WO2011125310A1 - Catalyst for production of polyurethane resin and method for producing polyurethane resin - Google Patents

Catalyst for production of polyurethane resin and method for producing polyurethane resin Download PDF

Info

Publication number
WO2011125310A1
WO2011125310A1 PCT/JP2011/001892 JP2011001892W WO2011125310A1 WO 2011125310 A1 WO2011125310 A1 WO 2011125310A1 JP 2011001892 W JP2011001892 W JP 2011001892W WO 2011125310 A1 WO2011125310 A1 WO 2011125310A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
catalyst
polyurethane resin
pka
group
Prior art date
Application number
PCT/JP2011/001892
Other languages
French (fr)
Japanese (ja)
Inventor
榊原徳
田中宣志
Original Assignee
サンアプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンアプロ株式会社 filed Critical サンアプロ株式会社
Priority to JP2012509305A priority Critical patent/JPWO2011125310A1/en
Publication of WO2011125310A1 publication Critical patent/WO2011125310A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • C08G18/4883Polyethers containing cyclic groups containing cyclic groups having at least one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2045Heterocyclic amines; Salts thereof containing condensed heterocyclic rings
    • C08G18/2063Heterocyclic amines; Salts thereof containing condensed heterocyclic rings having two nitrogen atoms in the condensed ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3218Polyhydroxy compounds containing cyclic groups having at least one oxygen atom in the ring

Definitions

  • the present invention relates to a catalyst for producing a polyurethane resin and a method for producing a polyurethane resin using the catalyst. More specifically, the present invention relates to a catalyst suitable for producing a polyurethane resin such as a rigid / semi-rigid / soft foam and a production method suitable for a rigid / semi-rigid / soft foam using the catalyst.
  • Polyurethane resins formed by reacting polyols with organic polyisocyanates or isocyanate prepolymers can be used as hard and flexible foams, paints, adhesives, elastomers, sealants, etc., because they have a variety of physical properties and functions. It is used in a wide range of industrial fields, from materials to building materials, automobiles, electronics / electricity, and industrial materials.
  • a two-part curable polyurethane resin that cures by mixing a polyol with an organic polyisocyanate or an isocyanate prepolymer it can be filled into a mold after two-part mixing or applied to a substrate to cause a curing reaction. The method is generally practiced.
  • amine catalysts and metal catalysts are usually used.
  • the curing reaction is accelerated, but the pot life of the two-component liquid mixture is shortened. Problems such as insufficient filling in the mold and curing start before application of the base material are likely to occur.
  • metal catalysts tend to be used from the viewpoint of safety because of their strong toxicity, and the need for alternative catalysts is increasing year by year.
  • a method using a cycloamidine (salt) that can bring about rapid curing after a certain time as a catalyst is employed (see, for example, Patent Document 1 and Patent Document 2).
  • chlorofluorocarbon foaming agents have been mainly used for rigid foam applications such as panels and boards.
  • ozone layer destruction due to the problem of ozone layer destruction, switching from chlorofluorocarbon foaming agents to water is proceeding.
  • water is used as a foaming agent, the viscosity-reducing effect of the fluorocarbon foaming agent is lost, so the filling property in the mold is lowered, and even if cycloamidine (salt) is used, insufficient filling occurs. There is a problem that it becomes easy.
  • the object of the present invention is to increase the viscosity of a mixed solution by suppressing the initial reactivity after two-component mixing of a polyol and an organic polyisocyanate, even in the case of rigid foams such as panels and boards using water as a foaming agent. It is an object of the present invention to provide a catalyst for producing a polyurethane resin, which can moderately maintain the filling property in a mold and can cause rapid curing after a certain time.
  • ⁇ M represents an integer of 2 to 6, and the hydrogen atom of the methylene group may be substituted with an organic group.
  • a feature of the method for producing a polyurethane resin of the present invention is that it includes a step of obtaining a polyurethane resin by reacting the above-mentioned catalyst for producing a polyurethane resin, a polyol and an organic polyisocyanate or an isocyanate prepolymer.
  • the polyurethane resin production catalyst of the present invention even in the case of rigid foams such as panels and boards using water as a foaming agent, the initial reaction after two-component mixing of polyol and organic polyisocyanate or isocyanate prepolymer, etc. By suppressing the property, the thickening is moderated and the filling property in the mold can be kept good, and then it can be cured quickly.
  • the initial reaction after mixing the two liquids is suppressed as compared with the case of using only cycloamidine.
  • the pot life can be maintained for a long time.
  • the acid forming the salt with cycloamidine (C) becomes stronger, the initial reactivity can be suppressed, but rapid curing cannot be brought about after a certain period of time, resulting in deterioration of productivity and produced polyurethane.
  • the physical properties of the resin are reduced.
  • the polyurethane resin production catalyst is used, even in the case of rigid foams such as panels and boards using water as a foaming agent, by suppressing the initial reactivity immediately after mixing the two liquids The thickening is moderated and the filling property in the mold is improved. Then, it can be quickly cured.
  • m represents an integer of 2 to 6, and preferably an integer of 3 to 5.
  • the organic group that may be substituted for the hydrogen atom of the methylene group include an alkyl group having 1 to 6 carbon atoms (such as methyl, ethyl, isopropyl, n-butyl, t-butyl, and n-hexyl), and 1 to 6 carbon atoms.
  • Hydroxyalkyl groups such as hydroxymethyl, 2-hydroxyethyl, 2-hydroxypropyl, 2-hydroxyisopropyl, 3-hydroxy-t-butyl and 6-hydroxyhexyl
  • dialkylamino groups having 2 to 12 carbon atoms (dimethylamino) Methylethylamino, diethylamino, diisopropylamino, t-butylmethylamino, di-n-hexylamino and the like.
  • Examples of the cycloamidine represented by the general formula (1) include 1,5-diazabicyclo [4,3,0] -nonene-5 (DBN), 1,5-diazabicyclo [4,4,0] -decene-5. 1,8-diazabicyclo [5,4,0] -undecene-7 (DBU; “DBU” is a registered trademark of Sun Apro Corporation), 5-hydroxypropyl-1,8-diazabicyclo [5,4, 0] -undecene-7 and 5-dibutylamino-1,8-diazabicyclo [5,4,0] -undecene-7. Of these, DBN and DBU are preferred.
  • Organic acids include aromatic hydroxy compounds ⁇ phenol, alkyl-substituted phenols (o-cresol, m-cresol, p-cresol, 2-ethylphenol, 3-ethylphenol, 4-ethylphenol, xylenols, trimethylphenols Tetramethylphenols, pentamethylphenols, etc.), alkoxy-substituted phenols (2-methoxyphenol, 3-methoxyphenol, 4-methoxyphenol, 2-ethoxyphenol, 3-ethoxyphenol, 4-ethoxyphenol, etc.), Halogen-substituted phenols (fluorophenol, chlorophenol, bromophenol, iodophenol, etc.), naphthols, aminophenols, polyphenols (catechol, resorcinol, hydroquinone, biff) Nord, bisphenols, pyrogallol
  • inorganic acid examples include boric acid and perhydrohalic acid (perbromic acid, periodic acid, etc.).
  • R 1 to R 5 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or an alkoxy group
  • the linear or branched alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an isopropyl group, an n-butyl group, a t-butyl group, and an n-pentyl group.
  • Examples of the linear or branched alkoxy group having 1 to 5 carbon atoms include methoxy group, ethoxy group, isopropoxy group and n-butoxy group.
  • phenol o-cresol, 2,4,6-trimethylphenol, 2-methoxyphenol and 2-ethoxyphenol are particularly preferable.
  • carboxylic acid ⁇ saturated aliphatic carboxylic acid (acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, methylethylacetic acid, trimethylacetic acid, caproic acid, isocaproic acid, Diethylacetic acid, 2,2-dimethylbutyric acid, enanthic acid, caprylic acid, pelargonic acid, 2-ethylhexanoic acid, n-undecylenic acid, lauric acid, n-tridecylenic acid, myristic acid, n-pentadecylenic acid, palmitic acid, margarine Acid, stearic acid, n-nonadecylene acid, arachidic acid, n-heneicoic acid, etc.), unsaturated aliphatic carboxylic acids (acrylic acid, crotonic acid, isocrotonic acid, vinylacetic acid, methylethylacetic acid, trimethylacetic
  • the content of (A1) is 0.2 to 0.8 mol, preferably 0.4 to 0.6 mol, and the content of (A2) is 1 mol of (C).
  • a salt of DBU, phenol and 2-ethylhexanoic acid ⁇ mixing ratio (C: A1: A2) is a molar ratio of 1: 0.5: 0.5 ⁇ , DBU, phenol and 2-ethyl Hexanoic acid salt ⁇ mixing ratio (C: A1: A2) is molar ratio 1: 0.4: 0.4 ⁇ , DBU, o-cresol and oleic acid salt ⁇ mixing ratio (C: A1: A2) is The molar ratio is 1: 0.6: 0.4 ⁇ , the salt of DBU, 2,4,6-trimethylphenol and 2-ethylhexanoic acid ⁇ mixing ratio (C: A1: A2) is 1: 0.
  • C: A1: A2 is 1: 0.5: 0.5 ⁇ in molar ratio
  • DBU and 2- Methoxyphenol and 2-ethylhexanoic acid salt ⁇ mixing ratio is molar ratio 1: 0.5: 0.7 ⁇
  • salt of DBN, phenol and 2-ethylhexanoic acid ⁇ mixing ratio is 1: 0.5: 0.5 ⁇ in molar ratio
  • DBN and 2 A preferred example is a salt of methoxyphenol and 2-ethylhexanoic acid ⁇ mixing ratio (C: A1: A2) is 1: 0.5: 0.5 ⁇ in molar ratio.
  • the catalyst of the present invention may contain a known solvent.
  • the solvent include water and alcohol (such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, and butanediol).
  • the content can be determined as appropriate, and is, for example, 5 to 1900% by weight based on the weight of the salt (E).
  • the catalyst of the present invention may contain other catalysts (such as an organometallic catalyst and an amine catalyst) without departing from the spirit of the present invention.
  • organometallic catalyst include known organometallic catalysts, such as potassium carboxylates (such as potassium 2-ethylhexanoate and potassium acetate), organotin catalysts (stannous diacetate, stannous dioctoate, stannous dilaurate, stana Sudiolate, dibutyltin oxide, dibutyltin diacetate, dibutyltin dilaurate and dioctyltin dilaurate), organic bismuth catalysts (such as bismuth octylate and bismuth naphthenate), and organic cobalt catalysts (such as cobalt naphthenate) .
  • amine catalyst examples include known amine catalysts and the like, and amines (triethylenediamine, 2-methyltriethylenediamine, N-methylmorpholine, N-ethylmorpholine, dimorpholinodiethylaminoether, dimethylethanolamine, N, N, N ′ , N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethylpropylenediamine, N, N, N ′, N′-tetramethylhexamethylenediamine, dimethylcyclohexylamine, 1,3,5-tris (N, N-dimethylaminopropyl) hexahydro-S-triazine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine, N, N, N ′, N ′′, N ′′ -pentamethyldipropylenetriamine, bis
  • the amount (% by weight) of the other catalyst used is preferably 5 to 1900% by weight, more preferably 20 to 900% by weight, based on the weight of the salt (E).
  • the mixing ratio is as described above.
  • the solvent and its use amount are as described above.
  • the catalyst of the present invention is suitable for the production of polyurethane resins such as rigid, semi-rigid and flexible foams.
  • the method for producing a polyurethane resin of the present invention includes a step of reacting the polyurethane resin production catalyst of the present invention with a polyol and an organic polyisocyanate or an isocyanate prepolymer to obtain a polyurethane resin.
  • the amount of use (wt%) of the catalyst of the present invention ⁇ in the case of use in combination with other catalyst (wt) ⁇ is preferably 0.001 to 20 wt%, more preferably based on the weight of the polyol. Is an amount of 0.01 to 10% by weight, particularly preferably 0.1 to 5% by weight.
  • the polyol is not particularly limited, and known polyols can be used, and examples include polyoxyalkylene ether polyols, polyester polyols, amine polyols, polymer polyols, polybutadiene polyols, castor oil-based polyols, acrylic polyols, and mixtures thereof.
  • isocyanate a known isocyanate or the like can be used.
  • Examples of the isocyanate prepolymer include those obtained by reacting the aforementioned polyol and organic polyisocyanate.
  • the isocyanate index is not particularly limited, but is preferably 50 to 800, more preferably 70 to 400. Within this range, the resin strength is good, and the possibility that unreacted isocyanato groups remain is also reduced.
  • the polyurethane foam is obtained by reacting the polyurethane resin production catalyst with a polyol and an organic polyisocyanate or an isocyanate prepolymer in the presence of a foaming agent. Obtaining a body.
  • a foaming agent water and a volatile foaming agent can be used.
  • a known volatile foaming agent or the like can be used, such as chlorofluorocarbon (hydrogen atom-containing halogenated hydrocarbon) ⁇ for example, 1,1,1,3,3-pentafluoropropane (HFC-245fa), 1,1,1,3,3-pentafluorobutane (HFC-365mfc), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1,2,3,3,3- Heptafluoropropane (HFC-227ea) ⁇ , hydrofluoroether ⁇ eg, HFE-254pc ⁇ , halogenated hydrocarbon ⁇ eg, methylene chloride ⁇ , low boiling point hydrocarbon ⁇ eg, propane, butane, pentane, cyclopentane ⁇ , carbonic acid Examples thereof include gases and mixtures thereof.
  • the catalyst of the present invention exhibits an effect that cannot be obtained with other catalysts, particularly water, among these blowing agents.
  • the amount of the foaming agent used is appropriately determined according to the density of the polyurethane foam to be produced and the physical properties of the foam.
  • the density (kg / m 3 ) of the obtained polyurethane foam is determined to be 5 to 200 (preferably 10 to 100).
  • Example 2 The catalyst DBU of the present invention, a salt of phenol and 2-ethylhexanoic acid (2) were obtained in the same manner as in Example 1 except that the ratio of phenol to be reacted with DBU and 2-ethylhexanoic acid was changed.
  • the catalyst DBU of the present invention, o-cresol and oleic acid salt (3) were obtained in the same manner as in Example 1 except that
  • Example 6 The catalyst DBU of the present invention and the salt of 2-methoxyphenol and 2-ethylhexanoic acid (6) except that the ratio of 2-methoxyphenol and 2-ethylhexanoic acid to be reacted with DBU was changed as in Example 5. Got.
  • the catalyst DBU of the present invention, 2-ethoxyphenol and oleic acid salt (7) were obtained.
  • polyurethane foams were prepared in the following manner according to the formulations shown in Table 1, and the filling properties and curability were evaluated. The results are shown in Table 2 (DBU salt) and Table 3 (DBN salt).
  • Polyol Polyol foam stabilizer having a hydroxyl value of 338 obtained by addition reaction of propylene oxide to sucrose: SH 193 (polyether siloxane polymer, Toray Dow Corning Co., Ltd.) Flame retardant: TMCPP (Tris ( ⁇ -chloropropyl) phosphate, Daihachi Chemical Industry Co., Ltd.) Evaluation sample (catalyst): DBU or DBN was added in an amount of 0.3 part.
  • Other catalysts U-CAT 420A (Amine-based catalyst, San Apro Corporation)
  • Isocyanate Millionate MR-200 (crude MDI, NCO index 110, Nippon Polyurethane Industry Co., Ltd.)
  • the catalyst of the present invention is hardened while maintaining good filling properties in the mold even when water is used as a foaming agent, compared to the conventional cycloamidine (salt). I was able to promote it.
  • the polyurethane resin production catalyst of the present invention is suitably used for production of polyurethane resins such as rigid, semi-rigid and flexible foams.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Disclosed is a catalyst for the production of a polyurethane resin, which is capable of maintaining good fillability into a mold or good applicability to a base by maintaining sufficiently long working life (pot life) of a resin, while enabling rapid curing of the resin after a certain period of time. Specifically disclosed is a catalyst for the production of a polyurethane resin, which is characterized by being a salt (E) that uses a cycloamidine (C) represented by general formula (1) in combination with one or more acids selected from the group consisting of acids (A1) having pKa1 of 8-11 and one or more acids selected from the group consisting of acids (A2) having pKa1 of 4-6. The catalyst for the production of a polyurethane resin is also characterized in that the content of the acids (A1) is 0.2-0.8 mole per 1 mole of the cycloamidine (C), the content of the acids (A2) is 0.2-0.8 mole per 1 mole of the cycloamidine (C), and the content of acids (A1 + A2) is 0.8-1.2 moles per 1 mole of the cycloamidine (C). (In general formula (1), m represents an integer of 2-6, and a hydrogen atom in the methylene group may be substituted by an organic group.)

Description

ポリウレタン樹脂製造用触媒及びポリウレタン樹脂の製造方法Polyurethane resin production catalyst and polyurethane resin production method
本発明は、ポリウレタン樹脂製造用触媒及びこれを用いたポリウレタン樹脂の製造方法に関するものである。さらに詳しくは、硬質・半硬質・軟質フォーム等のポリウレタン樹脂製造用として好適な触媒及びこの触媒を用いた硬質・半硬質・軟質フォーム等に好適な製造方法に関する。 The present invention relates to a catalyst for producing a polyurethane resin and a method for producing a polyurethane resin using the catalyst. More specifically, the present invention relates to a catalyst suitable for producing a polyurethane resin such as a rigid / semi-rigid / soft foam and a production method suitable for a rigid / semi-rigid / soft foam using the catalyst.
ポリオールと有機ポリイソシアネート又はイソシアネートプレポリマーとを反応させることにより形成されるポリウレタン樹脂は、多彩な物性と機能をもつ材料となるため、硬質・軟質フォーム、塗料、接着剤、エラストマー、シーラント等として生活資材から建材、自動車、電子・電気関連、工業資材等の幅広い産業分野で用いられている。
ポリオールと有機ポリイソシアネート又はイソシアネートプレポリマーを混合して硬化する、二液硬化型のポリウレタン樹脂では、二液混合後に金型へ充填したり、基材に塗布したりして硬化反応を生じさせる製造方法が一般的に行なわれている。
これらポリウレタン樹脂製造用触媒としてはアミン触媒や金属触媒が通常使用されているが、触媒を使用すると硬化反応は促進されるものの、二液混合液の可使時間(ポットライフ)が短くなることから、金型内の充填不足や基材塗布前に硬化が始まる等の問題が生じ易くなる。また、金属触媒はその強い毒性のため、安全性の観点から使用が自粛される傾向にあり、代替触媒を求めるニーズが年々大きくなっている。
この二液混合液の可使時間(ポットライフ)が短くなる問題を解決するため、二液混合後の初期の反応性を抑えることにより、金型内の充填性や基材への塗布を良好に保ち、ある一定時間後に急激な硬化をもたらすことができるシクロアミジン(塩)を触媒として使用する方法が採用されている(例えば、特許文献1、特許文献2参照)。
Polyurethane resins formed by reacting polyols with organic polyisocyanates or isocyanate prepolymers can be used as hard and flexible foams, paints, adhesives, elastomers, sealants, etc., because they have a variety of physical properties and functions. It is used in a wide range of industrial fields, from materials to building materials, automobiles, electronics / electricity, and industrial materials.
In a two-part curable polyurethane resin that cures by mixing a polyol with an organic polyisocyanate or an isocyanate prepolymer, it can be filled into a mold after two-part mixing or applied to a substrate to cause a curing reaction. The method is generally practiced.
As the catalyst for producing these polyurethane resins, amine catalysts and metal catalysts are usually used. However, when the catalyst is used, the curing reaction is accelerated, but the pot life of the two-component liquid mixture is shortened. Problems such as insufficient filling in the mold and curing start before application of the base material are likely to occur. In addition, metal catalysts tend to be used from the viewpoint of safety because of their strong toxicity, and the need for alternative catalysts is increasing year by year.
In order to solve the problem of shortening the pot life of this two-component liquid mixture, by suppressing the initial reactivity after two-component mixing, the filling property in the mold and the application to the base material are good. And a method using a cycloamidine (salt) that can bring about rapid curing after a certain time as a catalyst is employed (see, for example, Patent Document 1 and Patent Document 2).
特開平9-34215号公報Japanese Patent Laid-Open No. 9-34215 特開昭60-240415号公報Japanese Patent Laid-Open No. 60-240415
従来、パネル・ボード等の硬質フォーム用途では主にフロン系発泡剤が利用されてきたが、オゾン層破壊の問題から、フロン系発泡剤から水への切替検討が進んでいる。
 しかしながら、水を発泡剤に用いた場合、フロン系発泡剤による減粘効果が失われることから、金型内の充填性が低下し、シクロアミジン(塩)を用いたとしても充填不足が発生しやすくなるという問題がある。
 本発明の目的は、水を発泡剤に使用したパネル・ボード等の硬質フォームの場合でも、ポリオールと有機ポリイソシアネート等との二液混合後の初期の反応性を抑えることにより混合液の増粘を緩やかにすることができ、金型内の充填性を良好に保ち、ある一定時間後に急激な硬化をもたらすことができるポリウレタン樹脂製造用触媒を提供することである。
Conventionally, chlorofluorocarbon foaming agents have been mainly used for rigid foam applications such as panels and boards. However, due to the problem of ozone layer destruction, switching from chlorofluorocarbon foaming agents to water is proceeding.
However, when water is used as a foaming agent, the viscosity-reducing effect of the fluorocarbon foaming agent is lost, so the filling property in the mold is lowered, and even if cycloamidine (salt) is used, insufficient filling occurs. There is a problem that it becomes easy.
The object of the present invention is to increase the viscosity of a mixed solution by suppressing the initial reactivity after two-component mixing of a polyol and an organic polyisocyanate, even in the case of rigid foams such as panels and boards using water as a foaming agent. It is an object of the present invention to provide a catalyst for producing a polyurethane resin, which can moderately maintain the filling property in a mold and can cause rapid curing after a certain time.
本発明のポリウレタン樹脂製造用触媒の特徴は、一般式(1)で表されるシクロアミジン(C)とpKa=8~11の酸(A1)からなる群より選ばれる1種以上と、pKa=4~6の酸(A2)からなる群より選ばれる1種以上とを併用してなる塩(E)であり、(A1)の含有量は(C)1モルに対して0.2~0.8モル、(A2)の含有量は(C)1モルに対して0.2~0.8モル、(A1+A2)の含有量は(C)1モルに対して0.8~1.2モルであるである点を要旨とする。
Figure JPOXMLDOC01-appb-C000001
{mは2~6の整数を表し、メチレン基の水素原子は有機基で置換されていてもよい。}
The catalyst for producing the polyurethane resin of the present invention is characterized by one or more selected from the group consisting of cycloamidine (C) represented by the general formula (1) and acid (A1) of pKa 1 = 8 to 11, and pKa 1 = Salt (E) used in combination with one or more selected from the group consisting of 4 to 6 acids (A2), and the content of (A1) is 0.2 with respect to 1 mol of (C). -0.8 mol, the content of (A2) is 0.2-0.8 mol per mol of (C), and the content of (A1 + A2) is 0.8-1 per mol of (C) The point is that it is 2 mol.
Figure JPOXMLDOC01-appb-C000001
{M represents an integer of 2 to 6, and the hydrogen atom of the methylene group may be substituted with an organic group. }
 本発明のポリウレタン樹脂の製造方法の特徴は、上記のポリウレタン樹脂製造用触媒とポリオールと有機ポリイソシアネート又はイソシアネートプレポリマーとを反応させてポリウレタン樹脂を得る工程を含む点を要旨とする。 A feature of the method for producing a polyurethane resin of the present invention is that it includes a step of obtaining a polyurethane resin by reacting the above-mentioned catalyst for producing a polyurethane resin, a polyol and an organic polyisocyanate or an isocyanate prepolymer.
 本発明のポリウレタン樹脂製造用触媒を用いると、水を発泡剤に使用したパネル・ボード等の硬質フォームの場合でも、ポリオールと有機ポリイソシアネート又はイソシアネートプレポリマー等との二液混合後の初期の反応性を抑えることによって増粘が緩やかとなり金型内の充填性を良好に保つことができ、その後、速やかに硬化できる。 Using the polyurethane resin production catalyst of the present invention, even in the case of rigid foams such as panels and boards using water as a foaming agent, the initial reaction after two-component mixing of polyol and organic polyisocyanate or isocyanate prepolymer, etc. By suppressing the property, the thickening is moderated and the filling property in the mold can be kept good, and then it can be cured quickly.
一般式(1)で表されるシクロアミジン(C)と酸との塩を使用した場合、シクロアミジンだけを使用した場合に比べて、二液混合後の初期の反応が抑制されるため、可使時間(ポットライフ)を長く保つことができる。
この場合、シクロアミジン(C)と塩を形成する酸が強くなるほど、初期の反応性を抑えることができるが、一定時間後に急激な硬化をもたらすことはできなくなり、生産性の悪化や生成したポリウレタン樹脂の物性低下をもたらす。
逆に、シクロアミジン(C)と塩を形成する酸が弱くなるほど、一定時間後に急激な硬化をもたらすことはできるが、初期の反応が速くなり、金型内の充填性や基材への塗布を良好に保つことができなくなる。
本発明の一般式(1)で表されるシクロアミジン(C)とpKa=8~11の酸(A1)とpKa=4~6の酸(A2)とを含む塩(E)を使用した場合、ポリオールと有機ポリイソシアネート又はイソシアネートプレポリマーとの二液混合直後は塩(E)中のpKa=4~6の酸(A2)によって初期の反応が抑制されるため、結果として反応液の増粘が緩やかになると考えられる。また、ポリオールと有機ポリイソシアネート又はイソシアネートプレポリマーとが反応した一定時間後では、塩(E)中のpKa=8~11の酸(A1)が硬化を促進するため、ポリウレタン樹脂の生産性の悪化や物性低下を防ぐことができるものと考えられる。
When the salt of cycloamidine (C) represented by general formula (1) and an acid is used, the initial reaction after mixing the two liquids is suppressed as compared with the case of using only cycloamidine. The pot life can be maintained for a long time.
In this case, as the acid forming the salt with cycloamidine (C) becomes stronger, the initial reactivity can be suppressed, but rapid curing cannot be brought about after a certain period of time, resulting in deterioration of productivity and produced polyurethane. The physical properties of the resin are reduced.
Conversely, the weaker the acid that forms a salt with cycloamidine (C), the more rapid curing can occur after a certain period of time, but the initial reaction becomes faster, filling properties in the mold and application to the substrate. Can not keep good.
