WO2011125112A1 - Organic el display device manufacturing method and organic el display device - Google Patents

Organic el display device manufacturing method and organic el display device Download PDF

Info

Publication number
WO2011125112A1
WO2011125112A1 PCT/JP2010/002482 JP2010002482W WO2011125112A1 WO 2011125112 A1 WO2011125112 A1 WO 2011125112A1 JP 2010002482 W JP2010002482 W JP 2010002482W WO 2011125112 A1 WO2011125112 A1 WO 2011125112A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
luminance
correction parameter
gradation
pixels
Prior art date
Application number
PCT/JP2010/002482
Other languages
French (fr)
Japanese (ja)
Inventor
瀬川泰生
中村哲朗
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2010/002482 priority Critical patent/WO2011125112A1/en
Publication of WO2011125112A1 publication Critical patent/WO2011125112A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen

Definitions

  • the present invention relates to a method for manufacturing an organic EL display device and an organic EL display device, and more particularly, to a method for manufacturing an active matrix organic EL display device and an organic EL display device.
  • An image display device (organic EL display device) using an organic EL element (OLED: Organic Light Emitting Diode) is known as an image display device using a current-driven light emitting element whose emission intensity is controlled according to the amount of current. It has been. Since this organic EL display device is thin and lightweight and can respond at high speed, it has been attracting attention as a high-quality and high-performance thin display device with good viewing angle characteristics and low power consumption.
  • organic EL elements constituting pixels are usually arranged in a matrix.
  • An organic EL element is provided at the intersection of a plurality of row electrodes (scanning lines) and a plurality of column electrodes (data lines), and a voltage corresponding to a data signal is applied between the selected row electrodes and the plurality of column electrodes.
  • a device that drives an organic EL element is called a passive matrix organic EL display device.
  • a thin film transistor (TFT: Thin Film Transistor) is provided at the intersection of a plurality of scanning lines and a plurality of data lines, a gate of a driving transistor is connected to the TFT, and the TFT is turned on through the selected scanning line to thereby turn on the data line.
  • a data signal is input to a drive transistor and an organic EL element is driven by the drive transistor is called an active matrix organic EL display device.
  • the active matrix type organic EL display performs the next scanning (selection). Therefore, even if the duty ratio (the number of scanning lines) is increased, the luminance of the display is not reduced. Accordingly, since it can be driven at a low voltage, it is possible to reduce power consumption.
  • the luminance of the organic EL elements differs in each pixel, resulting in uneven brightness. There is a drawback of doing.
  • Patent Document 1 discloses a method of correcting the luminance of each pixel by measuring the voltage-current characteristic (characteristic indicating the relationship between the input signal voltage and the current flowing through the organic EL element) for each pixel. . Thereby, luminance unevenness can be reduced and uniform display can be achieved.
  • the conventional method for reducing luminance unevenness has a problem that it takes time for measurement because it is necessary to perform measurement many times. That is, since the voltage-current characteristic or the voltage-luminance characteristic is a curve, in the conventional method for reducing the luminance unevenness, it is necessary to measure the current or the luminance with respect to the input signal voltage at least three times, preferably 6 to Eight measurements are required.
  • the present invention has been made in view of such a problem, and provides a method for manufacturing an organic EL display device and an organic EL display device capable of reducing luminance unevenness of a display panel while reducing measurement time.
  • the purpose is to provide.
  • a method for manufacturing an organic EL display device includes a plurality of pixels each including a light-emitting element and a voltage-driven drive element that controls supply of current to the light-emitting element.
  • the first correction parameter is obtained for the target pixel so that the luminance becomes the first reference luminance obtained when the first signal voltage is input to the function representing the representative voltage-luminance characteristic.
  • 3 steps A fourth step of obtaining a predetermined voltage obtained by multiplying the second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic by the first correction parameter; and the target pixel
  • the second correction parameter is set so that the luminance when the light is emitted at the second reference luminance obtained when the second signal voltage is input to the function representing the representative voltage-luminance characteristic is the target.
  • the first correction parameter is a luminance of the first signal voltage when the target pixel is caused to emit light at the first signal voltage.
  • Voltage-luminance characteristics Is a gain indicating a ratio to a voltage obtained when the function is input to the function, and the second correction parameter includes the predetermined voltage and the luminance of light emitted from the target pixel. This is an offset indicating the difference from the voltage when the reference luminance is.
  • an organic EL display device capable of reducing luminance unevenness of the display panel while shortening the measurement time.
  • FIG. 1 is a block diagram showing a configuration of an organic EL display device and an organic EL display device manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a circuit configuration of a pixel included in the display unit of the display panel according to the present embodiment and a connection with the peripheral circuit.
  • FIG. 3 is a block diagram showing a functional configuration of the control circuit and the correction parameter determination device according to the present embodiment.
  • FIG. 4 is a diagram for explaining representative voltage-luminance characteristics, a high gradation region, and a low gradation region according to the present embodiment.
  • FIG. 5 is a diagram illustrating an example of the correction parameter table according to the present embodiment.
  • FIG. 1 is a block diagram showing a configuration of an organic EL display device and an organic EL display device manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a circuit configuration of a pixel included in the display unit of the display panel according to the present embodiment and a connection with the
  • FIG. 6 is a flowchart illustrating an example of an operation in which the correction parameter determination device according to the present embodiment determines a correction parameter.
  • FIG. 7 is a flowchart illustrating an example of processing in which the correction parameter calculation unit according to the present embodiment calculates the first correction parameter.
  • FIG. 8 is a diagram for explaining processing in which the correction parameter calculation unit according to the present embodiment calculates the first correction parameter.
  • FIG. 9 is a flowchart illustrating an example of a process in which the correction parameter calculation unit according to the present embodiment calculates the second correction parameter.
  • FIG. 10 is a diagram for explaining processing in which the correction parameter calculation unit according to the present embodiment calculates the second correction parameter.
  • FIG. 10 is a diagram for explaining processing in which the correction parameter calculation unit according to the present embodiment calculates the second correction parameter.
  • FIG. 11 is a block diagram illustrating a functional configuration of a control circuit and a correction parameter determination device according to a modification of the present embodiment.
  • FIG. 12 is a flowchart illustrating an example of an operation in which the correction parameter determination device according to the modification of the present embodiment determines a correction parameter.
  • FIG. 13 is an external view of a thin flat TV incorporating an organic EL display device manufactured by the method for manufacturing an organic EL display device according to the present invention.
  • a method for manufacturing an organic EL display device includes a plurality of pixels each including a light-emitting element and a voltage-driven drive element that controls supply of current to the light-emitting element.
  • the first correction parameter is obtained for the target pixel so that the luminance becomes the first reference luminance obtained when the first signal voltage is input to the function representing the representative voltage-luminance characteristic.
  • 3 steps A fourth step of obtaining a predetermined voltage obtained by multiplying the second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic by the first correction parameter; and the target pixel
  • the second correction parameter is set so that the luminance when the light is emitted at the second reference luminance obtained when the second signal voltage is input to the function representing the representative voltage-luminance characteristic is the target.
  • the first correction parameter is a luminance of the first signal voltage when the target pixel is caused to emit light at the first signal voltage.
  • Voltage-luminance characteristics Is a gain indicating a ratio to a voltage obtained when the function is input to the function, and the second correction parameter includes the predetermined voltage and the luminance of light emitted from the target pixel. This is an offset indicating the difference from the voltage when the reference luminance is.
  • the luminance of a plurality of gradations is measured for each pixel, and the gain and the gain are calculated by a predetermined calculation method based on the luminance difference between the luminance of each pixel and the representative voltage-luminance characteristics obtained by each measurement. Find the offset.
  • the least square method has a characteristic that it is necessary to measure the luminance of each pixel with at least three gradations, preferably five gradations or more, the correction parameter is measured after measuring the luminance of each pixel. There is a problem that it takes time to seek.
  • the human eye is more likely to recognize the luminance difference on the low gradation side than the luminance difference on the high gradation side, and tends to cause streaky irregularities on the display panel at the low gradation. Therefore, it is desirable that the correction accuracy on the low gradation side is higher than that on the high gradation side.
  • the luminance difference between the representative voltage-luminance characteristic and the voltage-luminance characteristic of each pixel increases as it goes to the high gradation side, and the least square method is such that the luminance difference on the high gradation side is minimized. Since the gain and the offset are obtained simultaneously by calculation, the correction error on the high gradation side can be reduced, but the correction error on the low gradation side becomes larger than that on the high gradation side.
  • the first signal voltage corresponding to the high gradation region is applied to the driving element included in each of the plurality of pixels, and the first luminance measurement is performed.
  • the first reference luminance obtained when the target pixel emits light with the first signal voltage is obtained by inputting the first signal voltage to the function representing the representative voltage-luminance characteristics.
  • a first correction parameter such that
  • a predetermined voltage obtained by multiplying the second signal voltage corresponding to one gradation belonging to the low gradation region by the first correction parameter is obtained.
  • the predetermined voltage is applied to the drive element included in the target pixel, and the second luminance measurement is performed. That is, since a predetermined voltage obtained by multiplying the second signal voltage by the gain obtained in the three steps is applied to the target pixel, the luminance of each pixel is set to the representative voltage ⁇ in the high gradation range. The luminance of each pixel corresponding to the low gradation range is measured in a state in which the luminance characteristics match.
  • a second reference luminance that is obtained when the target pixel measured in that state is the second reference luminance obtained when the second signal voltage is input to the function representing the representative voltage-luminance characteristic is obtained.
  • a correction parameter is obtained.
  • the second reference luminance in which the luminance of each pixel in the low gradation region matches the second reference luminance is obtained. Since the correction parameter is obtained, the correction accuracy of each pixel in the low gradation region can be improved.
  • a correction error is generated by the amount of the second correction parameter, but the influence of luminance unevenness recognized by human eyes due to this correction error is small. Therefore, in this aspect, it is possible to improve the correction accuracy in the low gradation range while preventing the influence of the correction error in the high gradation range. As a result, luminance unevenness of the display panel recognized by human eyes can be reduced.
  • the first correction parameter and the second correction parameter can be obtained by two luminance measurements, the number of times of luminance measurement required for calculating the conventional correction parameter can be reduced. As a result, the measurement tact from when the luminance of each pixel is measured until the correction parameter is obtained can be shortened.
  • an organic EL display device capable of reducing luminance unevenness of the display panel while shortening the measurement time.
  • the first signal voltage corresponding to one gradation belonging to the high gradation region of the representative voltage-luminance characteristic has a gradation of 20% to 100% of the maximum gradation that can be displayed in each pixel. Corresponding voltage.
  • the correction parameter can be calculated in a high gradation range suitable for human visibility.
  • the first signal voltage corresponding to one gradation belonging to the high gradation region of the representative voltage-luminance characteristic is a voltage corresponding to a gradation of 30% of the maximum gradation that can be displayed in each pixel. It is.
  • a voltage corresponding to a gradation of 30% of the maximum gradation is applied as the first signal voltage corresponding to one gradation belonging to the high gradation range.
  • the correction error in the high gradation range can be most suppressed.
  • the second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic is a gradation of 0% to 10% of the maximum gradation that can be displayed in each pixel. Is a voltage corresponding to.
  • the correction parameter can be calculated in a low gradation range suitable for human visibility.
  • the second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic is 0.2% or more and 10% or less of the maximum gradation that can be displayed in each pixel. It is a voltage corresponding to the gradation.
  • a voltage corresponding to a gradation of 0.2% or more of the maximum gradation is applied as the second signal voltage corresponding to the low gradation region.
  • the correction parameter can be calculated in a low gradation range that matches the human visibility.
  • the representative voltage-luminance characteristic is a voltage-luminance characteristic for any one of a plurality of pixels included in the display panel.
  • the representative voltage-luminance characteristic may be a voltage-luminance characteristic for any one of a plurality of pixels included in the display panel.
  • a function representing the representative voltage-luminance characteristic can be easily obtained.
  • the representative voltage-luminance characteristic is a characteristic that is commonly set for the entire display panel including the plurality of pixels, and is an averaged voltage-luminance characteristic of each pixel included in the display panel. There may be.
  • the representative voltage-luminance characteristic is set in common for the entire display panel including the plurality of pixels, and is obtained by averaging the voltage-luminance characteristics of each pixel included in the display panel. Accordingly, the correction parameter is obtained so that the luminance of each pixel included in the display panel has a representative voltage-luminance characteristic common to the entire display panel.
  • the video signal is corrected using the correction parameter, The brightness of light emitted from each pixel can be made uniform.
  • the display panel is divided into a plurality of divided regions, and the representative voltage-luminance characteristics common to a plurality of pixels included in each of the plurality of divided regions are expressed for each of the divided regions.
  • a function is obtained, and in the third step, the luminance of the pixels included in the predetermined divided region measured in the second step is converted into a function representing the representative voltage-luminance characteristics of the predetermined divided region.
  • the first correction parameter is obtained such that the first reference luminance obtained when the signal voltage is input, and is included in the predetermined divided area measured in the fifth step in the sixth step.
  • the display panel including the plurality of pixels is divided into a plurality of divided regions, and the representative voltage-luminance characteristics common to the pixels included in each of the plurality of divided regions are set for each of the divided regions. To do. Then, the first correction parameter and the second correction parameter are obtained so that the luminance of the pixels included in the predetermined divided region has a representative voltage-luminance characteristic of the predetermined divided region.
  • the light emitting element included in the pixel emits one of red, green, and blue colors
  • the first correction is performed for each of the red, green, and blue colors
  • the second correction parameter is obtained for each of the red, green, and blue colors.
  • the first correction parameter and the second correction parameter are obtained for each color of red, green, and blue. Thereby, it can correct
  • the first correction parameter obtained in the third step and the second correction parameter obtained in the sixth step are further written in a predetermined memory used for the display panel. 7 steps are included.
  • the obtained first correction parameter and the second correction parameter are written in a predetermined memory used for the display panel.
  • the correction accuracy in the low gradation region can be improved.
  • luminance unevenness of the display panel recognized by human eyes can be reduced.
  • the present invention can be realized not only as a method for manufacturing such an organic EL display device, but also as an organic EL display device manufactured using the method for manufacturing the organic EL display device. .
  • an organic EL display device manufacturing apparatus that realizes the method of manufacturing the organic EL display device, a program that executes processing performed by a processing unit included in the organic EL display device manufacturing apparatus, and a storage medium that stores the program can be realized.
  • a correction parameter determination method included in the method of manufacturing the organic EL display device, a correction parameter determination device that realizes the correction parameter determination method, and a process performed by a processing unit included in the correction parameter determination device are executed. It can also be realized as a program to be executed and a storage medium for storing the program.
  • FIG. 1 is a block diagram showing a configuration of an organic EL display device 1 and an organic EL display device manufacturing apparatus 2 according to an embodiment of the present invention.
  • the organic EL display device 1 is a device that displays an image by a light emitting element, and includes a control circuit 10 and a display panel 20.
  • the control circuit 10 controls the video signal to be displayed on the display panel 20 and displays the video on the display panel 20. A detailed description of the control circuit 10 will be described later.
  • the display panel 20 includes a display unit 21, a scanning line driving circuit 22, and a data line driving circuit 23, and based on a signal from the control circuit 10 input to the scanning line driving circuit 22 and the data line driving circuit 23, an image is displayed. Is displayed on the display unit 21.
  • the display unit 21 includes a plurality of pixels 100 arranged in a matrix. A detailed description of the display panel 20 will be described later.
  • the organic EL display device manufacturing apparatus 2 is an apparatus for manufacturing an organic EL display device that can reduce unevenness in luminance of the display panel while shortening the measurement time.
  • the organic EL display device manufacturing apparatus 2 includes a correction parameter determination device 30 and a measurement device 40.
  • the measuring device 40 is a measuring device that can measure the luminance of light emitted from the plurality of pixels 100 included in the display unit 21.
  • the measuring device 40 is an image sensor such as a CCD (Charge Coupled Device) image sensor, and can measure the luminance of all the pixels 100 of the display unit 21 with high accuracy by one imaging. it can.
  • the measuring device 40 is not limited to an image sensor, and any measuring device may be used as long as it can measure the luminance of the pixel 100.
  • the correction parameter determination device 30 is a device that determines correction parameters for equalizing the luminance of the plurality of pixels 100 included in the display unit 21 based on the luminance of each pixel 100 measured by the measurement device 40. Further, the correction parameter determination device 30 outputs the determined correction parameter to the control circuit 10 of the organic EL display device 1. A detailed description of the correction parameter determination device 30 will be described later.
  • FIG. 2 is a diagram showing a circuit configuration of the pixel 100 included in the display unit 21 of the display panel 20 according to the present embodiment and a connection with peripheral circuits thereof.
  • the pixel 100 is one pixel included in the display unit 21 and has a function of emitting light by a signal voltage supplied via a data line. As shown in the figure, the pixel 100 includes a light emitting element 110, a driving transistor 120, a switching transistor 130, a storage capacitor 140, a scanning line 24, a data line 25, and a power supply line 151.
  • the peripheral circuit of the pixel 100 includes a power source 150 and a power source 160 in addition to the scanning line driving circuit 22 and the data line driving circuit 23.
  • the light emitting element 110 is an organic EL (electroluminescence) element that emits one of red, green, and blue colors. Specifically, the light emitting element 110 has an anode connected to one of a source and a drain of the driving transistor 120 and a cathode connected to the power source 160. The light emitting element 110 has a function of emitting light when a current driven by the driving transistor 120 flows. That is, current is supplied to the light emitting element 110 through the power supply line 151, and the light emitting element 110 emits light.
  • the drive transistor 120 is a voltage-driven drive element that controls the supply of current to the light emitting element 110.
  • the driving transistor 120 has a gate connected to the data line 25 through the switching transistor 130, one of the source and the drain connected to the light emitting element 110, and the other of the source and the drain connected to the power supply 150. Yes.
  • the drive transistor 120 has a function of converting the signal voltage supplied from the data line 25 into a signal current corresponding to the magnitude thereof.
  • an N-type transistor is illustrated as the drive transistor 120, but the drive transistor 120 is not limited to an N-type transistor, and may be a P-type transistor.
  • the switching transistor 130 has a gate connected to the scanning line 24, one of the source and the drain connected to the data line 25, and the other of the source and the drain connected to the gate of the driving transistor 120.
  • the switching transistor 130 switches between conduction and non-conduction between the data line 25 and the gate of the driving transistor 120. That is, the switching transistor 130 has a function of supplying the signal voltage value of the data line 25 to the pixel 100 while the scanning line 24 is at a high level.
  • the holding capacitor 140 is a capacitor that accumulates electric charges.
  • the storage capacitor 140 is connected between one of the source and drain of the driving transistor 120 and the gate of the driving transistor 120. That is, a current corresponding to the charge accumulated in the storage capacitor 140 is caused to flow from the power supply line 151 to the light emitting element 110 by the driving transistor 120.
  • the power supply 150 is a constant voltage source for the drive transistor 120, and is set to 10 V, for example.
  • the power supply 160 is a constant voltage source of the light emitting element 110 and is grounded, for example. In the present embodiment, the potential of the power source 150 is set higher than the potential of the power source 160.
  • the scanning line driving circuit 22 supplies a scanning signal to each scanning line 24 of the plurality of pixels 100. That is, the scanning line driving circuit 22 is connected to a plurality of scanning lines 24 for supplying a scanning signal to each of the plurality of pixels 100, and has a function of controlling conduction / non-conduction of the switching transistor 130 of the pixel 100. Have.
  • the data line driving circuit 23 supplies a signal voltage to each data line 25 of the plurality of pixels 100. That is, the data line driving circuit 23 is connected to a plurality of data lines 25 for supplying a signal voltage to each of the plurality of pixels 100 and has a function of determining a signal current flowing through the driving transistor 120.
  • FIG. 3 is a block diagram showing a functional configuration of the control circuit 10 and the correction parameter determination device 30 according to the present embodiment.
  • the correction parameter determination device 30 is a device that determines a parameter for correcting the luminance, and includes a measurement control unit 31 and a correction parameter calculation unit 32.
  • the measurement control unit 31 is a processing unit that measures the luminance of light emitted from the plurality of pixels 100 included in the display panel 20 using the measurement device 40.
  • the measurement control unit 31 first obtains a function representing a representative voltage-luminance characteristic common to the display panel 20.
  • the representative voltage-luminance characteristic is a voltage-luminance characteristic that serves as a reference for making the luminance uniform.
  • the function representing the representative voltage-luminance characteristic is a function representing the relationship between the signal voltage supplied from the data line to the driving transistor 120 and the luminance of the light emitted from the target pixel 100 by the light emitting element 110. .
  • a function representing the representative voltage-luminance characteristic is determined in advance by measurement or the like.
  • the measurement control unit 31 causes the control circuit 10 to emit the plurality of pixels 100 included in the display panel 20 and causes the measurement device 40 to measure the luminance of light emitted from the plurality of pixels 100. The brightness is acquired.
