WO2011124803A1 - Procede de fabrication d'un reseau de microlentilles aux extremites d'un faisceau de fibres optiques, fibres optiques et utilisation associees - Google Patents

Procede de fabrication d'un reseau de microlentilles aux extremites d'un faisceau de fibres optiques, fibres optiques et utilisation associees Download PDF

Info

Publication number
WO2011124803A1
WO2011124803A1 PCT/FR2011/050593 FR2011050593W WO2011124803A1 WO 2011124803 A1 WO2011124803 A1 WO 2011124803A1 FR 2011050593 W FR2011050593 W FR 2011050593W WO 2011124803 A1 WO2011124803 A1 WO 2011124803A1
Authority
WO
WIPO (PCT)
Prior art keywords
drop
fiber
bundle
solution
multicore
Prior art date
Application number
PCT/FR2011/050593
Other languages
English (en)
Inventor
Jérôme PLAIN
Renaud Bachelot
Pascal Royer
Xinhua Zeng
Safi Jradi
Original Assignee
Universite De Technologie De Troyes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Technologie De Troyes filed Critical Universite De Technologie De Troyes
Priority to CN2011800271544A priority Critical patent/CN102918439A/zh
Priority to EP11715588A priority patent/EP2553508A1/fr
Priority to US13/638,187 priority patent/US8958669B2/en
Priority to JP2013501897A priority patent/JP2013527934A/ja
Publication of WO2011124803A1 publication Critical patent/WO2011124803A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29D11/00692Production of light guides combined with lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends

Definitions

  • the invention relates to the field of optics and more particularly optics applied to optical fibers for the transmission of information.
  • the invention thus relates to developments relating to micro-optics. It is more particularly optical fibers of which an extremity is treated and modified; the fibers concerned are in particular so-called multi-core fibers, that is to say constituted of a set or bundle of unitary optical fibers each of whose ends is finally provided with a microlens separated from the microlenses formed on the ends of neighboring fibers.
  • This arrangement makes it possible to create at one end of a multicore fiber or a bundle of unit optical fibers, a network of micro lenses intended for example for applications in simultaneous and / or multiplexed imaging, in tomography, or in simultaneous spectrometry.
  • Lensed optical monofibres and their manufacturing processes are known.
  • the document FR 2,798,740 filed in the name of the Applicant relates to single-mode optical fibers or weakly multimode having at least one of their ends a numerical aperture. The end or ends of these fibers are provided at one of their ends with a transparent polymer peak obtained by photopolymerization.
  • the process described in this document only concerns monofibers and does not apply to multicore fibers.
  • the transposition, which has been tested, with multicore fibers always induces a polymerization between the cores (ends of the unit fibers), which constitutes a real problem to be solved if we wish to move towards applications such as simultaneous imaging multiplexing.
  • Document FR 2 827 968 which relates to single-mode or multimode optical fibers associated with end-points made of transparent polymer, is also known. This technology applies for example to four peaks of a single mode, for high modes in a multimode fiber where the peaks overlap. This document does not relate to multi-core fibers according to the invention and the associated problem. Moreover, this document seeks to adapt the chemical composition of the peaks, especially via the viscosity of its formulation.
  • the micro-optics has several development axes for processing and / or modifying the ends of optical fibers to obtain a microlens array.
  • the light diverges at the end of an optical fiber opposite to that by which a light beam is injected.
  • it has appeared necessary to focus the light at the fiber outlet, in particular by providing lenses at these ends.
  • a problem arises as the size and / or density of the fibers increases.
  • a chemical etching is carried out making it possible to manufacture glass tips at the ends of each of the cores.
  • a refinement consists in then carrying out a controlled deposition of metal around the end of the unit fibers to be treated, followed by a resin deposition and then a chemical etching in order to disengage the pointed and spaced ends of the fibers.
  • Another development axis is based on the chemical attack of the ends of a set (between 50,000 and 60,000) of optical fibers arranged in a hexagonal array.
  • a set between 50,000 and 60,000
  • optical fibers arranged in a hexagonal array.
  • the invention aims to overcome the drawbacks of the state of the art and in particular to provide a method for manufacturing microlenses of optical fiber ends unitary part of a fiber bundle or a multicore fiber, including in particular the deposition of a drop (or meniscus of capillarity) of photopolymerizable solution on a first end of the beam or said multicore fiber.
  • the method further comprises: - adapting the dimension of said drop - injecting a light centered on a given wavelength at a second end of said multi-core fiber or the fiber bundle in order to selectively polymerize said drop, - rinsing said first end with a solution of a solvent such as methanol or ethanol to obtain a network of unit optical fibers each provided with a the microlens at the first end of the multicore fiber or fiber bundle, said microlenses being physically separated from each other.
  • a solvent such as methanol or ethanol
  • the method consists in adapting the height of the drop according to its composition and so that said height is less than the distance measured substantially along the longitudinal axis of the multicore fiber, between the dite first end and a proximal surface containing intersections of light beams from each unit optical fiber.
  • the reduction of the size of said drop consists of a decrease in its thickness to about a few micrometers.
  • the reduction of the dimension of said drop consists of a decrease in the angle A between the end plane of the multi-core fiber and the plane of the tangent of the drop on the periphery, up to a value of less than 10 °.
  • tangent plane of the drop on the periphery is meant the plane of the outer surface of the drop at its peripheral contact with the end plane of the fiber or the fiber bundle.
  • said photo-polymerizable solution comprises a photopolymerizable monomer PETIA type in which is added a mixture comprising about 4% by weight of a methyldiethanolamine type agent and about 0.5% by weight of an agent of the eosin type.
  • a radical polymerizable solution sensitive to an inhibitor such as oxygen and / or 4-methoxyphenol
  • having a given threshold of photopolymerization and induced by said inh ibiteur such as oxygen and / or 4-Methoxyphenol.
  • a source having a wavelength of the order of 0.532 micrometers is used to illuminate the second end of the multicore fiber or the fiber bundle.
  • said end is illuminated for a duration of the order of one second.
  • the adaptation of the dimension of the drop consists of bringing into contact the end portion of a fiber-type outer member having substantially the same external diameter as the drop, with the end distal and curved of the drop adhering to the first end of the multi-core fiber, to move said ends away once the flat end loaded with a quantity of photo-polymerizable solution, to measure the thickness and / or the angle A of the drop on the first end of the multicore fiber, and then depending on the result of the measurement, to reconcile the two ends after the flat end of the outer element has been cleared of any solution.
  • a predetermined value of thickness or angle A is obtained.
  • the invention further relates to a unit optical fiber bundle according to which all or part of said fibers is provided at one of its ends with a microlens obtained by the method described above.
  • FIG. 1 several diagrams illustrating the main steps of the method according to the invention
  • FIG. 1A is a simplified section of the first end of the bundle of fibers, provided with a drop of large volume
  • Figure 1B is a simplified section of the first end of the bundle of fibers, provided with a drop of reduced volume
  • FIG. 2 is a block diagram of an installation for reducing the size of a drop of photopolymerizable liquid
  • FIG. 3 is a diagram showing the radicular polymerization threshold
  • Figure 1 shows the different and main steps of the method of realization according to the invention.
  • a drop 2 of a photopolymerizable solution is deposited on a first end 10 of a bundle of fibers or a so-called multi-core fiber 1.
  • a multicore fiber 1 consists of a bundle of optical fibers 100 sheathed externally.
  • the deposited solution is preferably a solution based on a monomer such as PETIA in which at least one photoinitiator such as eosin is incorporated, as well as methyldiethanolamine (MDEA).
  • MDEA methyldiethanolamine
  • a mixture of 4% by weight of MDEA and 0.5% by weight of eosin is chosen.
  • photoinitiators can be modified to be adapted to a particular wavelength.
  • the wavelength is of the order of 0.532 micrometer.
  • This adaptation generally consists of a reduction and more particularly in a reduction in thickness and / or a decrease in the angle A between the end plane of the fiber bundle and the plane of the tangent of the drop at the periphery.
  • Figures 1A and 1B specify how is determined the angle A:
  • Figure 1A corresponds to a drop 2 according to the first step of the method, with an angle A for example of the order of 23 °;
  • Figure 1 B substantially corresponds to a drop according to Figure 1 (iv) whose size has been decreased, as will be explained below.
  • the final angle A can be of the order of 8 °.
  • the decrease in thickness and / or angle is achieved by contacting the end of an outer member 3 of fiber type having substantially the same outer diameter as the drop 2, with the distal end and curved of it.
  • the approximation of the ends is shown schematically in Figure 1 (i), and the contact in Figure 1 (ii). Then the ends are axially removed so that the end of the outer member 3, initially free of any solution is charged in solution as visible in Figure 1 (iii); the volume of the drop 2 is thus reduced accordingly.
  • FIG. 2 shows an example of material used to achieve a controlled modification of the size (or volume) of the drop 2.
  • a white light source 5 vis-à-vis the source 5 is placed a viewing system 6 comprising for example a lens and a camera for fine viewing of the drop 2.
  • a viewing system 6 comprising for example a lens and a camera for fine viewing of the drop 2.
  • the outer fiber 3 supported and axially displaceable through a system 7 for example consisting of a plate and a micrometer screw.
  • This arrangement makes it possible to bring the fibers 1 and 3 or, more precisely, their respective ends closer together or away from them.
  • the arrow F of FIG. 2 shows this displacement which makes it possible to modify the size of the drop 2 of photo-polymerizable solution, and to control this modification. Any other known means allowing such an adaptation associated with such a control can of course be implemented without departing from the scope of the invention.
  • the principle of the invention is based on the root polymerization threshold of the solution forming the drop 2, said threshold being induced by a polymerization inhibitor such as oxygen or 4-methoxyphenol or any other inhibitor equivalent.
  • the inhbiter kills the free radicals of the solution, vectors of polarization, thus preventing it from occurring.
  • To overcome this threshold it is necessary to increase the photon energy (power or exposure time), which allows to consume inhibitor molecules to allow polarization.
  • the oxygen present outside the droplet diffuses more rapidly up to the irradiation zone and thus the polymerization is limited.
  • the areas of less important intensity namely the areas between the cores (or ends of fibers units) will not induce polymerization, and the areas at the ends of the unit fibers 100 will be able to be polymerized while being physically separated from each other.
  • FIG. 3 illustrates the principle stated above from which it emerges that: (a) if there is a drop 2 of size and therefore of considerable thickness, with a given threshold Es and a small amount of oxygen, the entire end of the fiber bundle will be polymerized to a certain thickness. In a different way (b) if the thickness of the drop is lower (here of the order of a few micrometers), and that the polymerization threshold Is is increased, then a certain amount of inhibitor will allow to polymerize selectively the ends of the fibers and not the areas between the fibers (also called inter-core areas).
  • the dimension and in particular the height, dimension measured along the longitudinal axis of the fiber, of the drop 2 must remain lower than the distance measured along the same longitudinal axis, between the first end 1 0 of the multicore fiber. and a proximal surface containing intersections of the light beams from each unit fiber 100.
  • the light beams each have a substantially conical shape, the smallest section of which consists of the very end of each unit fiber 100.
  • the unit fibers 100 being are positioned substantially parallel to each other, the light beams have overlapping areas beyond a certain distance from the end of the fibers 100. It will be sought to adapt the height (or thickness) of the drop 20 according to the recovery area, as defined above.
  • the height of the drop will depend on the composition of the photopolymerizable solution and in particular its concentration of inhibitors such as oxygen or 4-methoxyphenol. Comparative tests have shown that the number of microlenses 101 is directly correlated to the thickness of the solution deposited at the end of the bundle or of the fiber 1.
  • the process continues by illuminating with a source 4 the second end 20 of the multicore fiber 1 .cf Figure 1 (iv). This will induce the desired selective polymerization at the first end of fiber 1.
  • step (v) of Figure 1 it is a question of rinsing the first end 10 of the fiber 1 in order to eliminate any trace of polymerization outside those formed at the ends of the fibers 100, and which form the microlenses 101.
  • a multi-core optical fiber 1 one (1) meter long, provided at its first end with a droplet 2 having a thickness of 10 microns, has been irradiated from its second end 20 by a source of wavelength equal to 532 nanometers with a power of 7 microwatts for a duration of 2 seconds.
  • Microlenses 101 all physically separated from each other, have thus been obtained at the ends of the multicore optical fiber 1.
  • the present invention makes it possible to obtain a microfiber bundle of which at least one of the ends 10 is provided with micro objectives (or microlenses 1 01) which focus the light coming from the other end. 20 of the fiber, with zero light intensity between the micro lenses.
  • this particular beam can advantageously be used as a network of micro-objectives in applications in simultaneous imaging such as endoscopy, or in simultaneous spectroscopy, so that for example to illuminate biological tissues by light multifocalization on hundreds or even thousands of points very close to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