Using salts (E) comprising cycloamidine represented by the general formula (1) of the present invention and (C) pKa 1 = 8 ~ 11 acid (A1) and an acid of pKa 1 = 4 ~ 6 (A2 ) In this case, immediately after the two-component mixing of the polyol and the organic polyisocyanate or the isocyanate prepolymer, the initial reaction is suppressed by the acid (A2) of pKa 1 = 4 to 6 in the salt (E). It is thought that the thickening of the resin becomes moderate. Further, after a certain time after the polyol and the organic polyisocyanate or the isocyanate prepolymer are reacted, the acid (A1) of pKa 1 = 8 to 11 in the salt (E) accelerates the curing, so that the productivity of the polyurethane resin is increased. It is considered that deterioration and deterioration of physical properties can be prevented.
 本発明の製造方法によると、上記のポリウレタン樹脂製造用触媒を用いるので、水を発泡剤に使用したパネル・ボード等の硬質フォームの場合でも、二液混合直後の初期の反応性を抑えることによって増粘が緩やかとなり金型内の充填性が良好となる。そして、その後速やかに硬化できる。 According to the production method of the present invention, since the polyurethane resin production catalyst is used, even in the case of rigid foams such as panels and boards using water as a foaming agent, by suppressing the initial reactivity immediately after mixing the two liquids The thickening is moderated and the filling property in the mold is improved. Then, it can be quickly cured.
 <シクロアミジン(C)とpKa=8~11の酸(A1)とpKa=4~6の酸(A2)とを含む塩(E)>
 一般式(1)において、mは、2~6の整数を表し、好ましくは3~5の整数である。
 メチレン基の水素原子と置換してもよい有機基としては、炭素数1~6のアルキル基(メチル、エチル、イソプロピル、n-ブチル、t-ブチル及びn-ヘキシル等)、炭素数1~6のヒドロキシアルキル基(ヒドロキシメチル、2-ヒドロキシエチル、2-ヒドロキシプロピル、2-ヒドロキシイソプロピル、3-ヒドロキシ-t-ブチル及び6-ヒドロキシヘキシル等)及び炭素数2~12のジアルキルアミノ基(ジメチルアミノ、メチルエチルアミノ、ジエチルアミノ、ジイソプロピルアミノ、t-ブチルメチルアミノ及びジn-ヘキシルアミノ等)等が挙げられる。
<Salt (E) containing cycloamidine (C), pKa 1 = 8 to 11 acid (A1) and pKa 1 = 4 to 6 acid (A2)>
In the general formula (1), m represents an integer of 2 to 6, and preferably an integer of 3 to 5.
Examples of the organic group that may be substituted for the hydrogen atom of the methylene group include an alkyl group having 1 to 6 carbon atoms (such as methyl, ethyl, isopropyl, n-butyl, t-butyl, and n-hexyl), and 1 to 6 carbon atoms. Hydroxyalkyl groups (such as hydroxymethyl, 2-hydroxyethyl, 2-hydroxypropyl, 2-hydroxyisopropyl, 3-hydroxy-t-butyl and 6-hydroxyhexyl) and dialkylamino groups having 2 to 12 carbon atoms (dimethylamino) Methylethylamino, diethylamino, diisopropylamino, t-butylmethylamino, di-n-hexylamino and the like.
 一般式(1)で表されるシクロアミジンとしては、1,5-ジアザビシクロ[4,3,0]-ノネン-5(DBN)、1,5-ジアザビシクロ[4,4,0]-デセン-5、1,8-ジアザビシクロ[5,4,0]-ウンデセン-7(DBU;「DBU」はサンアプロ株式会社の登録商標である。)、5-ヒドロキシプロピル-1,8-ジアザビシクロ[5,4,0]-ウンデセン-7及び5-ジブチルアミノ-1,8-ジアザビシクロ[5,4,0]-ウンデセン-7等が挙げられる。これらのうち、DBN及びDBUが好ましい。 Examples of the cycloamidine represented by the general formula (1) include 1,5-diazabicyclo [4,3,0] -nonene-5 (DBN), 1,5-diazabicyclo [4,4,0] -decene-5. 1,8-diazabicyclo [5,4,0] -undecene-7 (DBU; “DBU” is a registered trademark of Sun Apro Corporation), 5-hydroxypropyl-1,8-diazabicyclo [5,4, 0] -undecene-7 and 5-dibutylamino-1,8-diazabicyclo [5,4,0] -undecene-7. Of these, DBN and DBU are preferred.
 pKa=8~11の酸(A1)としては、有機酸及び無機酸が含まれる。
 有機酸としては、芳香族ヒロドキシ化合物{フェノール、アルキル置換フェノール類(o-クレゾール、m-クレゾール、p-クレゾール、2-エチルフェノール、3-エチルフェノール、4-エチルフェノール、キシレノール類、トリメチルフェノール類、テトラメチルフェノール類、ペンタメチルフェノール類等)、アルコキシ置換フェノール類(2-メトキシフェノール、3-メトキシフェノール、4-メトキシフェノール、2-エトキシフェノール、3-エトキシフェノール、4-エトキシフェノール等)、ハロゲン置換フェノール類(フルオロフェノール、クロロフェノール、ブロモフェノール、ヨードフェノール等)、ナフトール類、アミノフェノール類、多価フェノール類(カテコール、レソルシノール、ヒドロキノン、ビフェノール類、ビスフェノール類、ピロガロール、フロログルシノール、ヘキサヒドロキシベンゼン等)}等が挙げられる。
The acid (A1) having a pKa 1 = 8 to 11 includes an organic acid and an inorganic acid.
Organic acids include aromatic hydroxy compounds {phenol, alkyl-substituted phenols (o-cresol, m-cresol, p-cresol, 2-ethylphenol, 3-ethylphenol, 4-ethylphenol, xylenols, trimethylphenols Tetramethylphenols, pentamethylphenols, etc.), alkoxy-substituted phenols (2-methoxyphenol, 3-methoxyphenol, 4-methoxyphenol, 2-ethoxyphenol, 3-ethoxyphenol, 4-ethoxyphenol, etc.), Halogen-substituted phenols (fluorophenol, chlorophenol, bromophenol, iodophenol, etc.), naphthols, aminophenols, polyphenols (catechol, resorcinol, hydroquinone, biff) Nord, bisphenols, pyrogallol, phloroglucinol, benzenehexol etc.)}, and the like.
 無機酸としては、ホウ酸及び過ハロゲン化水素酸(過臭素酸、過ヨウ素酸等)等が挙げられる。 Examples of the inorganic acid include boric acid and perhydrohalic acid (perbromic acid, periodic acid, etc.).
 これらのpKa=8~11の酸(A1)のうち、好ましくは一般式(2)で表されるフェノール化合物である。 Of these acids (A1) with pKa 1 = 8 to 11, a phenol compound represented by the general formula (2) is preferable.
Figure JPOXMLDOC01-appb-C000002
 (式中、R~Rは各々独立して水素原子、炭素数1~5の直鎖若しくは分岐鎖のアルキル基、アルコキシ基を表す。)
 炭素数1~5の直鎖若しくは分岐鎖のアルキル基としては、メチル基、エチル基、イソプロピル基、n-ブチル基、t-ブチル基及びn-ペンチル基等が挙げられる。
 炭素数1~5の直鎖若しくは分岐鎖のアルコキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基及びn-ブトキシ基等が挙げられる。
Figure JPOXMLDOC01-appb-C000002
(Wherein R 1 to R 5 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or an alkoxy group)
Examples of the linear or branched alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an isopropyl group, an n-butyl group, a t-butyl group, and an n-pentyl group.
Examples of the linear or branched alkoxy group having 1 to 5 carbon atoms include methoxy group, ethoxy group, isopropoxy group and n-butoxy group.
 一般式(2)で表されるフェノール化合物のうち、フェノール、o-クレゾール、2,4,6-トリメチルフェノール、2-メトキシフェノール及び2-エトキシフェノールが特に好ましい。 Of the phenolic compounds represented by the general formula (2), phenol, o-cresol, 2,4,6-trimethylphenol, 2-methoxyphenol and 2-ethoxyphenol are particularly preferable.
 pKa=4~6の酸(A2)としては、カルボン酸{飽和脂肪族カルボン酸類(酢酸、プロピオン酸、酪酸、吉草酸、イソ吉草酸、メチルエチル酢酸、トリメチル酢酸、カプロン酸、イソカプロン酸、ジエチル酢酸、2,2-ジメチル酪酸、エナント酸、カプリル酸、ペラルゴン酸、2-エチルヘキサン酸、n-ウンデシレン酸、ラウリン酸、n-トリデシレン酸、ミリスチン酸、n-ペンタデシレン酸、パルミチン酸、マーガリン酸、ステアリン酸、n-ノナデシレン酸、アラキジン酸、n-ヘンアイコ酸等)、不飽和脂肪族カルボン酸類(アクリル酸、クロトン酸、イソクロトン酸、ビニル酢酸、メタクリル酸、2-ペンテン酸、3-ペンテン酸、アリル酢酸、アンゲリカ酸、チグリン酸、3-メチルクロトン酸、2-ヘキセン酸、3-ヘキセン酸、4-ヘキセン酸、5-ヘキセン酸、2-メチル-2-ペンテン酸、3-メチル-2-ペンテン酸、4-メチル-2-ペンテン酸、4-メチル-2-ペンテン酸、4-メチル-3-ペンテン酸、2-エチルクロトン酸、2-へプテン酸、2-オクテン酸、パルミトレイン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、エレステアリン酸、アラキドン酸等)、飽和脂肪族ジカルボン酸類(コハク酸、グルタル酸、メチルコハク酸、アジピン酸、エチルコハク酸、ピメリン酸、プロピルコハク酸、スベリン酸、アゼライン酸、セバシン酸等)、脂環式カルボン酸類(シクロプロパンカルボン酸、シクロブタンカルボン酸、シクロブテンカルボン酸、シクロペンタンカルボン酸、シクロペンテンカルボン酸、シクロヘキサンカルボン酸、シクロヘキセンカルボン酸、シクロヘプタンカルボン酸、シクロヘプテンカルボン酸等)、芳香族カルボン酸類(安息香酸、アルキル置換安息香酸類(3-メチル安息香酸、4-メチル安息香酸、3-エチル安息香酸、4-エチル安息香酸等)、4-ヒドロキシ安息香酸、アルコキシ置換安息香酸類(2-メトキシ安息香酸、3-メトキシ安息香酸、4-メトキシ安息香酸等)、メルカプト安息香酸類、アミノ置換安息香酸類、2-ナフトエ酸等)、ヒドロキシカルボン酸類(アスコルビン酸等)、ケトカルボン酸類(レブリン酸等)}、モノアルキル炭酸(メチル炭酸及びエチル炭酸等)等が挙げられる。
上記(A2)は単独で用いる事はもちろん、2種以上を混合して用いてもよい。
As the acid (A2) of pKa 1 = 4 to 6, carboxylic acid {saturated aliphatic carboxylic acid (acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, methylethylacetic acid, trimethylacetic acid, caproic acid, isocaproic acid, Diethylacetic acid, 2,2-dimethylbutyric acid, enanthic acid, caprylic acid, pelargonic acid, 2-ethylhexanoic acid, n-undecylenic acid, lauric acid, n-tridecylenic acid, myristic acid, n-pentadecylenic acid, palmitic acid, margarine Acid, stearic acid, n-nonadecylene acid, arachidic acid, n-heneicoic acid, etc.), unsaturated aliphatic carboxylic acids (acrylic acid, crotonic acid, isocrotonic acid, vinylacetic acid, methacrylic acid, 2-pentenoic acid, 3-pentene Acid, allyl acetic acid, angelic acid, tiglic acid, 3-methylcrotonic acid, 2-hexenoic acid, -Hexenoic acid, 4-hexenoic acid, 5-hexenoic acid, 2-methyl-2-pentenoic acid, 3-methyl-2-pentenoic acid, 4-methyl-2-pentenoic acid, 4-methyl-2-pentenoic acid, 4-methyl-3-pentenoic acid, 2-ethylcrotonic acid, 2-heptenoic acid, 2-octenoic acid, palmitoleic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, elestearic acid, arachidonic acid, etc.) Saturated aliphatic dicarboxylic acids (succinic acid, glutaric acid, methyl succinic acid, adipic acid, ethyl succinic acid, pimelic acid, propyl succinic acid, suberic acid, azelaic acid, sebacic acid, etc.), alicyclic carboxylic acids (cyclopropanecarboxylic acid, Cyclobutanecarboxylic acid, cyclobutenecarboxylic acid, cyclopentanecarboxylic acid, cyclopentenecarboxylic acid, cyclohexane Carboxylic acid, cyclohexenecarboxylic acid, cycloheptanecarboxylic acid, cycloheptenecarboxylic acid, etc.), aromatic carboxylic acids (benzoic acid, alkyl-substituted benzoic acids (3-methylbenzoic acid, 4-methylbenzoic acid, 3-ethylbenzoic acid) 4-hydroxybenzoic acid, 4-hydroxybenzoic acid, alkoxy-substituted benzoic acids (2-methoxybenzoic acid, 3-methoxybenzoic acid, 4-methoxybenzoic acid, etc.), mercaptobenzoic acids, amino-substituted benzoic acids, 2 -Naphthoic acid, etc.), hydroxycarboxylic acids (ascorbic acid, etc.), ketocarboxylic acids (levulinic acid, etc.)}, monoalkyl carbonates (methyl carbonate, ethyl carbonate, etc.) and the like.
Of course, the above (A2) may be used alone or in combination of two or more.
 これらのpKa=4~6の酸(A2)のうち、2-エチルヘキサン酸及びオレイン酸が好ましい。 Of these acids (A2) having a pKa 1 = 4 to 6, 2-ethylhexanoic acid and oleic acid are preferred.
 (A1)の含有量は(C)1モルに対して0.2~0.8モル、好ましくは0.4~0.6モル、(A2)の含有量は(C)1モルに対して0.2~0.8モル、好ましくは0.4~0.6モル、(A1+A2)の含有量は(C)1モルに対して0.8~1.2モル、好ましくは0.9~1.1モル、特に好ましくは0.95~1.05モルである。 The content of (A1) is 0.2 to 0.8 mol, preferably 0.4 to 0.6 mol, and the content of (A2) is 1 mol of (C). 0.2 to 0.8 mol, preferably 0.4 to 0.6 mol, and the content of (A1 + A2) is 0.8 to 1.2 mol, preferably 0.9 to 0.1 mol with respect to 1 mol of (C). 1.1 mol, particularly preferably 0.95 to 1.05 mol.
塩(E)としては、DBUとフェノール及び2-エチルヘキサン酸の塩{混合比率(C:A1:A2)がモル比で1:0.5:0.5}、DBUとフェノール及び2-エチルヘキサン酸の塩{混合比率(C:A1:A2)がモル比で1:0.4:0.4}、DBUとo-クレゾールとオレイン酸の塩{混合比率(C:A1:A2)がモル比で1:0.6:0.4}、DBUと2,4,6-トリメチルフェノール及び2-エチルヘキサン酸の塩{混合比率(C:A1:A2)がモル比で1:0.3:0.7}、DBUと2-メトキシフェノール及び2-エチルヘキサン酸の塩{混合比率(C:A1:A2)がモル比で1:0.5:0.5}、DBUと2-メトキシフェノール及び2-エチルヘキサン酸の塩{混合比率(C:A1:A2)がモル比で1:0.5:0.7}、DBNとフェノール及び2-エチルヘキサン酸の塩{混合比率(C:A1:A2)がモル比で1:0.5:0.5}、DBNと2-メトキシフェノール及び2-エチルヘキサン酸の塩{混合比率(C:A1:A2)がモル比で1:0.5:0.5}等が好ましく例示できる。 As the salt (E), a salt of DBU, phenol and 2-ethylhexanoic acid {mixing ratio (C: A1: A2) is a molar ratio of 1: 0.5: 0.5}, DBU, phenol and 2-ethyl Hexanoic acid salt {mixing ratio (C: A1: A2) is molar ratio 1: 0.4: 0.4}, DBU, o-cresol and oleic acid salt {mixing ratio (C: A1: A2) is The molar ratio is 1: 0.6: 0.4}, the salt of DBU, 2,4,6-trimethylphenol and 2-ethylhexanoic acid {mixing ratio (C: A1: A2) is 1: 0. 3: 0.7}, DBU, 2-methoxyphenol and 2-ethylhexanoic acid salt {mixing ratio (C: A1: A2) is 1: 0.5: 0.5} in molar ratio, DBU and 2- Methoxyphenol and 2-ethylhexanoic acid salt {mixing ratio (C: A1: A2) is molar ratio 1: 0.5: 0.7}, salt of DBN, phenol and 2-ethylhexanoic acid {mixing ratio (C: A1: A2) is 1: 0.5: 0.5} in molar ratio, DBN and 2 A preferred example is a salt of methoxyphenol and 2-ethylhexanoic acid {mixing ratio (C: A1: A2) is 1: 0.5: 0.5} in molar ratio.
 本発明の触媒は、公知の溶媒を含有してもよい。
 溶媒としては、水及びアルコール(エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール及びブタンジオール等)が挙げられる。
 溶媒を含有する場合、この含有量は適宜決定でき、たとえば、塩(E)の重量に基づいて5~1900重量%である。
The catalyst of the present invention may contain a known solvent.
Examples of the solvent include water and alcohol (such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, and butanediol).
When a solvent is contained, the content can be determined as appropriate, and is, for example, 5 to 1900% by weight based on the weight of the salt (E).
 本発明の触媒は、本発明の趣旨を逸脱しない範囲で、その他の触媒(有機金属触媒やアミン触媒等)を含有してもよい。
 有機金属触媒としては、公知の有機金属触媒等が含まれ、カルボン酸カリウム(2-エチルヘキサン酸カリウム及び酢酸カリウム等)、有機スズ触媒(スタナスジアセテート、スタナスジオクトエート、スタナスジラウレート、スタナスジオレエート、ジブチル錫オキサイド、ジブチル錫ジアセテート、ジブチル錫ジラウレート及びジオクチル錫ジラウレート等)、有機ビスマス触媒(オクチル酸ビスマス及びナフテン酸ビスマス等)及び有機コバルト触媒(ナフテン酸コバルト等)等が挙げられる。
The catalyst of the present invention may contain other catalysts (such as an organometallic catalyst and an amine catalyst) without departing from the spirit of the present invention.
Examples of the organometallic catalyst include known organometallic catalysts, such as potassium carboxylates (such as potassium 2-ethylhexanoate and potassium acetate), organotin catalysts (stannous diacetate, stannous dioctoate, stannous dilaurate, stana Sudiolate, dibutyltin oxide, dibutyltin diacetate, dibutyltin dilaurate and dioctyltin dilaurate), organic bismuth catalysts (such as bismuth octylate and bismuth naphthenate), and organic cobalt catalysts (such as cobalt naphthenate) .
 アミン触媒としては、公知のアミン触媒等が含まれ、アミン(トリエチレンジアミン、2-メチルトリエチレンジアミン、N-メチルモルホリン、N-エチルモルホリン、ジモルホリノジエチルアミノエーテル、ジメチルエタノールアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルプロピレンジアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、ジメチルシクロヘキシルアミン、1,3,5-トリス(N,N-ジメチルアミノプロピル)ヘキサヒドロ-S-トリアジン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’,N”,N”-ペンタメチルジプロピレントリアミン、ビス(2-ジメチルアミノエチル)エーテル及びジメチルイソプロパノールアミン、1,2-ジメチルイミダゾール、1-メチルイミダゾール、1,4-ジメチルイミダゾール、1,2,4,5-テトラメチルイミダゾール、1-メチル-2-イソプロピルイミダゾール、1-メチル-2-フェニルイミダゾール、1-(n-ブチル)-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、イミダゾール及び2-メチルイミダゾール、第4級アンモニウム塩(水酸化テトラメチルアンモニウム塩、ヒドロキシプロピルトリメチル第4級アンモニウム2-エチルヘキサン酸塩、2-ヒドロキシプロピルトリメチルアンモニウムギ酸塩及びテトラメチルアンモニウム2-エチルヘキサン酸塩等)等が挙げられる。 Examples of the amine catalyst include known amine catalysts and the like, and amines (triethylenediamine, 2-methyltriethylenediamine, N-methylmorpholine, N-ethylmorpholine, dimorpholinodiethylaminoether, dimethylethanolamine, N, N, N ′ , N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethylpropylenediamine, N, N, N ′, N′-tetramethylhexamethylenediamine, dimethylcyclohexylamine, 1,3,5-tris (N, N-dimethylaminopropyl) hexahydro-S-triazine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine, N, N, N ′, N ″, N ″ -pentamethyldipropylenetriamine, bis (2-dimethylaminoethyl) ether and dimethylisopropanolamine, 1,2-dimethylimidazole, 1-methylimidazole, 1,4-dimethylimidazole, 1,2,4,5-tetramethylimidazole, 1-methyl-2- Isopropyl imidazole, 1-methyl-2-phenylimidazole, 1- (n-butyl) -2-methylimidazole, 1-isobutyl-2-methylimidazole, 1-benzyl-2-methylimidazole, imidazole and 2-methylimidazole, Quaternary ammonium salts (tetramethylammonium hydroxide salt, hydroxypropyltrimethyl quaternary ammonium 2-ethylhexanoate, 2-hydroxypropyltrimethylammonium formate and tetramethylammonium 2-ethylhexanoate ), And the like.
 その他の触媒を含有する場合、その他の触媒の使用量(重量%)は、塩(E)の重量に基づいて、5~1900重量%が好ましく、さらに好ましくは20~900重量%である。 In the case of containing other catalyst, the amount (% by weight) of the other catalyst used is preferably 5 to 1900% by weight, more preferably 20 to 900% by weight, based on the weight of the salt (E).
  塩(E)は、一般式(1)で表されるシクロアミジン(C)とpKa=8~11の酸(A1)とpKa=4~6の酸(A2)とを混合すれば得られる。混合比率は前記の通りである。混合する際、溶媒に溶解して混合してもよい。溶媒及びその使用量は前記の通りである。 The salt (E) can be obtained by mixing the cycloamidine (C) represented by the general formula (1), the acid (A1) of pKa 1 = 8 to 11 and the acid (A2) of pKa 1 = 4 to 6 It is done. The mixing ratio is as described above. When mixing, you may melt | dissolve and mix in a solvent. The solvent and its use amount are as described above.
 本発明の触媒は、硬質・半硬質・軟質フォーム等のポリウレタン樹脂の製造用として適している。 The catalyst of the present invention is suitable for the production of polyurethane resins such as rigid, semi-rigid and flexible foams.
 本発明のポリウレタン樹脂の製造方法は、本発明のポリウレタン樹脂製造用触媒とポリオールと有機ポリイソシアネート又はイソシアネートプレポリマーとを反応させてポリウレタン樹脂を得る工程を含む。 The method for producing a polyurethane resin of the present invention includes a step of reacting the polyurethane resin production catalyst of the present invention with a polyol and an organic polyisocyanate or an isocyanate prepolymer to obtain a polyurethane resin.
 本発明の触媒{他の触媒と併用の場合は、塩(E)}の使用量(重量%)は、ポリオールの重量に基づいて、0.001~20重量%となる量が好ましく、さらに好ましくは0.01~10重量%となる量、特に好ましくは0.1~5重量%となる量である。 The amount of use (wt%) of the catalyst of the present invention {in the case of use in combination with other catalyst (wt)} is preferably 0.001 to 20 wt%, more preferably based on the weight of the polyol. Is an amount of 0.01 to 10% by weight, particularly preferably 0.1 to 5% by weight.
 ポリオールとしては特に限定されず、公知のポリオール等が使用でき、ポリオキシアルキレンエーテルポリオール、ポリエステルポリオール、アミンポリオール、重合体ポリオール、ポリブタジエンポリオール、ひまし油系ポリオール、アクリルポリオール及びこれらの混合物等が含まれる。 The polyol is not particularly limited, and known polyols can be used, and examples include polyoxyalkylene ether polyols, polyester polyols, amine polyols, polymer polyols, polybutadiene polyols, castor oil-based polyols, acrylic polyols, and mixtures thereof.
 イソシアネートとしては、公知のイソシアネート等が使用でき、炭素数(イソシアネート基中の炭素原子を除く、以下同様)6~20の芳香族ポリイソシアネート、炭素数2~18の脂肪族ポリイソシアネート、炭素数4~15の脂環式ポリイソシアネート、炭素数8~15の芳香脂肪族ポリイソシアネート、これらの変性体(ウレタン変性、カルボジイミド変性、アロファネート変性、ウレア変性、ビューレット変性、ウレトジオン変性、ウレトイミン変性、イソシアヌレート変性及びオキサゾリドン変性等)及びこれらの混合物等が含まれる。 As the isocyanate, a known isocyanate or the like can be used. An aromatic polyisocyanate having 6 to 20 carbon atoms (excluding carbon atoms in the isocyanate group, the same shall apply hereinafter), an aliphatic polyisocyanate having 2 to 18 carbon atoms, a carbon number of 4 -15 cycloaliphatic polyisocyanate, C8-15 araliphatic polyisocyanate, modified products thereof (urethane modification, carbodiimide modification, allophanate modification, urea modification, burette modification, uretdione modification, uretoimine modification, isocyanurate) Modified and oxazolidone modified) and mixtures thereof.
 イソシアネートプレポリマーとしては、前述のポリオールと有機ポリイソシアネートを反応させることにより得られるものが挙げられる。 Examples of the isocyanate prepolymer include those obtained by reacting the aforementioned polyol and organic polyisocyanate.
イソシアネートインデックスは特に限定するものではないが、50~800が好ましく、さらに好ましくは70~400である。この範囲であると、樹脂強度が良好であり、未反応のイソシアナト基が残存するおそれも減少する。 The isocyanate index is not particularly limited, but is preferably 50 to 800, more preferably 70 to 400. Within this range, the resin strength is good, and the possibility that unreacted isocyanato groups remain is also reduced.
本発明のポリウレタン樹脂の製造方法において、ポリウレタン樹脂がポリウレタン発泡体である場合は、発泡剤の存在下で、ポリウレタン樹脂製造用触媒とポリオールと有機ポリイソシアネート又はイソシアネートプレポリマーとを反応させてポリウレタン発泡体を得る工程を含む。
 発泡剤としては、水及び揮発性発泡剤を用いることができる。
 揮発性発泡剤としては、公知の揮発性発泡剤等が使用でき、フロン(水素原子含有ハロゲン化炭化水素){たとえば、1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)、1,1,1,3,3-ペンタフルオロブタン(HFC-365mfc)、1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,2,3,3,3-ヘプタフルオロプロパン(HFC-227ea)}、ハイドロフルオロエーテル{たとえば、HFE-254pc}、ハロゲン化炭化水素{たとえば、メチレンクロライド}、低沸点炭化水素{たとえば、プロパン、ブタン、ペンタン、シクロペンタン}、炭酸ガス及びこれらの混合物等が挙げられる。
 本発明の触媒は、これらの発泡剤のうち特に水に対して他の触媒では得られない効果を発揮する。
In the polyurethane resin production method of the present invention, when the polyurethane resin is a polyurethane foam, the polyurethane foam is obtained by reacting the polyurethane resin production catalyst with a polyol and an organic polyisocyanate or an isocyanate prepolymer in the presence of a foaming agent. Obtaining a body.
As the foaming agent, water and a volatile foaming agent can be used.
As the volatile foaming agent, a known volatile foaming agent or the like can be used, such as chlorofluorocarbon (hydrogen atom-containing halogenated hydrocarbon) {for example, 1,1,1,3,3-pentafluoropropane (HFC-245fa), 1,1,1,3,3-pentafluorobutane (HFC-365mfc), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1,2,3,3,3- Heptafluoropropane (HFC-227ea)}, hydrofluoroether {eg, HFE-254pc}, halogenated hydrocarbon {eg, methylene chloride}, low boiling point hydrocarbon {eg, propane, butane, pentane, cyclopentane}, carbonic acid Examples thereof include gases and mixtures thereof.
The catalyst of the present invention exhibits an effect that cannot be obtained with other catalysts, particularly water, among these blowing agents.
 発泡剤の使用量は製造するポリウレタンフォームの密度やフォーム物性に応じて適宜決定される。たとえば、得られるポリウレタンフォームの密度(kg/m)が、5~200(好ましくは10~100)となるように決定する。 The amount of the foaming agent used is appropriately determined according to the density of the polyurethane foam to be produced and the physical properties of the foam. For example, the density (kg / m 3 ) of the obtained polyurethane foam is determined to be 5 to 200 (preferably 10 to 100).
 本発明の製造方法において、発泡剤を使用しない塗料、接着剤、エラストマー、シーラント等を製造する場合は、系中に水分が存在すると反応の際に発泡現象が起きるおそれがあるため、水分を除去することが望ましい。水分の除去の際にはポリオールやプレポリマー等の原料について、加熱真空脱水を行ったり、モレキュラーシーブやゼオライト等を系中に添加することが望ましい。 In the production method of the present invention, when producing paints, adhesives, elastomers, sealants, etc. that do not use a foaming agent, if moisture is present in the system, foaming may occur during the reaction, so moisture is removed. It is desirable to do. When removing the water, it is desirable to subject the raw materials such as polyols and prepolymers to heat vacuum dehydration, or to add molecular sieves, zeolites and the like to the system.
 ポリウレタン樹脂の製造において、必要により、公知の各種添加剤{架橋剤、鎖延長剤、整泡剤、難燃剤、減粘剤、溶剤、酸化防止剤、紫外線吸収剤,老化防止剤、着色剤(染料,顔料)、反応遅延剤及び充填剤等}等を配合することができる。これらの各種添加剤を使用する場合、これらの添加量は、本発明の趣旨を逸脱しない限りそれぞれの機能を発揮すればよく、通常の添加量である。 In the production of polyurethane resins, if necessary, various known additives {crosslinking agents, chain extenders, foam stabilizers, flame retardants, viscosity reducers, solvents, antioxidants, ultraviolet absorbers, anti-aging agents, colorants ( Dyes, pigments), reaction retarders, fillers, and the like} and the like. When these various additives are used, these addition amounts are normal addition amounts as long as the respective functions are exhibited without departing from the gist of the present invention.
 以下、実施例、比較例に基づいて説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, although explained based on an example and a comparative example, the present invention is not limited only to these examples.
本発明の触媒と従来の触媒を調整した例を以下に示す。 The example which adjusted the catalyst of this invention and the conventional catalyst is shown below.
<実施例1>
ガラス製丸底フラスコに所定量のDBU及び溶剤としてジエチレングリコールをとり攪拌しながら、これにpKa=8~11の酸(A1)として所定量のフェノール(pKa=10.0)を徐々に滴下した後、攪拌混合した。続いて、pKa=4~6の酸(A2)として所定量の2-エチルヘキサン酸(pKa=4.8)を少しずつ加え、完全に溶解するまで攪拌混合を行い、本発明の触媒DBUとフェノール及び2-エチルヘキサン酸の塩(1)を得た。
<Example 1>
While stirring a predetermined amount of DBU and diethylene glycol as a solvent in a glass round bottom flask, a predetermined amount of phenol (pKa 1 = 10.0) as acid (A1) of pKa 1 = 8 to 11 is gradually added dropwise thereto. Then, the mixture was stirred and mixed. Subsequently, a predetermined amount of 2-ethylhexanoic acid (pKa 1 = 4.8) is added little by little as an acid (A2) of pKa 1 = 4 to 6, and the mixture is stirred and mixed until completely dissolved. A salt (1) of DBU, phenol and 2-ethylhexanoic acid was obtained.
<実施例2>
 DBUと反応させるフェノールと2-エチルヘキサン酸の比率を変えた他は実施例1と同様にして、本発明の触媒DBUとフェノール及び2-エチルヘキサン酸の塩(2)を得た。
<Example 2>
The catalyst DBU of the present invention, a salt of phenol and 2-ethylhexanoic acid (2) were obtained in the same manner as in Example 1 except that the ratio of phenol to be reacted with DBU and 2-ethylhexanoic acid was changed.
<実施例3>
 DBUと反応させるpKa=8~11の酸(A1)をo-クレゾール(pKa=10.2)、pKa=4~6の酸(A2)をオレイン酸(pKa=4.8)に変えた他は実施例1と同様にして、本発明の触媒DBUとo-クレゾール及びオレイン酸の塩(3)を得た。
<Example 3>
The acid (A1) of pKa 1 = 8 to 11 to be reacted with DBU is o-cresol (pKa 1 = 10.2), and the acid (A2) of pKa 1 = 4 to 6 is oleic acid (pKa 1 = 4.8). The catalyst DBU of the present invention, o-cresol and oleic acid salt (3) were obtained in the same manner as in Example 1 except that
<実施例4>
 DBUと反応させるpKa=8~11の酸(A1)を2,4,6-トリメチルフェノール(pKa=10.8)に変えた他は実施例1と同様にして、本発明の触媒DBUと2,4,6-トリメチルフェノール及び2-エチルヘキサン酸の塩(4)を得た。
<Example 4>
The catalyst DBU of the present invention was prepared in the same manner as in Example 1 except that the acid (A1) having a pKa 1 = 8 to 11 to be reacted with DBU was changed to 2,4,6-trimethylphenol (pKa 1 = 10.8). And 2,4,6-trimethylphenol and 2-ethylhexanoic acid salt (4) were obtained.
<実施例5>
 DBUと反応させるpKa=8~11の酸(A1)を2-メトキシフェノール(pKa=10.0)に変えた他は実施例1と同様にして、本発明の触媒DBUと2-メトキシフェノール及び2-エチルヘキサン酸の塩(5)を得た。
<Example 5>
The catalyst DBU of the present invention and 2-methoxy were changed in the same manner as in Example 1 except that the acid (A1) of pKa 1 = 8 to 11 to be reacted with DBU was changed to 2-methoxyphenol (pKa 1 = 10.0). A salt of phenol and 2-ethylhexanoic acid (5) was obtained.