  • the measurement control unit 31 drives the first signal voltage corresponding to one gradation belonging to the high gradation region of the representative voltage-luminance characteristic as a drive element included in each of the plurality of pixels 100.
  • the luminance applied to the transistor 120 and the luminance emitted from the plurality of pixels 100 is measured by using the measuring device 40, thereby acquiring the luminance.
  • the measurement control unit 31 applies a predetermined voltage calculated by the correction parameter calculation unit 32 to the drive transistor 120 included in the target pixel, and the luminance emitted from the target pixel is measured by the measurement device 40.
  • the brightness is obtained by measuring using
  • the correction parameter calculation unit 32 calculates the first correction parameter and the second correction parameter for the target pixel using the luminance acquired by the measurement control unit 31 and the function representing the representative voltage-luminance characteristics, and performs control.
  • the calculated correction parameter is output to the circuit 10. Then, the correction parameter calculation unit 32 stores the calculated correction parameter in the memory of the organic EL display device 1.
  • the correction parameter calculation unit 32 is configured such that when the target pixel emits light with the first signal voltage, the first signal voltage is input to a function representing the representative voltage-luminance characteristics. A first correction parameter that provides the first reference luminance obtained is obtained for the target pixel.
  • the first correction parameter is a first signal with respect to a voltage obtained when luminance when a target pixel is caused to emit light with the first signal voltage is input to the function representing the representative voltage-luminance characteristics. This is a gain indicating the voltage ratio.
  • the correction parameter calculation unit 32 obtains a first correction parameter for each of red, green, and blue colors emitted from the light emitting element 110.
  • the correction parameter calculation unit 32 obtains a predetermined voltage obtained by multiplying the second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic by the first correction parameter.
  • the driving transistor 120 since the driving transistor 120 is an N-type transistor, the second signal voltage is lower than the first signal voltage.
  • the driving transistor 120 is a P-type transistor, the second signal voltage is higher than the first signal voltage.
  • the correction parameter calculation unit 32 obtains the second luminance obtained when the second signal voltage is input to the function representing the representative voltage-luminance characteristics as the luminance when the target pixel emits light with a predetermined voltage.
  • a second correction parameter for obtaining the reference luminance is obtained for the target pixel.
  • the second correction parameter is an offset indicating a difference between a predetermined voltage and a voltage when the luminance of light emitted from the target pixel becomes the second reference luminance. Further, the correction parameter calculation unit 32 obtains a second correction parameter for each of red, green, and blue colors emitted from the light emitting element 110.
  • FIG. 4 is a diagram for explaining a representative voltage-luminance characteristic, a high gradation region, and a low gradation region according to the present embodiment.
  • the representative voltage-luminance characteristic is the voltage-luminance characteristic for any one of the plurality of pixels 100 included in the display panel 20. As a result, a function representing the representative voltage-luminance characteristic can be easily obtained.
  • the representative voltage-luminance characteristic is a characteristic set in common for the entire display panel 20 including a plurality of pixels 100, and is an averaged characteristic of the voltage-luminance characteristics of each pixel 100 included in the display panel 20. You may decide to be. In this case, since the correction parameter is obtained so that the luminance of each pixel 100 included in the display panel 20 has a representative voltage-luminance characteristic common to the entire display panel 20, the video signal is corrected using this correction parameter. The luminance of the light emitted from each pixel 100 can be made uniform.
  • (b) in the figure shows a representative voltage-luminance characteristic according to human visibility. That is, since the human eye has a sensitivity close to the LOG function, the representative voltage-luminance characteristic corresponding to the human visual sensitivity is a characteristic whose luminance is indicated by a curve of the LOG function.
  • the tuning range is small.
  • the first signal voltage corresponding to one gradation belonging to the high gradation region of the representative voltage-luminance characteristics is preferably a gradation of 20% to 100% of the maximum gradation that can be displayed in each pixel 100.
  • a high gradation range suitable for human visual sensitivity can calculate the correction parameter. Further, by applying a voltage corresponding to 30% of the maximum gradation as the first signal voltage, the correction error in the high gradation range can be most suppressed.
  • the second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic is preferably a gradation of 0% to 10% of the maximum gradation that can be displayed in each pixel 100. Is a voltage corresponding to.
  • the correction parameter can be calculated in a low gradation range suitable for human visibility.
  • the signal voltage is a voltage corresponding to a gradation of 0.2% or more and 10% or less of the maximum gradation.
  • the correction parameter can be set in a low gradation region that further matches human visibility. Can be calculated.
  • control circuit 10 is a processing unit for displaying an image on the display panel 20, and includes a control unit 11, a correction unit 12, and a storage unit 13.
  • the control unit 11 outputs a video signal to the display panel 20 and causes the display panel 20 to display the video. Specifically, the control unit 11 causes the plurality of pixels 100 included in the display panel 20 to emit light according to an instruction from the measurement control unit 31. In addition, the control unit 11 writes the first correction parameter and the second correction parameter for each pixel 100 calculated by the correction parameter calculation unit 32 in the storage unit 13.
  • the storage unit 13 stores a predetermined correction parameter input from the control unit 11 for each of the plurality of pixels 100. Specifically, the storage unit 13 stores a correction parameter table 13a including a first correction parameter and a second correction parameter for each pixel 100. Details of the correction parameter table 13a will be described later.
  • the correction unit 12 reads a predetermined correction parameter corresponding to each of the plurality of pixels 100 from the storage unit 13 with respect to the video signal input from the outside, and corrects the video signal corresponding to each of the plurality of pixels 100. . Then, the correction unit 12 outputs the corrected video signal to the control unit 11, and the control unit 11 outputs the corrected video signal to the display panel 20, thereby displaying the video on the display panel 20.
  • FIG. 5 is a diagram showing an example of the correction parameter table 13a according to the present embodiment.
  • the correction parameter table 13a is a data table including a correction parameter composed of a first correction parameter and a second correction parameter for each pixel.
  • the first correction parameter is indicated by gain G11 to gain Gmn
  • the second correction parameter is indicated by offset OS11 to offset OSmn. That is, the correction parameter table 13a stores correction parameters configured by (gain, offset) for each pixel 100 corresponding to the matrix of the display unit 21 (m rows ⁇ n columns).
  • FIG. 6 is a flowchart showing an example of an operation in which the correction parameter determination device 30 according to the present embodiment determines a correction parameter.
  • the measurement control unit 31 obtains a function representing a representative voltage-luminance characteristic (S102).
  • the measurement control unit 31 measures and acquires the luminance at the first signal voltage of the plurality of pixels 100 included in the display panel 20 (S104). In other words, the measurement control unit 31 causes the control unit 11 of the control circuit 10 to apply the first signal voltage to the driving transistor 120 included in each of the plurality of pixels 100, and the luminance of light emitted from the plurality of pixels 100. Is measured by the measuring device 40 to acquire the brightness.
  • the correction parameter calculation unit 32 calculates the first correction parameter using the luminance acquired by the measurement control unit 31 and a function representing the representative voltage-luminance characteristics (S106). Details of the process in which the correction parameter calculation unit 32 calculates the first correction parameter will be described later with reference to FIGS.
  • the correction parameter calculation unit 32 calculates a predetermined voltage obtained by multiplying the second signal voltage by the first correction parameter (S108).
  • the measurement control unit 31 causes the control unit 11 of the control circuit 10 to apply a predetermined voltage to the drive transistor 120 included in each of the plurality of pixels 100, thereby increasing the luminance of light emitted from the plurality of pixels 100.
  • the luminance is acquired by causing the measurement device 40 to measure (S110).
  • the correction parameter calculation unit 32 calculates the second correction parameter using the luminance acquired by the measurement control unit 31 and a function representing the representative voltage-luminance characteristics (S112). Details of the process in which the correction parameter calculation unit 32 calculates the second correction parameter will be described later with reference to FIGS.
  • the above process is performed about each color of red, green, and blue which the light emitting element 110 light-emits. That is, the measurement control unit 31 measures and acquires the luminance at the first signal voltage and the predetermined voltage of the plurality of pixels 100 for each of the red, green, and blue colors. Then, the correction parameter calculation unit 32 obtains a first correction parameter and a second correction parameter for each of the red, green, and blue colors. Then, the correction parameter calculation unit 32 outputs the calculated correction parameters for the red, green, and blue colors to the control unit 11, and causes the control unit 11 to write the correction parameters in the storage unit 13.
  • the correction unit 12 sets correction parameters corresponding to each of the plurality of pixels 100 from the storage unit 13 with respect to the video signal input from the outside. It reads out and correct
  • the first correction parameter and the second correction parameter are written in the storage unit 13 which is a predetermined memory used for the display panel 20. Accordingly, the video signal input to each pixel 100 is corrected using the first correction parameter and the second correction parameter stored in the predetermined memory, thereby improving the correction accuracy in the low gradation region. be able to. As a result, the luminance unevenness of the display panel 20 recognized by human eyes can be reduced.
  • FIG. 7 is a flowchart illustrating an example of a process in which the correction parameter calculation unit 32 according to the present embodiment calculates the first correction parameter.
  • FIG. 8 is a diagram for explaining a process in which the correction parameter calculation unit 32 according to the present embodiment calculates the first correction parameter.
  • the curve A shown in the figure is a graph showing the representative voltage-luminance characteristics
  • the curve B is a graph showing the voltage-luminance characteristics of the target pixel
  • the curve C is the first correction parameter.
  • 6 is a graph showing the voltage-luminance characteristics after the curve B is corrected by.
  • the correction parameter calculation unit 32 obtains the first luminance obtained when the first signal voltage is input to the function representing the representative voltage-luminance characteristics when the target pixel emits light with the first signal voltage.
  • a first correction parameter for obtaining the reference luminance is obtained for the target pixel. That is, as shown in FIG. 8, the correction parameter calculation unit 32 changes the curve B so that the curve B indicating the voltage-luminance characteristics of the target pixel approaches the curve A indicating the representative voltage-luminance characteristics.
  • a gain which is a first correction parameter to be corrected to C is calculated.
  • the correction parameter calculation unit 32 inputs the luminance when the target pixel emits light with the first signal voltage to the function representing the representative voltage-luminance characteristics.
  • a gain calculation voltage which is a voltage obtained in this case is calculated (S202).
  • the correction parameter calculation unit 32 is a voltage obtained when the luminance Lh when the target pixel is caused to emit light with the first signal voltage Vdata_h is input to the curve A.
  • the gain calculation voltage Vdata_hk is calculated.
  • the gain G is a numerical value indicating the ratio of the first signal voltage Vdata_h to the gain calculation voltage Vdata_hk.
  • the correction parameter calculation unit 32 may calculate the gain G by a method other than the above, for example, the luminance difference ⁇ Lh between the luminance Lh and the first reference luminance shown in FIG.
  • the gain G may be calculated by calculating ⁇ Vh using mh.
  • the correction parameter calculation unit 32 stores the first correction parameter in the memory of the organic EL display device 1 (S206). Specifically, the correction parameter calculation unit 32 outputs the first correction parameter to the control unit 11 to cause the control unit 11 to write the first correction parameter to the storage unit 13 and update the correction parameter table 13a.
  • FIG. 9 is a flowchart illustrating an example of processing in which the correction parameter calculation unit 32 according to the present embodiment calculates the second correction parameter.
  • FIG. 10 is a diagram for explaining a process in which the correction parameter calculation unit 32 according to the present embodiment calculates the second correction parameter.
  • a curve A shown in the figure is a graph showing a representative voltage-luminance characteristic
  • a curve C is a curve after the curve showing the voltage-luminance characteristic of a target pixel is corrected by the first correction parameter. It is a graph which shows a voltage-luminance characteristic
  • the curve D is a graph which shows the voltage-luminance characteristic after the curve C is correct
  • the correction parameter calculation unit 32 uses the second signal voltage multiplied by the first correction parameter as a function that represents the representative voltage-luminance characteristics when the target pixel emits light with a predetermined voltage.
  • a second correction parameter for obtaining a second reference luminance obtained when a signal voltage is input is obtained for a target pixel. That is, as shown in FIG. 10, the correction parameter calculation unit 32 is an offset that is a second correction parameter for correcting the curve C to the curve D so that the curve C approaches the curve A indicating the representative voltage-luminance characteristics. Is calculated.
  • the correction parameter calculation unit 32 calculates the luminance difference between the luminance when the target pixel emits light with a predetermined voltage and the second reference luminance. (S302). That is, as shown in FIG. 10, the correction parameter calculation unit 32 calculates the second reference luminance by inputting the second signal voltage to the function of the curve A representing the representative voltage-luminance characteristics, thereby obtaining the luminance Ll. And a luminance difference ⁇ Ll between the second reference luminance and the second reference luminance.
  • the offset OS is a numerical value indicating a difference ⁇ Vdata_l between a predetermined voltage and a voltage when the luminance of light emitted from the target pixel becomes the second reference luminance.
  • the correction parameter calculation unit 32 stores the second correction parameter in the memory of the organic EL display device 1 (S306). Specifically, the correction parameter calculation unit 32 outputs the second correction parameter to the control unit 11 so that the control unit 11 writes the second correction parameter in the storage unit 13 and updates the correction parameter table 13a.
  • the correction parameter determination device 30 determines the first correction parameter and the second correction parameter for all the pixels 100 included in the display panel 20.
  • the luminance of each pixel 100 in the high gradation region is matched with the luminance indicated by the representative voltage-luminance characteristics.
  • the second correction parameter for matching the luminance of each pixel 100 in the low gradation region with the second reference luminance is obtained, the correction accuracy of each pixel 100 in the low gradation region can be improved.
  • a correction error is generated by the amount of the second correction parameter, but the influence of luminance unevenness recognized by human eyes due to this correction error is small. Accordingly, it is possible to improve the correction accuracy in the low gradation range while preventing the influence of the correction error in the high gradation range. As a result, the luminance unevenness of the display panel 20 recognized by human eyes can be reduced.
  • the first correction parameter and the second correction parameter can be obtained by two luminance measurements, the number of times of luminance measurement required for calculating the conventional correction parameter can be reduced. As a result, the measurement tact from when the luminance of each pixel 100 is measured until the correction parameter is obtained can be shortened.
  • the first correction parameter and the second correction parameter are determined for the plurality of pixels 100 included in the display panel 20.
  • the display panel 20 is divided into a plurality of divided areas, and the first correction parameter and the second correction parameter are determined for each of the divided areas.
  • FIG. 11 is a block diagram showing a functional configuration of the control circuit 10 and the correction parameter determination device 50 according to a modification of the present embodiment. Note that the control circuit 10, the display panel 20, and the measuring device 40 have the same functions as the control circuit 10, the display panel 20, and the measuring device 40 shown in FIG.
  • the correction parameter determination device 50 includes an area dividing unit 51 in addition to the measurement control unit 31 and the correction parameter calculation unit 32.
  • the measurement control unit 31 and the correction parameter calculation unit 32 have the same functions as the measurement control unit 31 and the correction parameter calculation unit 32 shown in FIG.
  • the area dividing unit 51 gives an instruction to the measurement control unit 31 and the correction parameter calculating unit 32 so as to divide the display panel 20 into a plurality of divided areas and perform processing for each divided area.
  • the measurement control unit 31 acquires a function representing a representative voltage-luminance characteristic common to the plurality of pixels 100 included in each of the plurality of divided regions for each divided region in accordance with the instruction of the region dividing unit 51.
  • the correction parameter calculating unit 32 has a luminance when the pixel 100 included in the predetermined divided area measured by the measurement control unit 31 emits light with the first signal voltage.
  • a first correction parameter is obtained such that the first reference luminance obtained when the first signal voltage is input to the function representing the representative voltage-luminance characteristics of the region.
  • correction parameter calculation unit 32 is configured such that the luminance when the pixel 100 included in the predetermined divided region measured by the measurement control unit 31 emits light with a predetermined voltage according to the instruction of the region dividing unit 51 is the predetermined division.
  • a second correction parameter is obtained such that the second reference luminance is obtained when the second signal voltage is input to the function representing the representative voltage-luminance characteristics of the region.
  • FIG. 12 is a flowchart illustrating an example of an operation in which the correction parameter determination device 50 according to the modification of the present embodiment determines a correction parameter.
  • the area dividing unit 51 first divides the display panel 20 into a plurality of divided areas (S402).
  • the number of divided regions divided by the region dividing unit 51 is not particularly limited.
  • the region dividing unit 51 divides the display panel 20 into 16 divided regions ⁇ 26 divided regions.
  • the measurement control unit 31 acquires a function representing the representative voltage-luminance characteristics for each divided region (S404).
  • the measurement control unit 31 measures and acquires the luminance at the first signal voltage of the plurality of pixels 100 included in all the divided regions (S406).
  • the measurement control unit 31 simultaneously obtains the luminance of the plurality of pixels 100 by causing the plurality of pixels 100 included in all the divided regions to emit light simultaneously with the first signal voltage.
  • the correction parameter calculation unit 32 calculates the first correction parameter for the plurality of pixels 100 included in all the divided regions (S408).
  • the correction parameter calculation unit 32 calculates a predetermined voltage obtained by multiplying the second signal voltage by the first correction parameter for the plurality of pixels 100 included in all the divided regions (S410).
  • the measurement control unit 31 measures and acquires the luminance at the predetermined voltage for the plurality of pixels 100 included in all the divided regions (S412). That is, the measurement control unit 31 simultaneously acquires the luminance of the plurality of pixels 100 by causing the plurality of pixels 100 included in all the divided regions to simultaneously emit light at the predetermined voltage.
  • the correction parameter calculation unit 32 calculates the second correction parameter for the plurality of pixels 100 included in all the divided regions (S414).
  • the processing for determining the correction parameter by the correction parameter determination device 50 ends.
  • the display panel 20 including a plurality of pixels 100 is divided into a plurality of divided regions, and each divided region is divided into the pixels 100 included in each of the plurality of divided regions.
  • a common representative voltage-luminance characteristic may be set to obtain the first correction parameter and the second correction parameter. Thereby, for example, it is possible to obtain a correction parameter that smoothes the luminance change between the adjacent pixels only in the region where the luminance unevenness occurs because the luminance change between the adjacent pixels is intense.
  • the organic EL display device 1 that can reduce the luminance unevenness of the display panel 20 while shortening the measurement time.
  • the organic EL display device 1 is incorporated in a thin flat TV as shown in FIG.
  • a thin flat TV including the organic EL display device 1 capable of reducing the luminance unevenness of the display panel 20 while shortening the measurement time is realized.
  • the manufacturing method of the organic EL display device 1 according to the present invention has been described using the above-described embodiment and its modifications, the present invention is not limited to this.
  • the correction parameter determination device 30 determines the first correction parameter and the second correction parameter for all the pixels 100 included in the display panel 20. However, the correction parameter determination device 30 may determine the first correction parameter and the second correction parameter for only some of the pixels 100 included in the display panel 20.
  • the correction parameter determination device 30 determines the first correction parameter and the second correction parameter for all the divided areas included in the display panel 20. However, the correction parameter determination device 30 may determine the first correction parameter and the second correction parameter for only some of the divided areas included in the display panel 20.
  • the correction parameter calculation unit 32 obtains the first correction parameter and the second correction parameter for each of red, green, and blue colors emitted from the light emitting element 110. did. However, the correction parameter calculation unit 32 may obtain the first correction parameter and the second correction parameter only for any one of red, green, and blue, or only for two colors. .
  • the correction parameter calculation unit 32 stores the calculated first correction parameter and second correction parameter in the storage unit 13.
  • the correction parameter calculation unit 32 may end the process without causing the storage unit 13 to store the first correction parameter and the second correction parameter.
  • the correction parameter is determined from the relationship between the voltage and the luminance in each pixel by using the voltage-luminance characteristics in each pixel.
  • the correction parameter is determined from the relationship between the voltage and current in each pixel by using the voltage-current characteristics of each pixel using the value of the current flowing through the light emitting element 110 instead of the luminance. It may be. Since the luminance and the current are in a proportional relationship, the correction parameter can be determined by a similar method by replacing the luminance in the present embodiment and its modification with the current.
  • the present invention is particularly useful for a method for manufacturing an organic EL flat panel display incorporating an organic EL display device, and a method for manufacturing an organic EL display device capable of reducing luminance unevenness of the display panel while shortening the measurement time. And so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

The disclosed organic EL display device manufacturing method can reduce brightness irregularities in a display panel while reducing measurement times. Said method includes: a first step (S102) in which a representative function that indicates representative voltage-brightness characteristics is obtained; a second step (S104) in which a brightness produced by a first signal, which is in a high-level range, is measured; a third step (S106) in which a first correction parameter is determined such that the brightness produced by the first signal becomes equal to a first reference brightness obtained by inputting the first signal voltage to the representative function; a fourth step (S108) in which a prescribed voltage is obtained by multiplying the first correction parameter by a second signal voltage, which is in a low-level range; a fifth step (S110) in which a brightness produced by said prescribed voltage is measured; and a sixth step (S112) in which a second correction parameter is determined such that the brightness produced by the prescribed voltage becomes equal to a second reference brightness obtained by inputting the second signal voltage to the representative function.

Description

有機EL表示装置の製造方法及び有機EL表示装置Method for manufacturing organic EL display device and organic EL display device
 本発明は、有機EL表示装置の製造方法及び有機EL表示装置に関し、特に、アクティブマトリクス型の有機EL表示装置の製造方法及び有機EL表示装置に関する。 The present invention relates to a method for manufacturing an organic EL display device and an organic EL display device, and more particularly, to a method for manufacturing an active matrix organic EL display device and an organic EL display device.
 電流量に応じて発光強度が制御される電流駆動型の発光素子を用いた画像表示装置として、有機EL素子(OLED:Organic Light Emitting Diode)を用いた画像表示装置(有機EL表示装置)が知られている。この有機EL表示装置は、薄型軽量であるとともに高速応答が可能であることから、視野角特性が良好で、消費電力が少ない高画質・高性能の薄型表示装置として注目されている。 An image display device (organic EL display device) using an organic EL element (OLED: Organic Light Emitting Diode) is known as an image display device using a current-driven light emitting element whose emission intensity is controlled according to the amount of current. It has been. Since this organic EL display device is thin and lightweight and can respond at high speed, it has been attracting attention as a high-quality and high-performance thin display device with good viewing angle characteristics and low power consumption.
 有機EL表示装置では、通常、画素を構成する有機EL素子がマトリクス状に配置される。複数の行電極(走査線)と複数の列電極(データ線)との交点に有機EL素子を設け、選択した行電極と複数の列電極との間にデータ信号に相当する電圧を印加するようにして有機EL素子を駆動するものをパッシブマトリクス型の有機EL表示装置と呼ぶ。 In an organic EL display device, organic EL elements constituting pixels are usually arranged in a matrix. An organic EL element is provided at the intersection of a plurality of row electrodes (scanning lines) and a plurality of column electrodes (data lines), and a voltage corresponding to a data signal is applied between the selected row electrodes and the plurality of column electrodes. A device that drives an organic EL element is called a passive matrix organic EL display device.
 一方、複数の走査線と複数のデータ線との交点に薄膜トランジスタ(TFT:Thin Film Transistor)を設け、このTFTに駆動トランジスタのゲートを接続し、選択した走査線を通じてこのTFTをオンさせてデータ線からデータ信号を駆動トランジスタに入力し、その駆動トランジスタによって有機EL素子を駆動するものをアクティブマトリクス型の有機EL表示装置と呼ぶ。 On the other hand, a thin film transistor (TFT: Thin Film Transistor) is provided at the intersection of a plurality of scanning lines and a plurality of data lines, a gate of a driving transistor is connected to the TFT, and the TFT is turned on through the selected scanning line to thereby turn on the data line. A data signal is input to a drive transistor and an organic EL element is driven by the drive transistor is called an active matrix organic EL display device.
 各行電極(走査線)を選択している期間のみ、それに接続された有機EL素子が発光するパッシブマトリクス型の有機ELディスプレイとは異なり、アクティブマトリクス型の有機ELディスプレイでは、次の走査(選択)まで有機EL素子を発光させることが可能であるため、デューティ比(走査線数)が上がってもディスプレイの輝度減少を招くようなことはない。従って、低電圧で駆動できるので、低消費電力化が可能となる。しかしながら、アクティブマトリクス型の有機EL表示装置では、駆動トランジスタや有機EL素子の特性のばらつきに起因して、同じデータ信号を与えても、各画素において有機EL素子の輝度が異なり、輝度ムラが発生するという欠点がある。 Unlike a passive matrix type organic EL display in which an organic EL element connected to each row electrode (scanning line) emits light only during a period in which each row electrode (scanning line) is selected, the active matrix type organic EL display performs the next scanning (selection). Therefore, even if the duty ratio (the number of scanning lines) is increased, the luminance of the display is not reduced. Accordingly, since it can be driven at a low voltage, it is possible to reduce power consumption. However, in an active matrix organic EL display device, even if the same data signal is given due to variations in characteristics of drive transistors and organic EL elements, the luminance of the organic EL elements differs in each pixel, resulting in uneven brightness. There is a drawback of doing.
 そこで、従来、多段階の入力信号電圧に対する電流や輝度を測定して、電圧-電流特性又は電圧-輝度特性の補正を行うことで、各画素の輝度を均一化して輝度ムラを低減する方法が提案されている。例えば、特許文献1では、画素ごとの電圧-電流特性(入力信号電圧と有機EL素子に流れる電流との関係を示す特性)を測定して、各画素の輝度を補正する方法が開示されている。これにより、輝度ムラが低減され、均一な表示を可能にすることができる。 Therefore, conventionally, there is a method of measuring the current and luminance with respect to the input signal voltage in multiple stages and correcting the voltage-current characteristic or the voltage-luminance characteristic, thereby uniformizing the luminance of each pixel and reducing luminance unevenness. Proposed. For example, Patent Document 1 discloses a method of correcting the luminance of each pixel by measuring the voltage-current characteristic (characteristic indicating the relationship between the input signal voltage and the current flowing through the organic EL element) for each pixel. . Thereby, luminance unevenness can be reduced and uniform display can be achieved.
特開2005-284172号公報JP 2005-284172 A
 しかしながら、従来の輝度ムラを低減する方法では、多数回の測定を行う必要があるため、測定に時間を要するという問題がある。すなわち、電圧-電流特性又は電圧-輝度特性は曲線であるため、従来の輝度ムラを低減する方法では、入力信号電圧に対する電流又は輝度を少なくとも3回以上測定する必要があり、好ましくは、6~8回の測定が必要である。 However, the conventional method for reducing luminance unevenness has a problem that it takes time for measurement because it is necessary to perform measurement many times. That is, since the voltage-current characteristic or the voltage-luminance characteristic is a curve, in the conventional method for reducing the luminance unevenness, it is necessary to measure the current or the luminance with respect to the input signal voltage at least three times, preferably 6 to Eight measurements are required.
 そこで、本発明は、このような問題に鑑みてなされたものであり、測定時間を短縮しつつ、表示パネルの輝度ムラを低減することができる有機EL表示装置の製造方法及び有機EL表示装置を提供することを目的とする。 Therefore, the present invention has been made in view of such a problem, and provides a method for manufacturing an organic EL display device and an organic EL display device capable of reducing luminance unevenness of a display panel while reducing measurement time. The purpose is to provide.
 上記目的を達成するために、本発明の一態様に係る有機EL表示装置の製造方法は、発光素子と前記発光素子への電流の供給を制御する電圧駆動の駆動素子とを含む画素を複数含む表示パネルに共通する代表電圧-輝度特性を表す関数を取得する第1ステップと、前記代表電圧-輝度特性の高階調域に属する1階調に対応する第1の信号電圧を前記複数の画素の各々に含まれる駆動素子に印加し、前記複数の画素から発光される輝度を所定の測定装置を用いて測定する第2ステップと、対象となる画素を前記第1の信号電圧で発光させたときの輝度が、前記代表電圧-輝度特性を表す関数に前記第1の信号電圧を入力した場合に得られる第1の基準輝度となるような第1の補正パラメータを前記対象となる画素について求める第3ステップと、前記代表電圧-輝度特性の低階調域に属する1階調に対応する第2の信号電圧に前記第1の補正パラメータを乗算した所定の電圧を求める第4ステップと、前記対象となる画素に含まれる駆動素子に前記所定の電圧を印加し、前記対象となる画素から発光される輝度を前記所定の測定装置を用いて測定する第5ステップと、前記対象となる画素を前記所定の電圧で発光させたときの輝度が、前記代表電圧-輝度特性を表す関数に前記第2の信号電圧を入力した場合に得られる第2の基準輝度となるような第2の補正パラメータを前記対象となる画素について求める第6ステップと、を含み、前記第1の補正パラメータは、前記第1の信号電圧の、前記対象となる画素を前記第1の信号電圧で発光させたときの輝度を前記代表電圧-輝度特性を表す関数に入力した場合に得られる電圧に対する比を示したゲインであり、前記第2の補正パラメータは、前記所定の電圧と、前記対象となる画素から発光される光の輝度が前記第2の基準輝度となる場合の電圧との差を示したオフセットである。 In order to achieve the above object, a method for manufacturing an organic EL display device according to one embodiment of the present invention includes a plurality of pixels each including a light-emitting element and a voltage-driven drive element that controls supply of current to the light-emitting element. A first step of obtaining a function representative of a representative voltage-luminance characteristic common to the display panel; and a first signal voltage corresponding to one gradation belonging to a high gradation region of the representative voltage-luminance characteristic. A second step in which the luminance emitted from the plurality of pixels is measured using a predetermined measuring device, and the target pixel is caused to emit light at the first signal voltage. The first correction parameter is obtained for the target pixel so that the luminance becomes the first reference luminance obtained when the first signal voltage is input to the function representing the representative voltage-luminance characteristic. 3 steps A fourth step of obtaining a predetermined voltage obtained by multiplying the second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic by the first correction parameter; and the target pixel A fifth step of applying the predetermined voltage to the driving element included in the pixel and measuring the luminance emitted from the target pixel by using the predetermined measuring device; and setting the target pixel to the predetermined voltage The second correction parameter is set so that the luminance when the light is emitted at the second reference luminance obtained when the second signal voltage is input to the function representing the representative voltage-luminance characteristic is the target. And the first correction parameter is a luminance of the first signal voltage when the target pixel is caused to emit light at the first signal voltage. Voltage-luminance characteristics Is a gain indicating a ratio to a voltage obtained when the function is input to the function, and the second correction parameter includes the predetermined voltage and the luminance of light emitted from the target pixel. This is an offset indicating the difference from the voltage when the reference luminance is.
 本発明に係る有機EL表示装置の製造方法によれば、測定時間を短縮しつつ、表示パネルの輝度ムラを低減することができる有機EL表示装置を製造することができる。 According to the method for manufacturing an organic EL display device according to the present invention, it is possible to manufacture an organic EL display device capable of reducing luminance unevenness of the display panel while shortening the measurement time.
図1は、本発明の実施の形態に係る有機EL表示装置及び有機EL表示装置製造装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an organic EL display device and an organic EL display device manufacturing apparatus according to an embodiment of the present invention. 図2は、本実施の形態に係る表示パネルの表示部が有する画素の回路構成及びその周辺回路との接続を示す図である。FIG. 2 is a diagram illustrating a circuit configuration of a pixel included in the display unit of the display panel according to the present embodiment and a connection with the peripheral circuit. 図3は、本実施の形態に係る制御回路及び補正パラメータ決定装置の機能構成を示すブロック図である。FIG. 3 is a block diagram showing a functional configuration of the control circuit and the correction parameter determination device according to the present embodiment. 図4は、本実施の形態に係る代表電圧-輝度特性、高階調域及び低階調域を説明するための図である。FIG. 4 is a diagram for explaining representative voltage-luminance characteristics, a high gradation region, and a low gradation region according to the present embodiment. 図5は、本実施の形態に係る補正パラメータテーブルの一例を示す図である。FIG. 5 is a diagram illustrating an example of the correction parameter table according to the present embodiment. 図6は、本実施の形態に係る補正パラメータ決定装置が補正パラメータを決定する動作の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of an operation in which the correction parameter determination device according to the present embodiment determines a correction parameter. 図7は、本実施の形態に係る補正パラメータ算出部が第1の補正パラメータを算出する処理の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of processing in which the correction parameter calculation unit according to the present embodiment calculates the first correction parameter. 図8は、本実施の形態に係る補正パラメータ算出部が第1の補正パラメータを算出する処理を説明するための図である。FIG. 8 is a diagram for explaining processing in which the correction parameter calculation unit according to the present embodiment calculates the first correction parameter. 図9は、本実施の形態に係る補正パラメータ算出部が第2の補正パラメータを算出する処理の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of a process in which the correction parameter calculation unit according to the present embodiment calculates the second correction parameter. 図10は、本実施の形態に係る補正パラメータ算出部が第2の補正パラメータを算出する処理を説明するための図である。FIG. 10 is a diagram for explaining processing in which the correction parameter calculation unit according to the present embodiment calculates the second correction parameter. 図11は、本実施の形態の変形例に係る制御回路及び補正パラメータ決定装置の機能構成を示すブロック図である。FIG. 11 is a block diagram illustrating a functional configuration of a control circuit and a correction parameter determination device according to a modification of the present embodiment. 図12は、本実施の形態の変形例に係る補正パラメータ決定装置が補正パラメータを決定する動作の一例を示すフローチャートである。FIG. 12 is a flowchart illustrating an example of an operation in which the correction parameter determination device according to the modification of the present embodiment determines a correction parameter. 図13は、本発明に係る有機EL表示装置の製造方法により製造される有機EL表示装置を内蔵した薄型フラットTVの外観図である。FIG. 13 is an external view of a thin flat TV incorporating an organic EL display device manufactured by the method for manufacturing an organic EL display device according to the present invention.
 上記目的を達成するために、本発明の一態様に係る有機EL表示装置の製造方法は、発光素子と前記発光素子への電流の供給を制御する電圧駆動の駆動素子とを含む画素を複数含む表示パネルに共通する代表電圧-輝度特性を表す関数を取得する第1ステップと、前記代表電圧-輝度特性の高階調域に属する1階調に対応する第1の信号電圧を前記複数の画素の各々に含まれる駆動素子に印加し、前記複数の画素から発光される輝度を所定の測定装置を用いて測定する第2ステップと、対象となる画素を前記第1の信号電圧で発光させたときの輝度が、前記代表電圧-輝度特性を表す関数に前記第1の信号電圧を入力した場合に得られる第1の基準輝度となるような第1の補正パラメータを前記対象となる画素について求める第3ステップと、前記代表電圧-輝度特性の低階調域に属する1階調に対応する第2の信号電圧に前記第1の補正パラメータを乗算した所定の電圧を求める第4ステップと、前記対象となる画素に含まれる駆動素子に前記所定の電圧を印加し、前記対象となる画素から発光される輝度を前記所定の測定装置を用いて測定する第5ステップと、前記対象となる画素を前記所定の電圧で発光させたときの輝度が、前記代表電圧-輝度特性を表す関数に前記第2の信号電圧を入力した場合に得られる第2の基準輝度となるような第2の補正パラメータを前記対象となる画素について求める第6ステップと、を含み、前記第1の補正パラメータは、前記第1の信号電圧の、前記対象となる画素を前記第1の信号電圧で発光させたときの輝度を前記代表電圧-輝度特性を表す関数に入力した場合に得られる電圧に対する比を示したゲインであり、前記第2の補正パラメータは、前記所定の電圧と、前記対象となる画素から発光される光の輝度が前記第2の基準輝度となる場合の電圧との差を示したオフセットである。 In order to achieve the above object, a method for manufacturing an organic EL display device according to one embodiment of the present invention includes a plurality of pixels each including a light-emitting element and a voltage-driven drive element that controls supply of current to the light-emitting element. A first step of obtaining a function representative of a representative voltage-luminance characteristic common to the display panel; and a first signal voltage corresponding to one gradation belonging to a high gradation region of the representative voltage-luminance characteristic. A second step in which the luminance emitted from the plurality of pixels is measured using a predetermined measuring device, and the target pixel is caused to emit light at the first signal voltage. The first correction parameter is obtained for the target pixel so that the luminance becomes the first reference luminance obtained when the first signal voltage is input to the function representing the representative voltage-luminance characteristic. 3 steps A fourth step of obtaining a predetermined voltage obtained by multiplying the second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic by the first correction parameter; and the target pixel A fifth step of applying the predetermined voltage to the driving element included in the pixel and measuring the luminance emitted from the target pixel by using the predetermined measuring device; and setting the target pixel to the predetermined voltage The second correction parameter is set so that the luminance when the light is emitted at the second reference luminance obtained when the second signal voltage is input to the function representing the representative voltage-luminance characteristic is the target. And the first correction parameter is a luminance of the first signal voltage when the target pixel is caused to emit light at the first signal voltage. Voltage-luminance characteristics Is a gain indicating a ratio to a voltage obtained when the function is input to the function, and the second correction parameter includes the predetermined voltage and the luminance of light emitted from the target pixel. This is an offset indicating the difference from the voltage when the reference luminance is.
 前記各画素に供給される映像信号に対応する輝度を所定の基準輝度に補正するための補正パラメータであるゲイン及びオフセットを求める一例として、最小二乗法を用いる方法がある。この最小二乗法では、各画素について複数階調の輝度測定を行い、各測定で得られた各画素の輝度と代表電圧-輝度特性との輝度差に基づいて、所定の演算方法にてゲイン及びオフセットを求める。しかしながら、最小二乗法は、その性質上、少なくとも3階調、好ましくは5階調以上の階調数で各画素の輝度測定を行う必要があるので、各画素の輝度測定を行ってから補正パラメータを求めるまでに時間がかかるという問題がある。 As an example of obtaining a gain and an offset that are correction parameters for correcting the luminance corresponding to the video signal supplied to each pixel to a predetermined reference luminance, there is a method using a least square method. In this least square method, the luminance of a plurality of gradations is measured for each pixel, and the gain and the gain are calculated by a predetermined calculation method based on the luminance difference between the luminance of each pixel and the representative voltage-luminance characteristics obtained by each measurement. Find the offset. However, since the least square method has a characteristic that it is necessary to measure the luminance of each pixel with at least three gradations, preferably five gradations or more, the correction parameter is measured after measuring the luminance of each pixel. There is a problem that it takes time to seek.
 また、人間の目は、高階調側での輝度差よりも低階調側での輝度差を認識しやすく、低階調では表示パネルに筋状のムラ等が発生しやすくなるという性質があるため、高階調側よりも低階調側の補正精度が高い方が望ましい。しかしながら、通常、前記代表電圧-輝度特性と各画素の電圧-輝度特性との輝度差は高階調側になる程大きく、最小二乗法は、この高階調側での輝度差が最小となるようにゲイン及びオフセットを演算にて同時に求めるので、高階調側での補正誤差は小さくできるが、低階調側での補正誤差は高階調側に比べて大きくなるという問題もある。 In addition, the human eye is more likely to recognize the luminance difference on the low gradation side than the luminance difference on the high gradation side, and tends to cause streaky irregularities on the display panel at the low gradation. Therefore, it is desirable that the correction accuracy on the low gradation side is higher than that on the high gradation side. However, normally, the luminance difference between the representative voltage-luminance characteristic and the voltage-luminance characteristic of each pixel increases as it goes to the high gradation side, and the least square method is such that the luminance difference on the high gradation side is minimized. Since the gain and the offset are obtained simultaneously by calculation, the correction error on the high gradation side can be reduced, but the correction error on the low gradation side becomes larger than that on the high gradation side.
 そこで、本態様では、まず、高階調域に対応する第1の信号電圧を前記複数の画素の各々に含まれる駆動素子に印加して、1回目の輝度測定を行う。そして、対象となる画素を前記第1の信号電圧で発光させたときの輝度が、前記代表電圧-輝度特性を表す関数に前記第1の信号電圧を入力した場合に得られる第1の基準輝度となるような第1の補正パラメータを求める。 Therefore, in this aspect, first, the first signal voltage corresponding to the high gradation region is applied to the driving element included in each of the plurality of pixels, and the first luminance measurement is performed. The first reference luminance obtained when the target pixel emits light with the first signal voltage is obtained by inputting the first signal voltage to the function representing the representative voltage-luminance characteristics. A first correction parameter such that
 次に、低階調域に属する1階調に対応する第2の信号電圧に前記第1の補正パラメータを乗算した所定の電圧を求める。そして、前記対象となる画素に含まれる駆動素子に前記所定の電圧を印加し、2回目の輝度測定を行う。即ち、前記第2の信号電圧に前記3ステップで求めたゲインを乗算した所定の電圧を前記対象となる画素に印加しているので、前記高階調域において、各画素の輝度を前記代表電圧-輝度特性が示す輝度に一致させた状態で、低階調域に対応する各画素の輝度測定を行っている。 Next, a predetermined voltage obtained by multiplying the second signal voltage corresponding to one gradation belonging to the low gradation region by the first correction parameter is obtained. Then, the predetermined voltage is applied to the drive element included in the target pixel, and the second luminance measurement is performed. That is, since a predetermined voltage obtained by multiplying the second signal voltage by the gain obtained in the three steps is applied to the target pixel, the luminance of each pixel is set to the representative voltage − in the high gradation range. The luminance of each pixel corresponding to the low gradation range is measured in a state in which the luminance characteristics match.
 そして、その状態で測定された前記対象となる画素が、前記代表電圧-輝度特性を表す関数に前記第2の信号電圧を入力した場合に得られる第2の基準輝度となるような第2の補正パラメータを求める。 Then, a second reference luminance that is obtained when the target pixel measured in that state is the second reference luminance obtained when the second signal voltage is input to the function representing the representative voltage-luminance characteristic is obtained. A correction parameter is obtained.
 これにより、高階調域における各画素の輝度を前記代表電圧-輝度特性が示す輝度に一致させた状態で、低階調域における各画素の輝度を前記第2の基準輝度に一致させる第2の補正パラメータを求めるので、低階調域における各画素の補正精度を向上できる。高階調域では第2の補正パラメータの分だけ補正誤差が生じるが、この補正誤差に起因して人間の目が認識する輝度ムラの影響は小さい。従って、本態様では、高階調域における補正誤差の影響を受けるのを防ぎつつ低階調域における補正精度を向上できる。その結果、人間の目で認識される表示パネルの輝度ムラを低減することができる。 As a result, in a state in which the luminance of each pixel in the high gradation region matches the luminance indicated by the representative voltage-luminance characteristic, the second reference luminance in which the luminance of each pixel in the low gradation region matches the second reference luminance is obtained. Since the correction parameter is obtained, the correction accuracy of each pixel in the low gradation region can be improved. In the high gradation range, a correction error is generated by the amount of the second correction parameter, but the influence of luminance unevenness recognized by human eyes due to this correction error is small. Therefore, in this aspect, it is possible to improve the correction accuracy in the low gradation range while preventing the influence of the correction error in the high gradation range. As a result, luminance unevenness of the display panel recognized by human eyes can be reduced.
 また、2回の輝度測定で前記第1の補正パラメータ及び前記第2の補正パラメータを求めることができるので、従来の補正パラメータの算出に要する輝度測定の回数を低減できる。その結果、各画素の輝度測定を行ってから補正パラメータを求めるまでの測定タクトを短縮できる。 Moreover, since the first correction parameter and the second correction parameter can be obtained by two luminance measurements, the number of times of luminance measurement required for calculating the conventional correction parameter can be reduced. As a result, the measurement tact from when the luminance of each pixel is measured until the correction parameter is obtained can be shortened.
 これらにより、測定時間を短縮しつつ、表示パネルの輝度ムラを低減することができる有機EL表示装置を製造することができる。 Thus, it is possible to manufacture an organic EL display device capable of reducing luminance unevenness of the display panel while shortening the measurement time.
 また、好ましくは、前記代表電圧-輝度特性の高階調域に属する1階調に対応する第1の信号電圧は、各画素で表示可能な最大階調の20%以上100%以下の階調に対応する電圧である。 Preferably, the first signal voltage corresponding to one gradation belonging to the high gradation region of the representative voltage-luminance characteristic has a gradation of 20% to 100% of the maximum gradation that can be displayed in each pixel. Corresponding voltage.
 本態様によると、前記の高階調域に属する1階調に対応する第1の信号電圧として、最大階調の20%以上100%以下の階調域に属する1階調に対応する電圧を印加する。これにより、人間の視感度に合った高階調域にて補正パラメータを算出することができる。 According to this aspect, as the first signal voltage corresponding to one gradation belonging to the high gradation area, a voltage corresponding to one gradation belonging to the gradation area of 20% to 100% of the maximum gradation is applied. To do. As a result, the correction parameter can be calculated in a high gradation range suitable for human visibility.
 また、さらに好ましくは、前記代表電圧-輝度特性の高階調域に属する1階調に対応する第1の信号電圧は、各画素で表示可能な最大階調の30%の階調に対応する電圧である。 More preferably, the first signal voltage corresponding to one gradation belonging to the high gradation region of the representative voltage-luminance characteristic is a voltage corresponding to a gradation of 30% of the maximum gradation that can be displayed in each pixel. It is.
 本態様によると、前記高階調域に属する1階調に対応する第1の信号電圧として、最大階調の30%の階調に対応する電圧を印加する。この場合、高階調域における補正誤差を最も抑制できる。 According to this aspect, a voltage corresponding to a gradation of 30% of the maximum gradation is applied as the first signal voltage corresponding to one gradation belonging to the high gradation range. In this case, the correction error in the high gradation range can be most suppressed.
 また、好ましくは、前記代表電圧-輝度特性の低階調域に属する1階調に対応する第2の信号電圧は、各画素で表示可能な最大階調の0%以上10%以下の階調に対応する電圧である。 Preferably, the second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic is a gradation of 0% to 10% of the maximum gradation that can be displayed in each pixel. Is a voltage corresponding to.
 本態様によると、前記低階調域に属する1階調に対応する第2の信号電圧として、最大階調の0%以上10%以下の階調域に属する1階調に対応する電圧を印加する。これにより、人間の視感度に合った低階調域にて補正パラメータを算出することができる。 According to this aspect, as the second signal voltage corresponding to one gradation belonging to the low gradation range, a voltage corresponding to one gradation belonging to the gradation range of 0% to 10% of the maximum gradation is applied. To do. As a result, the correction parameter can be calculated in a low gradation range suitable for human visibility.
 また、さらに好ましくは、前記代表電圧-輝度特性の低階調域に属する1階調に対応する第2の信号電圧は、各画素で表示可能な最大階調の0.2%以上10%以下の階調に対応する電圧である。 More preferably, the second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic is 0.2% or more and 10% or less of the maximum gradation that can be displayed in each pixel. It is a voltage corresponding to the gradation.
 前記各画素で発光される最大階調の0.2%以下の階調は人間の目では視認できない。従って、本態様では、前記低階調域に対応する第2の信号電圧として、最大階調の0.2%以上の階調に対応する電圧を印加する。これにより、さらに人間の視感度に合った低階調域にて補正パラメータを算出することができる。 The gradation of 0.2% or less of the maximum gradation emitted by each pixel cannot be visually recognized by human eyes. Therefore, in this aspect, a voltage corresponding to a gradation of 0.2% or more of the maximum gradation is applied as the second signal voltage corresponding to the low gradation region. As a result, the correction parameter can be calculated in a low gradation range that matches the human visibility.
 また、好ましくは、前記代表電圧-輝度特性は、前記表示パネルに含まれる複数の画素のうちの任意の一画素についての電圧-輝度特性である。 Also preferably, the representative voltage-luminance characteristic is a voltage-luminance characteristic for any one of a plurality of pixels included in the display panel.
 本態様によると、前記代表電圧-輝度特性を、前記表示パネルに含まれる複数の画素のうちの任意の一画素についての電圧-輝度特性としてもよい。これにより、容易に、代表電圧-輝度特性を表す関数を取得することができる。 According to this aspect, the representative voltage-luminance characteristic may be a voltage-luminance characteristic for any one of a plurality of pixels included in the display panel. As a result, a function representing the representative voltage-luminance characteristic can be easily obtained.
 また、前記代表電圧-輝度特性は、前記複数の画素を含む表示パネル全体に共通して設定される特性であって、前記表示パネルに含まれる各画素の電圧-輝度特性を平均化した特性であってもよい。 The representative voltage-luminance characteristic is a characteristic that is commonly set for the entire display panel including the plurality of pixels, and is an averaged voltage-luminance characteristic of each pixel included in the display panel. There may be.
 本態様によると、前記代表電圧-輝度特性は、前記複数の画素を含む表示パネル全体に共通して設定され、前記表示パネルに含まれる各画素の電圧-輝度特性を平均化して求められる。これにより、前記表示パネルに含まれる各画素の輝度が、前記表示パネル全体に共通する代表電圧-輝度特性となるように補正パラメータを求めるので、この補正パラメータを用いて映像信号を補正した場合、各画素から発光される光の輝度を均一にできる。 According to this aspect, the representative voltage-luminance characteristic is set in common for the entire display panel including the plurality of pixels, and is obtained by averaging the voltage-luminance characteristics of each pixel included in the display panel. Accordingly, the correction parameter is obtained so that the luminance of each pixel included in the display panel has a representative voltage-luminance characteristic common to the entire display panel. When the video signal is corrected using the correction parameter, The brightness of light emitted from each pixel can be made uniform.
 また、前記第1ステップにおいて、前記表示パネルを複数の分割領域に分割し、前記分割領域毎に、前記複数の分割領域の各々に含まれる複数の画素に共通する前記代表電圧-輝度特性を表す関数を取得し、前記第3ステップにおいて、前記第2ステップで測定された前記所定の分割領域に含まれる画素の輝度が、前記所定の分割領域の代表電圧-輝度特性を表す関数に前記第1の信号電圧を入力した場合に得られる前記第1の基準輝度となるような前記第1の補正パラメータを求め、前記第6ステップにおいて、前記第5ステップで測定された前記所定の分割領域に含まれる画素の輝度が、前記所定の分割領域の代表電圧-輝度特性を表す関数に前記第2の信号電圧を入力した場合に得られる前記第2の基準輝度となるような前記第2の補正パラメータを求めることにしてもよい。 In the first step, the display panel is divided into a plurality of divided regions, and the representative voltage-luminance characteristics common to a plurality of pixels included in each of the plurality of divided regions are expressed for each of the divided regions. A function is obtained, and in the third step, the luminance of the pixels included in the predetermined divided region measured in the second step is converted into a function representing the representative voltage-luminance characteristics of the predetermined divided region. The first correction parameter is obtained such that the first reference luminance obtained when the signal voltage is input, and is included in the predetermined divided area measured in the fifth step in the sixth step. The second reference luminance obtained when the second signal voltage is input to a function representing a representative voltage-luminance characteristic of the predetermined divided region. It may be possible to obtain a positive parameter.
 本態様によると、前記複数の画素を含む表示パネルを複数の分割領域に分割し、前記分割領域毎に、前記複数の分割領域の各々に含まれる画素に共通する前記代表電圧-輝度特性を設定する。そして、前記所定の分割領域に含まれる画素の輝度が、前記所定の分割領域の代表電圧-輝度特性となるように前記第1の補正パラメータ及び前記第2の補正パラメータを求める。 According to this aspect, the display panel including the plurality of pixels is divided into a plurality of divided regions, and the representative voltage-luminance characteristics common to the pixels included in each of the plurality of divided regions are set for each of the divided regions. To do. Then, the first correction parameter and the second correction parameter are obtained so that the luminance of the pixels included in the predetermined divided region has a representative voltage-luminance characteristic of the predetermined divided region.
 これにより、例えば、隣接画素間の輝度変化が激しいために輝度ムラが発生している領域のみについて、当該隣接画素間の輝度変化が滑らかになるような補正パラメータを求めることができる。 Thereby, for example, it is possible to obtain a correction parameter that smoothes the luminance change between the adjacent pixels only for the region where the luminance unevenness occurs because the luminance change between the adjacent pixels is intense.
 また、好ましくは、前記画素に含まれる発光素子は、赤色,緑色,及び青色のいずれかの色を発光し、前記第3ステップでは、前記赤色、緑色、及び青色の各色について前記第1の補正パラメータを求め、前記第6ステップでは、前記赤色、緑色、及び青色の各色について前記第2の補正パラメータを求める。 Preferably, the light emitting element included in the pixel emits one of red, green, and blue colors, and in the third step, the first correction is performed for each of the red, green, and blue colors. In the sixth step, the second correction parameter is obtained for each of the red, green, and blue colors.
 本態様によると、赤色、緑色、及び青色の各色について前記第1の補正パラメータ及び前記第2の補正パラメータを求めるものである。これにより、赤色、緑色、及び青色の各色について、輝度が均一になるように補正を行うことができる。 According to this aspect, the first correction parameter and the second correction parameter are obtained for each color of red, green, and blue. Thereby, it can correct | amend so that a brightness | luminance may become uniform about each color of red, green, and blue.
 また、好ましくは、さらに、前記第3ステップで求められた前記第1の補正パラメータ及び前記第6ステップで求められた前記第2の補正パラメータを、前記表示パネルに用いられる所定のメモリに書き込む第7ステップを含む。 Preferably, the first correction parameter obtained in the third step and the second correction parameter obtained in the sixth step are further written in a predetermined memory used for the display panel. 7 steps are included.
 本態様によると、求められた前記第1の補正パラメータ及び前記第2の補正パラメータを、前記表示パネルに用いられる所定のメモリに書き込む。各画素に入力される映像信号を、この所定のメモリに格納された第1の補正パラメータ及び第2の補正パラメータを用いて補正することで、低階調域の補正精度を高めることができる。その結果、人間の目で認識される表示パネルの輝度ムラを低減することができる。 According to this aspect, the obtained first correction parameter and the second correction parameter are written in a predetermined memory used for the display panel. By correcting the video signal input to each pixel using the first correction parameter and the second correction parameter stored in the predetermined memory, the correction accuracy in the low gradation region can be improved. As a result, luminance unevenness of the display panel recognized by human eyes can be reduced.
 なお、本発明は、このような有機EL表示装置の製造方法として実現することができるだけでなく、その有機EL表示装置の製造方法を用いて製造された有機EL表示装置としても実現することができる。また、その有機EL表示装置の製造方法を実現する有機EL表示装置製造装置や、その有機EL表示装置製造装置に含まれる処理部が行う処理を実行させるプログラム、そのプログラムを格納する記憶媒体としても実現することができる。さらに、その有機EL表示装置の製造方法に含まれる補正パラメータの決定方法や、その補正パラメータの決定方法を実現する補正パラメータ決定装置や、その補正パラメータ決定装置に含まれる処理部が行う処理を実行させるプログラム、そのプログラムを格納する記憶媒体としても実現することができる。 The present invention can be realized not only as a method for manufacturing such an organic EL display device, but also as an organic EL display device manufactured using the method for manufacturing the organic EL display device. . In addition, an organic EL display device manufacturing apparatus that realizes the method of manufacturing the organic EL display device, a program that executes processing performed by a processing unit included in the organic EL display device manufacturing apparatus, and a storage medium that stores the program Can be realized. Further, a correction parameter determination method included in the method of manufacturing the organic EL display device, a correction parameter determination device that realizes the correction parameter determination method, and a process performed by a processing unit included in the correction parameter determination device are executed. It can also be realized as a program to be executed and a storage medium for storing the program.
 (実施の形態)
 以下、本発明の実施の形態について図面を用いて詳細に説明する。
(Embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の実施の形態に係る有機EL表示装置1及び有機EL表示装置製造装置2の構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of an organic EL display device 1 and an organic EL display device manufacturing apparatus 2 according to an embodiment of the present invention.
 同図に示すように、有機EL表示装置1は、発光素子により映像を表示させる装置であり、制御回路10及び表示パネル20を備えている。 As shown in the figure, the organic EL display device 1 is a device that displays an image by a light emitting element, and includes a control circuit 10 and a display panel 20.
 制御回路10は、表示パネル20に表示するための映像信号を制御し、表示パネル20に映像を表示させる。制御回路10の詳細な説明については、後述する。 The control circuit 10 controls the video signal to be displayed on the display panel 20 and displays the video on the display panel 20. A detailed description of the control circuit 10 will be described later.
 表示パネル20は、表示部21、走査線駆動回路22及びデータ線駆動回路23を備えており、走査線駆動回路22及びデータ線駆動回路23に入力される制御回路10からの信号に基づき、映像を表示部21に表示する。ここで、表示部21は、マトリクス状に配置された複数の画素100を備えている。なお、この表示パネル20の詳細な説明については、後述する。 The display panel 20 includes a display unit 21, a scanning line driving circuit 22, and a data line driving circuit 23, and based on a signal from the control circuit 10 input to the scanning line driving circuit 22 and the data line driving circuit 23, an image is displayed. Is displayed on the display unit 21. Here, the display unit 21 includes a plurality of pixels 100 arranged in a matrix. A detailed description of the display panel 20 will be described later.
 有機EL表示装置製造装置2は、測定時間を短縮しつつ、表示パネルの輝度ムラを低減することができる有機EL表示装置を製造する装置である。また、有機EL表示装置製造装置2は、補正パラメータ決定装置30及び測定装置40を備えている。 The organic EL display device manufacturing apparatus 2 is an apparatus for manufacturing an organic EL display device that can reduce unevenness in luminance of the display panel while shortening the measurement time. The organic EL display device manufacturing apparatus 2 includes a correction parameter determination device 30 and a measurement device 40.
 測定装置40は、表示部21が有する複数の画素100から発光される光の輝度を測定することができる測定装置である。具体的には、測定装置40は、CCD(Charge Coupled Device)イメージセンサなどのイメージセンサであり、1回の撮像で、表示部21が有する全ての画素100の輝度を高精度で測定することができる。なお、測定装置40は、イメージセンサに限定されず、画素100の輝度を測定することができるのであればどのような測定装置であってもよい。 The measuring device 40 is a measuring device that can measure the luminance of light emitted from the plurality of pixels 100 included in the display unit 21. Specifically, the measuring device 40 is an image sensor such as a CCD (Charge Coupled Device) image sensor, and can measure the luminance of all the pixels 100 of the display unit 21 with high accuracy by one imaging. it can. The measuring device 40 is not limited to an image sensor, and any measuring device may be used as long as it can measure the luminance of the pixel 100.
 補正パラメータ決定装置30は、測定装置40が測定した各画素100の輝度に基づき、表示部21が有する複数の画素100の輝度を均一化するための補正パラメータを決定する装置である。また、補正パラメータ決定装置30は、決定した補正パラメータを有機EL表示装置1の制御回路10に出力する。この補正パラメータ決定装置30の詳細な説明については、後述する。 The correction parameter determination device 30 is a device that determines correction parameters for equalizing the luminance of the plurality of pixels 100 included in the display unit 21 based on the luminance of each pixel 100 measured by the measurement device 40. Further, the correction parameter determination device 30 outputs the determined correction parameter to the control circuit 10 of the organic EL display device 1. A detailed description of the correction parameter determination device 30 will be described later.
 次に、表示パネル20の詳細な構成について、説明する。 Next, the detailed configuration of the display panel 20 will be described.
 図2は、本実施の形態に係る表示パネル20の表示部21が有する画素100の回路構成及びその周辺回路との接続を示す図である。 FIG. 2 is a diagram showing a circuit configuration of the pixel 100 included in the display unit 21 of the display panel 20 according to the present embodiment and a connection with peripheral circuits thereof.
 画素100は、表示部21が有する一画素であり、データ線を介して供給された信号電圧により発光する機能を有する。同図に示すように、画素100は、発光素子110、駆動トランジスタ120、スイッチングトランジスタ130、保持容量140、走査線24、データ線25、及び電源線151を備えている。 The pixel 100 is one pixel included in the display unit 21 and has a function of emitting light by a signal voltage supplied via a data line. As shown in the figure, the pixel 100 includes a light emitting element 110, a driving transistor 120, a switching transistor 130, a storage capacitor 140, a scanning line 24, a data line 25, and a power supply line 151.
 また、画素100の周辺回路は、走査線駆動回路22及びデータ線駆動回路23の他に、電源150及び電源160を備えている。 The peripheral circuit of the pixel 100 includes a power source 150 and a power source 160 in addition to the scanning line driving circuit 22 and the data line driving circuit 23.
 まず、画素100の内部回路構成について、同図を用いて説明する。 First, the internal circuit configuration of the pixel 100 will be described with reference to FIG.
 発光素子110は、赤色、緑色及び青色のいずれかの色を発光する有機EL(エレクトロルミネッセンス)素子である。具体的には、発光素子110は、アノードが駆動トランジスタ120のソースおよびドレインの一方に接続され、カソードが電源160に接続されている。発光素子110は、駆動トランジスタ120によって駆動された電流が流れることにより発光する機能を有する。つまり、電源線151によって発光素子110に電流が供給され、発光素子110が発光する。 The light emitting element 110 is an organic EL (electroluminescence) element that emits one of red, green, and blue colors. Specifically, the light emitting element 110 has an anode connected to one of a source and a drain of the driving transistor 120 and a cathode connected to the power source 160. The light emitting element 110 has a function of emitting light when a current driven by the driving transistor 120 flows. That is, current is supplied to the light emitting element 110 through the power supply line 151, and the light emitting element 110 emits light.
 駆動トランジスタ120は、発光素子110への電流の供給を制御する電圧駆動の駆動素子である。具体的には、駆動トランジスタ120は、ゲートがスイッチングトランジスタ130を介してデータ線25に接続され、ソースおよびドレインの一方が発光素子110に接続され、ソースおよびドレインの他方が電源150に接続されている。また、駆動トランジスタ120は、データ線25から供給された信号電圧を、その大きさに応じた信号電流に変換する機能を有する。 The drive transistor 120 is a voltage-driven drive element that controls the supply of current to the light emitting element 110. Specifically, the driving transistor 120 has a gate connected to the data line 25 through the switching transistor 130, one of the source and the drain connected to the light emitting element 110, and the other of the source and the drain connected to the power supply 150. Yes. The drive transistor 120 has a function of converting the signal voltage supplied from the data line 25 into a signal current corresponding to the magnitude thereof.
 なお、同図では、駆動トランジスタ120としてN型トランジスタを図示しているが、駆動トランジスタ120はN型トランジスタに限定されず、P型トランジスタであってもよい。 In the figure, an N-type transistor is illustrated as the drive transistor 120, but the drive transistor 120 is not limited to an N-type transistor, and may be a P-type transistor.
 スイッチングトランジスタ130は、ゲートが走査線24に接続され、ソース及びドレインの一方がデータ線25に接続され、ソース及びドレインの他方が駆動トランジスタ120のゲートに接続されている。スイッチングトランジスタ130は、データ線25と駆動トランジスタ120のゲートとの導通及び非導通を切り換える。つまり、スイッチングトランジスタ130は、画素100に対しデータ線25の信号電圧値を、走査線24がハイレベルの期間供給する機能を有する。 The switching transistor 130 has a gate connected to the scanning line 24, one of the source and the drain connected to the data line 25, and the other of the source and the drain connected to the gate of the driving transistor 120. The switching transistor 130 switches between conduction and non-conduction between the data line 25 and the gate of the driving transistor 120. That is, the switching transistor 130 has a function of supplying the signal voltage value of the data line 25 to the pixel 100 while the scanning line 24 is at a high level.
 保持容量140は、電荷を蓄積するコンデンサである。保持容量140は、駆動トランジスタ120のソースおよびドレインの一方と駆動トランジスタ120のゲートとの間に接続されている。つまり、保持容量140に蓄積された電荷に応じた電流が、駆動トランジスタ120によって、電源線151から発光素子110に流される。 The holding capacitor 140 is a capacitor that accumulates electric charges. The storage capacitor 140 is connected between one of the source and drain of the driving transistor 120 and the gate of the driving transistor 120. That is, a current corresponding to the charge accumulated in the storage capacitor 140 is caused to flow from the power supply line 151 to the light emitting element 110 by the driving transistor 120.
 電源150は、駆動トランジスタ120の定電圧源であり、例えば、10Vに設定されている。電源160は、発光素子110の定電圧源であり、例えば、アースされている。本実施の形態の場合、電源150の電位は、電源160の電位よりも高く設定されている。 The power supply 150 is a constant voltage source for the drive transistor 120, and is set to 10 V, for example. The power supply 160 is a constant voltage source of the light emitting element 110 and is grounded, for example. In the present embodiment, the potential of the power source 150 is set higher than the potential of the power source 160.
 走査線駆動回路22は、複数の画素100の各々の走査線24に走査信号を供給する。つまり、走査線駆動回路22は、複数の画素100の各々に走査信号を供給するための複数の走査線24に接続されており、画素100のスイッチングトランジスタ130の導通・非導通を制御する機能を有する。 The scanning line driving circuit 22 supplies a scanning signal to each scanning line 24 of the plurality of pixels 100. That is, the scanning line driving circuit 22 is connected to a plurality of scanning lines 24 for supplying a scanning signal to each of the plurality of pixels 100, and has a function of controlling conduction / non-conduction of the switching transistor 130 of the pixel 100. Have.
 データ線駆動回路23は、複数の画素100の各々のデータ線25に信号電圧を供給する。つまり、データ線駆動回路23は、複数の画素100の各々に信号電圧を供給するための複数のデータ線25に接続されており、駆動トランジスタ120に流れる信号電流を決定する機能を有する。 The data line driving circuit 23 supplies a signal voltage to each data line 25 of the plurality of pixels 100. That is, the data line driving circuit 23 is connected to a plurality of data lines 25 for supplying a signal voltage to each of the plurality of pixels 100 and has a function of determining a signal current flowing through the driving transistor 120.
 次に、制御回路10及び補正パラメータ決定装置30の詳細な構成について、説明する。 Next, detailed configurations of the control circuit 10 and the correction parameter determination device 30 will be described.
 図3は、本実施の形態に係る制御回路10及び補正パラメータ決定装置30の機能構成を示すブロック図である。 FIG. 3 is a block diagram showing a functional configuration of the control circuit 10 and the correction parameter determination device 30 according to the present embodiment.
 同図に示すように、補正パラメータ決定装置30は、輝度を補正するためのパラメータを決定する装置であり、測定制御部31及び補正パラメータ算出部32を備えている。 As shown in the figure, the correction parameter determination device 30 is a device that determines a parameter for correcting the luminance, and includes a measurement control unit 31 and a correction parameter calculation unit 32.
 測定制御部31は、表示パネル20に含まれる複数の画素100から発光される光の輝度を、測定装置40を用いて測定する処理部である。 The measurement control unit 31 is a processing unit that measures the luminance of light emitted from the plurality of pixels 100 included in the display panel 20 using the measurement device 40.
 具体的には、測定制御部31は、まず、表示パネル20に共通する代表電圧-輝度特性を表す関数を取得する。ここで、代表電圧-輝度特性は、輝度を均一化するための基準となる電圧-輝度特性である。また、代表電圧-輝度特性を表す関数とは、データ線から駆動トランジスタ120に供給される信号電圧と、発光素子110により対象の画素100から発光される光の輝度との関係を表す関数である。なお、代表電圧-輝度特性を表す関数は、測定等により予め定められている。 Specifically, the measurement control unit 31 first obtains a function representing a representative voltage-luminance characteristic common to the display panel 20. Here, the representative voltage-luminance characteristic is a voltage-luminance characteristic that serves as a reference for making the luminance uniform. The function representing the representative voltage-luminance characteristic is a function representing the relationship between the signal voltage supplied from the data line to the driving transistor 120 and the luminance of the light emitted from the target pixel 100 by the light emitting element 110. . A function representing the representative voltage-luminance characteristic is determined in advance by measurement or the like.
 また、測定制御部31は、制御回路10に、表示パネル20に含まれる複数の画素100を発光させ、当該複数の画素100から発光される光の輝度を、測定装置40に測定させることで、当該輝度を取得する。 Further, the measurement control unit 31 causes the control circuit 10 to emit the plurality of pixels 100 included in the display panel 20 and causes the measurement device 40 to measure the luminance of light emitted from the plurality of pixels 100. The brightness is acquired.
 具体的には、測定制御部31は、当該代表電圧-輝度特性の高階調域に属する1階調に対応する第1の信号電圧を、複数の画素100の各々に含まれる駆動素子である駆動トランジスタ120に印加し、複数の画素100から発光される輝度を、測定装置40を用いて測定することで、当該輝度を取得する。 Specifically, the measurement control unit 31 drives the first signal voltage corresponding to one gradation belonging to the high gradation region of the representative voltage-luminance characteristic as a drive element included in each of the plurality of pixels 100. The luminance applied to the transistor 120 and the luminance emitted from the plurality of pixels 100 is measured by using the measuring device 40, thereby acquiring the luminance.
 また、測定制御部31は、対象となる画素に含まれる駆動トランジスタ120に、補正パラメータ算出部32が算出する所定の電圧を印加し、当該対象となる画素から発光される輝度を、測定装置40を用いて測定することで、当該輝度を取得する。 In addition, the measurement control unit 31 applies a predetermined voltage calculated by the correction parameter calculation unit 32 to the drive transistor 120 included in the target pixel, and the luminance emitted from the target pixel is measured by the measurement device 40. The brightness is obtained by measuring using
 補正パラメータ算出部32は、測定制御部31が取得した輝度と代表電圧-輝度特性を表す関数とを用いて、対象となる画素について第1の補正パラメータ及び第2の補正パラメータを算出し、制御回路10に算出した補正パラメータを出力する。そして、補正パラメータ算出部32は、有機EL表示装置1のメモリに、算出した補正パラメータを記憶させる。 The correction parameter calculation unit 32 calculates the first correction parameter and the second correction parameter for the target pixel using the luminance acquired by the measurement control unit 31 and the function representing the representative voltage-luminance characteristics, and performs control. The calculated correction parameter is output to the circuit 10. Then, the correction parameter calculation unit 32 stores the calculated correction parameter in the memory of the organic EL display device 1.
 具体的には、補正パラメータ算出部32は、対象となる画素を第1の信号電圧で発光させたときの輝度が、代表電圧-輝度特性を表す関数に第1の信号電圧を入力した場合に得られる第1の基準輝度となるような第1の補正パラメータを、対象となる画素について求める。 Specifically, the correction parameter calculation unit 32 is configured such that when the target pixel emits light with the first signal voltage, the first signal voltage is input to a function representing the representative voltage-luminance characteristics. A first correction parameter that provides the first reference luminance obtained is obtained for the target pixel.
 なお、第1の補正パラメータは、対象となる画素を第1の信号電圧で発光させたときの輝度を前記代表電圧-輝度特性を表す関数に入力した場合に得られる電圧に対する、第1の信号電圧の比を示したゲインである。また、補正パラメータ算出部32は、発光素子110が発光する赤色、緑色、及び青色の各色について、第1の補正パラメータを求める。 Note that the first correction parameter is a first signal with respect to a voltage obtained when luminance when a target pixel is caused to emit light with the first signal voltage is input to the function representing the representative voltage-luminance characteristics. This is a gain indicating the voltage ratio. In addition, the correction parameter calculation unit 32 obtains a first correction parameter for each of red, green, and blue colors emitted from the light emitting element 110.
 また、補正パラメータ算出部32は、代表電圧-輝度特性の低階調域に属する1階調に対応する第2の信号電圧に第1の補正パラメータを乗算した所定の電圧を求める。ここで、駆動トランジスタ120はN型トランジスタであるため、第2の信号電圧は、第1の信号電圧より低い電圧である。なお、駆動トランジスタ120がP型トランジスタの場合は、第2の信号電圧は、第1の信号電圧より高い電圧となる。 Further, the correction parameter calculation unit 32 obtains a predetermined voltage obtained by multiplying the second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic by the first correction parameter. Here, since the driving transistor 120 is an N-type transistor, the second signal voltage is lower than the first signal voltage. When the driving transistor 120 is a P-type transistor, the second signal voltage is higher than the first signal voltage.
 そして、補正パラメータ算出部32は、対象となる画素を所定の電圧で発光させたときの輝度が、代表電圧-輝度特性を表す関数に第2の信号電圧を入力した場合に得られる第2の基準輝度となるような第2の補正パラメータを、対象となる画素について求める。 Then, the correction parameter calculation unit 32 obtains the second luminance obtained when the second signal voltage is input to the function representing the representative voltage-luminance characteristics as the luminance when the target pixel emits light with a predetermined voltage. A second correction parameter for obtaining the reference luminance is obtained for the target pixel.
 なお、第2の補正パラメータは、所定の電圧と、対象となる画素から発光される光の輝度が第2の基準輝度となる場合の電圧との差を示したオフセットである。また、補正パラメータ算出部32は、発光素子110が発光する赤色、緑色、及び青色の各色について、第2の補正パラメータを求める。 Note that the second correction parameter is an offset indicating a difference between a predetermined voltage and a voltage when the luminance of light emitted from the target pixel becomes the second reference luminance. Further, the correction parameter calculation unit 32 obtains a second correction parameter for each of red, green, and blue colors emitted from the light emitting element 110.
 ここで、代表電圧-輝度特性、高階調域及び低階調域について、説明する。 Here, the representative voltage-luminance characteristics, the high gradation region, and the low gradation region will be described.
 図4は、本実施の形態に係る代表電圧-輝度特性、高階調域及び低階調域を説明するための図である。 FIG. 4 is a diagram for explaining a representative voltage-luminance characteristic, a high gradation region, and a low gradation region according to the present embodiment.
 同図の(a)に示すように、代表電圧-輝度特性は、画素100から発光される光の輝度が、駆動トランジスタ120に供給される電圧のγ乗(例えば、γ=2.2)に比例する曲線で示される特性である。 As shown in FIG. 6A, the representative voltage-luminance characteristics indicate that the luminance of light emitted from the pixel 100 is such that the voltage supplied to the driving transistor 120 is γ-th power (for example, γ = 2.2). It is a characteristic indicated by a proportional curve.
 そして、表示パネル20に含まれる各画素100は、それぞれ異なる電圧-輝度特性を有している。このため、本実施の形態では、代表電圧-輝度特性は、表示パネル20に含まれる複数の画素100のうちの任意の一画素についての電圧-輝度特性であることとする。これにより、容易に、代表電圧-輝度特性を表す関数を取得することができる。 Each pixel 100 included in the display panel 20 has different voltage-luminance characteristics. For this reason, in the present embodiment, the representative voltage-luminance characteristic is the voltage-luminance characteristic for any one of the plurality of pixels 100 included in the display panel 20. As a result, a function representing the representative voltage-luminance characteristic can be easily obtained.
 なお、代表電圧-輝度特性は、複数の画素100を含む表示パネル20全体に共通して設定される特性であって、表示パネル20に含まれる各画素100の電圧-輝度特性を平均化した特性であることにしてもよい。この場合、表示パネル20に含まれる各画素100の輝度が、表示パネル20全体に共通する代表電圧-輝度特性となるように補正パラメータを求めるので、この補正パラメータを用いて映像信号を補正した場合、各画素100から発光される光の輝度を均一にできる。 The representative voltage-luminance characteristic is a characteristic set in common for the entire display panel 20 including a plurality of pixels 100, and is an averaged characteristic of the voltage-luminance characteristics of each pixel 100 included in the display panel 20. You may decide to be. In this case, since the correction parameter is obtained so that the luminance of each pixel 100 included in the display panel 20 has a representative voltage-luminance characteristic common to the entire display panel 20, the video signal is corrected using this correction parameter. The luminance of the light emitted from each pixel 100 can be made uniform.
 また、同図の(b)は、人間の視感度に応じた代表電圧-輝度特性を示している。つまり、人間の目はLOG関数に近い感度を有しているため、人間の視感度に応じた代表電圧-輝度特性は、輝度がLOG関数の曲線で示される特性となる。 Also, (b) in the figure shows a representative voltage-luminance characteristic according to human visibility. That is, since the human eye has a sensitivity close to the LOG function, the representative voltage-luminance characteristic corresponding to the human visual sensitivity is a characteristic whose luminance is indicated by a curve of the LOG function.
 このため、人間の目は、高階調では輝度ムラを認識し難く、低階調では輝度ムラを認識し易いことから、人間の視感度に合わせるには、高階調域の幅を大きく、低階調域の幅を小さく設定しておくことが好ましい。 For this reason, human eyes are difficult to recognize uneven brightness at high gradations and easy to recognize uneven brightness at low gradations. It is preferable to set the tuning range to be small.
 したがって、代表電圧-輝度特性の高階調域に属する1階調に対応する第1の信号電圧は、好ましくは、各画素100で表示可能な最大階調の20%以上100%以下の階調に対応する電圧であり、さらに好ましくは、最大階調の30%の階調に対応する電圧である。 Therefore, the first signal voltage corresponding to one gradation belonging to the high gradation region of the representative voltage-luminance characteristics is preferably a gradation of 20% to 100% of the maximum gradation that can be displayed in each pixel 100. The corresponding voltage, and more preferably the voltage corresponding to the gradation of 30% of the maximum gradation.
 このように、第1の信号電圧として、最大階調の20%以上100%以下の階調域に属する1階調に対応する電圧を印加することにより、人間の視感度に合った高階調域にて補正パラメータを算出することができる。また、当該第1の信号電圧として、最大階調の30%の階調に対応する電圧を印加することで、高階調域における補正誤差を最も抑制できる。 In this way, by applying a voltage corresponding to one gradation belonging to the gradation range of 20% or more and 100% or less of the maximum gradation as the first signal voltage, a high gradation range suitable for human visual sensitivity. Can calculate the correction parameter. Further, by applying a voltage corresponding to 30% of the maximum gradation as the first signal voltage, the correction error in the high gradation range can be most suppressed.
 また、代表電圧-輝度特性の低階調域に属する1階調に対応する第2の信号電圧は、好ましくは、各画素100で表示可能な最大階調の0%以上10%以下の階調に対応する電圧である。 The second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic is preferably a gradation of 0% to 10% of the maximum gradation that can be displayed in each pixel 100. Is a voltage corresponding to.
 このように、第2の信号電圧として、最大階調の0%以上10%以下の階調域に属する1階調に対応する電圧を印加する。これにより、人間の視感度に合った低階調域にて補正パラメータを算出することができる。 Thus, as the second signal voltage, a voltage corresponding to one gradation belonging to the gradation range of 0% to 10% of the maximum gradation is applied. As a result, the correction parameter can be calculated in a low gradation range suitable for human visibility.
 なお、各画素100で発光される最大階調の0.2%以下の階調は人間の目では視認できないため、代表電圧-輝度特性の低階調域に属する1階調に対応する第2の信号電圧は、さらに好ましくは、最大階調の0.2%以上10%以下の階調に対応する電圧である。 Note that a gradation of 0.2% or less of the maximum gradation emitted by each pixel 100 cannot be visually recognized by human eyes, and therefore the second gradation corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic. More preferably, the signal voltage is a voltage corresponding to a gradation of 0.2% or more and 10% or less of the maximum gradation.
 このように、第2の信号電圧として、最大階調の0.2%以上の階調に対応する電圧を印加することで、さらに人間の視感度に合った低階調域にて補正パラメータを算出することができる。 In this way, by applying a voltage corresponding to a gradation of 0.2% or more of the maximum gradation as the second signal voltage, the correction parameter can be set in a low gradation region that further matches human visibility. Can be calculated.
 図3に戻り、制御回路10は、表示パネル20に映像を表示させるための処理部であり、制御部11、補正部12及び記憶部13を備えている。 3, the control circuit 10 is a processing unit for displaying an image on the display panel 20, and includes a control unit 11, a correction unit 12, and a storage unit 13.
 制御部11は、表示パネル20に映像信号を出力し、表示パネル20に映像を表示させる。具体的には、制御部11は、測定制御部31からの指示により、表示パネル20に含まれる複数の画素100を発光させる。また、制御部11は、補正パラメータ算出部32が算出した画素100ごとの第1の補正パラメータ及び第2の補正パラメータを、記憶部13に書き込む。 The control unit 11 outputs a video signal to the display panel 20 and causes the display panel 20 to display the video. Specifically, the control unit 11 causes the plurality of pixels 100 included in the display panel 20 to emit light according to an instruction from the measurement control unit 31. In addition, the control unit 11 writes the first correction parameter and the second correction parameter for each pixel 100 calculated by the correction parameter calculation unit 32 in the storage unit 13.
 記憶部13は、制御部11から入力される所定の補正パラメータを、複数の画素100毎に格納する。具体的には、記憶部13は、画素100ごとの第1の補正パラメータ及び第2の補正パラメータを含む補正パラメータテーブル13aを記憶している。この補正パラメータテーブル13aの詳細な説明については、後述する。 The storage unit 13 stores a predetermined correction parameter input from the control unit 11 for each of the plurality of pixels 100. Specifically, the storage unit 13 stores a correction parameter table 13a including a first correction parameter and a second correction parameter for each pixel 100. Details of the correction parameter table 13a will be described later.
 補正部12は、外部から入力された映像信号に対して記憶部13から複数の画素100の各々に対応する所定の補正パラメータを読み出して、複数の画素100の各々に対応する映像信号を補正する。そして、補正部12は、補正した映像信号を制御部11に出力し、制御部11は、この補正された映像信号を表示パネル20に出力することで、表示パネル20に映像を表示させる。 The correction unit 12 reads a predetermined correction parameter corresponding to each of the plurality of pixels 100 from the storage unit 13 with respect to the video signal input from the outside, and corrects the video signal corresponding to each of the plurality of pixels 100. . Then, the correction unit 12 outputs the corrected video signal to the control unit 11, and the control unit 11 outputs the corrected video signal to the display panel 20, thereby displaying the video on the display panel 20.
 次に、記憶部13が記憶している補正パラメータテーブル13aについて説明する。 Next, the correction parameter table 13a stored in the storage unit 13 will be described.
 図5は、本実施の形態に係る補正パラメータテーブル13aの一例を示す図である。 FIG. 5 is a diagram showing an example of the correction parameter table 13a according to the present embodiment.
 同図に示すように、補正パラメータテーブル13aは、画素ごとの第1の補正パラメータ及び第2の補正パラメータで構成される補正パラメータを含むデータテーブルである。 As shown in the figure, the correction parameter table 13a is a data table including a correction parameter composed of a first correction parameter and a second correction parameter for each pixel.
 同図では、第1の補正パラメータは、ゲインG11~ゲインGmnで示され、第2の補正パラメータは、オフセットOS11~オフセットOSmnで示されている。つまり、補正パラメータテーブル13aは、表示部21(m行×n列)のマトリクスに対応して、画素100ごとに(ゲイン,オフセット)で構成される補正パラメータを格納している。 In the figure, the first correction parameter is indicated by gain G11 to gain Gmn, and the second correction parameter is indicated by offset OS11 to offset OSmn. That is, the correction parameter table 13a stores correction parameters configured by (gain, offset) for each pixel 100 corresponding to the matrix of the display unit 21 (m rows × n columns).
 次に、補正パラメータ決定装置30が補正パラメータを決定する処理について、説明する。 Next, the process in which the correction parameter determination device 30 determines the correction parameter will be described.
 図6は、本実施の形態に係る補正パラメータ決定装置30が補正パラメータを決定する動作の一例を示すフローチャートである。 FIG. 6 is a flowchart showing an example of an operation in which the correction parameter determination device 30 according to the present embodiment determines a correction parameter.
 同図に示すように、まず、測定制御部31は、代表電圧-輝度特性を表す関数を取得する(S102)。 As shown in the figure, first, the measurement control unit 31 obtains a function representing a representative voltage-luminance characteristic (S102).
 そして、測定制御部31は、表示パネル20に含まれる複数の画素100の第1の信号電圧での輝度を測定し、取得する(S104)。つまり、測定制御部31は、制御回路10の制御部11に、複数の画素100の各々に含まれる駆動トランジスタ120に第1の信号電圧を印加させ、複数の画素100から発光される光の輝度を、測定装置40に測定させることで、当該輝度を取得する。 Then, the measurement control unit 31 measures and acquires the luminance at the first signal voltage of the plurality of pixels 100 included in the display panel 20 (S104). In other words, the measurement control unit 31 causes the control unit 11 of the control circuit 10 to apply the first signal voltage to the driving transistor 120 included in each of the plurality of pixels 100, and the luminance of light emitted from the plurality of pixels 100. Is measured by the measuring device 40 to acquire the brightness.
 次に、補正パラメータ算出部32は、測定制御部31が取得した輝度と代表電圧-輝度特性を表す関数とを用いて、第1の補正パラメータを算出する(S106)。この補正パラメータ算出部32が第1の補正パラメータを算出する処理の詳細については、図7及び図8にて後述する。 Next, the correction parameter calculation unit 32 calculates the first correction parameter using the luminance acquired by the measurement control unit 31 and a function representing the representative voltage-luminance characteristics (S106). Details of the process in which the correction parameter calculation unit 32 calculates the first correction parameter will be described later with reference to FIGS.
 そして、補正パラメータ算出部32は、第2の信号電圧に第1の補正パラメータを乗算した所定の電圧を算出する(S108)。 Then, the correction parameter calculation unit 32 calculates a predetermined voltage obtained by multiplying the second signal voltage by the first correction parameter (S108).
 次に、測定制御部31は、制御回路10の制御部11に、複数の画素100の各々に含まれる駆動トランジスタ120に所定の電圧を印加させ、複数の画素100から発光される光の輝度を、測定装置40に測定させることで、当該輝度を取得する(S110)。 Next, the measurement control unit 31 causes the control unit 11 of the control circuit 10 to apply a predetermined voltage to the drive transistor 120 included in each of the plurality of pixels 100, thereby increasing the luminance of light emitted from the plurality of pixels 100. The luminance is acquired by causing the measurement device 40 to measure (S110).
 そして、補正パラメータ算出部32は、測定制御部31が取得した輝度と代表電圧-輝度特性を表す関数とを用いて、第2の補正パラメータを算出する(S112)。この補正パラメータ算出部32が第2の補正パラメータを算出する処理の詳細については、図9及び図10にて後述する。 Then, the correction parameter calculation unit 32 calculates the second correction parameter using the luminance acquired by the measurement control unit 31 and a function representing the representative voltage-luminance characteristics (S112). Details of the process in which the correction parameter calculation unit 32 calculates the second correction parameter will be described later with reference to FIGS.
 以上により、補正パラメータ決定装置30が補正パラメータを決定する処理は、終了する。 Thus, the process of determining the correction parameter by the correction parameter determination device 30 ends.
 なお、以上の処理は、発光素子110が発光する赤色、緑色、及び青色の各色について行われる。つまり、測定制御部31は、当該赤色、緑色、及び青色の各色について、複数の画素100の第1の信号電圧及び所定の電圧での輝度を測定し、取得する。そして、補正パラメータ算出部32は、当該赤色、緑色、及び青色の各色について、第1の補正パラメータ及び第2の補正パラメータを求める。そして、補正パラメータ算出部32は、当該赤色、緑色、及び青色の各色について、算出した補正パラメータを制御部11に出力し、制御部11に、当該補正パラメータを記憶部13に書き込ませる。 In addition, the above process is performed about each color of red, green, and blue which the light emitting element 110 light-emits. That is, the measurement control unit 31 measures and acquires the luminance at the first signal voltage and the predetermined voltage of the plurality of pixels 100 for each of the red, green, and blue colors. Then, the correction parameter calculation unit 32 obtains a first correction parameter and a second correction parameter for each of the red, green, and blue colors. Then, the correction parameter calculation unit 32 outputs the calculated correction parameters for the red, green, and blue colors to the control unit 11, and causes the control unit 11 to write the correction parameters in the storage unit 13.
 これにより、赤色、緑色、及び青色の各色について、輝度が均一になるように補正を行うことができる。 This makes it possible to perform correction so that the luminance is uniform for each color of red, green, and blue.
 また、補正パラメータが記憶部13に書き込まれた有機EL表示装置1では、補正部12は、外部から入力された映像信号に対して記憶部13から複数の画素100の各々に対応する補正パラメータを読み出して、複数の画素100の各々に対応する映像信号を補正する。そして、補正部12は、補正した映像信号を制御部11に出力し、制御部11はこの補正された映像信号を表示パネル20に出力することで、表示パネル20に映像を表示させる。 In the organic EL display device 1 in which the correction parameters are written in the storage unit 13, the correction unit 12 sets correction parameters corresponding to each of the plurality of pixels 100 from the storage unit 13 with respect to the video signal input from the outside. It reads out and correct | amends the video signal corresponding to each of the some pixel 100. FIG. Then, the correction unit 12 outputs the corrected video signal to the control unit 11, and the control unit 11 outputs the corrected video signal to the display panel 20 to display the video on the display panel 20.
 このように、第1の補正パラメータ及び第2の補正パラメータを、表示パネル20に用いられる所定のメモリである記憶部13に書き込む。これにより、各画素100に入力される映像信号を、この所定のメモリに格納された第1の補正パラメータ及び第2の補正パラメータを用いて補正することで、低階調域の補正精度を高めることができる。その結果、人間の目で認識される表示パネル20の輝度ムラを低減することができる。 Thus, the first correction parameter and the second correction parameter are written in the storage unit 13 which is a predetermined memory used for the display panel 20. Accordingly, the video signal input to each pixel 100 is corrected using the first correction parameter and the second correction parameter stored in the predetermined memory, thereby improving the correction accuracy in the low gradation region. be able to. As a result, the luminance unevenness of the display panel 20 recognized by human eyes can be reduced.
 次に、補正パラメータ算出部32が第1の補正パラメータを算出する処理(図6のS106)の詳細について、図7及び図8を参照しながら説明する。 Next, details of the process (S106 in FIG. 6) in which the correction parameter calculation unit 32 calculates the first correction parameter will be described with reference to FIGS.
 図7は、本実施の形態に係る補正パラメータ算出部32が第1の補正パラメータを算出する処理の一例を示すフローチャートである。 FIG. 7 is a flowchart illustrating an example of a process in which the correction parameter calculation unit 32 according to the present embodiment calculates the first correction parameter.
 図8は、本実施の形態に係る補正パラメータ算出部32が第1の補正パラメータを算出する処理を説明するための図である。なお、同図に示した曲線Aは、代表電圧-輝度特性を示すグラフであり、曲線Bは、対象となる画素の電圧-輝度特性を示すグラフであり、曲線Cは、第1の補正パラメータによって曲線Bが補正された後の電圧-輝度特性を示すグラフである。 FIG. 8 is a diagram for explaining a process in which the correction parameter calculation unit 32 according to the present embodiment calculates the first correction parameter. The curve A shown in the figure is a graph showing the representative voltage-luminance characteristics, the curve B is a graph showing the voltage-luminance characteristics of the target pixel, and the curve C is the first correction parameter. 6 is a graph showing the voltage-luminance characteristics after the curve B is corrected by.
 補正パラメータ算出部32は、対象となる画素を第1の信号電圧で発光させたときの輝度が、代表電圧-輝度特性を表す関数に第1の信号電圧を入力した場合に得られる第1の基準輝度となるような第1の補正パラメータを、対象となる画素について求める。つまり、補正パラメータ算出部32は、図8に示すように、対象となる画素についての電圧-輝度特性を示す曲線Bが、代表電圧-輝度特性を示す曲線Aに近付くように、曲線Bを曲線Cに補正する第1の補正パラメータであるゲインを算出する。 The correction parameter calculation unit 32 obtains the first luminance obtained when the first signal voltage is input to the function representing the representative voltage-luminance characteristics when the target pixel emits light with the first signal voltage. A first correction parameter for obtaining the reference luminance is obtained for the target pixel. That is, as shown in FIG. 8, the correction parameter calculation unit 32 changes the curve B so that the curve B indicating the voltage-luminance characteristics of the target pixel approaches the curve A indicating the representative voltage-luminance characteristics. A gain which is a first correction parameter to be corrected to C is calculated.
 具体的には、図7に示すように、まず、補正パラメータ算出部32は、代表電圧-輝度特性を表す関数に対象となる画素を第1の信号電圧で発光させたときの輝度を入力した場合に得られる電圧であるゲイン算出用電圧を算出する(S202)。 Specifically, as shown in FIG. 7, first, the correction parameter calculation unit 32 inputs the luminance when the target pixel emits light with the first signal voltage to the function representing the representative voltage-luminance characteristics. A gain calculation voltage which is a voltage obtained in this case is calculated (S202).
 具体的には、図8に示すように、補正パラメータ算出部32は、対象となる画素を第1の信号電圧Vdata_hで発光させたときの輝度Lhを、曲線Aに入力した場合に得られる電圧であるゲイン算出用電圧Vdata_hkを算出する。 Specifically, as illustrated in FIG. 8, the correction parameter calculation unit 32 is a voltage obtained when the luminance Lh when the target pixel is caused to emit light with the first signal voltage Vdata_h is input to the curve A. The gain calculation voltage Vdata_hk is calculated.
 図7に戻り、次に、補正パラメータ算出部32は、第1の信号電圧とゲイン算出用電圧とを用いて、第1の補正パラメータとしてゲインを算出する(S204)。具体的には、補正パラメータ算出部32は、第1の信号電圧Vdata_hとゲイン算出用電圧Vdata_hkとを用いて、以下の式により、ゲインGを算出する。   
   ΔVh=Vdata_hk-Vdata_h         (式1)
   G={1-ΔVh/(Vdata_h+ΔVh)}   (式2)
Returning to FIG. 7, next, the correction parameter calculation unit 32 calculates the gain as the first correction parameter using the first signal voltage and the gain calculation voltage (S204). Specifically, the correction parameter calculation unit 32 calculates the gain G by the following equation using the first signal voltage Vdata_h and the gain calculation voltage Vdata_hk.
ΔVh = Vdata_hk−Vdata_h (Formula 1)
G = {1−ΔVh / (Vdata_h + ΔVh)} (Formula 2)
 つまり、ゲインGは、第1の信号電圧Vdata_hのゲイン算出用電圧Vdata_hkに対する比を示した数値である。 That is, the gain G is a numerical value indicating the ratio of the first signal voltage Vdata_h to the gain calculation voltage Vdata_hk.
 なお、補正パラメータ算出部32は、上記以外の方法でゲインGを算出してもよく、例えば、図8に示された輝度Lhと第1の基準輝度との輝度差ΔLhと、曲線Aの傾きmhとを用いて、ΔVhを算出することにより、ゲインGを算出することにしてもよい。 The correction parameter calculation unit 32 may calculate the gain G by a method other than the above, for example, the luminance difference ΔLh between the luminance Lh and the first reference luminance shown in FIG. The gain G may be calculated by calculating ΔVh using mh.
 そして、補正パラメータ算出部32は、第1の補正パラメータを有機EL表示装置1のメモリに記憶させる(S206)。具体的には、補正パラメータ算出部32は、第1の補正パラメータを制御部11に出力することで、制御部11に第1の補正パラメータを記憶部13に書き込ませ、補正パラメータテーブル13aを更新させる。 Then, the correction parameter calculation unit 32 stores the first correction parameter in the memory of the organic EL display device 1 (S206). Specifically, the correction parameter calculation unit 32 outputs the first correction parameter to the control unit 11 to cause the control unit 11 to write the first correction parameter to the storage unit 13 and update the correction parameter table 13a. Let
