WO2011125293A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2011125293A1
WO2011125293A1 PCT/JP2011/001624 JP2011001624W WO2011125293A1 WO 2011125293 A1 WO2011125293 A1 WO 2011125293A1 JP 2011001624 W JP2011001624 W JP 2011001624W WO 2011125293 A1 WO2011125293 A1 WO 2011125293A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
tire
width
block piece
tread
Prior art date
Application number
PCT/JP2011/001624
Other languages
French (fr)
Japanese (ja)
Inventor
加地 与志男
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2011125293A1 publication Critical patent/WO2011125293A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C11/124Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern inclined with regard to a plane normal to the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1259Depth of the sipe
    • B60C11/1263Depth of the sipe different within the same sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C2011/129Sipe density, i.e. the distance between the sipes within the pattern

Definitions

  • the present invention relates to a pneumatic tire having a plurality of sipes on the tread surface of the tire and particularly improving the braking performance on ice.
  • sipes extending in the tread width direction have been added to the tread pattern blocks and ribs (hereinafter collectively referred to as blocks) in order to improve acceleration and braking performance when starting on ice. It has been done.
  • Patent Document 1 describes a pneumatic tire characterized by a twisted shape of small blocks at both ends of the block.
  • the small blocks at both ends of the block generate rotational forces in opposite directions when compressed by the pressure from the road surface. For this reason, even when the number of sipes is increased, it is possible to suppress the collapse of the small blocks during the braking drive. Thereby, the reduction
  • an object of the present invention is to provide a pneumatic tire that solves the above-described problems and has the contradictory characteristics of “increase in contact area” and “increase in edge pressure” to further improve the performance on ice. There is.
  • the block is divided into a block piece responsible for increasing the contact area and a block piece responsible for increasing the edge pressure, and by sharing the role, the above problem can be solved and the on-ice performance of the tire can be improved.
  • the inventor uses a bent three-dimensional sipe for at least one of the sipe of the block, thereby preventing the block piece from collapsing against any direction of input from the road surface and suppressing a reduction in the contact area.
  • the inventors have obtained a new finding that the on-ice performance of the tire can be further improved.
  • a plurality of blocks are defined on the tread surface of the tire by a plurality of circumferential grooves extending in the tread circumferential direction and a plurality of width grooves extending in the tread width direction, and a plurality of blocks extending in the tread width direction are formed on the blocks.
  • a pneumatic tire with sipe The block is divided into a plurality of block pieces by the sipe, and a first block piece whose width in the tread circumferential direction of the block piece gradually decreases toward the tread surface, and a second block that gradually increases toward the tread surface.
  • the width in the tread circumferential direction at least on the tread surface of the first block piece gradually decreases from the end of the block in the tread width direction toward the center, and the at least the tread surface of the second block piece.
  • the width in the tread circumferential direction gradually increases from the end of the block in the tread width direction toward the center,
  • At least one of the sipe is a three-dimensional sipe that extends while being bent in the tire width direction and is bent in the tire radial direction.
  • / s2 1.0 ⁇ s1 / s2 ⁇ 1.6
  • the ratio t1 / t2 is 0.8 ⁇ t1 / t2 ⁇ 1.4
  • the pneumatic tire according to any one of (1) to (5), wherein the pneumatic tire is in a range of
  • a width in the tread circumferential direction at least at the sipe bottom of the first block piece gradually increases from an end portion of the block in the tread width direction toward a center portion, and at least the sipe bottom of the second block piece.
  • the protrusion having a height of half or more of the sipe width is formed in at least one place on the wall surface of the sipe between the first block piece and the second block piece.
  • a fine structure having a height in the range of 1/50 to less than 1/10 of the sipe width is formed on at least a part of the wall surface of the sipe between the first block piece and the second block piece.
  • the projection is not formed in a central region in the width direction of the block, or a projection having a height lower than an end region is formed in the central region in the width direction of the block.
  • bottom raising portions are provided at both ends in the width direction of the sipes located at both ends in the tire circumferential direction, and sipes other than the sipes located at both ends in the tire circumferential direction include: A staggered bottom is provided on one side in the width direction, When the number of sipes in the block is an odd number, bottom-up portions are provided at both ends in the tire circumferential direction and at both ends in the width direction of the sipes located at the center in the tire circumferential direction, and are located at both ends in the tire circumferential direction and at the center in the tire circumferential direction.
  • the role can be shared by the first block piece and the second block piece, and both an increase in the contact area and an increase in the edge pressure can be achieved. Furthermore, by making at least one of the sipes that divide the block into a bent three-dimensional sipe, it is possible to suppress the collapse of the sipe for any direction from the road surface and increase the contact area. Thereby, a pneumatic tire with improved performance on ice can be provided.
  • FIG. 1 is a perspective view of a block according to a first embodiment of a pneumatic tire of the present invention.
  • (a) is a cross-sectional view of the block taken along line AA in FIG. 3, and
  • (b) is an end view of the block taken along line BB in FIG.
  • FIG. 3 is a perspective view of a block according to a second embodiment of the pneumatic tire of the present invention.
  • (a) is a cross-sectional view of the block taken along line C1-C1 in FIG. 5, and (b) is an end view of the block taken along line DD in FIG.
  • FIG. 1 is a development view of a tread pattern showing an embodiment of a pneumatic tire of the present invention.
  • a plurality of blocks 20 are formed on a tread surface 1 of a tire by a plurality of circumferential grooves 3 extending in the tread circumferential direction parallel to the tire equator CL and a plurality of widthwise grooves 4 extending in the tread width direction.
  • the block 20 extends in the tread width direction and has a sipe 21a that does not have a bent portion in the tire radial direction, and extends while bending in a zigzag manner in the tire width direction, and extends while also bending in the tire radial direction.
  • a plurality of sipes 21 including three-dimensional sipes 21b are provided. These sipes 21 penetrate the block 20 so as to connect the adjacent circumferential grooves 3 and divide the block 20 into a plurality of, in the illustrated example, seven block pieces.
  • the block rows in which the blocks 20 are arranged in the tread circumferential direction are arranged in two rows in the tread width direction across the tire equator CL, but the number of blocks 20 arranged is limited to this illustrated example. It is not something. For example, an asymmetric arrangement such that two rows on one side in the tread width direction and three rows on the other side across the tire equator CL is possible. Further, it is sufficient that at least one sipe 21a and bent three-dimensional sipe 21b in the block 20 exist, and for example, various modes shown in FIGS. 2 (a) to (g) are applicable.
  • FIG. 3 is a perspective view of the block 20 according to the first embodiment of the pneumatic tire of the present invention.
  • arrows indicate a tread circumferential direction C, a tread width direction W, and a tire radial direction R (the arrow direction is the inner side in the tire radial direction).
  • Each block 20 has at least one set in which the first block piece 22T and the second block piece 22R are arranged adjacent to each other.
  • the first block piece 22T has a width in the tread circumferential direction that gradually decreases toward the tread surface
  • the second block piece 22R has a width in the tread circumferential direction that gradually increases toward the tread surface. That is, as shown in FIG. 3, the sipe 21a is not perpendicular to the tread surface, but inclined.
  • the third block piece 22S has a width in the tread circumferential direction that does not increase or decrease toward the tread surface.
  • the third block piece 22S is partitioned by both ends in the tire circumferential direction and a bent three-dimensional sipe 21b.
  • the bent three-dimensional sipe 21b is bent in a zigzag shape.
  • the circumferential width of the first block piece 22T gradually decreases from the ends S 1 and S 2 of the block 20 in the tread width direction toward the center portion Ce.
  • the circumferential width of the second block piece 22R gradually increases from the ends S 1 and S 2 of the block 20 in the tread width direction toward the center portion Ce.
  • the circumferential width of the tread surface of the third block piece 22S at the circumferential end of the block is not gradually increased or decreased in the tread width direction.
  • a central portion Ce of the block 20 in the tread width direction comprises a tread width direction center line of the block 20, and to refer to 50% or less of the area of the width of the width W B of the block 20 around the center line To do.
  • the end portions S 1 and S 2 of the block 20 in the tread width direction indicate regions on both sides of the central portion Ce.
  • FIG. 4 (a) is a cross-sectional view of the block 20 at the center in the tread width direction of the block 20 along the line AA in FIG. 3, and FIG. 4 (b) is a cross-sectional view along the line BB of FIG.
  • FIG. 4 is an end view of the block 20 at the end of the block 20 in the tread width direction.
  • Figure 4 (a) the width W TC tread circumferential direction of the first block piece 22T at the center of the tread width direction of the block 20, shown in FIG. 4 (b), the ends of the tread width direction of the block 20 shorter than the width W TS of the tread circumferential direction of the first block piece 22T in.
  • the circumferential width of the first block piece 22T gradually decreases from the end of the block 20 toward the center in the tread width direction. For this reason, the ground contact area of the first block piece 22T is smaller in the tread width direction center portion of the block 20 than in the tread width direction end portion.
  • the widths W RC1 and W RC2 in the tread circumferential direction of the second block piece 22R in the center portion of the block 20 in the tread width direction shown in FIG. 4 (a) are shown in FIG. 4 (b) in the tread width direction.
  • the widths W RS1 and W RS2 in the tread circumferential direction of the second block piece 22R at the end of the block 20 are longer than each other.
  • the circumferential width of the second block piece 22R gradually increases from the end of the block 20 toward the center in the tread width direction. For this reason, the ground contact area of the second block piece 22R is larger at the center portion of the block 20 in the tread width direction than at the end portion in the tread width direction.
  • FIG. 5 shows a perspective view of a block 20 according to the second embodiment of the pneumatic tire of the present invention.
  • the difference from the configuration in FIG. 3 is that the inclination direction of the sipe 21a is changed near the center in the tire radial direction of the block 20, as shown in FIG. That is, the width of the tread circumferential direction of the first block piece 22T gradually increases from the radially inner side to the outer side of the tire and then gradually decreases at the center of the radial length of the sipe 21a.
  • the tread circumferential width of the second block piece 22R gradually decreases from the radially inner side to the outer side of the tire, and then gradually increases at the center of the radial length of the sipe 21a.
  • FIG. 6 (a) is a cross-sectional view of the block 20 taken along line C1-C1 of FIG. 5, that is, the central portion of the block 20 in the tread width direction.
  • FIG. 6B is an end view of the block 20 at the end of the block 20 in the tread width direction, that is, the line DD in FIG.
  • the width in the tread circumferential direction of the first block piece 22T gradually decreases after gradually increasing from the radially inner side to the outer side of the tire.
  • the second block piece 22R gradually increases from the radially inner side to the outer side of the tire.
  • FIG. 6 (a) is a cross-sectional view of the block 20 taken along line C1-C1 of FIG. 5, that is, the central portion of the block 20 in the tread width direction.
  • FIG. 6B is an end view of the block 20 at the end of the block 20 in the tread width direction, that is, the line DD in FIG.
  • the width in the tread circumferential direction of the first block piece 22T gradually decreases after
  • the first block piece 22T has a maximum width in the tread circumferential direction at the center of the depth of the sipe 21a.
  • the groove wall of the sipe 21a seen in the cross-sectional view draws a gentle arc, and the center of curvature exists in the inner direction of the first block piece 22T with respect to the groove wall.
  • the second block piece 22R has a minimum width in the tread circumferential direction at the center of the depth of the sipe 21a.
  • the groove wall of the sipe 21a seen in the cross-sectional view draws a gentle arc, and the center of curvature exists in the outer direction of the second block piece 22R with respect to the groove wall.
  • widths W RC1 and W RC2 in the tread circumferential direction of the second block piece 22R at the center portion of the block 20 in the tread width direction shown in FIG. 6 (a) are shown in FIG. 6 (b) in the tread width direction.
  • the widths W RS1 and W RS2 in the tread circumferential direction of the second block piece 22R at the end of the block 20 are longer than each other. That is, the circumferential width of the second block piece 22R gradually increases from the end of the block 20 toward the center in the tread width direction. For this reason, the ground contact area of the second block piece 22R is larger at the center portion of the block 20 in the tread width direction than at the end portion in the tread width direction.
  • the width of the block piece in the tread circumferential direction gradually decreases toward the tread surface, and toward the tread surface. It is important to have at least one set in which the gradually increasing second block pieces are arranged next to each other. With reference to FIG. 7, the operational effects of the first block piece 22T and the second block piece 22R will be described.
  • the first block piece 22T and the second block piece 22R are opposite to the traveling direction.
  • the force to fall in the direction works.
  • the edge portion of the first block piece becomes an obtuse angle. Therefore, the bulge direction of the rubber at the edge portion when the load is applied is not parallel to the road surface, but is a direction toward the road surface. As a result, the edge end is easily restrained with respect to the road surface.
  • the first block piece 22T easily collapses, and the local deformation of the edge portion indicated by a dotted circle in the figure increases, so that the edge pressure at the edge portion is improved.
  • the second block piece 22R has a shape that expands toward the surface of the block piece, so that it does not fall down, the edge part does not leave the ground contact surface, and it expands against the icy road surface under load. Deform. For this reason, the second block piece 22R has a larger ground contact area than when there is no load, and the floating of the block piece 22R is suppressed.
  • the width of the first block piece 22T in the tread circumferential direction at least on the tread surface is gradually decreased from the end of the block 20 in the tread width direction toward the center, and the second block piece. It is important to gradually increase the width of 22R in the tread circumferential direction from the end of the block 20 toward the center in the tread width direction.
  • the obtuse angle shape of the edge portion of the first block piece is more emphasized in the center portion in the tire width direction where the edge pressure tends to be small. Thereby, the effect that the edge ends are easily restrained with respect to the road surface is increased, and as a result, a high edge pressure can be obtained.
  • the second block piece has a large circumferential width on the side in contact with the road surface of the block piece and a small circumferential width on the sipe bottom side at the center in the tire width direction. Therefore, the shape becomes more stable with respect to the input from the road surface, and the ground contact area increases. As a result, each of the edge effect and the effect of increasing the contact area is emphasized, and the friction performance on ice can be greatly improved.
  • At least one of the sipes that divide the block into block pieces is a three-dimensional sipe that extends while bending in the tire width direction and also extends in the tire radial direction. .
  • the high contact force between the wall surfaces of the bent three-dimensional sipe can suppress the collapse of the block pieces and suppress the reduction of the contact area.
  • the bent three-dimensional sipe 21b exemplifies a zigzag bent shape, but it only needs to have a bent portion, for example, along the tire radial direction while repeating unevenness. It may be a sipe that extends.
  • the first block piece 22T has a narrow shape with a narrow groove bottom portion of the sipe 21a. This is because the rigidity of the first block piece 22T can be reduced, the first block piece 22T can be more easily collapsed, and the performance on ice can be further improved.
  • the tire of the second block piece 22R at the tread tread surface at the center in the tire width direction of the block is 1.0 ⁇ s1 / s2 ⁇ 1.6
  • the ratio t1 / the tire circumferential direction width t1 of the second block piece 22R and the tire circumferential direction width t2 of the third block piece 22S t2 is 0.8 ⁇ t1 / t2 ⁇ 1.4 It is preferable that it exists in the range.
  • the “circumferential width” of the block piece defined by the bent three-dimensional sipe is defined by the distance from the center of the amplitude of the bent three-dimensional sipe.
  • the tire circumferential direction width p1 of the first block piece and the tire circumferential direction width p2 of the second block piece in the tire width direction central portion of the tread surface is in the range of 0.2 to 0.3
  • the tire circumferential direction width q1 of the first block piece at the tire width direction end of the tread surface and the tire circumference of the second block piece is preferably in the range of 0.4 to 0.6.
  • the ratio p1 / p2 is less than 0.2, the first block piece collapses extremely at the time of grounding, and sufficient edge effect cannot be obtained, while if the ratio p1 / p2 is greater than 0.3, the first block This is because the collapse of the piece is small, and in this case also, a sufficient edge effect cannot be obtained.
  • the ratio q1 / q2 is less than 0.4, the first block piece collapses extremely at the time of grounding, and a sufficient edge effect cannot be obtained, while when the ratio q1 / q2 is greater than 0.6, the first This is because the collapse of the block piece is small and a sufficient edge effect cannot be obtained.
  • the width of the first block piece in the tread circumferential direction at least at the sipe bottom gradually increases from the end of the block in the tread width direction toward the center, and the second block piece at least in the tread circumferential direction at the sipe bottom. Is preferably gradually reduced from the end of the block in the tread width direction toward the center.
  • the first block piece has a larger circumferential width on the sipe bottom side at the center in the width direction of the block, so that the first block piece is more likely to fall down and the edge pressure is further increased.
  • the second block piece since the second block piece has a smaller circumferential width on the sipe bottom side, the second block piece becomes more stable against the falling force and can further suppress the reduction of the contact area. It is.
  • the opening width of the sipe 21a is too wide, the ratio of the block pieces in the block 20 is reduced, and the block rigidity is lowered, which is not preferable. Therefore, it is preferable that the groove walls facing each other across the sipe 21a have the same shape and the opening width of the sipe 21a is constant.
  • the circumferential width of the first block piece 22T is smaller than the circumferential width of the second block piece 22R. It is preferable to reduce the rigidity of the first block piece 22T so that the collapse of the first block piece 22T is more likely to occur.
  • first block pieces 22T and the second block pieces 22R are alternately arranged over the entire block 20 in the tread circumferential direction. For this reason, in the above-described example, such an arrangement is obtained except for the block pieces 22S at both ends.
  • one block 20 there may be at least one set in which the first block piece 22T and the second block piece 22R are arranged adjacent to each other.
  • the first block pieces 22T and the second block pieces 22R may be arranged adjacent to each other.
  • FIG. 10A and 10 (b) are perspective views of a block 20 according to a third embodiment of the pneumatic tire of the present invention.
  • the sipe is provided with a bottom raising that changes the depth of the sipe and raises a part or all of the sipe bottom to the outside in the tire radial direction compared to other sipe.
  • FIG. 10A at the bottom of the sipe 21a, at least one, in the illustrated example, three bottom raised portions 24 that connect the first block piece 22T and the second block piece 22R are provided.
  • the bottom raised portion 24 By providing the bottom raised portion 24, the fall of the second block piece 22R is further suppressed, so that a ground contact area can be ensured reliably.
  • FIG. 10B shows an example of the arrangement of the sipe with the bottom raised in the block 20.
  • the bent three-dimensional sipe 21b at both ends in the circumferential direction is raised at both ends in the width direction, and the other sipe is provided with a raised bottom in a staggered pattern. That is, the sipe 21c in FIG. 9 (b) is raised in the positive direction in the tire width direction (the direction of the arrow in the tire width direction W in FIG. 9 (b)), and the sipe 21d is negative in the tire width direction. The direction of is raised.
  • sipes 21c and 21d are alternately arranged.
  • bottom-ups at both ends in the width direction of the sipe at both ends in the circumferential direction of the block 20 it is possible to suppress collapse of the block pieces at the stepping-in end and kicking-out end of the block, and it is possible to suppress a decrease in the contact area.
  • the edge effect due to the fall of the first block piece 22T is not hindered, and the fall of the second block piece can be suppressed and the ground contact area can be increased. This is because the rigidity of the block 20 can be appropriately increased.
  • At least a part of the wall surface of the sipe between the first block piece and the second block piece has a half or more of the sipe width (opening width). It is preferable to provide a protrusion 25 having a height. This is because the protrusions can further suppress the collapse of the block pieces and suppress the reduction of the ground contact area. Furthermore, the protrusion provided on the wall surface of the sipe between the first block piece and the second block piece is not provided in the central region in the width direction of the block as shown in FIG. A protrusion having a height lower than that of the end region is formed in the central region in the width direction.
  • the length in the circumferential direction of the first block piece is short, and the shearing force and slip at the edge end are small, and wear is smaller than in other positions. For this reason, if a protrusion is provided in the center portion in the width direction, sliding is suppressed due to the support between sipes, the amount of further wear is reduced, and uneven wear in the block width direction may occur. Furthermore, it is preferable to form a fine structure having a height in the range of 1/50 to less than 1/10 of the sipe width (opening width).
  • FIGS. 12 (a) to (g) in correspondence with FIGS. 2 (a) to 2 (g), when the number of sipes in the block is an even number, they are located at both ends in the tire circumferential direction. It is preferable to provide bottom raised portions at both ends in the width direction of the sipe, and to provide sipe other than the sipes located at both ends in the tire circumferential direction in a staggered manner on one side in the width direction.
  • the position where the bottom raised portion is provided is indicated by a portion surrounded by a dotted line.
  • bottom-up portions are provided at both ends in the tire circumferential direction and at both ends in the width direction of the sipes located at the tire circumferential center, and are positioned at both ends in the tire circumferential direction and at the center in the tire circumferential direction. It is preferable to provide bottom-up portions in a staggered manner on one side in the width direction for sipe other than the sipe.
  • the block having the sipe described above is preferably provided only on the outermost side in the tire width direction. This is because the shoulder side bears the breaking force during braking.
  • the pneumatic tire (invention example tire) of the present invention, the conventional pneumatic tire (conventional example tire), and the pneumatic tire of the comparative example (comparative example tire) were prototyped based on the specifications described later, and the braking performance on ice was improved.
  • a test to be evaluated was performed and will be described below.
  • Each test tire has the tread pattern shown in FIG. 1, and has the same internal structure as a general pneumatic tire.
  • the schematic top view of each test tire block is shown in FIG. 2, the sipe shape is schematically shown in FIGS. 14 and 15, and FIG. 16 shows a conventional tire tread (upper view) and block schematic view (lower view). ).
  • the upper side in the drawing shows the sipe bottom side
  • the lower side in the drawing shows the tread tread side.
  • the dotted line shows the case where the sipe is flat.
  • Table 1 below summarizes the composition of the block of each sample tire, the shape of the sipe, and the arrangement of the bent three-dimensional sipe. The other tires have the same specifications.
  • Each test tire has a tire size of 195 / 65R15. These tires were assembled into standard rims to form tire wheels, and the tire internal pressure was adjusted to 200 kPa. The tire was mounted on a passenger car and a braking test was conducted on an icy road. In the braking test, the braking distance was measured from the initial speed of 40km / h until full braking was applied, and the average deceleration was calculated from the initial speed and braking distance. The braking test results are expressed as an average deceleration index and are shown in Table 2. The index is expressed as an index when the average deceleration of the conventional tire is 100, and the larger the value, the better the result.
  • the braking test described above was carried out using the tire circumferential direction width s1 of the second block piece and the tire circumferential direction width s2 of the third block piece at the center in the tire width direction of the block.
  • the ratio t1 / t2 between the tire circumferential direction width t1 of the second block piece and the tire circumferential direction width t2 of the third block piece at the tire width direction end of the block. went.
  • the results are shown in Table 3 below.
  • the index is expressed as an index when the average deceleration of the conventional tire is 100, and the larger the value, the better the result.
  • the braking test described above was carried out using the ratio p1 / p2 between the tire block circumferential width p1 of the first block piece and the tire circumferential width p2 of the second block piece and the first Tires with various ratios q1 / q2 between the width q1 of the block piece in the tire circumferential direction and the width q2 of the second block piece in the tire circumferential direction were prototyped, and the performance on ice of the tire was evaluated.
  • the results are shown in Table 4 below.
  • the index is expressed as an index when the average deceleration of the conventional tire is 100, and the larger the value, the better the result.
  • Comparison between Invention Examples 1 to 10 and Invention Examples 11 to 20 reveals that Invention Examples 1 to 10 are superior in braking test results to those corresponding to Invention Examples 11 to 20. From the comparison of Invention Examples 1 to 4 and Comparison of Invention Examples 11 to 14, it can be seen that high performance on ice can be obtained by optimizing the arrangement of the bent three-dimensional sipe as described above. Invention Examples 6 and 16 in which the sipe shape at the sipe bottom position is optimized by comparison between Invention Examples 5 and 6 and Invention Examples 15 and 16 are compared with Invention Examples 5 and 15, respectively. It turns out that the cornering test result on ice is excellent.
  • Inventive Examples 7 and 8 in which the shape and structure of the sipe are optimized by comparison between Inventive Example 6 and Inventive Examples 7, 8, 9, and 10, and Inventive Example 16 and Inventive Examples 17, 18, 19, and 20. , 9, 10, 17, 18, 19, and 20 show that the braking test results are improved. Further, Comparison between Invention Example 8 and Invention Example 8-2, Comparison between Invention Example 10 and Invention Example 10-2, Comparison between Invention Example 18 and Invention Example 18-2 Invention Example 20 and Invention Example 20-2 From these comparisons, it can be seen that Invention Examples 8, 10, 18, and 20 having no protrusion at the central portion in the width direction of the block have the same braking test results as those having the protrusion.
  • Table 3 also shows that the braking test results are improved over the conventional tire when s1 / s2 is 1.0 or more and 1.6 or less and t1 / t2 is 0.8 or more and 1.4 or less.
  • Table 4 shows that the performance on ice is improved over the conventional example when p1 / p2 is 0.2 or more and 0.3 or less and q1 / q2 is 0.4 or more and 0.6 or less.
  • Inventive Example 10 and Inventive Example 10-2 were subjected to an actual vehicle wear test.
  • the test compared the mode of wear at the center of the block width after running for 1000 km.
  • a step of 0.6 mm occurred as shown in FIG. 17 (a).
  • the level difference was 0.2 mm, and uneven wear in the width direction of the block was suppressed.