<実施例6>
 DBUと反応させる2-メトキシフェノールと2-エチルヘキサン酸の比率を変えた他は実施例5と同様にして、本発明の触媒DBUと2-メトキシフェノール及び2-エチルヘキサン酸の塩(6)を得た。
<Example 6>
The catalyst DBU of the present invention and the salt of 2-methoxyphenol and 2-ethylhexanoic acid (6) except that the ratio of 2-methoxyphenol and 2-ethylhexanoic acid to be reacted with DBU was changed as in Example 5. Got.
<実施例7>
 DBUと反応させるpKa=8~11の酸(A1)を2-エトキシフェノール(pKa=9.9)、pKa=4~6の酸(A2)をオレイン酸に変えた他は実施例1と同様にして、本発明の触媒DBUと2-エトキシフェノール及びオレイン酸の塩(7)を得た。
<Example 7>
Examples except that the acid (A1) of pKa 1 = 8 to 11 reacted with DBU was changed to 2-ethoxyphenol (pKa 1 = 9.9) and the acid (A2) of pKa 1 = 4 to 6 was changed to oleic acid In the same manner as in Example 1, the catalyst DBU of the present invention, 2-ethoxyphenol and oleic acid salt (7) were obtained.
<実施例8>
ガラス製丸底フラスコに所定量のDBN及び溶剤としてジエチレングリコールをとり攪拌しながら、これにpKa=8~11の酸(A1)として所定量のフェノールを徐々に滴下した後、攪拌混合した。続いて、pKa=4~6の酸(A2)として所定量の2-エチルヘキサン酸を少しずつ加え、完全に溶解するまで攪拌混合を行い、本発明の触媒DBNとフェノール及び2-エチルヘキサン酸の塩(8)を得た。
<Example 8>
While stirring a predetermined amount of DBN and diethylene glycol as a solvent in a glass round bottom flask, a predetermined amount of phenol as an acid (A1) of pKa 1 = 8 to 11 was gradually added dropwise thereto, followed by stirring and mixing. Subsequently, a predetermined amount of 2-ethylhexanoic acid as pKa 1 = 4 to 6 acid (A2) was added little by little, and stirred and mixed until completely dissolved. The catalyst DBN of the present invention, phenol and 2-ethylhexane were mixed. The acid salt (8) was obtained.
<実施例9>
DBNと反応させるpKa=8~11の酸(A1)を2-メトキシフェノールに変えた他は実施例8と同様にして、本発明の触媒DBNと2-メトキシフェノール及び2-エチルヘキサン酸の塩(9)を得た。
<Example 9>
The catalyst DBN of the present invention was mixed with 2-methoxyphenol and 2-ethylhexanoic acid in the same manner as in Example 8 except that the acid (A1) of pKa 1 = 8 to 11 to be reacted with DBN was changed to 2-methoxyphenol. Salt (9) was obtained.
<比較例1>
ガラス製丸底フラスコに所定量のDBU及び溶剤としてジエチレングリコールをとり攪拌しながら、これにpKa=8~11の酸(A1)として所定量のフェノールを少しずつ加え、完全に溶解するまで攪拌混合を行い、本発明の触媒DBUとフェノールの塩(H1)を得た。
<Comparative Example 1>
While stirring a predetermined amount of DBU and diethylene glycol as a solvent in a glass round bottom flask, add a predetermined amount of phenol as an acid (A1) of pKa 1 = 8 to 11 to this, stirring and mixing until completely dissolved The catalyst DBU and phenol salt (H1) of the present invention were obtained.
<比較例2>
DBUと反応させるpKa=8~11の酸(A1)を2-メトキシフェノールに変えた他は比較例1と同様にして、本発明の触媒DBUと2-メトキシフェノールの塩(H2)を得た。
<Comparative Example 2>
The catalyst DBU of the present invention and a salt of 2-methoxyphenol (H2) were obtained in the same manner as in Comparative Example 1 except that the acid (A1) of pKa 1 = 8 to 11 to be reacted with DBU was changed to 2-methoxyphenol. It was.
<比較例3>
ガラス製丸底フラスコに所定量のDBU及び溶剤としてジエチレングリコールをとり攪拌しながら、これにpKa=4~6の酸(A2)として所定量の2-エチルヘキサン酸を少しずつ加え、完全に溶解するまで攪拌混合を行い、本発明の触媒DBUと2-エチルヘキサン酸の塩(H3)を得た。
<Comparative Example 3>
While stirring a predetermined amount of DBU and diethylene glycol as a solvent in a glass round bottom flask, add a predetermined amount of 2-ethylhexanoic acid as pKa 1 = 4-6 acid (A2) little by little to completely dissolve it. The mixture was stirred and mixed until the catalyst DBU of the present invention and 2-ethylhexanoic acid salt (H3) were obtained.
<比較例4>
DBUと反応させるpKa=4~6の酸(A2)をオレイン酸に変えた他は比較例3と同様にして、本発明の触媒DBUとオレイン酸の塩(H4)を得た。
<Comparative Example 4>
The catalyst DBU of the present invention and an oleic acid salt (H4) were obtained in the same manner as in Comparative Example 3 except that the acid (A2) of pKa 1 = 4 to 6 to be reacted with DBU was changed to oleic acid.
<比較例5>
ガラス製丸底フラスコに所定量のDBN及び溶剤としてジエチレングリコールをとり攪拌しながら、これにpKa=4~6の酸(A2)として所定量の2-エチルヘキサン酸を少しずつ加え、完全に溶解するまで攪拌混合を行い、本発明の触媒DBNと2-エチルヘキサン酸の塩(H5)を得た。
<Comparative Example 5>
While stirring a predetermined amount of DBN and diethylene glycol as a solvent in a glass round bottom flask, add a predetermined amount of 2-ethylhexanoic acid as pKa 1 = 4-6 acid (A2) little by little to completely dissolve it. The mixture was stirred and mixed until the catalyst DBN of the present invention and 2-ethylhexanoic acid salt (H5) were obtained.
 実施例1~9及び比較例1~5で得た触媒を用いて、表1に示す処方にて、次のようにして、ポリウレタンフォームを調製し、充填性及び硬化性を評価し、これらの結果を表2(DBU塩)及び表3(DBN塩)に示した。 Using the catalysts obtained in Examples 1 to 9 and Comparative Examples 1 to 5, polyurethane foams were prepared in the following manner according to the formulations shown in Table 1, and the filling properties and curability were evaluated. The results are shown in Table 2 (DBU salt) and Table 3 (DBN salt).
<ポリウレタンフォームの調製>
 表1に示した原料を用いて、25℃で、ポリオール、水、整泡剤、難燃剤、評価試料(触媒)及びその他の触媒の順に混合した後、イソシアネート(25℃)を加え、ホモディスパー(プライミクス株式会社)で5000rpm、5秒間攪拌混合して混合物を得た。この混合物のうち100gを直ちに、モールド(温度45℃、内寸;幅10cm×奥行き100cm×高さ2.5cm、上部に10cm×100cmの開口部を持つ。)の上部開口部から、内寸10cmの側壁に沿うようにして充填し、発泡させてポリウレタンフォームを得た。
 なお、評価試料(触媒)を使用しないこと以外、上記と同様にして、ブランク用のポリウレタンフォームを得た。
<Preparation of polyurethane foam>
Using the raw materials shown in Table 1, at 25 ° C., polyol, water, foam stabilizer, flame retardant, evaluation sample (catalyst) and other catalyst were mixed in this order, and then isocyanate (25 ° C.) was added. (Primix Co., Ltd.) was stirred and mixed at 5000 rpm for 5 seconds to obtain a mixture. Immediately 100 g of this mixture is 10 cm in diameter from the upper opening of the mold (temperature 45 ° C., inner dimension; width 10 cm × depth 100 cm × height 2.5 cm, upper 10 cm × 100 cm opening). A polyurethane foam was obtained by filling along the side wall and foaming.
A blank polyurethane foam was obtained in the same manner as above except that the evaluation sample (catalyst) was not used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
注)
ポリオール:ショ糖にプロピレンオキシドを付加反応させて得た水酸基価338のポリオール
整泡剤:SH
193(ポリエーテルシロキサン重合体、東レ・ダウコーニング株式会社)
難燃剤:TMCPP(トリス(β-クロロプロピル)ホスフェート、大八化学工業株式会社)
評価試料(触媒):DBUまたはDBNの添加量が0.3部になるようにした。
その他の触媒:U-CAT 420A(アミン系触媒、サンアプロ株式会社)
イソシアネート:ミリオネート MR-200(粗製MDI、NCOインデックス110、日本ポリウレタン工業株式会社)
note)
Polyol: Polyol foam stabilizer having a hydroxyl value of 338 obtained by addition reaction of propylene oxide to sucrose: SH
193 (polyether siloxane polymer, Toray Dow Corning Co., Ltd.)
Flame retardant: TMCPP (Tris (β-chloropropyl) phosphate, Daihachi Chemical Industry Co., Ltd.)
Evaluation sample (catalyst): DBU or DBN was added in an amount of 0.3 part.
Other catalysts: U-CAT 420A (Amine-based catalyst, San Apro Corporation)
Isocyanate: Millionate MR-200 (crude MDI, NCO index 110, Nippon Polyurethane Industry Co., Ltd.)
<充填性>
 モールドに混合物100gを注入した後、内寸10cmの側壁から流れた最小距離を計測し、これを充填性とした。この値は大きいほど、充填性が良好であることを意味する。
<Fillability>
After injecting 100 g of the mixture into the mold, the minimum distance that flowed from the side wall with an inner size of 10 cm was measured, and this was designated as filling property. The larger this value, the better the filling property.
<硬化性>
 モールドに混合物を注入し始めてから180秒後に、E型硬度計で内寸10cmの側壁から20cmの位置のフォーム硬度を計測し硬化性とした。この値は大きいほど、硬化性が高いことを意味する。
<Curing property>
After 180 seconds from the start of injecting the mixture into the mold, the foam hardness at a position 20 cm from the side wall having an inner dimension of 10 cm was measured with an E-type hardness meter to make it curable. A larger value means higher curability.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表2、表3の結果から明らかなように、本発明の触媒は従来のシクロアミジン(塩)に比べ、水を発泡剤として使用した場合でも、モールド内の充填性を良好に保ちながら硬化を促進させることできた。 As is apparent from the results of Tables 2 and 3, the catalyst of the present invention is hardened while maintaining good filling properties in the mold even when water is used as a foaming agent, compared to the conventional cycloamidine (salt). I was able to promote it.
 本発明のポリウレタン樹脂製造用触媒は硬質・半硬質・軟質フォーム等のポリウレタン樹脂製造用として好適に使用される。 The polyurethane resin production catalyst of the present invention is suitably used for production of polyurethane resins such as rigid, semi-rigid and flexible foams.

Claims (8)

  1. 一般式(1)で表されるシクロアミジン(C)と、pKa=8~11の酸(A1)からなる群より選ばれる1種以上と、pKa=4~6の酸(A2)からなる群より選ばれる1種以上とを併用してなる塩(E)であり、(A1)の含有量は(C)1モルに対して0.2~0.8モル、(A2)の含有量は(C)1モルに対して0.2~0.8モル、(A1+A2)の含有量は(C)1モルに対して0.8~1.2モルであることを特徴とするポリウレタン樹脂製造用触媒。
    Figure JPOXMLDOC01-appb-C000003
     (mは2~6の整数を表し、メチレン基の水素原子は有機基で置換されていてもよい。)
    From cycloamidine (C) represented by the general formula (1), one or more selected from the group consisting of acids (A1) with pKa 1 = 8 to 11, and acids (A2) with pKa 1 = 4 to 6 A salt (E) used in combination with at least one selected from the group consisting of: (A1) content of 0.2 to 0.8 mol per mol of (C), and content of (A2) The polyurethane is characterized in that the amount is 0.2 to 0.8 mol per 1 mol of (C), and the content of (A1 + A2) is 0.8 to 1.2 mol per 1 mol of (C) Catalyst for resin production.
    Figure JPOXMLDOC01-appb-C000003
    (M represents an integer of 2 to 6, and the hydrogen atom of the methylene group may be substituted with an organic group.)
  2. シクロアミジン(C)が、1,8-ジアザビシクロ[5,4,0]ウンデセン-7又は1,5-ジアザビシクロ[4,3,0]ノネン-5である請求項1に記載のポリウレタン樹脂製造用触媒。 2. The polyurethane resin production according to claim 1, wherein the cycloamidine (C) is 1,8-diazabicyclo [5,4,0] undecene-7 or 1,5-diazabicyclo [4,3,0] nonene-5. catalyst.
  3. pKa=8~11の酸(A1)が、一般式(2)で表されるフェノール化合物であることを特徴とする請求項1又は2に記載のポリウレタン樹脂製造用触媒。
    Figure JPOXMLDOC01-appb-C000004
     (式中、R~Rは各々独立して水素原子、炭素数1~5の直鎖若しくは分岐鎖のアルキル基、アルコキシ基を表す。)
    3. The polyurethane resin production catalyst according to claim 1, wherein the acid (A1) having a pKa 1 = 8 to 11 is a phenol compound represented by the general formula (2).
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 1 to R 5 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, or an alkoxy group)
  4. 前記フェノール化合物が、フェノール、o-クレゾール、2,4,6-トリメチルフェノール、2-メトキシフェノール又は2-エトキシフェノールである請求項3に記載のポリウレタン樹脂製造用触媒。 The catalyst for producing a polyurethane resin according to claim 3, wherein the phenol compound is phenol, o-cresol, 2,4,6-trimethylphenol, 2-methoxyphenol or 2-ethoxyphenol.
  5. pKa=4~6の酸(A2)が、脂肪族モノカルボン酸である請求項1~4のいずれかに記載のポリウレタン樹脂製造用触媒。 The catalyst for producing a polyurethane resin according to any one of claims 1 to 4, wherein the acid (A2) having a pKa 1 = 4 to 6 is an aliphatic monocarboxylic acid.
  6. 前記脂肪族モノカルボン酸が、2-エチルヘキサン酸又はオレイン酸である請求項5に記載のポリウレタン樹脂製造用触媒。 The catalyst for producing a polyurethane resin according to claim 5, wherein the aliphatic monocarboxylic acid is 2-ethylhexanoic acid or oleic acid.
  7. 請求項1~6のいずれかに記載のポリウレタン樹脂製造用触媒とポリオールと有機ポリイソシアネート又はイソシアネートプレポリマーとを反応させてポリウレタン樹脂を得る工程を含むことを特徴とするポリウレタン樹脂の製造方法。 A process for producing a polyurethane resin, comprising a step of reacting the catalyst for producing a polyurethane resin according to any one of claims 1 to 6, a polyol and an organic polyisocyanate or an isocyanate prepolymer to obtain a polyurethane resin.
  8. 発泡剤の存在下で反応させ、ポリウレタン樹脂がポリウレタン発泡体である請求項7に記載の製造方法。 The process according to claim 7, wherein the reaction is carried out in the presence of a foaming agent, and the polyurethane resin is a polyurethane foam.
PCT/JP2011/001892 2010-04-05 2011-03-30 Catalyst for production of polyurethane resin and method for producing polyurethane resin WO2011125310A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509305A JPWO2011125310A1 (en) 2010-04-05 2011-03-30 Polyurethane resin production catalyst and polyurethane resin production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010086864 2010-04-05
JP2010-086864 2010-04-05

Publications (1)

Publication Number Publication Date
WO2011125310A1 true WO2011125310A1 (en) 2011-10-13

Family

ID=44762281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001892 WO2011125310A1 (en) 2010-04-05 2011-03-30 Catalyst for production of polyurethane resin and method for producing polyurethane resin

Country Status (2)

Country Link
JP (1) JPWO2011125310A1 (en)
WO (1) WO2011125310A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072249A (en) * 2010-09-28 2012-04-12 San Apro Kk Catalyst for manufacturing polyurethane resin, and method for manufacturing polyurethane resin
JP2013234272A (en) * 2012-05-09 2013-11-21 Tosoh Corp Catalyst composition for producing polyurethane resin, and method for producing polyurethane resin using the same
JP2018522095A (en) * 2015-06-18 2018-08-09 ダウ グローバル テクノロジーズ エルエルシー Latent two-component polyurethane adhesive curable with infrared radiation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769244A (en) * 1966-10-29 1973-10-30 San Abbott Ltd Polyurethane foam reaction catalyzed by salts of 1,8 - diaza-bicyclo(5,4,0)undecene-7
JPH02235916A (en) * 1989-03-08 1990-09-18 Hitachi Chem Co Ltd Production of heat-resistant resin and heat-resistant resin composition
JP2002187927A (en) * 2000-10-13 2002-07-05 Tosoh Corp Catalyst for producing two component polyurethane sealant
JP2005120222A (en) * 2003-10-16 2005-05-12 Tosoh Corp Catalyst composition for producing polyurethane resin and method for producing polyurethane resin
WO2010109789A1 (en) * 2009-03-24 2010-09-30 サンアプロ株式会社 Catalyst for production of polyurethane resin and process for production of polyurethane resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769244A (en) * 1966-10-29 1973-10-30 San Abbott Ltd Polyurethane foam reaction catalyzed by salts of 1,8 - diaza-bicyclo(5,4,0)undecene-7
JPH02235916A (en) * 1989-03-08 1990-09-18 Hitachi Chem Co Ltd Production of heat-resistant resin and heat-resistant resin composition
JP2002187927A (en) * 2000-10-13 2002-07-05 Tosoh Corp Catalyst for producing two component polyurethane sealant
JP2005120222A (en) * 2003-10-16 2005-05-12 Tosoh Corp Catalyst composition for producing polyurethane resin and method for producing polyurethane resin
WO2010109789A1 (en) * 2009-03-24 2010-09-30 サンアプロ株式会社 Catalyst for production of polyurethane resin and process for production of polyurethane resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072249A (en) * 2010-09-28 2012-04-12 San Apro Kk Catalyst for manufacturing polyurethane resin, and method for manufacturing polyurethane resin
JP2013234272A (en) * 2012-05-09 2013-11-21 Tosoh Corp Catalyst composition for producing polyurethane resin, and method for producing polyurethane resin using the same
JP2018522095A (en) * 2015-06-18 2018-08-09 ダウ グローバル テクノロジーズ エルエルシー Latent two-component polyurethane adhesive curable with infrared radiation

Also Published As

Publication number Publication date
JPWO2011125310A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
KR101850580B1 (en) Curable composition comprising a polyisocyanate composition
KR102358137B1 (en) Polyol Premix Composition for Rigid Polyurethane Foam
KR101902610B1 (en) Curable polyisocyanate composition comprising an epoxy resin
EP3271410B1 (en) Isocyanate-reactive formulation for rigid polyurethane foam
JP5690263B2 (en) Polyurethane resin production catalyst and polyurethane resin production method
JP6869191B2 (en) Polyurethane-polyisocyanurate compounds with excellent mechanical properties
BR112016012085B1 (en) PROCESS TO PREPARE POLYURETHANES
KR20150036063A (en) Intermediate polyisocyanurate comprising materials
JP2010275551A (en) Method for producing flexible polyurethane foam with little emission
JP2014125490A (en) Catalyst composition for production of polyurethane resin and method of producing hard polyurethane foam or hard polyisocyanurate foam
WO2011125310A1 (en) Catalyst for production of polyurethane resin and method for producing polyurethane resin
JPWO2019088035A1 (en) Manufacturing method of hard foamed synthetic resin
JP6464161B2 (en) Process for making urethane-isocyanurate
JP5312823B2 (en) Catalyst for producing polyurethane foam and method for producing polyurethane foam
JP5616183B2 (en) Polyurethane resin production catalyst and polyurethane resin production method
JP2015052042A (en) Method for producing rigid polyurethane foam
JP2014091827A (en) Catalyst composition for manufacturing polyurethane resin and method for manufacturing rigid polyurethane foam or rigid polyisocyanurate foam
JP4352850B2 (en) Polyurethane resin production catalyst composition and polyurethane resin production method
JP2022529313A (en) Methods for Producing Polyurethane-Polyisocyanurate Elastomers, Sealants and Adhesives with Long Pot Life
JP2011132520A (en) Method for producing rigid foam synthetic resin
JP2018083909A (en) Hard isocyanurate foam composition and method for producing hard isocyanurate foam
JP6764664B2 (en) Method for producing (polyoxyalkylene) polyol and method for producing rigid polyurethane foam
JP2013245326A (en) Catalyst composition for production of polyurethane resin and method of producing rigid polyisocyanurate foam
CN111630080B (en) Polyisocyanurate comprising foam with long cream time and fast curing behaviour
JP2024056519A (en) Polyisocyanurate foam raw material composition and polyisocyanurate foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765212

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509305

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765212

Country of ref document: EP

Kind code of ref document: A1