 以上により、補正パラメータ算出部32が第1の補正パラメータを算出する処理(図6のS106)は、終了する。 Thus, the process in which the correction parameter calculation unit 32 calculates the first correction parameter (S106 in FIG. 6) ends.
 次に、補正パラメータ算出部32が第2の補正パラメータを算出する処理(図6のS112)の詳細について、図9及び図10を参照しながら説明する。 Next, details of the process (S112 in FIG. 6) in which the correction parameter calculation unit 32 calculates the second correction parameter will be described with reference to FIGS.
 図9は、本実施の形態に係る補正パラメータ算出部32が第2の補正パラメータを算出する処理の一例を示すフローチャートである。 FIG. 9 is a flowchart illustrating an example of processing in which the correction parameter calculation unit 32 according to the present embodiment calculates the second correction parameter.
 図10は、本実施の形態に係る補正パラメータ算出部32が第2の補正パラメータを算出する処理を説明するための図である。なお、同図に示した曲線Aは、代表電圧-輝度特性を示すグラフであり、曲線Cは、対象となる画素の電圧-輝度特性を示す曲線が第1の補正パラメータによって補正された後の電圧-輝度特性を示すグラフであり、曲線Dは、曲線Cが第2の補正パラメータによって補正された後の電圧-輝度特性を示すグラフである。つまり、曲線Cは、図8に示された曲線Bが第1の補正パラメータによって補正された後の曲線である。 FIG. 10 is a diagram for explaining a process in which the correction parameter calculation unit 32 according to the present embodiment calculates the second correction parameter. A curve A shown in the figure is a graph showing a representative voltage-luminance characteristic, and a curve C is a curve after the curve showing the voltage-luminance characteristic of a target pixel is corrected by the first correction parameter. It is a graph which shows a voltage-luminance characteristic, and the curve D is a graph which shows the voltage-luminance characteristic after the curve C is correct | amended by the 2nd correction parameter. That is, the curve C is a curve after the curve B shown in FIG. 8 is corrected by the first correction parameter.
 補正パラメータ算出部32は、第2の信号電圧に第1の補正パラメータを乗算した所定の電圧で対象となる画素を発光させたときの輝度が、代表電圧-輝度特性を表す関数に第2の信号電圧を入力した場合に得られる第2の基準輝度となるような第2の補正パラメータを、対象となる画素について求める。つまり、補正パラメータ算出部32は、図10に示すように、曲線Cが、代表電圧-輝度特性を示す曲線Aに近付くように、曲線Cを曲線Dに補正する第2の補正パラメータであるオフセットを算出する。 The correction parameter calculation unit 32 uses the second signal voltage multiplied by the first correction parameter as a function that represents the representative voltage-luminance characteristics when the target pixel emits light with a predetermined voltage. A second correction parameter for obtaining a second reference luminance obtained when a signal voltage is input is obtained for a target pixel. That is, as shown in FIG. 10, the correction parameter calculation unit 32 is an offset that is a second correction parameter for correcting the curve C to the curve D so that the curve C approaches the curve A indicating the representative voltage-luminance characteristics. Is calculated.
 具体的には、図9に示すように、まず、補正パラメータ算出部32は、所定の電圧で対象となる画素を発光させたときの輝度と、第2の基準輝度との輝度差を算出する(S302)。つまり、図10に示すように、補正パラメータ算出部32は、代表電圧-輝度特性を表す曲線Aの関数に第2の信号電圧を入力して第2の基準輝度を算出することで、輝度Llと第2の基準輝度との輝度差ΔLlを算出する。 Specifically, as illustrated in FIG. 9, first, the correction parameter calculation unit 32 calculates the luminance difference between the luminance when the target pixel emits light with a predetermined voltage and the second reference luminance. (S302). That is, as shown in FIG. 10, the correction parameter calculation unit 32 calculates the second reference luminance by inputting the second signal voltage to the function of the curve A representing the representative voltage-luminance characteristics, thereby obtaining the luminance Ll. And a luminance difference ΔLl between the second reference luminance and the second reference luminance.
 図9に戻り、次に、補正パラメータ算出部32は、輝度差と曲線Aの傾きとを用いて、第2の補正パラメータとしてオフセットを算出する(S304)。具体的には、補正パラメータ算出部32は、輝度差ΔLlと曲線Aの傾きmlとを用いて、以下の式により、オフセットOSを算出する。  
   ΔVdata_l=ΔLl/ml   (式3)
   OS=ΔVdata_l      (式4)
Returning to FIG. 9, next, the correction parameter calculation unit 32 calculates an offset as the second correction parameter using the luminance difference and the slope of the curve A (S304). Specifically, the correction parameter calculation unit 32 calculates the offset OS by the following equation using the luminance difference ΔLl and the slope ml of the curve A.
ΔVdata — l = ΔLl / ml (Formula 3)
OS = ΔVdata — l (Formula 4)
 つまり、オフセットOSは、所定の電圧と、対象となる画素から発光される光の輝度が第2の基準輝度となる場合の電圧との差ΔVdata_lを示した数値である。 That is, the offset OS is a numerical value indicating a difference ΔVdata_l between a predetermined voltage and a voltage when the luminance of light emitted from the target pixel becomes the second reference luminance.
 なお、補正パラメータ算出部32は、上記以外の方法でオフセットOSを算出してもよい。例えば、図10に示されたように、補正パラメータ算出部32は、対象となる画素を所定の電圧Vdata_lで発光させたときの輝度Llを代表電圧-輝度特性を表す関数に入力した場合に得られる電圧Vdata_lkを算出する。そして、補正パラメータ算出部32は、所定の電圧Vdata_lと電圧Vdata_lkとを用いて、以下の式により、オフセットOSを算出する。   
   OS=Vdata_l-Vdata_lk   (式5)
The correction parameter calculation unit 32 may calculate the offset OS by a method other than the above. For example, as shown in FIG. 10, the correction parameter calculation unit 32 is obtained when the luminance Ll when the target pixel is caused to emit light at a predetermined voltage Vdata_l is input to a function representing the representative voltage-luminance characteristics. The calculated voltage Vdata_lk is calculated. Then, the correction parameter calculation unit 32 calculates the offset OS by the following formula using the predetermined voltage Vdata_l and the voltage Vdata_lk.
OS = Vdata_l−Vdata_lk (Formula 5)
 そして、補正パラメータ算出部32は、第2の補正パラメータを有機EL表示装置1のメモリに記憶させる(S306)。具体的には、補正パラメータ算出部32は、第2の補正パラメータを制御部11に出力することで、制御部11に第2の補正パラメータを記憶部13に書き込ませ、補正パラメータテーブル13aを更新させる。 Then, the correction parameter calculation unit 32 stores the second correction parameter in the memory of the organic EL display device 1 (S306). Specifically, the correction parameter calculation unit 32 outputs the second correction parameter to the control unit 11 so that the control unit 11 writes the second correction parameter in the storage unit 13 and updates the correction parameter table 13a. Let
 以上により、補正パラメータ算出部32が第2の補正パラメータを算出する処理(図6のS112)は、終了する。 Thus, the process in which the correction parameter calculation unit 32 calculates the second correction parameter (S112 in FIG. 6) ends.
 以上のように、補正パラメータ決定装置30は、表示パネル20に含まれる全ての画素100について、第1の補正パラメータ及び第2の補正パラメータを決定する。 As described above, the correction parameter determination device 30 determines the first correction parameter and the second correction parameter for all the pixels 100 included in the display panel 20.
 このように、本発明に係る有機EL表示装置製造装置2による有機EL表示装置1の製造方法によれば、高階調域における各画素100の輝度を代表電圧-輝度特性が示す輝度に一致させた状態で、低階調域における各画素100の輝度を第2の基準輝度に一致させる第2の補正パラメータを求めるので、低階調域における各画素100の補正精度を向上できる。高階調域では第2の補正パラメータの分だけ補正誤差が生じるが、この補正誤差に起因して人間の目が認識する輝度ムラの影響は小さい。従って、高階調域における補正誤差の影響を受けるのを防ぎつつ低階調域における補正精度を向上できる。その結果、人間の目で認識される表示パネル20の輝度ムラを低減することができる。 As described above, according to the method of manufacturing the organic EL display device 1 by the organic EL display device manufacturing apparatus 2 according to the present invention, the luminance of each pixel 100 in the high gradation region is matched with the luminance indicated by the representative voltage-luminance characteristics. In this state, since the second correction parameter for matching the luminance of each pixel 100 in the low gradation region with the second reference luminance is obtained, the correction accuracy of each pixel 100 in the low gradation region can be improved. In the high gradation range, a correction error is generated by the amount of the second correction parameter, but the influence of luminance unevenness recognized by human eyes due to this correction error is small. Accordingly, it is possible to improve the correction accuracy in the low gradation range while preventing the influence of the correction error in the high gradation range. As a result, the luminance unevenness of the display panel 20 recognized by human eyes can be reduced.
 また、2回の輝度測定で第1の補正パラメータ及び第2の補正パラメータを求めることができるので、従来の補正パラメータの算出に要する輝度測定の回数を低減できる。その結果、各画素100の輝度測定を行ってから補正パラメータを求めるまでの測定タクトを短縮できる。 Also, since the first correction parameter and the second correction parameter can be obtained by two luminance measurements, the number of times of luminance measurement required for calculating the conventional correction parameter can be reduced. As a result, the measurement tact from when the luminance of each pixel 100 is measured until the correction parameter is obtained can be shortened.
 (変形例)
 上記実施の形態では、表示パネル20に含まれる複数の画素100について、第1の補正パラメータ及び第2の補正パラメータを決定することとした。しかし、本変形例では、表示パネル20を複数の分割領域に分割し、当該分割領域ごとに、第1の補正パラメータ及び第2の補正パラメータを決定する。
(Modification)
In the above embodiment, the first correction parameter and the second correction parameter are determined for the plurality of pixels 100 included in the display panel 20. However, in this modification, the display panel 20 is divided into a plurality of divided areas, and the first correction parameter and the second correction parameter are determined for each of the divided areas.
 図11は、本実施の形態の変形例に係る制御回路10及び補正パラメータ決定装置50の機能構成を示すブロック図である。なお、制御回路10、表示パネル20及び測定装置40は、図3に示された制御回路10、表示パネル20及び測定装置40と同じ機能を有するため、詳細な説明は省略する。 FIG. 11 is a block diagram showing a functional configuration of the control circuit 10 and the correction parameter determination device 50 according to a modification of the present embodiment. Note that the control circuit 10, the display panel 20, and the measuring device 40 have the same functions as the control circuit 10, the display panel 20, and the measuring device 40 shown in FIG.
 また、補正パラメータ決定装置50は、測定制御部31及び補正パラメータ算出部32の他に、領域分割部51を備える。なお、測定制御部31及び補正パラメータ算出部32は、図3に示された測定制御部31及び補正パラメータ算出部32と同じ機能を有するため、詳細な説明は省略する。 Further, the correction parameter determination device 50 includes an area dividing unit 51 in addition to the measurement control unit 31 and the correction parameter calculation unit 32. The measurement control unit 31 and the correction parameter calculation unit 32 have the same functions as the measurement control unit 31 and the correction parameter calculation unit 32 shown in FIG.
 領域分割部51は、表示パネル20を複数の分割領域に分割し、当該分割領域ごとに処理を行うよう、測定制御部31及び補正パラメータ算出部32に指示を与える。 The area dividing unit 51 gives an instruction to the measurement control unit 31 and the correction parameter calculating unit 32 so as to divide the display panel 20 into a plurality of divided areas and perform processing for each divided area.
 測定制御部31は、領域分割部51の指示に従い、当該分割領域ごとに、複数の分割領域の各々に含まれる複数の画素100に共通する代表電圧-輝度特性を表す関数を取得する。 The measurement control unit 31 acquires a function representing a representative voltage-luminance characteristic common to the plurality of pixels 100 included in each of the plurality of divided regions for each divided region in accordance with the instruction of the region dividing unit 51.
 補正パラメータ算出部32は、領域分割部51の指示に従い、測定制御部31が測定した所定の分割領域に含まれる画素100を第1の信号電圧で発光させたときの輝度が、当該所定の分割領域の代表電圧-輝度特性を表す関数に第1の信号電圧を入力した場合に得られる第1の基準輝度となるような第1の補正パラメータを求める。 In accordance with an instruction from the area dividing unit 51, the correction parameter calculating unit 32 has a luminance when the pixel 100 included in the predetermined divided area measured by the measurement control unit 31 emits light with the first signal voltage. A first correction parameter is obtained such that the first reference luminance obtained when the first signal voltage is input to the function representing the representative voltage-luminance characteristics of the region.
 また、補正パラメータ算出部32は、領域分割部51の指示に従い、測定制御部31が測定した所定の分割領域に含まれる画素100を所定の電圧で発光させたときの輝度が、当該所定の分割領域の代表電圧-輝度特性を表す関数に第2の信号電圧を入力した場合に得られる第2の基準輝度となるような第2の補正パラメータを求める。 In addition, the correction parameter calculation unit 32 is configured such that the luminance when the pixel 100 included in the predetermined divided region measured by the measurement control unit 31 emits light with a predetermined voltage according to the instruction of the region dividing unit 51 is the predetermined division. A second correction parameter is obtained such that the second reference luminance is obtained when the second signal voltage is input to the function representing the representative voltage-luminance characteristics of the region.
 次に、補正パラメータ決定装置50が補正パラメータを決定する処理について、説明する。 Next, the process in which the correction parameter determination device 50 determines the correction parameter will be described.
 図12は、本実施の形態の変形例に係る補正パラメータ決定装置50が補正パラメータを決定する動作の一例を示すフローチャートである。 FIG. 12 is a flowchart illustrating an example of an operation in which the correction parameter determination device 50 according to the modification of the present embodiment determines a correction parameter.
 同図に示すように、まず、領域分割部51は、表示パネル20を複数の分割領域に分割する(S402)。この領域分割部51が分割する分割領域の数は特に限定されないが、例えば、領域分割部51は、表示パネル20を縦16個×横26個の分割領域に分割する。 As shown in the figure, the area dividing unit 51 first divides the display panel 20 into a plurality of divided areas (S402). The number of divided regions divided by the region dividing unit 51 is not particularly limited. For example, the region dividing unit 51 divides the display panel 20 into 16 divided regions × 26 divided regions.
 次に、測定制御部31は、分割領域ごとに、代表電圧-輝度特性を表す関数を取得する(S404)。 Next, the measurement control unit 31 acquires a function representing the representative voltage-luminance characteristics for each divided region (S404).
 また、測定制御部31は、全ての分割領域に含まれる複数の画素100の第1の信号電圧での輝度を測定し、取得する(S406)。ここで、測定制御部31は、全ての分割領域に含まれる複数の画素100を第1の信号電圧で同時に発光させることで、当該複数の画素100の輝度を同時に取得する。 Further, the measurement control unit 31 measures and acquires the luminance at the first signal voltage of the plurality of pixels 100 included in all the divided regions (S406). Here, the measurement control unit 31 simultaneously obtains the luminance of the plurality of pixels 100 by causing the plurality of pixels 100 included in all the divided regions to emit light simultaneously with the first signal voltage.
 そして、補正パラメータ算出部32は、全ての分割領域に含まれる複数の画素100について、第1の補正パラメータを算出する(S408)。 Then, the correction parameter calculation unit 32 calculates the first correction parameter for the plurality of pixels 100 included in all the divided regions (S408).
 また、補正パラメータ算出部32は、全ての分割領域に含まれる複数の画素100について、第2の信号電圧に第1の補正パラメータを乗算した所定の電圧を算出する(S410)。 The correction parameter calculation unit 32 calculates a predetermined voltage obtained by multiplying the second signal voltage by the first correction parameter for the plurality of pixels 100 included in all the divided regions (S410).
 そして、測定制御部31は、全ての分割領域に含まれる複数の画素100について、当該所定の電圧での輝度を測定し、取得する(S412)。つまり、測定制御部31は、全ての分割領域に含まれる複数の画素100を当該所定の電圧で同時に発光させることで、当該複数の画素100の輝度を同時に取得する。 Then, the measurement control unit 31 measures and acquires the luminance at the predetermined voltage for the plurality of pixels 100 included in all the divided regions (S412). That is, the measurement control unit 31 simultaneously acquires the luminance of the plurality of pixels 100 by causing the plurality of pixels 100 included in all the divided regions to simultaneously emit light at the predetermined voltage.
 次に、補正パラメータ算出部32は、全ての分割領域に含まれる複数の画素100について、第2の補正パラメータを算出する(S414)。 Next, the correction parameter calculation unit 32 calculates the second correction parameter for the plurality of pixels 100 included in all the divided regions (S414).
 なお、この測定制御部31及び補正パラメータ算出部32が第1の補正パラメータ及び第2の補正パラメータを算出する処理(S404~S414)の詳細については、図6に示された測定制御部31及び補正パラメータ算出部32が第1の補正パラメータ及び第2の補正パラメータを算出する処理(S102~S112)と同様であるため、詳細な説明は省略する。 Note that details of the process (S404 to S414) in which the measurement control unit 31 and the correction parameter calculation unit 32 calculate the first correction parameter and the second correction parameter will be described with reference to the measurement control unit 31 and the correction control unit 31 shown in FIG. Since the correction parameter calculation unit 32 is the same as the process (S102 to S112) for calculating the first correction parameter and the second correction parameter, detailed description thereof is omitted.
 以上のように、補正パラメータ決定装置50が補正パラメータを決定する処理は終了する。 As described above, the processing for determining the correction parameter by the correction parameter determination device 50 ends.
 このように、本発明に係る一実施の形態によると、複数の画素100を含む表示パネル20を複数の分割領域に分割し、分割領域毎に、複数の分割領域の各々に含まれる画素100に共通する代表電圧-輝度特性を設定し、第1の補正パラメータ及び第2の補正パラメータを求めてもよい。これにより、例えば、隣接画素間の輝度変化が激しいために輝度ムラが発生している領域のみについて、当該隣接画素間の輝度変化が滑らかになるような補正パラメータを求めることができる。 Thus, according to an embodiment of the present invention, the display panel 20 including a plurality of pixels 100 is divided into a plurality of divided regions, and each divided region is divided into the pixels 100 included in each of the plurality of divided regions. A common representative voltage-luminance characteristic may be set to obtain the first correction parameter and the second correction parameter. Thereby, for example, it is possible to obtain a correction parameter that smoothes the luminance change between the adjacent pixels only in the region where the luminance unevenness occurs because the luminance change between the adjacent pixels is intense.
 以上のことから、測定時間を短縮しつつ、表示パネル20の輝度ムラを低減することができる有機EL表示装置1を製造することができる。 From the above, it is possible to manufacture the organic EL display device 1 that can reduce the luminance unevenness of the display panel 20 while shortening the measurement time.
 なお、例えば、有機EL表示装置1は、図13に記載されたような薄型フラットTVに内蔵される。本発明に係る有機EL表示装置1の製造方法により、測定時間を短縮しつつ、表示パネル20の輝度ムラを低減することができる有機EL表示装置1を備えた薄型フラットTVが実現される。 For example, the organic EL display device 1 is incorporated in a thin flat TV as shown in FIG. By the manufacturing method of the organic EL display device 1 according to the present invention, a thin flat TV including the organic EL display device 1 capable of reducing the luminance unevenness of the display panel 20 while shortening the measurement time is realized.
 以上、本発明に係る有機EL表示装置1の製造方法について、上記実施の形態およびその変形例を用いて説明したが、本発明は、これに限定されるものではない。 As mentioned above, although the manufacturing method of the organic EL display device 1 according to the present invention has been described using the above-described embodiment and its modifications, the present invention is not limited to this.
 つまり、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 That is, the embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 例えば、本実施の形態及びその変形例では、補正パラメータ決定装置30は、表示パネル20に含まれる全ての画素100について、第1の補正パラメータ及び第2の補正パラメータを決定することとした。しかし、補正パラメータ決定装置30は、表示パネル20に含まれる一部の画素100についてのみ、第1の補正パラメータ及び第2の補正パラメータを決定することにしてもよい。 For example, in the present embodiment and its modifications, the correction parameter determination device 30 determines the first correction parameter and the second correction parameter for all the pixels 100 included in the display panel 20. However, the correction parameter determination device 30 may determine the first correction parameter and the second correction parameter for only some of the pixels 100 included in the display panel 20.
 また、本実施の形態の変形例では、補正パラメータ決定装置30は、表示パネル20に含まれる全て分割領域について、第1の補正パラメータ及び第2の補正パラメータを決定することとした。しかし、補正パラメータ決定装置30は、表示パネル20に含まれる一部の分割領域についてのみ、第1の補正パラメータ及び第2の補正パラメータを決定することにしてもよい。 In the modification of the present embodiment, the correction parameter determination device 30 determines the first correction parameter and the second correction parameter for all the divided areas included in the display panel 20. However, the correction parameter determination device 30 may determine the first correction parameter and the second correction parameter for only some of the divided areas included in the display panel 20.
 また、本実施の形態及びその変形例では、補正パラメータ算出部32は、発光素子110が発光する赤色、緑色、及び青色の各色について、第1の補正パラメータ及び第2の補正パラメータを求めることとした。しかし、補正パラメータ算出部32は、赤色、緑色、及び青色のうちいずれか1つの色についてのみ、又は2つの色についてのみ、第1の補正パラメータ及び第2の補正パラメータを求めることにしてもよい。 Further, in the present embodiment and the modification thereof, the correction parameter calculation unit 32 obtains the first correction parameter and the second correction parameter for each of red, green, and blue colors emitted from the light emitting element 110. did. However, the correction parameter calculation unit 32 may obtain the first correction parameter and the second correction parameter only for any one of red, green, and blue, or only for two colors. .
 また、本実施の形態及びその変形例では、補正パラメータ算出部32は、算出した第1の補正パラメータ及び第2の補正パラメータを、記憶部13に記憶させることとした。しかし、補正パラメータ算出部32は、第1の補正パラメータ及び第2の補正パラメータを記憶部13に記憶させることなく、処理を終了することにしてもよい。 Further, in the present embodiment and its modification, the correction parameter calculation unit 32 stores the calculated first correction parameter and second correction parameter in the storage unit 13. However, the correction parameter calculation unit 32 may end the process without causing the storage unit 13 to store the first correction parameter and the second correction parameter.
 また、本実施の形態及びその変形例では、各画素での電圧-輝度特性を利用して、各画素における電圧と輝度との関係から、補正パラメータを決定することとした。しかし、輝度の代わりに、発光素子110に流れる電流の値を用いて、各画素での電圧-電流特性を利用することで、各画素における電圧と電流との関係から、補正パラメータを決定することにしてもよい。輝度と電流とは比例関係にあるので、本実施の形態及びその変形例での輝度を電流に置き換えることで、同様の方法で補正パラメータを決定することができる。 Further, in the present embodiment and its modification, the correction parameter is determined from the relationship between the voltage and the luminance in each pixel by using the voltage-luminance characteristics in each pixel. However, the correction parameter is determined from the relationship between the voltage and current in each pixel by using the voltage-current characteristics of each pixel using the value of the current flowing through the light emitting element 110 instead of the luminance. It may be. Since the luminance and the current are in a proportional relationship, the correction parameter can be determined by a similar method by replacing the luminance in the present embodiment and its modification with the current.
 本発明は、特に有機EL表示装置を内蔵する有機ELフラットパネルディスプレイの製造方法に有用であり、測定時間を短縮しつつ、表示パネルの輝度ムラを低減することができる有機EL表示装置の製造方法等として用いるのに最適である。 INDUSTRIAL APPLICABILITY The present invention is particularly useful for a method for manufacturing an organic EL flat panel display incorporating an organic EL display device, and a method for manufacturing an organic EL display device capable of reducing luminance unevenness of the display panel while shortening the measurement time. And so on.
 1   有機EL表示装置
 2   有機EL表示装置製造装置
 10  制御回路
 11  制御部
 12  補正部
 13  記憶部
 13a 補正パラメータテーブル
 20  表示パネル
 21  表示部
 22  走査線駆動回路
 23  データ線駆動回路
 24  走査線
 25  データ線
 30、50 補正パラメータ決定装置
 31  測定制御部
 32  補正パラメータ算出部
 40  測定装置
 51  領域分割部
 100 画素
 110 発光素子
 120 駆動トランジスタ
 130 スイッチングトランジスタ
 140 保持容量
 150、160 電源
 151 電源線
DESCRIPTION OF SYMBOLS 1 Organic EL display apparatus 2 Organic EL display apparatus manufacturing apparatus 10 Control circuit 11 Control part 12 Correction | amendment part 13 Memory | storage part 13a Correction | amendment parameter table 20 Display panel 21 Display part 22 Scan line drive circuit 23 Data line drive circuit 24 Scan line 25 Data line 30, 50 Correction Parameter Determination Device 31 Measurement Control Unit 32 Correction Parameter Calculation Unit 40 Measurement Device 51 Area Division Unit 100 Pixel 110 Light Emitting Element 120 Drive Transistor 130 Switching Transistor 140 Retention Capacitor 150, 160 Power Supply 151 Power Supply Line