Abstract

Disclosed is a pneumatic tire in which a block is divided into a block piece that increases the ground contact area and a block piece that increases the edge pressure. In addition, at least one sipe in the block is a curved three-dimensional sipe.

Description

空気入りタイヤPneumatic tire
 本発明は、タイヤのトレッド踏面に複数のサイプを有し、特に氷上ブレーキ性能を向上した空気入りタイヤに関するものである。 The present invention relates to a pneumatic tire having a plurality of sipes on the tread surface of the tire and particularly improving the braking performance on ice.
 従来、冬用の空気入りタイヤでは、氷上における発進時の加速性、制動性を改良するため、タイヤのトレッドパターンのブロックやリブ(以下、ブロックと総称する)にトレッド幅方向に延びるサイプを付加することがなされてきた。 Conventionally, in winter pneumatic tires, sipes extending in the tread width direction have been added to the tread pattern blocks and ribs (hereinafter collectively referred to as blocks) in order to improve acceleration and braking performance when starting on ice. It has been done.
 特に、氷上ブレーキ性能を向上させる従来技術として、特許文献1には、ブロックの両端にある小ブロックを捩じれた形状としたことを特徴とする空気入りタイヤが記載されている。
 この空気入りタイヤでは、ブロックの両端にある小ブロックは、路面からの圧力により圧縮された際に、互いに反対方向の回転力を生じる。このため、サイプ本数を増加した際にも制動駆動時における小ブロックの倒れこみを抑制することができる。これにより、接地面積の減少を抑制することができる。
In particular, as a prior art for improving the braking performance on ice, Patent Document 1 describes a pneumatic tire characterized by a twisted shape of small blocks at both ends of the block.
In this pneumatic tire, the small blocks at both ends of the block generate rotational forces in opposite directions when compressed by the pressure from the road surface. For this reason, even when the number of sipes is increased, it is possible to suppress the collapse of the small blocks during the braking drive. Thereby, the reduction | decrease in a contact area can be suppressed.
特開平11-208222号公報Japanese Patent Laid-Open No. 11-208222
 タイヤの氷上摩擦特性の向上を考えた場合、「ブロックと氷の接地面積」および、「ブロックのエッジ部による氷の掘り起こす力」をともに増加させることが必要となる。
 しかし、上述した空気入りタイヤでは、ブロックの倒れこみの抑制により接地面積減少を抑制することができる一方で、サイプにより分断した小ブロックごとのエッジ圧は減少してしまうこととなる。
 このため、サイプ付加による氷上性能向上の効果が十分に得られず、従って氷上性能について改善する余地があった。
When considering improvement of the friction characteristics on the ice of the tire, it is necessary to increase both the “contact area between the block and ice” and the “force for digging ice by the edge of the block”.
However, in the pneumatic tire described above, it is possible to suppress the contact area decrease by suppressing the collapse of the block, but the edge pressure for each small block divided by the sipe is decreased.
For this reason, the effect of improving the performance on ice due to the addition of sipe cannot be sufficiently obtained, so there is room for improvement on the performance on ice.
 そこで、本発明の目的は、上述した問題点を解消して、「接地面積の増加」と「エッジ圧の増加」という背反する特性を両立させ、氷上性能をさらに向上した空気入りタイヤを提供することにある。 Accordingly, an object of the present invention is to provide a pneumatic tire that solves the above-described problems and has the contradictory characteristics of “increase in contact area” and “increase in edge pressure” to further improve the performance on ice. There is.
 発明者は、「接地面積の増加」と「エッジ圧の増加」とを両立することのできるタイヤについて鋭意研究を重ねた。
 その結果、ブロックを接地面積の増加を担うブロック片と、エッジ圧の増加を担うブロック片とに分け、役割を分担させることで、上記の問題を解決し、タイヤの氷上性能を向上させることができることの新規知見を得た。
 さらに、発明者は、ブロックのサイプの少なくとも1つを屈曲型3次元サイプとすることで、路面からのあらゆる方向の入力に対してもブロック片の倒れこみを抑制し、接地面積の減少を抑制して、その結果タイヤの氷上性能をさらに向上させることができることの新規知見を得た。
The inventor conducted extensive research on a tire that can achieve both “increase in contact area” and “increase in edge pressure”.
As a result, the block is divided into a block piece responsible for increasing the contact area and a block piece responsible for increasing the edge pressure, and by sharing the role, the above problem can be solved and the on-ice performance of the tire can be improved. I got new knowledge of what I can do.
Furthermore, the inventor uses a bent three-dimensional sipe for at least one of the sipe of the block, thereby preventing the block piece from collapsing against any direction of input from the road surface and suppressing a reduction in the contact area. As a result, the inventors have obtained a new finding that the on-ice performance of the tire can be further improved.
 本発明は、上記の知見に基づくものであり、その要旨は、以下のとおりである。
 (1)タイヤのトレッド踏面に、トレッド周方向に延びる複数の周方向溝と、トレッド幅方向に延びる複数の幅方向溝とにより複数のブロックを区画し、該ブロックにトレッド幅方向に延びる複数のサイプを設けた空気入りタイヤであって、
 前記ブロックは、前記サイプにより複数のブロック片に分断され、かつ該ブロック片のトレッド周方向の幅が、トレッド表面に向かって漸減する第1ブロック片と、トレッド表面に向かって漸増する第2ブロック片とが隣り合わせに配置されてなる組を少なくとも1組有し、
 前記第1ブロック片の少なくともトレッド表面での前記トレッド周方向の幅が、トレッド幅方向における前記ブロックの端部から中央部に向かって漸減し、前記第2ブロック片の少なくとも前記トレッド表面での前記トレッド周方向の幅が、トレッド幅方向における前記ブロックの端部から中央部に向かって漸増し、
 前記サイプの少なくとも1つは、タイヤ幅方向に屈曲しながら延び、且つタイヤ径方向に屈曲しながら延びる、3次元サイプであることを特徴とする、空気入りタイヤ。
The present invention is based on the above findings, and the gist thereof is as follows.
(1) A plurality of blocks are defined on the tread surface of the tire by a plurality of circumferential grooves extending in the tread circumferential direction and a plurality of width grooves extending in the tread width direction, and a plurality of blocks extending in the tread width direction are formed on the blocks. A pneumatic tire with sipe,
The block is divided into a plurality of block pieces by the sipe, and a first block piece whose width in the tread circumferential direction of the block piece gradually decreases toward the tread surface, and a second block that gradually increases toward the tread surface. Having at least one set in which the pieces are arranged next to each other,
The width in the tread circumferential direction at least on the tread surface of the first block piece gradually decreases from the end of the block in the tread width direction toward the center, and the at least the tread surface of the second block piece. The width in the tread circumferential direction gradually increases from the end of the block in the tread width direction toward the center,
At least one of the sipe is a three-dimensional sipe that extends while being bent in the tire width direction and is bent in the tire radial direction.
 (2)前記第1ブロック片の前記トレッド周方向の幅が、前記タイヤの径方向内側から外側に向かって漸増した後漸減し、
 前記第2ブロック片の前記トレッド周方向の幅が、前記タイヤの径方向内側から外側に向かって漸減した後漸増することを特徴とする、前記(1)に記載の空気入りタイヤ。
(2) The width in the tread circumferential direction of the first block piece gradually decreases from the radially inner side to the outer side of the tire, and then gradually decreases.
The pneumatic tire according to (1), wherein the width of the second block piece in the circumferential direction of the tread gradually increases after gradually decreasing from the radially inner side to the outer side of the tire.
 (3)前記ブロックのタイヤ周方向両端にあるサイプの少なくともいずれか一方は、前記屈曲型3次元サイプである、前記(1)又は(2)に記載の空気入りタイヤ。 (3) The pneumatic tire according to (1) or (2), wherein at least one of the sipes at both ends in the tire circumferential direction of the block is the bent three-dimensional sipe.
 (4)前記ブロックのタイヤ周方向両端にあるサイプは、共に前記屈曲型3次元サイプである、前記(1)~(3)のいずれか1つに記載の空気入りタイヤ。 (4) The pneumatic tire according to any one of (1) to (3), wherein sipes at both ends of the block in the tire circumferential direction are the bent three-dimensional sipes.
 (5)前記屈曲型3次元サイプをタイヤ周方向両端及びタイヤ周方向中央部に設けたことを特徴とする、前記(1)~(4)のいずれか1つに記載の空気入りタイヤ。 (5) The pneumatic tire according to any one of (1) to (4), wherein the bent three-dimensional sipe is provided at both ends in the tire circumferential direction and at a center portion in the tire circumferential direction.
 (6)前記タイヤのトレッド表面の、前記ブロックのタイヤ幅方向中央部における、前記第2ブロック片のタイヤ周方向の幅s1と、前記第3ブロック片のタイヤ周方向の幅s2との比s1/s2が、
1.0≦s1/s2≦1.6
の範囲にあり、且つ
 前記タイヤのトレッド表面の、前記ブロックのタイヤ幅方向端部における、前記第2ブロック片のタイヤ周方向の幅t1と、前記第3ブロック片のタイヤ周方向の幅t2との比t1/t2が、
0.8≦t1/t2≦1.4
の範囲にあることを特徴とする、前記(1)~(5)のいずれか1つに記載の空気入りタイヤ。
(6) A ratio s1 between a tire circumferential direction width s1 of the second block piece and a tire circumferential direction width s2 of the third block piece at a tire width direction central portion of the tire tread surface. / s2
1.0 ≦ s1 / s2 ≦ 1.6
And in the tire width direction end of the block on the tread surface of the tire, a tire circumferential direction width t1 of the second block piece, and a tire circumferential direction width t2 of the third block piece, The ratio t1 / t2 is
0.8 ≦ t1 / t2 ≦ 1.4
The pneumatic tire according to any one of (1) to (5), wherein the pneumatic tire is in a range of
 (7)前記トレッド表面の、前記ブロックのタイヤ幅方向中央部における、前記第1ブロック片のタイヤ周方向の幅p1と、前記第2ブロック片のタイヤ周方向の幅p2との比p1/p2が、
0.2≦p1/p2≦0.3
の範囲にあり、且つ
 前記トレッド表面の、前記ブロックのタイヤ幅方向端部における、前記第1ブロック片のタイヤ周方向の幅q1と、前記第2ブロック片のタイヤ周方向の幅q2との比q1/q2が、
0.4≦q1/q2≦0.6
の範囲にあることを特徴とする、前記(1)~(6)のいずれか1つに記載の空気入りタイヤ。
(7) The ratio p1 / p2 of the width p1 in the tire circumferential direction of the first block piece and the width p2 in the tire circumferential direction of the second block piece at the tire width direction central portion of the block on the tread surface But,
0.2 ≦ p1 / p2 ≦ 0.3
The ratio of the width q1 in the tire circumferential direction of the first block piece to the width q2 in the tire circumferential direction of the second block piece at the tire width direction end of the block on the tread surface. q1 / q2 is
0.4 ≦ q1 / q2 ≦ 0.6
The pneumatic tire according to any one of (1) to (6), wherein the pneumatic tire is in a range of
 (8)前記第1ブロック片の少なくともサイプ底でのトレッド周方向の幅が、トレッド幅方向における前記ブロックの端部から中央部に向かって漸増し、前記第2のブロック片の少なくとも前記サイプ底でのトレッド周方向の幅が、トレッド幅方向における前記ブロックの端部から中央部に向かって漸減することを特徴とする、前記(1)~(7)のいずれか1つに記載の空気入りタイヤ。 (8) A width in the tread circumferential direction at least at the sipe bottom of the first block piece gradually increases from an end portion of the block in the tread width direction toward a center portion, and at least the sipe bottom of the second block piece. The pneumatic pressure according to any one of (1) to (7), wherein a width in a circumferential direction of the tread gradually decreases from an end portion of the block in the tread width direction toward a central portion. tire.
 (9)前記第1ブロック片と前記第2ブロック片に挟まれる前記サイプの開口幅が一定であることを特徴とする、前記(1)~(8)のいずれか1つに記載の空気入りタイヤ。 (9) The air according to any one of (1) to (8), wherein an opening width of the sipe sandwiched between the first block piece and the second block piece is constant. tire.
 (10)前記第1ブロック片と前記第2ブロック片との間に、前記第1ブロック片と前記第2ブロック片とを接続する少なくとも1つの底上げ部を設けたことを特徴とする、前記(1)~(9)のいずれか1つに記載の空気入りタイヤ。 (10) The at least one bottom raised portion for connecting the first block piece and the second block piece is provided between the first block piece and the second block piece, The pneumatic tire according to any one of 1) to (9).
 (11)前記第1ブロック片と前記第2ブロック片との間の前記サイプの壁面の少なくとも一箇所に、サイプ幅の半分以上の高さの突起が形成されることを特徴とする、前記(1)~(10)のいずれか1つに記載の空気入りタイヤ。 (11) The protrusion having a height of half or more of the sipe width is formed in at least one place on the wall surface of the sipe between the first block piece and the second block piece. The pneumatic tire according to any one of 1) to (10).
 (12)前記第1ブロック片と前記第2ブロック片との間の前記サイプの壁面の少なくとも一部に、サイプ幅の1/50以上1/10未満の範囲の高さの微細構造部を形成したことを特徴とする、前記(1)~(11)のいずれか1つに記載の空気入りタイヤ。 (12) A fine structure having a height in the range of 1/50 to less than 1/10 of the sipe width is formed on at least a part of the wall surface of the sipe between the first block piece and the second block piece. The pneumatic tire according to any one of (1) to (11) above, wherein
 (13)前記突起は、前記ブロックの幅方向中央領域には形成せず、あるいは、前記ブロックの幅方向中央領域には端部領域より高さが低い突起を形成することを特徴とする、前記(11)に記載の空気入りタイヤ。 (13) The projection is not formed in a central region in the width direction of the block, or a projection having a height lower than an end region is formed in the central region in the width direction of the block. The pneumatic tire according to (11).
 (14)前記ブロックのサイプの個数が偶数個である場合は、タイヤ周方向両端に位置するサイプの幅方向両端に底上げ部を設け、前記タイヤ周方向両端に位置するサイプ以外のサイプには、幅方向片側に千鳥状に底上げ部を設け、
 前記ブロックのサイプの個数が奇数個である場合は、タイヤ周方向両端及びタイヤ周方向中央に位置するサイプの幅方向両端に底上げ部を設け、前記タイヤ周方向両端及びタイヤ周方向中央に位置するサイプ以外のサイプには幅方向片側に千鳥状に底上げ部を設けることを特徴とする、前記(10)に記載の空気入りタイヤ。
(14) When the number of sipes in the block is an even number, bottom raising portions are provided at both ends in the width direction of the sipes located at both ends in the tire circumferential direction, and sipes other than the sipes located at both ends in the tire circumferential direction include: A staggered bottom is provided on one side in the width direction,
When the number of sipes in the block is an odd number, bottom-up portions are provided at both ends in the tire circumferential direction and at both ends in the width direction of the sipes located at the center in the tire circumferential direction, and are located at both ends in the tire circumferential direction and at the center in the tire circumferential direction. The pneumatic tire according to (10) above, wherein the sipe other than the sipe is provided with a staggered bottom-up portion on one side in the width direction.
 (15)前記ブロックは、タイヤ幅方向最外側に位置する、前記(1)~(14)のいずれか1つに記載の空気入りタイヤ。 (15) The pneumatic tire according to any one of (1) to (14), wherein the block is located on an outermost side in a tire width direction.
 本発明によれば、第1ブロック片および第2ブロック片にて役割を分担させて、接地面積の増加とエッジ圧の増加とを両立させることができる。さらに、ブロックを分断するサイプの少なくとも1つを屈曲型3次元サイプとすることによって、路面からのあらゆる方向の入力に対しても倒れこみを抑制し、接地面積を増加させることができる。これにより、氷上性能を向上した空気入りタイヤを提供することができる。 According to the present invention, the role can be shared by the first block piece and the second block piece, and both an increase in the contact area and an increase in the edge pressure can be achieved. Furthermore, by making at least one of the sipes that divide the block into a bent three-dimensional sipe, it is possible to suppress the collapse of the sipe for any direction from the road surface and increase the contact area. Thereby, a pneumatic tire with improved performance on ice can be provided.
本発明の空気入りタイヤの実施形態を示すトレッドパターンの展開図である。It is a development view of a tread pattern showing an embodiment of a pneumatic tire of the present invention. 本発明の空気入りタイヤのブロックの様々な態様を例示する図である。It is a figure which illustrates various aspects of the block of the pneumatic tire of the present invention. 本発明の空気入りタイヤの第1実施形態にかかるブロックの斜視図である。1 is a perspective view of a block according to a first embodiment of a pneumatic tire of the present invention. (a)は、図3のA-A線におけるブロックの断面図であり、(b)は、図3のB-B線におけるブロックの端面図である。(a) is a cross-sectional view of the block taken along line AA in FIG. 3, and (b) is an end view of the block taken along line BB in FIG. 本発明の空気入りタイヤの第2実施形態に係るブロックの斜視図である。FIG. 3 is a perspective view of a block according to a second embodiment of the pneumatic tire of the present invention. (a)は、図5のC1-C1線におけるブロックの断面図であり、(b)は、図5のD-D線におけるブロックの端面図である。(a) is a cross-sectional view of the block taken along line C1-C1 in FIG. 5, and (b) is an end view of the block taken along line DD in FIG. 本発明の空気入りタイヤの作用効果を説明するための図である。It is a figure for demonstrating the effect of the pneumatic tire of this invention. 第1ブロック片、第2ブロック片の寸法の定義を説明するための図である。It is a figure for demonstrating the definition of the dimension of a 1st block piece and a 2nd block piece. 本発明の空気入りタイヤのブロック表面の一例を示す。An example of the block surface of the pneumatic tire of this invention is shown. (a)サイプに底上げ部を設けたブロックを示す図である。(b)底上げしたサイプのブロックにおける配置を説明するための図である。(a) It is a figure which shows the block which provided the bottom raising part in the sipe. (b) It is a figure for demonstrating arrangement | positioning in the block of the sipe raised up. サイプの壁に突起を設ける様子を説明するための図である。It is a figure for demonstrating a mode that protrusion is provided in the wall of a sipe. 底上げ部を設ける位置について説明するための図である。It is a figure for demonstrating the position which provides a bottom raising part. ブロックの配置について説明するための図である。It is a figure for demonstrating arrangement | positioning of a block. 各試供タイヤのサイプ形状の模式図である。It is a schematic diagram of the sipe shape of each sample tire. 各試供タイヤのサイプ形状の模式図である。It is a schematic diagram of the sipe shape of each sample tire. 従来例のタイヤの説明図である。It is explanatory drawing of the tire of a prior art example. 磨耗試験の結果を説明するための図である。It is a figure for demonstrating the result of an abrasion test.
 以下に、本発明の空気入りタイヤの実施形態を、図面を参照して詳しく説明する。
 なお、タイヤの内部補強構造等は、一般的なラジアルタイヤのそれと同様であるので図示を省略する。
Hereinafter, embodiments of the pneumatic tire of the present invention will be described in detail with reference to the drawings.
In addition, since the internal reinforcement structure of a tire is the same as that of a general radial tire, illustration is abbreviate | omitted.
 図1は、本発明の空気入りタイヤの実施形態を示すトレッドパターンの展開図である。
 図示のトレッドパターンは、タイヤのトレッド踏面1に、タイヤ赤道CLと平行なトレッド周方向に延びる複数の周方向溝3と、トレッド幅方向に延びる複数の幅方向溝4とにより複数のブロック20を区画してなる。図示例で、このブロック20には、トレッド幅方向に延び、タイヤ径方向で屈曲部を有しないサイプ21aと、タイヤ幅方向にジグザグ状に屈曲しながら延び、タイヤ径方向にも屈曲しながら延びる3次元サイプ21bとで構成される複数のサイプ21を設けている。
 これらのサイプ21は、隣り合う周方向溝3同士を接続するように、ブロック20を貫通し、このブロック20を、複数、図示例で7個のブロック片に分断する。
 なお、この図示例では、ブロック20がトレッド周方向に並ぶブロック列は、タイヤ赤道CLを挟んでトレッド幅方向に2列ずつ配置しているが、ブロック20の配置数はこの図示例に限定されるものではない。例えば、タイヤ赤道CLを挟んでトレッド幅方向一方側に2列、他方側に3列のように非対称な配置も可能である。
 また、ブロック20におけるサイプ21a及び屈曲型3次元サイプ21bは、少なくとも1つずつ存在すればよく、例えば、図2(a)~(g)に示す様々な態様が適合する。
FIG. 1 is a development view of a tread pattern showing an embodiment of a pneumatic tire of the present invention.
In the illustrated tread pattern, a plurality of blocks 20 are formed on a tread surface 1 of a tire by a plurality of circumferential grooves 3 extending in the tread circumferential direction parallel to the tire equator CL and a plurality of widthwise grooves 4 extending in the tread width direction. Compartment. In the illustrated example, the block 20 extends in the tread width direction and has a sipe 21a that does not have a bent portion in the tire radial direction, and extends while bending in a zigzag manner in the tire width direction, and extends while also bending in the tire radial direction. A plurality of sipes 21 including three-dimensional sipes 21b are provided.
These sipes 21 penetrate the block 20 so as to connect the adjacent circumferential grooves 3 and divide the block 20 into a plurality of, in the illustrated example, seven block pieces.
In this illustrated example, the block rows in which the blocks 20 are arranged in the tread circumferential direction are arranged in two rows in the tread width direction across the tire equator CL, but the number of blocks 20 arranged is limited to this illustrated example. It is not something. For example, an asymmetric arrangement such that two rows on one side in the tread width direction and three rows on the other side across the tire equator CL is possible.
Further, it is sufficient that at least one sipe 21a and bent three-dimensional sipe 21b in the block 20 exist, and for example, various modes shown in FIGS. 2 (a) to (g) are applicable.
 図3に、本発明の空気入りタイヤの第1の実施形態に係るブロック20の斜視図を示す。
 図中矢印でトレッド周方向C、トレッド幅方向W、タイヤ径方向R(矢印方向がタイヤ径方向内側)を表す。
 各ブロック20は、第1ブロック片22Tと第2ブロック片22Rとが隣り合わせに配置されてなる組を少なくとも1組有する。
 第1ブロック片22Tは、そのトレッド周方向の幅がトレッド表面に向かって漸減するものであり、第2ブロック片22Rは、トレッド周方向の幅がトレッド表面に向かって漸増するものである。すなわち、図3に示すように、サイプ21aはトレッド踏面に対して垂直ではなく傾斜している。
 また、第3ブロック片22Sは、トレッド周方向の幅がトレッド表面に向かって増減しないものである。図示例では、第3ブロック片22Sは、タイヤ周方向両端面と屈曲型3次元サイプ21bとによって区画されている。この図示例では、屈曲型3次元サイプ21bは、ジグザグ状に屈曲している。
FIG. 3 is a perspective view of the block 20 according to the first embodiment of the pneumatic tire of the present invention.
In the figure, arrows indicate a tread circumferential direction C, a tread width direction W, and a tire radial direction R (the arrow direction is the inner side in the tire radial direction).
Each block 20 has at least one set in which the first block piece 22T and the second block piece 22R are arranged adjacent to each other.
The first block piece 22T has a width in the tread circumferential direction that gradually decreases toward the tread surface, and the second block piece 22R has a width in the tread circumferential direction that gradually increases toward the tread surface. That is, as shown in FIG. 3, the sipe 21a is not perpendicular to the tread surface, but inclined.
The third block piece 22S has a width in the tread circumferential direction that does not increase or decrease toward the tread surface. In the illustrated example, the third block piece 22S is partitioned by both ends in the tire circumferential direction and a bent three-dimensional sipe 21b. In the illustrated example, the bent three-dimensional sipe 21b is bent in a zigzag shape.
 また、図示例においてトレッド踏面に着目すると、第1ブロック片22Tは、その周方向幅が、トレッド幅方向におけるブロック20の端部S1、S2から中央部Ceに向かって漸減する。一方、第2ブロック片22Rは、その周方向幅が、トレッド幅方向におけるブロック20の端部S1、S2から中央部Ceに向かって漸増する。
 また、図示例においてブロックの周方向端の第3ブロック片22Sのトレッド踏面は、その周方向幅が、トレッド幅方向において漸増、漸減していない。
 なお、トレッド幅方向におけるブロック20の中央部Ceとは、ブロック20のトレッド幅方向中央線を含み、当該中央線を中心としてブロック20の幅WBの50%以下の幅の領域を指すものとする。トレッド幅方向におけるブロック20の端部S1、S2とは、中央部Ceの両側の領域を指すものとする。
In the illustrated example, when attention is paid to the tread surface, the circumferential width of the first block piece 22T gradually decreases from the ends S 1 and S 2 of the block 20 in the tread width direction toward the center portion Ce. On the other hand, the circumferential width of the second block piece 22R gradually increases from the ends S 1 and S 2 of the block 20 in the tread width direction toward the center portion Ce.
Further, in the illustrated example, the circumferential width of the tread surface of the third block piece 22S at the circumferential end of the block is not gradually increased or decreased in the tread width direction.
Incidentally, a central portion Ce of the block 20 in the tread width direction, comprises a tread width direction center line of the block 20, and to refer to 50% or less of the area of the width of the width W B of the block 20 around the center line To do. The end portions S 1 and S 2 of the block 20 in the tread width direction indicate regions on both sides of the central portion Ce.
 次に、図4を参照して、この第1の実施形態に係る第1ブロック片22Tと第2ブロック片22Rについて説明する。
 図4(a)は、図3のA-A線、すなわち、ブロック20のトレッド幅方向中央部におけるブロック20の断面図であり、図4(b)は、図3のB-B線、すなわち、トレッド幅方向のブロック20の端部におけるブロック20の端面図である。
 図4(a)に示す、トレッド幅方向のブロック20の中央部における第1ブロック片22Tのトレッド周方向の幅WTCは、図4(b)に示す、トレッド幅方向のブロック20の端部における第1ブロック片22Tのトレッド周方向の幅WTSより短い。すなわち、第1ブロック片22Tは、その周方向幅が、トレッド幅方向におけるブロック20の端部から中央部に向かって漸減している。このため、第1ブロック片22Tの接地面積は、ブロック20のトレッド幅方向中央部ではトレッド幅方向端部より減少している。
 また、図4(a)に示す、トレッド幅方向のブロック20の中央部における第2ブロック片22Rのトレッド周方向の幅WRC1、WRC2は、図4(b)に示す、トレッド幅方向のブロック20の端部における第2ブロック片22Rのトレッド周方向の幅WRS1、WRS2よりそれぞれ長い。すなわち、第2ブロック片22Rは、その周方向幅が、トレッド幅方向におけるブロック20の端部から中央部に向かって漸増している。このため、第2ブロック片22Rの接地面積は、ブロック20のトレッド幅方向中央部ではトレッド幅方向端部より増加している。
Next, the first block piece 22T and the second block piece 22R according to the first embodiment will be described with reference to FIG.
4 (a) is a cross-sectional view of the block 20 at the center in the tread width direction of the block 20 along the line AA in FIG. 3, and FIG. 4 (b) is a cross-sectional view along the line BB of FIG. FIG. 4 is an end view of the block 20 at the end of the block 20 in the tread width direction.
Figure 4 (a), the width W TC tread circumferential direction of the first block piece 22T at the center of the tread width direction of the block 20, shown in FIG. 4 (b), the ends of the tread width direction of the block 20 shorter than the width W TS of the tread circumferential direction of the first block piece 22T in. That is, the circumferential width of the first block piece 22T gradually decreases from the end of the block 20 toward the center in the tread width direction. For this reason, the ground contact area of the first block piece 22T is smaller in the tread width direction center portion of the block 20 than in the tread width direction end portion.
Further, the widths W RC1 and W RC2 in the tread circumferential direction of the second block piece 22R in the center portion of the block 20 in the tread width direction shown in FIG. 4 (a) are shown in FIG. 4 (b) in the tread width direction. The widths W RS1 and W RS2 in the tread circumferential direction of the second block piece 22R at the end of the block 20 are longer than each other. That is, the circumferential width of the second block piece 22R gradually increases from the end of the block 20 toward the center in the tread width direction. For this reason, the ground contact area of the second block piece 22R is larger at the center portion of the block 20 in the tread width direction than at the end portion in the tread width direction.
 図5に、本発明の空気入りタイヤの第2の実施形態に係るブロック20の斜視図を示す。
 図3との構成の違いは、図5に示すように、サイプ21aの傾斜方向がブロック20のタイヤ径方向中央付近で変わっているということである。すなわち、第1ブロック片22Tは、そのトレッド周方向の幅が、タイヤの径方向内側から外側に向かって漸増した後、サイプ21aの径方向長さの中央で漸減に転じる。第2ブロック片22Rは、そのトレッド周方向の幅が、タイヤの径方向内側から外側に向かって漸減した後、サイプ21aの径方向長さの中央で漸増に転じている。
FIG. 5 shows a perspective view of a block 20 according to the second embodiment of the pneumatic tire of the present invention.
The difference from the configuration in FIG. 3 is that the inclination direction of the sipe 21a is changed near the center in the tire radial direction of the block 20, as shown in FIG. That is, the width of the tread circumferential direction of the first block piece 22T gradually increases from the radially inner side to the outer side of the tire and then gradually decreases at the center of the radial length of the sipe 21a. The tread circumferential width of the second block piece 22R gradually decreases from the radially inner side to the outer side of the tire, and then gradually increases at the center of the radial length of the sipe 21a.
 次に、図6を参照して、この第2の実施形態に係る第1ブロック片22Tと第2ブロック片22Rについて説明する。図6(a)は、図5のC1-C1線、すなわち、ブロック20のトレッド幅方向中央部におけるブロック20の断面図である。図6(b)は、図5のD-D線、すなわち、トレッド幅方向のブロック20の端部におけるブロック20の端面図である。
 第1ブロック片22Tは、トレッド周方向の幅が、タイヤの径方向内側から外側に向かって漸増した後漸減している。一方、第2ブロック片22Rは、タイヤの径方向内側から外側に向かって漸減した後漸増している。図6に示す例では、タイヤ周方向の断面図において、第1ブロック片22Tは、トレッド周方向の幅がサイプ21aの深さ中心部分で最大の形状である。断面図で見るサイプ21aの溝壁はなだらかな弧を描き、曲率中心は溝壁に対して第1ブロック片22Tの内側方向に存在する。一方、第2ブロック片22Rは、トレッド周方向の幅がサイプ21aの深さ中心部分で最小の形状である。断面図で見るサイプ21aの溝壁はなだらかな弧を描き、曲率中心は溝壁に対して第2ブロック片22Rの外側方向に存在する。
 このようなブロック片の場合も、図6(a)に示す、トレッド幅方向のブロック20の中央部における第1ブロック片22Tのトレッド周方向の幅WTCは、図6(b)に示す、トレッド幅方向のブロック20の端部における第1ブロック片22Tのトレッド周方向の幅WTSより短い。すなわち、第1ブロック片22Tは、その周方向幅が、トレッド幅方向におけるブロック20の端部から中央部に向かって漸減している。このため、第1ブロック片22Tの接地面積は、ブロック20のトレッド幅方向中央部ではトレッド幅方向端部より減少している。
 また、図6(a)に示す、トレッド幅方向のブロック20の中央部における第2ブロック片22Rのトレッド周方向の幅WRC1、WRC2は、図6(b)に示す、トレッド幅方向のブロック20の端部における第2ブロック片22Rのトレッド周方向の幅WRS1、WRS2よりそれぞれ長い。すなわち、第2ブロック片22Rは、その周方向幅が、トレッド幅方向におけるブロック20の端部から中央部に向かって漸増している。このため、第2ブロック片22Rの接地面積は、ブロック20のトレッド幅方向中央部ではトレッド幅方向端部より増加している。
Next, the first block piece 22T and the second block piece 22R according to the second embodiment will be described with reference to FIG. FIG. 6 (a) is a cross-sectional view of the block 20 taken along line C1-C1 of FIG. 5, that is, the central portion of the block 20 in the tread width direction. FIG. 6B is an end view of the block 20 at the end of the block 20 in the tread width direction, that is, the line DD in FIG.
The width in the tread circumferential direction of the first block piece 22T gradually decreases after gradually increasing from the radially inner side to the outer side of the tire. On the other hand, the second block piece 22R gradually increases from the radially inner side to the outer side of the tire. In the example shown in FIG. 6, in the sectional view in the tire circumferential direction, the first block piece 22T has a maximum width in the tread circumferential direction at the center of the depth of the sipe 21a. The groove wall of the sipe 21a seen in the cross-sectional view draws a gentle arc, and the center of curvature exists in the inner direction of the first block piece 22T with respect to the groove wall. On the other hand, the second block piece 22R has a minimum width in the tread circumferential direction at the center of the depth of the sipe 21a. The groove wall of the sipe 21a seen in the cross-sectional view draws a gentle arc, and the center of curvature exists in the outer direction of the second block piece 22R with respect to the groove wall.
In the case of such a block piece, shown in FIG. 6 (a), the width W TC of the tread circumferential direction of the first block piece 22T at the center of the tread width direction of the block 20, shown in FIG. 6 (b), shorter than the width W TS of the tread circumferential direction of the first block piece 22T at the ends of the tread width direction of the block 20. That is, the circumferential width of the first block piece 22T gradually decreases from the end of the block 20 toward the center in the tread width direction. For this reason, the ground contact area of the first block piece 22T is smaller in the tread width direction center portion of the block 20 than in the tread width direction end portion.
Further, the widths W RC1 and W RC2 in the tread circumferential direction of the second block piece 22R at the center portion of the block 20 in the tread width direction shown in FIG. 6 (a) are shown in FIG. 6 (b) in the tread width direction. The widths W RS1 and W RS2 in the tread circumferential direction of the second block piece 22R at the end of the block 20 are longer than each other. That is, the circumferential width of the second block piece 22R gradually increases from the end of the block 20 toward the center in the tread width direction. For this reason, the ground contact area of the second block piece 22R is larger at the center portion of the block 20 in the tread width direction than at the end portion in the tread width direction.
 第1及び第2の実施形態において示したように、本発明のタイヤは、まず、ブロック片のトレッド周方向の幅が、トレッド表面に向かって漸減する第1ブロック片と、トレッド表面に向かって漸増する第2ブロック片とが隣り合わせに配置されてなる組を少なくとも1組有することが肝要である。
 図7を参照して、この第1ブロック片22Tと第2ブロック片22Rの作用効果について説明する。
As shown in the first and second embodiments, in the tire of the present invention, first, the width of the block piece in the tread circumferential direction gradually decreases toward the tread surface, and toward the tread surface. It is important to have at least one set in which the gradually increasing second block pieces are arranged next to each other.
With reference to FIG. 7, the operational effects of the first block piece 22T and the second block piece 22R will be described.
 図7に示すように、タイヤが矢印方向に、例えば氷路面15を転動しているときに制動力がはたらくと、第1ブロック片22Tと第2ブロック片22Rとには、進行方向と逆向きに倒れこむ力が働く。第1ブロック片の路面に対して漸減する形状とすることで、第1ブロック片のエッジ部が鈍角となる。従って、荷重負荷時におけるエッジ部のゴムの膨出方向が、路面に平行ではなく、路面に向かう方向となる結果、路面に対してエッジ端が拘束されやすくなる。よって、第1ブロック片22Tには、倒れこみが容易に発生し、図中点線の丸で囲んで示すエッジ部の局所変形が大きくなるため、エッジ部のエッジ圧が向上する。
 一方、第2ブロック片22Rは、ブロック片表面に向かって幅が拡がる形状であることから倒れこみが発生せず、エッジ部が接地面から離れず、荷重下では氷路面に対して拡がるように変形をする。このため、第2ブロック片22Rは無負荷時よりも接地面積が大きくなり、該ブロック片22Rの浮き上がりが抑制される。このように、エッジ圧増加と接地面積増大の機能をブロック片毎に分離させることにより、ブロックとして見たとき氷上摩擦特性、特に氷上ブレーキ性能を向上させることができる。
As shown in FIG. 7, when the braking force is applied when the tire rolls in the arrow direction, for example, on the icy road surface 15, the first block piece 22T and the second block piece 22R are opposite to the traveling direction. The force to fall in the direction works. By adopting a shape that gradually decreases with respect to the road surface of the first block piece, the edge portion of the first block piece becomes an obtuse angle. Therefore, the bulge direction of the rubber at the edge portion when the load is applied is not parallel to the road surface, but is a direction toward the road surface. As a result, the edge end is easily restrained with respect to the road surface. Therefore, the first block piece 22T easily collapses, and the local deformation of the edge portion indicated by a dotted circle in the figure increases, so that the edge pressure at the edge portion is improved.
On the other hand, the second block piece 22R has a shape that expands toward the surface of the block piece, so that it does not fall down, the edge part does not leave the ground contact surface, and it expands against the icy road surface under load. Deform. For this reason, the second block piece 22R has a larger ground contact area than when there is no load, and the floating of the block piece 22R is suppressed. Thus, by separating the functions of increasing the edge pressure and increasing the contact area for each block piece, it is possible to improve on-ice friction characteristics, particularly on-ice brake performance, when viewed as a block.
 また、本発明のタイヤは、少なくともトレッド表面での第1ブロック片22Tのトレッド周方向の幅を、トレッド幅方向におけるブロック20の端部から中央部に向かって漸減させ、かつ、第2ブロック片22Rのトレッド周方向の幅を、トレッド幅方向におけるブロック20の端部から中央部に向かって漸増させることが肝要である。
 エッジ圧が小さくなりがちなタイヤ幅方向中央部において、第1ブロック片のエッジ部の鈍角形状がより強調される。これにより、上記の路面に対してエッジ端が拘束されやすくなる効果を増大させ、結果として高いエッジ圧を得ることができる。
 また、第2のブロック片は、タイヤ幅方向中央部において、ブロック片の路面に接する側の周方向幅が大きく、サイプ底側の周方向幅が小さくなる。従って、より路面からの入力に対して安定した形状となり、接地面積が増加する。
 その結果、エッジ効果および接地面積増加効果のそれぞれがより強調され、大幅に氷上摩擦性能を向上させることができる。
In the tire of the present invention, the width of the first block piece 22T in the tread circumferential direction at least on the tread surface is gradually decreased from the end of the block 20 in the tread width direction toward the center, and the second block piece. It is important to gradually increase the width of 22R in the tread circumferential direction from the end of the block 20 toward the center in the tread width direction.
The obtuse angle shape of the edge portion of the first block piece is more emphasized in the center portion in the tire width direction where the edge pressure tends to be small. Thereby, the effect that the edge ends are easily restrained with respect to the road surface is increased, and as a result, a high edge pressure can be obtained.
Further, the second block piece has a large circumferential width on the side in contact with the road surface of the block piece and a small circumferential width on the sipe bottom side at the center in the tire width direction. Therefore, the shape becomes more stable with respect to the input from the road surface, and the ground contact area increases.
As a result, each of the edge effect and the effect of increasing the contact area is emphasized, and the friction performance on ice can be greatly improved.
 さらに、本発明のタイヤは、ブロックをブロック片に分断するサイプの少なくとも1つは、タイヤ幅方向に屈曲しながら延び、タイヤ径方向にも屈曲しながら延びる3次元サイプであることが肝要である。
 これにより、路面からのあらゆる方向の入力に対しても、屈曲型3次元サイプの壁面間の高い接触力により、ブロック片の倒れこみを抑制し、接地面積の減少を抑制することができる。
 また、屈曲型3次元サイプをブロックのタイヤ周方向両端側の少なくともいずれかに配置することが好ましく、両端に配置することがより好ましい。
 なぜなら、ブロックの踏み込み端、蹴り出し端に屈曲型3次元サイプを配置することで、より効果的にブロック片の倒れこみを抑制し、接地面積の減少を抑制することができるからである。
 また、屈曲型3次元サイプをタイヤ周方向両端に加えて、タイヤ周方向中央部にも設けることで、様々な方向からの入力に対し、さらにブロック片の倒れこみを抑制し、接地面積の減少を抑制することができる。
 なお、図3、図5において、屈曲型3次元サイプ21bは、ジグザグ状に屈曲した形状を例示しているが、屈曲部を有していれば良く、例えば凹凸を繰り返しながらタイヤ径方向に沿って延びているサイプでも良い。
Furthermore, in the tire of the present invention, it is important that at least one of the sipes that divide the block into block pieces is a three-dimensional sipe that extends while bending in the tire width direction and also extends in the tire radial direction. .
Thereby, even with respect to input in any direction from the road surface, the high contact force between the wall surfaces of the bent three-dimensional sipe can suppress the collapse of the block pieces and suppress the reduction of the contact area.
Moreover, it is preferable to arrange the bent three-dimensional sipe on at least one of both ends in the tire circumferential direction of the block, and more preferably on both ends.
This is because by arranging a bent three-dimensional sipe at the stepping-in and kicking-out ends of the block, it is possible to more effectively suppress the collapse of the block pieces and suppress the reduction of the contact area.
In addition, bending 3D sipes are added to both ends of the tire in the circumferential direction, and are also provided in the center of the tire circumferential direction to further prevent the block pieces from collapsing and reducing the contact area against input from various directions. Can be suppressed.
In FIGS. 3 and 5, the bent three-dimensional sipe 21b exemplifies a zigzag bent shape, but it only needs to have a bent portion, for example, along the tire radial direction while repeating unevenness. It may be a sipe that extends.
 また、第2の実施形態において示したように、第1ブロック片22Tを、そのサイプ21aの溝底部分の幅を短く、くびれた形状にすることが好ましい。第1ブロック片22Tの剛性を低下させ、第1ブロック片22Tの倒れこみをさらに発生しやすくして、さらに氷上性能を向上させることができるからである。 Also, as shown in the second embodiment, it is preferable that the first block piece 22T has a narrow shape with a narrow groove bottom portion of the sipe 21a. This is because the rigidity of the first block piece 22T can be reduced, the first block piece 22T can be more easily collapsed, and the performance on ice can be further improved.
 ここで、ブロックの踏み込み端、蹴り出し端に屈曲型3次元サイプを配置するに当たり、図8に示すように、トレッド踏面において、ブロックのタイヤ幅方向中央部における、第2のブロック片22Rのタイヤ周方向の幅s1と、第3ブロック片22Sのタイヤ周方向の幅s2との比s1/s2が、
1.0≦s1/s2≦1.6
の範囲にあり、且つ
 トレッド踏面において、ブロックのタイヤ幅方向端部における、第2ブロック片22Rのタイヤ周方向の幅t1と、第3ブロック片22Sのタイヤ周方向の幅t2との比t1/t2が、
0.8≦t1/t2≦1.4
の範囲にあることが好ましい。
 なぜなら、比s1/s2が1.0未満であると、第2ブロック片の倒れこみが大きくなり、接地面積が低下してしまうからである。また比s1/s2が1.6より大きいと、第2ブロック片の接地部分が広がる変形が十分でなくなり、接地面積が低下してしまうからである。
 同様に比t1/t2が0.8未満であると、第2ブロック片の倒れこみが大きくなり、接地面積が低下してしまうからである。また比t1/t2が1.4より大きいと、第2ブロック片の接地部分が広がる変形が十分でなくなり、接地面積が低下してしまうからである。
 ここで、図8に示すように、屈曲型3次元サイプによって区画されるブロック片の「周方向の幅」とは、屈曲型3次元サイプの振幅の中央からの距離で定義するものとする。
Here, when placing the bent three-dimensional sipe at the stepping-in and kicking-out ends of the block, as shown in FIG. 8, the tire of the second block piece 22R at the tread tread surface at the center in the tire width direction of the block The ratio s1 / s2 between the circumferential width s1 and the tire circumferential width s2 of the third block piece 22S is
1.0 ≦ s1 / s2 ≦ 1.6
In the tread surface, at the tire width direction end of the block, the ratio t1 / the tire circumferential direction width t1 of the second block piece 22R and the tire circumferential direction width t2 of the third block piece 22S t2 is
0.8 ≦ t1 / t2 ≦ 1.4
It is preferable that it exists in the range.
This is because if the ratio s1 / s2 is less than 1.0, the second block piece collapses and the ground contact area decreases. Further, if the ratio s1 / s2 is larger than 1.6, the deformation that the ground contact portion of the second block piece spreads becomes insufficient, and the ground contact area is reduced.
Similarly, if the ratio t1 / t2 is less than 0.8, the second block piece collapses and the ground contact area decreases. Further, if the ratio t1 / t2 is larger than 1.4, the deformation that the ground contact portion of the second block piece spreads is not sufficient, and the ground contact area is reduced.
Here, as shown in FIG. 8, the “circumferential width” of the block piece defined by the bent three-dimensional sipe is defined by the distance from the center of the amplitude of the bent three-dimensional sipe.
 さらに、本発明では、図3に示すように、トレッド踏面の、ブロックのタイヤ幅方向中央部における、第1ブロック片のタイヤ周方向の幅p1と、第2ブロック片のタイヤ周方向の幅p2との比p1/p2が0.2以上0.3以下の範囲にあり、且つ
 トレッド踏面の、ブロックのタイヤ幅方向端部における、第1ブロック片のタイヤ周方向の幅q1と、第2ブロック片のタイヤ周方向の幅q2との比q1/q2が、0.4以上0.6以下の範囲にあることが好ましい。
 なぜなら、比p1/p2が0.2未満であると、接地に際し、第1ブロック片が極度に倒れこんでしまい、十分なエッジ効果が得られず、一方比p1/p2が0.3より大きいと第1ブロック片の倒れこみが小さく、この場合もまた、十分なエッジ効果が得られないからである。
 同様に、比q1/q2が0.4未満であると、接地に際し、第1ブロック片が極度に倒れこんでしまい、十分なエッジ効果が得られず、一方比q1/q2が0.6より大きいと第1ブロック片の倒れこみが小さく、十分なエッジ効果が得られないからである。
Furthermore, in the present invention, as shown in FIG. 3, the tire circumferential direction width p1 of the first block piece and the tire circumferential direction width p2 of the second block piece in the tire width direction central portion of the tread surface, as shown in FIG. Ratio p1 / p2 is in the range of 0.2 to 0.3, and the tire circumferential direction width q1 of the first block piece at the tire width direction end of the tread surface and the tire circumference of the second block piece The ratio q1 / q2 to the direction width q2 is preferably in the range of 0.4 to 0.6.
This is because if the ratio p1 / p2 is less than 0.2, the first block piece collapses extremely at the time of grounding, and sufficient edge effect cannot be obtained, while if the ratio p1 / p2 is greater than 0.3, the first block This is because the collapse of the piece is small, and in this case also, a sufficient edge effect cannot be obtained.
Similarly, when the ratio q1 / q2 is less than 0.4, the first block piece collapses extremely at the time of grounding, and a sufficient edge effect cannot be obtained, while when the ratio q1 / q2 is greater than 0.6, the first This is because the collapse of the block piece is small and a sufficient edge effect cannot be obtained.
 また、第1ブロック片の少なくともサイプ底でのトレッド周方向の幅が、トレッド幅方向におけるブロックの端部から中央部に向かって漸増し、第2のブロック片の少なくともサイプ底でのトレッド周方向の幅が、トレッド幅方向におけるブロックの端部から中央部に向かって漸減することが好ましい。
 これにより、ブロックの幅方向中央部において、第1のブロック片はサイプ底側の周方向幅が大きくなることで、より倒れ込みが生じやすくなり、エッジ圧がより増大する。一方で、第2のブロック片は、サイプ底側の周方向幅が小さくなることで、第2のブロック片は、倒れ込む力に対し、より安定的になり、接地面積の減少をさらに抑制できるからである。
Further, the width of the first block piece in the tread circumferential direction at least at the sipe bottom gradually increases from the end of the block in the tread width direction toward the center, and the second block piece at least in the tread circumferential direction at the sipe bottom. Is preferably gradually reduced from the end of the block in the tread width direction toward the center.
As a result, the first block piece has a larger circumferential width on the sipe bottom side at the center in the width direction of the block, so that the first block piece is more likely to fall down and the edge pressure is further increased. On the other hand, since the second block piece has a smaller circumferential width on the sipe bottom side, the second block piece becomes more stable against the falling force and can further suppress the reduction of the contact area. It is.
 ところで、サイプ21aの開口幅が広すぎると、ブロック20におけるブロック片の割合が少なくなり、ブロック剛性が低下するので好ましくない。それゆえ、サイプ21aを挟んで向かい合う溝壁が同形状で、サイプ21aの開口幅が一定であることが好ましい。 Incidentally, if the opening width of the sipe 21a is too wide, the ratio of the block pieces in the block 20 is reduced, and the block rigidity is lowered, which is not preferable. Therefore, it is preferable that the groove walls facing each other across the sipe 21a have the same shape and the opening width of the sipe 21a is constant.
 また、第1ブロック片22Tの周方向幅を第2ブロック片22Rの周方向幅より小さくすることが好ましい。第1ブロック片22Tの剛性を低下させ、第1ブロック片22Tの倒れこみをさらに発生しやすくすることが好適である。 Further, it is preferable that the circumferential width of the first block piece 22T is smaller than the circumferential width of the second block piece 22R. It is preferable to reduce the rigidity of the first block piece 22T so that the collapse of the first block piece 22T is more likely to occur.
 さらに、1つのブロック20の全体にわたって、第1ブロック片22Tと第2ブロック片22Rとがトレッド周方向に向かって交互に配置されることが好適である。このため、上述した例では、両端のブロック片22Sを除いてこのような配置となっている。
 しかし、1つのブロック20において、第1ブロック片22Tと第2ブロック片22Rとが隣り合わせに配置されてなる組が少なくとも1組存在すればよい。例えば図9にブロック表面を例示するように、第1ブロック片22T相互および第2ブロック片22R相互が隣り合って配置されてもよい。
Furthermore, it is preferable that the first block pieces 22T and the second block pieces 22R are alternately arranged over the entire block 20 in the tread circumferential direction. For this reason, in the above-described example, such an arrangement is obtained except for the block pieces 22S at both ends.
However, in one block 20, there may be at least one set in which the first block piece 22T and the second block piece 22R are arranged adjacent to each other. For example, as illustrated in the block surface in FIG. 9, the first block pieces 22T and the second block pieces 22R may be arranged adjacent to each other.
 図10(a)(b)に、本発明の空気入りタイヤの第3実施形態に係るブロック20の斜視図を示す。図5との構成の違いは、サイプに当該サイプの深さを変化させて、一部又は全てのサイプ底を他のサイプに比しタイヤ径方向外側に隆起させる底上げを設けている点である。
 図10(a)に示す例では、サイプ21aの底に、第1ブロック片22Tと第2ブロック片22Rとを接続する少なくとも1つの、図示例では3つの底上げ部24を設けている。この底上げ部24を設けることにより、第2ブロック片22Rの倒れこみがさらに抑制されるので、確実に接地面積を確保することができる。
 なお、図示例では、図面手前のサイプ21aにのみ底上げ部24を設けた例を示しているが、全てのサイプ21に底上げ部24を設けることもできる。
 また、図10(b)はブロック20における底上げしたサイプの配置例である。この図示例では、まず周方向両端の屈曲型3次元サイプ21bは、幅方向両端が底上げされており、その他のサイプは千鳥足状に底上げを設けている。すなわち、図9(b)のサイプ21cは、タイヤ幅方向の正の方向(図9(b)のタイヤ幅方向Wの矢印の方向)が底上げされており、サイプ21dは、タイヤ幅方向の負の方向が底上げされている。これらサイプ21cと21dが交互に配置されている。ブロック20の周方向両端のサイプの幅方向両端に底上げを設けていることにより、ブロックの踏み込み端、蹴り出し端のブロック片の倒れこみを抑制し、接地面積の減少を抑制することができる。また、千鳥足状に底上げを設けることで第1のブロック片22Tの倒れこみによるエッジ効果を妨げず、且つ第2のブロック片の倒れこみを抑制し、接地面積を増加させることができる程度に、適度にブロック20の剛性を高めることができるからである。
10 (a) and 10 (b) are perspective views of a block 20 according to a third embodiment of the pneumatic tire of the present invention. The difference from the configuration in FIG. 5 is that the sipe is provided with a bottom raising that changes the depth of the sipe and raises a part or all of the sipe bottom to the outside in the tire radial direction compared to other sipe. .
In the example shown in FIG. 10A, at the bottom of the sipe 21a, at least one, in the illustrated example, three bottom raised portions 24 that connect the first block piece 22T and the second block piece 22R are provided. By providing the bottom raised portion 24, the fall of the second block piece 22R is further suppressed, so that a ground contact area can be ensured reliably.
In the illustrated example, the bottom raised portion 24 is provided only on the sipe 21a in front of the drawing, but the bottom raised portion 24 may be provided on all the sipes 21.
FIG. 10B shows an example of the arrangement of the sipe with the bottom raised in the block 20. In the illustrated example, first, the bent three-dimensional sipe 21b at both ends in the circumferential direction is raised at both ends in the width direction, and the other sipe is provided with a raised bottom in a staggered pattern. That is, the sipe 21c in FIG. 9 (b) is raised in the positive direction in the tire width direction (the direction of the arrow in the tire width direction W in FIG. 9 (b)), and the sipe 21d is negative in the tire width direction. The direction of is raised. These sipes 21c and 21d are alternately arranged. By providing bottom-ups at both ends in the width direction of the sipe at both ends in the circumferential direction of the block 20, it is possible to suppress collapse of the block pieces at the stepping-in end and kicking-out end of the block, and it is possible to suppress a decrease in the contact area. In addition, by providing a raised staggered bottom, the edge effect due to the fall of the first block piece 22T is not hindered, and the fall of the second block piece can be suppressed and the ground contact area can be increased. This is because the rigidity of the block 20 can be appropriately increased.
 また、図11(a)に模式的な斜視図を示すように、第1ブロック片と第2ブロック片との間のサイプの壁面の少なくとも一部に、サイプ幅(開口幅)の半分以上の高さの突起25を設けることが好ましい。
 突起物により、ブロック片の倒れこみをさらに抑制し、接地面積の減少を抑制することができるからである。
 さらに、この第1ブロック片と第2ブロック片との間のサイプの壁面に設ける突起は、図11(b)に示すように、ブロックの幅方向中央領域には設けないか、あるいは、ブロックの幅方向中央領域には端部領域より高さが低い突起を形成する。
 ブロックの幅方向中央部は、第1ブロック片の周方向の長さが短くなっており、このエッジ端のせん断力とすべりが小さく、他の位置より磨耗が小さくなる。このため、この幅方向中央部に突起を設けると、サイプ間の支え合いにより、すべりが抑制され、さらの磨耗量が減少し、ブロック幅方向の偏磨耗が生じるおそれがあるからである。
 さらに、サイプ幅(開口幅)の1/50以上1/10未満の範囲の高さの微細構造部を形成することが好ましい。
 微細構造部により、サイプ21aを挟む壁面同士の拘束が強化され、ブロック片の倒れこみがさらに抑制され、接地面積の減少を抑制するからである。
 加えて、図2(a)~(g)との対応で図12(a)~(g)に示すように、ブロックのサイプの個数が偶数個である場合は、タイヤ周方向両端に位置するサイプの幅方向両端に底上げ部を設け、前記タイヤ周方向両端に位置するサイプ以外のサイプには、幅方向片側に千鳥状に底上げ部を設けることが好ましい。なお、図12(a)~(g)において、底上げ部を設ける位置を点線で丸く囲った部分で示している。
 また、ブロックのサイプの個数が奇数個である場合は、タイヤ周方向両端及びタイヤ周方向中央に位置するサイプの幅方向両端に底上げ部を設け、前記タイヤ周方向両端及びタイヤ周方向中央に位置するサイプ以外のサイプには幅方向片側に千鳥状に底上げ部を設けることが好ましい。
 さらにまた、図13に示すように、以上説明したサイプを有するブロックは、タイヤ幅方向最外側にのみ設けることが好ましい。
 制動時のブレークング力は、主にショルダ側が担うからである。
Further, as shown in a schematic perspective view of FIG. 11 (a), at least a part of the wall surface of the sipe between the first block piece and the second block piece has a half or more of the sipe width (opening width). It is preferable to provide a protrusion 25 having a height.
This is because the protrusions can further suppress the collapse of the block pieces and suppress the reduction of the ground contact area.
Furthermore, the protrusion provided on the wall surface of the sipe between the first block piece and the second block piece is not provided in the central region in the width direction of the block as shown in FIG. A protrusion having a height lower than that of the end region is formed in the central region in the width direction.
In the central portion in the width direction of the block, the length in the circumferential direction of the first block piece is short, and the shearing force and slip at the edge end are small, and wear is smaller than in other positions. For this reason, if a protrusion is provided in the center portion in the width direction, sliding is suppressed due to the support between sipes, the amount of further wear is reduced, and uneven wear in the block width direction may occur.
Furthermore, it is preferable to form a fine structure having a height in the range of 1/50 to less than 1/10 of the sipe width (opening width).
This is because the fine structure portion strengthens the restraint between the wall surfaces sandwiching the sipe 21a, further suppresses the collapse of the block pieces, and suppresses the reduction of the ground contact area.
In addition, as shown in FIGS. 12 (a) to (g) in correspondence with FIGS. 2 (a) to 2 (g), when the number of sipes in the block is an even number, they are located at both ends in the tire circumferential direction. It is preferable to provide bottom raised portions at both ends in the width direction of the sipe, and to provide sipe other than the sipes located at both ends in the tire circumferential direction in a staggered manner on one side in the width direction. In FIGS. 12 (a) to 12 (g), the position where the bottom raised portion is provided is indicated by a portion surrounded by a dotted line.
In addition, when the number of sipes in the block is an odd number, bottom-up portions are provided at both ends in the tire circumferential direction and at both ends in the width direction of the sipes located at the tire circumferential center, and are positioned at both ends in the tire circumferential direction and at the center in the tire circumferential direction. It is preferable to provide bottom-up portions in a staggered manner on one side in the width direction for sipe other than the sipe.
Furthermore, as shown in FIG. 13, the block having the sipe described above is preferably provided only on the outermost side in the tire width direction.
This is because the shoulder side bears the breaking force during braking.
 本発明の空気入りタイヤ(発明例タイヤ)、従来の空気入りタイヤ(従来例タイヤ)および比較例の空気入りタイヤ(比較例タイヤ)を、後述する仕様のもとに試作し、氷上ブレーキ性能を評価する試験を行ったので以下に説明する。
 各供試タイヤは、図1に示すトレッドパターンを有し、一般の空気入りタイヤと同様の内部構造を有する。各供試タイヤのブロックの概略上面図を図2に示し、サイプ形状を図14、図15に模式的に示し、図16には、従来タイヤのトレッド(上図)及びブロックの概略図(下図)を示している。
 ここで、図14、図15においては、図中上がサイプ底側、図中下がトレッド踏面側を示している。図14、図15において、点線は、サイプが平板状である場合を示している。
 各試供タイヤのブロックの構成、サイプの形状、屈曲型3次元サイプの配置に関して、以下の表1に要約する。その他のタイヤの緒元は各タイヤ共通である。
 なお、ブロックのタイヤ幅方向中央部における、第2ブロック片のタイヤ周方向の幅s1と第3ブロック片のタイヤ周方向の幅s2との比s1/s2、並びに、ブロックのタイヤ幅方向端部における、第2ブロック片のタイヤ周方向の幅t1と第3ブロック片のタイヤ周方向の幅t2との比t1/t2は、特に異なる記述がない限りs1/s2=1.3、t1/t2=1.15で共通である。
The pneumatic tire (invention example tire) of the present invention, the conventional pneumatic tire (conventional example tire), and the pneumatic tire of the comparative example (comparative example tire) were prototyped based on the specifications described later, and the braking performance on ice was improved. A test to be evaluated was performed and will be described below.
Each test tire has the tread pattern shown in FIG. 1, and has the same internal structure as a general pneumatic tire. The schematic top view of each test tire block is shown in FIG. 2, the sipe shape is schematically shown in FIGS. 14 and 15, and FIG. 16 shows a conventional tire tread (upper view) and block schematic view (lower view). ).
Here, in FIGS. 14 and 15, the upper side in the drawing shows the sipe bottom side, and the lower side in the drawing shows the tread tread side. In FIG. 14 and FIG. 15, the dotted line shows the case where the sipe is flat.
Table 1 below summarizes the composition of the block of each sample tire, the shape of the sipe, and the arrangement of the bent three-dimensional sipe. The other tires have the same specifications.
The ratio s1 / s2 between the width s1 in the tire circumferential direction of the second block piece and the width s2 in the tire circumferential direction of the third block piece at the center part in the tire width direction of the block, and the end part in the tire width direction of the block The ratio t1 / t2 of the tire circumferential direction width t1 of the second block piece and the tire circumferential direction width t2 of the third block piece is s1 / s2 = 1.3, t1 / t2 = 1.15 unless otherwise specified. Is common.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各供試タイヤは、タイヤサイズがともに195/65R15である。これらのタイヤを標準リムに組み付けてタイヤ車輪とし、タイヤ内圧を200kPaに調整した。上記タイヤを乗用車に装着し、氷路において制動試験を行った。
 制動試験は初速度40km/hからフルブレーキをかけて静止状態になるまでの制動距離を計測し、初速度と制動距離から平均減速度を算出した。
 制動試験結果を平均減速度の指数で表現し、表2に示す。
 指数は、従来例タイヤの平均減速度をそれぞれ100とした場合の指数で表示し、値が大きいほど良好な結果を表す。
Each test tire has a tire size of 195 / 65R15. These tires were assembled into standard rims to form tire wheels, and the tire internal pressure was adjusted to 200 kPa. The tire was mounted on a passenger car and a braking test was conducted on an icy road.
In the braking test, the braking distance was measured from the initial speed of 40km / h until full braking was applied, and the average deceleration was calculated from the initial speed and braking distance.
The braking test results are expressed as an average deceleration index and are shown in Table 2.
The index is expressed as an index when the average deceleration of the conventional tire is 100, and the larger the value, the better the result.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次に、発明例7にかかるタイヤに対し、上記の制動試験を、ブロックのタイヤ幅方向中央部における、第2ブロック片のタイヤ周方向の幅s1と第3ブロック片のタイヤ周方向の幅s2との比s1/s2及び、ブロックのタイヤ幅方向端部における、第2ブロック片のタイヤ周方向の幅t1と第3ブロック片のタイヤ周方向の幅t2との比t1/t2を変化させて行った。
 その結果を以下の表3に示す。
 指数は、従来例タイヤの平均減速度をそれぞれ100とした場合の指数で表示し、値が大きいほど良好な結果を表す。
Next, for the tire according to Inventive Example 7, the braking test described above was carried out using the tire circumferential direction width s1 of the second block piece and the tire circumferential direction width s2 of the third block piece at the center in the tire width direction of the block. And the ratio t1 / t2 between the tire circumferential direction width t1 of the second block piece and the tire circumferential direction width t2 of the third block piece at the tire width direction end of the block. went.
The results are shown in Table 3 below.
The index is expressed as an index when the average deceleration of the conventional tire is 100, and the larger the value, the better the result.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 さらに、発明例7にかかるタイヤに対し、上記の制動試験を、第1ブロック片のタイヤ周方向の幅p1と、第2ブロック片のタイヤ周方向の幅p2との比p1/p2及び第1ブロック片のタイヤ周方向の幅q1と、前記第2ブロック片のタイヤ周方向の幅q2との比q1/q2を様々変えたタイヤを試作してタイヤの氷上性能の評価を行った。
 その結果を以下の表4に示す。
 指数は、従来例タイヤの平均減速度をそれぞれ100とした場合の指数で表示し、値が大きいほど良好な結果を表す。
Further, for the tire according to Invention Example 7, the braking test described above was carried out using the ratio p1 / p2 between the tire block circumferential width p1 of the first block piece and the tire circumferential width p2 of the second block piece and the first Tires with various ratios q1 / q2 between the width q1 of the block piece in the tire circumferential direction and the width q2 of the second block piece in the tire circumferential direction were prototyped, and the performance on ice of the tire was evaluated.
The results are shown in Table 4 below.
The index is expressed as an index when the average deceleration of the conventional tire is 100, and the larger the value, the better the result.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 まず、表2より、発明例1~20にかかるタイヤは、いずれも従来例及び比較例1にかかるタイヤよりも制動試験結果が優れていることがわかる。また、発明例1~10にかかるタイヤは、対応する比較例2にかかるタイヤより制動試験結果が優れており、発明例11~20にかかるタイヤは、対応する比較例3にかかるタイヤより制動試験結果が優れている。
 発明例1~10は発明例11~20のそれぞれに対し、サイプの形状のみを「第1ブロック片を、サイプの溝底部分の幅を短く、くびれた形状」にして対応させたものである。
 この発明例1~10と発明例11~20との比較により、発明例1~10は、発明例11~20の対応するものよりも制動試験結果が優れていることがわかる。
 発明例1~4の比較及び発明例11~14の比較により、上述したとおり、屈曲型3次元サイプの 配置を好適化することで高い氷上性能を得られることがわかる。
 発明例5と6との比較、及び発明例15と16との比較により、サイプ底位置でのサイプ形状を好適化した発明例6、16は、それぞれ発明例5、15より、制動試験結果及び氷上コーナリング試験結果が優れていることがわかる。
 発明例6と発明例7、8、9、10との比較、及び発明例16と発明例17、18、19、20との比較により、サイプの形状、構造を好適化した発明例7、8、9、10、17、18、19、20は制動試験結果が向上していることがわかる。
 さらに、発明例8と発明例8-2との比較、発明例10と発明例10-2との比較、発明例18と発明例18-2との比較発明例20と発明例20-2との比較により、ブロックの幅方向中央部に突起のない発明例8、10、18、20は、突起がある場合と同等の制動試験結果であることがわかる。
First, it can be seen from Table 2 that the tires according to Invention Examples 1 to 20 are superior in braking test results to the tires according to Conventional Example and Comparative Example 1. In addition, the tires according to Invention Examples 1 to 10 have better braking test results than the tires according to Comparative Example 2, and the tires according to Invention Examples 11 to 20 have a braking test better than the tires according to Comparative Example 3. The result is excellent.
Inventive Examples 1 to 10 correspond to Inventive Examples 11 to 20, respectively, by changing the shape of the sipe only to "the first block piece, the narrow width of the groove bottom portion of the sipe and the constricted shape". .
Comparison between Invention Examples 1 to 10 and Invention Examples 11 to 20 reveals that Invention Examples 1 to 10 are superior in braking test results to those corresponding to Invention Examples 11 to 20.
From the comparison of Invention Examples 1 to 4 and Comparison of Invention Examples 11 to 14, it can be seen that high performance on ice can be obtained by optimizing the arrangement of the bent three-dimensional sipe as described above.
Invention Examples 6 and 16 in which the sipe shape at the sipe bottom position is optimized by comparison between Invention Examples 5 and 6 and Invention Examples 15 and 16 are compared with Invention Examples 5 and 15, respectively. It turns out that the cornering test result on ice is excellent.
Inventive Examples 7 and 8 in which the shape and structure of the sipe are optimized by comparison between Inventive Example 6 and Inventive Examples 7, 8, 9, and 10, and Inventive Example 16 and Inventive Examples 17, 18, 19, and 20. , 9, 10, 17, 18, 19, and 20 show that the braking test results are improved.
Further, Comparison between Invention Example 8 and Invention Example 8-2, Comparison between Invention Example 10 and Invention Example 10-2, Comparison between Invention Example 18 and Invention Example 18-2 Invention Example 20 and Invention Example 20-2 From these comparisons, it can be seen that Invention Examples 8, 10, 18, and 20 having no protrusion at the central portion in the width direction of the block have the same braking test results as those having the protrusion.
 また、表3より、s1/s2が1.0以上1.6以下で、且つt1/t2が0.8以上1.4以下の場合に制動試験結果が従来タイヤより向上していることがわかる。
 さらに、表4より、p1/p2が0.2以上0.3以下、且つq1/q2が0.4以上0.6以下であるときに、従来例より氷上性能が向上していることがわかる。
Table 3 also shows that the braking test results are improved over the conventional tire when s1 / s2 is 1.0 or more and 1.6 or less and t1 / t2 is 0.8 or more and 1.4 or less.
Further, Table 4 shows that the performance on ice is improved over the conventional example when p1 / p2 is 0.2 or more and 0.3 or less and q1 / q2 is 0.4 or more and 0.6 or less.
 さらに、発明例10と発明例10-2については、実車磨耗試験を行った。試験は、1000km走行後のブロック幅中央部での磨耗の態様を比較した。
 発明例10-2にかかるタイヤでは、図17(a)に示すように、0.6mmの段差が生じた。一方、発明例10にかかるタイヤでは、図17(b)に示すように、0.2mmの段差となり、ブロックの幅方向の偏磨耗が抑制された。
Inventive Example 10 and Inventive Example 10-2 were subjected to an actual vehicle wear test. The test compared the mode of wear at the center of the block width after running for 1000 km.
In the tire according to Invention Example 10-2, a step of 0.6 mm occurred as shown in FIG. 17 (a). On the other hand, in the tire according to Invention Example 10, as shown in FIG. 17 (b), the level difference was 0.2 mm, and uneven wear in the width direction of the block was suppressed.
CL タイヤ赤道
1 トレッド踏面
3 周方向溝
4 幅方向溝
15 氷路面
20 ブロック
21 サイプ
21a サイプ
21b 屈曲型3次元サイプ
21c 底上げしたサイプ
21d 底上げしたサイプ
22T 第1ブロック片
22R 第2ブロック片
22S 第3ブロック片
24 底上げ部
25 突起
CL tire equator
1 Tread
3 Circumferential groove
4 Width direction groove
15 Ice surface
20 blocks
21 Sipe
21a Sipe
21b Bending type 3D sipe
21c Raised sipe
21d Raised sipe
22T 1st block piece
22R 2nd block piece
22S 3rd block piece
24 Bottom raised part
25 Protrusions

Claims (15)

  1.  タイヤのトレッド踏面に、トレッド周方向に延びる複数の周方向溝と、トレッド幅方向に延びる複数の幅方向溝とにより複数のブロックを区画し、該ブロックにトレッド幅方向に延びる複数のサイプを設けた空気入りタイヤであって、
     前記ブロックは、前記サイプにより複数のブロック片に分断され、かつ該ブロック片のトレッド周方向の幅が、トレッド表面に向かって漸減する第1ブロック片と、トレッド表面に向かって漸増する第2ブロック片とが隣り合わせに配置されてなる組を少なくとも1組有し、
     前記第1ブロック片の少なくともトレッド表面での前記トレッド周方向の幅が、トレッド幅方向における前記ブロックの端部から中央部に向かって漸減し、前記第2ブロック片の少なくとも前記トレッド表面での前記トレッド周方向の幅が、トレッド幅方向における前記ブロックの端部から中央部に向かって漸増し、
     前記サイプの少なくとも1つは、タイヤ幅方向に屈曲しながら延び、且つタイヤ径方向に屈曲しながら延びる、3次元サイプであることを特徴とする、空気入りタイヤ。
    A plurality of blocks are defined on the tread surface of the tire by a plurality of circumferential grooves extending in the tread circumferential direction and a plurality of width grooves extending in the tread width direction, and a plurality of sipes extending in the tread width direction are provided on the block. A pneumatic tire,
    The block is divided into a plurality of block pieces by the sipe, and a first block piece whose width in the tread circumferential direction of the block piece gradually decreases toward the tread surface, and a second block that gradually increases toward the tread surface. Having at least one set in which the pieces are arranged next to each other,
    The width in the tread circumferential direction at least on the tread surface of the first block piece gradually decreases from the end of the block in the tread width direction toward the center, and the at least the tread surface of the second block piece. The width in the tread circumferential direction gradually increases from the end of the block in the tread width direction toward the center,
    At least one of the sipe is a three-dimensional sipe that extends while being bent in the tire width direction and is bent in the tire radial direction.
  2.  前記第1ブロック片の前記トレッド周方向の幅が、前記タイヤの径方向内側から外側に向かって漸増した後漸減し、
     前記第2ブロック片の前記トレッド周方向の幅が、前記タイヤの径方向内側から外側に向かって漸減した後漸増することを特徴とする、請求項1に記載の空気入りタイヤ。
    The width in the tread circumferential direction of the first block piece gradually decreases after gradually increasing from the radially inner side to the outer side of the tire,
    2. The pneumatic tire according to claim 1, wherein the width in the tread circumferential direction of the second block piece gradually increases after gradually decreasing from the radially inner side to the outer side of the tire.
  3.  前記ブロックのタイヤ周方向両端にあるサイプの少なくともいずれか一方は、前記屈曲型3次元サイプである、請求項1又は2に記載の空気入りタイヤ。 3. The pneumatic tire according to claim 1, wherein at least one of the sipes at both ends in the tire circumferential direction of the block is the bent three-dimensional sipe.
  4.  前記ブロックのタイヤ周方向両端にあるサイプは、共に前記屈曲型3次元サイプである、請求項1~3のいずれか一項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein sipes at both ends of the block in the tire circumferential direction are the bent three-dimensional sipes.
  5.  前記屈曲型3次元サイプをタイヤ周方向両端及びタイヤ周方向中央部に設けたことを特徴とする、請求項1~4のいずれか一項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 4, wherein the bent three-dimensional sipe is provided at both ends in the tire circumferential direction and at a central portion in the tire circumferential direction.
  6.  前記タイヤのトレッド表面の、前記ブロックのタイヤ幅方向中央部における、前記第2ブロック片のタイヤ周方向の幅s1と、前記第3ブロック片のタイヤ周方向の幅s2との比s1/s2が、
    1.0≦s1/s2≦1.6
    の範囲にあり、且つ
     前記タイヤのトレッド表面の、前記ブロックのタイヤ幅方向端部における、前記第2ブロック片のタイヤ周方向の幅t1と、前記第3ブロック片のタイヤ周方向の幅t2との比t1/t2が、
    0.8≦t1/t2≦1.4
    の範囲にあることを特徴とする、請求項1~5のいずれか一項に記載の空気入りタイヤ。
    A ratio s1 / s2 between a tire circumferential direction width s1 of the second block piece and a tire circumferential direction width s2 of the third block piece at a tire width direction central portion of the tire tread surface is ,
    1.0 ≦ s1 / s2 ≦ 1.6
    And in the tire width direction end of the block on the tread surface of the tire, a tire circumferential direction width t1 of the second block piece, and a tire circumferential direction width t2 of the third block piece, The ratio t1 / t2 is
    0.8 ≦ t1 / t2 ≦ 1.4
    The pneumatic tire according to any one of claims 1 to 5, wherein the pneumatic tire is in a range of.
  7.  前記トレッド表面の、前記ブロックのタイヤ幅方向中央部における、前記第1ブロック片のタイヤ周方向の幅p1と、前記第2ブロック片のタイヤ周方向の幅p2との比p1/p2が、
    0.2≦p1/p2≦0.3
    の範囲にあり、且つ
     前記トレッド表面の、前記ブロックのタイヤ幅方向端部における、前記第1ブロック片のタイヤ周方向の幅q1と、前記第2ブロック片のタイヤ周方向の幅q2との比q1/q2が、
    0.4≦q1/q2≦0.6
    の範囲にあることを特徴とする、請求項1~6のいずれか一項に記載の空気入りタイヤ。
    A ratio p1 / p2 of a tire circumferential direction width p1 of the first block piece and a tire circumferential direction width p2 of the second block piece in the tire width direction central portion of the tread surface,
    0.2 ≦ p1 / p2 ≦ 0.3
    The ratio of the width q1 in the tire circumferential direction of the first block piece to the width q2 in the tire circumferential direction of the second block piece at the tire width direction end of the block on the tread surface. q1 / q2 is
    0.4 ≦ q1 / q2 ≦ 0.6
    The pneumatic tire according to any one of claims 1 to 6, wherein the pneumatic tire is in a range of.
  8.  前記第1ブロック片の少なくともサイプ底でのトレッド周方向の幅が、トレッド幅方向における前記ブロックの端部から中央部に向かって漸増し、前記第2のブロック片の少なくとも前記サイプ底でのトレッド周方向の幅が、トレッド幅方向における前記ブロックの端部から中央部に向かって漸減することを特徴とする、請求項1~7のいずれか一項に記載の空気入りタイヤ。 The tread circumferential width at least at the sipe bottom of the first block piece gradually increases from the end of the block toward the center in the tread width direction, and at least the tread at the sipe bottom of the second block piece. The pneumatic tire according to any one of claims 1 to 7, wherein a circumferential width gradually decreases from an end portion of the block in a tread width direction toward a central portion.
  9.  前記第1ブロック片と前記第2ブロック片に挟まれる前記サイプの開口幅が一定であることを特徴とする、請求項1~8のいずれか一項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 8, wherein an opening width of the sipe sandwiched between the first block piece and the second block piece is constant.
  10.  前記第1ブロック片と前記第2ブロック片との間に、前記第1ブロック片と前記第2ブロック片とを接続する少なくとも1つの底上げ部を設けたことを特徴とする、請求項1~9のいずれかに一項に記載の空気入りタイヤ。 10. The at least one bottom raising portion for connecting the first block piece and the second block piece is provided between the first block piece and the second block piece. The pneumatic tire according to any one of the above.
  11.  前記第1ブロック片と前記第2ブロック片との間の前記サイプの壁面の少なくとも一箇所に、サイプ幅の半分以上の高さの突起が形成されることを特徴とする、請求項1~10のいずれか一項に記載の空気入りタイヤ。 11. A protrusion having a height equal to or more than half of the sipe width is formed at least at one location on the wall surface of the sipe between the first block piece and the second block piece. The pneumatic tire according to any one of the above.
  12.  前記第1ブロック片と前記第2ブロック片との間の前記サイプの壁面の少なくとも一部に、サイプ幅の1/50以上1/10未満の範囲の高さの微細構造部を形成したことを特徴とする、請求項1~11のいずれか一項に記載の空気入りタイヤ。 A fine structure having a height in the range of 1/50 to less than 1/10 of the sipe width is formed on at least a part of the wall surface of the sipe between the first block piece and the second block piece. The pneumatic tire according to any one of claims 1 to 11, characterized in that.
  13.  前記突起は、前記ブロックの幅方向中央領域には形成せず、あるいは、前記ブロックの幅方向中央領域には端部領域より高さが低い突起を形成することを特徴とする、請求項11に記載の空気入りタイヤ。 12. The protrusion according to claim 11, wherein the protrusion is not formed in the central region in the width direction of the block, or a protrusion having a height lower than that of the end region is formed in the central region in the width direction of the block. The described pneumatic tire.
  14.  前記ブロックのサイプの個数が偶数個である場合は、タイヤ周方向両端に位置するサイプの幅方向両端に底上げ部を設け、前記タイヤ周方向両端に位置するサイプ以外のサイプには、幅方向片側に千鳥状に底上げ部を設け、
     前記ブロックのサイプの個数が奇数個である場合は、タイヤ周方向両端及びタイヤ周方向中央に位置するサイプの幅方向両端に底上げ部を設け、前記タイヤ周方向両端及びタイヤ周方向中央に位置するサイプ以外のサイプには幅方向片側に千鳥状に底上げ部を設けることを特徴とする、請求項10に記載の空気入りタイヤ。
    When the number of sipes in the block is an even number, bottom-up portions are provided at both ends in the width direction of the sipes located at both ends in the tire circumferential direction, and one side in the width direction is provided for sipes other than the sipes located at both ends in the tire circumferential direction. In the zigzag pattern,
    When the number of sipes in the block is an odd number, bottom-up portions are provided at both ends in the tire circumferential direction and at both ends in the width direction of the sipes located at the center in the tire circumferential direction, and are located at both ends in the tire circumferential direction and at the center in the tire circumferential direction. 11. The pneumatic tire according to claim 10, wherein the sipe other than the sipe is provided with a raised portion in a zigzag manner on one side in the width direction.
  15.  前記ブロックは、タイヤ幅方向最外側に位置する、請求項1~14のいずれか一項に記載の空気入りタイヤ。 The pneumatic tire according to any one of Claims 1 to 14, wherein the block is located on the outermost side in the tire width direction.
PCT/JP2011/001624 2010-04-02 2011-03-18 Pneumatic tire WO2011125293A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-086483 2010-04-02
JP2010086483A JP5519378B2 (en) 2010-04-02 2010-04-02 Pneumatic tire

Publications (1)

Publication Number Publication Date
WO2011125293A1 true WO2011125293A1 (en) 2011-10-13

Family

ID=44762264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001624 WO2011125293A1 (en) 2010-04-02 2011-03-18 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP5519378B2 (en)
WO (1) WO2011125293A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3335909A1 (en) * 2016-12-19 2018-06-20 Nokian Renkaat Oyj A pneumatic tire, a tread band, and a tread block comprising a sipe, and a lamella plate for the manufacture thereof
EP4091842A1 (en) * 2021-05-21 2022-11-23 The Goodyear Tire & Rubber Company Tire with hybrid sipe pattern
RU2790461C1 (en) * 2016-12-19 2023-02-21 Нокиан Ренкаат Ойй Pneumatic tire, tread layer and tread block containing slit-like slot, as well as lamellar plate for its manufacture
US11807045B2 (en) 2021-06-14 2023-11-07 The Goodyear Tire & Rubber Company Tire with hybrid sipe pattern

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020894B2 (en) 2017-12-13 2022-02-16 Toyo Tire株式会社 Pneumatic tires

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315714A (en) * 1997-05-19 1998-12-02 Yokohama Rubber Co Ltd:The Pneumatic tire for icy road
JPH1134616A (en) * 1997-07-22 1999-02-09 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
JP2000006618A (en) * 1998-04-22 2000-01-11 Bridgestone Corp Pneumatic tire
JP2001055018A (en) * 1999-08-18 2001-02-27 Bridgestone Corp Pneumatic tire
JP2003534182A (en) * 2000-02-17 2003-11-18 ソシエテ ド テクノロジー ミシュラン Tire tread pattern
JP2006188185A (en) * 2005-01-07 2006-07-20 Bridgestone Corp Pneumatic tire
JP2009067348A (en) * 2007-09-18 2009-04-02 Bridgestone Corp Pneumatic tire
JP2010132167A (en) * 2008-12-05 2010-06-17 Bridgestone Corp Pneumatic tire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210043A (en) * 2002-12-27 2004-07-29 Bridgestone Corp Pneumatic tire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315714A (en) * 1997-05-19 1998-12-02 Yokohama Rubber Co Ltd:The Pneumatic tire for icy road
JPH1134616A (en) * 1997-07-22 1999-02-09 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
JP2000006618A (en) * 1998-04-22 2000-01-11 Bridgestone Corp Pneumatic tire
JP2001055018A (en) * 1999-08-18 2001-02-27 Bridgestone Corp Pneumatic tire
JP2003534182A (en) * 2000-02-17 2003-11-18 ソシエテ ド テクノロジー ミシュラン Tire tread pattern
JP2006188185A (en) * 2005-01-07 2006-07-20 Bridgestone Corp Pneumatic tire
JP2009067348A (en) * 2007-09-18 2009-04-02 Bridgestone Corp Pneumatic tire
JP2010132167A (en) * 2008-12-05 2010-06-17 Bridgestone Corp Pneumatic tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3335909A1 (en) * 2016-12-19 2018-06-20 Nokian Renkaat Oyj A pneumatic tire, a tread band, and a tread block comprising a sipe, and a lamella plate for the manufacture thereof
US10906359B2 (en) 2016-12-19 2021-02-02 Nokian Renkaat Oyj Pneumatic tire, a tread band, and a tread block comprising a sipe, and a lamella plate for the manufacture thereof
RU2750310C2 (en) * 2016-12-19 2021-06-25 Нокиан Ренкаат Ойй Pneumatic tire, tread layer and tread block containing a slit-like slot, as well as a lammela plate for its manufacture
EP3984779A1 (en) * 2016-12-19 2022-04-20 Nokian Renkaat Oyj A pneumatic tire, a tread band, and a tread block comprising a sipe, and a lamella plate for the manufacture thereof
US11554613B2 (en) 2016-12-19 2023-01-17 Nokian Renkaat Oyj Pneumatic tire, a tread band, and a tread block comprising a sipe, and a lamella plate for the manufacture thereof
RU2790461C1 (en) * 2016-12-19 2023-02-21 Нокиан Ренкаат Ойй Pneumatic tire, tread layer and tread block containing slit-like slot, as well as lamellar plate for its manufacture
EP4091842A1 (en) * 2021-05-21 2022-11-23 The Goodyear Tire & Rubber Company Tire with hybrid sipe pattern
US11807045B2 (en) 2021-06-14 2023-11-07 The Goodyear Tire & Rubber Company Tire with hybrid sipe pattern

Also Published As

Publication number Publication date
JP2011218830A (en) 2011-11-04
JP5519378B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
EP2497655B1 (en) Tire
EP2913205B1 (en) Pneumatic tire
JP5008021B2 (en) Pneumatic tire
JP4589680B2 (en) Pneumatic tire
JP5200520B2 (en) Pneumatic tire
JP5947831B2 (en) Pneumatic tire
WO2013114852A1 (en) Pneumatic tire
EP3192673B1 (en) Pneumatic tire
JP5289018B2 (en) Pneumatic tire
JP5809322B1 (en) Pneumatic radial tire for passenger cars
JP2011240773A (en) Pneumatic tire
EP3470243B1 (en) Tire
WO2011125293A1 (en) Pneumatic tire
JP4750524B2 (en) Pneumatic tire
EP1813446B1 (en) Pneumatic tire
JP7298335B2 (en) pneumatic tire
JP5181873B2 (en) Pneumatic tire
JP2013244812A (en) Pneumatic tire
JP5746520B2 (en) Pneumatic tire
JP2012171513A (en) Pneumatic tire
JP2013244811A (en) Pneumatic tire
JP5156309B2 (en) Pneumatic tire
JP2011218831A (en) Pneumatic tire
JP5453157B2 (en) Pneumatic tire
JP5251533B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765195

Country of ref document: EP

Kind code of ref document: A1