WO2011125540A1 - Thermoplastic polyurethane resin and molded article - Google Patents

Thermoplastic polyurethane resin and molded article Download PDF

Info

Publication number
WO2011125540A1
WO2011125540A1 PCT/JP2011/057325 JP2011057325W WO2011125540A1 WO 2011125540 A1 WO2011125540 A1 WO 2011125540A1 JP 2011057325 W JP2011057325 W JP 2011057325W WO 2011125540 A1 WO2011125540 A1 WO 2011125540A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane resin
thermoplastic polyurethane
group
carbon atoms
parts
Prior art date
Application number
PCT/JP2011/057325
Other languages
French (fr)
Japanese (ja)
Inventor
泰之 添田
長二郎 樋口
敏弘 田中
イー 李
誠 助川
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2012509435A priority Critical patent/JPWO2011125540A1/en
Publication of WO2011125540A1 publication Critical patent/WO2011125540A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4808Mixtures of two or more polyetherdiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38

Definitions

  • the present invention relates to a thermoplastic polyurethane resin and a molded product.
  • the polyurethane resin is manufactured, for example, as a thermosetting polyurethane resin (cast polyurethane resin), a thermoplastic polyurethane resin, a kneaded polyurethane resin (millable polyurethane resin), etc., for example, an elastomer, an elastic molded product (spandex), Widely used as RIM molded products, foam molded products and the like.
  • Thermoplastic polyurethane resin is a rubber elastic body obtained by reaction of polyisocyanate, high molecular weight polyol and chain extender (low molecular weight polyol), and is a hard segment formed by reaction of polyisocyanate and chain extender And a soft segment formed by the reaction of polyisocyanate and high molecular weight polyol.
  • thermoplastic polyurethane resin various physical properties such as elastic modulus can be adjusted by changing the types and blending ratios of polyisocyanate, high molecular weight polyol and chain extender. Excellent properties such as strength (such as tensile strength) can be ensured.
  • thermoplastic polyurethane resins are used as molding materials in thermoplastic resin molding methods such as extrusion molding and injection molding, for example, shoe soles and insoles, ski shoes, automobile exterior parts and interior parts. It is often used in various industrial fields such as electrical parts, casters, rolls, hoses, tubes, sheets and fibers.
  • a kneaded polyurethane resin is a polyurethane resin that does not substantially contain a hard segment, and can be easily kneaded and molded by using, for example, a rubber kneader and can be cured by vulcanization.
  • a transport belt, a drive belt, a transport roll, a drive roll, and the like is often used in a transport belt, a drive belt, a transport roll, a drive roll, and the like.
  • a kneaded polyurethane resin for example, 4,4′-diaminodiphenylmethane, 4,4′-diaminodicyclohexylmethane, hexamethylenediamine, ethylenediamine, butylenediamine, p- A polymerization initiator composed of an amine compound such as phenylenediamine is reacted with ⁇ -caprolactone to produce an amide group-containing poly- ⁇ -caprolactone diol having an average chain number of ⁇ -caprolactone of about 6, and then obtained.
  • thermoplastic polyurethane resins are also required to be improved in heat resistance, thermal stability and mechanical strength.
  • thermoplastic polyurethane resin needs to be melted and molded again after synthesis, it is necessary to improve heat resistance, thermal stability and mechanical strength while maintaining thermoplasticity.
  • An object of the present invention is to provide a thermoplastic polyurethane resin having excellent mechanical strength, excellent heat resistance and thermal stability, and a molded product obtained by molding the thermoplastic polyurethane resin.
  • thermoplastic polyurethane resin of the present invention is a thermoplastic polyurethane resin obtained by reacting at least a polyisocyanate, a high molecular weight polyol, and a chain extender, and the chain extender is represented by the following general formula (1
  • the hard segment content formed by the reaction of the polyisocyanate and the amide group-containing diol is 30 to 60 with respect to the total amount of the thermoplastic polyurethane resin. It is characterized by mass%.
  • R 1 is a divalent aliphatic hydrocarbon group having 2 to 8 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 8 carbon atoms, or a divalent aliphatic group having 7 to 8 carbon atoms.
  • Each represents an araliphatic hydrocarbon group
  • R 2 and R 3 are the same or different from each other and represent a divalent aliphatic hydrocarbon group having 1 to 5 carbon atoms or a divalent fatty acid having 3 to 5 carbon atoms. Indicates a ring-containing hydrocarbon group.
  • the amide group-containing diol is represented by the following general formula (2).
  • thermoplastic polyurethane resin of the present invention it is preferable that the amide group-containing diol is obtained by a reaction between an aliphatic diamine and hydroxycarboxylic acid or a derivative thereof.
  • the high-molecular-weight polyol contains an oxyethylene group, and the content of the oxyethylene group is 20% by mass or more, based on the total amount of the thermoplastic polyurethane resin. It is suitable that it is below mass%.
  • thermoplastic polyurethane resin of this invention it is suitable that the water vapor transmission rate when it is set as a 20-micrometer-thick film is 10,000 g / m ⁇ 2 > * 24h or more.
  • thermoplastic polyurethane resin of the present invention it is preferable that the softening temperature is 160 ° C. or higher.
  • the molded article of the present invention is characterized by being obtained by molding the thermoplastic polyurethane resin.
  • the molded article of the present invention is preferably obtained by molding the thermoplastic polyurethane resin into a film.
  • the molded article of the present invention is obtained by extrusion molding of the thermoplastic polyurethane resin.
  • the molded product of the present invention is prepared by dissolving the thermoplastic polyurethane resin in an aprotic polar solvent to prepare a thermoplastic polyurethane resin solution, and then removing the aprotic polar organic solvent from the solution. It is suitable to form as a film by removing.
  • the chain extender as a raw material contains the amide group-containing diol represented by the general formula (1), and a hard segment obtained by reaction of the chain extender and polyisocyanate. Is adjusted to 30 to 60% by mass with respect to the total amount of the thermoplastic polyurethane resin, so that excellent mechanical strength can be ensured and excellent heat resistance and thermal stability can be provided.
  • the heat resistance refers to the resistance to heat deformation of the resin accompanying heat rise (heat deformation resistance), the resistance to deterioration of physical properties after heating, and the resistance to decomposition of the primary structure of the resin due to heating (heat decomposition resistance). It is distinguished from The thermal stability corresponds to the above-mentioned thermal decomposition resistance.
  • the molded article of the present invention can be obtained by molding the thermoplastic polyurethane resin of the present invention, it can be produced efficiently.
  • thermoplastic polyurethane resin of the present invention is a polyurethane resin that can be heated and melted again after synthesis, and is distinguished from a thermosetting polyurethane resin (cast polyurethane resin) that cannot be heated and melted after synthesis.
  • thermoplastic polyurethane resin can be once molded as a molding material such as pellets, and then molded into an arbitrary shape by, for example, extrusion molding or injection molding.
  • thermoplastic polyurethane resin can be obtained by reacting at least a polyisocyanate, a high molecular weight polyol, and a chain extender.
  • thermoplastic polyurethane resin which will be described in detail later, is a hard segment formed by at least the reaction of the polyisocyanate and the chain extender with the soft segment formed by the reaction of the polyisocyanate and the high molecular weight polyol. With segments.
  • Polyisocyanate is an organic compound having two or more isocyanate groups, and examples thereof include diisocyanates such as aromatic diisocyanates, araliphatic diisocyanates, alicyclic diisocyanates, and aliphatic diisocyanates.
  • aromatic diisocyanate examples include m- or p-phenylene diisocyanate or a mixture thereof, 2,4- or 2,6-tolylene diisocyanate or a mixture thereof (TDI), 4,4'-, 2,4'- or 2,2'-diphenylmethane diisocyanate or mixtures thereof (MDI), 4,4'-toluidine diisocyanate (TODI), 4,4'-diphenyl ether diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI) Etc.
  • TDI 2,4- or 2,6-tolylene diisocyanate or a mixture thereof
  • MDI 4,4'-, 2,4'- or 2,2'-diphenylmethane diisocyanate or mixtures thereof
  • TODI 4,4'-toluidine diisocyanate
  • NDI 1,5-naphthalene diisocyanate
  • araliphatic diisocyanate examples include 1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), ⁇ , ⁇ ′-diisocyanate-1,4-diethylbenzene, and the like.
  • Examples of the alicyclic diisocyanate include 1,3-cyclopentene diisocyanate, 1,3- or 1,4-cyclohexane diisocyanate or a mixture thereof (CHDI), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate ( Isophorone diisocyanate (IPDI), 4,4'-, 2,4'- or 2,2'-dicyclohexylmethane diisocyanate or mixtures thereof (hydrogenated MDI, H 12 MDI), methyl-2,4-cyclohexane diisocyanate, methyl- 2,6-cyclohexane diisocyanate, 1,3- or 1,4-bis (isocyanatomethyl) cyclohexane or mixtures thereof (hydrogenated XDI, H 6 XDI), bis (isocyanatomethyl) norbornane (NBDI), etc. Can be mentioned.
  • IPDI isophorone diiso
  • aliphatic diisocyanate examples include ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 1,2-, 2,3- or 1,3. -Butylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate and the like.
  • examples of the polyisocyanate include derivatives of the above-mentioned diisocyanates (aromatic diisocyanates, araliphatic diisocyanates, alicyclic diisocyanates, aliphatic diisocyanates, etc.).
  • diisocyanate derivatives examples include the above-described diisocyanate multimers (eg, dimers, trimers (eg, isocyanurate-modified products, iminooxadiazine dione-modified products), pentamers, and 7-mers).
  • Allophanate-modified products for example, allophanate-modified products generated from the reaction of the above-mentioned diisocyanates with alcohols
  • polyol-modified products for example, polyol-modified products generated from the reaction of diisocyanate and low molecular weight polyols (described later) ( Polyol adducts, urethane modified products, etc.)
  • biuret modified products for example, biuret modified products produced by reaction of the above-mentioned diisocyanates with water and amines
  • urea modified products for example, the above-mentioned diisocyanates and diamines
  • Modified urea produced by the reaction of Oxadiazine trione-modified products (for example, oxadiazine trione produced by the reaction of the above-mentioned diisocyanate and carbon dioxide gas), carbodiimide-modified products (carbodiimide-modified product produced by the above-mentioned decar
  • These polyisocyanates can be used alone or in combination of two or more.
  • the polyisocyanate is preferably m- or p-phenylene diisocyanate or a mixture thereof, 2,4- or 2,6-tolylene diisocyanate or a mixture thereof (TDI), 4,4'-, 2,4'- or 2 , 2'-Diphenylmethane diisocyanate or its mixture (MDI), 1,5-naphthalene diisocyanate (NDI) 1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), 1,4- or 1,3- Cyclohexane diisocyanate or mixtures thereof (CHDI), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate; IPDI), 4,4'-, 2,4'- or 2,2'-dicyclohexylmethane Di
  • m- or p-phenylene diisocyanate or a mixture thereof, 4,4'-, 2,4'- or 2,2'-diphenylmethane diisocyanate or a mixture thereof (MDI), 1,5-naphthalene diisocyanate (NDI) 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate; IPDI), 4,4'-, 2,4'- or 2,2'-dicyclohexylmethane diisocyanate or mixtures thereof (hydrogenated MDI , H 12 MDI), 1,3- or 1,4-bis (isocyanatomethyl) cyclohexane or mixtures thereof (hydrogenated XDI, H 6 XDI), bis (isocyanatomethyl) norbornane (NBDI), hexamethylene diisocyanate ( HDI), And derivatives thereof, more preferably m- or p-phenylene diisocyan
  • the high molecular weight polyol is an organic compound having two or more hydroxyl groups and a number average molecular weight of 400 or more.
  • polyether polyol polyester polyol, polycarbonate polyol, acrylic polyol, epoxy polyol, natural oil polyol, silicone polyol, fluorine polyol , Macropolyols such as polyolefin polyol and polyurethane polyol.
  • the polyether polyol is, for example, a low molecular weight polyol (described later) and / or a low molecular weight polyamine (described later) as an initiator, and an alkylene oxide (for example, ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, 3-methyltetrahydrofuran, Ring-opening addition polymerization of an alkylene oxide having 2 to 5 carbon atoms such as an oxetane compound (homopolymerization or copolymerization (when ethylene oxide and propylene oxide are used in combination as alkylene oxide, block copolymerization and / or random copolymerization) Polymerization)).
  • an alkylene oxide for example, ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, 3-methyltetrahydrofuran, Ring-opening addition polymerization of an alkylene oxide having 2 to 5 carbon atoms such as an oxetan
  • the low molecular weight polyol is an organic compound having two or more hydroxyl groups and a number average molecular weight of less than 400, such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butane.
  • low molecular weight polyamine examples include ethylenediamine, 1,3-propanediamine, 1,3- or 1,4-butanediamine, 1,6-hexamethylenediamine, 1,4-cyclohexanediamine, and 3-aminomethyl-3.
  • These initiators can be used alone or in combination of two or more.
  • a low molecular weight polyol is preferably used.
  • polyether polyol polyethylene glycol, polypropylene glycol and / or polyethylene obtained by addition reaction of an alkylene oxide such as ethylene oxide and / or propylene oxide with the above-described low molecular weight glycol as an initiator.
  • polyoxy C2-3 alkylene (ethylene and / or propylene) glycols such as polypropylene glycol (random or block copolymers).
  • polytetramethylene ether glycol obtained by ring-opening polymerization of tetrahydrofuran, etc.
  • amorphous (liquid at room temperature) obtained by copolymerizing the above dihydric alcohol with a polymerization unit of tetrahydrofuran.
  • Polytetramethylene ether glycol, and polyoxy C2-4 alkylene glycol obtained by copolymerizing tetrahydrofuran and alkylene oxide such as ethylene oxide and / or propylene oxide.
  • polyester polyol examples include a condensation reaction or ester of a polyhydric alcohol selected from one or more of low molecular weight polyols, a polybasic acid, an alkyl ester thereof, an acid anhydride thereof, and an acid halide thereof.
  • the polyester polyol obtained by exchange reaction is mentioned.
  • Examples of the low molecular weight polyol include the low molecular weight polyol described above.
  • polybasic acid examples include oxalic acid, malonic acid, succinic acid, methyl succinic acid, glutaric acid, adipic acid, 2,2-dimethylmalonic acid, 2,2-dimethylglutaric acid, 1,1-dimethyl-1, 3-dicarboxypropane, 3-methyl-3-ethylglutaric acid, methylhexanedioic acid, suberic acid, azelaic acid, sebacic acid, other aliphatic dicarboxylic acids (11 to 20 carbon atoms), hydrogenated dimer acid, maleic Examples thereof include acid, fumaric acid, itaconic acid, citraconic acid, orthophthalic acid, isophthalic acid, terephthalic acid, toluene dicarboxylic acid, dimer acid and het acid.
  • polybasic acid alkyl ester examples include the above-mentioned polybasic acid methyl ester and ethyl ester.
  • the acid anhydride examples include acid anhydrides derived from the above-mentioned polybasic acids.
  • acid anhydrides derived from the above-mentioned polybasic acids.
  • oxalic anhydride succinic anhydride, maleic anhydride, phthalic anhydride, 2-alkyl anhydride (having 12 to 18 carbon atoms)
  • Succinic acid tetrahydrophthalic anhydride, trimellitic anhydride and the like.
  • Examples of the acid halide include acid halides derived from the polybasic acids described above, and examples include oxalic acid dichloride, adipic acid dichloride, and sebacic acid dichloride.
  • polyester polyols include hydroxyl group-containing vegetable oil fatty acids (for example, castor oil fatty acid containing ricinoleic acid, hydrogenated castor oil fatty acid containing 12-hydroxystearic acid, etc.) using the above-described low molecular weight polyol as an initiator.
  • examples thereof include vegetable oil-based polyester polyols obtained by subjecting hydroxycarboxylic acid to a condensation reaction under known conditions.
  • polyester polyols examples include polycaprolactone polyols and polyvalerolactone polyols obtained by ring-opening polymerization of lactones such as ⁇ -caprolactone and ⁇ -valerolactone using the above-described low molecular weight polyols as initiators. And lactone polyester polyols obtained by copolymerizing these dihydric alcohols with polycaprolactone polyols, polyvalerolactone polyols, and the like.
  • polycarbonate polyol examples include polycarbonate polyol obtained by addition polymerization of carbonates such as ethylene carbonate and dimethyl carbonate using the above-described low molecular weight polyol as an initiator.
  • the polycarbonate polyol includes an amorphous polycarbonate diol composed of a copolymer of 1,5-pentanediol and 1,6-hexanediol, and a copolymer of 1,4-butanediol and 1,6-hexanediol.
  • acrylic polyol examples include a copolymer obtained by copolymerizing a polymerizable monomer having one or more hydroxyl groups and another monomer copolymerizable therewith.
  • Examples of the polymerizable monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, 2,2-dihydroxymethylbutyl (meth) acrylate, polyhydroxy Examples thereof include alkyl maleates and polyhydroxyalkyl fumarate.
  • the acrylic polyol can be obtained by copolymerizing these monomers in the presence of a suitable solvent and a polymerization initiator.
  • epoxy polyol examples include an epoxy polyol obtained by reacting the above-described low molecular weight polyol with a polyfunctional halohydrin such as epichlorohydrin or ⁇ -methylepichlorohydrin.
  • Examples of the natural oil polyol include hydroxyl group-containing natural oils such as castor oil and coconut oil.
  • silicone polyol for example, in the copolymerization of the acrylic polyol described above, a vinyl group-containing silicone compound such as ⁇ -methacryloxypropyltrimethoxysilane is used as another copolymerizable monomer.
  • a vinyl group-containing silicone compound such as ⁇ -methacryloxypropyltrimethoxysilane is used as another copolymerizable monomer. Examples include coalesced and terminal alcohol-modified polydimethylsiloxane.
  • fluorine polyol for example, in the copolymerization of the above-mentioned acrylic polyol, a copolymer containing a vinyl group-containing fluorine compound, for example, tetrafluoroethylene, chlorotrifluoroethylene, etc., as another copolymerizable monomer Etc.
  • a copolymer containing a vinyl group-containing fluorine compound for example, tetrafluoroethylene, chlorotrifluoroethylene, etc.
  • polystyrene resin examples include polybutadiene polyol and partially saponified ethylene-vinyl acetate copolymer.
  • the polyurethane polyol reacts the above-mentioned macropolyol (for example, polyester polyol, polyether polyol, polycarbonate polyol, etc.) with the polyisocyanate at a ratio in which the equivalent ratio of hydroxyl group to isocyanate group (OH / NCO) exceeds 1.
  • macropolyol for example, polyester polyol, polyether polyol, polycarbonate polyol, etc.
  • These high molecular weight polyols can be used alone or in combination of two or more.
  • polyether polyol As the high molecular weight polyol, from the viewpoint of moisture permeability, polyether polyol, polyester polyol, polycarbonate polyol, acrylic polyol, polyolefin polyol, and polyurethane polyol are preferable, and polyethylene glycol, polypropylene glycol, polyethylene polypropylene glycol, Examples thereof include polytetramethylene ether glycol, a copolymer of tetrahydrofuran and alkylene oxide, and polyester polyol.
  • the high molecular weight polyol is particularly preferably a polyether polyol having an oxyethylene group from the viewpoint of moisture permeability, and specifically, polyethylene glycol, polypropylene glycol, polyethylene polypropylene glycol (random or block copolymer). ), And a copolymer of tetrahydrofuran and ethylene oxide.
  • the number average molecular weight of the high molecular weight polyol is, for example, 400 to 5000, preferably 1000 to 4000, and more preferably 1500 to 3000.
  • the hydroxyl value of the high molecular weight polyol is, for example, 22 to 280 mgKOH / g, preferably 28 to 112 mgKOH / g, more preferably 37 to 75 mgKOH / g.
  • the hydroxyl value can be determined from an acetylation method, a phthalation method, or the like based on JIS K 1557-1 Method A or Method B.
  • the chain extender contains an amide group-containing diol.
  • the amide group-containing diol is an amide group-containing organic compound having two hydroxyl groups, and is represented by the following general formula (1).
  • R 1 is a divalent aliphatic hydrocarbon group having 2 to 8 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 8 carbon atoms, or a divalent aliphatic group having 7 to 8 carbon atoms.
  • R 1 is a divalent aliphatic hydrocarbon group having 2 to 8 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 8 carbon atoms, or a 7 to 8 carbon atom.
  • a divalent araliphatic hydrocarbon group is shown.
  • examples of the divalent aliphatic hydrocarbon group having 2 to 8 carbon atoms include a divalent linear or branched aliphatic hydrocarbon group having 2 to 8 carbon atoms.
  • linear aliphatic hydrocarbon group examples include an ethylene group, a propylene group, a butylene group (tetramethylene group), a pentylene group (pentamethylene group), a hexylene group (hexamethylene group), and a heptylene group (heptamethylene group).
  • Linear alkylene groups having 2 to 8 carbon atoms such as octylene group (octamethylene group), for example, linear alkylene groups having 2 to 8 carbon atoms such as vinylene group, propenylene group, butenylene group, butadienylene group, octenylene group, etc.
  • alkenylene groups such as linear alkynylene groups having 2 to 8 carbon atoms such as ethynylene group, propynylene group, butynylene group, pentynylene group, octenylene group and the like.
  • Examples of the branched aliphatic hydrocarbon group include a branched alkylene group having 3 to 8 carbon atoms such as a methylethylene group, a methylpropylene group, an ethylpropylene group, a dimethylpropylene group, and a 2-ethylhexylene group, for example, Examples thereof include branched alkenylene groups having 3 to 8 carbon atoms such as methylethynylene group, methylpropenylene group and methylbutenylene group, for example, branched alkynylene groups having 4 to 8 carbon atoms such as methylpropynylene group and methylbutynylene group.
  • the divalent alicyclic hydrocarbon group having 3 to 8 carbon atoms may contain one or more alicyclic hydrocarbons in the hydrocarbon group.
  • An aliphatic hydrocarbon group or the like may be bonded to the hydrocarbon.
  • the nitrogen atom (—NH—) bonded to R 1 may be directly bonded to the alicyclic hydrocarbon, and the aliphatic hydrocarbon group bonded to the alicyclic hydrocarbon. Or both of them may be used.
  • examples of the alicyclic hydrocarbon group include 3 to 8 carbon atoms such as a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, and a cyclooctylene group. And the like.
  • Examples of the alicyclic hydrocarbon group containing an aliphatic hydrocarbon group include a methylcyclohexylene group, a hydrogenated xylylene group, a cyclohexylmethylene group, and a norbornylene group.
  • the divalent araliphatic hydrocarbon group having 7 to 8 carbon atoms may contain an aromatic hydrocarbon in the hydrocarbon group.
  • the aromatic hydrocarbon includes an aliphatic hydrocarbon A hydrocarbon group or the like may be bonded.
  • the nitrogen atom (—NH—) bonded to R 1 may be directly bonded to the aromatic hydrocarbon or bonded to the aliphatic hydrocarbon group bonded to the aromatic hydrocarbon. Or both of them.
  • aromatic ring-containing hydrocarbon group more specifically, for example, a phenylenemonomethylene group (—C 6 H 4 —CH 2 —), a xylylene group (phenylenebis (methylene) group (—CH 2 —C)) And an aralkylene group having 7 to 8 carbon atoms such as 6 H 4 —CH 2 —)).
  • hydrocarbon group (aliphatic hydrocarbon group, alicyclic hydrocarbon group and araliphatic hydrocarbon group) can include a stable bond such as an ether bond, a thioether bond or an ester bond. .
  • hydrocarbon group for example, an alkylene ether group (carbon containing an ether bond) such as a dimethylene ether group, a diethylene ether group, a triethylene ether group, a dipropylene ether group, or a tripropylene ether group.
  • alkylene ether group carbon containing an ether bond
  • divalent aliphatic hydrocarbon groups of 2 to 8).
  • R 1 is preferably a divalent aliphatic hydrocarbon group having 2 to 8 carbon atoms, more preferably a divalent linear aliphatic hydrocarbon group having 2 to 8 carbon atoms, from the viewpoint of heat resistance. More preferred are ethylene group, butylene group (tetramethylene group), hexylene group (hexamethylene group), and particularly preferred are ethylene groups.
  • R 2 and R 3 are the same or different and contain a divalent aliphatic hydrocarbon group having 1 to 5 carbon atoms or a divalent alicyclic ring having 3 to 5 carbon atoms. A hydrocarbon group is shown.
  • divalent aliphatic hydrocarbon group having 1 to 5 carbon atoms examples include, for example, a divalent linear aliphatic hydrocarbon group having 1 to 5 carbon atoms, such as a divalent branched chain having 2 to 5 carbon atoms. And an aliphatic hydrocarbon group in the form of a ring.
  • Examples of the divalent linear aliphatic hydrocarbon group having 1 to 5 carbon atoms include carbon such as methylene group, ethylene group, propylene group, butylene group (tetramethylene group), pentylene group (pentamethylene group), and the like.
  • a linear alkylene group having 1 to 5 carbon atoms for example, a linear alkenylene group having 2 to 5 carbon atoms such as vinylene group, propenylene group, butenylene group, butadienylene group, for example, ethynylene group, propynylene group, butynylene group, pentynylene, etc.
  • a straight-chain alkynylene group having 2 to 5 carbon atoms such as a group.
  • Examples of the divalent branched aliphatic hydrocarbon group having 2 to 5 carbon atoms include a branch having 2 to 5 carbon atoms such as a methylmethylene group, a methylethylene group, a methylpropylene group, an ethylpropylene group, and a dimethylpropylene group.
  • a branched alkylene group such as a methyl ethynylene group, a methyl propenylene group and a methyl butenylene group, such as a branched alkenylene group having 3 to 5 carbon atoms, such as a branched alkynylene group having 4 to 5 carbon atoms such as a methyl propynylene group and a methyl butynylene group.
  • Examples of the divalent alicyclic hydrocarbon group having 3 to 5 carbon atoms include cycloalkylene groups having 3 to 5 carbon atoms such as cyclopropylene group, cyclobutylene group, and cyclopentylene group, such as methylcyclopropylene group. And an alicyclic hydrocarbon group having 3 to 5 carbon atoms containing an aliphatic hydrocarbon group such as an ethylcyclopropylene group and a methylcyclobutylene group.
  • R 2 and R 3 are preferably a divalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, more preferably a divalent linear aliphatic hydrocarbon group having 1 to 5 carbon atoms, and more preferably Includes a linear alkylene group having 1 to 5 carbon atoms, particularly preferably a linear alkylene group having 5 carbon atoms.
  • R 2 and R 3 are preferably atoms that bind the oxygen atom (O) of the hydroxyl group contained in the amide group-containing diol and the nitrogen atom (N) of the amide group in the shortest distance.
  • R 2 and R 3 examples include a butylene group (tetramethylene group) and a pentylene group (pentamethylene group), and a pentylene group (pentamethylene group) is preferable.
  • Such an amide group-containing diol can improve heat resistance and thermal stability.
  • the amide group-containing diol represented by the general formula (1) can be obtained, for example, by reacting a diamino compound with a hydroxycarboxylic acid or a derivative thereof.
  • the diamino compound is an organic compound having two amino groups, and examples thereof include aliphatic diamines, alicyclic diamines, and araliphatic diamines.
  • aliphatic diamine examples include ethylenediamine, 1,3-propanediamine (propylenediamine), 1,4-butanediamine (tetramethylenediamine), 1,5-pentanediamine (pentamethylenediamine), and 1,6-hexane.
  • Linear aliphatic diamines such as diamine (hexamethylenediamine), 1.7-heptanediamine (heptamethylenediamine), 1,8-octanediamine (octamethylenediamine), such as 1,2-propanediamine, Branched aliphatic diamines such as 1,3-butanediamine, 2,4-pentanediamine, and 1,6-octanediamine.
  • Examples of the alicyclic diamine include diamines having an amino group directly bonded to the alicyclic ring, such as cyclopropanediamine, cyclobutanediamine, cyclopentanediamine, cyclopentanediamine, and cyclohexanediamine, such as hydrogenated xylylenediamine and cyclohexylmethane.
  • Examples include diamines such as diamines in which an amino group is bonded to an alicyclic ring via an aliphatic hydrocarbon group.
  • araliphatic diamine examples include diamines in which an amino group is bonded to an aromatic ring via an aliphatic hydrocarbon group, such as phenylmethanediamine and xylylenediamine.
  • diamino compounds can be used alone or in combination of two or more.
  • diamino compound preferably, an aliphatic diamine is used, and more preferably, a linear aliphatic diamine is used.
  • Hydroxycarboxylic acid is an organic compound having one or more hydroxyl groups and one or more carboxyl groups, preferably an organic compound having one hydroxyl group and one carboxyl group, such as glycolic acid, 2- Examples thereof include hydroxypropanoic acid (lactic acid), 3-hydroxypropanoic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid and the like.
  • examples of the hydroxycarboxylic acid derivative include alkyl esters and lactones of the above hydroxycarboxylic acid.
  • alkyl ester of hydroxycarboxylic acid examples include, for example, methyl ester, ethyl ester, propyl ester and the like of the above-described hydroxycarboxylic acid.
  • Lactones are cyclic organic compounds containing an ester bond in the ring, and examples thereof include ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone ( ⁇ -methylbutyrolactone), and ⁇ -caprolactone. Can be mentioned.
  • hydroxycarboxylic acids or their derivatives can be used alone or in combination of two or more.
  • the hydroxycarboxylic acid or derivative thereof is preferably a hydroxycarboxylic acid derivative, more preferably a lactone.
  • a diamino compound and a hydroxycarboxylic acid or a derivative thereof are mixed with, for example, 1.8 to 8 mol of a hydroxycarboxylic acid or a derivative thereof with respect to 1 mol of the diamino compound.
  • a diamino compound and a hydroxycarboxylic acid or a derivative thereof are mixed with, for example, 1.8 to 8 mol of a hydroxycarboxylic acid or a derivative thereof with respect to 1 mol of the diamino compound.
  • a diamino compound and a hydroxycarboxylic acid or a derivative thereof are mixed with, for example, 1.8 to 8 mol of a hydroxycarboxylic acid or a derivative thereof with respect to 1 mol of the diamino compound.
  • the reaction may be solvent-free, but a known reaction solvent may be used if necessary.
  • the reaction solvent is not particularly limited, but alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, 3-methyl-3-methoxybutanol, for example, ethylene glycol, diethylene glycol , Polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 1,4-butanediol, 1,5-pentanediol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl Ether, diethylene glycol monoethyl ether, tripropylene glycol monomethyl ether, etc.
  • alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, 3-methyl-3-methoxybutan
  • Glycol solvents for example, ketone solvents such as acetone, methyl ethyl ketone methyl isobutyl ketone, cyclohexanone, etc., ether solvents such as diethyl ether, tetrahydrofuran, dioxane, etc., such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, acetonitrile, N-methyl Examples include organic solvents such as polar solvents such as pyrrolidone and hexamethylphosphonilamide.
  • reaction solvents can be used alone or in combination of two or more.
  • the amide group-containing diol can be separated from the obtained reaction mixture by a crystallization treatment such as recrystallization, if necessary.
  • crystallization solvent used in the crystallization treatment examples include the same organic solvents as the above reaction solvent.
  • crystallization solvents can be used alone or in combination of two or more.
  • the melting point of the amide group-containing diol thus obtained is, for example, 40 to 220 ° C., preferably 80 to 160 ° C.
  • the chain extender should just contain the said amide group containing diol at least, for example, can also contain a low molecular-weight polyol as an arbitrary component.
  • Examples of the low molecular weight polyol include the low molecular weight polyol described above, and preferably a dihydric alcohol.
  • the content ratio is not particularly limited and is appropriately set according to the purpose and application.
  • thermoplastic polyurethane resin of the present invention At least the polyisocyanate, the high molecular weight polyol, and the chain extender are reacted.
  • thermoplastic polyurethane resin is synthesized by the reaction of polyisocyanate, high molecular weight polyol and chain extender.
  • thermoplastic polyurethane resin of this invention well-known methods, such as a prepolymer method and a one shot method, are employable, for example.
  • polyisocyanate and high molecular weight polyol are first reacted to synthesize an isocyanate group-terminated prepolymer having an isocyanate group at the molecular end.
  • the obtained isocyanate group-terminated prepolymer is reacted with a chain extender.
  • the equivalent ratio (NCO / OH) of the isocyanate group in the polyisocyanate with respect to the hydroxyl group in the high molecular weight polyol is 1.1 to 20 for example.
  • it is formulated (mixed) to be 1.3 to 10, more preferably 1.3 to 7, and is, for example, 40 to 150 ° C., preferably 50 to 120 ° C. in a reaction vessel.
  • the reaction is performed for 30 seconds to 8 hours, preferably 1 hour to 6 hours.
  • finish of reaction can also remove unreacted polyisocyanate by well-known removal means, such as distillation and extraction, as needed.
  • the isocyanate group-terminated prepolymer and the chain extender are reacted with an isocyanate in the isocyanate group-terminated prepolymer with respect to a hydroxyl group in the chain extender.
  • Formulated (mixed) so that the equivalent ratio of groups (NCO / OH) is, for example, 0.8 to 1.2, preferably 0.9 to 1.1, more preferably 0.98 to 1.05.
  • at 40 to 280 ° C. preferably at 70 to 260 ° C., more preferably at 80 to 240 ° C., for example, for 30 seconds to 10 hours, preferably for 1 minute to 8 hours.
  • polyisocyanate, high molecular weight polyol and chain extender are mixed with an equivalent ratio of isocyanate groups in the polyisocyanate (NCO / OH) to the total amount of hydroxyl groups in the high molecular weight polyol and chain extender.
  • NCO / OH polyisocyanate
  • the reaction is carried out at 280 ° C., preferably 70 to 260 ° C., for example, for 30 seconds to 10 hours, preferably for 1 minute to 8 hours.
  • the reaction temperature can be a constant temperature, or can be raised or cooled stepwise.
  • the mixing of the above components is not particularly limited, but preferably a dissolver.
  • a mixing tank such as a circulating low-pressure or high-pressure impingement mixer, for example, a high-speed stirring mixer, a static mixer, a kneader, or a mixing device such as a single-screw or twin-screw extruder is used.
  • the compound containing a hydroxyl group (a high molecular weight polyol, an amide group-containing diol, and a low molecular weight polyol blended as necessary) is preferably subjected to a heat-reducing treatment as a pretreatment. , The water content is reduced.
  • the water content of each of these hydroxyl group-containing compounds is, for example, 0.05% by mass or less, preferably Is 0.03% by mass or less, more preferably 0.02% by mass or less, and usually 0.005% by mass or more.
  • the method of reacting (polymerizing) each of the above components is particularly limited
  • known polymerization methods more specifically, for example, solution polymerization, suspension polymerization in water, non-aqueous dispersion polymerization, melt polymerization (bulk polymerization) and the like can be mentioned.
  • solution polymerization, non-aqueous dispersion polymerization, and melt polymerization are exemplified.
  • polar organic solvent examples include aprotic polar solvents such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and hexamethylphosphonamide.
  • aprotic polar solvents such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and hexamethylphosphonamide.
  • polar organic solvents can be used alone or in combination of two or more.
  • the mixing ratio of the polar organic solvent is not particularly limited, and is appropriately set depending on the purpose and application, the viscosity of the reaction system, and the like.
  • non-aqueous dispersion polymerization for example, the above-described components are added to a low-polar organic solvent, and a dispersant is added to disperse the above-described components and polymerize.
  • low polar organic solvent examples include aliphatic hydrocarbons such as n-hexane and octane, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, and aromatic hydrocarbons such as toluene, xylene and ethylbenzene. And the like.
  • These low polarity organic solvents can be used alone or in combination of two or more.
  • the mixing ratio of the low polarity organic solvent is not particularly limited, and is appropriately set depending on the purpose and application, the viscosity of the reaction system, and the like.
  • the dispersant is not particularly limited, and examples thereof include dispersants described in JP-A No. 2004-169011, and alkali metal salts such as sulfonic acid groups, carboxylic acid groups, and amino groups, ammonium salts, and inorganic acids.
  • alkali metal salts such as sulfonic acid groups, carboxylic acid groups, and amino groups, ammonium salts, and inorganic acids.
  • Known water-soluble polymers having ionic hydrophilic groups such as salts and organic acid salts, for example, known surfactants such as anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, etc. Is mentioned.
  • melt polymerization for example, while stirring the polyisocyanate under a nitrogen stream, a high molecular weight polyol and an amide group-containing diol (and a low molecular weight polyol blended as necessary) are added thereto, and the above reaction is performed. The components are heated and heated to melt and polymerize.
  • a known urethanization catalyst such as amines or organometallic compounds can be added as necessary.
  • amines include tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine, and quaternary ammonium salts such as tetraethylhydroxylammonium, such as imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
  • tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine
  • quaternary ammonium salts such as tetraethylhydroxylammonium, such as imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
  • organometallic compounds include tin acetate, tin octylate, tin oleate, tin laurate, dibutyltin diacetate, dimethyltin dilaurate, dibutyltin dilaurate, dibutyltin dimercaptide, dibutyltin maleate, dibutyltin dilaurate, dibutyltin Organic tin compounds such as dineodecanoate, dioctyltin dimercaptide, dioctyltin dilaurate, dibutyltin dichloride, for example, organic lead compounds such as lead octoate and lead naphthenate, for example, organic nickel compounds such as nickel naphthenate, Examples thereof include organic cobalt compounds such as cobalt naphthenate, organic copper compounds such as copper octenoate, and organic bismuth compounds such as bismuth octylate and bismuth
  • examples of the urethanization catalyst include potassium salts such as potassium carbonate, potassium acetate, and potassium octylate.
  • urethanization catalysts can be used alone or in combination of two or more.
  • the blending ratio of the urethanization catalyst is not particularly limited, but is, for example, 0.0001 to 0.05 parts by weight, preferably 0.001 to 0.03 parts by weight with respect to 100 parts by weight of the high molecular weight polyol. is there.
  • thermoplastic polyurethane resin if necessary, further known additives such as a plasticizer, a foaming agent, an antiblocking agent, a heat stabilizer, a light stabilizer, an antioxidant, a release agent are used. Agents, catalysts, and coupling agents, lubricants, rust inhibitors, opacifiers, pigments, dyes, lubricants, fillers, hydrolysis inhibitors, and the like can be blended in appropriate proportions. These additives may be added to one or more of each component, may be added during production of each component, may be added during mixing of each component, It can also be added to the resulting thermoplastic polyurethane resin.
  • additives may be added to one or more of each component, may be added during production of each component, may be added during mixing of each component, It can also be added to the resulting thermoplastic polyurethane resin.
  • the concentration of the hard segment formed by the reaction between the polyisocyanate and the amide group-containing diol is 30 to 60% by mass, preferably 30 to 55% by mass, Preferably, it is 30 to 50% by mass.
  • the hard segment (hard segment formed by the reaction of polyisocyanate and amide group-containing diol) is less than the lower limit, there is a problem that the heat resistance of the thermoplastic polyurethane resin is lowered.
  • the hard segment (hard segment formed by the reaction of polyisocyanate and amide group-containing diol) can be calculated, for example, from the blending ratio (preparation) of each component by the following formula.
  • the concentration of the hard segment formed by the reaction of the polyisocyanate and the low molecular weight polyol is, for example, 1 to 30% by mass, The content is preferably 1 to 25% by mass, more preferably 1 to 20% by mass.
  • the hard segment (hard segment formed by reaction of polyisocyanate and low molecular weight polyol) concentration can be calculated by the following formula from the blending ratio (preparation) of each component, for example.
  • the total amount of the hard segment concentration formed by the reaction of the polyisocyanate and the amide group-containing diol and the hard segment concentration formed by the reaction of the polyisocyanate and the low molecular weight polyol is, for example, 30 to 60 mass. %, Preferably 30 to 55% by mass, more preferably 30 to 50% by mass.
  • the weight average molecular weight (weight average molecular weight by GPC measurement using standard polystyrene as a calibration curve) of such a thermoplastic polyurethane resin is, for example, 100,000 to 350,000, preferably 100,000 to 300,000, more preferably 120,000 to 250,000. It is.
  • weight average molecular weight is in the above range, excellent mechanical strength and heat resistance can be ensured, and excellent molding stability in thermoforming can be improved.
  • the softening temperature of such a thermoplastic polyurethane resin is, for example, 160 ° C. or higher, preferably 170 ° C. or higher, more preferably 180 ° C or higher, usually 230 ° C or lower.
  • the softening temperature is in the above range, the heat resistance and thermal stability of the thermoplastic polyurethane resin can be improved, and excellent molding stability in thermoforming can be ensured.
  • thermogravimetric decrease temperature (measurement method: thermogravimetric analysis (temperature increase rate 10 ° C./min, under nitrogen stream)) of such a thermoplastic polyurethane resin is, for example, 250 ° C. or higher, preferably 265 ° C. As mentioned above, More preferably, it is 300 degreeC or more, and is normally 340 degrees C or less.
  • thermoplastic polyurethane resin when the high molecular weight polyol contains an oxyethylene group, the content of the oxyethylene group is, for example, 10% by mass or more based on the total amount of the thermoplastic polyurethane resin.
  • the amount is preferably 20% by mass or more, for example, 70% by mass or less, and preferably 60% by mass or less.
  • the moisture permeability can be improved when the thermoplastic polyurethane resin is formed into a film having a thickness of 20 ⁇ m.
  • Such moisture permeability for example, 4000g / m 2 ⁇ 24h or more, preferably, 10000g / m 2 ⁇ 24h or more, more preferably, be a 40000g / m 2 ⁇ 24h or more Usually, it is 800,000 g / m 2 ⁇ 24 h or less.
  • thermoplastic polyurethane resin is not particularly limited, and is a known molding method, for example, a thermoplastic resin molding method such as injection molding, extrusion molding, press molding, cast molding, preferably extrusion molding, By press molding or cast formation, for example, it can be molded into various shapes such as pellets, plates, fibers, strands, films, sheets, pipes, hollows, boxes, and the like.
  • the molding temperature in the hot melt molding (injection molding, extrusion molding, press molding, etc.) of the thermoplastic polyurethane resin may be appropriately set according to the thermal characteristics of the thermoplastic polyurethane resin, and is not particularly limited. Is, for example, 160 to 260 ° C, preferably 175 to 245 ° C.
  • thermoplastic polyurethane resin for example, in hot melt molding of a thermoplastic polyurethane resin, if supercritical carbon dioxide or the like is introduced and a supercritical fluid is diffused and dissolved in the thermoplastic polyurethane resin, supercritical carbon dioxide is obtained.
  • supercritical carbon dioxide is obtained.
  • the thermoplastic polyurethane resin can be formed as a microcellular foam composed of fine and uniform cells.
  • thermoplastic polyurethane resin if a plasticizer (for example, aliphatic dibasic acid ester, phosphoric acid ester, epoxy plasticizer, etc.) is added to the thermoplastic polyurethane resin, the glass transition point of the thermoplastic polyurethane resin is lowered, Can reduce the viscosity.
  • a plasticizer for example, aliphatic dibasic acid ester, phosphoric acid ester, epoxy plasticizer, etc.
  • thermoplastic polyurethane resin can be improved, and the molded body can be made thinner, the surface accuracy of the molded body can be improved, and the molding temperature can be lowered.
  • an organic solvent in which the thermoplastic polyurethane resin is soluble for example, an aprotic polar organic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, etc.
  • an aprotic polar organic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, etc.
  • aprotic polar organic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, etc.
  • thermoplastic polyurethane resin thus obtained can be easily spun by, for example, a known spinning method (for example, wet spinning, dry spinning, melt spinning, etc.), and can be made into an elastic fiber.
  • a known spinning method for example, wet spinning, dry spinning, melt spinning, etc.
  • the molded product of the thermoplastic polyurethane resin obtained by the above method or the like can be further annealed.
  • a molded product of a thermoplastic polyurethane resin is annealed at, for example, 70 to 190 ° C., preferably 80 to 180 ° C., for example, for 10 minutes to 24 hours, preferably 1 to 20 hours.
  • thermoplastic polyurethane resin cohesion of the hard segment contained in the thermoplastic polyurethane resin can be improved, and a molded product having excellent mechanical strength and heat resistance can be obtained.
  • thermoplastic polyurethane resin of the present invention a film having excellent moisture permeability can be formed. Therefore, it is suitably used in the manufacture of moisture permeable films for clothing, specifically, for example, raincoats and windbreakers. It is done.
  • thermoplastic polyurethane resin of the present invention is not limited to the above-mentioned applications.
  • automotive parts electronic parts, mechanical / industrial parts, electric wires / cables, rolls, hoses / tubes, belts, films / sheets, laminates, etc.
  • industrial fields such as coatings, adhesives, sealing materials, sports / leisure products, shoe-related parts, sundries, nursing care products, housing supplies, medical care, building materials, civil engineering, waterproofing / paving materials, foams, slush powders, etc. Can be used.
  • thermoplastic polyurethane resin of this invention while the chain extender which is a raw material contains the amide group containing diol shown by the said General formula (1), it is obtained by reaction of the chain extender and polyisocyanate. Since the content of the hard segment is adjusted to 30 to 60% by mass with respect to the total amount of the thermoplastic polyurethane resin, it is possible to ensure excellent mechanical strength and to have excellent heat resistance and thermal stability. .
  • the molded article of the present invention can be obtained by molding the thermoplastic polyurethane resin of the present invention, it can be produced efficiently.
  • the measurement sample solution was prepared by dissolving the measurement sample at a concentration of 0.25% by mass in a solvent having the same composition as the eluent.
  • a GPC column Showa Denko, trade name: KD-G, KD-806M
  • a GPC measurement device Showa Denko, trade name: Shodex GPC-101
  • the weight average molecular weight (Mw) was calculated from a standard polystyrene calibration curve prepared in advance using a differential refractometer (RI) detector under the conditions of 0.7 mL / min.
  • ⁇ Thermal weight reduction temperature (unit: ° C)> Using a thermal analyzer (trade name: TGA-50, manufactured by Shimadzu Corporation), about 5 mg of a sample was weighed in a platinum cell and heated from room temperature to 700 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen atmosphere. It was measured. Based on 200 ° C., a 5% weight loss temperature was measured.
  • ⁇ Flow start temperature (unit: ° C)> 1 g of the sample is filled in an elevated flow tester (model: CFT-500, manufactured by Shimadzu Corporation), using a nozzle of 1 mm (diameter) ⁇ 10 mm (length), under the conditions of a heating rate of 5 ° C./min and a load of 100 kgf. The flow start temperature was measured.
  • ⁇ Softening temperature (unit: ° C)> Using a thermomechanical analysis (TMA) apparatus (trade name: TMA4000S, manufactured by Mac Science), the softening temperature was measured according to JIS K-7196, “Softening temperature test method by thermomechanical analysis of thermoplastic film and sheet”.
  • the diameter of the indenter used was 1.0 mm, and the softening temperature was maintained at 25 ° C. for 30 minutes under a nitrogen stream under a load of 50 gf, and then at a temperature increase rate of 5 ° C./min. It was measured.
  • JIS L-1099 B-1 method potassium acetate method
  • Production Example 2 (Production of amide group-containing diol 2) Under a nitrogen atmosphere, 44.9 parts of 1,4-butanediamine were charged into a reactor equipped with a stirrer, and the nitrogen was sufficiently substituted while stirring. Thereafter, the temperature was raised to 50 ° C., and 245.0 parts of ⁇ -caprolactone was gradually added at the same temperature, and then 134 parts of tetrahydrofuran was added and reacted for 6 hours.
  • Production Example 3 (Production of amide group-containing diol 3) Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 18.1 parts of ethylenediamine, and sufficiently purged with nitrogen while stirring. Thereafter, 156.0 parts of ⁇ -butyrolactone was gradually added at room temperature and allowed to react for 20 hours.
  • Production Example 4 (Production of amide group-containing diol 4) Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 18.1 parts of ethylenediamine, and sufficiently purged with nitrogen while stirring. Thereafter, the temperature was raised to 80 ° C., 120.2 parts of ⁇ -valerolactone was gradually added at the same temperature, 79 parts of isopropyl alcohol was added, and the mixture was reacted for 2 hours.
  • Production Example 5 (Production of amide group-containing diol 5)
  • 135 parts of methyl glycolate was charged into a reactor equipped with a stirrer, and then cooled in an ice-water bath, and 36 parts of ethylenediamine was gradually added dropwise. Subsequently, it stirred for 30 minutes, Then, it heated up at 100 degreeC and stirred for 5 hours and made it react at the same temperature.
  • Example 1 (Production of thermoplastic polyurethane resin 1) Under a nitrogen atmosphere, 53.46 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value: 54.8 mgKOH / g, manufactured by NOF Corporation) was added to a reactor equipped with a stirrer, and heated at 80 ° C. for 1 hour.
  • prepolymer an isocyanate group-terminated urethane prepolymer
  • DMAc dimethylacetamide
  • reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
  • thermoplastic polyurethane resin (polyurethane elastomer) 1 was obtained by drying the obtained white solid under reduced pressure at 80 ° C.
  • Table 1 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 1.
  • each 80 ⁇ 80 ⁇ 0.3 mm 5 parts of the thermoplastic polyurethane resin 1 was preheated for 5 minutes, pressurized at 5 MPa for 2 minutes, and then pressurized at 2.5 MPa using a press plate set at 20 ° C. installed in the same press.
  • a sheet sample for measurement was prepared by cooling for a minute.
  • the hot plate was a 5 mm thick brass plate.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 1.
  • thermoplastic polyurethane resin 1 25 parts was dissolved in 75 parts of DMAc to prepare a thermoplastic polyurethane resin solution. The solution was coated on a polypropylene plate using an applicator so as to have a thickness of 160 ⁇ m, and then DMAc was volatilized and removed for 1 hour in a nitrogen atmosphere with a dryer set at 100 ° C. Thus, a cast film of the thermoplastic polyurethane resin 1 having a thickness of 20 ⁇ m was formed.
  • Example 2 (Production of thermoplastic polyurethane resin 2) Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 32.08 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF) and 21.03 parts of poly (ethylene oxide). -Tetrahydrofuran) copolymer (trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) manufactured by NOF Corporation was added and heated at 80 ° C. for 1 hour.
  • polyethylene glycol trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF
  • -Tetrahydrofuran copolymer trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g
  • reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
  • thermoplastic polyurethane resin polyurethane elastomer
  • Table 1 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 2.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 1.
  • Example 3 (Production of thermoplastic polyurethane resin 3) Under a nitrogen atmosphere, 58.71 parts of a poly (ethylene oxide-tetrahydrofuran) copolymer (trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) manufactured by NOF CORPORATION was added to a reactor equipped with a stirrer. And heated at 80 ° C. for 1 hour.
  • a poly (ethylene oxide-tetrahydrofuran) copolymer trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g
  • reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
  • thermoplastic polyurethane resin polyurethane elastomer
  • Table 1 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 3.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 1.
  • Example 4 (Production of thermoplastic polyurethane resin 4) Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 29.85 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF) and 29.36 parts of poly (ethylene oxide). -Tetrahydrofuran) copolymer (trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) manufactured by NOF Corporation was added and heated at 80 ° C. for 1 hour.
  • polyethylene glycol trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF
  • -Tetrahydrofuran copolymer trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g
  • reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
  • thermoplastic polyurethane resin polyurethane elastomer
  • Table 1 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 4.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 1.
  • Example 5 (Production of thermoplastic polyurethane resin 5) Under a nitrogen atmosphere, 59.44 parts of polytetraethylene ether glycol (trade name: PTG-2000SN, hydroxyl value: 57.0 mgKOH / g) manufactured by Hodogaya Chemical Co., Ltd. was added to a reactor equipped with a stirrer, and the mixture was heated at 80 ° C. for 1 hour. Heated.
  • polytetraethylene ether glycol trade name: PTG-2000SN, hydroxyl value: 57.0 mgKOH / g
  • reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
  • thermoplastic polyurethane resin polyurethane elastomer
  • Table 2 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 5.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 2.
  • Example 6 (Production of thermoplastic polyurethane resin 6) In a reactor equipped with a stirrer under a nitrogen atmosphere, 56.5 parts of polyester polyol (trade name: Takelac U-2024, hydroxyl value 56.3 mgKOH / g, manufactured by Mitsui Chemicals) And heated at 80 ° C. for 1 hour.
  • polyester polyol trade name: Takelac U-2024, hydroxyl value 56.3 mgKOH / g, manufactured by Mitsui Chemicals
  • reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
  • thermoplastic polyurethane resin polyurethane elastomer
  • Table 2 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 6.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 2.
  • Example 7 (Production of thermoplastic polyurethane resin 7)
  • 30.07 parts of the amide group-containing diol 1 101.3 parts of polycaprolactone polyol (trade name: PLACEL220 manufactured by Daicel Chemical Industries), and 170 parts of dehydrated dimethyl Acetamide (manufactured by Wako Pure Chemical Industries, Ltd.) was added and heated and stirred at 100 ° C. to obtain a uniform solution.
  • PLACEL220 manufactured by Daicel Chemical Industries
  • dehydrated dimethyl Acetamide manufactured by Wako Pure Chemical Industries, Ltd.
  • thermoplastic polyurethane resin polyurethane elastomer 7.
  • Table 2 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 7.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 2.
  • Example 8 (Production of thermoplastic polyurethane resin 8) Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 35.31 parts of amide group-containing diol 1, 118.90 parts of polycarbonate polyol (trade name: Duranol T5652 manufactured by Asahi Kasei Chemicals), and 200 parts of dehydrated dimethyl. Acetamide (manufactured by Wako Pure Chemical Industries, Ltd.) was added and heated and stirred at 100 ° C. to obtain a uniform solution.
  • thermoplastic polyurethane resin polyurethane elastomer 8.
  • Table 2 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 8.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 2.
  • Example 9 (Production of thermoplastic polyurethane resin 9) Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 32.08 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF) and 21.03 parts of poly (ethylene oxide). -Tetrahydrofuran) copolymer (trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) manufactured by NOF Corporation was added and heated at 80 ° C. for 1 hour.
  • polyethylene glycol trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF
  • -Tetrahydrofuran copolymer trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g
  • reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
  • thermoplastic polyurethane resin polyurethane elastomer
  • Table 3 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 9.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 3.
  • Example 10 (Production of thermoplastic polyurethane resin 10) Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 29.85 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF) and 29.36 parts of poly (ethylene oxide). -Tetrahydrofuran) copolymer (trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) manufactured by NOF Corporation was added and heated at 80 ° C. for 1 hour.
  • polyethylene glycol trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF
  • -Tetrahydrofuran copolymer trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g
  • reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
  • thermoplastic polyurethane resin polyurethane elastomer 10.
  • Table 3 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 10.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 3.
  • Example 11 (Production of thermoplastic polyurethane resin 11) Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 29.85 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF) and 29.36 parts of poly (ethylene oxide). -Tetrahydrofuran) copolymer (manufactured by NOF Corporation, trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) was added and heated at 80 ° C. for 1 hour.
  • polyethylene glycol trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF
  • -Tetrahydrofuran copolymer manufactured by NOF Corporation, trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g
  • reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
  • thermoplastic polyurethane resin polyurethane elastomer
  • Table 3 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 11.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 3.
  • Example 12 Production of thermoplastic polyurethane resin 12
  • a reactor equipped with a stirrer was charged with 29.85 parts of polyethylene glycol (manufactured by NOF Corporation, trade name: PEG # 2000U, hydroxyl value 54.8 mgKOH / g), and 29.36 parts of poly ( An ethylene oxide-tetrahydrofuran) copolymer (manufactured by NOF Corporation, trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) was added, and the mixture was heated at 80 ° C. for 1 hour.
  • reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
  • thermoplastic polyurethane resin polyurethane elastomer
  • Table 3 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 12.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 3.
  • Comparative Example 1 (Production of thermoplastic polyurethane resin 13) Under a nitrogen atmosphere, 53.46 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value: 54.8 mgKOH / g, manufactured by NOF Corporation) was added to a reactor equipped with a stirrer, and heated at 80 ° C. for 1 hour.
  • polyethylene glycol trade name: PEG # 2000U, hydroxyl value: 54.8 mgKOH / g, manufactured by NOF Corporation
  • reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
  • thermoplastic polyurethane resin polyurethane elastomer
  • Table 4 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 13.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 4.
  • Comparative Example 2 (Production of thermoplastic polyurethane resin 14) Under a nitrogen atmosphere, 70.11 poly (ethylene oxide-tetrahydrofuran) copolymer (trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g, manufactured by NOF) was added to a reactor equipped with a stirrer. Heated at 80 ° C. for 1 hour.
  • 70.11 poly (ethylene oxide-tetrahydrofuran) copolymer (trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g, manufactured by NOF) was added to a reactor equipped with a stirrer. Heated at 80 ° C. for 1 hour.
  • reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
  • thermoplastic polyurethane resin polyurethane elastomer 14.
  • Table 4 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 14.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 4.
  • Comparative Example 3 (Production of thermoplastic polyurethane resin 15) Under a nitrogen atmosphere, 30.7 parts of a poly (ethylene oxide-tetrahydrofuran) copolymer (trade name: polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) manufactured by NOF CORPORATION was added to a reactor equipped with a stirrer. And heated at 80 ° C. for 1 hour.
  • a poly (ethylene oxide-tetrahydrofuran) copolymer trade name: polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g
  • reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
  • thermoplastic polyurethane resin polyurethane elastomer
  • Table 4 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 15.
  • thermomechanical analysis TMA The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 4.
  • PEG # 2000U polyethylene glycol, number average molecular weight 2000, hydroxyl value 54.8 mgKOH / g
  • NOF PC-DC-1800E polyether polyol (polyserine DC-1800E), poly (ethylene oxide-tetrahydrofuran) copolymer, Number average molecular weight 1,800, hydroxyl value 63.3 mg KOH / g
  • NOF PTG-2000SN polytetraethylene ether glycol, number average molecular weight 2000, hydroxyl value 57.0 mg KOH / g
  • Hodogaya Chemical Takelac U-2024 polyester polyol, Number average molecular weight 2000, hydroxyl value 56 mgKOH / g
  • Mitsui Chemicals PACCEL220 polycaprolactone polyol, number average molecular weight 2000, hydroxyl value 56 mgKOH / g
  • Daicel Chemical Duranol T 652 Polycarbon
  • thermoplastic polyurethane resin of the present invention can be used in various industrial fields, and is particularly effective in industrial fields where moisture permeability is required.

Abstract

Disclosed is a thermoplastic polyurethane resin which is obtained by at least having a polyisocyanate, a high molecular weight polyol and a chain extender react with each other. The chain extender contains an amide group-containing diol that is represented by general formula (1), and the content of a hard segment that is formed by the reaction between the polyisocyanate and the amide group-containing diol is 30-60% by mass relative to the total mass of the thermoplastic polyurethane resin. HO-R2-CO-NH-R1-NH-CO-R3-OH (1) (In the formula, R1 represents a divalent aliphatic hydrocarbon group having 2-8 carbon atoms, a divalent alicycle-containing hydrocarbon group having 3-8 carbon atoms or a divalent aromatic aliphatic hydrocarbon group having 7 or 8 carbon atoms; and R2 and R3 may be the same or different and each represents a divalent aliphatic hydrocarbon group having 1-5 carbon atoms or a divalent alicycle-containing hydrocarbon group having 3-5 carbon atoms.)

Description

熱可塑性ポリウレタン樹脂および成形品Thermoplastic polyurethane resins and molded products
 本発明は、熱可塑性ポリウレタン樹脂および成形品に関する。 The present invention relates to a thermoplastic polyurethane resin and a molded product.
 ポリウレタン樹脂は、例えば、熱硬化性ポリウレタン樹脂(注型ポリウレタン樹脂)、熱可塑性ポリウレタン樹脂、混練型ポリウレタン樹脂(ミラブルポリウレタン樹脂)などとして製造されており、例えば、エラストマー、弾性成形品(スパンデックス)、RIM成形品、発泡成形品などとして、広範に使用されている。 The polyurethane resin is manufactured, for example, as a thermosetting polyurethane resin (cast polyurethane resin), a thermoplastic polyurethane resin, a kneaded polyurethane resin (millable polyurethane resin), etc., for example, an elastomer, an elastic molded product (spandex), Widely used as RIM molded products, foam molded products and the like.
 熱可塑性ポリウレタン樹脂(TPU)は、ポリイソシアネート、高分子量ポリオールおよび鎖伸長剤(低分子量ポリオール)の反応により得られるゴム弾性体であって、ポリイソシアネートおよび鎖伸長剤の反応により形成されるハードセグメントと、ポリイソシアネートおよび高分子量ポリオールの反応により形成されるソフトセグメントとを備えている。 Thermoplastic polyurethane resin (TPU) is a rubber elastic body obtained by reaction of polyisocyanate, high molecular weight polyol and chain extender (low molecular weight polyol), and is a hard segment formed by reaction of polyisocyanate and chain extender And a soft segment formed by the reaction of polyisocyanate and high molecular weight polyol.
 このような熱可塑性ポリウレタン樹脂では、ポリイソシアネート、高分子量ポリオールおよび鎖伸長剤の種類や配合割合を変更することにより、弾性率などの各種物性を調整することができ、また、耐摩耗性、機械強度(引張強度など)などの優れた特性を確保することができる。 In such a thermoplastic polyurethane resin, various physical properties such as elastic modulus can be adjusted by changing the types and blending ratios of polyisocyanate, high molecular weight polyol and chain extender. Excellent properties such as strength (such as tensile strength) can be ensured.
 そのため、熱可塑性ポリウレタン樹脂は、例えば、押出成形、射出成形など、熱可塑性樹脂の成形加工方法における成形材料として用いられており、例えば、靴のソールおよびインソール、スキー靴、自動車外装部品および内装部品、電装部品、キャスター類、ロール、ホース、チューブ、シート、繊維などの各種産業分野において、よく使用されている。 Therefore, thermoplastic polyurethane resins are used as molding materials in thermoplastic resin molding methods such as extrusion molding and injection molding, for example, shoe soles and insoles, ski shoes, automobile exterior parts and interior parts. It is often used in various industrial fields such as electrical parts, casters, rolls, hoses, tubes, sheets and fibers.
 一方、混練型ポリウレタン樹脂は、実質的にハードセグメントを含有しないポリウレタン樹脂であって、例えば、ゴム練り装置などを用いて、容易に混練成形することができ、加硫により硬化させることができるため、例えば、搬送ベルト、駆動ベルト、搬送ロール、駆動ロールなどにおいて、よく使用されている。 On the other hand, a kneaded polyurethane resin is a polyurethane resin that does not substantially contain a hard segment, and can be easily kneaded and molded by using, for example, a rubber kneader and can be cured by vulcanization. For example, it is often used in a transport belt, a drive belt, a transport roll, a drive roll, and the like.
 このような混練型ポリウレタン樹脂として、耐熱性、機械強度などを向上させるべく、例えば、4,4´-ジアミノジフェニルメタン、4,4´-ジアミノジシクロヘキシルメタン、ヘキサメチレンジアミン、エチレンジアミン、ブチレンジアミン、p-フェニレンジアミンなどのアミン化合物からなる重合開始剤と、ε-カプロラクトンとを反応させ、ε-カプロラクトンの平均連鎖の数が約6であるアミド基含有ポリ-ε-カプロラクトンジオールを製造し、その後、得られたアミド基含有ポリ-ε-カプロラクトンジオールと、4,4´-ジフェニルメタンジイソシアネートとを反応させ、ミラブルウレタンタイプのポリアミドエステルウレタンを製造する方法が、提案されている(例えば、下記特許文献1(実施例1~12)参照。)。 As such a kneaded polyurethane resin, for example, 4,4′-diaminodiphenylmethane, 4,4′-diaminodicyclohexylmethane, hexamethylenediamine, ethylenediamine, butylenediamine, p- A polymerization initiator composed of an amine compound such as phenylenediamine is reacted with ε-caprolactone to produce an amide group-containing poly-ε-caprolactone diol having an average chain number of ε-caprolactone of about 6, and then obtained. A method of producing a millable urethane type polyamide ester urethane by reacting the obtained amide group-containing poly-ε-caprolactone diol with 4,4′-diphenylmethane diisocyanate has been proposed (for example, Patent Document 1 below) See Examples 1-12).)
特開2000-302864号公報JP 2000-302864 A
 一方、熱可塑性ポリウレタン樹脂においても、耐熱性、熱安定性および機械強度の向上が、要求されている。 On the other hand, thermoplastic polyurethane resins are also required to be improved in heat resistance, thermal stability and mechanical strength.
 しかし、熱可塑性ポリウレタン樹脂は、合成後に再度溶融して成形する必要があるため、熱可塑性を維持しながら、耐熱性、熱安定性および機械強度を向上させる必要がある。 However, since the thermoplastic polyurethane resin needs to be melted and molded again after synthesis, it is necessary to improve heat resistance, thermal stability and mechanical strength while maintaining thermoplasticity.
 本発明の目的は、機械強度に優れるとともに、優れた耐熱性および熱安定性を備える熱可塑性ポリウレタン樹脂、および、その熱可塑性ポリウレタン樹脂を成形して得られる成形品を提供することにある。 An object of the present invention is to provide a thermoplastic polyurethane resin having excellent mechanical strength, excellent heat resistance and thermal stability, and a molded product obtained by molding the thermoplastic polyurethane resin.
 本発明の熱可塑性ポリウレタン樹脂は、ポリイソシアネートと、高分子量ポリオールと、鎖伸長剤とを、少なくとも反応させることにより得られる熱可塑性ポリウレタン樹脂であって、前記鎖伸長剤が、下記一般式(1)で示されるアミド基含有ジオールを含有し、前記ポリイソシアネートと、前記アミド基含有ジオールとの反応により形成されるハードセグメントの含有量が、前記熱可塑性ポリウレタン樹脂の総量に対して、30~60質量%であることを特徴としている。 The thermoplastic polyurethane resin of the present invention is a thermoplastic polyurethane resin obtained by reacting at least a polyisocyanate, a high molecular weight polyol, and a chain extender, and the chain extender is represented by the following general formula (1 The hard segment content formed by the reaction of the polyisocyanate and the amide group-containing diol is 30 to 60 with respect to the total amount of the thermoplastic polyurethane resin. It is characterized by mass%.
   HO-R-CO-NH-R-NH-CO-R-OH   (1)
(式中、Rは、炭素数2~8の2価の脂肪族炭化水素基、炭素数3~8の2価の脂環含有炭化水素基、または、炭素数7~8の2価の芳香脂肪族炭化水素基を示し、RおよびRは、互いに同一または相異なって、炭素数1~5の2価の脂肪族炭化水素基、または、炭素数3~5の2価の脂環含有炭化水素基を示す。)
 また、本発明の熱可塑性ポリウレタン樹脂では、前記アミド基含有ジオールが、下記一般式(2)で示されることが好適である。
HO—R 2 —CO—NH—R 1 —NH—CO—R 3 —OH (1)
(In the formula, R 1 is a divalent aliphatic hydrocarbon group having 2 to 8 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 8 carbon atoms, or a divalent aliphatic group having 7 to 8 carbon atoms. Each represents an araliphatic hydrocarbon group, and R 2 and R 3 are the same or different from each other and represent a divalent aliphatic hydrocarbon group having 1 to 5 carbon atoms or a divalent fatty acid having 3 to 5 carbon atoms. Indicates a ring-containing hydrocarbon group.)
In the thermoplastic polyurethane resin of the present invention, it is preferable that the amide group-containing diol is represented by the following general formula (2).
HO-(CH-CO-NH-R-NH-CO-(CH-OH(2)
(式中、Rは、上記式(1)のRと同意義を示す。)
 また、本発明の熱可塑性ポリウレタン樹脂では、前記アミド基含有ジオールが、脂肪族ジアミンと、ヒドロキシカルボン酸またはその誘導体との反応により得られることが好適である。
HO— (CH 2 ) 5 —CO—NH—R 1 —NH—CO— (CH 2 ) 5 —OH (2)
(Wherein, R 1 represents the same meaning as R 1 in the formula (1).)
In the thermoplastic polyurethane resin of the present invention, it is preferable that the amide group-containing diol is obtained by a reaction between an aliphatic diamine and hydroxycarboxylic acid or a derivative thereof.
 また、本発明の熱可塑性ポリウレタン樹脂では、前記高分子量ポリオールが、オキシエチレン基を含有し、前記オキシエチレン基の含有量が、前記熱可塑性ポリウレタン樹脂の総量に対して、20質量%以上、60質量%以下であることが好適である。 In the thermoplastic polyurethane resin of the present invention, the high-molecular-weight polyol contains an oxyethylene group, and the content of the oxyethylene group is 20% by mass or more, based on the total amount of the thermoplastic polyurethane resin. It is suitable that it is below mass%.
 また、本発明の熱可塑性ポリウレタン樹脂では、厚み20μmのフィルムにしたときの透湿度が10000g/m・24h以上であることが好適である。 Moreover, in the thermoplastic polyurethane resin of this invention, it is suitable that the water vapor transmission rate when it is set as a 20-micrometer-thick film is 10,000 g / m < 2 > * 24h or more.
 また、本発明の熱可塑性ポリウレタン樹脂では、軟化温度が160℃以上であることが好適である。 In the thermoplastic polyurethane resin of the present invention, it is preferable that the softening temperature is 160 ° C. or higher.
 また、本発明の成形品は、上記の熱可塑性ポリウレタン樹脂を成形することにより得られることを特徴としている。 The molded article of the present invention is characterized by being obtained by molding the thermoplastic polyurethane resin.
 また、本発明の成形品は、前記熱可塑性ポリウレタン樹脂をフィルムに成形することにより得られることが好適である。 Further, the molded article of the present invention is preferably obtained by molding the thermoplastic polyurethane resin into a film.
 また、本発明の成形品は、前記熱可塑性ポリウレタン樹脂を押出成形することにより得られることが好適である。 Further, it is preferable that the molded article of the present invention is obtained by extrusion molding of the thermoplastic polyurethane resin.
 また、本発明の成形品は、上記の熱可塑性ポリウレタン樹脂を、非プロトン性極性溶媒に溶解させ、熱可塑性ポリウレタン樹脂の溶液を調製し、その後、前記溶液から、前記非プロトン性極性有機溶媒を除去することにより、フィルムとして形成されることが好適である。 The molded product of the present invention is prepared by dissolving the thermoplastic polyurethane resin in an aprotic polar solvent to prepare a thermoplastic polyurethane resin solution, and then removing the aprotic polar organic solvent from the solution. It is suitable to form as a film by removing.
 本発明の熱可塑性ポリウレタン樹脂では、原料である鎖伸長剤が、上記一般式(1)で示されるアミド基含有ジオールを含有するとともに、その鎖伸長剤とポリイソシアネートとの反応により得られるハードセグメントの含有量が、熱可塑性ポリウレタン樹脂の総量に対して、30~60質量%に調整されるため、優れた機械強度を確保するとともに、優れた耐熱性および熱安定性を備えることができる。 In the thermoplastic polyurethane resin of the present invention, the chain extender as a raw material contains the amide group-containing diol represented by the general formula (1), and a hard segment obtained by reaction of the chain extender and polyisocyanate. Is adjusted to 30 to 60% by mass with respect to the total amount of the thermoplastic polyurethane resin, so that excellent mechanical strength can be ensured and excellent heat resistance and thermal stability can be provided.
 なお、耐熱性とは、昇温に伴う樹脂の熱変形に対する耐性(耐熱変形性)であって、加熱後の物性低下に対する耐性や、加熱による樹脂の一次構造の分解に対する耐性(耐熱分解性)とは区別される。また、熱安定性とは、上記の耐熱分解性に相当する。 The heat resistance refers to the resistance to heat deformation of the resin accompanying heat rise (heat deformation resistance), the resistance to deterioration of physical properties after heating, and the resistance to decomposition of the primary structure of the resin due to heating (heat decomposition resistance). It is distinguished from The thermal stability corresponds to the above-mentioned thermal decomposition resistance.
 また、本発明の成形品は、本発明の熱可塑性ポリウレタン樹脂を成形することにより得られるため、効率良く製造することができる。 Moreover, since the molded article of the present invention can be obtained by molding the thermoplastic polyurethane resin of the present invention, it can be produced efficiently.
 本発明の熱可塑性ポリウレタン樹脂は、合成後に再度加熱溶融できるポリウレタン樹脂であって、合成後に加熱溶融不能である熱硬化性ポリウレタン樹脂(注型ポリウレタン樹脂)とは区別される。 The thermoplastic polyurethane resin of the present invention is a polyurethane resin that can be heated and melted again after synthesis, and is distinguished from a thermosetting polyurethane resin (cast polyurethane resin) that cannot be heated and melted after synthesis.
 従って、熱可塑性ポリウレタン樹脂は、一旦、ペレットなどの成形材料として成形し、その後、例えば、押出成形、射出成形などにより、任意の形状に成形することができる。 Therefore, the thermoplastic polyurethane resin can be once molded as a molding material such as pellets, and then molded into an arbitrary shape by, for example, extrusion molding or injection molding.
 このような熱可塑性ポリウレタン樹脂は、ポリイソシアネートと、高分子量ポリオールと、鎖伸長剤とを、少なくとも反応させることにより得られる。 Such a thermoplastic polyurethane resin can be obtained by reacting at least a polyisocyanate, a high molecular weight polyol, and a chain extender.
 このような熱可塑性ポリウレタン樹脂は、詳しくは後述するが、ポリイソシアネートおよび高分子量ポリオールが少なくとも反応することにより形成されるソフトセグメントと、ポリイソシアネートおよび鎖伸長剤が少なくとも反応することにより形成されるハードセグメントとを備えている。 Such a thermoplastic polyurethane resin, which will be described in detail later, is a hard segment formed by at least the reaction of the polyisocyanate and the chain extender with the soft segment formed by the reaction of the polyisocyanate and the high molecular weight polyol. With segments.
 ポリイソシアネートは、イソシアネート基を2つ以上有する有機化合物であって、例えば、芳香族ジイソシアネート、芳香脂肪族ジイソシアネート、脂環族ジイソシアネート、脂肪族ジイソシアネートなどのジイソシアネートなどが挙げられる。 Polyisocyanate is an organic compound having two or more isocyanate groups, and examples thereof include diisocyanates such as aromatic diisocyanates, araliphatic diisocyanates, alicyclic diisocyanates, and aliphatic diisocyanates.
 芳香族ジイソシアネートとしては、例えば、m-またはp-フェニレンジイソシアネートもしくはその混合物、2,4-または2,6-トリレンジイソシアネートもしくはその混合物(TDI)、4,4′-、2,4′-または2,2′-ジフェニルメタンジイソシアネートもしくはその混合物(MDI)、4,4′-トルイジンジイソシアネート(TODI)、4,4′-ジフェニルエーテルジイソシアネート、4,4′-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート(NDI)などが挙げられる。 Examples of the aromatic diisocyanate include m- or p-phenylene diisocyanate or a mixture thereof, 2,4- or 2,6-tolylene diisocyanate or a mixture thereof (TDI), 4,4'-, 2,4'- or 2,2'-diphenylmethane diisocyanate or mixtures thereof (MDI), 4,4'-toluidine diisocyanate (TODI), 4,4'-diphenyl ether diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI) Etc.
 芳香脂肪族ジイソシアネートとしては、例えば、1,3-または1,4-キシリレンジイソシアネートもしくはその混合物(XDI)、1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物(TMXDI)、ω,ω′-ジイソシアネート-1,4-ジエチルベンゼンなどが挙げられる。 Examples of the araliphatic diisocyanate include 1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), ω , Ω′-diisocyanate-1,4-diethylbenzene, and the like.
 脂環族ジイソシアネートとしては、例えば、1,3-シクロペンテンジイソシアネート、1,3-または1,4-シクロヘキサンジイソシアネートもしくはその混合物(CHDI)、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート;IPDI)、4,4′-、2,4′-または2,2′-ジシクロヘキシルメタンジイソシアネートもしくはその混合物(水添MDI、H12MDI)、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート、1,3-または1,4-ビス(イソシアナトメチル)シクロヘキサンもしくはその混合物(水添XDI、HXDI)、ビス(イソシアナトメチル)ノルボルナン(NBDI)などが挙げられる。 Examples of the alicyclic diisocyanate include 1,3-cyclopentene diisocyanate, 1,3- or 1,4-cyclohexane diisocyanate or a mixture thereof (CHDI), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate ( Isophorone diisocyanate (IPDI), 4,4'-, 2,4'- or 2,2'-dicyclohexylmethane diisocyanate or mixtures thereof (hydrogenated MDI, H 12 MDI), methyl-2,4-cyclohexane diisocyanate, methyl- 2,6-cyclohexane diisocyanate, 1,3- or 1,4-bis (isocyanatomethyl) cyclohexane or mixtures thereof (hydrogenated XDI, H 6 XDI), bis (isocyanatomethyl) norbornane (NBDI), etc. Can be mentioned.
 脂肪族ジイソシアネートとしては、例えば、エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、1,2-、2,3-または1,3-ブチレンジイソシアネート、2,4,4-または2,2,4-トリメチルヘキサメチレンジイソシアネートなどが挙げられる。 Examples of the aliphatic diisocyanate include ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 1,2-, 2,3- or 1,3. -Butylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate and the like.
 また、ポリイソシアネートとしては、例えば、上記したジイソシアネート(芳香族ジイソシアネート、芳香脂肪族ジイソシアネート、脂環族ジイソシアネート、脂肪族ジイソシアネートなど)の誘導体も挙げられる。 Further, examples of the polyisocyanate include derivatives of the above-mentioned diisocyanates (aromatic diisocyanates, araliphatic diisocyanates, alicyclic diisocyanates, aliphatic diisocyanates, etc.).
 ジイソシアネートの誘導体としては、例えば、上記したジイソシアネートの多量体(例えば、2量体、3量体(例えば、イソシアヌレート変性体、イミノオキサジアジンジオン変性体)、5量体、7量体など)、アロファネート変性体(例えば、上記したジイソシアネートと、アルコール類との反応より生成するアロファネート変性体など)、ポリオール変性体(例えば、ジイソシアネートと低分子量ポリオール(後述)との反応より生成するポリオール変性体(ポリオール付加体、ウレタン変性体)など)、ビウレット変性体(例えば、上記したジイソシアネートと、水やアミン類との反応により生成するビウレット変性体など)、ウレア変性体(例えば、上記したジイソシアネートとジアミンとの反応により生成するウレア変性体など)、オキサジアジントリオン変性体(例えば、上記したジイソシアネートと炭酸ガスとの反応により生成するオキサジアジントリオンなど)、カルボジイミド変性体(上記したジイソシアネートの脱炭酸縮合反応により生成するカルボジイミド変性体など)、ウレトジオン変性体、ウレトンイミン変性体などが挙げられる。 Examples of the diisocyanate derivatives include the above-described diisocyanate multimers (eg, dimers, trimers (eg, isocyanurate-modified products, iminooxadiazine dione-modified products), pentamers, and 7-mers). , Allophanate-modified products (for example, allophanate-modified products generated from the reaction of the above-mentioned diisocyanates with alcohols), polyol-modified products (for example, polyol-modified products generated from the reaction of diisocyanate and low molecular weight polyols (described later) ( Polyol adducts, urethane modified products, etc.), biuret modified products (for example, biuret modified products produced by reaction of the above-mentioned diisocyanates with water and amines), urea modified products (for example, the above-mentioned diisocyanates and diamines) Modified urea produced by the reaction of , Oxadiazine trione-modified products (for example, oxadiazine trione produced by the reaction of the above-mentioned diisocyanate and carbon dioxide gas), carbodiimide-modified products (carbodiimide-modified product produced by the above-mentioned decarboxylation condensation reaction of diisocyanate), Examples include modified uretdione and modified uretonimine.
 これらポリイソシアネートは、単独使用または2種類以上併用することができる。 These polyisocyanates can be used alone or in combination of two or more.
 ポリイソシアネートとして、好ましくは、m-またはp-フェニレンジイソシアネートもしくはその混合物、2,4-または2,6-トリレンジイソシアネートもしくはその混合物(TDI)、4,4′-、2,4′-または2,2′-ジフェニルメタンジイソシアネートもしくはその混合物(MDI)、1,5-ナフタレンジイソシアネート(NDI)
、1,3-または1,4-キシリレンジイソシアネートもしくはその混合物(XDI)、1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物(TMXDI)、1,4-または1,3-シクロヘキサンジイソシアネートもしくはその混合物(CHDI)、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート;IPDI)、4,4′-、2,4′-または2,2′-ジシクロヘキシルメタンジイソシアネートもしくはその混合物(水添MDI、H12MDI)、1,3-または1,4-ビス(イソシアナトメチル)シクロヘキサンもしくはその混合物(水添XDI、HXDI)、ビス(イソシアナトメチル)ノルボルナン(NBDI)、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、および、それらの誘導体が挙げられる。より好ましくは、m-またはp-フェニレンジイソシアネートもしくはその混合物、4,4′-、2,4′-または2,2′-ジフェニルメタンジイソシアネートもしくはその混合物(MDI)、1,5-ナフタレンジイソシアネート(NDI)、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート;IPDI)、4,4′-、2,4′-または2,2′-ジシクロヘキシルメタンジイソシアネートもしくはその混合物(水添MDI、H12MDI)、1,3-または1,4-ビス(イソシアナトメチル)シクロヘキサンもしくはその混合物(水添XDI、HXDI)、ビス(イソシアナトメチル)ノルボルナン(NBDI)、ヘキサメチレンジイソシアネート(HDI)、および、それらの誘導体が挙げられ、さらに好ましくは、m-またはp-フェニレンジイソシアネートもしくはその混合物、4,4′-、2,4′-または2,2′-ジフェニルメタンジイソシアネートもしくはその混合物(MDI)、4,4′-、2,4′-または2,2′-ジシクロヘキシルメタンジイソシアネートもしくはその混合物(水添MDI、H12MDI)、1,5-ナフタレンジイソシアネート(NDI)、および、それらのイソシアヌレート変性体、ポリオール変性体(ポリオール付加体、ウレタン変性体)、カルボジイミド変性体、ウレトンイミン変性体が挙げられる。
The polyisocyanate is preferably m- or p-phenylene diisocyanate or a mixture thereof, 2,4- or 2,6-tolylene diisocyanate or a mixture thereof (TDI), 4,4'-, 2,4'- or 2 , 2'-Diphenylmethane diisocyanate or its mixture (MDI), 1,5-naphthalene diisocyanate (NDI)
1,3- or 1,4-xylylene diisocyanate or a mixture thereof (XDI), 1,3- or 1,4-tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), 1,4- or 1,3- Cyclohexane diisocyanate or mixtures thereof (CHDI), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate; IPDI), 4,4'-, 2,4'- or 2,2'-dicyclohexylmethane Diisocyanate or a mixture thereof (hydrogenated MDI, H 12 MDI), 1,3- or 1,4-bis (isocyanatomethyl) cyclohexane or a mixture thereof (hydrogenated XDI, H 6 XDI), bis (isocyanatomethyl) norbornane (NBDI), penta Examples include methylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), and derivatives thereof. More preferably, m- or p-phenylene diisocyanate or a mixture thereof, 4,4'-, 2,4'- or 2,2'-diphenylmethane diisocyanate or a mixture thereof (MDI), 1,5-naphthalene diisocyanate (NDI) 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate; IPDI), 4,4'-, 2,4'- or 2,2'-dicyclohexylmethane diisocyanate or mixtures thereof (hydrogenated MDI , H 12 MDI), 1,3- or 1,4-bis (isocyanatomethyl) cyclohexane or mixtures thereof (hydrogenated XDI, H 6 XDI), bis (isocyanatomethyl) norbornane (NBDI), hexamethylene diisocyanate ( HDI), And derivatives thereof, more preferably m- or p-phenylene diisocyanate or a mixture thereof, 4,4'-, 2,4'- or 2,2'-diphenylmethane diisocyanate or a mixture thereof (MDI), 4,4'-, 2,4'- or 2,2'-dicyclohexylmethane diisocyanate or mixtures thereof (hydrogenated MDI, H 12 MDI), 1,5-naphthalene diisocyanate (NDI), and their isocyanurate modification Body, polyol modified body (polyol adduct, urethane modified body), carbodiimide modified body, uretonimine modified body.
 高分子量ポリオールは、水酸基を2つ以上有する数平均分子量400以上の有機化合物であって、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、アクリルポリオール、エポキシポリオール、天然油ポリオール、シリコーンポリオール、フッ素ポリオール、ポリオレフィンポリオール、ポリウレタンポリオールなどのマクロポリオールが挙げられる。 The high molecular weight polyol is an organic compound having two or more hydroxyl groups and a number average molecular weight of 400 or more. For example, polyether polyol, polyester polyol, polycarbonate polyol, acrylic polyol, epoxy polyol, natural oil polyol, silicone polyol, fluorine polyol , Macropolyols such as polyolefin polyol and polyurethane polyol.
 ポリエーテルポリオールは、例えば、低分子量ポリオール(後述)および/または低分子量ポリアミン(後述)を開始剤として、これにアルキレンオキサイド(例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、テトラヒドロフラン、3-メチルテトラヒドロフラン、オキセタン化合物などの炭素数2-5のアルキレンオキサイド)の開環付加重合(単独重合または共重合(アルキレンオキサイドとして、エチレンオキサイドおよびプロピレンオキサイドが併用される場合には、ブロック共重合および/またはランダム共重合))させることにより得ることができる。 The polyether polyol is, for example, a low molecular weight polyol (described later) and / or a low molecular weight polyamine (described later) as an initiator, and an alkylene oxide (for example, ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, 3-methyltetrahydrofuran, Ring-opening addition polymerization of an alkylene oxide having 2 to 5 carbon atoms such as an oxetane compound (homopolymerization or copolymerization (when ethylene oxide and propylene oxide are used in combination as alkylene oxide, block copolymerization and / or random copolymerization) Polymerization)).
 低分子量ポリオールは、水酸基を2つ以上有する数平均分子量400未満の有機化合物であって、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,6-ジメチル-1-オクテン-3,8-ジオール、アルカン(炭素数7~22)ジオール、シクロヘキサンジオール、シクロヘキサンジメタノール、水素化ビスフェノールA、1,4-ジヒドロキシ-2-ブテン、ビスヒドロキシエトキシベンゼン、キシレングリコール、ビスヒドロキシエチレンテレフタレート、ビスフェノールA、ジエチレングリコール、トリオキシエチレングリコール、テトラオキシエチレングリコール、ペンタオキシエチレングリコール、ヘキサオキシエチレングリコール、ジプロピレングリコール、トリオキシプロピレングリコール、テトラオキシプロピレングリコール、ペンタオキシプロピレングリコール、ヘキサオキシプロピレングリコールなどの2価アルコール、例えば、グリセリン、2-メチル-2-ヒドロキシメチル-1,3-プロパンジオール、2,4-ジヒドロキシ-3-ヒドロキシメチルペンタン、1,2,6-ヘキサントリオール、トリメチロールプロパン、2,2-ビス(ヒドロキシメチル)-3-ブタノールおよびその他の脂肪族トリオール(炭素数8~24)などの3価アルコール、例えば、テトラメチロールメタン(ペンタエリスリトール)、ジグリセリンなどの4価アルコール、例えば、キシリトールなどの5価アルコール、例えば、ソルビトール、マンニトール、アリトール、イジトール、ダルシトール、アルトリトール、イノシトール、ジペンタエリスリトールなどの6価アルコール、例えば、ペルセイトールなどの7価アルコール、例えば、ショ糖などの8価アルコールなどが挙げられる。また、多価アルコールとしては、上記の1~8価アルコールに、さらに、例えば、プロピレンオキサイド、エチレンオキサイドなどのアルキレンオキサイドを付加した付加重合体(ポリオキシアルキレンポリオール)も含まれる。 The low molecular weight polyol is an organic compound having two or more hydroxyl groups and a number average molecular weight of less than 400, such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butane. Diol, 1,2-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1, 5-pentanediol, 1,6-hexanediol, 2,6-dimethyl-1-octene-3,8-diol, alkane (carbon number 7 to 22) diol, cyclohexanediol, cyclohexanedimethanol, hydrogenated bisphenol A, 1,4-dihydroxy-2-butene, bishydroxyethoxybenzene, xyl Glycol, bishydroxyethylene terephthalate, bisphenol A, diethylene glycol, trioxyethylene glycol, tetraoxyethylene glycol, pentaoxyethylene glycol, hexaoxyethylene glycol, dipropylene glycol, trioxypropylene glycol, tetraoxypropylene glycol, pentaoxypropylene Dihydric alcohols such as glycol and hexaoxypropylene glycol such as glycerin, 2-methyl-2-hydroxymethyl-1,3-propanediol, 2,4-dihydroxy-3-hydroxymethylpentane, 1,2,6- Hexanetriol, trimethylolpropane, 2,2-bis (hydroxymethyl) -3-butanol and other aliphatic triols ( A trihydric alcohol such as a prime number of 8 to 24), for example, tetramethylolmethane (pentaerythritol), a tetrahydric alcohol such as diglycerin, for example, a pentahydric alcohol such as xylitol, such as sorbitol, mannitol, allitol, iditol, dulcitol, Examples thereof include hexahydric alcohols such as altitol, inositol and dipentaerythritol, for example, 7-valent alcohols such as perseitol, and 8-valent alcohols such as sucrose. The polyhydric alcohol also includes an addition polymer (polyoxyalkylene polyol) obtained by adding an alkylene oxide such as propylene oxide or ethylene oxide to the above-mentioned mono- to octahydric alcohol.
 低分子量ポリアミンとしては、例えば、エチレンジアミン、1,3-プロパンジアミン、1,3-または1,4-ブタンジアミン、1,6-ヘキサメチレンジアミン、1,4-シクロヘキサンジアミン、3-アミノメチル-3,5,5-トリメチルシクロヘキシルアミン(イソホロンジアミン)、4,4’-ジシクロヘキシルメタンジアミン、2,5(2,6)-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、1,3-ビス(アミノメチル)シクロヘキサン、ヒドラジン、o、mまたはp-トリレンジアミン(TDA、OTD)などの低分子量ジアミン、例えば、ジエチレントリアミンなどの低分子量トリアミン、例えば、トリエチレンテトラミン、テトラエチレンペンタミンなどのアミノ基を4個以上有する低分子量ポリアミンなどが挙げられる。 Examples of the low molecular weight polyamine include ethylenediamine, 1,3-propanediamine, 1,3- or 1,4-butanediamine, 1,6-hexamethylenediamine, 1,4-cyclohexanediamine, and 3-aminomethyl-3. , 5,5-trimethylcyclohexylamine (isophoronediamine), 4,4'-dicyclohexylmethanediamine, 2,5 (2,6) -bis (aminomethyl) bicyclo [2.2.1] heptane, 1,3- Low molecular weight diamines such as bis (aminomethyl) cyclohexane, hydrazine, o, m or p-tolylenediamine (TDA, OTD), for example, low molecular weight triamines such as diethylenetriamine, such as triethylenetetramine, tetraethylenepentamine, etc. Low molecular weight polyamines with 4 or more amino groups Is mentioned.
 これら開始剤は、単独使用または2種類以上併用することができる。 These initiators can be used alone or in combination of two or more.
 開始剤として、好ましくは、低分子量ポリオールが挙げられる。 As the initiator, a low molecular weight polyol is preferably used.
 ポリエーテルポリオールとして、より具体的には、上記した低分子量グリコールを開始剤として、エチレンオキサイドおよび/またはプロピレンオキサイドなどのアルキレンオキサイドを付加反応させることによって得られる、ポリエチレングリコール、ポリプロピレングリコールおよび/またはポリエチレンポリプロピレングリコール(ランダムまたはブロック共重合体)などのポリオキシC2-3アルキレン(エチレンおよび/またはプロピレン)グリコールが挙げられる。 More specifically, as the polyether polyol, polyethylene glycol, polypropylene glycol and / or polyethylene obtained by addition reaction of an alkylene oxide such as ethylene oxide and / or propylene oxide with the above-described low molecular weight glycol as an initiator. Polyoxy C2-3 alkylene (ethylene and / or propylene) glycols such as polypropylene glycol (random or block copolymers).
 また、例えば、テトラヒドロフランの開環重合などによって得られるポリテトラメチレンエーテルグリコール(ポリオキシブチレングリコール)、テトラヒドロフランの重合単位に上記の2価アルコールを共重合させることにより得られる非晶性(常温液状)のポリテトラメチレンエーテルグリコール、テトラヒドロフランとエチレンオキサイドおよび/またはプロピレンオキサイドなどのアルキレンオキサイドとを共重合させることにより得られる、ポリオキシC2-4アルキレングリコールなどが挙げられる。 In addition, for example, polytetramethylene ether glycol (polyoxybutylene glycol) obtained by ring-opening polymerization of tetrahydrofuran, etc., and amorphous (liquid at room temperature) obtained by copolymerizing the above dihydric alcohol with a polymerization unit of tetrahydrofuran. Polytetramethylene ether glycol, and polyoxy C2-4 alkylene glycol obtained by copolymerizing tetrahydrofuran and alkylene oxide such as ethylene oxide and / or propylene oxide.
 ポリエステルポリオールとしては、例えば、低分子量ポリオールの1種または2種以上から選択される多価アルコールと、多塩基酸、そのアルキルエステル、その酸無水物、および、その酸ハライドとの縮合反応またはエステル交換反応により得られるポリエステルポリオールが挙げられる。 Examples of the polyester polyol include a condensation reaction or ester of a polyhydric alcohol selected from one or more of low molecular weight polyols, a polybasic acid, an alkyl ester thereof, an acid anhydride thereof, and an acid halide thereof. The polyester polyol obtained by exchange reaction is mentioned.
 低分子量ポリオールとしては、例えば、上記した低分子量ポリオールなどが挙げられる。 Examples of the low molecular weight polyol include the low molecular weight polyol described above.
 多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタル酸、アジピン酸、2,2-ジメチルマロン酸、2,2-ジメチルグルタル酸、1,1-ジメチル-1,3-ジカルボキシプロパン、3-メチル-3-エチルグルタル酸、メチルヘキサン二酸、スベリン酸、アゼライン酸、セバチン酸、その他の脂肪族ジカルボン酸(炭素数11~20)、水添ダイマー酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、オルトフタル酸、イソフタル酸、テレフタル酸、トルエンジカルボン酸、ダイマー酸、ヘット酸などが挙げられる。 Examples of the polybasic acid include oxalic acid, malonic acid, succinic acid, methyl succinic acid, glutaric acid, adipic acid, 2,2-dimethylmalonic acid, 2,2-dimethylglutaric acid, 1,1-dimethyl-1, 3-dicarboxypropane, 3-methyl-3-ethylglutaric acid, methylhexanedioic acid, suberic acid, azelaic acid, sebacic acid, other aliphatic dicarboxylic acids (11 to 20 carbon atoms), hydrogenated dimer acid, maleic Examples thereof include acid, fumaric acid, itaconic acid, citraconic acid, orthophthalic acid, isophthalic acid, terephthalic acid, toluene dicarboxylic acid, dimer acid and het acid.
 多塩基酸のアルキルエステルとしては、上記した多塩基酸のメチルエステル、エチルエステルなどが挙げられる。 Examples of the polybasic acid alkyl ester include the above-mentioned polybasic acid methyl ester and ethyl ester.
 酸無水物としては、上記した多塩基酸から誘導される酸無水物が挙げられ、例えば、無水シュウ酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水2-アルキル(炭素数12~18)コハク酸、無水テトラヒドロフタル酸、無水トリメリット酸などが挙げられる。 Examples of the acid anhydride include acid anhydrides derived from the above-mentioned polybasic acids. For example, oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, 2-alkyl anhydride (having 12 to 18 carbon atoms) ) Succinic acid, tetrahydrophthalic anhydride, trimellitic anhydride and the like.
 酸ハライドとしては、上記した多塩基酸から誘導される酸ハライドが挙げられ、例えば、シュウ酸ジクロライド、アジピン酸ジクロライド、セバチン酸ジクロライドなどが挙げられる。 Examples of the acid halide include acid halides derived from the polybasic acids described above, and examples include oxalic acid dichloride, adipic acid dichloride, and sebacic acid dichloride.
 また、ポリエステルポリオールとして、例えば、上記した低分子量ポリオールを開始剤として、ヒドロキシル基含有植物油脂肪酸(例えば、リシノレイン酸を含有するひまし油脂肪酸、12-ヒドロキシステアリン酸を含有する水添ひまし油脂肪酸など)などのヒドロキシカルボン酸を、公知の条件下、縮合反応させて得られる植物油系ポリエステルポリオールなどが挙げられる。 Examples of polyester polyols include hydroxyl group-containing vegetable oil fatty acids (for example, castor oil fatty acid containing ricinoleic acid, hydrogenated castor oil fatty acid containing 12-hydroxystearic acid, etc.) using the above-described low molecular weight polyol as an initiator. Examples thereof include vegetable oil-based polyester polyols obtained by subjecting hydroxycarboxylic acid to a condensation reaction under known conditions.
 また、ポリエステルポリオールとしては、例えば、上記した低分子量ポリオールを開始剤として、例えば、ε-カプロラクトン、γ-バレロラクトンなどのラクトン類を開環重合により得られる、ポリカプロラクトンポリオール、ポリバレロラクトンポリオールなどのラクトン系ポリオールなどが挙げられ、さらには、それらポリカプロラクトンポリオール、ポリバレロラクトンポリオールなどに上記の2価アルコールを共重合させることにより得られるラクトン系ポリエステルポリオールなどが挙げられる。 Examples of polyester polyols include polycaprolactone polyols and polyvalerolactone polyols obtained by ring-opening polymerization of lactones such as ε-caprolactone and γ-valerolactone using the above-described low molecular weight polyols as initiators. And lactone polyester polyols obtained by copolymerizing these dihydric alcohols with polycaprolactone polyols, polyvalerolactone polyols, and the like.
 ポリカーボネートポリオールとしては、例えば、上記した低分子量ポリオールを開始剤として、例えば、エチレンカーボネート、ジメチルカーボネートなどのカーボネート類を付加重合して得られる、ポリカーボネートポリオールなどが挙げられる。ポリカーボネートポリオールとしては、1,5-ペンタンジオールと1,6-ヘキサンジオールとの共重合体からなる非晶性ポリカーボネートジオール、1,4-ブタンジオールと1,6-ヘキサンジオールとの共重合体からなる非晶性ポリカーボネートジオール、3-メチル-1,5-ペンタンジオールからなる非晶性ポリカーボネートジオールが挙げられる。 Examples of the polycarbonate polyol include polycarbonate polyol obtained by addition polymerization of carbonates such as ethylene carbonate and dimethyl carbonate using the above-described low molecular weight polyol as an initiator. The polycarbonate polyol includes an amorphous polycarbonate diol composed of a copolymer of 1,5-pentanediol and 1,6-hexanediol, and a copolymer of 1,4-butanediol and 1,6-hexanediol. An amorphous polycarbonate diol composed of 3-methyl-1,5-pentanediol, and an amorphous polycarbonate diol composed of 3-methyl-1,5-pentanediol.
 アクリルポリオールとしては、例えば、1つ以上の水酸基を有する重合性単量体と、それに共重合可能な別の単量体とを共重合させることによって得られる共重合体が挙げられる。 Examples of the acrylic polyol include a copolymer obtained by copolymerizing a polymerizable monomer having one or more hydroxyl groups and another monomer copolymerizable therewith.
 水酸基を有する重合性単量体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2,2-ジヒドロキシメチルブチル(メタ)アクリレート、ポリヒドロキシアルキルマレエート、ポリヒドロキシアルキルフマレートなどが挙げられる。 Examples of the polymerizable monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, 2,2-dihydroxymethylbutyl (meth) acrylate, polyhydroxy Examples thereof include alkyl maleates and polyhydroxyalkyl fumarate.
 また、それらと共重合可能な別の単量体としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸アルキル(炭素数1~12)、マレイン酸、マレイン酸アルキル、フマル酸、フマル酸アルキル、イタコン酸、イタコン酸アルキル、スチレン、α-メチルスチレン、酢酸ビニル、(メタ)アクリロニトリル、3-(2-イソシアネート-2-プロピル)-α-メチルスチレン、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどが挙げられる。 Further, as other monomers copolymerizable therewith, for example, (meth) acrylic acid, alkyl (meth) acrylate (C1-12), maleic acid, alkyl maleate, fumaric acid, fumaric acid Alkyl, itaconic acid, alkyl itaconate, styrene, α-methylstyrene, vinyl acetate, (meth) acrylonitrile, 3- (2-isocyanato-2-propyl) -α-methylstyrene, trimethylolpropane tri (meth) acrylate, Examples include pentaerythritol tetra (meth) acrylate.
 そして、アクリルポリオールは、それら単量体を適当な溶剤および重合開始剤の存在下において共重合させることによって得ることができる。 The acrylic polyol can be obtained by copolymerizing these monomers in the presence of a suitable solvent and a polymerization initiator.
 エポキシポリオールとしては、例えば、上記した低分子量ポリオールと、例えば、エピクロルヒドリン、β-メチルエピクロルヒドリンなどの多官能ハロヒドリンとを反応させることよって得られるエポキシポリオールが挙げられる。 Examples of the epoxy polyol include an epoxy polyol obtained by reacting the above-described low molecular weight polyol with a polyfunctional halohydrin such as epichlorohydrin or β-methylepichlorohydrin.
 天然油ポリオールとしては、例えば、ひまし油、やし油などの水酸基含有天然油などが挙げられる。 Examples of the natural oil polyol include hydroxyl group-containing natural oils such as castor oil and coconut oil.
 シリコーンポリオールとしては、例えば、上記したアクリルポリオールの共重合において、共重合可能な別の単量体として、ビニル基含有のシリコーン化合物、例えば、γ-メタクリロキシプロピルトリメトキシシランなどが用いられる共重合体、および、末端アルコール変性ポリジメチルシロキサンなどが挙げられる。 As the silicone polyol, for example, in the copolymerization of the acrylic polyol described above, a vinyl group-containing silicone compound such as γ-methacryloxypropyltrimethoxysilane is used as another copolymerizable monomer. Examples include coalesced and terminal alcohol-modified polydimethylsiloxane.
 フッ素ポリオールとしては、例えば、上記したアクリルポリオールの共重合において、共重合可能な別の単量体としてビニル基含有のフッ素化合物、例えば、テトラフルオロエチレン、クロロトリフルオロエチレンなどが用いられる共重合体などが挙げられる。 As the fluorine polyol, for example, in the copolymerization of the above-mentioned acrylic polyol, a copolymer containing a vinyl group-containing fluorine compound, for example, tetrafluoroethylene, chlorotrifluoroethylene, etc., as another copolymerizable monomer Etc.
 ポリオレフィンポリオールとしては、例えば、ポリブタジエンポリオール、部分ケン化エチレン-酢酸ビニル共重合体などが挙げられる。 Examples of the polyolefin polyol include polybutadiene polyol and partially saponified ethylene-vinyl acetate copolymer.
 ポリウレタンポリオールは、上記のマクロポリオール(例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオールなど)を、イソシアネート基に対する水酸基の当量比(OH/NCO)が1を超過する割合で、上記ポリイソシアネートと反応させることによって、ポリエステルポリウレタンポリオール、ポリエーテルポリウレタンポリオール、ポリカーボネートポリウレタンポリオール、あるいは、ポリエステルポリエーテルポリウレタンポリオールなどとして得ることができる。 The polyurethane polyol reacts the above-mentioned macropolyol (for example, polyester polyol, polyether polyol, polycarbonate polyol, etc.) with the polyisocyanate at a ratio in which the equivalent ratio of hydroxyl group to isocyanate group (OH / NCO) exceeds 1. Thus, it can be obtained as a polyester polyurethane polyol, a polyether polyurethane polyol, a polycarbonate polyurethane polyol, or a polyester polyether polyurethane polyol.
 これら高分子量ポリオールは、単独使用または2種類以上併用することができる。 These high molecular weight polyols can be used alone or in combination of two or more.
 高分子量ポリオールとして、透湿性の観点から、好ましくは、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、アクリルポリオール、ポリオレフィンポリオール、ポリウレタンポリオールが挙げられ、より好ましくは、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、テトラヒドロフランとアルキレンオキサイドとの共重合体、ポリエステルポリオールが挙げられる。 As the high molecular weight polyol, from the viewpoint of moisture permeability, polyether polyol, polyester polyol, polycarbonate polyol, acrylic polyol, polyolefin polyol, and polyurethane polyol are preferable, and polyethylene glycol, polypropylene glycol, polyethylene polypropylene glycol, Examples thereof include polytetramethylene ether glycol, a copolymer of tetrahydrofuran and alkylene oxide, and polyester polyol.
 また、高分子量ポリオールとして、透湿性の観点から、とりわけ好ましくは、オキシエチレン基を有するポリエーテルポリオールが挙げられ、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンポリプロピレングリコール(ランダムまたはブロック共重合体)、テトラヒドロフランとエチレンオキサイドとの共重合体が挙げられる。 The high molecular weight polyol is particularly preferably a polyether polyol having an oxyethylene group from the viewpoint of moisture permeability, and specifically, polyethylene glycol, polypropylene glycol, polyethylene polypropylene glycol (random or block copolymer). ), And a copolymer of tetrahydrofuran and ethylene oxide.
 高分子量ポリオールの数平均分子量は、例えば、400~5000、好ましくは、1000~4000、より好ましくは、1500~3000である。 The number average molecular weight of the high molecular weight polyol is, for example, 400 to 5000, preferably 1000 to 4000, and more preferably 1500 to 3000.
 また、高分子量ポリオールの水酸基価は、例えば、22~280mgKOH/g、好ましくは、28~112mgKOH/g、より好ましくは、37~75mgKOH/gである。 The hydroxyl value of the high molecular weight polyol is, for example, 22 to 280 mgKOH / g, preferably 28 to 112 mgKOH / g, more preferably 37 to 75 mgKOH / g.
 なお、水酸基価は、JIS K 1557-1のA法またはB法に準拠するアセチル化法やフタル化法などから求めることができる。 The hydroxyl value can be determined from an acetylation method, a phthalation method, or the like based on JIS K 1557-1 Method A or Method B.
 鎖伸長剤は、アミド基含有ジオールを含有している。 The chain extender contains an amide group-containing diol.
 アミド基含有ジオールは、水酸基を2つ有する、アミド基含有有機化合物であって、下記一般式(1)で示される。 The amide group-containing diol is an amide group-containing organic compound having two hydroxyl groups, and is represented by the following general formula (1).
   HO-R-CO-NH-R-NH-CO-R-OH   (1)
(式中、Rは、炭素数2~8の2価の脂肪族炭化水素基、炭素数3~8の2価の脂環含有炭化水素基、または、炭素数7~8の2価の芳香脂肪族炭化水素基を示し、RおよびRは、互いに同一または相異なって、炭素数1~5の2価の脂肪族炭化水素基または炭素数3~5の2価の脂環含有炭化水素基を示す。)
 上記式(1)中、Rは、炭素数2~8の2価の脂肪族炭化水素基、炭素数3~8の2価の脂環含有炭化水素基、または、炭素数7~8の2価の芳香脂肪族炭化水素基を示す。
HO—R 2 —CO—NH—R 1 —NH—CO—R 3 —OH (1)
(In the formula, R 1 is a divalent aliphatic hydrocarbon group having 2 to 8 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 8 carbon atoms, or a divalent aliphatic group having 7 to 8 carbon atoms. Represents an araliphatic hydrocarbon group, and R 2 and R 3 are the same or different from each other and contain a divalent aliphatic hydrocarbon group having 1 to 5 carbon atoms or a divalent alicyclic ring having 3 to 5 carbon atoms Indicates a hydrocarbon group.)
In the above formula (1), R 1 is a divalent aliphatic hydrocarbon group having 2 to 8 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 8 carbon atoms, or a 7 to 8 carbon atom. A divalent araliphatic hydrocarbon group is shown.
 Rにおいて、炭素数2~8の2価の脂肪族炭化水素基としては、例えば、炭素数2~8の2価の、直鎖状または分岐状の脂肪族炭化水素基などが挙げられる。 In R 1 , examples of the divalent aliphatic hydrocarbon group having 2 to 8 carbon atoms include a divalent linear or branched aliphatic hydrocarbon group having 2 to 8 carbon atoms.
 直鎖状の脂肪族炭化水素基としては、例えば、エチレン基、プロピレン基、ブチレン基(テトラメチレン基)、ペンチレン基(ペンタメチレン基)、ヘキシレン基(ヘキサメチレン基)、ヘプチレン基(ヘプタメチレン基)、オクチレン基(オクタメチレン基)などの炭素数2~8の直鎖状アルキレン基、例えば、ビニレン基、プロペニレン基、ブテニレン基、ブタジエニレン基、オクテニレン基などの炭素数2~8の直鎖状アルケニレン基、例えば、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、オクテニレン基などの炭素数2~8の直鎖状アルキニレン基などが挙げられる。 Examples of the linear aliphatic hydrocarbon group include an ethylene group, a propylene group, a butylene group (tetramethylene group), a pentylene group (pentamethylene group), a hexylene group (hexamethylene group), and a heptylene group (heptamethylene group). ), Linear alkylene groups having 2 to 8 carbon atoms such as octylene group (octamethylene group), for example, linear alkylene groups having 2 to 8 carbon atoms such as vinylene group, propenylene group, butenylene group, butadienylene group, octenylene group, etc. Examples thereof include alkenylene groups such as linear alkynylene groups having 2 to 8 carbon atoms such as ethynylene group, propynylene group, butynylene group, pentynylene group, octenylene group and the like.
 分岐状の脂肪族炭化水素基としては、例えば、メチルエチレン基、メチルプロピレン基、エチルプロピレン基、ジメチルプロピレン基、2-エチルヘキシレン基などの炭素数3~8の分岐状アルキレン基、例えば、メチルエチニレン基、メチルプロペニレン基、メチルブテニレン基などの炭素数3~8の分岐状アルケニレン基、例えば、メチルプロピニレン基、メチルブチニレン基などの炭素数4~8の分岐状アルキニレン基などが挙げられる。 Examples of the branched aliphatic hydrocarbon group include a branched alkylene group having 3 to 8 carbon atoms such as a methylethylene group, a methylpropylene group, an ethylpropylene group, a dimethylpropylene group, and a 2-ethylhexylene group, for example, Examples thereof include branched alkenylene groups having 3 to 8 carbon atoms such as methylethynylene group, methylpropenylene group and methylbutenylene group, for example, branched alkynylene groups having 4 to 8 carbon atoms such as methylpropynylene group and methylbutynylene group.
 Rにおいて、炭素数3~8の2価の脂環含有炭化水素基は、その炭化水素基中に1つ以上の脂環式炭化水素を含有していればよく、例えば、その脂環式炭化水素に、脂肪族炭化水素基などが結合していてもよい。このような場合には、Rに結合される窒素原子(-NH-)は、脂環式炭化水素に直接結合していてもよく、脂環式炭化水素に結合される脂肪族炭化水素基に結合していてもよく、その両方であってもよい。 In R 1 , the divalent alicyclic hydrocarbon group having 3 to 8 carbon atoms may contain one or more alicyclic hydrocarbons in the hydrocarbon group. An aliphatic hydrocarbon group or the like may be bonded to the hydrocarbon. In such a case, the nitrogen atom (—NH—) bonded to R 1 may be directly bonded to the alicyclic hydrocarbon, and the aliphatic hydrocarbon group bonded to the alicyclic hydrocarbon. Or both of them may be used.
 このような脂環含有炭化水素基として、より具体的には、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基、シクロオクチレン基などの炭素数3~8のシクロアルキレン基などが挙げられる。 More specifically, examples of the alicyclic hydrocarbon group include 3 to 8 carbon atoms such as a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, and a cyclooctylene group. And the like.
 また、脂肪族炭化水素基を含有する脂環含有炭化水素基としては、例えば、メチルシクロヘキシレン基、水添キシリレン基、シクロヘキシルメチレン基、ノルボルニレン基などが挙げられる。 Examples of the alicyclic hydrocarbon group containing an aliphatic hydrocarbon group include a methylcyclohexylene group, a hydrogenated xylylene group, a cyclohexylmethylene group, and a norbornylene group.
 Rにおいて、炭素数7~8の2価の芳香脂肪族炭化水素基は、その炭化水素基中に芳香族炭化水素を含有していればよく、例えば、その芳香族炭化水素に、脂肪族炭化水素基などが結合していてもよい。このような場合には、Rに結合される窒素原子(-NH-)は、芳香族炭化水素に直接結合していてもよく、芳香族炭化水素に結合される脂肪族炭化水素基に結合していてもよく、その両方であってもよい。 In R 1 , the divalent araliphatic hydrocarbon group having 7 to 8 carbon atoms may contain an aromatic hydrocarbon in the hydrocarbon group. For example, the aromatic hydrocarbon includes an aliphatic hydrocarbon A hydrocarbon group or the like may be bonded. In such a case, the nitrogen atom (—NH—) bonded to R 1 may be directly bonded to the aromatic hydrocarbon or bonded to the aliphatic hydrocarbon group bonded to the aromatic hydrocarbon. Or both of them.
 このような芳香環含有炭化水素基として、より具体的には、例えば、フェニレンモノメチレン基(-C-CH-)、キシリレン基(フェニレンビス(メチレン)基(-CH-C-CH-))などの炭素数7~8のアラルキレン基などが挙られる。 As such aromatic ring-containing hydrocarbon group, more specifically, for example, a phenylenemonomethylene group (—C 6 H 4 —CH 2 —), a xylylene group (phenylenebis (methylene) group (—CH 2 —C)) And an aralkylene group having 7 to 8 carbon atoms such as 6 H 4 —CH 2 —)).
 また、上記の炭化水素基(脂肪族炭化水素基、脂環含有炭化水素基および芳香脂肪族炭化水素基)は、例えば、エーテル結合、チオエーテル結合、エステル結合などの安定な結合を含むことができる。 Further, the hydrocarbon group (aliphatic hydrocarbon group, alicyclic hydrocarbon group and araliphatic hydrocarbon group) can include a stable bond such as an ether bond, a thioether bond or an ester bond. .
 このような炭化水素基として、より具体的には、例えば、ジメチレンエーテル基、ジエチレンエーテル基、トリエチレンエーテル基、ジプロピレンエーテル基、トリプロピレンエーテル基などのアルキレンエーテル基(エーテル結合を含む炭素数2~8の2価の脂肪族炭化水素基)などが挙げられる。 More specifically, as such a hydrocarbon group, for example, an alkylene ether group (carbon containing an ether bond) such as a dimethylene ether group, a diethylene ether group, a triethylene ether group, a dipropylene ether group, or a tripropylene ether group. And divalent aliphatic hydrocarbon groups of 2 to 8).
 Rとして、耐熱性の観点から、好ましくは、炭素数2~8の2価の脂肪族炭化水素基、より好ましくは、炭素数2~8の2価の直鎖状の脂肪族炭化水素基が挙げられ、さらに好ましくは、エチレン基、ブチレン基(テトラメチレン基)、ヘキシレン基(ヘキサメチレン基)、とりわけ好ましくは、エチレン基が挙げられる。 R 1 is preferably a divalent aliphatic hydrocarbon group having 2 to 8 carbon atoms, more preferably a divalent linear aliphatic hydrocarbon group having 2 to 8 carbon atoms, from the viewpoint of heat resistance. More preferred are ethylene group, butylene group (tetramethylene group), hexylene group (hexamethylene group), and particularly preferred are ethylene groups.
 上記式(1)において、RおよびRは、互いに同一または相異なって、炭素数1~5の2価の脂肪族炭化水素基、または、炭素数3~5の2価の脂環含有炭化水素基を示す。 In the above formula (1), R 2 and R 3 are the same or different and contain a divalent aliphatic hydrocarbon group having 1 to 5 carbon atoms or a divalent alicyclic ring having 3 to 5 carbon atoms. A hydrocarbon group is shown.
 炭素数1~5の2価の脂肪族炭化水素基としては、例えば、炭素数1~5の2価の直鎖状の脂肪族炭化水素基、例えば、炭素数2~5の2価の分岐状の脂肪族炭化水素基などが挙げられる。 Examples of the divalent aliphatic hydrocarbon group having 1 to 5 carbon atoms include, for example, a divalent linear aliphatic hydrocarbon group having 1 to 5 carbon atoms, such as a divalent branched chain having 2 to 5 carbon atoms. And an aliphatic hydrocarbon group in the form of a ring.
 炭素数1~5の2価の直鎖状の脂肪族炭化水素基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基(テトラメチレン基)、ペンチレン基(ペンタメチレン基)などの炭素数1~5の直鎖状アルキレン基、例えば、ビニレン基、プロペニレン基、ブテニレン基、ブタジエニレン基などの炭素数2~5の直鎖状アルケニレン基、例えば、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基などの炭素数2~5の直鎖状アルキニレン基などが挙げられる。 Examples of the divalent linear aliphatic hydrocarbon group having 1 to 5 carbon atoms include carbon such as methylene group, ethylene group, propylene group, butylene group (tetramethylene group), pentylene group (pentamethylene group), and the like. A linear alkylene group having 1 to 5 carbon atoms, for example, a linear alkenylene group having 2 to 5 carbon atoms such as vinylene group, propenylene group, butenylene group, butadienylene group, for example, ethynylene group, propynylene group, butynylene group, pentynylene, etc. And a straight-chain alkynylene group having 2 to 5 carbon atoms such as a group.
 炭素数2~5の2価の分岐状の脂肪族炭化水素基としては、例えば、メチルメチレン基、メチルエチレン基、メチルプロピレン基、エチルプロピレン基、ジメチルプロピレン基などの炭素数2~5の分岐状アルキレン基、例えば、メチルエチニレン基、メチルプロペニレン基、メチルブテニレン基などの炭素数3~5の分岐状アルケニレン基、例えば、メチルプロピニレン基、メチルブチニレン基などの炭素数4~5の分岐状アルキニレン基などが挙げられる。 Examples of the divalent branched aliphatic hydrocarbon group having 2 to 5 carbon atoms include a branch having 2 to 5 carbon atoms such as a methylmethylene group, a methylethylene group, a methylpropylene group, an ethylpropylene group, and a dimethylpropylene group. A branched alkylene group such as a methyl ethynylene group, a methyl propenylene group and a methyl butenylene group, such as a branched alkenylene group having 3 to 5 carbon atoms, such as a branched alkynylene group having 4 to 5 carbon atoms such as a methyl propynylene group and a methyl butynylene group. Etc.
 炭素数3~5の2価の脂環含有炭化水素基としては、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基などの炭素数3~5のシクロアルキレン基、例えば、メチルシクロプロピレン基、エチルシクロプロピレン基、メチルシクロブチレン基など、脂肪族炭化水素基を含有する炭素数3~5の脂環含有炭化水素基などが挙げられる。 Examples of the divalent alicyclic hydrocarbon group having 3 to 5 carbon atoms include cycloalkylene groups having 3 to 5 carbon atoms such as cyclopropylene group, cyclobutylene group, and cyclopentylene group, such as methylcyclopropylene group. And an alicyclic hydrocarbon group having 3 to 5 carbon atoms containing an aliphatic hydrocarbon group such as an ethylcyclopropylene group and a methylcyclobutylene group.
 RおよびRとして、好ましくは、炭素数1~5の2価の脂肪族炭化水素基、より好ましくは、炭素数1~5の2価の直鎖状の脂肪族炭化水素基、より好ましくは、炭素数1~5の直鎖状アルキレン基、とりわけ好ましくは、炭素数5の直鎖状のアルキレン基が挙げられる。 R 2 and R 3 are preferably a divalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, more preferably a divalent linear aliphatic hydrocarbon group having 1 to 5 carbon atoms, and more preferably Includes a linear alkylene group having 1 to 5 carbon atoms, particularly preferably a linear alkylene group having 5 carbon atoms.
 また、RおよびRとして、熱安定性の観点から、好ましくは、アミド基含有ジオールに含まれる水酸基の酸素原子(O)と、アミド基の窒素原子(N)とを最短で結合する原子(アミド基の炭素原子(C)を含む。)の個数が2の炭化水素基(-CHCO-)、または、5以上の炭化水素基(脂肪族炭化水素基、脂環含有炭化水素基)が挙げられ、より好ましくは、OとNとを最短で結合する原子の個数が6以上の炭化水素基が挙げられる。 In addition, from the viewpoint of thermal stability, R 2 and R 3 are preferably atoms that bind the oxygen atom (O) of the hydroxyl group contained in the amide group-containing diol and the nitrogen atom (N) of the amide group in the shortest distance. A hydrocarbon group (—CH 2 CO—) having 2 carbon atoms (including the carbon atom (C) of the amide group) or a hydrocarbon group having 5 or more (aliphatic hydrocarbon group, alicyclic hydrocarbon group) More preferably, a hydrocarbon group having 6 or more atoms that bond O and N at the shortest is mentioned.
 このようなR、Rとしては、例えば、ブチレン基(テトラメチレン基)、ペンチレン基(ペンタメチレン基)などが挙げられ、好ましくは、ペンチレン基(ペンタメチレン基)が挙げられる。 Examples of R 2 and R 3 include a butylene group (tetramethylene group) and a pentylene group (pentamethylene group), and a pentylene group (pentamethylene group) is preferable.
 上記一般式(1)においてRおよびRが、ペンチレン基(ペンタメチレン基)である場合には、アミド基含有ジオールは、下記一般式(2)で示される。 In the general formula (1), when R 2 and R 3 are pentylene groups (pentamethylene groups), the amide group-containing diol is represented by the following general formula (2).
HO-(CH-CO-NH-R-NH-CO-(CH-OH(2)
(式中、Rは、上記式(1)のRと同意義を示す。)
 上記一般式(2)において、アミド基含有ジオールに含まれる水酸基の酸素原子(O)と、アミド基の窒素原子(N)とは、(-(CH-CO-)または(-CO-(CH-)により単独の経路で結合され、それらを最短で結合する原子(すなわち、炭素原子)の個数が、6とされる。
HO— (CH 2 ) 5 —CO—NH—R 1 —NH—CO— (CH 2 ) 5 —OH (2)
(Wherein, R 1 represents the same meaning as R 1 in the formula (1).)
In the general formula (2), the oxygen atom (O) of the hydroxyl group contained in the amide group-containing diol and the nitrogen atom (N) of the amide group are (— (CH 2 ) 5 —CO—) or (—CO The number of atoms (that is, carbon atoms) bonded by a single route by — (CH 2 ) 5 —) and bonding them in the shortest is 6.
 このようなアミド基含有ジオールによれば、耐熱性、熱安定性の向上を図ることができる。 Such an amide group-containing diol can improve heat resistance and thermal stability.
 そして、上記一般式(1)で示されるアミド基含有ジオールは、例えば、ジアミノ化合物と、ヒドロキシカルボン酸またはその誘導体との反応により、得ることができる。 The amide group-containing diol represented by the general formula (1) can be obtained, for example, by reacting a diamino compound with a hydroxycarboxylic acid or a derivative thereof.
 ジアミノ化合物は、アミノ基を2つ有する有機化合物であって、例えば、脂肪族ジアミン、脂環含有ジアミン、芳香脂肪族ジアミンなどが挙げられる。 The diamino compound is an organic compound having two amino groups, and examples thereof include aliphatic diamines, alicyclic diamines, and araliphatic diamines.
 脂肪族ジアミンとしては、例えば、エチレンジアミン、1,3-プロパンジアミン(プロピレンジアミン)、1,4-ブタンジアミン(テトラメチレンジアミン)、1,5-ペンタンジアミン(ペンタメチレンジアミン)、1,6-ヘキサンジアミン(ヘキサメチレンジアミン)、1.7-ヘプタンジアミン(へプタメチレンジアミン)、1,8-オクタンジアミン(オクタメチレンジアミン)などの直鎖状脂肪族ジアミン、例えば、1,2-プロパンジアミン、1,3-ブタンジアミン、2,4-ペンタンジアミン、1,6-オクタンジアミンなどの分岐状脂肪族ジアミンなどが挙げられる。 Examples of the aliphatic diamine include ethylenediamine, 1,3-propanediamine (propylenediamine), 1,4-butanediamine (tetramethylenediamine), 1,5-pentanediamine (pentamethylenediamine), and 1,6-hexane. Linear aliphatic diamines such as diamine (hexamethylenediamine), 1.7-heptanediamine (heptamethylenediamine), 1,8-octanediamine (octamethylenediamine), such as 1,2-propanediamine, Branched aliphatic diamines such as 1,3-butanediamine, 2,4-pentanediamine, and 1,6-octanediamine.
 脂環含有ジアミンとしては、例えば、シクロプロパンジアミン、シクロブタンジアミン、シクロペンタンジアミン、シクロペンタンジアミン、シクロヘキサンジアミンなどの、アミノ基が脂環に直接結合するジアミン、例えば、水添キシリレンジアミン、シクロヘキシルメタンジアミンなどの、アミノ基が脂環に脂肪族炭化水素基を介して結合するジアミンなどが挙げられる。 Examples of the alicyclic diamine include diamines having an amino group directly bonded to the alicyclic ring, such as cyclopropanediamine, cyclobutanediamine, cyclopentanediamine, cyclopentanediamine, and cyclohexanediamine, such as hydrogenated xylylenediamine and cyclohexylmethane. Examples include diamines such as diamines in which an amino group is bonded to an alicyclic ring via an aliphatic hydrocarbon group.
 芳香脂肪族ジアミンとしては、例えば、フェニルメタンジアミン、キシリレンジアミンなどの、アミノ基が芳香環に脂肪族炭化水素基を介して結合するジアミンなどが挙げられる。 Examples of the araliphatic diamine include diamines in which an amino group is bonded to an aromatic ring via an aliphatic hydrocarbon group, such as phenylmethanediamine and xylylenediamine.
 これらジアミノ化合物は、単独使用または2種類以上併用することができる。 These diamino compounds can be used alone or in combination of two or more.
 ジアミノ化合物として、好ましくは、脂肪族ジアミンが挙げられ、より好ましくは、直鎖状脂肪族ジアミンが挙げられる。 As the diamino compound, preferably, an aliphatic diamine is used, and more preferably, a linear aliphatic diamine is used.
 ヒドロキシカルボン酸は、1つ以上の水酸基、および、1つ以上のカルボキシル基を有する有機化合物、好ましくは、1つの水酸基および1つのカルボキシル基を有する有機化合物であって、例えば、グリコール酸、2-ヒドロキシプロパン酸(乳酸)、3-ヒドロキシプロパン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸などが挙げられる。 Hydroxycarboxylic acid is an organic compound having one or more hydroxyl groups and one or more carboxyl groups, preferably an organic compound having one hydroxyl group and one carboxyl group, such as glycolic acid, 2- Examples thereof include hydroxypropanoic acid (lactic acid), 3-hydroxypropanoic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid and the like.
 また、ヒドロキシカルボン酸の誘導体としては、例えば、上記ヒドロキシカルボン酸のアルキルエステル、ラクトン類などが挙げられる。 Further, examples of the hydroxycarboxylic acid derivative include alkyl esters and lactones of the above hydroxycarboxylic acid.
 ヒドロキシカルボン酸のアルキルエステルとしては、例えば、上記したヒドロキシカルボン酸の、例えば、メチルエステル、エチルエステル、プロピルエステルなどが挙げられる。 Examples of the alkyl ester of hydroxycarboxylic acid include, for example, methyl ester, ethyl ester, propyl ester and the like of the above-described hydroxycarboxylic acid.
 ラクトン類は、環中にエステル結合を含む環状有機化合物であって、例えば、βプロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン(γ-メチルブチロラクトン)、ε-カプロラクトンなどが挙げられる。 Lactones are cyclic organic compounds containing an ester bond in the ring, and examples thereof include β-propiolactone, γ-butyrolactone, δ-valerolactone, γ-valerolactone (γ-methylbutyrolactone), and ε-caprolactone. Can be mentioned.
 これらヒドロキシカルボン酸またはその誘導体は、単独使用または2種類以上併用することができる。 These hydroxycarboxylic acids or their derivatives can be used alone or in combination of two or more.
 ヒドロキシカルボン酸またはその誘導体として、好ましくは、ヒドロキシカルボン酸の誘導体、より好ましくは、ラクトン類が挙げられる。 The hydroxycarboxylic acid or derivative thereof is preferably a hydroxycarboxylic acid derivative, more preferably a lactone.
 そして、アミド基含有ジオールの製造では、例えば、ジアミノ化合物と、ヒドロキシカルボン酸またはその誘導体とを、ジアミノ化合物1モルに対して、ヒドロキシカルボン酸またはその誘導体が、例えば、1.8~8モル、好ましくは、2.0~6.0モルとなるように処方(混合)した後、例えば、10~120℃、好ましくは、20~80℃で、例えば、0.5~50時間、好ましくは、2~24時間反応させる。なお、反応温度は、一定温度、あるいは、段階的に昇温または冷却することもできる。 In the production of the amide group-containing diol, for example, a diamino compound and a hydroxycarboxylic acid or a derivative thereof are mixed with, for example, 1.8 to 8 mol of a hydroxycarboxylic acid or a derivative thereof with respect to 1 mol of the diamino compound. Preferably, after formulation (mixing) to 2.0 to 6.0 mol, for example, 10 to 120 ° C., preferably 20 to 80 ° C., for example, 0.5 to 50 hours, preferably React for 2 to 24 hours. The reaction temperature can be a constant temperature, or can be raised or cooled stepwise.
 また、反応は、無溶媒でもよいが、必要により公知の反応溶媒を用いることもできる。 The reaction may be solvent-free, but a known reaction solvent may be used if necessary.
 反応溶媒としては、特に限定されないが、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール、3-メチル-3-メトキシブタノールなどのアルコール系溶媒、例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテルなどのグリコール系溶媒、例えば、アセトン、メチルエチルケトンメチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、例えば、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル、N-メチルピロリドン、ヘキサメチルホスホニルアミドなどの極性溶媒などの有機溶媒などが挙げられる。 The reaction solvent is not particularly limited, but alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, 3-methyl-3-methoxybutanol, for example, ethylene glycol, diethylene glycol , Polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 1,4-butanediol, 1,5-pentanediol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl Ether, diethylene glycol monoethyl ether, tripropylene glycol monomethyl ether, etc. Glycol solvents, for example, ketone solvents such as acetone, methyl ethyl ketone methyl isobutyl ketone, cyclohexanone, etc., ether solvents such as diethyl ether, tetrahydrofuran, dioxane, etc., such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, acetonitrile, N-methyl Examples include organic solvents such as polar solvents such as pyrrolidone and hexamethylphosphonilamide.
 これら反応溶媒は、単独使用または2種類以上併用することができる。 These reaction solvents can be used alone or in combination of two or more.
 さらに、このような反応では、必要に応じて、得られた反応混合物から、アミド基含有ジオールを、例えば、再結晶などの結晶化処理により分離することができる。 Furthermore, in such a reaction, the amide group-containing diol can be separated from the obtained reaction mixture by a crystallization treatment such as recrystallization, if necessary.
 結晶化処理において用いられる結晶化溶媒としては、上記反応溶媒と同様の有機溶媒などが挙げられる。 Examples of the crystallization solvent used in the crystallization treatment include the same organic solvents as the above reaction solvent.
 これら結晶化溶媒は、単独使用または2種類以上併用することができる。 These crystallization solvents can be used alone or in combination of two or more.
 このようにして得られるアミド基含有ジオールの融点は、例えば、40~220℃、好ましくは、80~160℃である。 The melting point of the amide group-containing diol thus obtained is, for example, 40 to 220 ° C., preferably 80 to 160 ° C.
 また、鎖伸長剤は、上記アミド基含有ジオールを少なくとも含有していればよく、例えば、任意成分として、低分子量ポリオールを含有することもできる。 Moreover, the chain extender should just contain the said amide group containing diol at least, for example, can also contain a low molecular-weight polyol as an arbitrary component.
 低分子量ポリオールとしては、例えば、上記の低分子量ポリオールが挙げられ、好ましくは、2価アルコールが挙げられる。 Examples of the low molecular weight polyol include the low molecular weight polyol described above, and preferably a dihydric alcohol.
 鎖伸長剤が低分子量ポリオールを含有する場合において、その含有割合は、特に制限されず、目的および用途に応じて、適宜設定される。 In the case where the chain extender contains a low molecular weight polyol, the content ratio is not particularly limited and is appropriately set according to the purpose and application.
 そして、本発明の熱可塑性ポリウレタン樹脂の製造方法では、少なくとも、上記ポリイソシアネートと、上記高分子量ポリオールと、上記鎖伸長剤とを反応させる。 In the method for producing a thermoplastic polyurethane resin of the present invention, at least the polyisocyanate, the high molecular weight polyol, and the chain extender are reacted.
 すなわち、熱可塑性ポリウレタン樹脂は、ポリイソシアネート、高分子量ポリオールおよび鎖伸長剤の反応により、合成される。 That is, the thermoplastic polyurethane resin is synthesized by the reaction of polyisocyanate, high molecular weight polyol and chain extender.
 そして、本発明の熱可塑性ポリウレタン樹脂の製造方法では、例えば、プレポリマー法、ワンショット法などの公知の方法を採用することができる。 And in the manufacturing method of the thermoplastic polyurethane resin of this invention, well-known methods, such as a prepolymer method and a one shot method, are employable, for example.
 プレポリマー法では、例えば、まず、ポリイソシアネートと高分子量ポリオールとを反応させて、分子末端にイソシアネート基を有するイソシアネート基末端プレポリマーを合成する。次いで、得られたイソシアネート基末端プレポリマーと、鎖伸長剤とを反応させる。 In the prepolymer method, for example, polyisocyanate and high molecular weight polyol are first reacted to synthesize an isocyanate group-terminated prepolymer having an isocyanate group at the molecular end. Next, the obtained isocyanate group-terminated prepolymer is reacted with a chain extender.
 イソシアネート基末端プレポリマーを合成するには、ポリイソシアネートと高分子量ポリオールとを、高分子量ポリオール中の水酸基に対するポリイソシアネート中のイソシアネート基の当量比(NCO/OH)が、例えば、1.1~20、好ましくは、1.3~10、さらに好ましくは、1.3~7となるように処方(混合)し、反応容器中にて、例えば、40~150℃、好ましくは、50~120℃で、例えば、30秒間~8時間、好ましくは、1時間~6時間反応させる。なお、反応終了後には、必要に応じて、未反応のポリイソシアネートを、例えば、蒸留や抽出などの公知の除去手段により、除去することもできる。 In order to synthesize an isocyanate group-terminated prepolymer, the equivalent ratio (NCO / OH) of the isocyanate group in the polyisocyanate with respect to the hydroxyl group in the high molecular weight polyol is 1.1 to 20 for example. Preferably, it is formulated (mixed) to be 1.3 to 10, more preferably 1.3 to 7, and is, for example, 40 to 150 ° C., preferably 50 to 120 ° C. in a reaction vessel. For example, the reaction is performed for 30 seconds to 8 hours, preferably 1 hour to 6 hours. In addition, after completion | finish of reaction can also remove unreacted polyisocyanate by well-known removal means, such as distillation and extraction, as needed.
 次いで、得られたイソシアネート基末端プレポリマーと、鎖伸長剤とを反応させるには、イソシアネート基末端プレポリマーと、鎖伸長剤とを、鎖伸長剤中の水酸基に対するイソシアネート基末端プレポリマー中のイソシアネート基の当量比(NCO/OH)が、例えば、0.8~1.2、好ましくは、0.9~1.1、より好ましくは、0.98~1.05となるように処方(混合)し、例えば、40~280℃、好ましくは、70~260℃、より好ましくは、80~240℃で、例えば、30秒~10時間、好ましくは、1分間~8時間反応させる。 Next, in order to react the obtained isocyanate group-terminated prepolymer with a chain extender, the isocyanate group-terminated prepolymer and the chain extender are reacted with an isocyanate in the isocyanate group-terminated prepolymer with respect to a hydroxyl group in the chain extender. Formulated (mixed) so that the equivalent ratio of groups (NCO / OH) is, for example, 0.8 to 1.2, preferably 0.9 to 1.1, more preferably 0.98 to 1.05. For example, at 40 to 280 ° C., preferably at 70 to 260 ° C., more preferably at 80 to 240 ° C., for example, for 30 seconds to 10 hours, preferably for 1 minute to 8 hours.
 また、ワンショット法では、例えば、ポリイソシアネートと、高分子量ポリオールおよび鎖伸長剤とを、高分子量ポリオールおよび鎖伸長剤中の水酸基の総量に対する、ポリイソシアネート中のイソシアネート基の当量比(NCO/OH)が、例えば、0.8~1.2、好ましくは、0.9~1.1、より好ましくは、0.98~1.05となるように処方(混合)した後、例えば、40~280℃、好ましくは、70~260℃で、例えば、30秒~10時間、好ましくは、1分間~8時間反応させる。なお、反応温度は、一定温度、あるいは、段階的に昇温または冷却することもできる。 In the one-shot method, for example, polyisocyanate, high molecular weight polyol and chain extender are mixed with an equivalent ratio of isocyanate groups in the polyisocyanate (NCO / OH) to the total amount of hydroxyl groups in the high molecular weight polyol and chain extender. ) Is, for example, 0.8 to 1.2, preferably 0.9 to 1.1, more preferably 0.98 to 1.05. The reaction is carried out at 280 ° C., preferably 70 to 260 ° C., for example, for 30 seconds to 10 hours, preferably for 1 minute to 8 hours. The reaction temperature can be a constant temperature, or can be raised or cooled stepwise.
 これらプレポリマー法およびワンショット法において、上記各成分(ポリイソシアネート、高分子量ポリオール、アミド基含有ジオール、イソシアネート基末端プレポリマー、低分子量ポリオールなど)の混合では、特に制限されないが、好ましくは、ディゾルバーなどの混合槽、例えば、循環式の低圧、高圧衝突混合装置、例えば、高速撹拌ミキサー、スタティックミキサー、ニーダー、例えば、単軸または二軸回転式の押出機などの混合装置が、用いられる。 In the prepolymer method and the one-shot method, the mixing of the above components (polyisocyanate, high molecular weight polyol, amide group-containing diol, isocyanate group-terminated prepolymer, low molecular weight polyol, etc.) is not particularly limited, but preferably a dissolver. A mixing tank such as a circulating low-pressure or high-pressure impingement mixer, for example, a high-speed stirring mixer, a static mixer, a kneader, or a mixing device such as a single-screw or twin-screw extruder is used.
 また、プレポリマー法およびワンショット法において、水酸基を含有する化合物(高分子量ポリオール、アミド基含有ジオール、および、必要により配合される低分子量ポリオール)は、好ましくは、前処理として、加熱減圧処理され、含水量が低減される。 In the prepolymer method and the one-shot method, the compound containing a hydroxyl group (a high molecular weight polyol, an amide group-containing diol, and a low molecular weight polyol blended as necessary) is preferably subjected to a heat-reducing treatment as a pretreatment. , The water content is reduced.
 これら水酸基を含有する化合物(高分子量ポリオール、アミド基含有ジオール、および、必要により配合される低分子量ポリオール)それぞれの含水量は、それぞれの総量に対して、例えば、0.05質量%以下、好ましくは0.03質量%以下、より好ましくは0.02質量%以下、通常、0.005質量%以上である。 The water content of each of these hydroxyl group-containing compounds (high molecular weight polyol, amide group-containing diol, and low molecular weight polyol blended as necessary) is, for example, 0.05% by mass or less, preferably Is 0.03% by mass or less, more preferably 0.02% by mass or less, and usually 0.005% by mass or more.
 また、プレポリマー法またはワンショット法により、上記各成分(ポリイソシアネート、高分子量ポリオール、アミド基含有ジオール、イソシアネート基末端プレポリマー、低分子量ポリオールなど)を反応(重合)させる方法としては、特に制限されず、公知の重合方法、より具体的には、例えば、溶液重合、水中懸濁重合、非水分散重合、溶融重合(バルク重合)などが挙げられる。好ましくは、溶液重合、非水分散重合、溶融重合が挙げられる。 In addition, the method of reacting (polymerizing) each of the above components (polyisocyanate, high molecular weight polyol, amide group-containing diol, isocyanate group-terminated prepolymer, low molecular weight polyol, etc.) by the prepolymer method or the one-shot method is particularly limited However, known polymerization methods, more specifically, for example, solution polymerization, suspension polymerization in water, non-aqueous dispersion polymerization, melt polymerization (bulk polymerization) and the like can be mentioned. Preferably, solution polymerization, non-aqueous dispersion polymerization, and melt polymerization are exemplified.
 溶液重合では、極性有機溶媒に上記各成分を加え、溶解させるとともに、上記各成分を重合させる。 In solution polymerization, the above components are added and dissolved in a polar organic solvent, and the above components are polymerized.
 極性有機溶媒としては、例えば、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミドなどの非プロトン性極性溶媒などが挙げられる。 Examples of the polar organic solvent include aprotic polar solvents such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and hexamethylphosphonamide.
 これら極性有機溶媒は、単独使用または2種類以上併用することができる。 These polar organic solvents can be used alone or in combination of two or more.
 なお、極性有機溶媒の配合割合は、特に制限されず、目的および用途や、反応系の粘度などにより、適宜設定される。 The mixing ratio of the polar organic solvent is not particularly limited, and is appropriately set depending on the purpose and application, the viscosity of the reaction system, and the like.
 非水分散重合では、例えば、低極性有機溶媒に上記各成分を加えるとともに、分散剤を配合し、上記各成分を分散させるとともに、重合させる。 In non-aqueous dispersion polymerization, for example, the above-described components are added to a low-polar organic solvent, and a dispersant is added to disperse the above-described components and polymerize.
 低極性有機溶媒としては、例えば、n-ヘキサン、オクタンなどの脂肪族炭化水素類、例えば、シクロヘキサン、メチルシクロヘキサンなどの脂環族炭化水素類、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類などが挙げられる。 Examples of the low polar organic solvent include aliphatic hydrocarbons such as n-hexane and octane, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, and aromatic hydrocarbons such as toluene, xylene and ethylbenzene. And the like.
 これら低極性有機溶媒は、単独使用または2種類以上併用することができる。 These low polarity organic solvents can be used alone or in combination of two or more.
 なお、低極性有機溶媒の配合割合は、特に制限されず、目的および用途や、反応系の粘度などにより、適宜設定される。 The mixing ratio of the low polarity organic solvent is not particularly limited, and is appropriately set depending on the purpose and application, the viscosity of the reaction system, and the like.
 分散剤としては、特に制限されないが、例えば、特開2004-169011号公報に記載される分散剤や、例えば、スルホン酸基、カルボン酸基、アミノ基などのアルカリ金属塩、アンモニウム塩、無機酸塩、有機酸塩などのイオン性の親水基を有する公知の水溶性高分子、例えば、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、ノニオン界面活性剤などの公知の界面活性剤などが挙げられる。 The dispersant is not particularly limited, and examples thereof include dispersants described in JP-A No. 2004-169011, and alkali metal salts such as sulfonic acid groups, carboxylic acid groups, and amino groups, ammonium salts, and inorganic acids. Known water-soluble polymers having ionic hydrophilic groups such as salts and organic acid salts, for example, known surfactants such as anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, etc. Is mentioned.
 溶融重合(バルク重合)では、例えば、窒素気流下において、ポリイソシアネートを撹拌しつつ、これに、高分子量ポリオールおよびアミド基含有ジオール(および、必要により配合される低分子量ポリオール)を加え、上記反応温度に加熱し、上記各成分を溶融させるとともに、重合させる。 In melt polymerization (bulk polymerization), for example, while stirring the polyisocyanate under a nitrogen stream, a high molecular weight polyol and an amide group-containing diol (and a low molecular weight polyol blended as necessary) are added thereto, and the above reaction is performed. The components are heated and heated to melt and polymerize.
 また、上記の重合方法においては、必要に応じて、例えば、アミン類や有機金属化合物などの公知のウレタン化触媒を添加することができる。 In the above polymerization method, a known urethanization catalyst such as amines or organometallic compounds can be added as necessary.
 アミン類としては、例えば、トリエチルアミン、トリエチレンジアミン、ビス-(2-ジメチルアミノエチル)エーテル、N-メチルモルホリンなどの3級アミン類、例えば、テトラエチルヒドロキシルアンモニウムなどの4級アンモニウム塩、例えば、イミダゾール、2-エチル-4-メチルイミダゾールなどのイミダゾール類などが挙げられる。 Examples of amines include tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine, and quaternary ammonium salts such as tetraethylhydroxylammonium, such as imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
 有機金属化合物としては、例えば、酢酸錫、オクチル酸錫、オレイン酸錫、ラウリル酸錫、ジブチル錫ジアセテート、ジメチル錫ジラウレート、ジブチル錫ジラウレート、ジブチル錫ジメルカプチド、ジブチル錫マレエート、ジブチル錫ジラウレート、ジブチル錫ジネオデカノエート、ジオクチル錫ジメルカプチド、ジオクチル錫ジラウリレート、ジブチル錫ジクロリドなどの有機錫系化合物、例えば、オクタン酸鉛、ナフテン酸鉛などの有機鉛化合物、例えば、ナフテン酸ニッケルなどの有機ニッケル化合物、例えば、ナフテン酸コバルトなどの有機コバルト化合物、例えば、オクテン酸銅などの有機銅化合物、例えば、オクチル酸ビスマス、ネオデカン酸ビスマスなどの有機ビスマス化合物などが挙げられる。 Examples of organometallic compounds include tin acetate, tin octylate, tin oleate, tin laurate, dibutyltin diacetate, dimethyltin dilaurate, dibutyltin dilaurate, dibutyltin dimercaptide, dibutyltin maleate, dibutyltin dilaurate, dibutyltin Organic tin compounds such as dineodecanoate, dioctyltin dimercaptide, dioctyltin dilaurate, dibutyltin dichloride, for example, organic lead compounds such as lead octoate and lead naphthenate, for example, organic nickel compounds such as nickel naphthenate, Examples thereof include organic cobalt compounds such as cobalt naphthenate, organic copper compounds such as copper octenoate, and organic bismuth compounds such as bismuth octylate and bismuth neodecanoate.
 さらに、ウレタン化触媒として、例えば、炭酸カリウム、酢酸カリウム、オクチル酸カリウムなどのカリウム塩が挙げられる。 Furthermore, examples of the urethanization catalyst include potassium salts such as potassium carbonate, potassium acetate, and potassium octylate.
 これらウレタン化触媒は、単独使用または2種類以上併用することができる。 These urethanization catalysts can be used alone or in combination of two or more.
 ウレタン化触媒の配合割合は、特に制限されないが、例えば、高分子量ポリオール100質量部に対して、例えば、0.0001~0.05質量部、好ましくは、0.001~0.03質量部である。 The blending ratio of the urethanization catalyst is not particularly limited, but is, for example, 0.0001 to 0.05 parts by weight, preferably 0.001 to 0.03 parts by weight with respect to 100 parts by weight of the high molecular weight polyol. is there.
 さらに、このような熱可塑性ポリウレタン樹脂においては、必要に応じて、さらに、公知の添加剤、例えば、可塑剤、発泡剤、ブロッキング防止剤、耐熱安定剤、耐光安定剤、酸化防止剤、離型剤、触媒、さらには、カップリング剤、滑剤、防錆剤、乳白剤、顔料、染料、滑剤、フィラー、加水分解防止剤などを、適宜の割合で配合することができる。これら添加剤は、各成分の1種または2種以上に添加してもよく、また、各成分の製造時に添加してもよく、また、各成分の混合時に添加してもよく、さらには、得られる熱可塑性ポリウレタン樹脂に添加することもできる。 Furthermore, in such a thermoplastic polyurethane resin, if necessary, further known additives such as a plasticizer, a foaming agent, an antiblocking agent, a heat stabilizer, a light stabilizer, an antioxidant, a release agent are used. Agents, catalysts, and coupling agents, lubricants, rust inhibitors, opacifiers, pigments, dyes, lubricants, fillers, hydrolysis inhibitors, and the like can be blended in appropriate proportions. These additives may be added to one or more of each component, may be added during production of each component, may be added during mixing of each component, It can also be added to the resulting thermoplastic polyurethane resin.
 そして、このようにして得られる熱可塑性ポリウレタン樹脂において、ポリイソシアネートとアミド基含有ジオールとの反応により形成されるハードセグメントの濃度は、30~60質量%、好ましくは、30~55質量%、より好ましくは、30~50質量%である。 In the thermoplastic polyurethane resin thus obtained, the concentration of the hard segment formed by the reaction between the polyisocyanate and the amide group-containing diol is 30 to 60% by mass, preferably 30 to 55% by mass, Preferably, it is 30 to 50% by mass.
 ハードセグメント(ポリイソシアネートとアミド基含有ジオールとの反応により形成されるハードセグメント)濃度が上記下限未満である場合には、熱可塑性ポリウレタン樹脂の耐熱性が低下するという不具合がある。 When the hard segment (hard segment formed by the reaction of polyisocyanate and amide group-containing diol) is less than the lower limit, there is a problem that the heat resistance of the thermoplastic polyurethane resin is lowered.
 一方、ハードセグメント(ポリイソシアネートとアミド基含有ジオールとの反応により形成されるハードセグメント)濃度が上記上限を超過する場合には、熱可塑性ポリウレタン樹脂の成形加工性が低下するという不具合がある。 On the other hand, when the hard segment (hard segment formed by reaction of polyisocyanate and amide group-containing diol) exceeds the above upper limit, there is a problem that the molding processability of the thermoplastic polyurethane resin is lowered.
 なお、ハードセグメント(ポリイソシアネートとアミド基含有ジオールとの反応により形成されるハードセグメント)濃度は、例えば、各成分の配合割合(仕込)から次式により算出することができる。
[アミド基含有ジオールの質量(g)+アミド基含有ジオールの質量(g)/アミド基含有ジオールの分子量)×ポリイソシアネートの分子量]÷[(ポリイソシアネートの質量(g)+高分子量ポリオールの質量(g)+アミド基含有ジオールの質量(g)+その他の成分(任意成分としての低分子量ポリオール、添加剤など)の質量(g))]×100
 また、熱可塑性ポリウレタン樹脂において、任意成分として、低分子量ポリオールが配合される場合には、ポリイソシアネートと低分子量ポリオールとの反応により形成されるハードセグメントの濃度は、例えば、1~30質量%、好ましくは、1~25質量%、より好ましくは、1~20質量%である。
In addition, the hard segment (hard segment formed by the reaction of polyisocyanate and amide group-containing diol) can be calculated, for example, from the blending ratio (preparation) of each component by the following formula.
[Mass of amide group-containing diol (g) + Mass of amide group-containing diol (g) / Molecular weight of amide group-containing diol) × Molecular weight of polyisocyanate] ÷ [(Mass of polyisocyanate (g) + mass of high molecular weight polyol) (G) + mass of amide group-containing diol (g) + mass of other components (low molecular weight polyols, additives, etc. as optional components (g))]] × 100
Further, in the thermoplastic polyurethane resin, when a low molecular weight polyol is blended as an optional component, the concentration of the hard segment formed by the reaction of the polyisocyanate and the low molecular weight polyol is, for example, 1 to 30% by mass, The content is preferably 1 to 25% by mass, more preferably 1 to 20% by mass.
 なお、ハードセグメント(ポリイソシアネートと低分子量ポリオールとの反応により形成されるハードセグメント)濃度は、例えば、各成分の配合割合(仕込)から次式により算出することができる。
[低分子量ポリオールの質量(g)+低分子量ポリオールの質量(g)/低分子量ポリオールの分子量)×ポリイソシアネートの分子量]÷[(ポリイソシアネートの質量(g)+高分子量ポリオールの質量(g)+低分子量ポリオールの質量(g)+その他の成分(必須成分としてのアミド基含有ジオール、添加剤など)の質量(g))]×100
 そして、ポリイソシアネートとアミド基含有ジオールとの反応により形成されるハードセグメントの濃度と、ポリイソシアネートと低分子量ポリオールとの反応により形成されるハードセグメントの濃度との総量は、例えば、30~60質量%、好ましくは、30~55質量%、より好ましくは、30~50質量%である。
In addition, the hard segment (hard segment formed by reaction of polyisocyanate and low molecular weight polyol) concentration can be calculated by the following formula from the blending ratio (preparation) of each component, for example.
[Mass of low molecular weight polyol (g) + mass of low molecular weight polyol (g) / molecular weight of low molecular weight polyol) × molecular weight of polyisocyanate] ÷ [(mass of polyisocyanate (g) + mass of high molecular weight polyol (g) + Mass (g) of low molecular weight polyol + mass of other components (amide group-containing diol, additive, etc. as essential components (g))]] × 100
The total amount of the hard segment concentration formed by the reaction of the polyisocyanate and the amide group-containing diol and the hard segment concentration formed by the reaction of the polyisocyanate and the low molecular weight polyol is, for example, 30 to 60 mass. %, Preferably 30 to 55% by mass, more preferably 30 to 50% by mass.
 また、このような熱可塑性ポリウレタン樹脂の重量平均分子量(標準ポリスチレンを検量線とするGPC測定による重量平均分子量)は、例えば、100000~350000、好ましくは、100000~300000、より好ましくは、120000~250000である。 Further, the weight average molecular weight (weight average molecular weight by GPC measurement using standard polystyrene as a calibration curve) of such a thermoplastic polyurethane resin is, for example, 100,000 to 350,000, preferably 100,000 to 300,000, more preferably 120,000 to 250,000. It is.
 重量平均分子量が上記範囲であれば、優れた機械強度および耐熱性を確保することができ、また、熱成形における優れた成形安定性を向上させることができる。 If the weight average molecular weight is in the above range, excellent mechanical strength and heat resistance can be ensured, and excellent molding stability in thermoforming can be improved.
 また、このような熱可塑性ポリウレタン樹脂の軟化温度(JIS K-7196に準拠した熱機械分析(TMA)測定による軟化温度)は、例えば、160℃以上、好ましくは、170℃以上、より好ましくは、180℃以上、通常、230℃以下である。 The softening temperature of such a thermoplastic polyurethane resin (softening temperature by thermomechanical analysis (TMA) measurement according to JIS K-7196) is, for example, 160 ° C. or higher, preferably 170 ° C. or higher, more preferably 180 ° C or higher, usually 230 ° C or lower.
 軟化温度が上記範囲であれば、熱可塑性ポリウレタン樹脂の耐熱性および熱安定性を向上させることができ、熱成形における優れた成形安定性を確保することができる。 When the softening temperature is in the above range, the heat resistance and thermal stability of the thermoplastic polyurethane resin can be improved, and excellent molding stability in thermoforming can be ensured.
 また、このような熱可塑性ポリウレタン樹脂の5%熱重量減少温度(測定法:熱重量分析(昇温速度10℃/分、窒素気流下))は、例えば、250℃以上、好ましくは、265℃以上、より好ましくは、300℃以上であり、通常、340℃以下である。 Further, the 5% thermogravimetric decrease temperature (measurement method: thermogravimetric analysis (temperature increase rate 10 ° C./min, under nitrogen stream)) of such a thermoplastic polyurethane resin is, for example, 250 ° C. or higher, preferably 265 ° C. As mentioned above, More preferably, it is 300 degreeC or more, and is normally 340 degrees C or less.
 また、このような熱可塑性ポリウレタン樹脂において、高分子量ポリオールがオキシエチレン基を含有する場合には、そのオキシエチレン基の含有量が、熱可塑性ポリウレタン樹脂の総量に対して、例えば、10質量%以上、好ましくは、20質量%以上であり、例えば、70質量%以下、好ましくは、60質量%以下である。 In such a thermoplastic polyurethane resin, when the high molecular weight polyol contains an oxyethylene group, the content of the oxyethylene group is, for example, 10% by mass or more based on the total amount of the thermoplastic polyurethane resin. The amount is preferably 20% by mass or more, for example, 70% by mass or less, and preferably 60% by mass or less.
 オキシエチレン基の含有量が上記下限以上であれば、その熱可塑性ポリウレタン樹脂を厚み20μmのフィルムにしたときに、その透湿度を向上させることができる。 If the content of the oxyethylene group is not less than the above lower limit, the moisture permeability can be improved when the thermoplastic polyurethane resin is formed into a film having a thickness of 20 μm.
 このような透湿度(JIS L-1099に準拠)としては、例えば、4000g/m・24h以上、好ましくは、10000g/m・24h以上、より好ましくは、40000g/m・24h以上であり、通常、800000g/m・24h以下である。 Such moisture permeability (according to JIS L-1099), for example, 4000g / m 2 · 24h or more, preferably, 10000g / m 2 · 24h or more, more preferably, be a 40000g / m 2 · 24h or more Usually, it is 800,000 g / m 2 · 24 h or less.
 そして、このような熱可塑性ポリウレタン樹脂は、特に制限されず、公知の成形方法、例えば、射出成形、押出成形、プレス成形、キャスト成形などの熱可塑性樹脂の成形加工方法、好ましくは、押出成形、プレス成形、キャスト形成により、例えば、ペレット状、板状、繊維状、ストランド状、フィルム状、シート状、パイプ状、中空状、箱状などの各種形状の成形品に成形することができる。 Such a thermoplastic polyurethane resin is not particularly limited, and is a known molding method, for example, a thermoplastic resin molding method such as injection molding, extrusion molding, press molding, cast molding, preferably extrusion molding, By press molding or cast formation, for example, it can be molded into various shapes such as pellets, plates, fibers, strands, films, sheets, pipes, hollows, boxes, and the like.
 上記成形加工方法のうち、熱可塑性ポリウレタン樹脂の熱溶融成形(射出成形、押出成形、プレス成形など)における成形温度は、熱可塑性ポリウレタン樹脂の熱特性に応じて適宜設定すればよく、特に限定されないが、例えば、160~260℃、好ましくは、175~245℃である。 Among the above-mentioned molding methods, the molding temperature in the hot melt molding (injection molding, extrusion molding, press molding, etc.) of the thermoplastic polyurethane resin may be appropriately set according to the thermal characteristics of the thermoplastic polyurethane resin, and is not particularly limited. Is, for example, 160 to 260 ° C, preferably 175 to 245 ° C.
 また、このような方法では、例えば、熱可塑性ポリウレタン樹脂の熱溶融成形において、超臨界二酸化炭素などを導入し、熱可塑性ポリウレタン樹脂中に超臨界流体を拡散および溶解させれば、超臨界二酸化炭素が発泡剤となって、熱可塑性ポリウレタン樹脂を、微細かつ均一なセルからなるマイクロセルラーフォームとして形成することができる。 Further, in such a method, for example, in hot melt molding of a thermoplastic polyurethane resin, if supercritical carbon dioxide or the like is introduced and a supercritical fluid is diffused and dissolved in the thermoplastic polyurethane resin, supercritical carbon dioxide is obtained. Becomes a foaming agent, and the thermoplastic polyurethane resin can be formed as a microcellular foam composed of fine and uniform cells.
 また、熱可塑性ポリウレタン樹脂に、可塑剤(例えば、脂肪族二塩基酸エステル類、リン酸エステル類、エポキシ系可塑剤など)を配合すれば、熱可塑性ポリウレタン樹脂のガラス転移点を低下させ、さらには、粘度を低下させることができる。 In addition, if a plasticizer (for example, aliphatic dibasic acid ester, phosphoric acid ester, epoxy plasticizer, etc.) is added to the thermoplastic polyurethane resin, the glass transition point of the thermoplastic polyurethane resin is lowered, Can reduce the viscosity.
 これにより、熱可塑性ポリウレタン樹脂の射出成形性、押出成形性を向上することができ、成形体の薄肉化、成形体の表面精度の向上、成形温度の低下などを図ることができる。 Thereby, the injection moldability and extrusion moldability of the thermoplastic polyurethane resin can be improved, and the molded body can be made thinner, the surface accuracy of the molded body can be improved, and the molding temperature can be lowered.
 また、キャスト成形では、熱可塑性ポリウレタン樹脂が可溶な有機溶媒、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドンなどの非プロトン性極性有機溶媒などを用いて、熱可塑性ポリウレタン樹脂の溶液を調製し、その溶液を、基板に塗工し、例えば、上記非プロトン性極性有機溶媒の沸点以下の温度で、不活性ガス気流下において、非プロトン性極性有機溶媒を揮発除去させることによって、熱可塑性ポリウレタン樹脂をフィルム(キャストフィルム)として成形することができる。 In the cast molding, an organic solvent in which the thermoplastic polyurethane resin is soluble, for example, an aprotic polar organic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, etc. To prepare a solution of a thermoplastic polyurethane resin, and apply the solution to a substrate, for example, at a temperature below the boiling point of the aprotic polar organic solvent, in an inert gas stream, aprotic polarity By removing the organic solvent by volatilization, the thermoplastic polyurethane resin can be formed as a film (cast film).
 また、このようにして得られる熱可塑性ポリウレタン樹脂は、例えば、公知の紡糸方法(例えば、湿式紡糸、乾式紡糸、溶融紡糸など)により容易に紡糸することができ、弾性繊維とすることができる。 The thermoplastic polyurethane resin thus obtained can be easily spun by, for example, a known spinning method (for example, wet spinning, dry spinning, melt spinning, etc.), and can be made into an elastic fiber.
 さらに、上記の方法などにより得られる熱可塑性ポリウレタン樹脂の成形品を製造後、その成形品を、さらに、アニール処理することもできる。 Furthermore, after the molded product of the thermoplastic polyurethane resin obtained by the above method or the like is manufactured, the molded product can be further annealed.
 この方法では、例えば、熱可塑性ポリウレタン樹脂の成形品を、例えば、70~190℃、好ましくは、80~180℃において、例えば、10分間~24時間、好ましくは、1~20時間アニール処理する。 In this method, for example, a molded product of a thermoplastic polyurethane resin is annealed at, for example, 70 to 190 ° C., preferably 80 to 180 ° C., for example, for 10 minutes to 24 hours, preferably 1 to 20 hours.
 これにより、熱可塑性ポリウレタン樹脂に含まれるハードセグメントの凝集性を向上することができ、機械強度および耐熱性に優れた成形品を得ることができる。 Thereby, the cohesion of the hard segment contained in the thermoplastic polyurethane resin can be improved, and a molded product having excellent mechanical strength and heat resistance can be obtained.
 そして、本発明の熱可塑性ポリウレタン樹脂によれば、透湿度に優れたフィルムを形成できるため、衣料用透湿フィルム、具体的には、例えば、レインコート、ウインドブレーカーなどの製造において、好適に用いられる。 According to the thermoplastic polyurethane resin of the present invention, a film having excellent moisture permeability can be formed. Therefore, it is suitably used in the manufacture of moisture permeable films for clothing, specifically, for example, raincoats and windbreakers. It is done.
 さらに、本発明の熱可塑性ポリウレタン樹脂は、上記の用途に限定されず、例えば、自動車部品、エレクトロニクス部品、機械・産業部品、電線・ケーブル、ロール、ホース・チューブ、ベルト、フィルム・シート、ラミネート品、コーティング、接着剤、シール材、スポーツ・レジャー用品、靴関連部品、雑貨、介護用品、住宅用品、医療、建材、土木関連、防水材・舗装材、発泡体、スラッシュパウダーなどの各種産業分野において、用いることができる。 Furthermore, the thermoplastic polyurethane resin of the present invention is not limited to the above-mentioned applications. For example, automotive parts, electronic parts, mechanical / industrial parts, electric wires / cables, rolls, hoses / tubes, belts, films / sheets, laminates, etc. In various industrial fields such as coatings, adhesives, sealing materials, sports / leisure products, shoe-related parts, sundries, nursing care products, housing supplies, medical care, building materials, civil engineering, waterproofing / paving materials, foams, slush powders, etc. Can be used.
 そして、本発明の熱可塑性ポリウレタン樹脂では、原料である鎖伸長剤が、上記一般式(1)で示されるアミド基含有ジオールを含有するとともに、その鎖伸長剤とポリイソシアネートとの反応により得られるハードセグメントの含有量が、熱可塑性ポリウレタン樹脂の総量に対して、30~60質量%に調整されるため、優れた機械強度を確保するとともに、優れた耐熱性および熱安定性を備えることができる。 And in the thermoplastic polyurethane resin of this invention, while the chain extender which is a raw material contains the amide group containing diol shown by the said General formula (1), it is obtained by reaction of the chain extender and polyisocyanate. Since the content of the hard segment is adjusted to 30 to 60% by mass with respect to the total amount of the thermoplastic polyurethane resin, it is possible to ensure excellent mechanical strength and to have excellent heat resistance and thermal stability. .
 また、本発明の成形品は、本発明の熱可塑性ポリウレタン樹脂を成形することにより得られるため、効率良く製造することができる。 Moreover, since the molded article of the present invention can be obtained by molding the thermoplastic polyurethane resin of the present invention, it can be produced efficiently.
 以下に、実施例および比較例を挙げて、本発明を詳しく説明するが、本発明はこれらに限定されるものではない。なお、以下の説明において、特に言及がない限り、「部」および「%」は質量基準である。また、実施例などに用いられる測定方法を、以下に示す。 Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited thereto. In the following description, “part” and “%” are based on mass unless otherwise specified. Moreover, the measuring method used for an Example etc. is shown below.
 <重量平均分子量(Mw)>
 N,N-ジメチルホルムアミド(和光純薬工業社製、液体クロマトグラフィー用)に0.01mmo/Lの濃度で臭化リチウム(純正化学社製)を溶解したものを溶離液として使用した。
<Weight average molecular weight (Mw)>
A solution in which lithium bromide (manufactured by Junsei Kagaku) was dissolved in N, N-dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd., for liquid chromatography) at a concentration of 0.01 mmol / L was used as an eluent.
 測定試料溶液は上記の溶離液と同じ組成の溶媒に、測定試料を0.25質量%の濃度で溶解して調製した。GPC測定装置(昭和電工社製 商品名:Shodex GPC-101)にGPCカラム(昭和電工社製 商品名:KD-G、KD-806M)を直列に装着し、カラム温度45℃、溶離液の流速0.7mL/minの条件で、示差屈折計(RI)検出器を用いて測定し、予め作成した標準ポリスチレンの検量線から重量平均分子量(Mw)を算出した。
<熱重量減少温度(単位:℃)>
 熱分析装置(島津製作所製 商品名:TGA-50)を用い、約5mgの試料を白金セルに秤量し、窒素雰囲気下、10℃/minの昇温速度で室温から700℃まで昇温して測定した。200℃を基準として、5%重量減少温度を測定した。
<流動開始温度(単位:℃)>
 試料1gを高架式フローテスター(島津製作所社製 型式:CFT-500)に充填し、1mm(径)×10mm(長さ)のノズルを用い、昇温速度5℃/min、荷重100kgfの条件で、流動開始温度を測定した。
<軟化温度(単位:℃)>
 熱機械分析(TMA)装置(Mac Science社製 商品名:TMA4000S)を用いて、JIS K-7196「熱可塑性プラスチックフィルム及びシートの熱機械分析による軟化温度試験方法」に従って、軟化温度を測定した。
The measurement sample solution was prepared by dissolving the measurement sample at a concentration of 0.25% by mass in a solvent having the same composition as the eluent. A GPC column (Showa Denko, trade name: KD-G, KD-806M) is mounted in series with a GPC measurement device (Showa Denko, trade name: Shodex GPC-101), the column temperature is 45 ° C., and the eluent flow rate. The weight average molecular weight (Mw) was calculated from a standard polystyrene calibration curve prepared in advance using a differential refractometer (RI) detector under the conditions of 0.7 mL / min.
<Thermal weight reduction temperature (unit: ° C)>
Using a thermal analyzer (trade name: TGA-50, manufactured by Shimadzu Corporation), about 5 mg of a sample was weighed in a platinum cell and heated from room temperature to 700 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen atmosphere. It was measured. Based on 200 ° C., a 5% weight loss temperature was measured.
<Flow start temperature (unit: ° C)>
1 g of the sample is filled in an elevated flow tester (model: CFT-500, manufactured by Shimadzu Corporation), using a nozzle of 1 mm (diameter) × 10 mm (length), under the conditions of a heating rate of 5 ° C./min and a load of 100 kgf. The flow start temperature was measured.
<Softening temperature (unit: ° C)>
Using a thermomechanical analysis (TMA) apparatus (trade name: TMA4000S, manufactured by Mac Science), the softening temperature was measured according to JIS K-7196, “Softening temperature test method by thermomechanical analysis of thermoplastic film and sheet”.
 なお、使用した圧子の直径は1.0mmであり、軟化温度は、窒素気流下、50gfの荷重をかけた状態で、25℃で30分間保持した後、昇温速度5℃/minの条件で測定した。
<透湿度(単位:g/m・24h)>
 JIS L-1099 B-1法(酢酸カリウム法)記載の方法に準拠し、フィルムと水が接する面に、ナイロンタフタを重ねた後に、測定した。その後、透湿度を、24時間の値に換算した。
<引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)>
 23℃、50%相対湿度下における弾性率(MPa)、引張強度(MPa)および破断伸び(%)を、引張試験機(インストロン社製 引張試験機INSTRON1123)により、JIS K-7311に記載の方法に準拠して測定した。
<硬さ:ShoreA、ShoreD>
 JIS K 7311に記載の方法に準拠して、ShoreA硬さを測定し、その結果を数値として示した。
The diameter of the indenter used was 1.0 mm, and the softening temperature was maintained at 25 ° C. for 30 minutes under a nitrogen stream under a load of 50 gf, and then at a temperature increase rate of 5 ° C./min. It was measured.
<Moisture permeability (unit: g / m 2 · 24h) >
In accordance with the method described in JIS L-1099 B-1 method (potassium acetate method), measurement was performed after a nylon taffeta was placed on the surface where the film and water were in contact. Thereafter, the moisture permeability was converted to a value for 24 hours.
<Tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%)>
The elastic modulus (MPa), tensile strength (MPa) and elongation at break (%) at 23 ° C. and 50% relative humidity were measured according to JIS K-7311 using a tensile tester (tensile tester INSTRON 1123 manufactured by Instron). Measured according to the method.
<Hardness: Shore A, Shore D>
Based on the method described in JIS K 7311, Shore A hardness was measured, and the result was shown as a numerical value.
 また、ShoreA硬さが95以上のものについては、JIS K 7311に記載の方法に準拠して、ShoreDデュロメータを用いて硬さを測定し、その結果を数値として示した。
(アミド基含有ジオール)
  製造例1(アミド基含有ジオール1の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、30.1部のエチレンジアミンを仕込み、攪拌しながら十分に窒素置換した。その後、50℃に昇温し、同温度にて172.2部のε-カプロラクトンを徐々に添加した後、234部のアセトニトリルを添加し、20時間反応させた。
For those having a Shore A hardness of 95 or more, the hardness was measured using a Shore D durometer in accordance with the method described in JIS K 7311, and the results were shown as numerical values.
(Amido group-containing diol)
Production Example 1 (Production of amide group-containing diol 1)
Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 30.1 parts of ethylenediamine, and sufficiently purged with nitrogen while stirring. Thereafter, the temperature was raised to 50 ° C., and 172.2 parts of ε-caprolactone was gradually added at the same temperature, and then 234 parts of acetonitrile was added and reacted for 20 hours.
 反応終了後、室温で静置して、結晶を析出させた後、得られた結晶をアセトニトリルで洗浄し、N,N’-ビス-(6-ヒドロキシカプロイル)エチレンジアミン(アミド基含有ジオール1)の白色粉末84.2部(収率58%、融点152℃)を得た。 After completion of the reaction, the mixture was allowed to stand at room temperature to precipitate crystals. The obtained crystals were washed with acetonitrile, and N, N′-bis- (6-hydroxycaproyl) ethylenediamine (amide group-containing diol 1). Of white powder (yield 58%, melting point 152 ° C.) was obtained.
  製造例2(アミド基含有ジオール2の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、44.9部の1,4-ブタンジアミンを仕込み、攪拌しながら十分に窒素置換した。その後、50℃に昇温し、同温度にて245.0部のε-カプロラクトンを徐々に添加した後、134部のテトラヒドロフランを添加し、6時間反応させた。
Production Example 2 (Production of amide group-containing diol 2)
Under a nitrogen atmosphere, 44.9 parts of 1,4-butanediamine were charged into a reactor equipped with a stirrer, and the nitrogen was sufficiently substituted while stirring. Thereafter, the temperature was raised to 50 ° C., and 245.0 parts of ε-caprolactone was gradually added at the same temperature, and then 134 parts of tetrahydrofuran was added and reacted for 6 hours.
 反応終了後、イソプロピルアルコールを用いて結晶化処理し、析出した生成物をイソプロピルアルコールで洗浄し、N,N’-ビス-(6-ヒドロキシカプロイル)ブタンジアミン(アミド基含有ジオール2)の白色粉末49.2部(収率31%、融点134℃)を得た。 After completion of the reaction, crystallization was performed using isopropyl alcohol, and the precipitated product was washed with isopropyl alcohol, and white, N, N′-bis- (6-hydroxycaproyl) butanediamine (amide group-containing diol 2) was obtained. 49.2 parts of powder (yield 31%, melting point 134 ° C.) were obtained.
  製造例3(アミド基含有ジオール3の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、18.1部のエチレンジアミンを仕込み、攪拌しながら十分に窒素置換した。その後、室温にて156.0部のγ-ブチロラクトンを徐々に添加し、20時間反応させた。
Production Example 3 (Production of amide group-containing diol 3)
Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 18.1 parts of ethylenediamine, and sufficiently purged with nitrogen while stirring. Thereafter, 156.0 parts of γ-butyrolactone was gradually added at room temperature and allowed to react for 20 hours.
 反応終了後、イソプロピルアルコールを用いて結晶化処理し、析出した生成物をイソプロピルアルコールで洗浄し、N,N’-ビス-(4-ヒドロキシブチロイル)エチレンジアミン(アミド基含有ジオール3)の白色粉末28.6部(収率41%、融点142℃)を得た。 After completion of the reaction, crystallization was performed using isopropyl alcohol, the precipitated product was washed with isopropyl alcohol, and white powder of N, N′-bis- (4-hydroxybutyroyl) ethylenediamine (amide group-containing diol 3) 28.6 parts (yield 41%, melting point 142 ° C.) were obtained.
  製造例4(アミド基含有ジオール4の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、18.1部のエチレンジアミンを仕込み、攪拌しながら十分に窒素置換した。その後、80℃に昇温し、同温度にて120.2部のδ-バレロラクトンを徐々に添加した後、79部のイソプロピルアルコールを添加し、2時間反応させた。
Production Example 4 (Production of amide group-containing diol 4)
Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 18.1 parts of ethylenediamine, and sufficiently purged with nitrogen while stirring. Thereafter, the temperature was raised to 80 ° C., 120.2 parts of δ-valerolactone was gradually added at the same temperature, 79 parts of isopropyl alcohol was added, and the mixture was reacted for 2 hours.
 反応終了後、析出した生成物をイソプロピルアルコールで洗浄し、N,N’-ビス-(5-ヒドロキシバレロイル)エチレンジアミン(アミド基含有ジオール4)の白色粉末44.9部(収率57%、融点140℃)を得た。 After completion of the reaction, the precipitated product was washed with isopropyl alcohol, and 44.9 parts of white powder of N, N′-bis- (5-hydroxyvaleroyl) ethylenediamine (amide group-containing diol 4) (57% yield, Melting point 140 ° C.).
  製造例5(アミド基含有ジオール5の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、135部のグリコール酸メチルを仕込みた後、氷水浴で冷やし、36部のエチレンジアミンを徐々に滴下した。次いで、30分間攪拌し、その後、100℃に昇温して、同温度にて5時間攪拌し、反応させた。
Production Example 5 (Production of amide group-containing diol 5)
In a nitrogen atmosphere, 135 parts of methyl glycolate was charged into a reactor equipped with a stirrer, and then cooled in an ice-water bath, and 36 parts of ethylenediamine was gradually added dropwise. Subsequently, it stirred for 30 minutes, Then, it heated up at 100 degreeC and stirred for 5 hours and made it react at the same temperature.
 反応終了後、250部のメタノールで結晶化処理し、得られた白色粉末を40℃にて7時間真空乾燥することによって、N,N’-ビス-(ヒドロキシアセチル)エチレンジアミン(アミド基顔油ジオール5)の白色粉末80部(収率76%、融点143℃)を得た。
(熱可塑性ポリウレタン樹脂および成形品)
  実施例1(熱可塑性ポリウレタン樹脂1の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、53.46部のポリエチレングリコール(日油製 商品名:PEG#2000U 水酸基価54.8mgKOH/g)を添加し、80℃で1時間加熱した。
After completion of the reaction, crystallization treatment was performed with 250 parts of methanol, and the resulting white powder was vacuum-dried at 40 ° C. for 7 hours to obtain N, N′-bis- (hydroxyacetyl) ethylenediamine (amide group facial oil diol). 5) of white powder (yield 76%, melting point 143 ° C.) was obtained.
(Thermoplastic polyurethane resin and molded product)
Example 1 (Production of thermoplastic polyurethane resin 1)
Under a nitrogen atmosphere, 53.46 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value: 54.8 mgKOH / g, manufactured by NOF Corporation) was added to a reactor equipped with a stirrer, and heated at 80 ° C. for 1 hour.
 次いで、25.12部の4,4’-ジフェニルメタンジイソシアネートを添加し、80℃で2時間反応させ、イソシアネート基末端ウレタンプレポリマー(以下、プレポリマーと略す)を合成した。 Next, 25.12 parts of 4,4′-diphenylmethane diisocyanate was added and reacted at 80 ° C. for 2 hours to synthesize an isocyanate group-terminated urethane prepolymer (hereinafter abbreviated as prepolymer).
 得られたプレポリマーに70部のジメチルアセトアミド(以下、DMAcと略す)を添加し、プレポリマーが均一に溶解するよう十分に攪拌した。次いで、プレポリマーのDMAc溶液を100℃に昇温し、そこに、アミド基含有ジオール1のDMAc溶液(予め21.42部のアミド基含有ジオール1を30部のDMAcに100℃で溶解させた溶液)を5分かけて滴下した。 70 parts of dimethylacetamide (hereinafter abbreviated as DMAc) was added to the obtained prepolymer and stirred sufficiently so that the prepolymer was uniformly dissolved. Next, the DMAc solution of the prepolymer was heated to 100 ° C., and the DMAc solution of amide group-containing diol 1 (previously 21.42 parts of amide group-containing diol 1 was dissolved in 30 parts of DMAc at 100 ° C. The solution was added dropwise over 5 minutes.
 次いで、100℃にて30分間反応させた後、200部のDMAcを徐々に添加し、1時間反応させた。得られた反応溶液を2000部のアセトニトリルで再沈殿させ、アセトニトリルにより繰り返し洗浄した後、吸引濾過した。 Next, after reacting at 100 ° C. for 30 minutes, 200 parts of DMAc was gradually added and reacted for 1 hour. The obtained reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
 その後、得られた白色固体を80℃で減圧乾燥することによって、92.1部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)1を得た。 Then, 92.1 parts of thermoplastic polyurethane resin (polyurethane elastomer) 1 was obtained by drying the obtained white solid under reduced pressure at 80 ° C.
 得られた熱可塑性ポリウレタン樹脂1の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を、表1に示す。
<熱プレスシートの製造>
 240℃に設定した真空プレス機(関西ロール社製)を用い、熱可塑性ポリウレタン樹脂1の熱プレスシートを成形した。
Table 1 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 1.
<Manufacture of hot press sheet>
A hot press sheet of thermoplastic polyurethane resin 1 was molded using a vacuum press machine (manufactured by Kansai Roll Co., Ltd.) set at 240 ° C.
 すなわち、0.3mm厚のシート(スペーサー形状;240×240×0.3mm厚の板に80×80×0.3mm、4個取り)において、1個の80×80×0.3mm当たり3.5部の熱可塑性ポリウレタン樹脂1を5分間予熱し、5MPaで2分間加圧した後、同プレス機に設置されている20℃に設定したプレス板を用いて、2.5MPaで加圧し、3分間冷却することによって、測定用シート試料を作製した。なお、熱板は5mm厚の真鍮板を用いた。 That is, in a 0.3 mm-thick sheet (spacer shape; 80 × 80 × 0.3 mm on a 240 × 240 × 0.3 mm thick plate, four pieces are taken), each 80 × 80 × 0.3 mm 5 parts of the thermoplastic polyurethane resin 1 was preheated for 5 minutes, pressurized at 5 MPa for 2 minutes, and then pressurized at 2.5 MPa using a press plate set at 20 ° C. installed in the same press. A sheet sample for measurement was prepared by cooling for a minute. The hot plate was a 5 mm thick brass plate.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表1に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 1.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表1に示す。
<溶媒キャストフィルムの製造>
 25部の熱可塑性ポリウレタン樹脂1を75部のDMAcに溶解させ、熱可塑性ポリウレタン樹脂の溶液を調製した。その溶液をポリプロピレン板上に、アプリケーターを用いて厚み160μmとなるように塗工し、その後、100℃に設定した乾燥機で、窒素雰囲気下、1時間、DMAcを揮発除去した。これにより、厚み20μmの熱可塑性ポリウレタン樹脂1のキャストフィルムを成形した。
Further, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the measurement sheet sample were measured. The results are shown in Table 1.
<Manufacture of solvent cast film>
25 parts of the thermoplastic polyurethane resin 1 was dissolved in 75 parts of DMAc to prepare a thermoplastic polyurethane resin solution. The solution was coated on a polypropylene plate using an applicator so as to have a thickness of 160 μm, and then DMAc was volatilized and removed for 1 hour in a nitrogen atmosphere with a dryer set at 100 ° C. Thus, a cast film of the thermoplastic polyurethane resin 1 having a thickness of 20 μm was formed.
 また、キャストフィルムの透湿度(単位:g/m・24h)、引張強度(単位:MPa)、弾性率(単位:MPa)および破断伸び(単位:%)を測定した。その結果を、表1に示す。 Further, the moisture permeability (unit: g / m 2 · 24 h), tensile strength (unit: MPa), elastic modulus (unit: MPa), and elongation at break (unit:%) of the cast film were measured. The results are shown in Table 1.
  実施例2(熱可塑性ポリウレタン樹脂2の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、32.08部のポリエチレングリコール(日油製 商品名:PEG#2000U 水酸基価54.8mgKOH/g)、および、21.03部のポリ(エチレンオキサイド-テトラヒドロフラン)共重合体(日油製 商品名:ポリセリンDC-1800E 水酸基価63.3mgKOH/g)を添加し、80℃で1時間加熱した。
Example 2 (Production of thermoplastic polyurethane resin 2)
Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 32.08 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF) and 21.03 parts of poly (ethylene oxide). -Tetrahydrofuran) copolymer (trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) manufactured by NOF Corporation was added and heated at 80 ° C. for 1 hour.
 次いで、25.47部の4,4’-ジフェニルメタンジイソシアネートを添加し、80℃で2時間反応させ、プレポリマーを合成した。 Next, 25.47 parts of 4,4′-diphenylmethane diisocyanate was added and reacted at 80 ° C. for 2 hours to synthesize a prepolymer.
 得られたプレポリマーに70部のDMAcを添加し、プレポリマーが均一に溶解するよう十分に攪拌した。次いで、プレポリマーのDMAc溶液を100℃に昇温し、そこに、アミド基含有ジオール1のDMAc溶液(予め21.42部のアミド基含有ジオール1を30部のDMAcに100℃で溶解させた溶液)を5分かけて滴下した。 70 parts of DMAc was added to the obtained prepolymer and stirred sufficiently so that the prepolymer was uniformly dissolved. Next, the DMAc solution of the prepolymer was heated to 100 ° C., and the DMAc solution of amide group-containing diol 1 (previously 21.42 parts of amide group-containing diol 1 was dissolved in 30 parts of DMAc at 100 ° C. The solution was added dropwise over 5 minutes.
 次いで、100℃にて30分間反応させた後、200部のDMAcを徐々に添加し、1時間反応させた。得られた反応溶液を2000部のアセトニトリルで再沈殿させ、アセトニトリルにより繰り返し洗浄した後、吸引濾過した。 Next, after reacting at 100 ° C. for 30 minutes, 200 parts of DMAc was gradually added and reacted for 1 hour. The obtained reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
 その後、得られた白色固体を80℃で減圧乾燥することによって、94.2部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)2を得た。 Thereafter, the obtained white solid was dried under reduced pressure at 80 ° C. to obtain 94.2 parts of a thermoplastic polyurethane resin (polyurethane elastomer) 2.
 得られた熱可塑性ポリウレタン樹脂2の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を、表1に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂2の熱プレスシートを成形した。
Table 1 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 2.
<Manufacture of hot press sheet>
A hot press sheet of the thermoplastic polyurethane resin 2 was molded by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表1に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 1.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表1に示す。
<溶媒キャストフィルムの製造>
 実施例1と同様の操作により、厚み20μmの熱可塑性ポリウレタン樹脂2のキャストフィルムを成形した。
Further, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the measurement sheet sample were measured. The results are shown in Table 1.
<Manufacture of solvent cast film>
A cast film of thermoplastic polyurethane resin 2 having a thickness of 20 μm was formed in the same manner as in Example 1.
 また、キャストフィルムの透湿度(単位:g/m・24h)、引張強度(単位:MPa)、弾性率(単位:MPa)および破断伸び(単位:%)を測定した。その結果を、表1に示す。 Further, the moisture permeability (unit: g / m 2 · 24 h), tensile strength (unit: MPa), elastic modulus (unit: MPa), and elongation at break (unit:%) of the cast film were measured. The results are shown in Table 1.
  実施例3(熱可塑性ポリウレタン樹脂3の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、58.71部のポリ(エチレンオキサイド-テトラヒドロフラン)共重合体(日油製 商品名:ポリセリンDC-1800E 水酸基価63.3mgKOH/g)、を添加し、80℃で1時間加熱した。
Example 3 (Production of thermoplastic polyurethane resin 3)
Under a nitrogen atmosphere, 58.71 parts of a poly (ethylene oxide-tetrahydrofuran) copolymer (trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) manufactured by NOF CORPORATION was added to a reactor equipped with a stirrer. And heated at 80 ° C. for 1 hour.
 次いで、23.62部の4,4’-ジフェニルメタンジイソシアネートを添加し、80℃で2時間反応させ、プレポリマーを合成した。 Next, 23.62 parts of 4,4′-diphenylmethane diisocyanate was added and reacted at 80 ° C. for 2 hours to synthesize a prepolymer.
 得られたプレポリマーに70部のDMAcを添加し、プレポリマーが均一に溶解するよう十分に攪拌した。次いで、プレポリマーのDMAc溶液を100℃に昇温し、そこに、アミド基含有ジオール1のDMAc溶液(予め17.67部のアミド基含有ジオール1を30部のDMAcに100℃で溶解させた溶液)を5分かけて滴下した。 70 parts of DMAc was added to the obtained prepolymer and stirred sufficiently so that the prepolymer was uniformly dissolved. Subsequently, the DMAc solution of the prepolymer was heated to 100 ° C., and the DMAc solution of amide group-containing diol 1 (previously 17.67 parts of amide group-containing diol 1 was dissolved in 30 parts of DMAc at 100 ° C. The solution was added dropwise over 5 minutes.
 次いで、100℃にて30分間反応させた後、200部のDMAcを徐々に添加し、1時間反応させた。得られた反応溶液を2000部のアセトニトリルで再沈殿を行い、アセトニトリルにより繰り返し洗浄した後、吸引濾過した。 Next, after reacting at 100 ° C. for 30 minutes, 200 parts of DMAc was gradually added and reacted for 1 hour. The obtained reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
 その後、得られた白色固体を80℃で減圧乾燥することによって、93.0部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)3を得た。 Thereafter, the obtained white solid was dried at 80 ° C. under reduced pressure to obtain 93.0 parts of a thermoplastic polyurethane resin (polyurethane elastomer) 3.
 得られた熱可塑性ポリウレタン樹脂3の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を、表1に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂3の熱プレスシートを成形した。
Table 1 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 3.
<Manufacture of hot press sheet>
A hot press sheet of thermoplastic polyurethane resin 3 was molded by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表1に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 1.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表1に示す。 Also, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the sheet sample for measurement were measured. The results are shown in Table 1.
  実施例4(熱可塑性ポリウレタン樹脂4の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、29.85部のポリエチレングリコール(日油製 商品名:PEG#2000U 水酸基価54.8mgKOH/g)、および、29.36部のポリ(エチレンオキサイド-テトラヒドロフラン)共重合体(日油製 商品名:ポリセリンDC-1800E 水酸基価63.3mgKOH/g)を添加し、80℃で1時間加熱した。
Example 4 (Production of thermoplastic polyurethane resin 4)
Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 29.85 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF) and 29.36 parts of poly (ethylene oxide). -Tetrahydrofuran) copolymer (trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) manufactured by NOF Corporation was added and heated at 80 ° C. for 1 hour.
 次いで、23.12部の4,4’-ジフェニルメタンジイソシアネートを添加し、80℃で2時間反応させ、プレポリマーを合成した。 Next, 23.12 parts of 4,4′-diphenylmethane diisocyanate was added and reacted at 80 ° C. for 2 hours to synthesize a prepolymer.
 得られたプレポリマーに70部のDMAcを添加し、プレポリマーが均一に溶解するよう十分に攪拌した。次いで、プレポリマーのDMAc溶液を100℃に昇温し、そこに、アミド基含有ジオール1のDMAc溶液(予め21.42部のアミド基含有ジオール1を30部のDMAcに100℃で溶解させた溶液)を5分かけて滴下した。 70 parts of DMAc was added to the obtained prepolymer and stirred sufficiently so that the prepolymer was uniformly dissolved. Next, the DMAc solution of the prepolymer was heated to 100 ° C., and the DMAc solution of amide group-containing diol 1 (previously 21.42 parts of amide group-containing diol 1 was dissolved in 30 parts of DMAc at 100 ° C. The solution was added dropwise over 5 minutes.
 次いで、100℃にて30分間反応させた後、200部のDMAcを徐々に添加し、1時間反応させた。得られた反応溶液を2000部のアセトニトリルで再沈殿を行い、アセトニトリルにより繰り返し洗浄した後、吸引濾過した。 Next, after reacting at 100 ° C. for 30 minutes, 200 parts of DMAc was gradually added and reacted for 1 hour. The obtained reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
 その後、得られた白色固体を80℃で減圧乾燥することによって、88.2部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)4を得た。 Thereafter, the obtained white solid was dried under reduced pressure at 80 ° C. to obtain 88.2 parts of thermoplastic polyurethane resin (polyurethane elastomer) 4.
 得られた熱可塑性ポリウレタン樹脂4の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を、表1に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂4の熱プレスシートを成形した。
Table 1 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 4.
<Manufacture of hot press sheet>
A hot press sheet of thermoplastic polyurethane resin 4 was molded by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表1に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 1.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表1に示す。 Also, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the sheet sample for measurement were measured. The results are shown in Table 1.
  実施例5(熱可塑性ポリウレタン樹脂5の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、59.44部のポリテトラエチレンエーテルグリコール(保土ヶ谷化学製 商品名:PTG-2000SN 水酸基価57.0mgKOH/g)を添加し、80℃で1時間加熱した。
Example 5 (Production of thermoplastic polyurethane resin 5)
Under a nitrogen atmosphere, 59.44 parts of polytetraethylene ether glycol (trade name: PTG-2000SN, hydroxyl value: 57.0 mgKOH / g) manufactured by Hodogaya Chemical Co., Ltd. was added to a reactor equipped with a stirrer, and the mixture was heated at 80 ° C. for 1 hour. Heated.
 次いで、22.89部の4,4’-ジフェニルメタンジイソシアネートを添加し、80℃で2時間反応させ、プレポリマーを合成した。 Next, 22.89 parts of 4,4′-diphenylmethane diisocyanate was added and reacted at 80 ° C. for 2 hours to synthesize a prepolymer.
 得られたプレポリマーに70部のDMAcを添加し、プレポリマーが均一に溶解するよう十分に攪拌した。次いで、プレポリマーのDMAc溶液を100℃に昇温し、そこに、アミド基含有ジオール1のDMAc溶液(予め17.67部のアミド基含有ジオール1を30部のDMAcに100℃で溶解させた溶液)を5分かけて滴下した。 70 parts of DMAc was added to the obtained prepolymer and stirred sufficiently so that the prepolymer was uniformly dissolved. Subsequently, the DMAc solution of the prepolymer was heated to 100 ° C., and the DMAc solution of amide group-containing diol 1 (previously 17.67 parts of amide group-containing diol 1 was dissolved in 30 parts of DMAc at 100 ° C. The solution was added dropwise over 5 minutes.
 次いで、100℃にて30分間反応させた後、200部のDMAcを徐々に添加し、1時間反応させた。得られた反応溶液を2000部のアセトニトリルで再沈殿を行い、アセトニトリルにより繰り返し洗浄した後、吸引濾過した。 Next, after reacting at 100 ° C. for 30 minutes, 200 parts of DMAc was gradually added and reacted for 1 hour. The obtained reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
 得られた白色固体を80℃で減圧乾燥することによって、93部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)5を得た。 The obtained white solid was dried under reduced pressure at 80 ° C. to obtain 93 parts of a thermoplastic polyurethane resin (polyurethane elastomer) 5.
 得られた熱可塑性ポリウレタン樹脂5の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を表2に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂5の熱プレスシートを成形した。
Table 2 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 5.
<Manufacture of hot press sheet>
A hot press sheet of the thermoplastic polyurethane resin 5 was molded by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表2に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 2.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表2に示す。 Also, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the sheet sample for measurement were measured. The results are shown in Table 2.
  実施例6(熱可塑性ポリウレタン樹脂6の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、56.5部のポリエステルポリオール(三井化学製 商品名:タケラックU-2024 水酸基価56.3mgKOH/g)
を添加し、80℃で1時間加熱した。
Example 6 (Production of thermoplastic polyurethane resin 6)
In a reactor equipped with a stirrer under a nitrogen atmosphere, 56.5 parts of polyester polyol (trade name: Takelac U-2024, hydroxyl value 56.3 mgKOH / g, manufactured by Mitsui Chemicals)
And heated at 80 ° C. for 1 hour.
 次いで、22.81部の4,4’-ジフェニルメタンジイソシアネートを添加し、80℃で2時間反応させ、プレポリマーを合成した。 Next, 22.81 parts of 4,4′-diphenylmethane diisocyanate was added and reacted at 80 ° C. for 2 hours to synthesize a prepolymer.
 得られたプレポリマーに70部のDMAcを添加し、プレポリマーが均一に溶解するよう十分に攪拌した。次いで、プレポリマーのDMAc溶液を100℃に昇温し、そこに、アミド基含有ジオール1のDMAc溶液(予め17.67部のアミド基含有ジオール1を30部のDMAcに100℃で溶解させた溶液)を5分かけて滴下した。 70 parts of DMAc was added to the obtained prepolymer and stirred sufficiently so that the prepolymer was uniformly dissolved. Subsequently, the DMAc solution of the prepolymer was heated to 100 ° C., and the DMAc solution of amide group-containing diol 1 (previously 17.67 parts of amide group-containing diol 1 was dissolved in 30 parts of DMAc at 100 ° C. The solution was added dropwise over 5 minutes.
 次いで、100℃にて30分間反応させた後、200部のDMAcを徐々に添加し、1時間反応させた。得られた反応溶液を2000部のアセトニトリルで再沈殿を行い、アセトニトリルにより繰り返し洗浄した後、吸引濾過した。 Next, after reacting at 100 ° C. for 30 minutes, 200 parts of DMAc was gradually added and reacted for 1 hour. The obtained reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
 得られた白色固体を80℃で減圧乾燥することによって、92部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)6を得た。 The obtained white solid was dried under reduced pressure at 80 ° C. to obtain 92 parts of a thermoplastic polyurethane resin (polyurethane elastomer) 6.
 得られた熱可塑性ポリウレタン樹脂6の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を表2に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂6の熱プレスシートを成形した。
Table 2 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 6.
<Manufacture of hot press sheet>
A hot press sheet of thermoplastic polyurethane resin 6 was molded by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表2に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 2.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表2に示す。 Also, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the sheet sample for measurement were measured. The results are shown in Table 2.
  実施例7(熱可塑性ポリウレタン樹脂7の製造)
 窒素雰囲気下、撹拌機が装着された反応器に、30.07部のアミド基含有ジオール1と、101.3部のポリカプロラクトンポリオール(ダイセル化学製 商品名:PLACCEL220)と、170部の脱水ジメチルアセトアミド(和光純薬製)とを投入し、100℃で加熱撹拌して、均一な溶液とした。
Example 7 (Production of thermoplastic polyurethane resin 7)
In a reactor equipped with a stirrer under a nitrogen atmosphere, 30.07 parts of the amide group-containing diol 1, 101.3 parts of polycaprolactone polyol (trade name: PLACEL220 manufactured by Daicel Chemical Industries), and 170 parts of dehydrated dimethyl Acetamide (manufactured by Wako Pure Chemical Industries, Ltd.) was added and heated and stirred at 100 ° C. to obtain a uniform solution.
 次いで、これに、35部の脱水ジメチルアセトアミドに38.80部の4,4’-ジフェニルメタンジイソシアネート(和光純薬製)を溶解させた溶液を、滴下し、滴下終了後、2時間加熱撹拌した。 Next, a solution in which 38.80 parts of 4,4'-diphenylmethane diisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 35 parts of dehydrated dimethylacetamide was added dropwise thereto, and after completion of the addition, the mixture was heated and stirred for 2 hours.
 その後、3000部のアセトニトリルで再沈殿を行い、得られた固形物をろ過分別した後、500部のアセトニトリルで2回洗浄した。 Thereafter, reprecipitation was performed with 3000 parts of acetonitrile, and the obtained solid was separated by filtration and then washed twice with 500 parts of acetonitrile.
 得られた白色固体を窒素気流下70℃で一晩加熱乾燥することによって、159.1部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)7を得た。 The obtained white solid was heated and dried overnight at 70 ° C. under a nitrogen stream to obtain 159.1 parts of a thermoplastic polyurethane resin (polyurethane elastomer) 7.
 得られた熱可塑性ポリウレタン樹脂7の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を表2に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂7の熱プレスシートを成形した。
Table 2 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 7.
<Manufacture of hot press sheet>
A hot press sheet of the thermoplastic polyurethane resin 7 was molded by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表2に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 2.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表2に示す。 Also, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the sheet sample for measurement were measured. The results are shown in Table 2.
  実施例8(熱可塑性ポリウレタン樹脂8の製造)
 窒素雰囲気下、撹拌機が装着された反応器に、35.31部のアミド基含有ジオール1と、118.90部のポリカーボネートポリオール(旭化成ケミカルズ製 商品名:Duranol T5652)と、200部の脱水ジメチルアセトアミド(和光純薬製)とを投入し、100℃で加熱撹拌して、均一な溶液とした。
Example 8 (Production of thermoplastic polyurethane resin 8)
Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 35.31 parts of amide group-containing diol 1, 118.90 parts of polycarbonate polyol (trade name: Duranol T5652 manufactured by Asahi Kasei Chemicals), and 200 parts of dehydrated dimethyl. Acetamide (manufactured by Wako Pure Chemical Industries, Ltd.) was added and heated and stirred at 100 ° C. to obtain a uniform solution.
 次いで、これに、45部の脱水ジメチルアセトアミドに46.52部の4,4’-ジフェニルメタンジイソシアネート(和光純薬製)を溶解させた溶液を、滴下し、滴下終了後、2時間加熱撹拌を継続した。 Next, a solution in which 46.52 parts of 4,4′-diphenylmethane diisocyanate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 45 parts of dehydrated dimethylacetamide was added dropwise thereto. After completion of the dropwise addition, heating and stirring were continued for 2 hours. did.
 その後、4000部のアセトニトリルで再沈殿を行い、得られた固形物をろ過分別した後、1000部のアセトニトリルで2回洗浄した。 Thereafter, reprecipitation was performed with 4000 parts of acetonitrile, and the obtained solid was separated by filtration and then washed twice with 1000 parts of acetonitrile.
 得られた白色固体を窒素気流下70℃で一晩加熱乾燥することにより、182.0部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)8を得た。 The obtained white solid was heated and dried overnight at 70 ° C. under a nitrogen stream to obtain 182.0 parts of a thermoplastic polyurethane resin (polyurethane elastomer) 8.
 得られた熱可塑性ポリウレタン樹脂8の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を表2に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂8の熱プレスシートを成形した。
Table 2 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 8.
<Manufacture of hot press sheet>
A hot press sheet of thermoplastic polyurethane resin 8 was molded by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表2に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 2.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表2に示す。 Also, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the sheet sample for measurement were measured. The results are shown in Table 2.
  実施例9(熱可塑性ポリウレタン樹脂9の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、32.08部のポリエチレングリコール(日油製 商品名:PEG#2000U 水酸基価54.8mgKOH/g)、および、21.03部のポリ(エチレンオキサイド-テトラヒドロフラン)共重合体(日油製 商品名:ポリセリンDC-1800E 水酸基価63.3mgKOH/g)を添加し、80℃で1時間加熱した。
Example 9 (Production of thermoplastic polyurethane resin 9)
Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 32.08 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF) and 21.03 parts of poly (ethylene oxide). -Tetrahydrofuran) copolymer (trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) manufactured by NOF Corporation was added and heated at 80 ° C. for 1 hour.
 次いで、これに、24.55部の4,4’-ジフェニルメタンジイソシアネートを添加し、80℃で2時間反応させ、プレポリマーを合成した。 Next, 24.55 parts of 4,4'-diphenylmethane diisocyanate was added thereto and reacted at 80 ° C. for 2 hours to synthesize a prepolymer.
 得られたプレポリマーに70部のDMAcを添加し、プレポリマーが均一に溶解するよう十分に攪拌した。次いで、プレポリマーのDMAc溶液を100℃に昇温し、そこに、
アミド基含有ジオール2のDMAc溶液(予め22.34部のアミド基含有ジオール2を30部のDMAcに100℃で溶解させた溶液)を5分かけて滴下した。
70 parts of DMAc was added to the resulting prepolymer and stirred sufficiently to dissolve the prepolymer uniformly. Next, the DMAc solution of the prepolymer was heated to 100 ° C.,
A DMAc solution of amide group-containing diol 2 (a solution obtained by previously dissolving 22.34 parts of amide group-containing diol 2 in 30 parts of DMAc at 100 ° C.) was added dropwise over 5 minutes.
 次いで、100℃にて30分間反応させた後、200部のDMAcを徐々に添加し、1時間反応させた。得られた反応溶液を2000部のアセトニトリルで再沈殿を行い、アセトニトリルにより繰り返し洗浄した後、吸引濾過した。 Next, after reacting at 100 ° C. for 30 minutes, 200 parts of DMAc was gradually added and reacted for 1 hour. The obtained reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
 得られた白色固体を80℃で減圧乾燥することによって92部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)9を得た。 The obtained white solid was dried under reduced pressure at 80 ° C. to obtain 92 parts of a thermoplastic polyurethane resin (polyurethane elastomer) 9.
 得られた熱可塑性ポリウレタン樹脂9の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を表3に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂9の熱プレスシートを成形した。
Table 3 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 9.
<Manufacture of hot press sheet>
A hot press sheet of the thermoplastic polyurethane resin 9 was formed by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表3に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 3.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表3に示す。 Also, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the sheet sample for measurement were measured. The results are shown in Table 3.
  実施例10(熱可塑性ポリウレタン樹脂10の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、29.85部のポリエチレングリコール(日油製 商品名:PEG#2000U 水酸基価54.8mgKOH/g)、および、29.36部のポリ(エチレンオキサイド-テトラヒドロフラン)共重合体(日油製 商品名:ポリセリンDC-1800E 水酸基価63.3mgKOH/g)を添加し、80℃で1時間加熱した。
Example 10 (Production of thermoplastic polyurethane resin 10)
Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 29.85 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF) and 29.36 parts of poly (ethylene oxide). -Tetrahydrofuran) copolymer (trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) manufactured by NOF Corporation was added and heated at 80 ° C. for 1 hour.
 次いで、24.91部の4,4’-ジフェニルメタンジイソシアネートを添加し、80℃で2時間反応させ、プレポリマーを合成した。 Next, 24.91 parts of 4,4′-diphenylmethane diisocyanate was added and reacted at 80 ° C. for 2 hours to synthesize a prepolymer.
 得られたプレポリマーに70部のDMAcを添加し、プレポリマーが均一に溶解するよう十分に攪拌した。次いで、プレポリマーのDMAc溶液を100℃に昇温し、そこに、アミド基含有ジオール3のDMAc溶液(予め15.89部のアミド基含有ジオール3を30部のDMAcに100℃で溶解させた溶液)を5分かけて滴下した。 70 parts of DMAc was added to the obtained prepolymer and stirred sufficiently so that the prepolymer was uniformly dissolved. Subsequently, the DMAc solution of the prepolymer was heated to 100 ° C., and the amide group-containing diol 3 DMAc solution (15.89 parts of the amide group-containing diol 3 was previously dissolved in 30 parts of DMAc at 100 ° C. The solution was added dropwise over 5 minutes.
 次いで、100℃にて30分間反応させた後、200部のDMAcを徐々に添加し、1時間反応させた。得られた反応溶液を2000部のアセトニトリルで再沈殿を行い、アセトニトリルにより繰り返し洗浄した後、吸引濾過した。 Next, after reacting at 100 ° C. for 30 minutes, 200 parts of DMAc was gradually added and reacted for 1 hour. The obtained reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
 その後、得られた白色固体を80℃で減圧乾燥することによって、89.6部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)10を得た。 Thereafter, the obtained white solid was dried at 80 ° C. under reduced pressure to obtain 89.6 parts of a thermoplastic polyurethane resin (polyurethane elastomer) 10.
 得られた熱可塑性ポリウレタン樹脂10の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を、表3に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂10の熱プレスシートを成形した。
Table 3 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 10.
<Manufacture of hot press sheet>
A hot press sheet of the thermoplastic polyurethane resin 10 was formed by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表3に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 3.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表3に示す。 Also, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the sheet sample for measurement were measured. The results are shown in Table 3.
  実施例11(熱可塑性ポリウレタン樹脂11の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、29.85部のポリエチレングリコール(日油製 商品名:PEG#2000U 水酸基価54.8mgKOH/g)、および、29.36部のポリ(エチレンオキサイド-テトラヒドロフラン)共重合体(日油製、商品名:ポリセリンDC-1800E、水酸基価63.3mgKOH/g)を添加し、80℃で1時間加熱した。
Example 11 (Production of thermoplastic polyurethane resin 11)
Under a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 29.85 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value of 54.8 mgKOH / g manufactured by NOF) and 29.36 parts of poly (ethylene oxide). -Tetrahydrofuran) copolymer (manufactured by NOF Corporation, trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) was added and heated at 80 ° C. for 1 hour.
 次いで、23.97部の4,4’-ジフェニルメタンジイソシアネートを添加し、80℃で2時間反応させ、プレポリマーを合成した。 Next, 23.97 parts of 4,4′-diphenylmethane diisocyanate was added and reacted at 80 ° C. for 2 hours to synthesize a prepolymer.
 得られたプレポリマーに70部のDMAcを添加し、プレポリマーが均一に溶解するよう十分に攪拌した。次いで、プレポリマーのDMAc溶液を100℃に昇温し、そこに、アミド基含有ジオール4のDMAc溶液(予め16.83部のアミド基含有ジオール4を30部のDMAcに100℃で溶解させた溶液)を5分かけて滴下した。 70 parts of DMAc was added to the obtained prepolymer and stirred sufficiently so that the prepolymer was uniformly dissolved. Next, the DMAc solution of the prepolymer was heated to 100 ° C., and the DMAc solution of amide group-containing diol 4 (16.83 parts of amide group-containing diol 4 was previously dissolved in 30 parts of DMAc at 100 ° C. The solution was added dropwise over 5 minutes.
 次いで、100℃にて30分間反応させた後、200部のDMAcを徐々に添加し、1時間反応させた。得られた反応溶液を2000部のアセトニトリルで再沈殿を行い、アセトニトリルにより繰り返し洗浄した後、吸引濾過した。 Next, after reacting at 100 ° C. for 30 minutes, 200 parts of DMAc was gradually added and reacted for 1 hour. The obtained reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
 得られた白色固体を80℃で減圧乾燥することによって、72.6部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)11を得た。 The white solid obtained was dried under reduced pressure at 80 ° C. to obtain 72.6 parts of a thermoplastic polyurethane resin (polyurethane elastomer) 11.
 得られた熱可塑性ポリウレタン樹脂11の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を表3に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂11の熱プレスシートを成形した。
Table 3 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 11.
<Manufacture of hot press sheet>
A hot press sheet of thermoplastic polyurethane resin 11 was formed by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表3に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 3.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表3に示す。 Also, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the sheet sample for measurement were measured. The results are shown in Table 3.
  実施例12(熱可塑性ポリウレタン樹脂12の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、29.85部のポリエチレングリコール(日油製、商品名:PEG#2000U、水酸基価54.8mgKOH/g)、および、29.36部のポリ(エチレンオキサイド-テトラヒドロフラン)共重合体(日油製、商品名:ポリセリンDC-1800E、水酸基価63.3mgKOH/g)を添加し、80℃で1時間加熱した。
Example 12 (Production of thermoplastic polyurethane resin 12)
In a nitrogen atmosphere, a reactor equipped with a stirrer was charged with 29.85 parts of polyethylene glycol (manufactured by NOF Corporation, trade name: PEG # 2000U, hydroxyl value 54.8 mgKOH / g), and 29.36 parts of poly ( An ethylene oxide-tetrahydrofuran) copolymer (manufactured by NOF Corporation, trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) was added, and the mixture was heated at 80 ° C. for 1 hour.
 次いで、27.16部の4,4’-ジフェニルメタンジイソシアネートを添加し、80℃で2時間反応させ、プレポリマーを合成した。 Next, 27.16 parts of 4,4′-diphenylmethane diisocyanate was added and reacted at 80 ° C. for 2 hours to synthesize a prepolymer.
 得られたプレポリマーに70部のDMAcを添加し、プレポリマーが均一に溶解するよう十分に攪拌した。次いで、プレポリマーのDMAc溶液を100℃に昇温し、そこに、アミド基含有ジオール5のDMAc溶液(予め13.63部のアミド基含有ジオール5を30部のDMAcに100℃で溶解させた溶液)を5分かけて滴下した。 70 parts of DMAc was added to the obtained prepolymer and stirred sufficiently so that the prepolymer was uniformly dissolved. Next, the DMAc solution of the prepolymer was heated to 100 ° C., and the DMAc solution of amide group-containing diol 5 (previously 13.63 parts of amide group-containing diol 5 was dissolved in 30 parts of DMAc at 100 ° C. The solution was added dropwise over 5 minutes.
 次いで、100℃にて30分間反応させた後、200部のDMAcを徐々に添加し、1時間反応させた。得られた反応溶液を2000部のアセトニトリルで再沈殿を行い、アセトニトリルにより繰り返し洗浄した後、吸引濾過した。 Next, after reacting at 100 ° C. for 30 minutes, 200 parts of DMAc was gradually added and reacted for 1 hour. The obtained reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
 得られた白色固体を80℃で減圧乾燥することによって、86部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)12を得た。 The obtained white solid was dried under reduced pressure at 80 ° C. to obtain 86 parts of a thermoplastic polyurethane resin (polyurethane elastomer) 12.
 得られた熱可塑性ポリウレタン樹脂12の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を表3に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂12の熱プレスシートを成形した。
Table 3 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 12.
<Manufacture of hot press sheet>
A hot press sheet of the thermoplastic polyurethane resin 12 was molded by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表3に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 3.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表1に示す。 Also, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the sheet sample for measurement were measured. The results are shown in Table 1.
  比較例1(熱可塑性ポリウレタン樹脂13の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、53.46部のポリエチレングリコール(日油製 商品名:PEG#2000U 水酸基価54.8mgKOH/g)を添加し、80℃で1時間加熱した。
Comparative Example 1 (Production of thermoplastic polyurethane resin 13)
Under a nitrogen atmosphere, 53.46 parts of polyethylene glycol (trade name: PEG # 2000U, hydroxyl value: 54.8 mgKOH / g, manufactured by NOF Corporation) was added to a reactor equipped with a stirrer, and heated at 80 ° C. for 1 hour.
 次いで、35.95部の4,4’-ジフェニルメタンジイソシアネートを添加し、80℃で2時間反応させ、プレポリマーを合成した。 Next, 35.95 parts of 4,4′-diphenylmethane diisocyanate was added and reacted at 80 ° C. for 2 hours to synthesize a prepolymer.
 得られたプレポリマーに70部のDMAcを添加し、プレポリマーが均一に溶解するよう十分に攪拌した。次いで、プレポリマーのDMAc溶液を100℃に昇温し、そこに、1,4-ブタンジオールのDMAc溶液(予め10.59部の1,4-ブタンジオールを30部のDMAcに100℃で溶解させた溶液)を5分かけて滴下した。 70 parts of DMAc was added to the obtained prepolymer and stirred sufficiently so that the prepolymer was uniformly dissolved. Next, the DMAc solution of the prepolymer was heated to 100 ° C., and the DMAc solution of 1,4-butanediol (previously dissolved 10.59 parts of 1,4-butanediol in 30 parts of DMAc at 100 ° C.) The solution was added dropwise over 5 minutes.
 次いで、100℃にて30分間反応させた後、200部のDMAcを徐々に添加し、1時間反応させた。得られた反応溶液を2000部のアセトニトリルで再沈殿を行い、アセトニトリルにより繰り返し洗浄した後、吸引濾過した。 Next, after reacting at 100 ° C. for 30 minutes, 200 parts of DMAc was gradually added and reacted for 1 hour. The obtained reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
 得られた白色固体を80℃で減圧乾燥することによって、96.7部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)13を得た。 The obtained white solid was dried at 80 ° C. under reduced pressure to obtain 96.7 parts of a thermoplastic polyurethane resin (polyurethane elastomer) 13.
 得られた熱可塑性ポリウレタン樹脂13の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を表4に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂13の熱プレスシートを成形した。
Table 4 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 13.
<Manufacture of hot press sheet>
A hot press sheet of thermoplastic polyurethane resin 13 was molded by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表4に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 4.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表4に示す。
<溶媒キャストフィルムの製造>
 実施例1と同様の操作により、厚み20μmの熱可塑性ポリウレタン樹脂13のキャストフィルムを成形した。
Further, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the measurement sheet sample were measured. The results are shown in Table 4.
<Manufacture of solvent cast film>
A cast film of a thermoplastic polyurethane resin 13 having a thickness of 20 μm was formed by the same operation as in Example 1.
 また、キャストフィルムの透湿度(単位:g/m・24h)、引張強度(単位:MPa)、弾性率(単位:MPa)および破断伸び(単位:%)を測定した。その結果を、表4に示す。 Further, the moisture permeability (unit: g / m 2 · 24 h), tensile strength (unit: MPa), elastic modulus (unit: MPa), and elongation at break (unit:%) of the cast film were measured. The results are shown in Table 4.
  比較例2(熱可塑性ポリウレタン樹脂14の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、70.11のポリ(エチレンオキサイド-テトラヒドロフラン)共重合体(日油製 商品名:ポリセリンDC-1800E 水酸基価63.3mgKOH/g)を添加し、80℃で1時間加熱した。
Comparative Example 2 (Production of thermoplastic polyurethane resin 14)
Under a nitrogen atmosphere, 70.11 poly (ethylene oxide-tetrahydrofuran) copolymer (trade name: Polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g, manufactured by NOF) was added to a reactor equipped with a stirrer. Heated at 80 ° C. for 1 hour.
 次いで、19.19部の4,4’-ジフェニルメタンジイソシアネートを添加し、80℃で2時間反応させ、プレポリマーを合成した。 Next, 19.19 parts of 4,4′-diphenylmethane diisocyanate was added and reacted at 80 ° C. for 2 hours to synthesize a prepolymer.
 得られたプレポリマーに70部のDMAcを添加し、プレポリマーが均一に溶解するよう十分に攪拌した。次いで、プレポリマーのDMAc溶液を100℃に昇温し、そこに、アミド基含有ジオール1のDMAc溶液(予め10.71部のアミド基含有ジオール1を30部のDMAcに100℃で溶解させた溶液)を5分かけて滴下した。 70 parts of DMAc was added to the obtained prepolymer and stirred sufficiently so that the prepolymer was uniformly dissolved. Next, the DMAc solution of the prepolymer was heated to 100 ° C., and the DMAc solution of amide group-containing diol 1 (preliminarily dissolved 10.71 parts of amide group-containing diol 1 in 100 parts of DMAc at 100 ° C.) The solution was added dropwise over 5 minutes.
 100℃にて30分間反応させた後、200部のDMAcを徐々に添加し、1時間反応させた。得られた反応溶液を2000部のアセトニトリルで再沈殿を行い、アセトニトリルにより繰り返し洗浄した後、吸引濾過した。 After reacting at 100 ° C. for 30 minutes, 200 parts of DMAc was gradually added and reacted for 1 hour. The obtained reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
 得られた白色固体を80℃で減圧乾燥することによって、91部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)14を得た。 The obtained white solid was dried under reduced pressure at 80 ° C. to obtain 91 parts of a thermoplastic polyurethane resin (polyurethane elastomer) 14.
 得られた熱可塑性ポリウレタン樹脂14の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を、表4に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂14の熱プレスシートを成形した。
Table 4 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 14.
<Manufacture of hot press sheet>
A hot press sheet of the thermoplastic polyurethane resin 14 was molded by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表4に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 4.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表4に示す。 Also, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the sheet sample for measurement were measured. The results are shown in Table 4.
  比較例3(熱可塑性ポリウレタン樹脂15の製造)
 窒素雰囲気下、攪拌機が装着された反応機に、30.7部のポリ(エチレンオキサイド-テトラヒドロフラン)共重合体(日油製 商品名:ポリセリンDC-1800E 水酸基価63.3mgKOH/g)を添加し、80℃で1時間加熱した。
Comparative Example 3 (Production of thermoplastic polyurethane resin 15)
Under a nitrogen atmosphere, 30.7 parts of a poly (ethylene oxide-tetrahydrofuran) copolymer (trade name: polyserine DC-1800E, hydroxyl value 63.3 mgKOH / g) manufactured by NOF CORPORATION was added to a reactor equipped with a stirrer. And heated at 80 ° C. for 1 hour.
 次いで、34.5部の4,4’-ジフェニルメタンジイソシアネートを添加し、80℃で2時間反応させ、プレポリマーを合成した。 Next, 34.5 parts of 4,4′-diphenylmethane diisocyanate was added and reacted at 80 ° C. for 2 hours to synthesize a prepolymer.
 得られたプレポリマーに70部のDMAcを添加し、プレポリマーが均一に溶解するよう十分に攪拌した。次いで、プレポリマーのDMAc溶液を100℃に昇温し、そこに、アミド基含有ジオール1のDMAc溶液(予め34.8部のアミド基含有ジオール1を30部のDMAcに100℃で溶解させた溶液)を5分かけて滴下した。 70 parts of DMAc was added to the obtained prepolymer and stirred sufficiently so that the prepolymer was uniformly dissolved. Next, the DMAc solution of the prepolymer was heated to 100 ° C., and the DMAc solution of amide group-containing diol 1 (previously 34.8 parts of amide group-containing diol 1 was dissolved in 30 parts of DMAc at 100 ° C. The solution was added dropwise over 5 minutes.
 次いで、100℃にて30分間反応させた後、200部のDMAcを徐々に添加し、1時間反応させた。得られた反応溶液を2000部のアセトニトリルで再沈殿を行い、アセトニトリルにより繰り返し洗浄した後、吸引濾過した。 Next, after reacting at 100 ° C. for 30 minutes, 200 parts of DMAc was gradually added and reacted for 1 hour. The obtained reaction solution was reprecipitated with 2000 parts of acetonitrile, washed repeatedly with acetonitrile, and then suction filtered.
 その後、得られた白色固体を80℃で減圧乾燥することによって、96部の熱可塑性ポリウレタン樹脂(ポリウレタンエラストマー)15を得た。 Thereafter, the obtained white solid was dried under reduced pressure at 80 ° C. to obtain 96 parts of a thermoplastic polyurethane resin (polyurethane elastomer) 15.
 得られた熱可塑性ポリウレタン樹脂15の重量平均分子量(Mw)、5%熱重量減少温度および流動開始温度を、表4に示す。
<熱プレスシートの製造>
 実施例1と同様の操作により、熱可塑性ポリウレタン樹脂15の熱プレスシートを成形した。
Table 4 shows the weight average molecular weight (Mw), 5% thermogravimetric decrease temperature and flow start temperature of the obtained thermoplastic polyurethane resin 15.
<Manufacture of hot press sheet>
A hot press sheet of thermoplastic polyurethane resin 15 was molded by the same operation as in Example 1.
 得られた測定用シート試料の軟化温度を、熱機械分析(TMA)により測定した。その結果を、表4に示す。 The softening temperature of the obtained sheet sample for measurement was measured by thermomechanical analysis (TMA). The results are shown in Table 4.
 また、測定用シート試料の引張強度(単位:MPa)、弾性率(単位:MPa)、破断伸び(単位:%)および硬さ(ShoreA、ShoreD)を測定した。その結果を、表4に示す。 Also, the tensile strength (unit: MPa), elastic modulus (unit: MPa), elongation at break (unit:%), and hardness (Shore A, Shore D) of the sheet sample for measurement were measured. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、表中の略号および商品名は、下記の通りである(以下同様)。
PEG#2000U:ポリエチレングリコール、数平均分子量2000、水酸基価54.8mgKOH/g、日油製
PC-DC-1800E:ポリエーテルポリオール(ポリセリンDC-1800E)、ポリ(エチレンオキサイド-テトラヒドロフラン)共重合体、数平均分子量1800、水酸基価63.3mgKOH/g、日油製
PTG-2000SN:ポリテトラエチレンエーテルグリコール、数平均分子量2000、水酸基価57.0mgKOH/g、保土ヶ谷化学製
タケラックU-2024:ポリエステルポリオール、数平均分子量2000、水酸基価56mgKOH/g、三井化学製
PLACCEL220:ポリカプロラクトンポリオール、数平均分子量2000、水酸基価56mgKOH/g、ダイセル化学製
Duranol T5652:ポリカーボネートポリオール、数平均分子量2000、水酸基価56mgKOH/g、旭化成ケミカルズ製
MDI:4,4’-ジフェニルメタンジイソシアネート
1,4-BG:1,4-ブタンジオール
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれるものである。
The abbreviations and product names in the table are as follows (the same applies hereinafter).
PEG # 2000U: polyethylene glycol, number average molecular weight 2000, hydroxyl value 54.8 mgKOH / g, NOF PC-DC-1800E: polyether polyol (polyserine DC-1800E), poly (ethylene oxide-tetrahydrofuran) copolymer, Number average molecular weight 1,800, hydroxyl value 63.3 mg KOH / g, NOF PTG-2000SN: polytetraethylene ether glycol, number average molecular weight 2000, hydroxyl value 57.0 mg KOH / g, Hodogaya Chemical Takelac U-2024: polyester polyol, Number average molecular weight 2000, hydroxyl value 56 mgKOH / g, Mitsui Chemicals PACCEL220: polycaprolactone polyol, number average molecular weight 2000, hydroxyl value 56 mgKOH / g, Daicel Chemical Duranol T 652: Polycarbonate polyol, number average molecular weight 2000, hydroxyl value 56 mg KOH / g, MDI manufactured by Asahi Kasei Chemicals: 4,4′-diphenylmethane diisocyanate 1,4-BG: 1,4-butanediol The above invention is an example of the present invention However, this is merely an example and should not be construed as limiting. Modifications of the present invention apparent to those skilled in the art are intended to be included within the scope of the following claims.
 本発明の熱可塑性ポリウレタン樹脂は、各種産業分野において用いることができ、とりわけ、透湿性が要求される産業分野において有効に用いられる。 The thermoplastic polyurethane resin of the present invention can be used in various industrial fields, and is particularly effective in industrial fields where moisture permeability is required.

Claims (10)

  1.  ポリイソシアネートと、高分子量ポリオールと、鎖伸長剤とを、少なくとも反応させることにより得られる熱可塑性ポリウレタン樹脂であって、
     前記鎖伸長剤が、下記一般式(1)で示されるアミド基含有ジオールを含有し、
     前記ポリイソシアネートと、前記アミド基含有ジオールとの反応により形成されるハードセグメントの含有量が、前記熱可塑性ポリウレタン樹脂の総量に対して、30~60質量%であることを特徴とする、熱可塑性ポリウレタン樹脂。
     HO-R-CO-NH-R-NH-CO-R-OH (1)
    (式中、Rは、炭素数2~8の2価の脂肪族炭化水素基、炭素数3~8の2価の脂環含有炭化水素基、または、炭素数7~8の2価の芳香脂肪族炭化水素基を示し、RおよびRは、互いに同一または相異なって、炭素数1~5の2価の脂肪族炭化水素基、または、炭素数3~5の2価の脂環含有炭化水素基を示す。)
    A thermoplastic polyurethane resin obtained by reacting at least a polyisocyanate, a high molecular weight polyol, and a chain extender,
    The chain extender contains an amide group-containing diol represented by the following general formula (1),
    A thermoplastic, characterized in that the content of hard segments formed by the reaction of the polyisocyanate and the amide group-containing diol is 30 to 60% by mass with respect to the total amount of the thermoplastic polyurethane resin. Polyurethane resin.
    HO—R 2 —CO—NH—R 1 —NH—CO—R 3 —OH (1)
    (In the formula, R 1 is a divalent aliphatic hydrocarbon group having 2 to 8 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 8 carbon atoms, or a divalent aliphatic group having 7 to 8 carbon atoms. Each represents an araliphatic hydrocarbon group, and R 2 and R 3 are the same or different from each other and represent a divalent aliphatic hydrocarbon group having 1 to 5 carbon atoms or a divalent fatty acid having 3 to 5 carbon atoms. Indicates a ring-containing hydrocarbon group.)
  2.  前記アミド基含有ジオールが、下記一般式(2)で示されることを特徴とする、請求項1に記載の熱可塑性ポリウレタン樹脂。
     HO-(CH-CO-NH-R-NH-CO-(CH-OH (2)
    (式中、Rは、上記式(1)のRと同意義を示す。)
    The thermoplastic polyurethane resin according to claim 1, wherein the amide group-containing diol is represented by the following general formula (2).
    HO— (CH 2 ) 5 —CO—NH—R 1 —NH—CO— (CH 2 ) 5 —OH (2)
    (Wherein, R 1 represents the same meaning as R 1 in the formula (1).)
  3.  前記アミド基含有ジオールが、脂肪族ジアミンと、ヒドロキシカルボン酸またはその誘導体との反応により得られることを特徴とする、請求項1に記載の熱可塑性ポリウレタン樹脂。 The thermoplastic polyurethane resin according to claim 1, wherein the amide group-containing diol is obtained by a reaction between an aliphatic diamine and a hydroxycarboxylic acid or a derivative thereof.
  4.  前記高分子量ポリオールが、オキシエチレン基を含有し、
     前記オキシエチレン基の含有量が、前記熱可塑性ポリウレタン樹脂の総量に対して、20質量%以上、60質量%以下であることを特徴とする、請求項1に記載の熱可塑性ポリウレタン樹脂。
    The high molecular weight polyol contains an oxyethylene group,
    2. The thermoplastic polyurethane resin according to claim 1, wherein a content of the oxyethylene group is 20% by mass or more and 60% by mass or less with respect to a total amount of the thermoplastic polyurethane resin.
  5.  厚み20μmのフィルムにしたときの透湿度が10000g/m・24h以上であることを特徴とする、請求項4に記載の熱可塑性ポリウレタン樹脂。 5. The thermoplastic polyurethane resin according to claim 4, wherein the moisture permeability when formed into a film having a thickness of 20 μm is 10,000 g / m 2 · 24 h or more.
  6.  軟化温度が160℃以上であることを特徴とする、請求項1に記載の熱可塑性ポリウレタン樹脂。 The thermoplastic polyurethane resin according to claim 1, wherein the softening temperature is 160 ° C or higher.
  7.  ポリイソシアネートと、高分子量ポリオールと、鎖伸長剤とを、少なくとも反応させることにより得られる熱可塑性ポリウレタン樹脂であって、
     前記鎖伸長剤が、下記一般式(1)で示されるアミド基含有ジオールを含有し、
     前記ポリイソシアネートと、前記アミド基含有ジオールとの反応により形成されるハードセグメントの含有量が、前記熱可塑性ポリウレタン樹脂の総量に対して、30~60質量%である熱可塑性ポリウレタン樹脂を成形することにより得られることを特徴とする、成形品。
     HO-R-CO-NH-R-NH-CO-R-OH (1)
    (式中、Rは、炭素数2~8の2価の脂肪族炭化水素基、炭素数3~8の2価の脂環含有炭化水素基、または、炭素数7~8の2価の芳香脂肪族炭化水素基を示し、RおよびRは、互いに同一または相異なって、炭素数1~5の2価の脂肪族炭化水素基、または、炭素数3~5の2価の脂環含有炭化水素基を示す。)
    A thermoplastic polyurethane resin obtained by reacting at least a polyisocyanate, a high molecular weight polyol, and a chain extender,
    The chain extender contains an amide group-containing diol represented by the following general formula (1),
    Molding a thermoplastic polyurethane resin in which the content of hard segments formed by the reaction of the polyisocyanate and the amide group-containing diol is 30 to 60% by mass with respect to the total amount of the thermoplastic polyurethane resin. A molded article characterized by being obtained by
    HO—R 2 —CO—NH—R 1 —NH—CO—R 3 —OH (1)
    (In the formula, R 1 is a divalent aliphatic hydrocarbon group having 2 to 8 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 8 carbon atoms, or a divalent aliphatic group having 7 to 8 carbon atoms. Each represents an araliphatic hydrocarbon group, and R 2 and R 3 are the same or different from each other and represent a divalent aliphatic hydrocarbon group having 1 to 5 carbon atoms or a divalent fatty acid having 3 to 5 carbon atoms. Indicates a ring-containing hydrocarbon group.)
  8.  前記熱可塑性ポリウレタン樹脂をフィルムに成形することにより得られることを特徴とする、請求項7に記載の成形品。 The molded article according to claim 7, which is obtained by molding the thermoplastic polyurethane resin into a film.
  9.  前記熱可塑性ポリウレタン樹脂を押出成形することにより得られることを特徴とする、請求項7に記載の成形品。 The molded article according to claim 7, wherein the molded article is obtained by extruding the thermoplastic polyurethane resin.
  10.  前記熱可塑性ポリウレタン樹脂を、非プロトン性極性溶媒に溶解させ、熱可塑性ポリウレタン樹脂の溶液を調製し、その後、前記溶液から、前記非プロトン性極性有機溶媒を除去することにより、フィルムとして形成されることを特徴とする、請求項8に記載の成形品。 The thermoplastic polyurethane resin is dissolved in an aprotic polar solvent to prepare a solution of the thermoplastic polyurethane resin, and then the aprotic polar organic solvent is removed from the solution to form a film. The molded article according to claim 8, wherein
PCT/JP2011/057325 2010-03-31 2011-03-25 Thermoplastic polyurethane resin and molded article WO2011125540A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509435A JPWO2011125540A1 (en) 2010-03-31 2011-03-25 Thermoplastic polyurethane resins and molded products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010083472 2010-03-31
JP2010-083472 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125540A1 true WO2011125540A1 (en) 2011-10-13

Family

ID=44762494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057325 WO2011125540A1 (en) 2010-03-31 2011-03-25 Thermoplastic polyurethane resin and molded article

Country Status (2)

Country Link
JP (1) JPWO2011125540A1 (en)
WO (1) WO2011125540A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176256A1 (en) * 2012-05-25 2013-11-28 トーヨーポリマー株式会社 Aqueous polyurethane dispersing element
TWI485173B (en) * 2013-04-12 2015-05-21 Button Int Co Ltd Biodegradable Thermoplastic Polyurethanes Containing Amide Bond Groups
JP2017515725A (en) * 2014-04-29 2017-06-15 オートニアム マネジメント アクチエンゲゼルシャフトAutoneum Management AG External trim parts
JP2018012326A (en) * 2016-05-24 2018-01-25 アディダス アーゲー Method for manufacturing shoe bottom, shoe bottom, shoe and previously manufactured tpu product
JP2018526245A (en) * 2015-07-10 2018-09-13 レジルックス Plastic hollow body with polymer barrier, in particular preform or container, and method for producing the same
US10590303B2 (en) 2014-07-31 2020-03-17 3M Innovative Properties Company Thermoplastic polyurethane compositions, articles, and methods thereof
US10639861B2 (en) 2016-05-24 2020-05-05 Adidas Ag Sole mold for manufacturing a sole
US10645992B2 (en) 2015-02-05 2020-05-12 Adidas Ag Method for the manufacture of a plastic component, plastic component, and shoe
US10723048B2 (en) 2017-04-05 2020-07-28 Adidas Ag Method for a post process treatment for manufacturing at least a part of a molded sporting good
US10730259B2 (en) 2016-12-01 2020-08-04 Adidas Ag Method for the manufacture of a plastic component, plastic component, and shoe
US11135797B2 (en) 2013-02-13 2021-10-05 Adidas Ag Methods for manufacturing cushioning elements for sports apparel
US11938697B2 (en) 2016-05-24 2024-03-26 Adidas Ag Method and apparatus for automatically manufacturing shoe soles
US11964445B2 (en) 2016-05-24 2024-04-23 Adidas Ag Method for the manufacture of a shoe sole, shoe sole, and shoe with pre-manufactured TPU article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982352A (en) * 1982-09-30 1984-05-12 ジ−エ−エフ・コ−ポレ−シヨン Alcohol substituted amide, manufacture, chain elongating agent for polyurethane, rubberic composition and curing method
JPH07267911A (en) * 1994-03-30 1995-10-17 Sekisui Chem Co Ltd Hydroxy compound, its production and its thermoplastic polyurethane
JPH1129619A (en) * 1997-07-09 1999-02-02 Nippon Miractran Kk Production of thermoplastic polyurethane resin excellent in mechanical property

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4021176B2 (en) * 2001-11-13 2007-12-12 三井化学ポリウレタン株式会社 Thermoplastic elastomer composition, method for producing the same, and molding material
JP5129486B2 (en) * 2006-01-20 2013-01-30 三井化学株式会社 Thermoplastic polyurethane resin composition and moisture-permeable film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982352A (en) * 1982-09-30 1984-05-12 ジ−エ−エフ・コ−ポレ−シヨン Alcohol substituted amide, manufacture, chain elongating agent for polyurethane, rubberic composition and curing method
JPH07267911A (en) * 1994-03-30 1995-10-17 Sekisui Chem Co Ltd Hydroxy compound, its production and its thermoplastic polyurethane
JPH1129619A (en) * 1997-07-09 1999-02-02 Nippon Miractran Kk Production of thermoplastic polyurethane resin excellent in mechanical property

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAEZ, J.E. ET AL.: "Degradable poly(ester- urethane)s based on poly(s-caprolactone) with crystalline hard segments.", SYNTHESIS AND CHARACTERIZATION, POLYMER PREPRINTS, vol. 51, no. 2, August 2010 (2010-08-01), pages 266 - 267 *
LIN, I.S. ET AL.: "Lactone-based diol chain extenders for polyurethanes", JOURNAL OF ELASTOMERS & PLASTICS, vol. 17, no. 2, 1985, pages 140 - 149 *
LIN, I.S. ET AL.: "Lactone-based diol chain extenders for polyurethanes", PROCEEDINGS OF THE SPI ANNUAL TECHNICAL/MARKETING CONFERENCE, 1984, VOL.28TH, NO.POLYURETHANE MARK. TECHNOL., pages 138 - 141 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176256A1 (en) * 2012-05-25 2013-11-28 トーヨーポリマー株式会社 Aqueous polyurethane dispersing element
US11945184B2 (en) 2013-02-13 2024-04-02 Adidas Ag Methods for manufacturing cushioning elements for sports apparel
US11135797B2 (en) 2013-02-13 2021-10-05 Adidas Ag Methods for manufacturing cushioning elements for sports apparel
TWI485173B (en) * 2013-04-12 2015-05-21 Button Int Co Ltd Biodegradable Thermoplastic Polyurethanes Containing Amide Bond Groups
JP2017515725A (en) * 2014-04-29 2017-06-15 オートニアム マネジメント アクチエンゲゼルシャフトAutoneum Management AG External trim parts
US10590303B2 (en) 2014-07-31 2020-03-17 3M Innovative Properties Company Thermoplastic polyurethane compositions, articles, and methods thereof
US10645992B2 (en) 2015-02-05 2020-05-12 Adidas Ag Method for the manufacture of a plastic component, plastic component, and shoe
US11470913B2 (en) 2015-02-05 2022-10-18 Adidas Ag Plastic component and shoe
JP2018526245A (en) * 2015-07-10 2018-09-13 レジルックス Plastic hollow body with polymer barrier, in particular preform or container, and method for producing the same
US10639861B2 (en) 2016-05-24 2020-05-05 Adidas Ag Sole mold for manufacturing a sole
EP3446588A1 (en) * 2016-05-24 2019-02-27 adidas AG Pre-manufactured tpu article and method for its manufacture
US10974476B2 (en) 2016-05-24 2021-04-13 Adidas Ag Sole mold for manufacturing a sole
US11407191B2 (en) 2016-05-24 2022-08-09 Adidas Ag Method for the manufacture of a shoe sole, shoe sole, and shoe with pre-manufactured TPU article
US11938697B2 (en) 2016-05-24 2024-03-26 Adidas Ag Method and apparatus for automatically manufacturing shoe soles
JP2018012326A (en) * 2016-05-24 2018-01-25 アディダス アーゲー Method for manufacturing shoe bottom, shoe bottom, shoe and previously manufactured tpu product
US11964445B2 (en) 2016-05-24 2024-04-23 Adidas Ag Method for the manufacture of a shoe sole, shoe sole, and shoe with pre-manufactured TPU article
US10730259B2 (en) 2016-12-01 2020-08-04 Adidas Ag Method for the manufacture of a plastic component, plastic component, and shoe
US11504928B2 (en) 2016-12-01 2022-11-22 Adidas Ag Method for the manufacture of a plastic component, plastic component, midsole and shoe
US10723048B2 (en) 2017-04-05 2020-07-28 Adidas Ag Method for a post process treatment for manufacturing at least a part of a molded sporting good

Also Published As

Publication number Publication date
JPWO2011125540A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
WO2011125540A1 (en) Thermoplastic polyurethane resin and molded article
TWI610958B (en) Glasses materials, glasses frames and glasses
CA2504147C (en) Polyurethane dispersion and articles prepared therefrom
US5585413A (en) Microcellular polyurethane elastomer and process for producing the same
US20060047083A1 (en) Triblock copolymers and their production methods
KR100583215B1 (en) Polyesterurethane elastomers and process for their production
US20070265388A1 (en) Polyurethane dispersion and articles prepared therefrom
EP0900245B1 (en) Extrudable thermoplastic elastomeric urea-extended polyurethane
KR20090006855A (en) Segmented polyurethane elastomers with high elongation at tear
CN112752821B (en) Two-part curable adhesive composition
TWI796441B (en) Thermoplastic polyurethane composition and method of reducing the compression set of thermoplastic polyurethane
JP2020512430A (en) A process for producing polyurethanes exhibiting low blooming effect and good low temperature flexibility based on urethane-containing polymeric hydroxyl compounds.
JP2011213867A (en) Thermoplastic polyurethane resin, molding, and method for producing thermoplastic polyurethane resin
KR20150119898A (en) Polymers made from telechelic n-alkylated polyamides
KR20060119491A (en) A preparation methods for improveing the rate of drying, adhesion and hydrolytic stability of waterborne polyurethane via copolymer and emulsion blend, and waterborne polyurethane made by its method
JP5380841B2 (en) Polyoxalate urethane
JP2011213866A (en) Chain extender, method for producing the same, and thermoplastic polyurethane resin
KR20150101087A (en) Heterogeneous polyurethane prepolymer for nonpneumatic-type tire and method for manufacturing the same
TWI819291B (en) Waterborne polyurethane
JP5756678B2 (en) Light guide polyurethane resin and light guide member
JP2022175022A (en) Thermoplastic polyurethane and method for producing thermoplastic polyurethane
JP2000086740A (en) Production of polyurethane-urea resin for synthetic leather or elastic yarn
JP2010229224A (en) Aqueous polyurethane dispersion and aqueous coating using the same
JP2021161136A (en) Curable resin composition
KR100922867B1 (en) One component polyurethane resin composition containing blocking groups NCO- end and Logo produced with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509435

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765441

Country of ref document: EP

Kind code of ref document: A1