La présente invention vise un procédé de fabrication de microlentilles d'extrémités (101) de fibres optiques unitaires (100) faisant partie d'un faisceau ou d'une fibre multicoeurs, comprenant notamment le dépôt d'une goutte (2) de solution photo- polymérisable sur une première extrémité (10) du faisceau ou de ladite fibre multicoeurs. Le procédé selon l'invention consiste en outre à – adapter la dimension de ladite goutte (2) – injecter une lumière (4) centrée sur une longueur d'onde donnée à une deuxième extrémité (20) du faisceau ou de ladite fibre multicoeurs afin de polymériser sélectivement ladite goutte (2), - rincer ladite première extrémité (10) à l'aide d'une solution de méthanol afin d'obtenir un réseau de fibres optiques unitaires (100) chacune pourvue d'une microlentille (101) au niveau de la première extrémité (10) de la fibre multicoeurs ou du faisceau, lesdites microlentilles (101) étant physiquement séparées les unes des autres. L'invention concerne par ailleurs un faisceau de fibres microlentillées obtenues par ledit procédé, ainsi que l'utilisation d'un tel faisceau par exemple en imagerie médicale ou multiplexée et/ou en couplage de fibres optiques.

Description

PROCEDE DE FABRICATION D'UN RESEAU DE MICROLENTILLES AUX EXTREMITES D'UN FAISCEAU DE FIBRES OPTIQUES, FIBRES OPTIQUES
ET UTILISATION ASSOCIEES
DOMAINE TECHNIQUE DE L'INVENTION
[0001] L'invention se rapporte au domaine de l'optique et plus particulièrement de l'optique appliquée à des fibres optiques pour la transmission d'informations. L'invention concerne ainsi des développements relatifs à la micro-optique. Il s'agit plus particul ièrement de fibres optiques dont une extrém ité est traitée et modifiée ; les fibres concernées sont notamment des fibres dites multicoeurs c'est-à-dire constituées d'un ensemble ou faisceau de fibres optiques unitaires dont chacune des extrémités est finalement pourvue d'une microlentille distincte des microlentilles formées sur les extrémités des fibres voisines. Cet arrangement permet de créer à une extrémité d'une fibre multicoeurs ou d'un faisceau de fibres optiques unitaires, un réseau de micro objectifs destinés par exemple à des applications en imagerie simultanée et/ou multiplexée, en tomographie, ou en spectrométrie simultanée.
[0002] Il s'ag it de pouvoir focal iser la lum ière aux extrém ités d'un faisceau comprenant un très grand nombre (des milliers) de fibres optiques, afin d'illuminer par autant de micro points une surface donnée.
ETAT DE LA TECHNIQUE ANTERIEURE
[0003]On connaît des monofibres optiques lentillées et leurs procédés de fabrication. Par exemple le document FR 2 798 740 déposé au nom de la demanderesse concerne des fibres optiques monomodes ou faiblement multimodes présentant à l'une au moins de leurs extrémités une ouverture numérique. La ou les extrémités de ces fibres sont pourvues à l'une de leurs extrém ités d'un pic polymère transparent obtenu par photopolymérisation. Cependant le procédé décrit dans ce document concerne uniquement les monofibres et ne s'applique pas aux fibres multicoeurs. La transposition, qui a été testée, à des fibres multicoeurs induit toujours une polymérisation entre les cœurs (extrémités des fibres unitaires), ce qui constitue un véritable problème à résoud re si l 'on sou ha ite s'orienter vers des appl ications tel les q ue le multiplexage en imagerie simultanée.
[0004]On connaît aussi le document FR 2 827 968 qui concerne des fibres optiques monomodes ou multimodes associées à des pics d'extrémités en polymère transparent. Cette technologie s'applique par exemple à quatre pics d'un seul mode, pour des modes élevés dans une fibre multimodes où les pics se recouvrent. Ce document ne concerne pas les fibres multicoeurs selon l'invention et la problématique associée. Par ailleurs on cherche dans ce document à adapter la composition chimique des pics, via notamment la viscosité de sa formulation.
[0005] Par ailleurs, la micro-optique connaît plusieurs axes de développement permettant de traiter et/ou de modifier les extrémités de fibres optiques afin d'obtenir un réseau de microlentilles. Comme on le sait, la lumière diverge à l'extrémité d'une fibre optique opposée à celle par laquelle un faisceau lumineux est injecté. Ainsi il est apparu nécessaire de focaliser la lumière en sortie de fibre, notamment en prévoyant des lentilles à ces extrémités. Un problème apparaît lorsque la taille et/ou la densité des fibres croît.
[0006]Selon un premier développement, po u r fa b ri q u e r u n résea u d e microlentilles à l'extrémité d'un faisceau de fibres, on réalise une attaque chimique permettant de fabriquer des pointes de verre en extrémités de chacun des cœurs. Un raffinement consiste à réaliser ensuite un dépôt contrôlé de métal autour de l'extrémité des fibres unitaires à traiter, suivi d'un dépôt de résine puis d'une attaque chimique afin de dégager les extrémités pointues et espacées des fibres.
[0007] Un autre axe de développement repose sur l 'attaque ch im ique des extrémités d'un ensemble (entre 50 000 et 60 000) de fibres optiques arrangées selon un réseau hexagonal. On obtient d'abord un réseau de trous sensiblement cylindriques dont le fond correspond aux extrémités des fibres unitaires ; puis on remplit ces trous avec des micro billes diélectriques qui servent de micro lentilles. [0008] Ces techniques connues sont de mise en œuvre complexe, elles requièrent de nombreuses étapes de procédé et se révèlent parfois difficilement contrôlables, d'où des problèmes de coût, de fiabilité. Les pointes de verre présentent en outre des qualités optiques médiocres.
EXPOSE DE L'INVENTION
[0009] L'invention vise à remédier aux inconvénients de l'état de la technique et notamment à proposer un procédé de fabrication de microlentilles d'extrémités de fibres optiques unitaires faisant partie d'un faisceau de fibres ou d'une fibre multicoeurs, comprenant notamment le dépôt d'une goutte (ou ménisque de capillarité) de solution photo-polymérisable sur une première extrémité du faisceau ou de ladite fibre multicoeurs.
[0010] Selon un premier aspect de l'invention le procédé consiste en outre à : - adapter la dimension de ladite goutte - injecter une lumière centrée sur une longueur d'onde donnée à une deuxième extrémité de ladite fibre multicoeurs ou du faisceau de fibres, afin de polymériser sélectivement ladite goutte,- rincer ladite première extrémité à l'aide d'une solution d'un solvant tel que du méthanol ou de l'éthanol afin d'obtenir un réseau de fibres optiques unitaires chacune pourvue d'une m icrolentille au niveau de la première extrém ité de la fibre multicoeurs ou du faisceau de fibres, lesdites microlentilles étant physiquement séparées les unes des autres.
[0011] De façon spécifique, le procédé consiste à adapter la hauteur de la goutte en fonction de sa composition et de telle sorte que ladite hauteur soit inférieure à la distance mesurée sensiblement selon l'axe longitudinal de la fibre multicoeurs, entre la d ite prem ière extrém ité et une surface proximale contenant des intersections des faisceaux lumineux issus de chaque fibre optique unitaire.
[0012]Selon un mode de réalisation de l'invention, la réduction de la dimension de ladite goutte consiste en une diminution de son épaisseur jusqu'à environ quelques micromètres. [0013] Conformément à un autre mode de réalisation de l'invention, la réduction de la dimension de ladite goutte consiste en une diminution de l'angle A entre le plan d'extrémité de la fibre multicoeurs et le plan de la tangente de la goutte en périphérie, jusqu'à une valeur inférieure à 10°. [0014] Par 'plan de la tangente de la goutte en périphérie ' on entend le plan de la surface extérieure de la goutte au niveau de son contact périphérique avec le plan d'extrémité de la fibre ou du faisceau de fibres.
[0015]Selon une particularité de l'invention, ladite solution photo-polymérisable comprend un monomère photopolymérisable du type PETIA dans lequel est ajouté un mélange comprenant environ 4% en masse d 'u n agent du type methyldiéthanolamine et environ 0.5% en masse d'un agent du type éosine.
[0016] Avantageusement, on utilise une solution photo-polymérisable radicalaire sensible à un inhibiteur tel que l'oxygène et/ou le 4-Methoxyphénol, présentant un seuil de photopolymérisation donné et induit par ledit inh ibiteur tel que l'oxygène et/ou le 4-Methoxyphénol.
[0017] En outre, on utilise une source ayant une longueur d'onde de l'ordre de 0.532 micromètres pour illuminer la deuxième extrémité de la fibre multicoeurs ou du faisceau de fibres.
[0018] Préférentiellement, on illumine ladite extrémité pendant une durée de l'ordre de la seconde.
[0019]A titre illustratif, l'adaptation de la dimension de la goutte consiste à mettre en contact l 'extrém ité pl ane d 'u n élément extérieu r de type fibre ayant sensiblement le même diamètre extérieur que la goutte, avec l'extrémité distale et bombée de la goutte adhérant à la première extrémité de la fibre multicoeurs, à éloigner lesdites extrémités une fois l'extrémité plane chargée d'une quantité de solution photo-polymérisable, à mesurer l'épaisseur et/ou l'angle A de la goutte sur la première extrémité de la fibre multicoeurs, puis en fonction du résultat de la mesure, à rapprocher à nouveau les deux extrémités après que l'extrémité plane de l'élément extérieur a été débarrassée de toute trace de solution. On réitère cette opération de rapprochement jusqu'à l'obtention d'une valeur d'épaisseur ou d'angle A prédéterminée.
[0020] L'invention porte en outre sur un faisceau de fibres optiques unitaires selon lequel tout ou partie desdites fibres est pourvu à l'une de ses extrémités d'une microlentille obtenue par le procédé décrit ci-dessus.
[0021] L'utilisation d'un faisceau de fibres optiques obtenues selon le procédé décrit ci-dessus en imagerie médicale ou multiplexée, en couplage de fibres optiques, fait partie de l'invention.
BREVE DESCRIPTION DES FIGURES
[0022] [001 ]D'autres caractéristiques, détails et ava ntages d e l ' i nvention ressortiront à la lecture de la description qui suit, en référence aux figures annexées, qui illustrent : la figure 1 , plusieurs schémas illustrant les principales étapes du procédé selon l'invention;
- la figure 1 A est une coupe simpl ifiée de la première extrémité du faisceau de fibres, pourvue d'une goutte de volume important; la figure 1 B est une coupe simpl ifiée de la première extrémité du faisceau de fibres, pourvue d'une goutte de volume réduit;
la figure 2 est un schéma de principe d'une installation permettant de réduire la dimension d'une goutte de liquide photopolymérisable; et la figure 3 est un schéma montrant le seuil de polymérisation radiculaire
[0023] Pour plus de clarté, les éléments identiques ou similaires sont repérés par des signes de référence identiques sur l'ensemble des figures. DESCRIPTION DETAILLEE D'UN MODE DE REALISATION
[0024] La figure 1 montre les différentes et principales étapes du procédé de réalisation selon l'invention. Dans un premier temps, on dépose par exemple à l'aide d'une pipette ou d'une fibre extérieure 3, une goutte 2 d'une solution photopolymérisable sur une première extrémité 10 d'un faisceau de fibres ou d'une fibre dite multicoeurs 1 . Une fibre multicoeurs 1 consiste en un faisceau de fibres optiques 100 gainées extérieurement. Comme il sera explicité ci-après, la solution déposée est préférentiellement une solution à base d'un monomère tel que le PETIA dans laquelle on incorpore au moins un photoinitiateur tel que de l'éosine, ainsi que du methyldiéthanolamine (MDEA). Pour une application préférée de l'invention, on choisit un mélange de 4% en masse de MDEA et de 0.5% en masse d'éosine.
[0025]Sans sortir du cadre de l'invention les photoin itiateurs peuvent être modifiés pour être adaptés à une longueur d'onde particulière. Ici la longueur d'onde est de l'ordre de 0.532 micromètre.
[0026] Une fois la goutte (ou ménisque de capillarité) 2 déposée sur la première extrémité 10 de la fibre ou du faisceau de fibres 1 , on procède à une adaptation de la dimension de cette goutte 2. Cette adaptation consiste généralement en une réduction et plus particulièrement en une réduction d'épaisseur et/ou en une diminution de l'angle A entre le plan d'extrémité du faisceau de fibres et le plan de la tangente de la goutte en périphérie.
[0027] Les figures 1A et 1 B précisent comment est déterminé l'angle A : la figure 1A correspond à une goutte 2 selon la première étape du procédé, avec un angle A par exemple de l'ordre de 23° ; la figure 1 B correspond sensiblement à une goutte selon la figure 1 (iv) dont la taille a été diminuée, comme il sera explicité ci- après. Ainsi l'angle A final peut être de l'ordre de 8°.
[0028]Selon un mode de réalisation de l'invention déjà testé, on cherche à diminuer l'angle A au cours du procédé.
[0029]Techniquement la diminution d'épaisseur et/ou d'angle est réalisée en mettant en contact l'extrémité d'un élément extérieur 3 de type fibre ayant sensiblement le même diamètre extérieur que la goutte 2, avec l'extrémité distale et bombée de celle-ci. Le rapprochement des extrémités est schématisé sur la figure 1 (i), et le contact sur la figure 1 (ii). Ensuite on éloigne axialement les extrémités de sorte que l'extrémité de l'élément extérieur 3, initialement libre de toute solution, se charge en solution comme visible sur la figure 1 (iii) ; le volume de la goutte 2 est ainsi diminué d'autant.
[0030] La figure 2 montre un exemple de matériel util isé pour réal iser une modification contrôlée de la taille (ou volume) de la goutte 2. Ainsi la première extrémité 10 de la fibre 1 ou du faisceau de fibres, pourvue de la goutte 2, est disposée au niveau d'une source de lumière blanche 5 ; en vis-à-vis de la source 5 on place un système de visualisation 6 comportant par exemple un objectif et une caméra à des fins de visualisation fine de la goutte 2. Dans l'axe longitudinal de la fibre 1 à traiter, on place la fibre extérieure 3 supportée et déplaçable axialement grâce à un système 7 par exemple constitué d'une platine et d'une vis micrométrique. Cet agencement permet de rapprocher ou d'éloigner axialement les fibres 1 et 3 ou plus précisément leurs extrémités respectives. La flèche F de la figure 2 montre ce déplacement qui permet de modifier la taille de la goutte 2 de solution photo-polymérisable, et de contrôler cette modification. [0031]Tout autre moyen connu en soi permettant une telle adaptation associée à un tel contrôle peut bien entendu être mis en oeuvre sans sortir du cadre de l'invention.
[0032] Il s'agit d'atteindre une certaine valeur d'épaisseur et/ou d'angle A de la façon la plus précise possible. En effet le principe de l'invention est fondé sur le seuil de polymérisation radiculaire de la solution formant la goutte 2, ledit seuil étant induit par un inhibiteur de polymérisation tel que tel que l'oxygène ou encore l e 4-méthoxyphénol ou tout autre inhibiteur équivalent. L' inh ibiteur tue les radicaux libres de la solution, vecteurs de la polarisation, l'empêchant donc de se produire. Afin de passer outre ce seuil i l est nécessaire d'augmenter l'énergie photonique (puissance ou temps d'exposition), ce qui permet de consommer les molécules d'inhibiteur afin de permettre la polarisation. En adaptant et notamment en réduisant l'épaisseur de la couche de solution, ou plus particulièrement de la goutte 2, l'oxygène présent hors de la goutte diffuse plus rapidement jusqu'à la zone d'irradiation et ainsi on limite la polymérisation. Ainsi, les zones d'intensité moins importantes, à savoir les zones entre les cœurs (ou extrémités de fibres unitaires) ne vont pas induire de polymérisation, et les zones situées au niveau des extrémités des fibres unitaires 100 vont pouvoir être polymérisées tout en étant physiquement séparées les unes des autres.
[0033] La figure 3 illustre le principe énoncé ci-avant d'où il ressort que : (a) si l'on a une goutte 2 de taille et donc d'épaisseur importante, avec un seuil Es donné et une faible quantité d'oxygène, toute l'extrémité 10 du faisceau de fibres va être polymérisée, sur une certaine épaisseur. De façon différente (b) si l'épaisseur de la goutte est plus faible (ici de l'ordre de quelques micromètres), et que l'on augmente le seuil de polymérisation Es, alors une certaine quantité d'inhibiteur va permettre de polymériser sélectivement les extrémités des fibres et non pas les zones entre les fibres (encore appelées zones inter-cœurs).
[0034] Comme déjà dit, il s'agit donc de contrôler précisément l'épaisseur de la goutte 2 qui est liée au seuil de polymérisation radicalaire de la solution déposée.
[0035] La dimension et notamment la hauteur, dimension mesurée selon l'axe longitudinal de la fibre, de la goutte 2 doit rester inférieure à la distance mesurée selon le même axe long itudinal , entre la prem ière extrémité 1 0 de la fibre multicoeurs et une surface proximale contenant des intersections des faisceaux lumineux issus de chaque fibre unitaire 100. Les faisceaux lumineux présentent chacun une forme sensiblement conique dont la plus petite section est constituée par l'extrémité même de chaque fibre unitaire 100. Les fibres unitaires 100 étant d isposées sensiblement parallèlement les unes aux autres, les faisceaux lumineux présentent des zones de recoupement au-delà d'une certaine distance de l'extrémité des fibres 100. On cherchera à adapter la hauteur (ou épaisseur) de la goutte 20 en fonction de la zone de recouvrement, tel que défini ci-avant. [0036] Par ailleurs la hauteur de la goutte dépendra de la composition de la solution photo-polymérisable et notamment de sa concentration en inhibiteurs tels que l'oxygène ou 4-Methoxyphénol. [0037] Des essa is com paratifs ont m is en évid ence q ue l a h auteu r d es microlentilles 101 est directement corrélée à l'épaisseur de la solution déposée à l'extrémité 10 du faisceau ou de la fibre 1 .
[0038] Une fois la taille de la goutte 2 obtenue, le procédé se poursu it en illuminant à l'aide d'une source 4 la deuxième extrémité 20 de la fibre multicoeurs 1 .cf figure 1 (iv). Ceci va induire la polymérisation sélective recherchée à la première extrémité 10 de la fibre 1 .
[0039] Enfin selon l'étape (v) de la figure 1 , il s'agit de rincer la première extrémité 10 de la fibre 1 afin d'éliminer toute trace de polymérisation en dehors de celles formées aux extrémités des fibres 100, et qui forment les microlentilles 101 .
[0040] A titre illustratif, une fibre optique multicoeurs 1 longue de un (1 ) mètre, pourvue à sa première extrémité 1 0 d'une goutte 2 ayant une épaisseur de 10 micromètres a été irradiée depuis sa deuxième extrémité 20 par une source de longueur d'onde égale à 532 nanomètres avec une puissance de 7 microwatts pendant une durée de 2 secondes. Des microlentilles 101 , toutes séparées physiquement les unes des autres ont ainsi pu être obtenues aux extrémités de la fibre optique multicoeurs 1 .
[0041]Ainsi, le procédé décrit ci-avant, qui est de mise en œuvre simple, permet de réaliser des réseaux de microlentilles 101 à une extrémité 10 d'un faisceau de fibres ou d'une fibre multicoeur 1 . Ces structures originales et inventives font partie du cadre de la présente invention.
[0042] D'une façon plus générale la présente invention permet d'obtenir un faisceau de microfibres dont au moins l'une des extrémités 10 est pourvue de micro objectifs ( ou microlentilles 1 01 ) qui focalisent la lumière issue de l'autre extrémité 20 de la fibre, avec une intensité lum ineuse nulle entre les micro objectifs.
[0043] De façon très intéressante, ce faisceau particulier peut avantageusement être utilisé comme réseau de micro-objectifs dans des applications en imagerie simultanée telle que l'endoscopie, ou encore en spectroscopie simultanée, afin par exemple d'illuminer des tissus biologiques grâce à une multifocalisation de la lumière sur des centaines voire des milliers de points très rapprochés les uns des autres.

Claims

REVENDICATIONS
Procédé de fabrication de microlentilles (101 ) d'extrémités de fibres optiques unitaires (100) faisant partie d'un faisceau ou d'une fibre multicoeurs (1 ), comprenant le dépôt d'une goutte (2) de solution photo-polymérisable sur une première extrémité (10) du faisceau ou de ladite fibre multicoeurs (1 ) caractérisé en ce qu'il consiste en outre à - adapter la dimension de ladite goutte (2)- injecter une lumière (4) centrée sur une longueur d'onde donnée à une deuxième extrémité (20) du faisceau ou de ladite fibre multicoeurs (1 ) afin de polymériser sélectivement ladite goutte (2), - rincer ladite première extrémité (10) à l'aide d'une solution d'un solvant tel que du méthanol ou de l'éthanol afin d'obtenir un réseau de fibres optiques unitaires (100) chacune pourvue d'une microlentille (101 ) au niveau de la première extrémité de la fibre multicoeurs ou du faisceau (1 ), lesdites microlentilles (101 ) étant physiquement séparées les unes des autres.
Procédé selon la revendication 1 caractérisé en ce qu'il consiste à adapter la hauteur de la goutte (2) en fonction de sa composition et de telle sorte que ladite hauteur soit inférieure à la distance mesurée sensiblement selon l'axe longitudinal de la fibre multicoeurs, entre la dite première extrémité (10) et une surface proximale contenant des intersections des faisceaux lumineux issus de chaque fibre optique unitaire.
Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'adaptation de la dimension de ladite goutte (2) consiste en une diminution de son épaisseur jusqu'à environ quelques micromètres.
Procédé selon l'une quelconque des revendications 1 à 3 caractérisé en ce que l'adaptation de la d imension de lad ite goutte (2) consiste en une diminution de l'angle A entre le plan d'extrémité de la fibre multicoeurs ou du faisceau et le plan de la tangente de la goutte en périphérie, jusqu'à une valeur inférieure à 10°.
5. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ladite solution photo-polymérisable comprend un monomère photopolymérisable du type PETIA dans lequel est ajouté un mélange comprenant environ 4% en masse d'un agent du type methyldiéthanolamine et environ 0.5% en masse d'un agent du type éosine.
6. Procéd é selon l ' u n e q u el con q u e des revend ications précéd entes caractérisée en ce que l'on utilise une solution photo-polymérisable radicalaire sensible à u n i n h i biteu r tel q u e l 'oxyg èn e et/ou l e 4- Methoxyphénol, présentant un seuil de photopolymérisation donné et induit par l'inhibiteur tel que l'oxygène et/ou le 4-Methoxyphénol.
7. Procédé selon l'une quelconque des revendication précédentes caractérisé en ce que l'on utilise une source ayant une longueur d'onde de l'ordre de 0.532 micromètre pour illuminer la deuxième extrémité (20) de la fibre multicoeurs (1 ) ou du faisceau de fibres.
8. Procédé selon la revendication 7 caractérisé en ce que l'on illumine ladite deuxième extrémité (20) pendant une durée de l'ordre de la seconde.
9. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'adaptation de la dimension de la goutte consiste à mettre en contact l'extrémité plane (30) d'un élément extérieur (3) de type fibre ayant sensiblement le même diamètre extérieur que la goutte (2), avec l'extrémité distale et bombée de la goutte adhérant à la première extrémité (10) de la fibre multicoeurs ou du faisceau (1 ), à éloigner lesdites extrémités (10, 30) une fois l'extrémité plane (30) chargée d'une quantité de solution photo- polymérisable, à mesurer l'épaisseur et/ou l'angle A de la goutte (2) sur la première extrémité (10) de la fibre multicoeurs ou du faisceau (1 ), puis en fonction du résultat de la mesure, à rapprocher à nouveau les deux extrémités (10, 30) après que l'extrémité plane (30) de l'élément extérieur (3) a été débarrassée de toute trace de solution.
10. Faisceau de fibres optiques unitaires (100) caractérisé en ce que tout ou partie desdites fibres est pourvu à l'une de ses extrémités d'une microlentille
(101 ) obtenue par le procédé selon l'une quelconque des revendications précédentes. Utilisation d'un faisceau de fibres optiques (100) selon la revendication précédente en imagerie médicale ou multiplexée et/ou en couplage de fibres optiques.
PCT/FR2011/050593 2010-03-31 2011-03-22 Procede de fabrication d'un reseau de microlentilles aux extremites d'un faisceau de fibres optiques, fibres optiques et utilisation associees WO2011124803A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800271544A CN102918439A (zh) 2010-03-31 2011-03-22 在光纤束末端制造微透镜网络的方法,相关光纤及用途
EP11715588A EP2553508A1 (fr) 2010-03-31 2011-03-22 Procede de fabrication d'un reseau de microlentilles aux extremites d'un faisceau de fibres optiques, fibres optiques et utilisation associees
US13/638,187 US8958669B2 (en) 2010-03-31 2011-03-22 Method for manufacturing a network of microlenses at the ends of a bundle of optical fibres, related optical fibres and related use
JP2013501897A JP2013527934A (ja) 2010-03-31 2011-03-22 光ファイバの束の端部にマイクロレンズのネットワークを製造する方法、並びに関連する光ファイバ及び使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1052400A FR2958414B1 (fr) 2010-03-31 2010-03-31 Procede de fabrication d'un reseau de microlentilles aux extremites d'un faisceau de fibres optiques, fibres optiques et utilisation associees
FR1052400 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011124803A1 true WO2011124803A1 (fr) 2011-10-13

Family

ID=43020401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050593 WO2011124803A1 (fr) 2010-03-31 2011-03-22 Procede de fabrication d'un reseau de microlentilles aux extremites d'un faisceau de fibres optiques, fibres optiques et utilisation associees

Country Status (6)

Country Link
US (1) US8958669B2 (fr)
EP (1) EP2553508A1 (fr)
JP (1) JP2013527934A (fr)
CN (1) CN102918439A (fr)
FR (1) FR2958414B1 (fr)
WO (1) WO2011124803A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011011734B4 (de) * 2011-02-10 2014-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, Anordnung und Verfahren zur Interferenzstrukturierung von flächigen Proben
GB201609247D0 (en) * 2016-05-25 2016-07-06 Univ Edinburgh A sensing structure and method of forming a sensing structure
CN110058332B (zh) * 2019-04-30 2020-09-11 安徽大学 一种微透镜的制作方法
FR3096376B1 (fr) * 2019-05-23 2021-04-30 Brochier Tech Procede de depot de nanoparticules métalliques sur une nappe textile par photocalyse et nappe textile correspondante
WO2022161943A1 (fr) * 2021-01-26 2022-08-04 Universite De Strasbourg Procédé de fabrication par moulage d'un élément optique, fibre optique comprenant ledit élément optique et système de fabrication par moulage dudit élément optique
CN115826252B (zh) * 2022-09-26 2023-08-25 哈尔滨工程大学 一种光纤自加速光束产生装置的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221547A (ja) * 1997-02-06 1998-08-21 Hitachi Ltd レンズ付き光ファイバおよびその製造方法
FR2798740A1 (fr) 1998-11-16 2001-03-23 Nanotechnologie Et D Instrumen Nouvelles fibres optiques lentillees a forte ouverture numerique d'extremite application a la realisation de nouveaux composants optoelectroniques hautes performances
US20020021501A1 (en) * 2000-06-30 2002-02-21 Ricoh Company, Ltd. Image magnifying/reducing optical device and manufacturing method thereof
FR2827968A1 (fr) 2001-07-27 2003-01-31 Renaud Bachelot Perfectionnements aux fibres optiques lentillees par photopolymerisation et nouveaux composants optiques associes
US20030183152A1 (en) * 2002-03-29 2003-10-02 Altair Center, Llc. Method of laser-assisted fabrication of optoelectronic and photonic components

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734914B1 (fr) * 1995-05-29 1997-07-04 Menigaux Louis Procede de fabrication d'une lentille souple a l'extremite d'une fibre optique
JP2001195901A (ja) * 2000-01-14 2001-07-19 Nippon Sheet Glass Co Ltd 照明装置
US6856712B2 (en) * 2000-11-27 2005-02-15 University Of Washington Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221547A (ja) * 1997-02-06 1998-08-21 Hitachi Ltd レンズ付き光ファイバおよびその製造方法
FR2798740A1 (fr) 1998-11-16 2001-03-23 Nanotechnologie Et D Instrumen Nouvelles fibres optiques lentillees a forte ouverture numerique d'extremite application a la realisation de nouveaux composants optoelectroniques hautes performances
US20020021501A1 (en) * 2000-06-30 2002-02-21 Ricoh Company, Ltd. Image magnifying/reducing optical device and manufacturing method thereof
FR2827968A1 (fr) 2001-07-27 2003-01-31 Renaud Bachelot Perfectionnements aux fibres optiques lentillees par photopolymerisation et nouveaux composants optiques associes
US20030183152A1 (en) * 2002-03-29 2003-10-02 Altair Center, Llc. Method of laser-assisted fabrication of optoelectronic and photonic components

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2553508A1 *
X.H. ZHENG ET AL.: "high speed sub-micrometric microscopy using optical polymer microlens", CHINESE OPTICS LETTERS, vol. 7, no. 10, 10 October 2009 (2009-10-10), pages 901 - 903, XP002608461 *

Also Published As

Publication number Publication date
US20130202263A1 (en) 2013-08-08
JP2013527934A (ja) 2013-07-04
FR2958414A1 (fr) 2011-10-07
CN102918439A (zh) 2013-02-06
FR2958414B1 (fr) 2012-06-15
EP2553508A1 (fr) 2013-02-06
US8958669B2 (en) 2015-02-17

Similar Documents

Publication Publication Date Title
WO2011124803A1 (fr) Procede de fabrication d'un reseau de microlentilles aux extremites d'un faisceau de fibres optiques, fibres optiques et utilisation associees
EP3439529B1 (fr) Dispositifs et méthodes de transport et de contrôle de faisceaux lumineux pour l'imagerie endo-microscopique sans lentille
FR2524989A1 (fr) Procede d'epissurage a faible attenuation pour fibres optiques
Xiong et al. Optical fiber integrated functional micro-/nanostructure induced by two-photon polymerization
EP1121580A1 (fr) Appareil de caracterisation optique de materiau en couche mince
FR3030956A1 (fr) Dispositif de transport et de controle d'impulsions lumineuses pour l'imagerie endo-microscopique sans lentille
FR2947347A1 (fr) Structure et procede d'alignement d'une fibre optique et d'un guide d'ondes submicronique
EP3924757B1 (fr) Métasurfaces optiques, procédés et systèmes de fabrication associés
EP0677758B1 (fr) Système optique pour coupler une fibre à mode circulaire et un phototransducteur à mode elliptique et son procédé de fabrication
EP1866685A2 (fr) Procede de fabrication d'elements comportant des fibres optiques, dispositif de mise en uvre d'un tel procede, element a fibres optiques et dispositif optique comportant un tel element
FR2764376A1 (fr) Dispositif integre de lecture des raies spectrales contenues dans un spectre optique
WO2020254760A1 (fr) Procédé de fixation d'une fibre optique monomode et d'une fibre optique multimode, équipement de couplage optique
EP2410361A1 (fr) Guide d'onde planaire nanophotonique comportant une structure de couplage optique avec une fibre optique
CN114089473B (zh) 一种片上微腔光子集成芯片结构及其制备方法
EP3751258B1 (fr) Dispositif et procédé d'observation d'un échantillon fluorescent
FR2871582A1 (fr) Procede de fabrication d'un bloc optique a circuit optique integre par photopolymerisation localisee d'une matrice organique par absorption a deux photons et bloc optique ainsi obtenu
FR2827968A1 (fr) Perfectionnements aux fibres optiques lentillees par photopolymerisation et nouveaux composants optiques associes
FR2763138A1 (fr) Guide optique muni en son extremite d'une lentille souple et procede de fabrication de celle-ci
EP0096608A1 (fr) Collimateur pour fibre optique, application à la réalisation de dispositifs de commutation optique
EP0362282B1 (fr) Anamorphoseur optique et un procede de fabrication
Liu Fabrication, instrumentation and application for subwavelength periodic nanophotonic devices
Kumar et al. Silicon Nitride assisted SU8 Grating for Polymer Waveguide Coupling
Panusa et al. Multi-photon Fabrication of Compact Low-loss Optical Waveguides in Polydimethylsiloxane
Rahlves Integrated polymer photonics: fabrication, design, characterization and applications
Hassan Microfabrication of Plasmonic Device: PPBG BIosensor in Cytop, Reflection Itensity Modulator and Atomically Flat Nanohole Array

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027154.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11715588

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011715588

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013501897

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13638187

Country of ref document: US