Claims (13)

  1.  発光素子と前記発光素子への電流の供給を制御する電圧駆動の駆動素子とを含む画素を複数含む表示パネルに共通する代表電圧-輝度特性を表す関数を取得する第1ステップと、
     前記代表電圧-輝度特性の高階調域に属する1階調に対応する第1の信号電圧を前記複数の画素の各々に含まれる駆動素子に印加し、前記複数の画素から発光される輝度を所定の測定装置を用いて測定する第2ステップと、
     対象となる画素を前記第1の信号電圧で発光させたときの輝度が、前記代表電圧-輝度特性を表す関数に前記第1の信号電圧を入力した場合に得られる第1の基準輝度となるような第1の補正パラメータを前記対象となる画素について求める第3ステップと、
     前記代表電圧-輝度特性の低階調域に属する1階調に対応する第2の信号電圧に前記第1の補正パラメータを乗算した所定の電圧を求める第4ステップと、
     前記対象となる画素に含まれる駆動素子に前記所定の電圧を印加し、前記対象となる画素から発光される輝度を前記所定の測定装置を用いて測定する第5ステップと、
     前記対象となる画素を前記所定の電圧で発光させたときの輝度が、前記代表電圧-輝度特性を表す関数に前記第2の信号電圧を入力した場合に得られる第2の基準輝度となるような第2の補正パラメータを前記対象となる画素について求める第6ステップと、を含み、
     前記第1の補正パラメータは、前記第1の信号電圧の、前記対象となる画素を前記第1の信号電圧で発光させたときの輝度を前記代表電圧-輝度特性を表す関数に入力した場合に得られる電圧に対する比を示したゲインであり、
     前記第2の補正パラメータは、前記所定の電圧と、前記対象となる画素から発光される光の輝度が前記第2の基準輝度となる場合の電圧との差を示したオフセットである、
     有機EL表示装置の製造方法。
    A first step of obtaining a function representing a representative voltage-luminance characteristic common to a display panel including a plurality of pixels including a light-emitting element and a voltage-driven drive element that controls supply of current to the light-emitting element;
    A first signal voltage corresponding to one gradation belonging to a high gradation region of the representative voltage-luminance characteristic is applied to a driving element included in each of the plurality of pixels, and luminance emitted from the plurality of pixels is set to a predetermined value. A second step of measuring using the measuring device of
    The luminance when the target pixel emits light with the first signal voltage is the first reference luminance obtained when the first signal voltage is input to the function representing the representative voltage-luminance characteristics. A third step for obtaining such a first correction parameter for the target pixel;
    A fourth step of obtaining a predetermined voltage obtained by multiplying the second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic by the first correction parameter;
    A fifth step of applying the predetermined voltage to a drive element included in the target pixel and measuring the luminance emitted from the target pixel using the predetermined measuring device;
    The luminance when the target pixel is caused to emit light at the predetermined voltage is the second reference luminance obtained when the second signal voltage is input to the function representing the representative voltage-luminance characteristic. A sixth step of determining a second correction parameter for the target pixel,
    The first correction parameter is obtained when the luminance of the first signal voltage when the target pixel is caused to emit light with the first signal voltage is input to a function representing the representative voltage-luminance characteristic. Gain showing the ratio to the resulting voltage,
    The second correction parameter is an offset indicating a difference between the predetermined voltage and a voltage when the luminance of light emitted from the target pixel becomes the second reference luminance.
    A method for manufacturing an organic EL display device.
  2.  前記代表電圧-輝度特性の高階調域に属する1階調に対応する第1の信号電圧は、各画素で表示可能な最大階調の20%以上100%以下の階調に対応する電圧である、
     請求項1記載の有機EL表示装置の製造方法。
    The first signal voltage corresponding to one gradation belonging to the high gradation region of the representative voltage-luminance characteristic is a voltage corresponding to a gradation of 20% to 100% of the maximum gradation that can be displayed in each pixel. ,
    A method for producing an organic EL display device according to claim 1.
  3.  前記代表電圧-輝度特性の高階調域に属する1階調に対応する第1の信号電圧は、各画素で表示可能な最大階調の30%の階調に対応する電圧である、
     請求項2記載の有機EL表示装置の製造方法。
    The first signal voltage corresponding to one gradation belonging to the high gradation region of the representative voltage-luminance characteristic is a voltage corresponding to a gradation of 30% of the maximum gradation that can be displayed in each pixel.
    The manufacturing method of the organic electroluminescence display of Claim 2.
  4.  前記代表電圧-輝度特性の低階調域に属する1階調に対応する第2の信号電圧は、各画素で表示可能な最大階調の0%以上10%以下の階調に対応する電圧である、
     請求項1乃至請求項3のいずれか1項に記載の有機EL表示装置の製造方法。
    The second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic is a voltage corresponding to a gradation of 0% to 10% of the maximum gradation that can be displayed in each pixel. is there,
    The manufacturing method of the organic electroluminescence display of any one of Claim 1 thru | or 3.
  5.  前記代表電圧-輝度特性の低階調域に属する1階調に対応する第2の信号電圧は、各画素で表示可能な最大階調の0.2%以上10%以下の階調に対応する電圧である、
     請求項4記載の有機EL表示装置の製造方法。
    The second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic corresponds to a gradation of 0.2% to 10% of the maximum gradation that can be displayed in each pixel. Voltage,
    The manufacturing method of the organic electroluminescence display of Claim 4.
  6.  前記代表電圧-輝度特性は、前記表示パネルに含まれる複数の画素のうちの任意の一画素についての電圧-輝度特性である、
     請求項1乃至請求項5のいずれか1項に記載の有機EL表示装置の製造方法。
    The representative voltage-luminance characteristic is a voltage-luminance characteristic for any one of a plurality of pixels included in the display panel.
    The manufacturing method of the organic electroluminescence display of any one of Claim 1 thru | or 5.
  7.  前記代表電圧-輝度特性は、前記複数の画素を含む表示パネル全体に共通して設定される特性であって、前記表示パネルに含まれる各画素の電圧-輝度特性を平均化した特性である、
     請求項1乃至請求項5のいずれか1項に記載の有機EL表示装置の製造方法。
    The representative voltage-luminance characteristic is a characteristic set in common for the entire display panel including the plurality of pixels, and is an averaged voltage-luminance characteristic of each pixel included in the display panel.
    The manufacturing method of the organic electroluminescence display of any one of Claim 1 thru | or 5.
  8.  前記第1ステップにおいて、前記表示パネルを複数の分割領域に分割し、前記分割領域毎に、前記複数の分割領域の各々に含まれる複数の画素に共通する前記代表電圧-輝度特性を表す関数を取得し、
     前記第3ステップにおいて、前記第2ステップで測定された前記所定の分割領域に含まれる画素の輝度が、前記所定の分割領域の代表電圧-輝度特性を表す関数に前記第1の信号電圧を入力した場合に得られる前記第1の基準輝度となるような前記第1の補正パラメータを求め、
     前記第6ステップにおいて、前記第5ステップで測定された前記所定の分割領域に含まれる画素の輝度が、前記所定の分割領域の代表電圧-輝度特性を表す関数に前記第2の信号電圧を入力した場合に得られる前記第2の基準輝度となるような前記第2の補正パラメータを求める、
     請求項1乃至請求項5のいずれか1項に記載の有機EL表示装置の製造方法。
    In the first step, the display panel is divided into a plurality of divided regions, and for each of the divided regions, a function that represents the representative voltage-luminance characteristics common to a plurality of pixels included in each of the plurality of divided regions. Acquired,
    In the third step, the luminance of the pixels included in the predetermined divided region measured in the second step is input to the function representing the representative voltage-luminance characteristics of the predetermined divided region. Determining the first correction parameter to be the first reference luminance obtained in the case of
    In the sixth step, the luminance of the pixels included in the predetermined divided region measured in the fifth step is input to the function representing the representative voltage-luminance characteristics of the predetermined divided region. Determining the second correction parameter so as to be the second reference luminance obtained in the case of
    The manufacturing method of the organic electroluminescence display of any one of Claim 1 thru | or 5.
  9.  前記画素に含まれる発光素子は、赤色,緑色,及び青色のいずれかの色を発光し、
     前記第3ステップでは、前記赤色、緑色、及び青色の各色について前記第1の補正パラメータを求め、
     前記第6ステップでは、前記赤色、緑色、及び青色の各色について前記第2の補正パラメータを求める、
     請求項1乃至請求項8のいずれか1項に記載の有機EL表示装置の製造方法。
    The light emitting element included in the pixel emits one of red, green, and blue colors,
    In the third step, the first correction parameter is obtained for each of the red, green, and blue colors,
    In the sixth step, the second correction parameter is obtained for each of the red, green, and blue colors.
    The manufacturing method of the organic electroluminescence display of any one of Claim 1 thru | or 8.
  10.  さらに、
     前記第3ステップで求められた前記第1の補正パラメータ及び前記第6ステップで求められた前記第2の補正パラメータを、前記表示パネルに用いられる所定のメモリに書き込む第7ステップを含む、
     請求項1乃至請求項9のいずれか1項に記載の有機EL表示装置の製造方法。
    further,
    A seventh step of writing the first correction parameter obtained in the third step and the second correction parameter obtained in the sixth step into a predetermined memory used in the display panel;
    The manufacturing method of the organic electroluminescence display of any one of Claim 1 thru | or 9.
  11.  前記第2の信号電圧は、前記第1の信号電圧より低い電圧である、
     請求項1乃至請求項10のいずれか1項に記載の有機EL表示装置の製造方法。
    The second signal voltage is lower than the first signal voltage;
    The manufacturing method of the organic electroluminescence display of any one of Claim 1 thru | or 10.
  12.  前記所定の測定装置はイメージセンサである、
     請求項1乃至請求項11のいずれか1項に記載の有機EL表示装置の製造方法。
    The predetermined measuring device is an image sensor;
    The manufacturing method of the organic electroluminescence display of any one of Claim 1 thru | or 11.
  13.  発光素子と前記発光素子への電流の供給を制御する電圧駆動の駆動素子とを含む複数の画素と、
     前記複数の画素の各々に信号電圧を供給するための複数のデータ線と、
     前記複数の画素の各々に走査信号を供給するための複数の走査線と、
     前記複数のデータ線に前記信号電圧を供給するデータ線駆動回路と、
     前記複数の走査線に前記走査信号を供給する走査線駆動回路と、
     所定の補正パラメータを前記複数の画素毎に格納する記憶部と、
     外部から入力された映像信号に対して前記記憶部から前記複数の画素の各々に対応する前記所定の補正パラメータを読み出して、前記複数の画素の各々に対応する映像信号を補正する補正部と、を備え、
     前記所定の補正パラメータは、
     前記複数の画素に共通する代表電圧-輝度特性を表す関数を取得する第1ステップと、
     前記代表電圧-輝度特性の高階調域に属する1階調に対応する第1の信号電圧を前記複数の画素の各々に含まれる駆動素子に印加し、前記複数の画素から発光される輝度を所定の測定装置を用いて測定する第2ステップと、
     対象となる画素を前記第1の信号電圧で発光させたときの輝度が、前記代表電圧-輝度特性を表す関数に前記第1の信号電圧を入力した場合に得られる第1の基準輝度となるような第1の補正パラメータを前記対象となる画素について求める第3ステップと、
     前記代表電圧-輝度特性の低階調域に属する1階調に対応する第2の信号電圧に前記第1の補正パラメータを乗算した所定の電圧を求める第4ステップと、
     前記対象となる画素に含まれる駆動素子に前記所定の電圧を印加し、前記対象となる画素から発光される輝度を前記所定の測定装置を用いて測定する第5ステップと、
     前記対象となる画素を前記所定の電圧で発光させたときの輝度が、前記代表電圧-輝度特性を表す関数に前記第2の信号電圧を入力した場合に得られる第2の基準輝度となるような第2の補正パラメータを前記対象となる画素について求める第6ステップと、により生成され、
     前記第1の補正パラメータは、前記第1の信号電圧の、前記対象となる画素を前記第1の信号電圧で発光させたときの輝度を前記代表電圧-輝度特性を表す関数に入力した場合に得られる電圧に対する比を示したゲインであり、
     前記第2の補正パラメータは、前記所定の電圧と、前記対象となる画素から発光される光の輝度が前記第2の基準輝度となる場合の電圧との差を示したオフセットである、
     有機EL表示装置。
    A plurality of pixels including a light-emitting element and a voltage-driven drive element that controls supply of current to the light-emitting element;
    A plurality of data lines for supplying a signal voltage to each of the plurality of pixels;
    A plurality of scanning lines for supplying a scanning signal to each of the plurality of pixels;
    A data line driving circuit for supplying the signal voltage to the plurality of data lines;
    A scanning line driving circuit for supplying the scanning signal to the plurality of scanning lines;
    A storage unit for storing predetermined correction parameters for each of the plurality of pixels;
    A correction unit that reads out the predetermined correction parameter corresponding to each of the plurality of pixels from the storage unit with respect to a video signal input from the outside, and corrects the video signal corresponding to each of the plurality of pixels; With
    The predetermined correction parameter is:
    A first step of obtaining a function representing a representative voltage-luminance characteristic common to the plurality of pixels;
    A first signal voltage corresponding to one gradation belonging to a high gradation region of the representative voltage-luminance characteristic is applied to a driving element included in each of the plurality of pixels, and luminance emitted from the plurality of pixels is set to a predetermined value. A second step of measuring using the measuring device of
    The luminance when the target pixel emits light with the first signal voltage is the first reference luminance obtained when the first signal voltage is input to the function representing the representative voltage-luminance characteristics. A third step for obtaining such a first correction parameter for the target pixel;
    A fourth step of obtaining a predetermined voltage obtained by multiplying the second signal voltage corresponding to one gradation belonging to the low gradation region of the representative voltage-luminance characteristic by the first correction parameter;
    A fifth step of applying the predetermined voltage to a drive element included in the target pixel and measuring the luminance emitted from the target pixel using the predetermined measuring device;
    The luminance when the target pixel is caused to emit light at the predetermined voltage is the second reference luminance obtained when the second signal voltage is input to the function representing the representative voltage-luminance characteristic. A second step of determining a second correction parameter for the target pixel,
    The first correction parameter is obtained when the luminance of the first signal voltage when the target pixel is caused to emit light with the first signal voltage is input to a function representing the representative voltage-luminance characteristic. Gain showing the ratio to the resulting voltage,
    The second correction parameter is an offset indicating a difference between the predetermined voltage and a voltage when the luminance of light emitted from the target pixel becomes the second reference luminance.
    Organic EL display device.
PCT/JP2010/002482 2010-04-05 2010-04-05 Organic el display device manufacturing method and organic el display device WO2011125112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/002482 WO2011125112A1 (en) 2010-04-05 2010-04-05 Organic el display device manufacturing method and organic el display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/002482 WO2011125112A1 (en) 2010-04-05 2010-04-05 Organic el display device manufacturing method and organic el display device

Publications (1)

Publication Number Publication Date
WO2011125112A1 true WO2011125112A1 (en) 2011-10-13

Family

ID=44762105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002482 WO2011125112A1 (en) 2010-04-05 2010-04-05 Organic el display device manufacturing method and organic el display device

Country Status (1)

Country Link
WO (1) WO2011125112A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114677958A (en) * 2022-03-30 2022-06-28 卡莱特云科技股份有限公司 Correction method, device and system for LED display screen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005284172A (en) * 2004-03-30 2005-10-13 Eastman Kodak Co Organic el display device
JP2006235608A (en) * 2005-01-28 2006-09-07 Toshiba Matsushita Display Technology Co Ltd El display device and method of driving el display device
JP2006349966A (en) * 2005-06-15 2006-12-28 Eastman Kodak Co Manufacturing method of organic el display device, and organic el display device
JP2007018876A (en) * 2005-07-07 2007-01-25 Eastman Kodak Co Manufacturing method of organic el display device
JP2008070354A (en) * 2006-07-28 2008-03-27 Nagano Keiki Co Ltd Nonlinear sensor temperature compensation using summed temperature compensation signal
JP2008287179A (en) * 2007-05-21 2008-11-27 Iix Inc Display device, display controller and display device adjustment method
JP2009164890A (en) * 2008-01-07 2009-07-23 Kyocera Mita Corp Image reader and image forming apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005284172A (en) * 2004-03-30 2005-10-13 Eastman Kodak Co Organic el display device
JP2006235608A (en) * 2005-01-28 2006-09-07 Toshiba Matsushita Display Technology Co Ltd El display device and method of driving el display device
JP2006349966A (en) * 2005-06-15 2006-12-28 Eastman Kodak Co Manufacturing method of organic el display device, and organic el display device
JP2007018876A (en) * 2005-07-07 2007-01-25 Eastman Kodak Co Manufacturing method of organic el display device
JP2008070354A (en) * 2006-07-28 2008-03-27 Nagano Keiki Co Ltd Nonlinear sensor temperature compensation using summed temperature compensation signal
JP2008287179A (en) * 2007-05-21 2008-11-27 Iix Inc Display device, display controller and display device adjustment method
JP2009164890A (en) * 2008-01-07 2009-07-23 Kyocera Mita Corp Image reader and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114677958A (en) * 2022-03-30 2022-06-28 卡莱特云科技股份有限公司 Correction method, device and system for LED display screen
CN114677958B (en) * 2022-03-30 2023-12-15 卡莱特云科技股份有限公司 Correction method, device and system for LED display screen

Similar Documents

Publication Publication Date Title
CN108428721B (en) Display device and control method
US9202412B2 (en) Organic EL display apparatus and method of fabricating organic EL display apparatus
JP5552117B2 (en) Display method for organic EL display device and organic EL display device
TWI459353B (en) Compensated drive signal for electroluminescent display
US9208721B2 (en) Organic EL display apparatus and method of fabricating organic EL display apparatus
JP5343073B2 (en) Display device, display device manufacturing method and control method
JP5555689B2 (en) Organic EL display device and method of manufacturing organic EL display device
TWI381351B (en) Apparatus for providing drive transistor control signals to gate electrodes of drive transistors inan electroluminescent panel
TWI449017B (en) Electroluminescent display with initial nonuniformity compensation
JP6082953B2 (en) Manufacturing method of display device
US10141020B2 (en) Display device and drive method for same
JPWO2008143130A1 (en) Display device, display device driving method, and computer program
KR20110098914A (en) Electroluminescent display initial non-uniformitty-compensated drive signal
US20070290947A1 (en) Method and apparatus for compensating aging of an electroluminescent display
US11043164B2 (en) Display panel compensation methods
JP2010134169A (en) Active matrix type display apparatus, inspecting method and method for manufacturing such display apparatus
KR20190132224A (en) An active matrix display and a method for driving an active matrix display
CN107424559B (en) Display control method and device of display equipment
JP6358615B2 (en) Display device and manufacturing method thereof
WO2011125112A1 (en) Organic el display device manufacturing method and organic el display device
WO2011125108A1 (en) Method for manufacturing organic el display device, and organic el display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP