物(42)、次式(43)
Figure JPOXMLDOC01-appb-I000060
で表される化合物(43)、次式(44)
Figure JPOXMLDOC01-appb-I000061
で表される化合物(44)、次式(45)
Figure JPOXMLDOC01-appb-I000062
で表される化合物(45)、次式(46)
Figure JPOXMLDOC01-appb-I000063
で表される化合物(46)、次式(47)
Figure JPOXMLDOC01-appb-I000064
で表される化合物(47)、次式(48)
Figure JPOXMLDOC01-appb-I000065
で表される化合物(48)、次式(49)
Figure JPOXMLDOC01-appb-I000066
で表される化合物(49)、次式(50)
Figure JPOXMLDOC01-appb-I000067
で表される化合物、次式(51)
Figure JPOXMLDOC01-appb-I000068
で表される化合物等を挙げることができる。
 本発明によるトリアリールアミン類は、分子内に少なくとも1つのヒドロキシル基又はヒドロキシ炭化水素基を有し、好ましい態様によれば、分子内に複数のヒドロキシル基及び/又はヒドロキシ炭化水素基を有するので、例えば、1−ブタノール等の脂肪族アルコールや、ベンジルアルコール等の芳香族アルコールのような極性溶媒に溶解するが、トルエンのような非極性溶媒には溶解しない。更に、本発明によるトリアリールアミン類は、有機電子材料、特に、有機エレクトロルミネッセンス素子における機能層である正孔注入層及び/又は輸送層や、発光層を形成するための有機電子材料として有用であり、特に、正孔注入層及び/又は輸送層を形成するための正孔注入剤及び/又は輸送剤として好適に用いることができる。
 従って、例えば、有機エレクトロルミネッセンス素子の製造において、本発明によるトリアリールアミン類を極性溶媒に溶解させてなる溶液を適宜の基材上に塗布し、乾燥することによって、正孔注入層及び/又は輸送層を形成することができる。但し、本発明によるトリアリールアミン類の用途は、上記正孔注入剤及び/又は輸送剤に限定されるものではない。
 本発明による有機エレクトロルミネッセンス素子の好ましい一例を第1図に示すように、例えば、ガラスのような透明基板1上にITOからなる透明な陽極2が密着して積層され、支持されており、この陽極上に正孔注入層3aと正孔輸送層3bと発光層4と金属又はその化合物からなる陰極5がこの順序で積層されてなるものである。上記陽極と陰極は外部の電源6に接続されている。従って、このような有機エレクトロルミネッセンス素子においては、陽極から正孔注入層と正孔輸送層を経て発光層に正孔が容易に注入され、発光層には上記陰極から電子が注入され、そこで、この発光層において、上記陰極から注入された電子と陽極から注入された正孔とが再結合して発光を生じ、この発光層における発光が上記透明電極(陽極)と透明基板を通して外部に放射される。
 更に、本発明においては、場合によっては、前述したように、発光層と陰極との間に電子輸送層が積層されてもよく、また、余分な正孔が陰極側に抜け出るのを防止するために、ブロッキング層が設けられていてもよい。このように、本発明において、有機エレクトロルミネッセンス素子の層構造は、特に、限定されるものではない。
 本発明による有機エレクトロルミネッセンス素子は、上述した本発明によるトリアリールアミン類を含む少なくとも1つの機能層を有し、好ましくは、上記正孔注入及び/又は輸送層が前述したトリアリールアミン類からなる正孔注入及び/又は輸送剤を含む。上述したように、本発明によるトリアリールアミン類は、前述したように、アルコールのような極性溶媒に溶解するので、例えば、そのアルコール溶液を前記透明電極上に塗布し、乾燥して、正孔注入層を形成することができる。また、場合によっては、従来から知られている低分子量有機化合物を透明電極上に真空蒸着して正孔注入層を形成した後、この上に本発明によるトリアリールアミン類のアルコール溶液を塗布し、乾燥して、正孔輸送層を形成することができる。この場合において、前述したように、正孔注入層を形成する低分子量有機化合物は、通常、非極性溶媒には溶解するが、極性溶媒には溶解しないので、上記正孔注入層上に本発明によるトリアリールアミン類のアルコール溶液を塗布しても、上記正孔注入層は極性溶媒に溶解しない。
 本発明において、正孔注入層と正孔輸送層はいずれも、その膜厚は、通常、10~200nmの範囲であり、好ましくは、20~100nmの範囲である。勿論、透明電極上に本発明によるトリアリールアミン類からなる単層の正孔注入輸送層を形成することができる。
 このようにして、例えば、本発明によるトリアリールアミン類を用いて、透明電極上に正孔注入層を形成し、その上に、常法に従って、既に知られている正孔輸送剤からなる正孔輸送層を積層し、更に、この上に発光層と陰極を積層すれば、有機エレクトロルミネッセンス素子を得ることができる。同様に、適宜に形成した正孔注入層上に本発明によるトリアリールアミン類からなる正孔輸送層を積層し、更に、この上に発光層と陰極を積層すれば、有機エレクトロルミネッセンス素子を得ることができる。
 本発明による有機エレクトロルミネッセンス素子は、本発明によるトリアリールアミン類を含む少なくとも1つの層を有し、好ましくは、本発明によるトリアリールアミン類を含む正孔注入及び/又は輸送層を有している。しかし、本発明によるトリアリールアミン類を含むそのような少なくとも1つの機能層、好ましくは、本発明によるトリアリールアミン類を含む正孔注入及び/又は輸送層以外の層、即ち、透明基板、本発明による上記機能層と組み合わせるその他の層、例えば、通常の正孔注入及び/又は輸送層、陽極、発光層、電子輸送層及び電極は、従来から知られているものが適宜に用いられる。陽極としては、酸化インジウム−酸化スズ(ITO)からなる透明電極が好ましく用いられ、陰極には、アルミニウム、マグネシウム、インジウム、銀等の単体金属やこれらの合金、例えば、Al−Mg合金、Ag−Mg合金、フッ化リチウム等が用いられ、透明基板としては、通常、ガラス基板が用いられる。
 例えば、通常の正孔輸送剤としては、従来から知られている低分子量有機化合物、例えば、前述したようなα−NPD(4、4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニル)やTPD(4、4’−ビス(3−メチルフェニル)−N−フェニルアミノ)ビフェニルが用いられる。また、トリス(p−ターフェニル−4−イル)アミンも正孔輸送剤として用いられる。
 通常の正孔注入剤としては、銅フタロシアニン等が用いられる。その膜厚は、通常、10~200nmの範囲であり、好ましくは、20~100nmの範囲である。
 有機発光層には、例えば、トリス(8−キノリノール)アルミニウム(Alq)が用いられ、その膜厚は、通常、10~200nmの範囲であり、好ましくは、20~100nmの範囲である。また、有機エレクトロルミネッセンス素子が電子輸送層を含むときは、その膜厚は、通常、10~200nmの範囲であり、好ましくは、20~100nmの範囲である。
 本発明によるトリアリールアミン類は、その用途において何ら限定されるものではなく、上述した有機エレクトロルミネッセンス素子における正孔注入剤、正孔輸送剤、発光層におけるホスト剤のほか、例えば、太陽電池における有機半導体、電子写真装置における電荷輸送材料等にも好適に用いることができる。
 特に、イオン化ポテンシャルが5.1~5.8eVの範囲にある本発明によるトリアリールアミン類は、有機エレクトロルミネッセンス素子における正孔注入及び/又は輸送剤として好適に用いることができる。
The novel triarylamines according to the invention have the general formula (I)
Figure JPOXMLDOC01-appb-I000009
(In the formula, A 1 to A 3 are each independently a phenylene group which may have a substituent, and X 1 to X 3 are each independently a formula (II)
Figure JPOXMLDOC01-appb-I000010
Wherein R 1 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms, a hydroxyl group or a hydroxy hydrocarbon group, and m, n And p are each independently 0, 1 or 2.)
In at least one of X 1 to X 3 , at least one of R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon group. )
It is represented by
Such triarylamines have at least one hydroxyl group or hydroxy hydrocarbon group in the molecule.
In the triarylamines represented by the above general formula (I), the substituents that the phenylene groups A 1 to A 3 may have are not particularly limited, but examples thereof include a hydroxyl group and a hydroxyl group. And an aliphatic hydrocarbon group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms, and the like.
The aliphatic hydrocarbon group having the hydroxyl group may be the same as the hydroxy hydrocarbon group described later. Accordingly, preferred specific examples include, for example, hydroxymethyl group, hydroxyethyl group, hydroxypropyl group, 1-methyl- Examples thereof include a 1-hydroxyethyl group and a 1,2-dihydroxyethyl group.
As said alkyl group, a methyl group, an ethyl group, a propyl group, a butyl group etc. can be mentioned, for example. The alkyl group having 3 or more carbon atoms may be linear or branched. Moreover, as said cycloalkyl group, a cyclohexyl group can be mentioned, for example.
In the triarylamines represented by the general formula (I), the phenylene groups A 1 to A 3 are preferably p-phenylene groups which may each independently have a substituent. M, n, and p that define the number of p-phenylene groups are each independently 0, 1, or 2, and when m, n, or p is 0, X 1 , X 2, or X 3 are each a molecule (Substituted) phenyl group directly bonded to the central nitrogen atom.
That is, as described above, in the triarylamines represented by the general formula (I), the (substituted) phenyl groups X 1 to X 3 each independently have a substituent or a phenyl having no substituent. It is a group.
On the other hand, m, when n or p is 1, X 1, X 2 or X 3 together with A 1, A 2 or A 3 each forms a (substituted) biphenylyl group, m, n or p is 2 when it is, X 1, X 2 or X 3 forms a (substituted) terphenylyl group together with a 1, a 2 or a 3, respectively.
Furthermore, in the phenyl group represented by the general formula (II), when R 1 to R 5 are each independently an alkyl group having 1 to 6 carbon atoms, specific examples of the alkyl group include, for example, methyl, An ethyl, propyl, butyl, pentyl or hexyl group can be mentioned, and an alkyl group having 3 or more carbon atoms may be linear or branched. The alkyl group is preferably an alkyl group having 1 to 4 carbon atoms, and specific examples of such an alkyl group include methyl, ethyl, propyl, and butyl groups. The alkyl group having 3 or more carbon atoms may be linear or branched. When R 1 to R 5 are each independently a cycloalkyl group, the cycloalkyl group is a cyclopentyl or cyclohexyl group, and preferably a cyclohexyl group.
According to the present invention, in the phenyl group represented by the general formula (II), when at least one of R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon group, the phenyl of the hydroxyl group or hydroxy hydrocarbon group The bonding position in the group is not particularly limited, and may be any o-, m-, or p-position with respect to the bonding position of the phenylene group A 1 , A 2, or A 3 .
In the present invention, in the general formula (II), when at least one of R 1 to R 5 is an aliphatic hydrocarbon group having at least one hydroxyl group, that is, a hydroxy hydrocarbon group, the hydroxy hydrocarbon group is Preferably, the general formula (III)
Figure JPOXMLDOC01-appb-I000011
(In the formula, R is an (h + 1) -valent aliphatic hydrocarbon group, and h is 1, 2 or 3.)
It is represented by
Therefore, as a preferable specific example of such a hydroxy hydrocarbon group, for example,
Figure JPOXMLDOC01-appb-I000012
Etc.
In the present invention, the hydroxy hydrocarbon group is not limited to the above examples, but preferred examples thereof include hydroxymethyl group (III-1), hydroxyethyl group (III-2), and hydroxy. A propyl group (III-3), a 1-methyl-1-hydroxyethyl group (III-5), a 1,2-dihydroxyethyl group (III-8) and the like can be mentioned. Preferred triarylamines according to the invention are those of the general formula (I)
Figure JPOXMLDOC01-appb-I000013
(In the formula, A 1 to A 3 are each independently a phenylene group which may have a substituent, and X 1 to X 3 are each independently a formula (II)
Figure JPOXMLDOC01-appb-I000014
Wherein R 1 to R 5 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms, a hydroxyl group or a hydroxy hydrocarbon group, and m, n And p are each independently 0, 1 or 2.)
In any of X 1 to X 3 , at least one of R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon group. )
It is represented by
Such preferred triarylamines according to the present invention are the illustrated triarylamines according to the present invention, that is, at least one of X 1 to X 3 in the general formula (I), R 1 to R 5 Compared to triarylamines in which at least one is a hydroxyl group or a hydroxy hydrocarbon group, in any one of X 1 to X 3 in the general formula (I), at least one of R 1 to R 5 is a hydroxyl group or The same except that it is a hydroxy hydrocarbon group.
Accordingly, in the preferred triarylamines according to the present invention, the phenylene groups A 1 to A 3 , the substituents that these phenylene groups may have, and the R 1 to R that the phenyl group represented by the above general formula (I) has Specific examples when 5 is independently an alkyl group having 1 to 6 carbon atoms, and when the phenyl group represented by the above general formula (I) has at least one hydroxyl group or hydroxy hydrocarbon group, the hydroxyl group The bonding position of the group or the hydroxy hydrocarbon group, when at least one of R 1 to R 5 is an aliphatic hydrocarbon group having at least one hydroxyl group, including the specific examples and the like, Since they are the same, repeated description here is omitted.
Most preferred triarylamines according to the present invention are the above preferred triarylamines, wherein (a) m is 0 and n and p are both 1 or 2, or (b) m, n and p Are all 1, or (c) m, n, and p are all 2.
The triarylamines according to the present invention can be obtained, for example, as follows. First, triarylamines having three hydroxyl groups or hydroxy hydrocarbon groups in the molecule can be obtained, for example, as shown in Scheme 1. In the following scheme 1, X is, for example, a halogen atom such as an iodine atom or a bromine atom, and the same applies to the following schemes 2 and 3.
Figure JPOXMLDOC01-appb-I000015
That is, 1 mol part of tris (4-halogenated phenyl) amine (A) and 3 mol part of phenylboronic acid (B1) in which any one of R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon group are mixed with alcohol / water. It can obtain as a compound (C) by making it react under heating using a base and a palladium catalyst in a mixed solvent.
Triarylamines having one hydroxyl group or hydroxyhydrocarbon group in the molecule can be obtained, for example, as shown in Scheme 2.
Figure JPOXMLDOC01-appb-I000016
That is, 1 mol part of tris (4-halogenated phenyl) amine (A) and 2 mol parts of phenylboronic acid (B2) in which none of R ′ 1 to R ′ 5 is a hydroxyl group or a hydroxy hydrocarbon group. Compound D is obtained by reaction under heating with a base and a palladium catalyst in an alcohol / water mixed solvent, and then any one of R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon in 1 mol part of Compound D. Compound E can be obtained by reacting 1 mol part of phenylboronic acid (B1) as a group in the same manner.
Similarly, triarylamines having two hydroxyl groups or hydroxy hydrocarbon groups in the molecule can be obtained, for example, as shown in Scheme 3 below.
Figure JPOXMLDOC01-appb-I000017
That is, 1 mol part of tris (4-halogenated phenyl) amine (A) and 1 mol part of phenylboronic acid (B2) in which none of R ′ 1 to R ′ 5 is a hydroxyl group or a hydroxy hydrocarbon group. Compound F is obtained by reaction under heating with a base and a palladium catalyst in an alcohol / water mixed solvent, and then any one of R 1 to R 5 is a hydroxyl group or a hydroxy hydrocarbon in 1 mol part of compound F The compound G can be obtained by reacting 2 mol parts of phenylboronic acid (B1) as a group in the same manner.
Triarylamines having 4, 5, 6 or more hydroxyl or hydroxy hydrocarbon groups in the molecule may also be one, two or three hydroxyl groups or hydroxy hydrocarbons in the molecule. It is obvious that the above schemes 1 to 3 showing the method for producing a triarylamine having a group can be easily obtained by appropriately changing the schemes.
Accordingly, specific examples of preferable triarylamines according to the present invention include, for example, the following formula (1):
Figure JPOXMLDOC01-appb-I000018
Compound (1) represented by the following formula (2)
Figure JPOXMLDOC01-appb-I000019
Compound (2) represented by the following formula (3)
Figure JPOXMLDOC01-appb-I000020
Compound (3) represented by the following formula (4)
Figure JPOXMLDOC01-appb-I000021
Compound (4) represented by the following formula (5)
Figure JPOXMLDOC01-appb-I000022
Compound (5) represented by the following formula (6)
Figure JPOXMLDOC01-appb-I000023
(6) represented by the following formula (7)
Figure JPOXMLDOC01-appb-I000024
Compound (7) represented by the following formula (8)
Figure JPOXMLDOC01-appb-I000025
Compound (8) represented by the following formula (9)
Figure JPOXMLDOC01-appb-I000026
Compound (9) represented by the following formula (10)
Figure JPOXMLDOC01-appb-I000027
Compound (10) represented by the following formula (11)
Figure JPOXMLDOC01-appb-I000028
Compound (11) represented by the following formula (12)
Figure JPOXMLDOC01-appb-I000029
The compound (12) represented by the following formula (13)
Figure JPOXMLDOC01-appb-I000030
Compound (13) represented by the following formula (14)
Figure JPOXMLDOC01-appb-I000031
Compound (14) represented by the following formula (15)
Figure JPOXMLDOC01-appb-I000032
Compound (15) represented by the following formula (16)
Figure JPOXMLDOC01-appb-I000033
Compound (16) represented by the following formula (17)
Figure JPOXMLDOC01-appb-I000034
Compound (17) represented by the following formula (18)
Figure JPOXMLDOC01-appb-I000035
Compound (18) represented by the following formula (19)
Figure JPOXMLDOC01-appb-I000036
Compound (19) represented by the following formula (20)
Figure JPOXMLDOC01-appb-I000037
The compound (20) represented by the following formula (21)
Figure JPOXMLDOC01-appb-I000038
Compound (21) represented by the following formula (22)
Figure JPOXMLDOC01-appb-I000039
Compound (22) represented by the following formula (23)
Figure JPOXMLDOC01-appb-I000040
Compound (23) represented by the following formula (24)
Figure JPOXMLDOC01-appb-I000041
Compound (24) represented by the following formula (25)
Figure JPOXMLDOC01-appb-I000042
Compound (25) represented by the following formula (26)
Figure JPOXMLDOC01-appb-I000043
Compound (26) represented by the following formula (27)
Figure JPOXMLDOC01-appb-I000044
A compound represented by formula (27):
Figure JPOXMLDOC01-appb-I000045
A compound represented by formula (28):
Figure JPOXMLDOC01-appb-I000046
Compound (29) represented by the following formula (30)
Figure JPOXMLDOC01-appb-I000047
The compound (30) represented by the following formula (31)
Figure JPOXMLDOC01-appb-I000048
Compound (31) represented by the following formula (32)
Figure JPOXMLDOC01-appb-I000049
Compound (32) represented by the following formula (33)
Figure JPOXMLDOC01-appb-I000050
Compound (33) represented by formula (34)
Figure JPOXMLDOC01-appb-I000051
(34) represented by the following formula (35)
Figure JPOXMLDOC01-appb-I000052
Compound (35) represented by the following formula (36)
Figure JPOXMLDOC01-appb-I000053
(36) represented by the following formula (37)
Figure JPOXMLDOC01-appb-I000054
Compound (37) represented by formula (38):
Figure JPOXMLDOC01-appb-I000055
A compound represented by formula (38):
Figure JPOXMLDOC01-appb-I000056
Compound (39) represented by the following formula (40)
Figure JPOXMLDOC01-appb-I000057
Compound (40) represented by the following formula (41)
Figure JPOXMLDOC01-appb-I000058
Compound (41) represented by formula (42)
Figure JPOXMLDOC01-appb-I000059
A compound represented by formula (42):
Figure JPOXMLDOC01-appb-I000060
(43) represented by the following formula (44)
Figure JPOXMLDOC01-appb-I000061
(44) represented by the following formula (45)
Figure JPOXMLDOC01-appb-I000062
Compound (45) represented by the following formula (46)
Figure JPOXMLDOC01-appb-I000063
Compound (46) represented by the following formula (47)
Figure JPOXMLDOC01-appb-I000064
Compound (47) represented by the following formula (48)
Figure JPOXMLDOC01-appb-I000065
Compound (48) represented by the following formula (49)
Figure JPOXMLDOC01-appb-I000066
Compound (49) represented by the following formula (50)
Figure JPOXMLDOC01-appb-I000067
A compound represented by formula (51)
Figure JPOXMLDOC01-appb-I000068
The compound etc. which are represented by these can be mentioned.
The triarylamines according to the present invention have at least one hydroxyl group or hydroxyhydrocarbon group in the molecule, and according to a preferred embodiment, have a plurality of hydroxyl groups and / or hydroxyhydrocarbon groups in the molecule. For example, it dissolves in a polar solvent such as an aliphatic alcohol such as 1-butanol or an aromatic alcohol such as benzyl alcohol, but does not dissolve in a nonpolar solvent such as toluene. Furthermore, the triarylamines according to the present invention are useful as organic electronic materials, particularly as an organic electronic material for forming a hole injection layer and / or a transport layer, which is a functional layer in an organic electroluminescence device, and a light emitting layer. In particular, it can be suitably used as a hole injecting agent and / or a transporting agent for forming a hole injecting layer and / or a transporting layer.
Therefore, for example, in the production of an organic electroluminescence device, a solution obtained by dissolving the triarylamines according to the present invention in a polar solvent is applied onto an appropriate substrate and dried, so that the hole injection layer and / or A transport layer can be formed. However, the use of the triarylamines according to the present invention is not limited to the above hole injecting agent and / or transporting agent.
As shown in FIG. 1 as a preferred example of the organic electroluminescence device according to the present invention, for example, a transparent anode 2 made of ITO is closely adhered and supported on a transparent substrate 1 such as glass. A hole injection layer 3a, a hole transport layer 3b, a light emitting layer 4, and a cathode 5 made of a metal or a compound thereof are laminated on the anode in this order. The anode and cathode are connected to an external power source 6. Accordingly, in such an organic electroluminescence device, holes are easily injected from the anode through the hole injection layer and the hole transport layer into the light emitting layer, and electrons are injected from the cathode into the light emitting layer, In this light emitting layer, electrons injected from the cathode and holes injected from the anode recombine to generate light, and light emitted from the light emitting layer is emitted to the outside through the transparent electrode (anode) and the transparent substrate. The
Furthermore, in the present invention, in some cases, as described above, an electron transport layer may be laminated between the light emitting layer and the cathode, and in order to prevent excess holes from escaping to the cathode side. In addition, a blocking layer may be provided. Thus, in the present invention, the layer structure of the organic electroluminescence element is not particularly limited.
The organic electroluminescence device according to the present invention has at least one functional layer containing the above-described triarylamines according to the present invention, and preferably the hole injection and / or transport layer is composed of the above-described triarylamines. Includes hole injection and / or transport agents. As described above, since the triarylamines according to the present invention are dissolved in a polar solvent such as alcohol as described above, for example, the alcohol solution is applied on the transparent electrode and dried to form holes. An injection layer can be formed. In some cases, a conventionally known low molecular weight organic compound is vacuum-deposited on a transparent electrode to form a hole injection layer, and then an alcohol solution of the triarylamine according to the present invention is applied thereon. The hole transport layer can be formed by drying. In this case, as described above, the low molecular weight organic compound forming the hole injection layer is usually dissolved in the nonpolar solvent but not in the polar solvent, so that the present invention is formed on the hole injection layer. Even if the alcohol solution of triarylamines is applied, the hole injection layer is not dissolved in the polar solvent.
In the present invention, the film thickness of both the hole injection layer and the hole transport layer is usually in the range of 10 to 200 nm, and preferably in the range of 20 to 100 nm. Of course, a single hole injection transport layer made of the triarylamines according to the present invention can be formed on the transparent electrode.
In this way, for example, using the triarylamines according to the present invention, a hole injection layer is formed on the transparent electrode, and on the positive electrode made of a known hole transport agent according to a conventional method. An organic electroluminescent element can be obtained by laminating a hole transport layer and further laminating a light emitting layer and a cathode thereon. Similarly, an organic electroluminescence device can be obtained by laminating a hole transport layer made of triarylamines according to the present invention on a suitably formed hole injection layer, and further laminating a light emitting layer and a cathode thereon. be able to.
The organic electroluminescent device according to the present invention has at least one layer comprising the triarylamines according to the present invention, and preferably has a hole injection and / or transport layer comprising the triarylamines according to the present invention. Yes. However, such at least one functional layer comprising the triarylamines according to the invention, preferably a layer other than a hole injection and / or transport layer comprising the triarylamines according to the invention, ie a transparent substrate, a book As other layers to be combined with the above functional layer according to the invention, for example, a normal hole injection and / or transport layer, an anode, a light emitting layer, an electron transport layer and an electrode, those conventionally known are appropriately used. A transparent electrode made of indium oxide-tin oxide (ITO) is preferably used as the anode, and a single metal such as aluminum, magnesium, indium, silver, or an alloy thereof such as an Al—Mg alloy, Ag—is used as the cathode. Mg alloy, lithium fluoride or the like is used, and a glass substrate is usually used as the transparent substrate.
For example, as a normal hole transporting agent, conventionally known low molecular weight organic compounds, for example, α-NPD (4,4′-bis (N- (1-naphthyl) -N-phenyl) as described above Amino) biphenyl) and TPD (4,4′-bis (3-methylphenyl) -N-phenylamino) biphenyl are used. Tris (p-terphenyl-4-yl) amine is also used as a hole transporting agent.
As a normal hole injecting agent, copper phthalocyanine or the like is used. The film thickness is usually in the range of 10 to 200 nm, preferably in the range of 20 to 100 nm.
For example, tris (8-quinolinol) aluminum (Alq 3 ) is used for the organic light emitting layer, and the film thickness is usually in the range of 10 to 200 nm, and preferably in the range of 20 to 100 nm. Further, when the organic electroluminescence element includes an electron transport layer, the film thickness is usually in the range of 10 to 200 nm, and preferably in the range of 20 to 100 nm.
The triarylamines according to the present invention are not limited at all in their applications. In addition to the hole injecting agent, hole transporting agent, and host agent in the light emitting layer in the above-described organic electroluminescence device, for example, in solar cells. It can also be suitably used for charge transport materials in organic semiconductors and electrophotographic devices.
In particular, the triarylamines according to the present invention having an ionization potential in the range of 5.1 to 5.8 eV can be suitably used as a hole injection and / or transport agent in an organic electroluminescence device.
 以下に実施例を挙げて本発明を詳細に説明するが、本発明はそれら実施例によって何ら限定されるものではない。
実施例1
 下記スキーム4に示すようにして、トリス(4’−ヒドロキシビフェニリル)アミン(前記式(15)の化合物)を得た。
Figure JPOXMLDOC01-appb-I000069
 即ち、トリス(4−ヨードフェニル)アミン(a)2.0g、4−ヒドロキシフェニルボロン酸(b)1.5g、酢酸パラジウム(II)0.007g、トリフェニルホスフィン0.017g、炭酸ナトリウム1.5g及びエタノール/水(容量比2/1)混合溶媒21mLを100mL容量三口フラスコに仕込み、攪拌しながら、78℃に昇温し、この温度で9時間攪拌下に反応させた。反応終了後、得られたれ反応混合物を水で洗浄した後、シリカゲルクロマトグラフィーにて精製した。得られた精製物をエタノール/水混合溶媒から再結晶して、目的とするトリス(4’−ヒドロキシビフェニリル)アミン(前記式(15)の化合物)0.93gを得た。
元素分析値(重量%):
       C     H     N     O
 計算値 82.90  5.22  2.69  9.20
 測定値 82.77  5.50  2.42  9.21
赤外線吸収スペクトル(KBr法):
 トリス(4’−ヒドロキシビフェニリル)アミンのFT−IRスペクトルを図2に示す。
質量分析による分子量((M+1)/Z):522
実施例2
 トリス(4−ヨードフェニル)アミン2.0g、3−ヒドロキシフェニルボロン酸1.5g、酢酸パラジウム(II)0.007g、トリフェニルホスフィン0.017g、炭酸ナトリウム1.5g及びエタノール/水(容量比2/1)混合溶媒21mLを100mL容量三口フラスコに仕込み、攪拌しながら、78℃に昇温し、この温度で6時間攪拌下に反応させた。反応終了後、得られたれ反応混合物を水で洗浄した後、シリカゲルクロマトグラフィーにて精製した。得られた精製物をエタノールから再結晶して、目的とするトリス(3’−ヒドロキシビフェニリル)アミン(前記式(16)の化合物)1.4gを得た。
元素分析値(重量%):
       C     H     N     O
 計算値 82.90  5.22  2.69  9.20
 測定値 82.88  5.33  2.41  9.38
赤外線吸収スペクトル(KBr法):
 トリス(3’−ヒドロキシビフェニリル)アミンのFT−IRスペクトルを図3に示す。
質量分析による分子量((M+1)/Z):522
実施例3
 下記スキーム5に示すようにして、トリス(4’−ヒドロキシ−3’,5’−ジメチルビフェニリル)アミン(前記式(17)の化合物)を得た。
Figure JPOXMLDOC01-appb-I000070
 即ち、トリス(4−ヨードフェニル)アミン(a)2.0g、2,6−ジメチル−4(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)フェノール(b1)2.6g、酢酸パラジウム(II)0.007g、トリフェニルホスフィン0.017g、炭酸ナトリウム1.5g及びエタノール/水(容量比2/1)混合溶媒21mLを100mL容量三口フラスコに仕込み、攪拌しながら、78℃に昇温し、この温度で5時間攪拌下に反応させた。反応終了後、得られたれ反応混合物を水で洗浄した後、シリカゲルクロマトグラフィーにて精製した。得られた精製物をエタノール/水混合溶媒から再結晶して、目的とするトリス(4’−ヒドロキシ−3’,5’−ジメチルビフェニリル)アミン(前記式(17)の化合物)1.1gを得た。
元素分析値(重量%):
       C     H     N     O
 計算値 83.28  6.49  2.31  7.92
 測定値 82.66  6.77  2.15  8.42
赤外線吸収スペクトル(KBr法):
 トリス(4’−ヒドロキシ−3’,5’−ジメチルビフェニリル)アミンのFT−IRスペクトルを図4に示す。
質量分析による分子量((M+1)/Z):606
示差走査熱量分析測定(DSC):
 DSCチャートを図5に示すように、トリス(4’−ヒドロキシ−3’,5’−ジメチルビフェニリル)アミンの融点は257.2℃と284.1℃であり、ガラス転移点は112.3℃であった。
熱重量測定/示差熱測定(TG/DTA):
 トリス(4’−ヒドロキシ−3’,5’−ジメチルビフェニリル)アミンのTG/DTAチャートを図6に示すように、その分解温度は476.6℃であった。
実施例4
 下記スキーム6に示すように、トリス(4’−ヒドロキシメチルビフェニリル)アミン(前記式(18)の化合物)を得た。
Figure JPOXMLDOC01-appb-I000071
 即ち、トリス(4−ヨードフェニル)アミン(a)4.5g、4−(ヒドロキシメチル)フェニルボロン酸(b2)3.7g、酢酸パラジウム(II)0.016g、トリフェニルホスフィン0.038g、炭酸ナトリウム3.5g及びエタノール/水(容量比2/1)混合溶媒49mLを100mL容量三口フラスコに仕込み、攪拌しながら、78℃に昇温し、この温度で4時間攪拌下に反応させた。反応終了後、得られたれ反応混合物を水で洗浄した後、シリカゲルクロマトグラフィーにて精製した。得られた精製物をエタノール/ヘキサン混合溶媒から再結晶して、目的とするトリス(4’−ヒドロキシメチルビフェニリル)アミン(前記式(18)の化合物)3.5gを得た。
元素分析値(重量%):
       C     H     N     O
 計算値 83.10  5.90  2.48  8.51
 測定値 83.00  5.97  2.23  8.80
赤外線吸収スペクトル(KBr法):
 トリス(4’−ヒドロキシメチルビフェニリル)アミンのFT−IRスペクトルを図7に示す。
質量分析による分子量((M+1)/Z):564
示差走査熱量分析測定(DSC):
 トリス(4’−ヒドロキシメチルビフェニリル)アミンのDSCチャートを図8に示すように、融点とガラス転移点はいずれも観測されなかった。
熱重量測定/示差熱測定(TG/DTA):
 トリス(4’−ヒドロキシメチルビフェニリル)アミンのTG/DTAチャートを図9に示すように、その分解温度は445.7℃であった。
イオン化ポテンシャル:
 トリス(4’−ヒドロキシメチルビフェニリル)アミンの薄膜をスピンコート法によって製膜した。大気中光電子分光装置(理研計器(株)製AC−1)にて測定したこの薄膜のイオオン化ポテンシャルは5.53eVであった。従って、トリス(4’−ヒドロキシメチルビフェニリル)アミンは、有機エレクトロルミネッセンス素子における正孔注入及び/又は輸送剤として好適に用いることができる。
有機溶媒への溶解度試験:
 トリス(4’−ヒドロキシメチルビフェニリル)アミン5mgをトルエン、1−ブタノール及びベンジルアルコールにそれぞれ2重量%となるように加え、100℃に加熱して、溶解するかどうかを調べた。併せて、分子中にヒドロキシル基をもたないトリアリールアミン類の代表例としての4,4’,4”−トリス(N−フェニル−N−(m−トリル)アミノ)トリフェニルアミン(m−MTDATA)5mgをトルエン、1−ブタノール及びベンジルアルコールにそれぞれ2重量%となるように加え、100℃に加熱して、溶解するかどうかを調べた。結果を第1表に示す。
実施例5
 トリス(4−ヨードフェニル)アミン3.0g、3−(ヒドロキシメチル)フェニルボロン酸2.4g、酢酸パラジウム(II)0.011g、トリフェニルホスフィン0.025g、炭酸ナトリウム2.3g及びエタノール/水(容量比2/1)混合溶媒32mLを100mL容量三口フラスコに仕込み、攪拌しながら、78℃に昇温し、この温度で10時間攪拌下に反応させた。反応終了後、得られたれ反応混合物を水で洗浄した後、シリカゲルクロマトグラフィーにて精製した。得られた精製物をエタノールから再結晶して、目的とするトリス(3’−ヒドロキシメチルビフェニリル)アミン(前記式(19)の化合物)1.3gを得た。
元素分析値(重量%):
       C     H     N     O
 計算値 83.10  5.90  2.48  8.51
 測定値 82.89  6.06  2.40  8.65
赤外線吸収スペクトル(KBr法):
 トリス(3’−ヒドロキシメチルビフェニリル)アミンのFT−IRスペクトルを図10に示す。
質量分析による分子量((M+1)/Z):564
示差走査熱量分析測定(DSC):
 トリス(3’−ヒドロキシメチルビフェニリル)アミンのDSCチャートを図11に示すように、その融点は201.2℃であり、ガラス転移点は78.6℃であった。
熱重量測定/示差熱測定(TG/DTA):
 トリス(3’−ヒドロキシメチルビフェニリル)アミンのTG/DTAチャートを図12に示すように、その分解温度は467.8℃であった。
イオン化ポテンシャル:
 実施例4と同様にして測定したトリス(3’−ヒドロキシメチルビフェニリル)アミンの薄膜のイオン化ポテンシャルは5.60eVであった。従って、トリス(3’−ヒドロキシメチルビフェニリル)アミンは、有機エレクトロルミネッセンス素子における正孔注入及び/又は輸送剤として好適に用いることができる。
有機溶媒への溶解度測定:
 前述したように、前記トリス(4’−ヒドロキシメチルビフェニリル)アミン(前記式(18)の化合物)と同様にして、上記トリス(3’−ヒドロキシメチルビフェニリル)アミンについても、有機溶媒への溶解度試験を行なった。結果を第1表に示す。
実施例6
 下記スキーム7に示すようにして、トリス(4”−ヒドロキシメチルターフェニリル)アミン(前記式(32)の化合物)を得た。
Figure JPOXMLDOC01-appb-I000072
 即ち、トリス(4−ヨードフェニル)アミン(a)1.0g、4−ブロモフェニルボロン酸(b3)1.0g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.093g、2規定炭酸カリウム水溶液18.3g及びテトラヒドロフラン11mLを100mL容量三口フラスコに仕込み、攪拌しながら、63℃に昇温し、この温度で5時間攪拌下に反応させた。反応終了後、得られた反応混合物を水で洗浄した後、シリカゲルクロマトグラフィーにて精製した。得られた精製物をトルエン/ヘキサン混合溶媒から再結晶して、トリス(4’−ブロモビフェニリル)アミン(c)0.33gを得た。
 次いで、上記トリス(4’−ブロモビフェニリル)アミン(c)0.33g、4−(ヒドロキシメチル)フェニルボロン酸(b2)0.23g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.027g、2規定炭酸カリウム水溶液5.2g及びテトラヒドロフラン4mLを100mL容量三口フラスコに仕込み、攪拌しながら、63℃に昇温し、この温度で22時間攪拌下に反応させた。反応終了後、得られたれ反応混合物を水で洗浄した後、シリカゲルクロマトグラフィーにて精製した。得られた精製物をテトラヒドロフラン/ヘキサン混合溶媒から再結晶して、目的とするトリス(4”−ヒドロキシメチルターフェニリル)アミン(前記式(32)の化合物)0.1gを得た。
元素分析値(重量%):
       C     H     N     O
 計算値 86.44  5.73  1.77  6.06
 測定値 86.20  5.78  1.56  6.46
赤外線吸収スペクトル(KBr法):
 トリス(4”−ヒドロキシメチルターフェニリル)アミンのFT−IRスペクトルを図13に示す。
質量分析による分子量((M+1)/Z):793
示差走査熱量分析測定(DSC):
 トリス(4”−ヒドロキシメチルターフェニリル)アミンのDSCチャートを図14に示すように、その融点は245.3℃、251.2℃及び255.9℃であり、ガラス転移点は168.7℃であった。
熱重量測定/示差熱測定(TG/DTA):
 トリス(4”−ヒドロキシメチルターフェニリル)アミンのTG/DTAチャートを図15に示すように、その分解温度は478.7℃であった。
イオン化ポテンシャル:
 実施例4と同様にして測定したトリス(4”−ヒドロキシメチルターフェニリル)アミンの薄膜のイオン化ポテンシャルは5.60eVであった。従って、トリス(4”−ヒドロキシメチルターフェニリル)アミン前記式(32)の化合物は、有機エレクトロルミネッセンス素子における正孔注入及び/又は輸送剤として好適に用いることができる。
実施例7
 下記スキーム8に示すようにして、ビス(4’−ヒドロキシメチルビフェニリル)−4−ヒドロキシフェニルアミン(前記式(8)の化合物)を得た。スキーム8において、tbdmsはスキーム8におけると同じく、t−ブチルジメチルシリル基を示す。
Figure JPOXMLDOC01-appb-I000073
 即ち、t−ブチルジメチルシリル基にて2つのヒドロキシル基を保護したビス(4’−ヒドロキシメチルビフェニリル)アミン(d)2.7gとt−ブチルジメチルシリル基にてそのヒドロキシル基を保護した4−ブロモヒドロキシメチルベンゼン(e)2.0gとナトリウムt−ブトキシド1.3gをキシレン44mLと共に200mL容量の三口フラスコに投入し、攪拌しながら、120℃に昇温した。次いで、酢酸パラジウム0.01gとt−ブチルホスフィン0.02gを投入し、120℃で5時間攪拌下に反応させた。反応終了後、反応生成物をトルエンにて抽出し、抽出物をシリカゲルクロマトグラフィーにて精製して、3つのヒドロキシル基をt−ブチルジメチルシリル基にて保護したビス(4’−ヒドロキシメチルビフェニリル)−4−ヒドロキシフェニルアミン(f)2.0gを無色の液状物として得た。これにテトラヒドロフラン中でフッ化テトラ−n−ブチルアンモニウムを作用させて、目的とするビス(4’−ヒドロキシメチルビフェニリル)−4−ヒドロキシフェニルアミン(前記式(8)の化合物)1.0gを得た。
元素分析値(重量%):
       C     H     N     O
 計算値 81.29  5.99  2.87  9.84
 測定値 81.05  6.02  2.70 10.23
赤外線吸収スペクトル(KBr法):
 ビス(4’−ヒドロキシメチルビフェニリル)−4−ヒドロキシフェニルアミンのFT−IRスペクトルを図16に示す。
質量分析による分子量((M+1)/Z):489
示差走査熱量分析測定(DSC):
 ビス(4’−ヒドロキシメチルビフェニリル)−4−ヒドロキシフェニルアミンのDSCチャートを図17に示すように、融点は観測されず、ガラス転移点は79.9℃であった。
熱重量測定/示差熱測定(TG/DTA):
 ビス(4’−ヒドロキシメチルビフェニリル)−4−ヒドロキシフェニルアミンのTG/DTAチャートを図18に示すように、その分解温度は418.0℃であった。
イオン化ポテンシャル:
 実施例4と同様にして測定したビス(4’−ヒドロキシメチルビフェニリル)−4−ヒドロキシフェニルアミンの薄膜のイオン化ポテンシャルは5.64eVであった。従って、ビス(4’−ヒドロキシメチルビフェニリル)−4−ヒドロキシフェニルアミンは、有機エレクトロルミネッセンス素子における正孔注入及び/又は輸送剤として好適に用いることができる。
有機溶媒への溶解度測定:
 前述したように、前記トリス(4’−ヒドロキシメチルビフェニリル)アミン(前記式(18)の化合物)と同様にして、ビス(4’−ヒドロキシメチルビフェニリル)−4−ヒドロキシフェニルアミンについても、有機溶媒への溶解度試験を行なった。結果を第1表に示す。
実施例8
 下記スキーム9に示すようにして、トリス(4’−(1,2−ジヒドロキシエチル)ビフェニリル)アミン(前記式(50)の化合物)を得た。スキーム9において、tbdmsはスキーム8におけると同じく、t−ブチルジメチルシリル基を示す。
Figure JPOXMLDOC01-appb-I000074
 即ち、トリス(4−ヨードフェニル)アミン(a)0.3g、t−ブチルジメチルシリル基にて2つのヒドロキシル基を保護した4−ボロン酸フェニルエチレングリコール(g)0.65g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.028g、2規定炭酸カリウム水溶液5.7g及びテトラヒドロフラン3mLを100mL容量三口フラスコに仕込み、攪拌しながら、63℃に昇温し、この温度で15時間攪拌下に反応させた。反応終了後、得られた反応混合物を水で洗浄した後、シリカゲルクロマトグラフィーにて精製して、6つのヒドロキシル基をt−ブチルジメチルシリル基にて保護したトリス(4’−(1,2−ジヒドロキシエチル)ビフェニリル)アミン(h)0.39gを無色の液状物として得た。テトラヒドロフラン中、上記化合物(h)にフッ化テトラ−n−ブチルアンモニウムを作用させて、目的とするトリス(4’−(1,2−ジヒドロキシエチル)ビフェニリル)アミン(式(50)の化合物)0.07gを得た。
元素分析値(重量%):
       C     H     N      O
 計算値 77.16  6.01  2.14  14.68
 測定値 76.98  6.20  2.06  14.76
赤外線吸収スペクトル(KBr法):
 トリス(4’−(1,2−ジヒドロキシエチル)ビフェニリル)アミンのFT−IRスペクトル図19に示す。
質量分析による分子量((M+1)/Z):654
示差走査熱量分析測定(DSC):
 トリス(4’−(1,2−ジヒドロキシエチル)ビフェニリル)アミンのDSCチャートを図20に示すように、融点とガラス転移点はいずれも観測されなかった。
イオン化ポテンシャル:
 実施例4と同様にして測定したトリス(4’−(1,2−ジヒドロキシエチル)ビフェニリル)アミンの薄膜のイオン化ポテンシャルは5.76eVであった。従って、トリス(4’−(1,2−ジヒドロキシエチル)ビフェニリル)アミンは、有機エレクトロルミネッセンス素子における正孔注入及び/又は輸送剤として好適に用いることができる。
有機溶媒への溶解度測定:
 前述したように、前記トリス(4’−ヒドロキシメチルビフェニリル)アミン(前記式(18)の化合物)と同様にして、トリス(4’−(1,2−ジヒドロキシエチル)ビフェニリル)アミンについても、有機溶媒への溶解度試験を行なった。結果を第1表に示す。
Figure JPOXMLDOC01-appb-T000075
実施例9
 トリス(4’−ヒドロキシメチルビフェニリル)アミン(前記式(18)の化合物)を1.5重量%濃度にてテトラヒドロフランに溶解させた。ITO透明電極(陽極)上にこのトリス(4’−ヒドロキシメチルビフェニリル)アミン(式(18)の化合物)のテトラヒドロフラン溶液をスピンコーティング法にて塗布し、120℃に加熱し、乾燥して、厚み40nmの正孔注入層を形成した。次いで、この正孔注入層の上にトリス(p−ターフェニル−4−イル)アミンを真空蒸着して、厚み60nmの正孔輸送層を形成した。更に、この正孔輸送層の上にトリス(8−キノリノール)アルミニウム(Alq)からなる厚み75nmの発光層を形成し、更に、その上に厚み0.75nmのフッ化リチウム層と厚み100nmのAl層を順次に蒸着積層して、陰極を形成し、かくして、有機エレクトロルミネッセンス素子を得た。
 このようにして得られた有機エレクトロルミネッセンス素子について、電流密度25mA/cmのときの輝度電流効率(cd/A)と発光電力効率(lm/W)と最高輝度(cd/m)を調べた。結果を第2表に示す。
比較例1
 上記トリス(4’−ヒドロキシメチルビフェニリル)アミン(式(18)の化合物)に代えて、4,4’,4”−トリス(N−(2−ナフチル)−N−フェニルアミノ)トリフェニルアミン(2−TNANA)を用い、これをITO透明電極(陽極)上に真空蒸着して、厚み60nmの正孔注入層を形成した。尚、化合物(4)と同様にして測定した2−TNANAの薄膜のイオン化ポテンシャルは5.14eVであった。次いで、この正孔注入層の上にトリス(p−ターフェニル−4−イル)アミンを真空蒸着して、厚み40nmの正孔輸送層を形成した。この後、実施例8と同様にして有機エレクトロルミネッセンス素子を得た。
 このようにして得られた有機エレクトロルミネッセンス素子について、電流密度25mA/cmのときの輝度電流効率(cd/A)と発光電力効率(lm/W)と最高輝度(cd/m)を調べた。結果を第2表に示す。
Figure JPOXMLDOC01-appb-T000076
 本発明による有機エレクトロルミネッセンス素子は、輝度電流効率、発光電力効率、輝度半減寿命及び最高輝度のすべてにおいて、比較例による有機エレクトロルミネッセンス素子に比べてすぐれている。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
Example 1
As shown in the following scheme 4, tris (4′-hydroxybiphenylyl) amine (the compound of the formula (15)) was obtained.
Figure JPOXMLDOC01-appb-I000069
That is, 2.0 g of tris (4-iodophenyl) amine (a), 1.5 g of 4-hydroxyphenylboronic acid (b), 0.007 g of palladium (II) acetate, 0.017 g of triphenylphosphine, sodium carbonate 1. 5 g and 21 mL of a mixed solvent of ethanol / water (volume ratio 2/1) were charged into a 100 mL three-necked flask, heated to 78 ° C. with stirring, and reacted at this temperature with stirring for 9 hours. After completion of the reaction, the resulting reaction mixture was washed with water and purified by silica gel chromatography. The obtained purified product was recrystallized from a mixed solvent of ethanol / water to obtain 0.93 g of the target tris (4′-hydroxybiphenylyl) amine (the compound of the formula (15)).
Elemental analysis value (% by weight):
C H N O
Calculated value 82.90 5.22 2.69 9.20
Measurement 82.77 5.50 2.42 9.21
Infrared absorption spectrum (KBr method):
The FT-IR spectrum of tris (4′-hydroxybiphenylyl) amine is shown in FIG.
Molecular weight by mass spectrometry ((M + 1) / Z): 522
Example 2
2.0 g tris (4-iodophenyl) amine, 1.5 g 3-hydroxyphenylboronic acid, 0.007 g palladium acetate (II), 0.017 g triphenylphosphine, 1.5 g sodium carbonate and ethanol / water (volume ratio) 2/1) 21 mL of a mixed solvent was charged into a 100 mL three-necked flask, heated to 78 ° C. while stirring, and reacted at this temperature with stirring for 6 hours. After completion of the reaction, the resulting reaction mixture was washed with water and purified by silica gel chromatography. The obtained purified product was recrystallized from ethanol to obtain 1.4 g of the target tris (3′-hydroxybiphenylyl) amine (the compound of the formula (16)).
Elemental analysis value (% by weight):
C H N O
Calculated value 82.90 5.22 2.69 9.20
Measurement 82.88 5.33 2.41 9.38
Infrared absorption spectrum (KBr method):
The FT-IR spectrum of tris (3′-hydroxybiphenylyl) amine is shown in FIG.
Molecular weight by mass spectrometry ((M + 1) / Z): 522
Example 3
As shown in the following scheme 5, tris (4′-hydroxy-3 ′, 5′-dimethylbiphenylyl) amine (the compound of the formula (17)) was obtained.
Figure JPOXMLDOC01-appb-I000070
That is, 2.0 g of tris (4-iodophenyl) amine (a), 2,6-dimethyl-4 (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenol ( b1) 2.6 g, palladium acetate (II) 0.007 g, triphenylphosphine 0.017 g, sodium carbonate 1.5 g and ethanol / water (volume ratio 2/1) mixed solvent 21 mL were charged into a 100 mL capacity three-necked flask and stirred. The temperature was raised to 78 ° C., and the reaction was carried out at this temperature with stirring for 5 hours. After completion of the reaction, the resulting reaction mixture was washed with water and purified by silica gel chromatography. The purified product obtained was recrystallized from an ethanol / water mixed solvent to obtain 1.1 g of the desired tris (4′-hydroxy-3 ′, 5′-dimethylbiphenylyl) amine (the compound of the formula (17)). Got.
Elemental analysis value (% by weight):
C H N O
Calculated value 83.28 6.49 2.31 7.92
Measurement 82.66 6.77 2.15 8.42
Infrared absorption spectrum (KBr method):
FIG. 4 shows the FT-IR spectrum of tris (4′-hydroxy-3 ′, 5′-dimethylbiphenylyl) amine.
Molecular weight by mass spectrometry ((M + 1) / Z): 606
Differential scanning calorimetry (DSC):
As shown in the DSC chart in FIG. 5, the melting points of tris (4′-hydroxy-3 ′, 5′-dimethylbiphenylyl) amine are 257.2 ° C. and 284.1 ° C., and the glass transition point is 112.3. ° C.
Thermogravimetry / Differential calorimetry (TG / DTA):
As shown in FIG. 6, the decomposition temperature of tris (4′-hydroxy-3 ′, 5′-dimethylbiphenylyl) amine was 476.6 ° C.
Example 4
As shown in the following scheme 6, tris (4′-hydroxymethylbiphenylyl) amine (the compound of the formula (18)) was obtained.
Figure JPOXMLDOC01-appb-I000071
That is, 4.5 g of tris (4-iodophenyl) amine (a), 3.7 g of 4- (hydroxymethyl) phenylboronic acid (b2), 0.016 g of palladium (II) acetate, 0.038 g of triphenylphosphine, carbonic acid 3.5 g of sodium and 49 mL of ethanol / water (volume ratio 2/1) mixed solvent were charged into a 100 mL three-necked flask, heated to 78 ° C. while stirring, and reacted at this temperature with stirring for 4 hours. After completion of the reaction, the resulting reaction mixture was washed with water and purified by silica gel chromatography. The obtained purified product was recrystallized from a mixed solvent of ethanol / hexane to obtain 3.5 g of the target tris (4′-hydroxymethylbiphenylyl) amine (the compound of the formula (18)).
Elemental analysis value (% by weight):
C H N O
Calculated value 83.10 5.90 2.48 8.51
Measured value 83.00 5.97 2.23 8.80
Infrared absorption spectrum (KBr method):
FIG. 7 shows an FT-IR spectrum of tris (4′-hydroxymethylbiphenylyl) amine.
Molecular weight by mass spectrometry ((M + 1) / Z): 564
Differential scanning calorimetry (DSC):
As shown in FIG. 8 of the DSC chart of tris (4′-hydroxymethylbiphenylyl) amine, neither melting point nor glass transition point was observed.
Thermogravimetry / Differential calorimetry (TG / DTA):
As shown in FIG. 9 of the TG / DTA chart of tris (4′-hydroxymethylbiphenylyl) amine, the decomposition temperature was 445.7 ° C.
Ionization potential:
A thin film of tris (4′-hydroxymethylbiphenylyl) amine was formed by spin coating. The ionization potential of this thin film measured with an atmospheric photoelectron spectrometer (AC-1 manufactured by Riken Keiki Co., Ltd.) was 5.53 eV. Therefore, tris (4′-hydroxymethylbiphenylyl) amine can be suitably used as a hole injection and / or transport agent in an organic electroluminescence device.
Solubility test in organic solvents:
Tris (4′-hydroxymethylbiphenylyl) amine (5 mg) was added to toluene, 1-butanol and benzyl alcohol so that each amount would be 2% by weight, and the mixture was heated to 100 ° C. to determine whether it was dissolved. In addition, 4,4 ′, 4 ″ -tris (N-phenyl-N- (m-tolyl) amino) triphenylamine (m— is a typical example of triarylamines having no hydroxyl group in the molecule. MTDATA) (5 mg) was added to toluene, 1-butanol and benzyl alcohol so that each amount would be 2% by weight, and it was examined whether or not it was dissolved by heating to 100 ° C. The results are shown in Table 1.
Example 5
3.0 g of tris (4-iodophenyl) amine, 2.4 g of 3- (hydroxymethyl) phenylboronic acid, 0.011 g of palladium (II) acetate, 0.025 g of triphenylphosphine, 2.3 g of sodium carbonate and ethanol / water (Volume ratio 2/1) 32 mL of a mixed solvent was charged into a 100 mL three-necked flask, heated to 78 ° C. with stirring, and reacted at this temperature with stirring for 10 hours. After completion of the reaction, the resulting reaction mixture was washed with water and purified by silica gel chromatography. The obtained purified product was recrystallized from ethanol to obtain 1.3 g of the target tris (3′-hydroxymethylbiphenylyl) amine (the compound of the formula (19)).
Elemental analysis value (% by weight):
C H N O
Calculated value 83.10 5.90 2.48 8.51
Measurement 82.89 6.06 2.40 8.65
Infrared absorption spectrum (KBr method):
FIG. 10 shows the FT-IR spectrum of tris (3′-hydroxymethylbiphenylyl) amine.
Molecular weight by mass spectrometry ((M + 1) / Z): 564
Differential scanning calorimetry (DSC):
As shown in FIG. 11, the DSC chart of tris (3′-hydroxymethylbiphenylyl) amine had a melting point of 201.2 ° C. and a glass transition point of 78.6 ° C.
Thermogravimetry / Differential calorimetry (TG / DTA):
As shown in FIG. 12, the decomposition temperature of tris (3′-hydroxymethylbiphenylyl) amine was 467.8 ° C.
Ionization potential:
The ionization potential of the tris (3′-hydroxymethylbiphenylyl) amine thin film measured in the same manner as in Example 4 was 5.60 eV. Therefore, tris (3′-hydroxymethylbiphenylyl) amine can be suitably used as a hole injection and / or transport agent in an organic electroluminescence device.
Solubility measurement in organic solvents:
As described above, in the same manner as the tris (4′-hydroxymethylbiphenylyl) amine (the compound of the formula (18)), the tris (3′-hydroxymethylbiphenylyl) amine can be added to an organic solvent. A solubility test was performed. The results are shown in Table 1.
Example 6
As shown in the following scheme 7, tris (4 ″ -hydroxymethylterphenylyl) amine (the compound of the above formula (32)) was obtained.
Figure JPOXMLDOC01-appb-I000072
That is, 1.0 g of tris (4-iodophenyl) amine (a), 1.0 g of 4-bromophenylboronic acid (b3), 0.093 g of tetrakis (triphenylphosphine) palladium (0), 2N aqueous potassium carbonate solution 18 .3 g and 11 mL of tetrahydrofuran were charged into a 100 mL three-necked flask, heated to 63 ° C. with stirring, and reacted at this temperature with stirring for 5 hours. After completion of the reaction, the resulting reaction mixture was washed with water and purified by silica gel chromatography. The obtained purified product was recrystallized from a toluene / hexane mixed solvent to obtain 0.33 g of tris (4′-bromobiphenylyl) amine (c).
Next, 0.33 g of the above tris (4′-bromobiphenylyl) amine (c), 0.23 g of 4- (hydroxymethyl) phenylboronic acid (b2), 0.027 g of tetrakis (triphenylphosphine) palladium (0), A 2N aqueous potassium carbonate solution (5.2 g) and tetrahydrofuran (4 mL) were charged into a 100 mL three-necked flask, heated to 63 ° C. with stirring, and reacted at this temperature with stirring for 22 hours. After completion of the reaction, the resulting reaction mixture was washed with water and purified by silica gel chromatography. The obtained purified product was recrystallized from a tetrahydrofuran / hexane mixed solvent to obtain 0.1 g of the target tris (4 ″ -hydroxymethylterphenylyl) amine (the compound of the above formula (32)).
Elemental analysis value (% by weight):
C H N O
Calculated value 86.44 5.73 1.77 6.06
Measurement 86.20 5.78 1.56 6.46
Infrared absorption spectrum (KBr method):
FIG. 13 shows the FT-IR spectrum of tris (4 ″ -hydroxymethylterphenylyl) amine.
Molecular weight by mass spectrometry ((M + 1) / Z): 793
Differential scanning calorimetry (DSC):
As shown in FIG. 14, a DSC chart of tris (4 ″ -hydroxymethylterphenylyl) amine has melting points of 245.3 ° C., 251.2 ° C. and 255.9 ° C., and a glass transition point of 168.7. ° C.
Thermogravimetry / Differential calorimetry (TG / DTA):
As shown in FIG. 15 of the TG / DTA chart of tris (4 ″ -hydroxymethylterphenylyl) amine, the decomposition temperature was 478.7 ° C.
Ionization potential:
The ionization potential of the tris (4 ″ -hydroxymethylterphenylyl) amine thin film measured in the same manner as in Example 4 was 5.60 eV. Therefore, tris (4 ″ -hydroxymethylterphenylyl) amine The compound (32) can be suitably used as a hole injection and / or transport agent in an organic electroluminescence device.
Example 7
As shown in the following scheme 8, bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine (the compound of the formula (8)) was obtained. In Scheme 8, tbdms represents a t-butyldimethylsilyl group as in Scheme 8.
Figure JPOXMLDOC01-appb-I000073
That is, 2.7 g of bis (4′-hydroxymethylbiphenylyl) amine (d) in which two hydroxyl groups were protected with a t-butyldimethylsilyl group and the hydroxyl group was protected with a t-butyldimethylsilyl group 4 -2.0 g of bromohydroxymethylbenzene (e) and 1.3 g of sodium t-butoxide were charged into a 200 mL three-necked flask together with 44 mL of xylene, and the temperature was raised to 120 ° C while stirring. Next, 0.01 g of palladium acetate and 0.02 g of t-butylphosphine were added and reacted at 120 ° C. with stirring for 5 hours. After completion of the reaction, the reaction product was extracted with toluene, the extract was purified by silica gel chromatography, and bis (4′-hydroxymethylbiphenylyl) in which three hydroxyl groups were protected with t-butyldimethylsilyl group. ) -4-hydroxyphenylamine (f) (2.0 g) was obtained as a colorless liquid. This was reacted with tetra-n-butylammonium fluoride in tetrahydrofuran to give 1.0 g of the desired bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine (compound of formula (8)). Obtained.
Elemental analysis value (% by weight):
C H N O
Calculated value 81.29 5.99 2.87 9.84
Measured value 81.05 6.02 2.70 10.23
Infrared absorption spectrum (KBr method):
FIG. 16 shows an FT-IR spectrum of bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine.
Molecular weight by mass spectrometry ((M + 1) / Z): 489
Differential scanning calorimetry (DSC):
As shown in FIG. 17 of the DSC chart of bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine, the melting point was not observed and the glass transition point was 79.9 ° C.
Thermogravimetry / Differential calorimetry (TG / DTA):
As shown in the TG / DTA chart of bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine in FIG. 18, the decomposition temperature was 418.0 ° C.
Ionization potential:
The ionization potential of the thin film of bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine measured in the same manner as in Example 4 was 5.64 eV. Accordingly, bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine can be suitably used as a hole injection and / or transport agent in an organic electroluminescence device.
Solubility measurement in organic solvents:
As described above, in the same manner as tris (4′-hydroxymethylbiphenylyl) amine (the compound of the formula (18)), bis (4′-hydroxymethylbiphenylyl) -4-hydroxyphenylamine is A solubility test in an organic solvent was conducted. The results are shown in Table 1.
Example 8
As shown in the following scheme 9, tris (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine (the compound of the formula (50)) was obtained. In Scheme 9, tbdms represents a t-butyldimethylsilyl group as in Scheme 8.
Figure JPOXMLDOC01-appb-I000074
That is, 0.3 g of tris (4-iodophenyl) amine (a), 0.65 g of phenylethylene glycol 4-boronate (t) protected with two hydroxyl groups with a t-butyldimethylsilyl group, tetrakis (triphenyl) Phosphine) Palladium (0) 0.028 g, 2 N aqueous potassium carbonate solution 5.7 g and tetrahydrofuran 3 mL were charged into a 100 mL three-necked flask, heated to 63 ° C. with stirring, and allowed to react at this temperature with stirring for 15 hours. It was. After completion of the reaction, the resulting reaction mixture was washed with water and then purified by silica gel chromatography, and tris (4 ′-(1,2-) in which six hydroxyl groups were protected with t-butyldimethylsilyl group. 0.39 g of dihydroxyethyl) biphenylyl) amine (h) was obtained as a colorless liquid. Tris (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine (compound of formula (50)) 0 is prepared by allowing tetra-n-butylammonium fluoride to act on the compound (h) in tetrahydrofuran. 0.07 g was obtained.
Elemental analysis value (% by weight):
C H N O
Calculated 77.16 6.01 2.14 14.68
Measurement 76.98 6.20 2.06 14.76
Infrared absorption spectrum (KBr method):
The FT-IR spectrum of tris (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine is shown in FIG.
Molecular weight by mass spectrometry ((M + 1) / Z): 654
Differential scanning calorimetry (DSC):
As shown in the DSC chart of tris (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine in FIG. 20, neither melting point nor glass transition point was observed.
Ionization potential:
The ionization potential of the tris (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine thin film measured in the same manner as in Example 4 was 5.76 eV. Accordingly, tris (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine can be suitably used as a hole injection and / or transport agent in an organic electroluminescence device.
Solubility measurement in organic solvents:
As described above, in the same manner as the tris (4′-hydroxymethylbiphenylyl) amine (the compound of the formula (18)), the tris (4 ′-(1,2-dihydroxyethyl) biphenylyl) amine is A solubility test in an organic solvent was conducted. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000075
Example 9
Tris (4′-hydroxymethylbiphenylyl) amine (the compound of the above formula (18)) was dissolved in tetrahydrofuran at a concentration of 1.5% by weight. A solution of tris (4′-hydroxymethylbiphenylyl) amine (compound of formula (18)) in tetrahydrofuran was applied onto the ITO transparent electrode (anode) by spin coating, heated to 120 ° C., dried, A hole injection layer having a thickness of 40 nm was formed. Next, tris (p-terphenyl-4-yl) amine was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 60 nm. Further, a 75 nm thick light emitting layer made of tris (8-quinolinol) aluminum (Alq 3 ) is formed on this hole transport layer, and a 0.75 nm thick lithium fluoride layer and a 100 nm thick light emitting layer are further formed thereon. Al layers were sequentially deposited and laminated to form a cathode, thus obtaining an organic electroluminescence device.
The organic electroluminescence device thus obtained was examined for luminance current efficiency (cd / A), luminous power efficiency (lm / W), and maximum luminance (cd / m 2 ) at a current density of 25 mA / cm 2. It was. The results are shown in Table 2.
Comparative Example 1
Instead of the tris (4′-hydroxymethylbiphenylyl) amine (compound of formula (18)), 4,4 ′, 4 ″ -tris (N- (2-naphthyl) -N-phenylamino) triphenylamine (2-TNANA) was vacuum-deposited on the ITO transparent electrode (anode) to form a 60 nm thick hole injection layer, which was measured in the same manner as in the compound (4). The ionization potential of the thin film was 5.14 eV Next, tris (p-terphenyl-4-yl) amine was vacuum deposited on the hole injection layer to form a hole transport layer having a thickness of 40 nm. Thereafter, an organic electroluminescence device was obtained in the same manner as in Example 8.
The organic electroluminescence device thus obtained was examined for luminance current efficiency (cd / A), luminous power efficiency (lm / W), and maximum luminance (cd / m 2 ) at a current density of 25 mA / cm 2. It was. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000076
The organic electroluminescence device according to the present invention is superior to the organic electroluminescence device according to the comparative example in all of luminance current efficiency, light emission power efficiency, luminance half life and maximum luminance.
 本発明によるトリアリールアミン類は、分子内に少なくとも1つのヒドロキシル基又はヒドロキシ炭化水素基を有し、好ましい態様によれば、分子内に複数のヒドロキシル基及び/又はヒドロキシ炭化水素を有するので、例えば、アルコール、好ましくは、1−ブタノールやベンジルアルコールのような極性溶媒に容易に溶解するが、トルエンのような非極性溶媒には溶解せず、一方において、本発明によるトリアリールアミン類は、有機電子材料として、例えば、正孔注入性及び/又は輸送性にすぐれているので、例えば、有機エレクトロルミネッセンス素子の製造において、正孔注入剤及び/又は輸送剤として好適に用いることができる。
 特に、有機エレクトロルミネッセンス素子の製作において、本発明によるトリアリールアミン類を極性溶媒に溶解させてなる溶液を適宜の基材上に塗布し、乾燥することによって、即ち、塗布法によって、正孔注入層及び/又は輸送層を形成することができ、しかも、この際、基材が非極性溶媒には溶解するが、極性溶媒には溶解しない有機化合物を含む場合であっても、そのような基材上に塗布法によって、本発明によるトリアリールアミン類を含む機能層を形成して、性能にすぐれる有機エレクトロルミネッセンス素子を得ることができる。
 更に、例えば、上述したようにして、有機エレクトロルミネッセンス素子の製作において、本発明によるトリアリールアミン類を含む正孔輸送層を形成した後、この正孔輸送層上に非極性有機溶媒に溶解させた発光材料の溶液を塗布しても、正孔輸送層は非極性有機溶媒に溶解しないので、塗布法による発光層の形成を妨げることがない。
The triarylamines according to the present invention have at least one hydroxyl group or hydroxyhydrocarbon group in the molecule and, according to a preferred embodiment, have a plurality of hydroxyl groups and / or hydroxyhydrocarbons in the molecule. Easily dissolved in polar solvents such as alcohols, preferably 1-butanol and benzyl alcohol, but not in nonpolar solvents such as toluene, while triarylamines according to the present invention are organic As an electronic material, for example, since it has excellent hole injecting property and / or transporting property, it can be suitably used as a hole injecting agent and / or a transporting agent, for example, in the production of an organic electroluminescence device.
In particular, in the production of an organic electroluminescence device, a hole injection is performed by applying a solution obtained by dissolving the triarylamine according to the present invention in a polar solvent on an appropriate substrate and drying it, that is, by a coating method. Layer and / or transport layer, and in such a case, even if the substrate contains an organic compound that dissolves in the nonpolar solvent but does not dissolve in the polar solvent, such a group can be formed. By forming a functional layer containing the triarylamines according to the present invention on the material by a coating method, an organic electroluminescence device having excellent performance can be obtained.
Further, for example, as described above, in the production of the organic electroluminescence device, after forming the hole transport layer containing the triarylamines according to the present invention, the hole transport layer is dissolved in a nonpolar organic solvent. Even when the solution of the light emitting material is applied, the hole transport layer is not dissolved in the nonpolar organic solvent, and thus does not hinder the formation of the light emitting layer by the application method.
1…透明基板
2…陽極
3a…正孔注入層
3b…正孔輸送層
4…発光層
5…陰極
6…電源
DESCRIPTION OF SYMBOLS 1 ... Transparent substrate 2 ... Anode 3a ... Hole injection layer 3b ... Hole transport layer 4 ... Light emitting layer 5 ... Cathode 6 ... Power supply

Claims (14)

  1.  一般式(I)
    Figure JPOXMLDOC01-appb-I000001
    (式中、AからAはそれぞれ独立に置換基を有していてもよいフェニレン基であり、XからXはそれぞれ独立に一般式(II)
    Figure JPOXMLDOC01-appb-I000002
    (式中、RからRはそれぞれ独立に水素原子、炭素原子数1から6のアルキル基、炭素原子数5若しくは6のシクロアルキル基、ヒドロキシル基又は少なくとも1つのヒドロキシル基を有する脂肪族炭化水素基であり、m、n及びpはそれぞれ独立に0、1又は2である。)
    で表されるフェニル基を示し、XからXの少なくとも1つにおいて、RからRの少なくとも1つはヒドロキシル基又は少なくとも1つのヒドロキシル基を有する脂肪族炭化水素基である。)
    で表されるトリアリールアミン類。
    Formula (I)
    Figure JPOXMLDOC01-appb-I000001
    (In the formula, A 1 to A 3 are each independently a phenylene group which may have a substituent, and X 1 to X 3 are each independently a formula (II)
    Figure JPOXMLDOC01-appb-I000002
    Wherein R 1 to R 5 are each independently an aliphatic carbon having a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms, a hydroxyl group, or at least one hydroxyl group. A hydrogen group, and m, n and p are each independently 0, 1 or 2.)
    In at least one of X 1 to X 3 , at least one of R 1 to R 5 is a hydroxyl group or an aliphatic hydrocarbon group having at least one hydroxyl group. )
    Triarylamines represented by
  2.  一般式(I)
    Figure JPOXMLDOC01-appb-I000003
    (式中、AからAはそれぞれ独立に置換基を有していてもよいフェニレン基であり、XからXはそれぞれ独立に一般式(II)
    Figure JPOXMLDOC01-appb-I000004
    (式中、RからRはそれぞれ独立に水素原子、炭素原子数1から6のアルキル基、炭素原子数5若しくは6のシクロアルキル基、ヒドロキシル基又は少なくとも1つのヒドロキシル基を有する脂肪族炭化水素基であり、m、n及びpはそれぞれ独立に0、1又は2である。)
    で表されるフェニル基を示し、XからXのいずれにおいても、RからRの少なくとも1つはヒドロキシル基又は少なくとも1つのヒドロキシル基を有する脂肪族炭化水素基である。)
    で表されるトリアリールアミン類。
    Formula (I)
    Figure JPOXMLDOC01-appb-I000003
    (In the formula, A 1 to A 3 are each independently a phenylene group which may have a substituent, and X 1 to X 3 are each independently a formula (II)
    Figure JPOXMLDOC01-appb-I000004
    Wherein R 1 to R 5 are each independently an aliphatic carbon having a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms, a hydroxyl group, or at least one hydroxyl group. A hydrogen group, and m, n and p are each independently 0, 1 or 2.)
    In any of X 1 to X 3 , at least one of R 1 to R 5 is a hydroxyl group or an aliphatic hydrocarbon group having at least one hydroxyl group. )
    Triarylamines represented by
  3.  AからAがそれぞれ独立に置換基を有していてもよいp−フェニレン基である請求項1又は2に記載のトリアリールアミン類。 The triarylamines according to claim 1 or 2, wherein A 1 to A 3 are each independently a p-phenylene group which may have a substituent.
  4.  ビス(4’−ヒドロキシメチルビフェニリル)−4−ヒドロキシメチルフェニルアミンである請求項1のトリアリールアミン類。 The triarylamine according to claim 1, which is bis (4'-hydroxymethylbiphenylyl) -4-hydroxymethylphenylamine.
  5.  トリス(4’−ヒドロキシビフェニリル)アミンである請求項1のトリアリールアミン類。 The triarylamine according to claim 1, which is tris (4'-hydroxybiphenylyl) amine.
  6.  トリス(3’−ヒドロキシビフェニリル)アミンである請求項1のトリアリールアミン類。 The triarylamine according to claim 1, which is tris (3'-hydroxybiphenylyl) amine.
  7.  トリス(4’−ヒドロキシ−3’,5’−ジメチルビフェニリル)アミンである請求項1のトリアリールアミン類。 The triarylamine according to claim 1, which is tris (4'-hydroxy-3 ', 5'-dimethylbiphenylyl) amine.
  8.  トリス(4’−ヒドロキシメチルビフェニリル)アミンである請求項1のトリアリールアミン類。 The triarylamine according to claim 1, which is tris (4'-hydroxymethylbiphenylyl) amine.
  9.  トリス(3’−ヒドロキシメチルビフェニリル)アミンである請求項1のトリアリールアミン類。 The triarylamine according to claim 1, which is tris (3'-hydroxymethylbiphenylyl) amine.
  10. トリス(4”−ヒドロキシメチルターフェニリル)アミンである請求項1のトリアリールアミン類。 The triarylamine of claim 1, which is tris (4 "-hydroxymethylterphenylyl) amine.
  11. トリス(4’−(1,2−ジヒドロキシエチル)ビフェニリル)アミンである請求項1のトリアリールアミン類。 The triarylamine of claim 1, which is tris (4 '-(1,2-dihydroxyethyl) biphenylyl) amine.
  12. 請求項1から11のいずれかに記載のトリアリールアミン類を含む有機電子材料。 The organic electronic material containing the triarylamines in any one of Claim 1 to 11.
  13. 請求項12に記載の有機電子材料を含む少なくとも1つの機能層を有する有機エレクトロルミネッセンス素子。 The organic electroluminescent element which has at least 1 functional layer containing the organic electronic material of Claim 12.
  14. 請求項12に記載の有機電子材料を正孔輸送及び/又は注入剤として用いてなる有機エレクトロルミネッセンス素子。 The organic electroluminescent element which uses the organic electronic material of Claim 12 as a hole transport and / or injection agent.
PCT/JP2011/058379 2010-04-09 2011-03-25 Novel triarylamines and use thereof WO2011125919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-90180 2010-04-09
JP2010090180 2010-04-09

Publications (1)

Publication Number Publication Date
WO2011125919A1 true WO2011125919A1 (en) 2011-10-13

Family

ID=44762857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058379 WO2011125919A1 (en) 2010-04-09 2011-03-25 Novel triarylamines and use thereof

Country Status (2)

Country Link
TW (1) TW201139340A (en)
WO (1) WO2011125919A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174541A (en) * 1989-12-04 1991-07-29 Canon Inc Electrophotographic sensitive body
JP2004037740A (en) * 2002-07-02 2004-02-05 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2006151848A (en) * 2004-11-26 2006-06-15 Kyocera Mita Corp Naphthoquinone derivative and electrophotographic photoreceptor using the same
JP2008063327A (en) * 2006-08-07 2008-03-21 Mitsubishi Chemicals Corp Organic compound bearing crosslinking group, composition for organoelectroluminescent element and organoelectroluminescent element
JP2008198989A (en) * 2007-01-15 2008-08-28 Mitsubishi Chemicals Corp Positive hole transporting material, high polymer compound produced by polymerizing its positive hole transporting material, composition for organic electroluminescent device and organic electroluminescent device
JP2008248241A (en) * 2007-03-07 2008-10-16 Mitsubishi Chemicals Corp Composition for organic device, polymer membrane and organic electroluminescent element
JP2008291011A (en) * 2007-04-25 2008-12-04 Ricoh Co Ltd Polymerizable compound, electrophotographic photoreceptor using the polymerizable compound, image forming method using the electrophotographic photoreceptor, image forming device and process cartridge for image forming device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174541A (en) * 1989-12-04 1991-07-29 Canon Inc Electrophotographic sensitive body
JP2004037740A (en) * 2002-07-02 2004-02-05 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2006151848A (en) * 2004-11-26 2006-06-15 Kyocera Mita Corp Naphthoquinone derivative and electrophotographic photoreceptor using the same
JP2008063327A (en) * 2006-08-07 2008-03-21 Mitsubishi Chemicals Corp Organic compound bearing crosslinking group, composition for organoelectroluminescent element and organoelectroluminescent element
JP2008198989A (en) * 2007-01-15 2008-08-28 Mitsubishi Chemicals Corp Positive hole transporting material, high polymer compound produced by polymerizing its positive hole transporting material, composition for organic electroluminescent device and organic electroluminescent device
JP2008248241A (en) * 2007-03-07 2008-10-16 Mitsubishi Chemicals Corp Composition for organic device, polymer membrane and organic electroluminescent element
JP2008291011A (en) * 2007-04-25 2008-12-04 Ricoh Co Ltd Polymerizable compound, electrophotographic photoreceptor using the polymerizable compound, image forming method using the electrophotographic photoreceptor, image forming device and process cartridge for image forming device

Also Published As

Publication number Publication date
TW201139340A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
US10476008B2 (en) Compound for organic optoelectric device and organic optoelectric device and display device
US7794855B2 (en) Compound and organic light-emitting element
US7794858B2 (en) Phenylphenoxazine or phenylphenothiazine- based compound and organic electroluminescent device using the same
US7678472B2 (en) Compound and organic light-emitting diode and display utilizing the same
KR20090089332A (en) Novel carbazole derivative and use thereof
JP2007214364A (en) Organic electroluminescence element
JP4395483B2 (en) Novel 1,3,5-tris (diarylamino) benzenes and uses thereof
KR101202410B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
KR20140121991A (en) Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
Zhan et al. Utilizing electroplex emission to achieve external quantum efficiency up to 18.1% in nondoped blue OLED
KR20110054225A (en) Organic light emitting material and organic light emitting diode having the same
JP2008120769A (en) New aromatic tertiary amines and utilization thereof
US20070292681A1 (en) Organic electroluminescence device
KR101159729B1 (en) Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
US20150001505A1 (en) Cyclobutane group-containing compound and organic electroluminescence device including the same
JP2007182401A (en) New aromatic tertiary amines and utilization thereof
WO2010027039A1 (en) Novel 1,3,5-tris(diarylamino)benzene and use thereof
KR20180060277A (en) Compound for hole transporting material and preparing method thereof
WO2011125919A1 (en) Novel triarylamines and use thereof
JP2010280635A (en) Novel 1,3,5-tris(arylamino)benzenes and use thereof
JP3881996B2 (en) Organic electronic functional materials and their use
KR102630691B1 (en) Novel organic electroluminescent compound, organic light emitting diode and electric apparatus comprising the same
WO2011086870A1 (en) Novel 1,3,5-tris(diarylamino)benzenes and use thereof
EP1829855A1 (en) Novel aromatic tertiary amines and utilization thereof as organic electronic functional material
JP2005041804A (en) Perylene derivative and organic electroluminescent element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP