WO2011122498A1 - Polyelectrolyte, polyelectrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell - Google Patents

Polyelectrolyte, polyelectrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell Download PDF

Info

Publication number
WO2011122498A1
WO2011122498A1 PCT/JP2011/057461 JP2011057461W WO2011122498A1 WO 2011122498 A1 WO2011122498 A1 WO 2011122498A1 JP 2011057461 W JP2011057461 W JP 2011057461W WO 2011122498 A1 WO2011122498 A1 WO 2011122498A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
polymer electrolyte
block
polymer block
membrane
Prior art date
Application number
PCT/JP2011/057461
Other languages
French (fr)
Japanese (ja)
Inventor
小野 友裕
竹友 山下
謙太 俊成
和哉 清水
久保 敬次
須郷 望
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2012508266A priority Critical patent/JP5629761B2/en
Publication of WO2011122498A1 publication Critical patent/WO2011122498A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer electrolyte useful for a polymer electrolyte fuel cell, a polymer electrolyte membrane, a membrane-electrode assembly, and a polymer electrolyte fuel cell.
  • Fuel cells have attracted attention as a clean power generation system that is friendly to the global environment. Fuel cells are classified into molten carbonate type, solid oxide type, phosphoric acid type, solid polymer type, etc., depending on the type of electrolyte.
  • Solid polymer fuel cells are required to have both high output under low humidity and high durability when wet. This requirement is particularly strong in a polymer electrolyte fuel cell using hydrogen fuel.
  • a means to increase proton conductivity is usually taken by increasing the ion exchange capacity of the polymer electrolyte used in the polymer electrolyte membrane.
  • the swelling of the membrane increases and the mechanical strength also decreases, and the polymer electrolyte membrane tends to creep during the long-term operation of the polymer electrolyte fuel cell, causing problems such as the durability of the polymer electrolyte fuel cell being reduced.
  • a method of reducing the membrane resistance of the polymer electrolyte membrane by reducing the thickness of the polymer electrolyte membrane and increasing the output has been proposed, but the mechanical strength of the polymer electrolyte membrane is reduced.
  • a polymer electrolyte membrane that has both high proton conductivity and high mechanical strength when wet is desired.
  • An object of the present invention is to provide a polymer electrolyte fuel cell that has both output characteristics and mechanical strength when wet. Further, in order to achieve this object, a polymer electrolyte suitable for the solid polymer fuel cell, a polymer electrolyte membrane using the polymer electrolyte having both mechanical strength and good bonding property with an electrode, and An object of the present invention is to provide a membrane-electrode assembly provided with the polymer electrolyte membrane.
  • the present inventors specify the type and order of bonding of polymer blocks in a polymer electrolyte composed of a copolymer containing a polymer block as a constituent component. The inventors have found that the above-described problems can be solved, and have completed the present invention.
  • the present invention [1] Two polymer blocks (A) having an ion conductive group, one polymer block (B) having no ion conductivity, and four polymer blocks (C) having no ion conductivity A polymer electrolyte comprising a copolymer as a constituent component, wherein the polymer block (B) has a softening temperature lower by 20 ° C.
  • the polymer block (C) is represented by the following general formula (a):
  • R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 2 to R 4 each independently represents a hydrogen atom or an alkyl group having 3 to 8 carbon atoms, but at least one of them is carbon
  • the polymer block (B) is composed of at least one repeating unit selected from alkene units having 2 to 8 carbon atoms and conjugated diene units having 4 to 8 carbon atoms.
  • the copolymer comprising the polymer block (A), polymer block (B) and polymer block (C) constituting the polymer electrolyte of the present invention as a constituent component causes an ion conductive group by causing microphase separation.
  • the polymer blocks (A) having the above are gathered to form an ion channel, which becomes a passage for ions such as protons.
  • a polymer block (B) is a polymer block whose softening temperature is 20 degreeC or more lower than a polymer block (C).
  • the polymer electrolyte of the present invention is elastic and flexible when used at a temperature higher than the softening temperature of the polymer block (B). Further, by using the polymer block (C) at a temperature lower than the softening temperature, the form stability at the use temperature, durability, heat resistance, mechanical strength under wet conditions, and the like are improved. In addition, since the softening temperature of the polymer block (B) is low, the moldability (assembling property, bonding property, tightening property, etc.) in producing the membrane-electrode assembly and the polymer electrolyte fuel cell is improved. .
  • the polymer block (A) having an ion conductive group is formed when wet. Even when the ion channel contains water, it is possible to improve the form stability, durability, heat resistance, mechanical strength when wet, and the like when the polymer electrolyte membrane is formed.
  • the presence of two polymer blocks (A) having an ion conductive group makes it easier to form a pseudo-crosslinked structure due to the interaction between the ion conductive groups, thereby improving the durability when containing water.
  • the toughness can be further increased in the operating temperature range when the polymer electrolyte membrane is formed.
  • the polymer electrolyte of the present invention exhibits good rubber elasticity in the operating temperature range, and the polymer electrolyte Mechanical strength such as tear strength of the film is increased.
  • microphase separation means phase separation in a microscopic sense, and more specifically, means phase separation in which the formed domain size is less than or equal to the wavelength of visible light (3800 to 7800 mm). Shall.
  • the polymer electrolyte of the present invention comprises two polymer blocks (A) having an ion conductive group, one polymer block (B) having no ion conductivity, and four polymers having no ion conductivity. It consists of a copolymer having the block (C) as a constituent component.
  • the copolymer constituting the polymer electrolyte of the present invention need not be a single copolymer, and may be a mixture of a plurality of types.
  • other polymers, low molecular weight organic compounds, inorganic compounds, and the like may be included as long as the object of the present invention is not impaired.
  • the structure of the two polymer blocks (A) and four polymer blocks (C) constituting the copolymer constituting the polymer electrolyte of the present invention Need not be the same, and may be a polymer block having an ion conductive group or a polymer block having no ion conductivity.
  • the copolymer constituting the polymer electrolyte of the present invention comprises two polymer blocks (A) having ion conductive groups as constituent components.
  • the polymer block (A) a polymer block having an aromatic vinyl compound unit as a repeating unit, a polyether ketone block, a polysulfide block, a polyphosphazene block, a polyphenylene block, a polybenzimidazole block, a polyether sulfone block, Polyphenylene oxide block, polycarbonate block, polyamide block, polyimide block, polyurea block, polysulfone block, polysulfonate block, polybenzoxazole block, polybenzothiazole block, polyphenylquinoxaline block, polyquinoline block, polytriazine block, polyacrylate block , Polymerization in which ion conductive groups are introduced into each polymer block such as polymethacrylate block Among them, a polymer block having an aromatic vinyl compound
  • a polymer block in which an ion conductive group is introduced into the polymer block is preferable, and a polymer in which an ion conductive group is introduced into a polymer block having an aromatic vinyl compound unit as a repeating unit from the viewpoint of easy synthesis. Blocks are more preferred.
  • the aromatic ring of the aromatic vinyl compound unit is preferably a carbocyclic aromatic ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a pyrene ring.
  • monomers that can form these aromatic vinyl compound units include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 2,4-dimethylstyrene, 2,5- Aromatic vinyl compounds such as dimethylstyrene, 3,5-dimethylstyrene, 2-methoxystyrene, 3-methoxystyrene, 4-methoxystyrene, vinylbiphenyl, vinylterphenyl, vinylnaphthalene, vinylanthracene, 4-phenoxystyrene It is done.
  • the polymer block (A) is a portion corresponding to the polymer block (A) of the copolymer obtained by polymerization including the step of polymerizing these aromatic vinyl compounds (ion conductivity of the polymer block (A)). It is a precursor block having a structure in which a group is substituted with hydrogen, and can be produced by selectively introducing an ion conductive group into a polymer block (hereinafter sometimes referred to as “polymer block (A 0 )”). In that case, it is desirable that there are no functional groups on the aromatic ring of these monomers that inhibit the reaction for introducing the ion conductive group.
  • the aromatic ring of styrene (particularly hydrogen at the 4-position) is substituted with an alkyl group (particularly an alkyl group having 3 or more carbon atoms), it may be difficult to introduce an ion conductive group.
  • the aromatic ring is preferably not substituted with another functional group, or an aryl group or the like is preferably substituted with a substituent capable of introducing an ion conductive group, and the ion conductive group can be easily introduced. From the viewpoint of increasing the density of the ion conductive group, styrene and vinyl biphenyl are more preferable.
  • the hydrogen atom bonded to the ⁇ -position carbon ( ⁇ -carbon) of the aromatic ring is substituted with another substituent, and the ⁇ -carbon is 4 It may have a structure that is a secondary carbon.
  • the substituent in which the hydrogen atom bonded to the ⁇ -carbon atom may be substituted include an alkyl group having 1 to 4 carbon atoms (methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group).
  • halogenated alkyl group having 1 to 4 carbon atoms chloromethyl group, 2-chloroethyl group, 3-chloroethyl group, etc.
  • aromatic vinyl compound having the substituent include ⁇ -methylstyrene, ⁇ -methyl-4-methylstyrene, ⁇ -methyl-2-methylstyrene, ⁇ -methyl-4-ethylstyrene, 1,1-diphenylethylene. Is preferred.
  • aromatic vinyl compounds can be used as a monomer in forming the polymer block (A) by combining one or more kinds.
  • two types are selected from styrene, ⁇ -methylstyrene, 4-methylstyrene, 4-ethylstyrene, ⁇ -methyl-4-methylstyrene, and ⁇ -methyl-2-methylstyrene. It is preferable to select the above.
  • the copolymerization method in the case of forming a polymer block (A 0 ) having a structure in which two or more of these are copolymerized to replace the ion conductive group of the polymer block (A) with hydrogen is random copolymerization. Is preferred.
  • the polymer block (A) may contain one or more other monomer units as long as the effects of the present invention are not impaired.
  • monomers that can constitute such other monomer units include conjugated dienes having 4 to 8 carbon atoms (1,3-butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4 -Hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-heptadiene, etc.), alkenes having 2 to 8 carbon atoms (ethylene, propylene, 1-butene, 2 -Butene, isobutene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 1-heptene, 2-heptene, 1-octene, 2-octene, etc.), (meth) acrylic acid esters ((meth) acrylic) Methyl ester, ethyl (meth
  • the polymer block (A) has an aromatic vinyl compound unit as a repeating unit, it is advantageous in causing microphase separation from the polymer block (B), and as a result, ion conductivity can be increased.
  • the molecular weight of the polymer block (A 0 ) is usually preferably selected from the range of 1,000 to 100,000 as the number average molecular weight in terms of standard polystyrene, and selected from the range of 2,000 to 70,000. More preferably, it is more preferably selected from the range of 3,000 to 50,000, and particularly preferably selected from the range of 4,000 to 30,000.
  • the molecular weight of the polymer block (A 0 ) is appropriately selected depending on the properties of the polymer electrolyte membrane, required performance, other polymer components, and the like.
  • the molecular weight is large, the mechanical strength of the polymer electrolyte membrane tends to be high, but when it is greater than 100,000, it may be difficult to form and form the polymer electrolyte.
  • the molecular weight is less than 1,000, it is difficult to form a microphase separation structure and thus an ion channel, so that the ionic conductivity tends to be lost and the mechanical strength tends to be lowered.
  • the polymer block (A) may be crosslinked by a known method within a range not impairing the effects of the present invention. By introducing the crosslinking, the ion channel phase formed by the polymer block (A) is less likely to swell, the structure in the electrolyte membrane is easily maintained, and the performance tends to be stable.
  • the polymer block (A) in the polymer electrolyte of the present invention needs to have an ion conductive group.
  • ions in the present invention when referring to ionic conductivity include protons.
  • the ion conductive group is not particularly limited as long as the polymer electrolyte membrane and membrane-electrode assembly produced using the polymer electrolyte can express sufficient ionic conductivity.
  • a sulfonic acid group, phosphonic acid group, carboxyl group or a salt thereof represented by 3 M or —PO 3 HM, —CO 2 M (wherein M represents a hydrogen atom, an ammonium ion or an alkali metal ion) is used.
  • a sulfonic acid group represented by —SO 3 M or —PO 3 HM (wherein M represents a hydrogen atom, an ammonium ion or an alkali metal ion), phosphone Acid groups or their salts are preferably used.
  • All the repeating units in the polymer block (A) do not need to have an ion conductive group, and the amount of the ion conductive group can be appropriately adjusted according to the performance.
  • limiting in particular about the position of the ion conductive group in a polymer block (A) Usually, it introduce
  • the aromatic vinyl compound unit is a repeating unit, it is particularly effective for improving the radical resistance of the polymer electrolyte by introducing an ion conductive group onto the aromatic ring of the aromatic vinyl compound unit. .
  • the amount of ion-conducting group introduced is appropriately selected depending on the required performance of the obtained polymer electrolyte membrane, etc., but exhibits sufficient ion conductivity for use as a polymer electrolyte membrane for a polymer electrolyte fuel cell.
  • the amount is preferably such that the ion exchange capacity of the polymer electrolyte is 0.80 meq / g or more, more preferably 1.30 meq / g or more. It is more preferably 1.40 meq / g or more, and particularly preferably 1.80 meq / g or more.
  • the upper limit of the ion exchange capacity of the polymer electrolyte is preferably 4.00 meq / g or less, because if the ion exchange capacity becomes too large, the hydrophilicity tends to increase and the water resistance becomes insufficient. It is more preferably 80 meq / g or less, and still more preferably 3.60 meq / g or less.
  • the copolymer constituting the polymer electrolyte of the present invention comprises one polymer block (B) having no ionic conductivity as a constituent component.
  • the polymer electrolyte membrane of the present invention is elastic and flexible in the operating temperature range due to the polymer block (B), and has moldability in the production of membrane-electrode assemblies and solid polymer fuel cells. (Assemblyability, bondability, tightenability, etc.)
  • the polymer block (B) does not have ionic conductivity, and the softening temperature (that is, the softening temperature when the polymer block independently becomes a polymer) is the polymer block (C ) (That is, the polymer softening temperature when the polymer block independently becomes a polymer) is 20 ° C. or more lower than the softening temperature.
  • the softening temperature of each polymer block (C) constituting the copolymer is different, the softening temperature of the polymer block (B) is 20 than that of the polymer block (C) showing the lowest softening temperature. More than °C.
  • the softening temperature of the polymer block (B) is preferably 40 ° C.
  • the repeating unit constituting the polymer block (B) includes alkene units having 2 to 8 carbon atoms, cycloalkene units having 5 to 8 carbon atoms, vinylcycloalkane units having 7 to 10 carbon atoms, and 7 to 10 carbon atoms. Vinylcycloalkene unit, conjugated diene unit having 4 to 8 carbon atoms, conjugated cycloalkadiene unit having 5 to 8 carbon atoms, acrylate ester unit having a side chain having 1 to 12 carbon atoms, and 1 to 12 carbon atoms Examples include methacrylic acid ester units having side chains. You may use the repeating unit chosen from these groups individually or in combination of 2 or more types.
  • the softening temperature of the polymer block (B) is preferably 50 ° C. or less, more preferably 40 ° C. or less, and further preferably 30 ° C. or less in view of a suitable use temperature range and molding temperature. preferable.
  • the alkene having 2 to 8 carbon atoms includes ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 1-hexene, Cycloalkene having 5 to 8 carbon atoms such as 2-hexene, 1-heptene, 2-heptene, 1-octene, 2-octene and the like, and cycloalkene having 5 to 8 carbon atoms such as cyclopentene, cyclohexene, cycloheptene and cyclooctene, etc.
  • vinylcyclopentane vinylcyclohexane, vinylcycloheptane, vinylcyclooctane and the like.
  • vinylcycloalkene having 7 to 10 carbon atoms vinylcyclopentene, vinylcyclohexene, vinylcycloheptene, vinylcyclooctene, etc.
  • conjugated diene of 3-butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3 -Heptadiene, etc., conjugated cycloalkadiene having 5 to 8 carbon atoms such as cyclopentadiene, 1,3-cyclohexadiene, etc., and acrylic acid esters having a side chain having 1 to 12 carbon atoms, such as methyl acrylate, acrylic acid
  • methacrylic acid ester having a side chain having 1 to 12 carbon atoms such as ethyl, butyl acrylate and octyl acrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate and octyl methacrylate.
  • the copolymerization method is preferably random copolymerization.
  • the monomer to be copolymerized has a plurality of carbon-carbon double bonds, any of them may be used for polymerization, and in the case of a conjugated diene, It may be a 4-bond.
  • the monomer for forming the polymer block (B) has a plurality of carbon-carbon double bonds such as vinylcycloalkene, conjugated diene and conjugated cycloalkadiene, it is usually after polymerization.
  • the carbon-carbon double bond remains in the polymer block.
  • 30% by mole or more of the carbon-carbon double bond is hydrogenated from the viewpoint of improving heat deterioration resistance. More preferably, 50 mol% or more is hydrogenated, and 80 mol% or more is more preferably hydrogenated.
  • the hydrogenation rate of the carbon-carbon double bond can be calculated by a commonly used method, for example, iodine value measurement method, 1 H-NMR measurement or the like.
  • the polymer block (B) does not have a carbon-carbon double bond or has a reduced structure, so that deterioration of the polymer electrolyte membrane can be suppressed.
  • the polymer block (B) When the polymer block (B) is made into a polymer electrolyte membrane, it becomes elastic and flexible in the operating temperature range, and the moldability (assembly) is assured in the production of membrane-electrode assemblies and solid polymer fuel cells. From the viewpoint of easy improvement in the properties, bonding properties, fastening properties, etc.), alkene units having 2 to 8 carbon atoms, cycloalkene units having 5 to 8 carbon atoms, vinylcycloalkene units having 7 to 10 carbon atoms, and 4 carbon atoms.
  • the most preferable alkene unit is a structural unit (1-butene unit, 2-butene unit) in which a double bond of an isobutene unit or 1,3-butadiene unit is saturated, or a double bond of an isoprene unit is saturated.
  • Structural units (2-methyl-1-butene unit, 3-methyl-1-butene unit, 2-methyl-2-butene unit).
  • a structural unit saturated with a bond (1-butene unit, 2-butene unit) or a structural unit saturated with a double bond of an isoprene unit (2-methyl-1-butene unit, 3-methyl-1-butene unit, 2-methyl-2-butene units) are most preferred.
  • conjugated diene units are 1,3-butadiene units and isoprene units.
  • the polymer block (A) is formed by introducing an ion conductive group after polymerizing a copolymer having no ion conductive group, the polymer block ( If B) is a saturated hydrocarbon structure, it is preferable because an ion conductive group is hardly introduced into the polymer block (B).
  • the purpose of the polymer block (B) that gives elasticity to the polymer electrolyte in the operating temperature region is not impaired in addition to the above-mentioned monomers.
  • other monomers such as aromatic vinyl compounds such as styrene and vinyl naphthalene; halogen-containing vinyl compounds such as vinyl chloride, vinyl esters (vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate, etc.), Vinyl ether (methyl vinyl ether, isobutyl vinyl ether, etc.) may be used.
  • the copolymerization method of the monomer with another monomer is preferably random copolymerization. The amount of these other monomers used is preferably 5 mol% or less.
  • the molecular weight of the polymer block (B) is usually selected from the range of 5,000 to 250,000, preferably from the range of 7,000 to 150,000, as the number average molecular weight in terms of standard polystyrene. More preferably, it is selected from the range of 8,000 to 100,000, more preferably from the range of 10,000 to 70,000.
  • the block copolymer constituting the polymer electrolyte of the present invention comprises four polymer blocks (C) having no ionic conductivity as constituent components.
  • the polymer block (C) functions as a constraining phase. Since the restraint function is easily exhibited in a wide use temperature range, the softening temperature of the polymer block (C) (that is, the softening temperature of the polymer when the polymer block independently becomes a polymer) is 80 ° C. It is preferably above, more preferably 90 ° C. or higher, and further preferably 100 ° C. or higher.
  • the polymer block (C) includes a polymer block mainly composed of an aromatic vinyl compound unit, a polyether ketone block, a polysulfide block, a polyphosphazene block, a polyphenylene block, a polybenzimidazole block, a polyether sulfone block, and a polyphenylene.
  • Polymer block repeating units are preferred.
  • the polymer block (C) has the following general formula (a):
  • R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 2 to R 4 each independently represents a hydrogen atom or an alkyl group having 3 to 8 carbon atoms, but at least one of them is carbon (Representing an alkyl group of several 3 to 8) is preferable from the viewpoint of easy synthesis and easy obtaining of a restraining function. That is, when a polymer block (A) is formed by introducing an ion conductive group after polymerization of a copolymer having no ion conductive group, ions to the polymer block (C) are formed by R 2 to R 4 . Since introduction of a conductive group is hindered, it is preferable. Moreover, since the softening temperature becomes relatively high, the operating temperature range can be widened.
  • Examples of the monomer capable of forming the repeating unit of the aromatic vinyl compound unit represented by the general formula (a) include 4-isopropylstyrene, 4-n-propylstyrene, 4-isopropylstyrene, 4-n-butyl.
  • Aromatic vinyl compounds such as styrene, 4-isobutyl styrene, 4-tert-butyl styrene, 4-n-octyl styrene, ⁇ -methyl-4-tert-butyl styrene, ⁇ -methyl-4-isopropyl styrene .
  • the polymer block (C) may contain one or more other monomer units within a range not impairing the effects of the present invention.
  • examples of such other monomers include conjugated dienes having 4 to 8 carbon atoms (1,3-butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4-hexadiene, 2,3- Dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-heptadiene, etc.), alkenes having 2 to 8 carbon atoms (ethylene, propylene, 1-butene, 2-butene, isobutene, 1-butene, etc.) Pentene, 2-pentene, 1-hexene, 2-hexene, 1-heptene, 2-heptene, 1-octene, 2-octene, etc.), (meth) acrylic acid esters (methyl (meth) acrylate, (meth) acrylic) Ethyl
  • the molecular weight of the polymer block (C) is appropriately selected depending on the properties of the polymer electrolyte, required performance, other polymer components, and the like.
  • the molecular weight is preferably selected from the range of 1,000 to 50,000, more preferably from the range of 1,500 to 30,000, as the number average molecular weight in terms of standard polystyrene. More preferably, it is selected from the range of 2,000 to 20,000.
  • the molecular weight of the polymer block (C) is large, the mechanical strength of the polymer electrolyte tends to be high, but when it is larger than 50,000, it becomes difficult to mold and form the polymer electrolyte.
  • the molecular weight of the polymer block (C) is smaller than 1,500, the mechanical strength tends to be low, and it is important to appropriately select the molecular weight according to the required performance.
  • the polymer electrolyte of the present invention comprises two polymer blocks (A) having an ionic group, one polymer block (B) having no ionic group, and four polymer blocks having no ionic group (C ) And a constituent component. Furthermore, by defining the structure, it is possible to achieve both high proton conductivity and high mechanical strength when wet.
  • both ends of the polymer block (A) are bonded to the polymer block (C) functioning as a constraining phase. Since the polymer block (A) has an ion conductive group, the ion channel formed by the polymer block (A) at the time of wetting tends to contain water and swell so that the ion conductivity tends to increase. Tend to decrease the mechanical strength. When both ends of the polymer block (A) are bonded to the polymer block (C) that functions as a constraining phase even when wet, there is a tendency that a decrease in strength can be suppressed.
  • the polymer block (B) functions as a phase responsible for elasticity and flexibility in a use temperature range when formed into a polymer electrolyte membrane.
  • both ends of the polymer block (B) are bonded to the polymer block (C) functioning as a constraining phase.
  • the polymer block (A) also has a function as a constrained phase at the time of drying.
  • the ion channel formed by the polymer block (A) contains water and swells, so that the ability as a constrained phase is reduced. Therefore, by bonding both ends of the polymer block (B) with the polymer block (C) that functions as a constraining phase even when wet, there is a tendency that a decrease in strength can be suppressed even when wet.
  • the polymer electrolyte membrane using the copolymer has high mechanical strength. This is presumably because the polymer block in the copolymer contains a block structure of-(A)-(C)-(B)-.
  • an XYZ type block copolymer with a polymer block (Y) sandwiched between the polymer block (X) and the polymer block (Z) forms a domain with another polymer.
  • a bridge structure sandwiching (Y) mechanical strength is expressed (in this case, the form of the chain taken by the polymer block (Y) is called a bridge chain).
  • the block copolymer forms a loop structure and the polymer block (X) and the polymer block (Z) constitute the same domain, the ratio of the bridge structure is lowered, so that the mechanical strength is lowered. That is, the mechanical strength can be increased by reducing the loop structure and increasing the bridge structure.
  • the copolymer constituting the polymer electrolyte of the present invention has only a bridge structure when the polymer block takes a block structure of-(A)-(C)-(B)-, and the polymer block (C) has a bridge structure. By forming a chain, the mechanical strength of the polymer electrolyte membrane tends to increase.
  • the structure of the copolymer constituting the polymer electrolyte of the present invention comprises two polymer blocks (A) having an ion conductive group, one polymer block (B) having no ion conductivity, and ion conductivity.
  • C—A—C—B—C—A—C—Heptablock copolymer, C—A—C—A—C—B—C—Hepta block Examples include copolymers
  • the mass ratio of the total amount of the two polymer blocks (A 0 ) and the total amount of the four polymer blocks (C) is preferably 80:20 to 10:90, and is preferably 75:25 to 15:85. More preferably, it is more preferably 65:35 to 20:80.
  • the mass ratio of the polymer block (C) becomes too small, it becomes difficult to maintain strength during drying and wetness. Further, if the mass ratio of the polymer block (A 0 ) becomes too small, the amount of ion conductive groups introduced into the polymer block decreases, and the ion conductivity when the polymer electrolyte membrane is formed is sufficient. It becomes difficult to ensure.
  • the mass ratio of the polymer block (B) and the total amount of the four polymer blocks (C) is preferably 85:15 to 5:95, more preferably 75:25 to 10:90, 70 : 30 to 12:88 is more preferable.
  • the mass ratio of one polymer block (C) becomes too small, it is difficult to maintain the strength as an electrolyte membrane.
  • the mass ratio of one said polymer block (B) becomes small too much, it will become difficult to hold
  • the number average molecular weight of the copolymer constituting the polymer electrolyte of the present invention is not particularly limited, but is usually 11,000 to as the number average molecular weight in terms of standard polystyrene in a state where no ion conductive group is introduced. It is preferably selected from the range of 500,000, more preferably selected from the range of 14,000 to 350,000, still more preferably selected from the range of 17,000 to 250,000, 20 It is particularly preferred that it is selected from the range of 2,000 to 200,000.
  • the method for producing the copolymer constituting the polymer electrolyte of the present invention is not particularly limited, and a known method can be used. However, after producing a copolymer having no ion conductive group, A method of introducing a group is preferred.
  • an ion comprising a plurality of types of monomers as a constituent component and a polymer block (A 0 ), a polymer block (B), and a polymer block (C) as constituent components.
  • a copolymer having no conductive group is obtained and then produced by introducing an ion conductive group into the polymer block (A 0 ), copolymerization of the copolymer having no ion conductive group is performed.
  • the polymer block (A 0 ), the polymer block (B), the type of monomer unit constituting the polymer block (C), the molecular weight, etc. radical polymerization method, anionic polymerization method, cationic polymerization method
  • radical polymerization method, anionic polymerization method and cationic polymerization method are preferably selected from the viewpoint of industrial ease.
  • the so-called living polymerization method is preferable from the viewpoint of molecular weight control, molecular weight distribution control, polymer structure control, ease of bonding between the polymer block (A 0 ) and the polymer block (B) and the polymer block (C), etc.
  • a living radical polymerization method, a living anion polymerization method, and a living cation polymerization method are preferable.
  • the living anionic polymerization method is preferred from the viewpoint of industrial ease, molecular weight, molecular weight distribution, ease of bonding of the polymer block (C), the polymer block (B) and the polymer block (A 0 ).
  • an aromatic vinyl compound such as 4-tert-butylstyrene is polymerized at a temperature of 10 to 100 ° C. using an anionic polymerization initiator in a cyclohexane solvent, and then styrene, 4-tert - method of obtaining butyl styrene, conjugated dienes, 4-tert-butylstyrene, styrene, 4-tert butyl styrene were sequentially polymerized C-a 0 -C-B- C-a 0 -C type block copolymer, Etc. can be employed / applied.
  • the copolymer produced in this way may be subjected to a hydrogenation reaction of double bonds of conjugated diene units having 4 to 8 carbon atoms constituting the polymer block (B).
  • a hydrogenation reaction a solution of a copolymer obtained by anionic polymerization or the like is charged into a pressure vessel, and a hydrogenation reaction is performed in a hydrogen atmosphere using a Ziegler-type hydrogenation catalyst such as a Ni / Al type. The method of performing can be illustrated.
  • a method for obtaining a copolymer constituting the polymer electrolyte of the present invention by introducing an ion conductive group into the copolymer having no ion conductive group will be described.
  • a method for introducing a sulfonic acid group into a copolymer will be described.
  • Sulfonation can be performed by a known sulfonation method. Examples of such a method include a method of preparing an organic solvent solution or suspension of a copolymer, adding a sulfonating agent and mixing, a method of adding a gaseous sulfonating agent directly to the copolymer, and the like. Is done.
  • Sulfonating agents used include sulfuric acid, a mixture of sulfuric acid and aliphatic acid anhydride, chlorosulfonic acid, a mixture of chlorosulfonic acid and trimethylsilyl chloride, sulfur trioxide, a mixture of sulfur trioxide and triethyl phosphate.
  • aromatic organic sulfonic acids represented by 2,4,6-trimethylbenzenesulfonic acid.
  • organic solvent to be used include halogenated hydrocarbons such as methylene chloride, linear aliphatic hydrocarbons such as hexane, cyclic aliphatic hydrocarbons such as cyclohexane, and the like. You may use it, selecting suitably from several combinations.
  • the reaction solution is poured into water to precipitate the sulfonated product, and then the solvent is distilled off at atmospheric pressure.
  • water as a terminator is gradually added and suspended in the reaction solution, and the sulfonated product is precipitated, and then the solvent is distilled off at atmospheric pressure. From the viewpoint of increasing the washing efficiency with water, a method in which water as a terminator is gradually added and suspended in the reaction solution to precipitate a sulfonated product is preferably used.
  • Phosphonation can be performed by a known phosphonation method. Specifically, an organic solvent solution or suspension of the copolymer is prepared, the copolymer is reacted with chloromethyl ether or the like in the presence of anhydrous aluminum chloride, and a halomethyl group is introduced into the aromatic ring. For example, phosphorus trichloride and anhydrous aluminum chloride may be added and reacted, followed by hydrolysis to introduce a phosphonic acid group.
  • a method may be exemplified in which phosphorus trichloride and anhydrous aluminum chloride are added to the copolymer and reacted to introduce a phosphinic acid group into the aromatic ring, and then the phosphinic acid group is oxidized with nitric acid to form a phosphonic acid group.
  • the ion exchange capacity of the copolymer is preferably 0.80 meq / g or more, more preferably 1.30 meq / g or more, still more preferably 1.40 meq / g or more, particularly preferably. It is sulfonated or phosphonated until it is 1.80 meq / g or more, but preferably 4.00 meq / g or less, more preferably 3.80 meq / g or less, and even more preferably 3.60 meq / g or less. It is desirable. Thereby, practical ion conduction performance is obtained.
  • the ion exchange capacity of a sulfonated or phosphonated copolymer, or the sulfonation rate or phosphonation rate in an aromatic vinyl compound in the copolymer is determined by acid value titration method, infrared spectroscopic measurement, nuclear magnetic resonance. It can be calculated using analytical means such as spectrum ( 1 H-NMR spectrum) measurement.
  • the ion conductive group may be introduced in the form of a salt neutralized with a suitable metal ion (for example, alkali metal ion) or counter ion (for example, ammonium ion).
  • a suitable metal ion for example, alkali metal ion
  • counter ion for example, ammonium ion
  • a block copolymer having a sulfonic acid group in a salt form can be obtained by ion exchange by an appropriate method.
  • the polymer electrolyte of the present invention can be added to various additives such as a softening agent, a stabilizer, a light stabilizer, an antistatic agent, a release agent, a flame retardant, a foaming agent, a pigment, and a dye as long as the effects of the present invention are not impaired. Further, each of them may contain a brightener or the like alone or in combination of two or more.
  • softener examples include petroleum softeners such as paraffinic, naphthenic or aromatic process oils, paraffin, vegetable oil softeners, plasticizers, and the like.
  • Stabilizers include phenol-based stabilizers, sulfur-based stabilizers, phosphorus-based stabilizers, and the like. Specific examples include 2,6-di-tert-butyl-p-cresol, pentaerystyryl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) Benzene, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-tert-butylanilino) -1,3,5-to Azine, 2,2, -thio
  • the content of the copolymer constituting the polymer electrolyte of the present invention is preferably 90% by mass or more, more preferably 93% by mass or more, and 95% by mass. % Or more is more preferable.
  • the polymer electrolyte membrane of the present invention preferably has a thickness of 5 to 200 ⁇ m from the viewpoint of performance, membrane strength, handling properties, etc. required as a polymer electrolyte membrane for a polymer electrolyte fuel cell, More preferably, it is about 100 ⁇ m.
  • the film thickness is less than 5 ⁇ m, the mechanical strength of the film and the gas barrier property tend to be insufficient.
  • the film thickness is greater than 200 ⁇ m, the membrane resistance increases and sufficient proton conductivity does not appear, so the power generation characteristics of the battery tend to be low.
  • the film thickness is more preferably 8 to 70 ⁇ m.
  • any method for producing the polymer electrolyte membrane of the present invention any method can be adopted as long as it is a normal method for such production.
  • the copolymer constituting the polymer electrolyte of the present invention and the above-described method The additive is mixed with an appropriate solvent to prepare a homogeneous solution or emulsion of 5% by mass or more of the copolymer, and then applied to a release-treated PET film using a coater or applicator.
  • the film can be formed by using a known method such as a method of obtaining a polymer electrolyte membrane having a desired thickness by removing the solvent under appropriate conditions.
  • the solvent used in the homogeneous solution is a solution having a viscosity that allows solution coating without destroying the structure of the polymer electrolyte.
  • halogenated hydrocarbons such as methylene chloride, aromatic hydrocarbons such as toluene, xylene, and benzene, linear aliphatic hydrocarbons such as hexane and heptane, and cyclic aliphatic carbonization such as cyclohexane.
  • Examples thereof include ethers such as hydrogen and tetrahydrofuran, alcohols such as methanol, ethanol, propanol, isopropyl alcohol, butanol and isobutyl alcohol, or mixed solvents thereof.
  • ethers such as hydrogen and tetrahydrofuran
  • alcohols such as methanol, ethanol, propanol, isopropyl alcohol, butanol and isobutyl alcohol, or mixed solvents thereof.
  • one or more combinations of the above exemplified solvents may be appropriately selected and used.
  • a mixed solvent of toluene and isobutyl alcohol, a mixed solvent of toluene and isopropyl alcohol, a mixed solvent of cyclohexane and isopropyl alcohol, a mixed solvent of cyclohexane and isobutyl alcohol , Tetrahydrofuran solvent, a mixed solvent of tetrahydrofuran and methanol are preferable, and a mixed solvent of toluene and isobutyl alcohol and a mixed solvent of toluene and isopropyl alcohol are particularly preferable.
  • the polymer electrolyte of the present invention has a protective colloid forming ability because the polymer block (A) having an ion conductive group is hydrophilic, and the polymer block (B) and the polymer block (C) are hydrophobic.
  • An emulsion can be obtained without using a surfactant.
  • a polar solvent such as water as a dispersion medium, particles having an ion conductive group having a high polarity in the outer shell can be easily produced.
  • the phase inversion emulsification method is preferably applied in that an emulsion having a narrow particle size distribution can be obtained. That is, a polar solvent such as water is added while stirring a solution obtained by dissolving the polymer electrolyte in an appropriate organic solvent with an emulsifier. Initially, a polar solvent such as water is dispersed in the organic solvent system as particles, but when the polar solvent exceeds a certain amount, it becomes a co-continuous state, and the viscosity rapidly increases. Further, when a polar solvent is added, the polar solvent becomes a continuous phase and the organic solvent becomes fine particles, and the viscosity rapidly decreases. By using this method, an emulsion having a uniform particle size can be obtained.
  • the polymer electrolyte has a phase-separated structure within the particle, and not all ion-conducting groups have come out in the outer shell. Cannot be used effectively. Therefore, although it depends on the molecular weight of the copolymer constituting the polymer electrolyte and the ratio of each polymer block of the copolymer, it is desirable to make the particles finer until the average particle size becomes 1 ⁇ m or less. In many cases, since the average particle diameter in the pre-emulsification is 1 ⁇ m or more, further fine dispersion is required.
  • a known method can be used, but a method that does not use a medium such as a ball for grinding in a ball mill is preferable from the viewpoint of preventing impurities from being mixed.
  • Specific examples include a high-pressure collision method.
  • the solvent is removed under appropriate conditions to obtain a polymer electrolyte membrane having a desired thickness. Any conditions can be selected as long as the solvent can be completely removed at a temperature equal to or lower than the temperature at which the ion-conducting group is removed. In order to express desired physical properties, a plurality of temperatures may be arbitrarily combined, or a combination of ventilation and vacuum may be arbitrarily combined. Specifically, a method of removing the solvent by hot air drying at about 60 to 100 ° C. over 4 minutes, a method of removing the solvent in 2 to 4 minutes by hot air drying at about 100 to 140 ° C., After preliminarily drying at about 25 ° C.
  • Examples include a method of drying for about 1 to 12 hours by vacuum drying under an atmosphere of about 40 ° C. From the viewpoint of easily producing a polymer electrolyte membrane having good toughness, a method of removing the solvent by hot air drying at about 60 to 100 ° C. over 4 minutes, or preliminary drying at about 25 ° C. for about 1 to 3 hours And then drying by hot air drying at about 100 ° C. for several minutes, or by pre-drying at about 25 ° C. for about 1 to 3 hours, and then by vacuum drying in an atmosphere at about 25 to 40 ° C. A method of drying for about 12 hours is preferably used.
  • membrane-electrode assembly using the polymer electrolyte membrane of the present invention will be described.
  • the production of the membrane-electrode assembly is not particularly limited, and a known method can be applied.
  • an ion conductive binder, a conductive catalyst carrier, and a catalyst paste containing a dispersion medium can be printed or sprayed.
  • a bonded body of the catalyst layer and the gas diffusion layer is formed, and then a pair of bonded bodies with the catalyst layer inside, hot pressing on both sides of the polymer electrolyte membrane, etc.
  • the above catalyst paste is applied to both sides of the polymer electrolyte membrane by the printing method or spray method and dried to form a catalyst layer, and a gas diffusion layer is pressure-bonded to each catalyst layer by hot press etc. There is a way to make it.
  • a solution or suspension containing an ion conductive binder is applied to both surfaces of the polymer electrolyte membrane and / or the catalyst layer surface of a pair of gas diffusion electrodes, and the polymer electrolyte membrane and the catalyst layer surface There is a method of bonding them together by thermocompression bonding.
  • the solution or suspension may be applied to either the electrolyte membrane or the catalyst layer surface, or may be applied to both.
  • the catalyst paste is applied to a base film made of polytetrafluoroethylene (PTFE) and dried to form a catalyst layer, and then a pair of base films on the base film is formed.
  • the catalyst layer is transferred to both sides of the polymer electrolyte membrane by thermocompression bonding, and the base film is peeled off to obtain a joined body of the polymer electrolyte membrane and the catalyst layer.
  • a gas diffusion layer is formed on each catalyst layer by hot pressing.
  • the ion conductive group may be converted into a salt with a metal such as sodium, and a treatment for returning to a proton type by an acid treatment after bonding may be performed.
  • Examples of the ion-conductive binder constituting the membrane-electrode assembly include existing perfluorosulfones such as “Nafion” (registered trademark, manufactured by DuPont) and “Gore-select” (registered trademark, manufactured by Gore).
  • An ion conductive binder made of an acid polymer, an ion conductive binder made of sulfonated polyethersulfone or sulfonated polyetherketone, an ion conductive binder made of polybenzimidazole impregnated with phosphoric acid or sulfuric acid can be used. .
  • the same structure as the polymer electrolyte membrane located on the surface in close contact with the gas diffusion electrode (polymer repeating unit, copolymerization ratio, molecular weight) It is preferable to use an ion conductive binder having a common or similar ion conductive group, ion exchange capacity, etc., in particular, a polymer repeating unit or a common or similar ion conductive group).
  • the conductive catalyst carrier is not particularly limited, and examples thereof include a carbon material.
  • the carbon material include carbon black such as furnace black, channel black, and acetylene black, activated carbon, graphite, and the like. These may be used alone or in combination of two or more.
  • the catalyst metal may be any metal that promotes the oxidation reaction of fuel such as hydrogen or methanol and the reduction reaction of oxygen, such as platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron, Cobalt, nickel, chromium, tungsten, manganese, palladium, etc., or alloys thereof, for example, platinum-ruthenium alloy can be mentioned.
  • the particle size of the catalytic metal is usually 10 to 300 angstroms.
  • the amount of the catalyst metal supported on a conductive catalyst carrier such as carbon is small and advantageous in terms of cost.
  • the catalyst layer may contain a water repellent as necessary.
  • the water repellent include various thermoplastic resins such as polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene copolymer, and polyether ether ketone.
  • the gas diffusion layer of the membrane-electrode assembly is made of a material having conductivity and gas permeability, and examples of such a material include porous materials made of carbon fibers such as carbon paper and carbon cloth. Moreover, in order to improve water repellency, this material may be subjected to water repellency treatment.
  • the membrane-electrode assembly of the present invention uses a pure hydrogen type using hydrogen as a fuel gas, a methanol reforming type using hydrogen obtained by reforming methanol, and hydrogen obtained by reforming natural gas. Natural gas reforming type, gasoline reforming type using hydrogen obtained by reforming gasoline, direct methanol type using methanol directly, etc. is there.
  • the number average molecular weight was measured by the gel permeation chromatography (GPC) method under the following conditions.
  • Device manufactured by Tosoh Corporation, trade name: HLC-8220GPC Eluent: THF
  • Column manufactured by Tosoh Corporation, trade name: 1 TSK-GEL (TSKgel G3000HxL (inner diameter 7.6 mm, effective length 30 cm)), TSKgel Super Multipore HZ-M (inner diameter 4.6 mm, effective length 15 cm) 3 in total)
  • Detector RI Liquid feed amount: 0.35 ml / min
  • Number average molecular weight calculation Standard polystyrene conversion
  • the peak temperature of the loss tangent of a polymer block (C) and a polymer block (A) is near, it divided
  • the number average molecular weight of TSTITST obtained was 73,230, the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%, and the content of styrene units was 36. The content of 0% by mass and 4-tert-butylstyrene unit was 24.0% by mass.
  • a cyclohexane solution of synthesized TSTISTST was prepared and charged into a pressure-resistant vessel that had been sufficiently purged with nitrogen, and then a Ni / Al Ziegler-based hydrogenation catalyst was used under a hydrogen pressure of 0.5 to 1.0 MPa under a hydrogen pressure of 0.5 to 1.0 MPa.
  • a hydrogenation reaction was carried out at a temperature of 18 ° C.
  • TSSETST poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene-b-poly (4-tert -Butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as TSSETST).
  • a sulfonated TSSETST which is a copolymer constituting the polymer electrolyte of the present invention.
  • the sulfonation rate of the benzene ring of the styrene unit in the obtained sulfonated TSSETST was 100 mol% from 1 H-NMR (400 MHz) analysis, and the result of titration was an ion exchange capacity of 2.71 meq / g.
  • Reference Example 2 Production of block copolymer comprising polystyrene, hydrogenated polyisoprene and poly (4-tert-butylstyrene)]
  • 675 ml of dehydrated cyclohexane and 2.30 ml of sec-butyllithium (1.05 M-cyclohexane solution) were charged into a 1400 mL autoclave, and then 13.0 ml of 4-tert-butylstyrene and 21.styrene of styrene.
  • the number average molecular weight of TSTITST obtained was 61,900, the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%, and the styrene unit content was 34. The content of 9% by mass and 4-tert-butylstyrene unit was 40.4% by mass.
  • a cyclohexane solution of synthesized TSTISTST was prepared and charged into a pressure-resistant vessel that had been sufficiently purged with nitrogen, and then a Ni / Al Ziegler-based hydrogenation catalyst was used under a hydrogen pressure of 0.5 to 1.0 MPa under a hydrogen pressure of 0.5 to 1.0 MPa.
  • a hydrogenation reaction was carried out at a temperature of 18 ° C.
  • TSSETST poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene-b-poly (4-tert -Butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as TSSETST).
  • a sulfonated TSSETST which is a copolymer constituting the polymer electrolyte of the present invention.
  • the sulfonation rate of the benzene ring of the styrene unit in the obtained sulfonated TSSETST was 100 mol% from 1 H-NMR (400 MHz) analysis, and the ion exchange capacity was 2.61 meq / g as a result of titration.
  • the number average molecular weight of the obtained TSIST was 79,100
  • the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%
  • the content of styrene units was 35.
  • the content of 0% by mass and 4-tert-butylstyrene unit was 24.0% by mass.
  • a cyclohexane solution of the synthesized TSIST was prepared and charged in a pressure-resistant vessel that had been sufficiently purged with nitrogen. Then, using a Ni / Al Ziegler hydrogenation catalyst under a hydrogen pressure of 0.5 to 1.0 MPa, A hydrogenation reaction was carried out at 70 ° C. for 18 hours, and poly (4-tert-butylstyrene) -b-polystyrene-b-hydrogenated polyisoprene-b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter referred to as “poly (4-tert-butylstyrene)”) (Abbreviated as TSEST). An attempt was made to calculate the amount of residual double bonds of the obtained TSEST by 1 H-NMR (400 MHz) spectrum measurement, but it was below the detection limit.
  • a sulfonated TSEST that is a copolymer that does not belong to the present invention. It was.
  • the sulfonation rate of the benzene ring of the styrene unit in the obtained sulfonated TSEST was 100 mol% from 1 H-NMR (400 MHz) analysis, and the ion exchange capacity was 2.65 meq / g as a result of titration.
  • Reference Example 4 Production of block copolymer comprising polystyrene, hydrogenated polyisoprene and poly (4-tert-butylstyrene)]
  • a 1400 mL autoclave was charged with 600 ml of dehydrated cyclohexane and 5.57 ml of sec-butyllithium (1.0 M-cyclohexane solution), and then 35.6 ml of 4-tert-butylstyrene and 29.29 of styrene.
  • the number average molecular weight of the obtained TSIST was 26,000, the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%, and the styrene unit content was 33. The content of 4% by mass and 4-tert-butylstyrene unit was 42.2% by mass.
  • a cyclohexane solution of the synthesized TSIST was prepared and charged in a pressure-resistant vessel that had been sufficiently purged with nitrogen. Then, using a Ni / Al Ziegler hydrogenation catalyst under a hydrogen pressure of 0.5 to 1.0 MPa, A hydrogenation reaction was carried out at 70 ° C. for 18 hours, and poly (4-tert-butylstyrene) -b-polystyrene-b-hydrogenated polyisoprene-b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter referred to as “poly (4-tert-butylstyrene)”) (Abbreviated as TSEST). An attempt was made to calculate the amount of residual double bonds of the obtained TSEST by 1 H-NMR (400 MHz) spectrum measurement, but it was below the detection limit.
  • a sulfonated TSEST which is a copolymer that does not belong to the present invention.
  • the sulfonation rate of the benzene ring of the styrene unit in the obtained sulfonated TSEST was 100 mol% from 1 H-NMR (400 MHz) analysis, and the ion exchange capacity was 2.56 meq / g as a result of titration.
  • Reference Example 5 Production of block copolymer composed of polystyrene, hydrogenated polyisoprene and poly (4-tert-butylstyrene)]
  • 593 ml of dehydrated cyclohexane and 2.92 ml of sec-butyllithium (1.00 M-cyclohexane solution) were charged in a 1400 mL autoclave, then 11.9 ml of 4-tert-butylstyrene and 32.styrene.
  • the number average molecular weight of the obtained TSTITST was 64,100
  • the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%
  • the content of styrene units was 41.100.
  • the content of 0% by mass and 4-tert-butylstyrene unit was 29.0% by mass.
  • a cyclohexane solution of synthesized TSTISTST was prepared and charged into a pressure-resistant vessel that had been sufficiently purged with nitrogen, and then a Ni / Al Ziegler-based hydrogenation catalyst was used under a hydrogen pressure of 0.5 to 1.0 MPa under a hydrogen pressure of 0.5 to 1.0 MPa.
  • a hydrogenation reaction was carried out for 18 hours at a temperature of poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene-b-poly (4-tert -Butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as TSSETST).
  • An attempt was made to calculate the amount of residual double bonds of the obtained TSETST by 1 H-NMR (400 MHz) spectrum measurement, which was below the detection limit.
  • a sulfonated TSSETST which is a copolymer constituting the polymer electrolyte of the present invention.
  • the sulfonation rate of the benzene ring of the styrene unit in the obtained sulfonated TSSETST was 100 mol% from 1 H-NMR (400 MHz) analysis, and the ion exchange capacity was 3.00 meq / g as a result of titration.
  • Reference Example 6 Production of block copolymer comprising polystyrene, hydrogenated polyisoprene and poly (4-tert-butylstyrene)] In the same manner as in Reference Example 1, after charging 514 ml of dehydrated cyclohexane and 1.95 ml of sec-butyllithium (1.00 M-cyclohexane solution) into a 1000 mL autoclave, 5.8 ml of 4-tert-butylstyrene, 16.
  • TSTST Polymerized, poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-polyisoprene- b-poly (4-tert-butylstyrene) (hereinafter TSTST) Abbreviated as T) was synthesized.
  • the number average molecular weight of TSTSTIT obtained was 38,700
  • the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%
  • the content of styrene units was 36.
  • the content of 0% by mass and 4-tert-butylstyrene unit was 25.0% by mass.
  • a cyclohexane solution of synthesized TSTSTIT was prepared and charged into a pressure-resistant vessel that had been sufficiently purged with nitrogen, and then a Ni / Al Ziegler hydrogenation catalyst was used under a hydrogen pressure of 0.5 to 1.0 MPa under a hydrogen pressure of 0.5 to 1.0 MPa. Hydrogenation reaction was carried out at 18 ° C.
  • TSTSTET poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) ) -B-hydrogenated polyisoprene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as TSTSTET) was obtained. An attempt was made to calculate the residual double bond amount of the obtained TSTSTET by 1 H-NMR (400 MHz) spectrum measurement, which was below the detection limit.
  • sulfonated TSTSTET which is a copolymer constituting the polymer electrolyte of the present invention.
  • the sulfonation rate of the benzene ring of the styrene unit of the obtained sulfonated TSTSTET was 92 mol% from 1 H-NMR (400 MHz) analysis, and the ion exchange capacity was 2.50 meq / g as a result of titration.
  • Reference Example 7 Production of block copolymer comprising polystyrene, hydrogenated polyisoprene and poly (4-tert-butylstyrene)]
  • 500 ml of dehydrated cyclohexane and 3.2 ml of sec-butyllithium (1.10 M-cyclohexane solution) were charged into a 1000 ml autoclave, and then 6.0 ml of 4-tert-butylstyrene and 26.styrene of 26.
  • the number average molecular weight of TSTIT obtained was 49,000, the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%, and the content of styrene units was 44. The content of 0% by mass and 4-tert-butylstyrene unit was 20.6% by mass.
  • TSETET Poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene-b-poly (4-tert-butylstyrene)
  • a sulfonated TSSET which is a copolymer that does not belong to the present invention.
  • the sulfonation rate of the benzene ring of the styrene unit of the obtained sulfonated TSETET was 95 mol% from 1 H-NMR (400 MHz) analysis, and the ion exchange capacity was 3.00 meq / g as a result of titration.
  • Table 1 shows the composition, structure and properties of the copolymers obtained in Production Examples 1 to 7.
  • Example 1 (Production of polymer electrolyte membrane)
  • the polymer electrolyte membrane of the present invention was prepared using the copolymer obtained in Production Example 1 as the polymer electrolyte of the present invention.
  • An 18% by mass toluene / isobutyl alcohol (mass ratio 7/3) solution of the sulfonated TSSETST (ion exchange capacity 2.71 meq / g) obtained in Production Example 1 was prepared, and a release-treated PET film [Mitsubishi Resin Co., Ltd., MRV (trade name)] was coated with a thickness of about 300 ⁇ m, and dried with a hot air dryer at 100 ° C. for 4 minutes to obtain a film with a thickness of 30 ⁇ m.
  • a release-treated PET film [Mitsubishi Resin Co., Ltd., MRV (trade name)] was coated with a thickness of about 300 ⁇ m, and dried with a hot air dryer at 100 ° C. for 4 minutes to obtain a
  • Example 2 (Production of polymer electrolyte membrane)
  • the polymer electrolyte membrane of the present invention was prepared using the copolymer obtained in Production Example 2 as the polymer electrolyte of the present invention.
  • a 12% by mass toluene / isobutyl alcohol (mass ratio 8/2) solution of the sulfonated TSSETST (ion exchange capacity 2.61 meq / g) obtained in Production Example 2 was prepared, and a release-treated PET film [Mitsubishi Resin Co., Ltd., MRV (trade name)] with a thickness of about 125 ⁇ m, dried with a hot air dryer at 100 ° C. for 4 minutes, and then again with the solution with a thickness of about 350 ⁇ m.
  • the film was coated and dried in a hot air dryer at 100 ° C. for 4 minutes to obtain a film having a thickness of 30 ⁇ m.
  • Example 3> (Production of polymer electrolyte membrane)
  • the polymer electrolyte membrane of the present invention was prepared using the copolymer obtained in Production Example 5 as the polymer electrolyte of the present invention.
  • a 18% by weight toluene / isobutyl alcohol (mass ratio 75/25) solution of the sulfonated TSSETST (ion exchange capacity 3.00 meq / g) obtained in Production Example 5 was prepared, and a release-treated PET film [Mitsubishi Resin Co., Ltd., MRV (trade name)] was coated with a thickness of about 300 ⁇ m, and dried with a hot air dryer at 100 ° C. for 4 minutes to obtain a film with a thickness of 30 ⁇ m.
  • Example 4 (Production of polymer electrolyte membrane)
  • the polymer electrolyte membrane of the present invention was prepared using the copolymer obtained in Production Example 6 as the polymer electrolyte of the present invention.
  • a 10.2% by mass toluene / isobutyl alcohol (mass ratio 9/1) solution of the sulfonated TSTSTET (ion exchange capacity 2.50 meq / g) obtained in Production Example 6 was prepared, and a release-treated PET film [ MRV (trade name) manufactured by Mitsubishi Resin Co., Ltd.] was coated with a thickness of about 275 ⁇ m, dried with a hot air dryer at 100 ° C. for 4 minutes, and then the solution was further coated thereon with about 150 ⁇ m.
  • a film having a thickness of 30 ⁇ m was obtained by coating with a thickness and drying with a hot air dryer at 100 ° C. for 4 minutes.
  • Examples 1 to 4 and Comparative Examples 1 to 3 Performance Test of Polymer Electrolyte Membrane and Results thereof
  • tests 1) to 3 the polymer electrolyte membranes obtained in each Example and Comparative Example were evaluated.
  • the electrode for anode was produced by drying at 130 ° C. for 30 minutes. Further, a 10% by mass solution of Nafion was added to and mixed with Pt catalyst-supporting carbon so that the mass ratio of carbon to Nafion was 1: 0.75, and then n-propyl alcohol was added to water / n-propyl alcohol. Was added and mixed until the mass ratio became 1/1, to prepare a uniformly dispersed paste, and a cathode electrode was produced in the same manner as the anode side. Thereafter, the polymer electrolyte membranes produced in Examples and Comparative Examples were sandwiched between the two kinds of electrodes so that the membrane and the catalyst surface face each other, and the outside was sandwiched between two heat resistant films and two stainless steel plates.
  • the membrane-electrode assembly was produced by sandwiching in order and hot pressing (115 ° C., 20 kg / cm 2 , 8 min). Next, the membrane-electrode assembly produced is sandwiched between two conductive separators that also serve as gas supply channels, and the outside is sandwiched between two current collector plates and two clamping plates to form a solid. An evaluation cell (electrode area is 25 cm 2 ) for a polymer fuel cell was produced.
  • Table 2 shows the performance test results of 1) to 3) regarding the polymer electrolyte membranes prepared in Examples 1 to 4 and Comparative Examples 1 and 2.
  • the polymer electrolyte membranes of the present invention shown in Examples 1 to 4 have equivalent ionic conductivity and power generation characteristics as compared with the polymer electrolyte membranes of Comparative Examples 1 and 2, and have a tear strength when wet. It was confirmed to be excellent. Moreover, when it had a block structure like the comparative example 3, film forming property was bad and it was difficult to form into a film, and it was confirmed that the structure of the polymer electrolyte of this invention is important. As described above, the membrane-electrode assembly and the polymer electrolyte fuel cell using the polymer electrolyte membrane of the present invention are excellent from the viewpoint of durability.
  • An electrode assembly and a polymer electrolyte fuel cell using the membrane-electrode assembly and having both output characteristics and mechanical strength when wet can be provided.

Abstract

Disclosed is a solid polymer fuel cell that achieves both desired output characteristics and mechanical strength when wet. Further disclosed are: a polyelectrolyte favorable in said solid polymer fuel cell; a polyelectrolyte membrane that uses same and that is concomitantly provided with both mechanical strength and favorable bondability with an electrode; and a membrane-electrode assembly provided with said polyelectrolyte membrane. The polyelectrolyte is characterized by: comprising a copolymer having as constituents two polymer blocks (A) having an ion-conducting group, one polymer block (B) that does not have ion conductivity, and four polymer blocks (C) that do not have ion conductivity; the aforementioned polymer block B having a softening temperature that is at least 20°C lower than that of the aforementioned polymer blocks C; and both ends of the aforementioned polymer blocks A and the aforementioned polymer block B being bonded to the aforementioned polymer blocks C.

Description

高分子電解質、高分子電解質膜、膜-電極接合体、および固体高分子型燃料電池Polymer electrolyte, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
 本発明は、固体高分子型燃料電池に有用な高分子電解質、高分子電解質膜、膜-電極接合体、および固体高分子型燃料電池に関する。 The present invention relates to a polymer electrolyte useful for a polymer electrolyte fuel cell, a polymer electrolyte membrane, a membrane-electrode assembly, and a polymer electrolyte fuel cell.
 近年、地球環境にやさしく、クリーンな発電システムとして燃料電池が注目されている。燃料電池は、電解質の種類によって、溶融炭酸塩型、固体酸化物型、リン酸型、固体高分子型等に分類される。これらのうち、高分子電解質膜を電極(アノードおよびカソード)で挟んだ構造からなり、アノードに還元剤からなる燃料を、カソードに酸化剤を供給することにより発電する固体高分子型燃料電池は、低温作動性、小型軽量化などの観点から、自動車用電源やポータブル機器電源、さらに電気と熱を同時利用する家庭用コージェネレーションシステムなどへの適用が検討されている。 In recent years, fuel cells have attracted attention as a clean power generation system that is friendly to the global environment. Fuel cells are classified into molten carbonate type, solid oxide type, phosphoric acid type, solid polymer type, etc., depending on the type of electrolyte. Among these, a polymer electrolyte membrane having a structure in which a polymer electrolyte membrane is sandwiched between electrodes (anode and cathode), a solid polymer fuel cell that generates electricity by supplying a fuel made of a reducing agent to the anode and an oxidant to the cathode, From the viewpoint of low-temperature operability and reduction in size and weight, application to automobile power supplies, portable equipment power supplies, and household cogeneration systems that simultaneously use electricity and heat are being considered.
 固体高分子型燃料電池は、低湿度下での高出力化、湿潤時の高耐久性の両立が求められている。この要求は水素燃料を使用する固体高分子型燃料電池において特に強い。 Solid polymer fuel cells are required to have both high output under low humidity and high durability when wet. This requirement is particularly strong in a polymer electrolyte fuel cell using hydrogen fuel.
 低湿度下での高出力化を図るため、通常、高分子電解質膜に用いる高分子電解質のイオン交換容量を高めることでプロトン伝導性を上げる手段が講じられるが、その場合、湿潤時には高分子電解質膜の膨潤が大きくなり機械的強度も低下し、固体高分子型燃料電池の長期運転において高分子電解質膜がクリープしやすくなり、固体高分子型燃料電池の耐久性が低下する等の問題が生じる。また、高分子電解質膜の厚さを薄くすることで高分子電解質膜の膜抵抗を低減し、高出力化を図る手法も提案されているが、高分子電解質膜の機械的強度が低下する、高分子電解質膜をガス拡散電極と接合させて膜-電極接合体を作成する場合の加工性が悪くなる、等の別の課題が生じる。
 そこで、機械的強度の改善策として高分子電解質とポリテトラフルオロエチレンの多孔質フィルムなどの補強材からなる電解質複合膜を高分子電解質膜として用いることも提案されている(特許文献1参照)が、補強材のプロトン伝導性が低いために、電解質複合膜の膜抵抗が高くなり、発電特性が悪くなる傾向にあった。
In order to increase the output under low humidity, a means to increase proton conductivity is usually taken by increasing the ion exchange capacity of the polymer electrolyte used in the polymer electrolyte membrane. The swelling of the membrane increases and the mechanical strength also decreases, and the polymer electrolyte membrane tends to creep during the long-term operation of the polymer electrolyte fuel cell, causing problems such as the durability of the polymer electrolyte fuel cell being reduced. . In addition, a method of reducing the membrane resistance of the polymer electrolyte membrane by reducing the thickness of the polymer electrolyte membrane and increasing the output has been proposed, but the mechanical strength of the polymer electrolyte membrane is reduced. When the polymer electrolyte membrane is bonded to the gas diffusion electrode to produce a membrane-electrode assembly, another problem such as poor workability occurs.
Thus, as a measure for improving the mechanical strength, it has also been proposed to use an electrolyte composite membrane made of a reinforcing material such as a polymer electrolyte and a polytetrafluoroethylene porous film as the polymer electrolyte membrane (see Patent Document 1). Since the proton conductivity of the reinforcing material is low, the membrane resistance of the electrolyte composite membrane tends to increase, and the power generation characteristics tend to deteriorate.
 一方、高分子電解質膜の湿潤時の機械的強度を高めるため、スルホン化を受けにくいセグメントを末端に有し、スルホン化されやすいセグメントをその間に有するブロックポリマーをスルホン化したブロックポリマーが提案されている(特許文献2参照)。しかしながら、近年の厳しい高性能化の要求には十分応えることができず、なお改良の余地がある。 On the other hand, in order to increase the mechanical strength of the polymer electrolyte membrane when wet, a block polymer has been proposed in which a block polymer having a segment that is not easily sulfonated at the end and a segment that is easily sulfonated in between is sulfonated. (See Patent Document 2). However, the recent demand for high performance cannot be fully met, and there is still room for improvement.
 このように、固体高分子型燃料電池に使用される高分子電解質において、高いプロトン伝導性と、湿潤時の高い機械的強度を両立した高分子電解質膜が望まれている。 Thus, in the polymer electrolyte used in the solid polymer fuel cell, a polymer electrolyte membrane that has both high proton conductivity and high mechanical strength when wet is desired.
特公平5-75835号公報Japanese Patent Publication No. 5-75835 特表2009-503137号公報Special table 2009-503137
 本発明の目的は、出力特性と湿潤時の機械的強度を両立した固体高分子型燃料電池を提供することにある。また、さらにこの目的を達成するために、該固体高分子型燃料電池に好適な高分子電解質、これを用いた、機械的強度及び電極との良好な接合性を兼ね備えた高分子電解質膜、及び該高分子電解質膜を備える膜-電極接合体を提供することにある。 An object of the present invention is to provide a polymer electrolyte fuel cell that has both output characteristics and mechanical strength when wet. Further, in order to achieve this object, a polymer electrolyte suitable for the solid polymer fuel cell, a polymer electrolyte membrane using the polymer electrolyte having both mechanical strength and good bonding property with an electrode, and An object of the present invention is to provide a membrane-electrode assembly provided with the polymer electrolyte membrane.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、重合体ブロックを構成成分とする共重合体からなる高分子電解質において、該重合体ブロックの種類と結合順序を特定することによって上記課題を解決することを見出し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors specify the type and order of bonding of polymer blocks in a polymer electrolyte composed of a copolymer containing a polymer block as a constituent component. The inventors have found that the above-described problems can be solved, and have completed the present invention.
 すなわち、本発明は、
[1] イオン伝導性基を有する2つの重合体ブロック(A)と、イオン伝導性を有しない1つの重合体ブロック(B)と、イオン伝導性を有しない4つの重合体ブロック(C)を構成成分とする共重合体からなる高分子電解質であって、前記重合体ブロック(B)は前記重合体ブロック(C)よりも軟化温度が20℃以上低く、前記重合体ブロック(A)および前記重合体ブロック(B)の両端が前記重合体ブロック(C)と結合していることを特徴とする高分子電解質;
[2] 前記重合体ブロック(A)が、芳香族ビニル化合物単位の繰り返し単位から構成されることを特徴とする上記[1]に記載の高分子電解質;
[3] 前記重合体ブロック(C)が、下記の一般式(a)
That is, the present invention
[1] Two polymer blocks (A) having an ion conductive group, one polymer block (B) having no ion conductivity, and four polymer blocks (C) having no ion conductivity A polymer electrolyte comprising a copolymer as a constituent component, wherein the polymer block (B) has a softening temperature lower by 20 ° C. or more than the polymer block (C), and the polymer block (A) and the polymer block (B) A polymer electrolyte characterized in that both ends of the polymer block (B) are bonded to the polymer block (C);
[2] The polymer electrolyte according to [1], wherein the polymer block (A) is composed of a repeating unit of an aromatic vinyl compound unit;
[3] The polymer block (C) is represented by the following general formula (a):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R1は水素原子又は炭素数1~4のアルキル基であり、R2~R4はそれぞれ独立に水素原子又は炭素数3~8のアルキル基を表すが、少なくとも1つは炭素数3~8のアルキル基を表す)で表される芳香族ビニル系化合物単位の繰り返し単位から構成されることを特徴とする上記[1]または[2]に記載の高分子電解質;
[4] 前記重合体ブロック(B)が、炭素数2~8のアルケン単位及び炭素数4~8の共役ジエン単位から選ばれる少なくとも1種の繰り返し単位から構成されることを特徴とする上記[1]~[3]のいずれかに記載の高分子電解質;
[5] 前記イオン伝導性基が-SO3M又は-PO3HM(式中、Mは水素原子、アンモニウムイオン又はアルカリ金属イオンを表す)で表される基である上記[1]~[4]のいずれかに記載の高分子電解質;
[6] 上記[1]~[5]のいずれかに記載の高分子電解質からなる高分子電解質膜;
[7] 上記[6]に記載の高分子電解質膜を備える膜-電極接合体;および
[8] 上記[7]に記載の膜-電極接合体を備える固体高分子型燃料電池を提供する。
Wherein R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 to R 4 each independently represents a hydrogen atom or an alkyl group having 3 to 8 carbon atoms, but at least one of them is carbon The polyelectrolyte according to the above [1] or [2], wherein the polymer electrolyte is a repeating unit of an aromatic vinyl compound unit represented by formula (3).
[4] The polymer block (B) is composed of at least one repeating unit selected from alkene units having 2 to 8 carbon atoms and conjugated diene units having 4 to 8 carbon atoms. 1] to [3]
[5] The above [1] to [4], wherein the ion conductive group is a group represented by —SO 3 M or —PO 3 HM (wherein M represents a hydrogen atom, an ammonium ion or an alkali metal ion). ] The polymer electrolyte according to any one of
[6] A polymer electrolyte membrane comprising the polymer electrolyte according to any one of [1] to [5] above;
[7] A polymer electrolyte fuel cell comprising a membrane-electrode assembly comprising the polymer electrolyte membrane according to [6] above; and [8] a polymer electrolyte fuel cell comprising the membrane-electrode assembly according to [7] above.
 本発明の高分子電解質を成す重合体ブロック(A)、重合体ブロック(B)及び重合体ブロック(C)を構成成分とする共重合体は、ミクロ相分離を起こすことで、イオン伝導性基を有する重合体ブロック(A)同士が集合し、イオンチャンネルが形成され、プロトン等のイオンの通り道となる。また、重合体ブロック(B)は、重合体ブロック(C)よりも軟化温度が20℃以上低い重合体ブロックである。重合体ブロック(B)と重合体ブロック(C)の軟化温度の間の温度を使用温度域とすることで、本発明の高分子電解質は所望の性能を得ることができる。
 すなわち、本発明の高分子電解質は、重合体ブロック(B)の軟化温度よりも高い温度で使用することで、弾力性を帯び、かつ柔軟になる。また、前記重合体ブロック(C)の軟化温度よりも低い温度で使用することで、使用温度での形態安定性、耐久性、耐熱性、湿潤下での機械的強度等が改善される。また、重合体ブロック(B)の軟化温度が低いことで、膜-電極接合体や固体高分子型燃料電池の作成にあたっての成型性(組立性、接合性、締付性など)が改善される。
The copolymer comprising the polymer block (A), polymer block (B) and polymer block (C) constituting the polymer electrolyte of the present invention as a constituent component causes an ion conductive group by causing microphase separation. The polymer blocks (A) having the above are gathered to form an ion channel, which becomes a passage for ions such as protons. Moreover, a polymer block (B) is a polymer block whose softening temperature is 20 degreeC or more lower than a polymer block (C). By setting the temperature between the softening temperatures of the polymer block (B) and the polymer block (C) as the use temperature range, the polymer electrolyte of the present invention can obtain desired performance.
That is, the polymer electrolyte of the present invention is elastic and flexible when used at a temperature higher than the softening temperature of the polymer block (B). Further, by using the polymer block (C) at a temperature lower than the softening temperature, the form stability at the use temperature, durability, heat resistance, mechanical strength under wet conditions, and the like are improved. In addition, since the softening temperature of the polymer block (B) is low, the moldability (assembling property, bonding property, tightening property, etc.) in producing the membrane-electrode assembly and the polymer electrolyte fuel cell is improved. .
 本発明の高分子電解質は、前記重合体ブロック(A)の両端が前記重合体ブロック(C)と結合していることから、湿潤時にイオン伝導性基を有する重合体ブロック(A)が形成するイオンチャンネルが含水した場合においても、高分子電解質膜にした際の形態安定性、耐久性、耐熱性、湿潤時の機械的強度等を改善できる。また、イオン伝導性基を有する重合体ブロック(A)が2つ存在することにより、イオン伝導性基同士の相互作用により擬似架橋構造を形成しやすくなり、含水時の耐久性を向上できる。また、重合体ブロック(B)の両端が前記重合体ブロック(C)と結合していることにより、高分子電解質膜にした際に、使用温度域において靭性をより高めることができる。 In the polymer electrolyte of the present invention, since both ends of the polymer block (A) are bonded to the polymer block (C), the polymer block (A) having an ion conductive group is formed when wet. Even when the ion channel contains water, it is possible to improve the form stability, durability, heat resistance, mechanical strength when wet, and the like when the polymer electrolyte membrane is formed. In addition, the presence of two polymer blocks (A) having an ion conductive group makes it easier to form a pseudo-crosslinked structure due to the interaction between the ion conductive groups, thereby improving the durability when containing water. Moreover, when both ends of the polymer block (B) are bonded to the polymer block (C), the toughness can be further increased in the operating temperature range when the polymer electrolyte membrane is formed.
 また、本発明の高分子電解質は、前記重合体ブロック(B)の両端が前記重合体ブロック(C)と結合していることから、使用温度域において良好なゴム弾性を発現し、高分子電解質膜の引裂き強度などの機械的強度が高くなる。 In addition, since the polymer block (B) has both ends bonded to the polymer block (C), the polymer electrolyte of the present invention exhibits good rubber elasticity in the operating temperature range, and the polymer electrolyte Mechanical strength such as tear strength of the film is increased.
 なおここで、「ミクロ相分離」とは微視的な意味での相分離を意味し、より詳しくは形成されるドメインサイズが可視光の波長(3800~7800Å)以下である相分離を意味するものとする。 Here, “microphase separation” means phase separation in a microscopic sense, and more specifically, means phase separation in which the formed domain size is less than or equal to the wavelength of visible light (3800 to 7800 mm). Shall.
 以下、本発明について詳細に説明する。
 本発明の高分子電解質は、イオン伝導性基を有する2つの重合体ブロック(A)と、イオン伝導性を有しない1つの重合体ブロック(B)と、イオン伝導性を有しない4つの重合体ブロック(C)を構成成分とする共重合体からなる。
 本発明の高分子電解質を成す共重合体は単一である必要はなく、複数種の混合物であってもよい。また、本発明の目的を阻害しない範囲で、他の重合体、低分子量有機化合物、無機化合物などを含んでもよい。また、本発明の高分子電解質を成す共重合体を構成する2つの重合体ブロック(A)、4つの重合体ブロック(C)の構造(構成繰り返し単位、重合度、イオン伝導性基の割合など)はそれぞれ同じである必要はなく、それぞれイオン伝導性基を有する重合体ブロック、イオン伝導性を有しない重合体ブロックであればよい。
Hereinafter, the present invention will be described in detail.
The polymer electrolyte of the present invention comprises two polymer blocks (A) having an ion conductive group, one polymer block (B) having no ion conductivity, and four polymers having no ion conductivity. It consists of a copolymer having the block (C) as a constituent component.
The copolymer constituting the polymer electrolyte of the present invention need not be a single copolymer, and may be a mixture of a plurality of types. In addition, other polymers, low molecular weight organic compounds, inorganic compounds, and the like may be included as long as the object of the present invention is not impaired. Further, the structure of the two polymer blocks (A) and four polymer blocks (C) constituting the copolymer constituting the polymer electrolyte of the present invention (constituent repeating unit, degree of polymerization, ratio of ion conductive group, etc.) ) Need not be the same, and may be a polymer block having an ion conductive group or a polymer block having no ion conductivity.
<重合体ブロック(A)>
 本発明の高分子電解質を成す共重合体は、イオン伝導性基を有する2つの重合体ブロック(A)を構成成分とする。
 上記の重合体ブロック(A)としては、芳香族ビニル化合物単位を繰り返し単位とする重合体ブロック、ポリエーテルケトンブロック、ポリスルフィドブロック、ポリホスファゼンブロック、ポリフェニレンブロック、ポリベンゾイミダゾールブロック、ポリエーテルスルホンブロック、ポリフェニレンオキシドブロック、ポリカーボネートブロック、ポリアミドブロック、ポリイミドブロック、ポリ尿素ブロック、ポリスルホンブロック、ポリスルホネートブロック、ポリベンゾオキサゾールブロック、ポリベンゾチアゾールブロック、ポリフェニルキノキサリンブロック、ポリキノリンブロック、ポリトリアジンブロック、ポリアクリレートブロック、ポリメタクリレートブロック等の各重合体ブロックにイオン伝導性基を導入した重合体ブロックが挙げられ、中でも芳香族ビニル化合物単位を繰り返し単位とする重合体ブロック、ポリエーテルケトンブロック、ポリスルフィドブロック、ポリホスファゼンブロック、ポリフェニレンブロック、ポリベンゾイミダゾールブロック、ポリエーテルスルホンブロック、ポリフェニレンオキシドブロックから選ばれる重合体ブロックにイオン伝導性基を導入した重合体ブロックが好ましく、合成が容易であるという観点から、芳香族ビニル化合物単位を繰り返し単位とする重合体ブロックにイオン伝導性基を導入した重合体ブロックがより好ましい。
<Polymer block (A)>
The copolymer constituting the polymer electrolyte of the present invention comprises two polymer blocks (A) having ion conductive groups as constituent components.
As the polymer block (A), a polymer block having an aromatic vinyl compound unit as a repeating unit, a polyether ketone block, a polysulfide block, a polyphosphazene block, a polyphenylene block, a polybenzimidazole block, a polyether sulfone block, Polyphenylene oxide block, polycarbonate block, polyamide block, polyimide block, polyurea block, polysulfone block, polysulfonate block, polybenzoxazole block, polybenzothiazole block, polyphenylquinoxaline block, polyquinoline block, polytriazine block, polyacrylate block , Polymerization in which ion conductive groups are introduced into each polymer block such as polymethacrylate block Among them, a polymer block having an aromatic vinyl compound unit as a repeating unit, a polyether ketone block, a polysulfide block, a polyphosphazene block, a polyphenylene block, a polybenzimidazole block, a polyethersulfone block, and a polyphenylene oxide block are selected. A polymer block in which an ion conductive group is introduced into the polymer block is preferable, and a polymer in which an ion conductive group is introduced into a polymer block having an aromatic vinyl compound unit as a repeating unit from the viewpoint of easy synthesis. Blocks are more preferred.
 上記の芳香族ビニル化合物単位が有する芳香環は炭素環式芳香環であるのが好ましく、ベンゼン環、ナフタレン環、アントラセン環、ピレン環等が挙げられる。 The aromatic ring of the aromatic vinyl compound unit is preferably a carbocyclic aromatic ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a pyrene ring.
 これら芳香族ビニル化合物単位を形成できる単量体の具体例として、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-エチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,5-ジメチルスチレン、2-メトキシスチレン、3-メトキシスチレン、4-メトキシスチレン、ビニルビフェニル、ビニルターフェニル、ビニルナフタレン、ビニルアントラセン、4-フェノキシスチレンなどの芳香族ビニル化合物が挙げられる。
 重合体ブロック(A)は、これらの芳香族ビニル化合物を重合する工程を含む重合によって得られた共重合体の重合体ブロック(A)に相当する部分(重合体ブロック(A)のイオン伝導性基を水素に置換した構造からなる前駆体ブロックであり、以下、「重合体ブロック(A0)」と称する場合がある)に選択的にイオン伝導性基を導入することで製造できる。その場合、これら単量体の芳香環上には、イオン伝導性基を導入する反応を阻害する官能基がないことが望ましい。例えば、スチレンの芳香環上の水素(特に4位の水素)がアルキル基(特に炭素数3以上のアルキル基)などで置換されているとイオン伝導性基の導入が困難な場合があるので、該芳香環は他の官能基で置換されていないか、アリール基などのそれ自体がイオン伝導性基を導入可能な置換基で置換されていることが好ましく、イオン伝導性基の導入容易性、イオン伝導性基の高密度化などの観点から、スチレン、ビニルビフェニルがより好ましい。
Specific examples of monomers that can form these aromatic vinyl compound units include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 2,4-dimethylstyrene, 2,5- Aromatic vinyl compounds such as dimethylstyrene, 3,5-dimethylstyrene, 2-methoxystyrene, 3-methoxystyrene, 4-methoxystyrene, vinylbiphenyl, vinylterphenyl, vinylnaphthalene, vinylanthracene, 4-phenoxystyrene It is done.
The polymer block (A) is a portion corresponding to the polymer block (A) of the copolymer obtained by polymerization including the step of polymerizing these aromatic vinyl compounds (ion conductivity of the polymer block (A)). It is a precursor block having a structure in which a group is substituted with hydrogen, and can be produced by selectively introducing an ion conductive group into a polymer block (hereinafter sometimes referred to as “polymer block (A 0 )”). In that case, it is desirable that there are no functional groups on the aromatic ring of these monomers that inhibit the reaction for introducing the ion conductive group. For example, if hydrogen on the aromatic ring of styrene (particularly hydrogen at the 4-position) is substituted with an alkyl group (particularly an alkyl group having 3 or more carbon atoms), it may be difficult to introduce an ion conductive group. The aromatic ring is preferably not substituted with another functional group, or an aryl group or the like is preferably substituted with a substituent capable of introducing an ion conductive group, and the ion conductive group can be easily introduced. From the viewpoint of increasing the density of the ion conductive group, styrene and vinyl biphenyl are more preferable.
 また、上記の芳香族ビニル化合物のビニル基上の水素原子のうち、芳香環のα-位の炭素(α-炭素)に結合した水素原子が他の置換基で置換され、α-炭素が4級炭素である構造のものでもよい。α-炭素原子に結合した水素原子が置換されていてもよい置換基としては、炭素数1~4のアルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、もしくはtert-ブチル基)、炭素数1~4のハロゲン化アルキル基(クロロメチル基、2-クロロエチル基、3-クロロエチル基等)又はフェニル基を挙げることができる。該置換基を有する芳香族ビニル化合物としては、α-メチルスチレン、α-メチル-4-メチルスチレン、α-メチル-2-メチルスチレン、α-メチル-4-エチルスチレン、1,1-ジフェニルエチレンが好ましい。 Of the hydrogen atoms on the vinyl group of the aromatic vinyl compound, the hydrogen atom bonded to the α-position carbon (α-carbon) of the aromatic ring is substituted with another substituent, and the α-carbon is 4 It may have a structure that is a secondary carbon. Examples of the substituent in which the hydrogen atom bonded to the α-carbon atom may be substituted include an alkyl group having 1 to 4 carbon atoms (methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group). Group, sec-butyl group, or tert-butyl group), a halogenated alkyl group having 1 to 4 carbon atoms (chloromethyl group, 2-chloroethyl group, 3-chloroethyl group, etc.) or phenyl group. Examples of the aromatic vinyl compound having the substituent include α-methylstyrene, α-methyl-4-methylstyrene, α-methyl-2-methylstyrene, α-methyl-4-ethylstyrene, 1,1-diphenylethylene. Is preferred.
 これら芳香族ビニル化合物は1種又は2種以上組み合わせて重合体ブロック(A)を形成する際の単量体として使用できる。2種以上組み合わせて単量体として使用する場合、スチレン、α-メチルスチレン、4-メチルスチレン、4-エチルスチレン、α-メチル-4-メチルスチレン、α-メチル-2-メチルスチレンから2種以上を選択することが好ましい。これらの2種以上を共重合させて、重合体ブロック(A)のイオン伝導性基を水素に置換した構造からなる重合体ブロック(A0)を形成する場合の共重合方法は、ランダム共重合が好ましい。 These aromatic vinyl compounds can be used as a monomer in forming the polymer block (A) by combining one or more kinds. When two or more types are used in combination as a monomer, two types are selected from styrene, α-methylstyrene, 4-methylstyrene, 4-ethylstyrene, α-methyl-4-methylstyrene, and α-methyl-2-methylstyrene. It is preferable to select the above. The copolymerization method in the case of forming a polymer block (A 0 ) having a structure in which two or more of these are copolymerized to replace the ion conductive group of the polymer block (A) with hydrogen is random copolymerization. Is preferred.
 重合体ブロック(A)は、本発明の効果を損なわない範囲内で1種もしくは複数の他の単量体単位を含んでいてもよい。かかる他の単量体単位を構成できる単量体としては、例えば、炭素数4~8の共役ジエン(1,3-ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等)、炭素数2~8のアルケン(エチレン、プロピレン、1-ブテン、2-ブテン、イソブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、1-ヘプテン、2-ヘプテン、1-オクテン、2-オクテン等)、(メタ)アクリル酸エステル((メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等)、ビニルエステル(酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等)、ビニルエーテル(メチルビニルエーテル、イソブチルビニルエーテル等)等が挙げられる。上記他の単量体との共重合方法はランダム共重合が望ましい。 The polymer block (A) may contain one or more other monomer units as long as the effects of the present invention are not impaired. Examples of monomers that can constitute such other monomer units include conjugated dienes having 4 to 8 carbon atoms (1,3-butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4 -Hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-heptadiene, etc.), alkenes having 2 to 8 carbon atoms (ethylene, propylene, 1-butene, 2 -Butene, isobutene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 1-heptene, 2-heptene, 1-octene, 2-octene, etc.), (meth) acrylic acid esters ((meth) acrylic) Methyl ester, ethyl (meth) acrylate, butyl (meth) acrylate, etc.), vinyl esters (vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate, etc.), Vinyl ether (methyl vinyl ether, isobutyl vinyl ether, etc.), and the like. Random copolymerization is desirable as a copolymerization method with the other monomer.
 重合体ブロック(A)が芳香族ビニル化合物単位を繰り返し単位とする場合、重合体ブロック(B)とのミクロ相分離を起こす上で有利であり、この結果イオン伝導性を高めることができる。 When the polymer block (A) has an aromatic vinyl compound unit as a repeating unit, it is advantageous in causing microphase separation from the polymer block (B), and as a result, ion conductivity can be increased.
 重合体ブロック(A0)の分子量は、標準ポリスチレン換算の数平均分子量として、通常、1,000~100,000の範囲から選択されるのが好ましく、2,000~70,000の範囲から選択されるのがより好ましく、3,000~50,000の範囲から選択されるのが更に好ましく、4,000~30,000の範囲から選択されるのが特に好ましい。 The molecular weight of the polymer block (A 0 ) is usually preferably selected from the range of 1,000 to 100,000 as the number average molecular weight in terms of standard polystyrene, and selected from the range of 2,000 to 70,000. More preferably, it is more preferably selected from the range of 3,000 to 50,000, and particularly preferably selected from the range of 4,000 to 30,000.
 重合体ブロック(A0)の分子量は、高分子電解質膜の性状、要求性能、他の重合体成分等によって適宜選択される。かかる分子量が大きい場合、高分子電解質膜の機械的強度が高くなる傾向にあるが、100,000よりも大きいと高分子電解質の成形、製膜が困難になる場合がある。また、かかる分子量が1,000よりも小さい場合、ミクロ相分離構造、ひいては、イオンチャンネルを形成しにくくなるため、イオン伝導性を示さなくなる傾向にあり、また機械的強度が低くなる傾向にある。 The molecular weight of the polymer block (A 0 ) is appropriately selected depending on the properties of the polymer electrolyte membrane, required performance, other polymer components, and the like. When the molecular weight is large, the mechanical strength of the polymer electrolyte membrane tends to be high, but when it is greater than 100,000, it may be difficult to form and form the polymer electrolyte. Further, when the molecular weight is less than 1,000, it is difficult to form a microphase separation structure and thus an ion channel, so that the ionic conductivity tends to be lost and the mechanical strength tends to be lowered.
 また、重合体ブロック(A)は、本発明の効果を損なわない範囲内で公知の方法により架橋されていてもよい。架橋を導入することにより、重合体ブロック(A)が形成するイオンチャンネル相が膨潤しにくくなり、電解質膜中の構造が保持されやすく、性能が安定しやすい傾向にある。 The polymer block (A) may be crosslinked by a known method within a range not impairing the effects of the present invention. By introducing the crosslinking, the ion channel phase formed by the polymer block (A) is less likely to swell, the structure in the electrolyte membrane is easily maintained, and the performance tends to be stable.
 本発明の高分子電解質における重合体ブロック(A)はイオン伝導性基を有することが必要である。本発明でイオン伝導性に言及する場合のイオンとしてはプロトンなどが挙げられる。イオン伝導性基としては、該高分子電解質を用いて作製される高分子電解質膜、膜-電極接合体が十分なイオン伝導度を発現できるような基であれば特に限定されないが、中でも-SO3M又は-PO3HM、-CO2M(式中、Mは水素原子、アンモニウムイオン又はアルカリ金属イオンを表す)で表されるスルホン酸基、ホスホン酸基、カルボキシル基又はそれらの塩を用いることができ、特に高いイオン伝導性を示す観点から、-SO3M又は-PO3HM(式中、Mは水素原子、アンモニウムイオン又はアルカリ金属イオンを表す)で表されるスルホン酸基、ホスホン酸基又はそれらの塩が好適に用いられる。 The polymer block (A) in the polymer electrolyte of the present invention needs to have an ion conductive group. Examples of ions in the present invention when referring to ionic conductivity include protons. The ion conductive group is not particularly limited as long as the polymer electrolyte membrane and membrane-electrode assembly produced using the polymer electrolyte can express sufficient ionic conductivity. A sulfonic acid group, phosphonic acid group, carboxyl group or a salt thereof represented by 3 M or —PO 3 HM, —CO 2 M (wherein M represents a hydrogen atom, an ammonium ion or an alkali metal ion) is used. From the viewpoint of exhibiting particularly high ion conductivity, a sulfonic acid group represented by —SO 3 M or —PO 3 HM (wherein M represents a hydrogen atom, an ammonium ion or an alkali metal ion), phosphone Acid groups or their salts are preferably used.
 重合体ブロック(A)中の繰り返し単位は、全てがイオン伝導性基を有する必要はなく、性能に応じて適宜イオン伝導性基の量を加減できる。重合体ブロック(A)中のイオン伝導性基の位置については特に制限はないが、通常は重合体ブロック(A)中にランダムに導入する。繰り返し単位として芳香環を有する化合物がある場合、イオンチャンネル形成を容易にする観点から、芳香環上に導入するのが好ましい。また、芳香族ビニル化合物単位が繰り返し単位である場合、該芳香族ビニル化合物単位の芳香環上にイオン伝導性基を導入することで高分子電解質の耐ラジカル性を向上させるのに特に有効である。 All the repeating units in the polymer block (A) do not need to have an ion conductive group, and the amount of the ion conductive group can be appropriately adjusted according to the performance. Although there is no restriction | limiting in particular about the position of the ion conductive group in a polymer block (A), Usually, it introduce | transduces into a polymer block (A) at random. When there is a compound having an aromatic ring as a repeating unit, it is preferably introduced onto the aromatic ring from the viewpoint of facilitating ion channel formation. Further, when the aromatic vinyl compound unit is a repeating unit, it is particularly effective for improving the radical resistance of the polymer electrolyte by introducing an ion conductive group onto the aromatic ring of the aromatic vinyl compound unit. .
 イオン伝導性基の導入量は、得られる高分子電解質膜の要求性能等によって適宜選択されるが、固体高分子型燃料電池用の高分子電解質膜として使用するのに十分なイオン伝導性を発現するためには、通常、高分子電解質のイオン交換容量が0.80meq/g以上となるような量であることが好ましく、1.30meq/g以上となるような量であることがより好ましく、1.40meq/g以上であるのが更に好ましく、1.80meq/g以上であるのが特に好ましい。高分子電解質のイオン交換容量の上限については、イオン交換容量が大きくなりすぎると親水性が高まり耐水性が不十分になる傾向となるので、4.00meq/g以下であるのが好ましく、3.80meq/g以下であるのがより好ましく、3.60meq/g以下であるのが更に好ましい。 The amount of ion-conducting group introduced is appropriately selected depending on the required performance of the obtained polymer electrolyte membrane, etc., but exhibits sufficient ion conductivity for use as a polymer electrolyte membrane for a polymer electrolyte fuel cell. In general, the amount is preferably such that the ion exchange capacity of the polymer electrolyte is 0.80 meq / g or more, more preferably 1.30 meq / g or more. It is more preferably 1.40 meq / g or more, and particularly preferably 1.80 meq / g or more. The upper limit of the ion exchange capacity of the polymer electrolyte is preferably 4.00 meq / g or less, because if the ion exchange capacity becomes too large, the hydrophilicity tends to increase and the water resistance becomes insufficient. It is more preferably 80 meq / g or less, and still more preferably 3.60 meq / g or less.
<重合体ブロック(B)>
 本発明の高分子電解質を成す共重合体は、イオン伝導性を有しない1つの重合体ブロック(B)を構成成分とする。
 本発明の高分子電解質膜は、重合体ブロック(B)によって、使用温度域において、弾力性を帯び、かつ柔軟になり、膜-電極接合体や固体高分子型燃料電池の作成にあたっては成型性(組立性、接合性、締付性など)に優れる。
<Polymer block (B)>
The copolymer constituting the polymer electrolyte of the present invention comprises one polymer block (B) having no ionic conductivity as a constituent component.
The polymer electrolyte membrane of the present invention is elastic and flexible in the operating temperature range due to the polymer block (B), and has moldability in the production of membrane-electrode assemblies and solid polymer fuel cells. (Assemblyability, bondability, tightenability, etc.)
 ここで、重合体ブロック(B)とは、イオン伝導性を有さず、軟化温度(すなわち、該重合体ブロックが独立して重合体となった場合の軟化温度)が、重合体ブロック(C)の軟化温度(すなわち該重合体ブロックが独立して重合体となった場合の重合体の軟化温度)よりも20℃以上低い重合体ブロックである。
 ここで、共重合体を構成する各重合体ブロック(C)の軟化温度が異なる場合は、最も低い軟化温度を示す重合体ブロック(C)よりも、重合体ブロック(B)の軟化温度が20℃以上低い。幅広い使用温度域において高い弾力性を帯び、かつ柔軟性を発揮しやすいことから、重合体ブロック(B)の軟化温度は、重合体ブロック(C)よりも40℃以上低いことが好ましく、70℃以上低いことがより好ましい。
 かかる重合体ブロック(B)を構成する繰り返し単位としては、炭素数2~8のアルケン単位、炭素数5~8のシクロアルケン単位、炭素数7~10のビニルシクロアルカン単位、炭素数7~10のビニルシクロアルケン単位、炭素数4~8の共役ジエン単位、炭素数5~8の共役シクロアルカジエン単位、炭素数1~12の側鎖を有するアクリル酸エステル単位、および炭素数1~12の側鎖を有するメタクリル酸エステル単位が挙げられる。これらの群から選ばれる繰り返し単位は単独または2種以上組み合わせて用いてもよい。
Here, the polymer block (B) does not have ionic conductivity, and the softening temperature (that is, the softening temperature when the polymer block independently becomes a polymer) is the polymer block (C ) (That is, the polymer softening temperature when the polymer block independently becomes a polymer) is 20 ° C. or more lower than the softening temperature.
Here, when the softening temperature of each polymer block (C) constituting the copolymer is different, the softening temperature of the polymer block (B) is 20 than that of the polymer block (C) showing the lowest softening temperature. More than ℃. The softening temperature of the polymer block (B) is preferably 40 ° C. or more lower than that of the polymer block (C), since it has high elasticity in a wide use temperature range and easily exhibits flexibility. More preferably, it is lower.
The repeating unit constituting the polymer block (B) includes alkene units having 2 to 8 carbon atoms, cycloalkene units having 5 to 8 carbon atoms, vinylcycloalkane units having 7 to 10 carbon atoms, and 7 to 10 carbon atoms. Vinylcycloalkene unit, conjugated diene unit having 4 to 8 carbon atoms, conjugated cycloalkadiene unit having 5 to 8 carbon atoms, acrylate ester unit having a side chain having 1 to 12 carbon atoms, and 1 to 12 carbon atoms Examples include methacrylic acid ester units having side chains. You may use the repeating unit chosen from these groups individually or in combination of 2 or more types.
 好適な使用温度域や成型温度との兼ね合いから、重合体ブロック(B)の軟化温度は50℃以下であることが好ましく、40℃以下であることがより好ましく、30℃以下であることが更に好ましい。 The softening temperature of the polymer block (B) is preferably 50 ° C. or less, more preferably 40 ° C. or less, and further preferably 30 ° C. or less in view of a suitable use temperature range and molding temperature. preferable.
 このような繰り返し単位を構成する単量体のうち、炭素数2~8のアルケンとしては、エチレン、プロピレン、1-ブテン、2-ブテン、イソブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、1-ヘプテン、2-ヘプテン、1-オクテン、2-オクテンなど、炭素数5~8のシクロアルケンとしてはシクロペンテン、シクロヘキセン、シクロヘプテンおよびシクロオクテンなど、炭素数7~10のビニルシクロアルカンとしてはビニルシクロペンタン、ビニルシクロヘキサン、ビニルシクロヘプタン、ビニルシクロオクタンなど、炭素数7~10のビニルシクロアルケンとしてはビニルシクロペンテン、ビニルシクロヘキセン、ビニルシクロヘプテン、ビニルシクロオクテンなど、炭素数4~8の共役ジエンとしては1,3-ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン、など、炭素数5~8の共役シクロアルカジエンとしては、シクロペンタジエン、1,3-シクロヘキサジエンなど、炭素数1~12の側鎖を有するアクリル酸エステルとしてはアクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸オクチルなど、炭素数1~12の側鎖を有するメタクリル酸エステルとしてはメタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸オクチルなどがそれぞれ挙げられる。これら単量体は単独で用いてもよく、2種以上を組み合わせて用いてもよい。2種以上の単量体を共重合させて重合体ブロック(B)を形成する場合、共重合方法はランダム共重合が好ましい。また、共重合に供する単量体が炭素-炭素二重結合を複数有する場合にはそのいずれが重合に用いられてもよく、共役ジエンの場合には1,2-結合であっても1,4-結合であってもよい。 Among the monomers constituting such a repeating unit, the alkene having 2 to 8 carbon atoms includes ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 1-hexene, Cycloalkene having 5 to 8 carbon atoms such as 2-hexene, 1-heptene, 2-heptene, 1-octene, 2-octene and the like, and cycloalkene having 5 to 8 carbon atoms such as cyclopentene, cyclohexene, cycloheptene and cyclooctene, etc. As vinylcyclopentane, vinylcyclohexane, vinylcycloheptane, vinylcyclooctane and the like. As the vinylcycloalkene having 7 to 10 carbon atoms, vinylcyclopentene, vinylcyclohexene, vinylcycloheptene, vinylcyclooctene, etc. As the conjugated diene of , 3-butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3 -Heptadiene, etc., conjugated cycloalkadiene having 5 to 8 carbon atoms such as cyclopentadiene, 1,3-cyclohexadiene, etc., and acrylic acid esters having a side chain having 1 to 12 carbon atoms, such as methyl acrylate, acrylic acid Examples of the methacrylic acid ester having a side chain having 1 to 12 carbon atoms such as ethyl, butyl acrylate and octyl acrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate and octyl methacrylate. These monomers may be used alone or in combination of two or more. When copolymerizing two or more monomers to form the polymer block (B), the copolymerization method is preferably random copolymerization. Further, when the monomer to be copolymerized has a plurality of carbon-carbon double bonds, any of them may be used for polymerization, and in the case of a conjugated diene, It may be a 4-bond.
 重合体ブロック(B)を形成するための単量体が、ビニルシクロアルケン、共役ジエン、共役シクロアルカジエンのように炭素-炭素二重結合を複数有している場合には、通常、重合後の重合体ブロックに炭素-炭素二重結合が残る。このように重合体ブロックが炭素-炭素二重結合を有している場合、耐熱劣化性の向上などの観点から、かかる炭素-炭素二重結合はその30モル%以上が水素添加されているのが好ましく、50モル%以上が水素添加されているのがより好ましく、80モル%以上が水素添加されているのが更に好ましい。
 炭素-炭素二重結合の水素添加率は、一般に用いられている方法、例えば、ヨウ素価測定法、1H-NMR測定等によって算出することができる。このように重合体ブロック(B)が炭素-炭素二重結合を有しない、あるいは低減した構造とすることで、高分子電解質膜の劣化が抑制できる。
When the monomer for forming the polymer block (B) has a plurality of carbon-carbon double bonds such as vinylcycloalkene, conjugated diene and conjugated cycloalkadiene, it is usually after polymerization. The carbon-carbon double bond remains in the polymer block. When the polymer block has a carbon-carbon double bond as described above, 30% by mole or more of the carbon-carbon double bond is hydrogenated from the viewpoint of improving heat deterioration resistance. More preferably, 50 mol% or more is hydrogenated, and 80 mol% or more is more preferably hydrogenated.
The hydrogenation rate of the carbon-carbon double bond can be calculated by a commonly used method, for example, iodine value measurement method, 1 H-NMR measurement or the like. As described above, the polymer block (B) does not have a carbon-carbon double bond or has a reduced structure, so that deterioration of the polymer electrolyte membrane can be suppressed.
 重合体ブロック(B)は、高分子電解質膜にした際に、使用温度領域において弾力性を帯び、かつ柔軟になり、膜-電極接合体や固体高分子型燃料電池の作成にあたって成型性(組立性、接合性、締付性など)を改善しやすい観点から、炭素数2~8のアルケン単位、炭素数5~8のシクロアルケン単位、炭素数7~10のビニルシクロアルケン単位、炭素数4~8の共役ジエン単位及び炭素数5~8の共役シクロアルカジエン単位よりなる群から選ばれる少なくとも1種の繰り返し単位からなる重合体ブロックであることが好ましく、炭素数3~8のアルケン単位、炭素数4~8の共役ジエン単位から選ばれる少なくとも1種の繰り返し単位からなる重合体ブロックであることがより好ましく、炭素数4~6のアルケン単位、炭素数4~6の共役ジエン単位から選ばれる少なくとも1種の繰り返し単位からなる重合体ブロックであることが更に好ましい。上記で、アルケン単位として最も好ましいのはイソブテン単位、1,3-ブタジエン単位の二重結合を飽和させた構造単位(1-ブテン単位、2-ブテン単位)、イソプレン単位の二重結合を飽和させた構造単位(2-メチル-1-ブテン単位、3-メチル-1-ブテン単位、2-メチル-2-ブテン単位)であり、特に柔軟性の高さから1,3-ブタジエン単位の二重結合を飽和した構造単位(1-ブテン単位、2-ブテン単位)の併用またはイソプレン単位の二重結合を飽和した構造単位(2-メチル-1-ブテン単位、3-メチル-1-ブテン単位、2-メチル-2-ブテン単位)が最も好ましい。共役ジエン単位として最も好ましいのは1,3-ブタジエン単位、イソプレン単位である。
 また、本発明の高分子電解質を製造するにあたり、イオン伝導性基を有しない共重合体を重合した後にイオン伝導性基を導入して重合体ブロック(A)を形成する場合、重合体ブロック(B)が飽和炭化水素構造であれば、重合体ブロック(B)にはイオン伝導性基が導入されにくいため好ましい。
When the polymer block (B) is made into a polymer electrolyte membrane, it becomes elastic and flexible in the operating temperature range, and the moldability (assembly) is assured in the production of membrane-electrode assemblies and solid polymer fuel cells. From the viewpoint of easy improvement in the properties, bonding properties, fastening properties, etc.), alkene units having 2 to 8 carbon atoms, cycloalkene units having 5 to 8 carbon atoms, vinylcycloalkene units having 7 to 10 carbon atoms, and 4 carbon atoms. It is preferably a polymer block comprising at least one repeating unit selected from the group consisting of a conjugated diene unit having 8 to 8 and a conjugated cycloalkadiene unit having 5 to 8 carbon atoms, an alkene unit having 3 to 8 carbon atoms, More preferably, it is a polymer block composed of at least one repeating unit selected from conjugated diene units having 4 to 8 carbon atoms, an alkene unit having 4 to 6 carbon atoms, and 4 to 6 carbon atoms. It is more preferably a polymer block comprising at least one repeating unit selected from conjugated diene units. In the above, the most preferable alkene unit is a structural unit (1-butene unit, 2-butene unit) in which a double bond of an isobutene unit or 1,3-butadiene unit is saturated, or a double bond of an isoprene unit is saturated. Structural units (2-methyl-1-butene unit, 3-methyl-1-butene unit, 2-methyl-2-butene unit). A structural unit saturated with a bond (1-butene unit, 2-butene unit) or a structural unit saturated with a double bond of an isoprene unit (2-methyl-1-butene unit, 3-methyl-1-butene unit, 2-methyl-2-butene units) are most preferred. Most preferred conjugated diene units are 1,3-butadiene units and isoprene units.
In the production of the polymer electrolyte of the present invention, when a polymer block (A) is formed by introducing an ion conductive group after polymerizing a copolymer having no ion conductive group, the polymer block ( If B) is a saturated hydrocarbon structure, it is preferable because an ion conductive group is hardly introduced into the polymer block (B).
 また、重合体ブロック(B)を形成するための単量体としては、上記単量体以外に、使用温度領域において高分子電解質に弾力性を与えるという重合体ブロック(B)の目的を損なわない範囲で、他の単量体、例えばスチレン、ビニルナフタレン等の芳香族ビニル系化合物;塩化ビニル等のハロゲン含有ビニル化合物、ビニルエステル(酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等)、ビニルエーテル(メチルビニルエーテル、イソブチルビニルエーテル等)等を使用してもよい。この場合上記単量体と他の単量体との共重合方法はランダム共重合であることが好ましい。これら他の単量体の使用量は好ましくは5モル%以下である。 Moreover, as a monomer for forming the polymer block (B), the purpose of the polymer block (B) that gives elasticity to the polymer electrolyte in the operating temperature region is not impaired in addition to the above-mentioned monomers. In range, other monomers such as aromatic vinyl compounds such as styrene and vinyl naphthalene; halogen-containing vinyl compounds such as vinyl chloride, vinyl esters (vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate, etc.), Vinyl ether (methyl vinyl ether, isobutyl vinyl ether, etc.) may be used. In this case, the copolymerization method of the monomer with another monomer is preferably random copolymerization. The amount of these other monomers used is preferably 5 mol% or less.
 重合体ブロック(B)の分子量は、標準ポリスチレン換算の数平均分子量として、通常、5,000~250,000の範囲から選択されるのが好ましく、7,000~150,000の範囲から選択されるのがより好ましく、8,000~100,000の範囲から選択されるのが更に好ましく、10,000~70,000の範囲から選択されるのが特に好ましい。 The molecular weight of the polymer block (B) is usually selected from the range of 5,000 to 250,000, preferably from the range of 7,000 to 150,000, as the number average molecular weight in terms of standard polystyrene. More preferably, it is selected from the range of 8,000 to 100,000, more preferably from the range of 10,000 to 70,000.
<重合体ブロック(C)>
 本発明の高分子電解質を成すブロック共重合体は、イオン伝導性を有しない4つの重合体ブロック(C)を構成成分とする。
 重合体ブロック(C)は、拘束相として機能する。幅広い使用温度域において拘束機能を発揮しやすいことから、重合体ブロック(C)の軟化温度(すなわち、該重合体ブロックが独立して重合体となった場合の重合体の軟化温度)は80℃以上であることが好ましく、90℃以上であることがより好ましく、100℃以上であることが更に好ましい。
<Polymer block (C)>
The block copolymer constituting the polymer electrolyte of the present invention comprises four polymer blocks (C) having no ionic conductivity as constituent components.
The polymer block (C) functions as a constraining phase. Since the restraint function is easily exhibited in a wide use temperature range, the softening temperature of the polymer block (C) (that is, the softening temperature of the polymer when the polymer block independently becomes a polymer) is 80 ° C. It is preferably above, more preferably 90 ° C. or higher, and further preferably 100 ° C. or higher.
 重合体ブロック(C)としては、芳香族ビニル化合物単位を主たる繰り返し単位とする重合体ブロック、ポリエーテルケトンブロック、ポリスルフィドブロック、ポリホスファゼンブロック、ポリフェニレンブロック、ポリベンゾイミダゾールブロック、ポリエーテルスルホンブロック、ポリフェニレンオキシドブロック、ポリカーボネートブロック、ポリアミドブロック、ポリイミドブロック、ポリ尿素ブロック、ポリスルホンブロック、ポリスルホネートブロック、ポリベンゾオキサゾールブロック、ポリベンゾチアゾールブロック、ポリフェニルキノキサリンブロック、ポリキノリンブロック、ポリトリアジンブロック、ポリアクリレートブロック、ポリメタクリレートブロック等が挙げられ、中でも芳香族ビニル化合物単位を主たる繰り返し単位とする重合体ブロックが好ましい。特に重合体ブロック(C)が、下記の一般式(a) The polymer block (C) includes a polymer block mainly composed of an aromatic vinyl compound unit, a polyether ketone block, a polysulfide block, a polyphosphazene block, a polyphenylene block, a polybenzimidazole block, a polyether sulfone block, and a polyphenylene. Oxide block, polycarbonate block, polyamide block, polyimide block, polyurea block, polysulfone block, polysulfonate block, polybenzoxazole block, polybenzothiazole block, polyphenylquinoxaline block, polyquinoline block, polytriazine block, polyacrylate block, Polymethacrylate block, etc. Polymer block repeating units are preferred. In particular, the polymer block (C) has the following general formula (a):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R1は水素原子又は炭素数1~4のアルキル基であり、R2~R4はそれぞれ独立に水素原子又は炭素数3~8のアルキル基を表すが、少なくとも1つは炭素数3~8のアルキル基を表す)で表される芳香族ビニル系化合物単位の繰り返し単位から構成される場合、合成が容易であり、かつ拘束機能を得やすいこという観点から好ましい。
 すなわち、イオン伝導性基を有しない共重合体を重合後にイオン伝導性基を導入して重合体ブロック(A)を形成する場合に、R2~R4によって重合体ブロック(C)へのイオン伝導性基の導入が妨げられるので好ましい。また、軟化温度が比較的高くなるので、使用温度域を広くできる。
Wherein R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 to R 4 each independently represents a hydrogen atom or an alkyl group having 3 to 8 carbon atoms, but at least one of them is carbon (Representing an alkyl group of several 3 to 8) is preferable from the viewpoint of easy synthesis and easy obtaining of a restraining function.
That is, when a polymer block (A) is formed by introducing an ion conductive group after polymerization of a copolymer having no ion conductive group, ions to the polymer block (C) are formed by R 2 to R 4 . Since introduction of a conductive group is hindered, it is preferable. Moreover, since the softening temperature becomes relatively high, the operating temperature range can be widened.
 上記一般式(a)で表される芳香族ビニル系化合物単位の繰り返し単位を形成できる単量体としては、4-イソプロピルスチレン、4-n-プロピルスチレン、4-イソプロピルスチレン、4-n-ブチルスチレン、4-イソブチルスチレン、4-tert-ブチルスチレン、4-n-オクチルスチレン、α-メチル-4-tert-ブチルスチレン、α-メチル-4-イソプロピルスチレン、などの芳香族ビニル化合物が挙げられる。 Examples of the monomer capable of forming the repeating unit of the aromatic vinyl compound unit represented by the general formula (a) include 4-isopropylstyrene, 4-n-propylstyrene, 4-isopropylstyrene, 4-n-butyl. Aromatic vinyl compounds such as styrene, 4-isobutyl styrene, 4-tert-butyl styrene, 4-n-octyl styrene, α-methyl-4-tert-butyl styrene, α-methyl-4-isopropyl styrene .
 これらは1種又は2種以上組み合わせて使用できるが、中でも4-tert-ブチルスチレン、4-イソプロピルスチレン、α-メチル-4-tert-ブチルスチレン、α-メチル-4-イソプロピルスチレンが好ましい。これらの2種以上を共重合させる場合の共重合方法はランダム共重合が好ましい。 These can be used alone or in combination of two or more, among which 4-tert-butylstyrene, 4-isopropylstyrene, α-methyl-4-tert-butylstyrene, and α-methyl-4-isopropylstyrene are preferable. Random copolymerization is preferred as the copolymerization method in the case of copolymerizing two or more of these.
 重合体ブロック(C)は、本発明の効果を損なわない範囲内で1種もしくは複数の他の単量体単位を含んでいてもよい。かかる他の単量体としては、例えば、炭素数4~8の共役ジエン(1,3-ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等)、炭素数2~8のアルケン(エチレン、プロピレン、1-ブテン、2-ブテン、イソブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、1-ヘプテン、2-ヘプテン、1-オクテン、2-オクテン等)、(メタ)アクリル酸エステル((メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等)、ビニルエステル(酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等)、ビニルエーテル(メチルビニルエーテル、イソブチルビニルエーテル等)等が挙げられる。上記他の単量体との共重合方法はランダム共重合であることが好ましい。これら単量体の使用量は好ましくは5モル%以下である。 The polymer block (C) may contain one or more other monomer units within a range not impairing the effects of the present invention. Examples of such other monomers include conjugated dienes having 4 to 8 carbon atoms (1,3-butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4-hexadiene, 2,3- Dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-heptadiene, etc.), alkenes having 2 to 8 carbon atoms (ethylene, propylene, 1-butene, 2-butene, isobutene, 1-butene, etc.) Pentene, 2-pentene, 1-hexene, 2-hexene, 1-heptene, 2-heptene, 1-octene, 2-octene, etc.), (meth) acrylic acid esters (methyl (meth) acrylate, (meth) acrylic) Ethyl acetate, butyl (meth) acrylate, etc.), vinyl esters (vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate, etc.), vinyl ether (methyl) Vinyl ether, isobutyl vinyl ether, etc.), and the like. The copolymerization method with the other monomer is preferably random copolymerization. The amount of these monomers used is preferably 5 mol% or less.
 重合体ブロック(C)の分子量は、高分子電解質の性状、要求性能、他の重合体成分等によって適宜選択される。かかる分子量は、標準ポリスチレン換算の数平均分子量として、通常、1,000~50,000の範囲から選択されるのが好ましく、1,500~30,000の範囲から選択されるのがより好ましく、2,000~20,000の範囲から選択されるのが更に好ましい。重合体ブロック(C)の分子量が大きい場合、高分子電解質の機械的強度が高くなる傾向にあるが、50,000よりも大きいと高分子電解質の成形、製膜が困難になる。重合体ブロック(C)の分子量が1,500よりも小さい場合、機械的強度が低くなる傾向にあり、必要性能に応じて分子量を適宜選択することが重要である。 The molecular weight of the polymer block (C) is appropriately selected depending on the properties of the polymer electrolyte, required performance, other polymer components, and the like. The molecular weight is preferably selected from the range of 1,000 to 50,000, more preferably from the range of 1,500 to 30,000, as the number average molecular weight in terms of standard polystyrene. More preferably, it is selected from the range of 2,000 to 20,000. When the molecular weight of the polymer block (C) is large, the mechanical strength of the polymer electrolyte tends to be high, but when it is larger than 50,000, it becomes difficult to mold and form the polymer electrolyte. When the molecular weight of the polymer block (C) is smaller than 1,500, the mechanical strength tends to be low, and it is important to appropriately select the molecular weight according to the required performance.
[高分子電解質]
 本発明の高分子電解質は、イオン性基を有する2つの重合体ブロック(A)とイオン性基を有しない1つの重合体ブロック(B)とイオン性基を有しない4つの重合体ブロック(C)とを構成成分とした共重合体からなる。さらにその構造を規定することで、高いプロトン伝導性と、湿潤時の高い機械的強度を両立することができる。
[Polymer electrolyte]
The polymer electrolyte of the present invention comprises two polymer blocks (A) having an ionic group, one polymer block (B) having no ionic group, and four polymer blocks having no ionic group (C ) And a constituent component. Furthermore, by defining the structure, it is possible to achieve both high proton conductivity and high mechanical strength when wet.
 具体的には、前記重合体ブロック(A)の両端が、拘束相として機能する前記重合体ブロック(C)と結合している。重合体ブロック(A)はイオン伝導性基を有することから、湿潤時に重合体ブロック(A)が形成するイオンチャンネルが含水し、膨潤することにより、イオン伝導性は高くなる傾向にあるが、機械的強度が低下する傾向にある。重合体ブロック(A)の両端が、湿潤時においても拘束相として機能する前記重合体ブロック(C)と結合していることで、強度の低下を抑制できる傾向にある。 Specifically, both ends of the polymer block (A) are bonded to the polymer block (C) functioning as a constraining phase. Since the polymer block (A) has an ion conductive group, the ion channel formed by the polymer block (A) at the time of wetting tends to contain water and swell so that the ion conductivity tends to increase. Tend to decrease the mechanical strength. When both ends of the polymer block (A) are bonded to the polymer block (C) that functions as a constraining phase even when wet, there is a tendency that a decrease in strength can be suppressed.
 また、前記重合体ブロック(B)は、高分子電解質膜にした際、使用温度領域において弾力性、柔軟性を担う相として機能する。強靭性を高めるために、本発明の高分子電解質においては、重合体ブロック(B)の両端が、拘束相として機能する重合体ブロック(C)と結合している。重合体ブロック(A)は、乾燥時には拘束相としての機能も有するが、湿潤時には重合体ブロック(A)が形成するイオンチャンネルが含水し、膨潤することにより、拘束相としての能力が低減する。それ故、重合体ブロック(B)の両端を、湿潤時においても拘束相として機能する前記重合体ブロック(C)で結合することで、湿潤時においても強度の低下を抑制できる傾向にある。 In addition, the polymer block (B) functions as a phase responsible for elasticity and flexibility in a use temperature range when formed into a polymer electrolyte membrane. In order to increase toughness, in the polymer electrolyte of the present invention, both ends of the polymer block (B) are bonded to the polymer block (C) functioning as a constraining phase. The polymer block (A) also has a function as a constrained phase at the time of drying. However, when the polymer block (A) is wet, the ion channel formed by the polymer block (A) contains water and swells, so that the ability as a constrained phase is reduced. Therefore, by bonding both ends of the polymer block (B) with the polymer block (C) that functions as a constraining phase even when wet, there is a tendency that a decrease in strength can be suppressed even when wet.
 また、該共重合体を用いた高分子電解質膜は機械的強度が高い。これは該共重合体における重合体ブロックが-(A)-(C)-(B)-のブロック構造を含んでいることに起因すると考えられる。
 一般に重合体ブロック(Y)を間に挟むX-Y―Z型ブロック共重合体は、重合体ブロック(X)と重合体ブロック(Z)がそれぞれ他のポリマーとドメインを形成し、重合体ブロック(Y)を挟むブリッジ構造を形成することで機械的強度を発現する(この際、重合体ブロック(Y)がとる鎖の形態をブリッジ鎖と呼ぶ)。一方、ブロック共重合体がループ構造を形成して重合体ブロック(X)と重合体ブロック(Z)が同じドメインを構成すると前記ブリッジ構造の比率が低下するので機械的強度が低下する。すなわちループ構造を低減し、ブリッジ構造を増やすことで機械的強度を高めることができる。
 本発明の高分子電解質を成す共重合体は、重合体ブロックが-(A)-(C)-(B)-のブロック構造を取ることでブリッジ構造のみとなり、重合体ブロック(C)がブリッジ鎖を形成することにより、高分子電解質膜としての機械的強度が高くなる傾向にある。
In addition, the polymer electrolyte membrane using the copolymer has high mechanical strength. This is presumably because the polymer block in the copolymer contains a block structure of-(A)-(C)-(B)-.
Generally, an XYZ type block copolymer with a polymer block (Y) sandwiched between the polymer block (X) and the polymer block (Z) forms a domain with another polymer. By forming a bridge structure sandwiching (Y), mechanical strength is expressed (in this case, the form of the chain taken by the polymer block (Y) is called a bridge chain). On the other hand, when the block copolymer forms a loop structure and the polymer block (X) and the polymer block (Z) constitute the same domain, the ratio of the bridge structure is lowered, so that the mechanical strength is lowered. That is, the mechanical strength can be increased by reducing the loop structure and increasing the bridge structure.
The copolymer constituting the polymer electrolyte of the present invention has only a bridge structure when the polymer block takes a block structure of-(A)-(C)-(B)-, and the polymer block (C) has a bridge structure. By forming a chain, the mechanical strength of the polymer electrolyte membrane tends to increase.
 本発明の高分子電解質を成す共重合体の構造は、イオン伝導性基を有する2つの重合体ブロック(A)と、イオン伝導性を有しない1つの重合体ブロック(B)と、イオン伝導性を有しない4つの重合体ブロック(C)を構成成分とするC-A-C-B-C-A-Cヘプタブロック共重合体、C-A-C-A-C-B-Cヘプタブロック共重合体が挙げられる The structure of the copolymer constituting the polymer electrolyte of the present invention comprises two polymer blocks (A) having an ion conductive group, one polymer block (B) having no ion conductivity, and ion conductivity. C—A—C—B—C—A—C—Heptablock copolymer, C—A—C—A—C—B—C—Hepta block Examples include copolymers
 重合体ブロック(A0)2つの総量と重合体ブロック(C)4つの総量との質量比は、80:20~10:90であるのが好ましく、75:25~15:85であるのがより好ましく、65:35~20:80であるのが更に好ましい。前記重合体ブロック(C)の質量比が小さくなりすぎると、乾燥時、及び湿潤時の強度を保持しにくくなる。また、前記重合体ブロック(A0)の質量比が小さくなりすぎると、該重合体ブロックに導入されるイオン伝導性基の量が少なくなり、高分子電解質膜にした際のイオン伝導性を充分に確保することがしにくくなる。 The mass ratio of the total amount of the two polymer blocks (A 0 ) and the total amount of the four polymer blocks (C) is preferably 80:20 to 10:90, and is preferably 75:25 to 15:85. More preferably, it is more preferably 65:35 to 20:80. When the mass ratio of the polymer block (C) becomes too small, it becomes difficult to maintain strength during drying and wetness. Further, if the mass ratio of the polymer block (A 0 ) becomes too small, the amount of ion conductive groups introduced into the polymer block decreases, and the ion conductivity when the polymer electrolyte membrane is formed is sufficient. It becomes difficult to ensure.
 重合体ブロック(B)と重合体ブロック(C)4つの総量との質量比は、85:15~5:95であるのが好ましく、75:25~10:90であるのがより好ましく、70:30~12:88であるのが更に好ましい。1つの前記重合体ブロック(C)の質量比が小さくなりすぎると、電解質膜としての強度を保持しにくくなる。また、1つの前記重合体ブロック(B)の質量比が小さくなりすぎると、強靭性を保持しにくくなり、脆くなる傾向にある。 The mass ratio of the polymer block (B) and the total amount of the four polymer blocks (C) is preferably 85:15 to 5:95, more preferably 75:25 to 10:90, 70 : 30 to 12:88 is more preferable. When the mass ratio of one polymer block (C) becomes too small, it is difficult to maintain the strength as an electrolyte membrane. Moreover, when the mass ratio of one said polymer block (B) becomes small too much, it will become difficult to hold | maintain toughness and it exists in the tendency which becomes weak.
 また、本発明の高分子電解質を成す共重合体の数平均分子量は特に制限されないが、イオン伝導性基が導入されていない状態での標準ポリスチレン換算の数平均分子量として、通常、11,000~500,000の範囲から選択されるのが好ましく、14,000~350,000の範囲から選択されるのがより好ましく、17,000~250,000の範囲から選択されるのが更に好ましく、20,000~200,000の範囲から選択されるのが特に好ましい。 Further, the number average molecular weight of the copolymer constituting the polymer electrolyte of the present invention is not particularly limited, but is usually 11,000 to as the number average molecular weight in terms of standard polystyrene in a state where no ion conductive group is introduced. It is preferably selected from the range of 500,000, more preferably selected from the range of 14,000 to 350,000, still more preferably selected from the range of 17,000 to 250,000, 20 It is particularly preferred that it is selected from the range of 2,000 to 200,000.
 本発明の高分子電解質を成す共重合体の製造方法に関しては、特に限定されず、公知の方法を用いることができるが、イオン伝導性基を有しない共重合体を製造した後、イオン伝導性基を導入する方法が好ましい。 The method for producing the copolymer constituting the polymer electrolyte of the present invention is not particularly limited, and a known method can be used. However, after producing a copolymer having no ion conductive group, A method of introducing a group is preferred.
 本発明の高分子電解質を製造するにあたって、複数種の単量体を共重合して、重合体ブロック(A0)、重合体ブロック(B)、重合体ブロック(C)を構成成分とするイオン伝導性基を有しない共重合体を得た後、重合体ブロック(A0)にイオン伝導性基を導入することで製造する場合、かかるイオン伝導性基を有しない共重合体の共重合の方法は、重合体ブロック(A0)、重合体ブロック(B)、重合体ブロック(C)を構成する単量体単位の種類、分子量等によって、ラジカル重合法、アニオン重合法、カチオン重合法、配位重合法等から適宜選択されるが、工業的な容易さから、ラジカル重合法、アニオン重合法、カチオン重合法が好ましく選択される。特に、分子量制御、分子量分布制御、重合体構造制御、重合体ブロック(A0)と重合体ブロック(B)と重合体ブロック(C)との結合の容易さ等からいわゆるリビング重合法が好ましく、具体的にはリビングラジカル重合法、リビングアニオン重合法、リビングカチオン重合法が好ましい。 In the production of the polymer electrolyte of the present invention, an ion comprising a plurality of types of monomers as a constituent component and a polymer block (A 0 ), a polymer block (B), and a polymer block (C) as constituent components. When a copolymer having no conductive group is obtained and then produced by introducing an ion conductive group into the polymer block (A 0 ), copolymerization of the copolymer having no ion conductive group is performed. According to the method, the polymer block (A 0 ), the polymer block (B), the type of monomer unit constituting the polymer block (C), the molecular weight, etc., radical polymerization method, anionic polymerization method, cationic polymerization method, Although it is appropriately selected from coordination polymerization method and the like, radical polymerization method, anionic polymerization method and cationic polymerization method are preferably selected from the viewpoint of industrial ease. In particular, the so-called living polymerization method is preferable from the viewpoint of molecular weight control, molecular weight distribution control, polymer structure control, ease of bonding between the polymer block (A 0 ) and the polymer block (B) and the polymer block (C), etc. Specifically, a living radical polymerization method, a living anion polymerization method, and a living cation polymerization method are preferable.
 本発明の高分子電解質を成す共重合体の製造方法の例を以下に説明する。ここではイオン伝導性基を有しない共重合体を製造した後に、イオン伝導性基を導入する方法を示す。 An example of a method for producing a copolymer constituting the polymer electrolyte of the present invention will be described below. Here, a method of introducing an ion conductive group after producing a copolymer having no ion conductive group is shown.
 まず、4-tert-ブチルスチレン等の芳香族ビニル系化合物を主たる繰り返し単位とする重合体ブロック(C)、スチレン等の芳香族ビニル系化合物を主たる繰り返し単位とする重合体ブロック(A0)及び共役ジエン等からなる重合体ブロック(B)を構成成分とする、イオン伝導性を有しないブロック共重合体の製造方法について述べる。この場合、工業的容易さ、分子量、分子量分布、重合体ブロック(C)、重合体ブロック(B)及び重合体ブロック(A0)の結合の容易さ等からリビングアニオン重合法が好ましい。
 具体的には、シクロヘキサン溶媒中でアニオン重合開始剤を用いて、10~100℃の温度条件下で、4-tert-ブチルスチレン等の芳香族ビニル系化合物を重合し、その後スチレン、4-tert-ブチルスチレン、共役ジエン、4-tert-ブチルスチレン、スチレン、4-tert-ブチルスチレンを逐次重合させC-A0-C-B-C-A0―C型ブロック共重合体を得る方法、等を採用/応用することができる。
First, a polymer block (C) containing an aromatic vinyl compound such as 4-tert-butylstyrene as a main repeating unit, a polymer block (A 0 ) containing an aromatic vinyl compound such as styrene as a main repeating unit, and A method for producing a block copolymer having no ion conductivity and comprising a polymer block (B) made of conjugated diene or the like as a constituent component will be described. In this case, the living anionic polymerization method is preferred from the viewpoint of industrial ease, molecular weight, molecular weight distribution, ease of bonding of the polymer block (C), the polymer block (B) and the polymer block (A 0 ).
Specifically, an aromatic vinyl compound such as 4-tert-butylstyrene is polymerized at a temperature of 10 to 100 ° C. using an anionic polymerization initiator in a cyclohexane solvent, and then styrene, 4-tert - method of obtaining butyl styrene, conjugated dienes, 4-tert-butylstyrene, styrene, 4-tert butyl styrene were sequentially polymerized C-a 0 -C-B- C-a 0 -C type block copolymer, Etc. can be employed / applied.
 このようにして製造された共重合体は、重合体ブロック(B)を構成する炭素数4~8の共役ジエン単位の二重結合の水素添加反応に供してもよい。該水素添加反応の方法としては、アニオン重合等で得られた共重合体の溶液を耐圧容器に仕込み、Ni/Al系等のZiegler系水素添加触媒を用いて、水素雰囲気下において水素添加反応を行う方法を例示できる。 The copolymer produced in this way may be subjected to a hydrogenation reaction of double bonds of conjugated diene units having 4 to 8 carbon atoms constituting the polymer block (B). As a method for the hydrogenation reaction, a solution of a copolymer obtained by anionic polymerization or the like is charged into a pressure vessel, and a hydrogenation reaction is performed in a hydrogen atmosphere using a Ziegler-type hydrogenation catalyst such as a Ni / Al type. The method of performing can be illustrated.
 次に、該イオン伝導性基を有しない共重合体にイオン伝導性基を導入して、本発明の高分子電解質を成す共重合体を得る方法について述べる。
 まず、共重合体にスルホン酸基を導入する方法について述べる。スルホン化は、公知のスルホン化の方法で行える。このような方法としては、共重合体の有機溶媒溶液や懸濁液を調製し、スルホン化剤を添加し混合する方法や共重合体に直接ガス状のスルホン化剤を添加する方法等が例示される。
Next, a method for obtaining a copolymer constituting the polymer electrolyte of the present invention by introducing an ion conductive group into the copolymer having no ion conductive group will be described.
First, a method for introducing a sulfonic acid group into a copolymer will be described. Sulfonation can be performed by a known sulfonation method. Examples of such a method include a method of preparing an organic solvent solution or suspension of a copolymer, adding a sulfonating agent and mixing, a method of adding a gaseous sulfonating agent directly to the copolymer, and the like. Is done.
 使用するスルホン化剤としては、硫酸、硫酸と脂肪族酸無水物との混合物系、クロロスルホン酸、クロロスルホン酸と塩化トリメチルシリルとの混合物系、三酸化硫黄、三酸化硫黄とトリエチルホスフェートとの混合物系、さらに2,4,6-トリメチルベンゼンスルホン酸に代表される芳香族有機スルホン酸等が例示される。また、使用する有機溶媒としては、塩化メチレン等のハロゲン化炭化水素類、ヘキサン等の直鎖式脂肪族炭化水素類、シクロヘキサン等の環式脂肪族炭化水素類等が例示でき、必要に応じて複数の組み合わせから、適宜選択して使用してもよい。 Sulfonating agents used include sulfuric acid, a mixture of sulfuric acid and aliphatic acid anhydride, chlorosulfonic acid, a mixture of chlorosulfonic acid and trimethylsilyl chloride, sulfur trioxide, a mixture of sulfur trioxide and triethyl phosphate. Examples thereof include aromatic organic sulfonic acids represented by 2,4,6-trimethylbenzenesulfonic acid. Examples of the organic solvent to be used include halogenated hydrocarbons such as methylene chloride, linear aliphatic hydrocarbons such as hexane, cyclic aliphatic hydrocarbons such as cyclohexane, and the like. You may use it, selecting suitably from several combinations.
 得られた目的の共重合体(スルホン化物)を含む反応溶液から、スルホン化物を固形物として取り出す方法としては、水中に反応溶液を注ぎスルホン化物を沈殿させた後に溶媒を常圧留去する方法や、反応溶液中に停止剤としての水を徐々に添加し懸濁せしめ、スルホン化物を析出させた後に溶媒を常圧留去する方法などが挙げられるが、スルホン化物が微分散化し、その後の水での洗浄効率が高くなる観点から、反応溶液中に停止剤としての水を徐々に添加し、懸濁せしめ、スルホン化物を析出させる方法が好適に用いられる。 As a method for taking out the sulfonated product as a solid from the obtained reaction solution containing the desired copolymer (sulfonated product), the reaction solution is poured into water to precipitate the sulfonated product, and then the solvent is distilled off at atmospheric pressure. In addition, there is a method in which water as a terminator is gradually added and suspended in the reaction solution, and the sulfonated product is precipitated, and then the solvent is distilled off at atmospheric pressure. From the viewpoint of increasing the washing efficiency with water, a method in which water as a terminator is gradually added and suspended in the reaction solution to precipitate a sulfonated product is preferably used.
 次に、共重合体にホスホン酸基を導入する方法について述べる。ホスホン化は、公知のホスホン化の方法で行える。具体的には、共重合体の有機溶媒溶液や懸濁液を調製し、無水塩化アルミニウムの存在下、該共重合体をクロロメチルエーテル等と反応させ、芳香環にハロメチル基を導入後、これに三塩化リンと無水塩化アルミニウムを加えて反応させ、さらに加水分解反応を行ってホスホン酸基を導入する方法などが挙げられる。あるいは、該共重合体に三塩化リンと無水塩化アルミニウムを加えて反応させ、芳香環にホスフィン酸基を導入後、硝酸によりホスフィン酸基を酸化してホスホン酸基とする方法が例示できる。 Next, a method for introducing phosphonic acid groups into the copolymer will be described. Phosphonation can be performed by a known phosphonation method. Specifically, an organic solvent solution or suspension of the copolymer is prepared, the copolymer is reacted with chloromethyl ether or the like in the presence of anhydrous aluminum chloride, and a halomethyl group is introduced into the aromatic ring. For example, phosphorus trichloride and anhydrous aluminum chloride may be added and reacted, followed by hydrolysis to introduce a phosphonic acid group. Alternatively, a method may be exemplified in which phosphorus trichloride and anhydrous aluminum chloride are added to the copolymer and reacted to introduce a phosphinic acid group into the aromatic ring, and then the phosphinic acid group is oxidized with nitric acid to form a phosphonic acid group.
 スルホン化又はホスホン化の程度としては、共重合体のイオン交換容量が好ましくは0.80meq/g以上、より好ましくは1.30meq/g以上、更に好ましくは1.40meq/g以上、特に好ましくは1.80meq/g以上になるまで、しかし、好ましくは4.00meq/g以下、より好ましくは3.80meq/g以下、更に好ましくは3.60meq/g以下であるようにスルホン化またはホスホン化されることが望ましい。これにより実用的なイオン伝導性能が得られる。スルホン化またはホスホン化された共重合体のイオン交換容量、もしくは共重合体における芳香族ビニル系化合物中のスルホン化率又はホスホン化率は、酸価滴定法、赤外分光スペクトル測定、核磁気共鳴スペクトル(1H-NMRスペクトル)測定等の分析手段を用いて算出することができる。 As the degree of sulfonation or phosphonation, the ion exchange capacity of the copolymer is preferably 0.80 meq / g or more, more preferably 1.30 meq / g or more, still more preferably 1.40 meq / g or more, particularly preferably. It is sulfonated or phosphonated until it is 1.80 meq / g or more, but preferably 4.00 meq / g or less, more preferably 3.80 meq / g or less, and even more preferably 3.60 meq / g or less. It is desirable. Thereby, practical ion conduction performance is obtained. The ion exchange capacity of a sulfonated or phosphonated copolymer, or the sulfonation rate or phosphonation rate in an aromatic vinyl compound in the copolymer is determined by acid value titration method, infrared spectroscopic measurement, nuclear magnetic resonance. It can be calculated using analytical means such as spectrum ( 1 H-NMR spectrum) measurement.
 イオン伝導性基は、適当な金属イオン(例えばアルカリ金属イオン)あるいは対イオン(例えばアンモニウムイオン)で中和されている塩の形で導入されていてもよい。例えば、適当な方法でイオン交換することにより、スルホン酸基を塩型にしたブロック共重合体を得ることができる。 The ion conductive group may be introduced in the form of a salt neutralized with a suitable metal ion (for example, alkali metal ion) or counter ion (for example, ammonium ion). For example, a block copolymer having a sulfonic acid group in a salt form can be obtained by ion exchange by an appropriate method.
 本発明の高分子電解質は、本発明の効果を損なわない限り、各種添加剤、例えば、軟化剤、安定剤、光安定剤、帯電防止剤、離型剤、難燃剤、発泡剤、顔料、染料、増白剤等を各単独で又は2種以上組み合わせて含有していてもよい。 The polymer electrolyte of the present invention can be added to various additives such as a softening agent, a stabilizer, a light stabilizer, an antistatic agent, a release agent, a flame retardant, a foaming agent, a pigment, and a dye as long as the effects of the present invention are not impaired. Further, each of them may contain a brightener or the like alone or in combination of two or more.
 軟化剤としては、パラフィン系、ナフテン系もしくは芳香族系のプロセスオイル等の石油系軟化剤、パラフィン、植物油系軟化剤、可塑剤等が挙げられる。 Examples of the softener include petroleum softeners such as paraffinic, naphthenic or aromatic process oils, paraffin, vegetable oil softeners, plasticizers, and the like.
 安定剤は、フェノール系安定剤、イオウ系安定剤、リン系安定剤等を包含し、具体例としては、2,6-ジ-tert-ブチル-p-クレゾール、ペンタエリスチリル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、2,2,-チオ-ジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロジナマミド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等のフェノール系安定剤;ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)、ジステアリル3,3’-チオジプロピオネート、ジラウリル3,3’-チオジプロピオネート、ジミリスチル3,3’-チオジプロピオネート等のイオウ系安定剤;トリスノニルフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ジアステリルペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト等のリン系安定剤等が挙げられる。 Stabilizers include phenol-based stabilizers, sulfur-based stabilizers, phosphorus-based stabilizers, and the like. Specific examples include 2,6-di-tert-butyl-p-cresol, pentaerystyryl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) Benzene, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-tert-butylanilino) -1,3,5-to Azine, 2,2, -thio-diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-tert- Butyl-4-hydroxy-hydrodinamide), 3,5-di-tert-butyl-4-hydroxy-benzylphosphonate-diethyl ester, tris- (3,5-di-tert-butyl-4-hydroxybenzyl) -isocyanurate 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl} -2,4,8,10-tetraoxa Phenolic stabilizers such as spiro [5.5] undecane; pentaerythrityltetrakis (3-laurylthiopropionate), dis Sulfur stabilizers such as allyl 3,3′-thiodipropionate, dilauryl 3,3′-thiodipropionate, dimyristyl 3,3′-thiodipropionate; trisnonylphenyl phosphite, tris (2,4 Phosphorus stabilizers such as -di-tert-butylphenyl) phosphite, diasteryl pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, etc. It is done.
 本発明の高分子電解質を成す共重合体の含有量は、イオン伝導性の観点から、高分子電解質の90質量%以上であることが好ましく、93質量%以上であることがより好ましく、95質量%以上であることが更に好ましい。 From the viewpoint of ion conductivity, the content of the copolymer constituting the polymer electrolyte of the present invention is preferably 90% by mass or more, more preferably 93% by mass or more, and 95% by mass. % Or more is more preferable.
[高分子電解質膜]
 本発明の高分子電解質膜は、固体高分子型燃料電池用高分子電解質膜として必要な性能、膜強度、ハンドリング性等の観点から、その膜厚が5~200μmであることが好ましく、7~100μm程度であることがより好ましい。膜厚が5μm未満である場合には、膜の機械的強度やガスの遮断性が不充分となる傾向がある。逆に、膜厚が200μmを超えて厚い場合には、膜抵抗が大きくなり、充分なプロトン伝導性が発現しないため、電池の発電特性が低くなる傾向がある。該膜厚はより好ましくは8~70μmである。
[Polymer electrolyte membrane]
The polymer electrolyte membrane of the present invention preferably has a thickness of 5 to 200 μm from the viewpoint of performance, membrane strength, handling properties, etc. required as a polymer electrolyte membrane for a polymer electrolyte fuel cell, More preferably, it is about 100 μm. When the film thickness is less than 5 μm, the mechanical strength of the film and the gas barrier property tend to be insufficient. On the other hand, when the film thickness is greater than 200 μm, the membrane resistance increases and sufficient proton conductivity does not appear, so the power generation characteristics of the battery tend to be low. The film thickness is more preferably 8 to 70 μm.
 本発明の高分子電解質膜の作製方法については、かかる作製のための通常の方法であればいずれの方法も採用できるが、例えば、本発明の高分子電解質を成す共重合体及び上記したような添加剤を適当な溶媒と混合して、5質量%以上の該共重合体の均一溶液又は乳化液を調製した後、離型処理済みのPETフィルム等に、コーターやアプリケーター等を用いて塗布し、適切な条件で溶媒を除去することによって、所望の厚みを有する高分子電解質膜を得る方法などの公知の方法を用いて製膜することができる。 As a method for producing the polymer electrolyte membrane of the present invention, any method can be adopted as long as it is a normal method for such production. For example, the copolymer constituting the polymer electrolyte of the present invention and the above-described method The additive is mixed with an appropriate solvent to prepare a homogeneous solution or emulsion of 5% by mass or more of the copolymer, and then applied to a release-treated PET film using a coater or applicator. The film can be formed by using a known method such as a method of obtaining a polymer electrolyte membrane having a desired thickness by removing the solvent under appropriate conditions.
 本発明の高分子電解質膜を均一溶液を用いて作製する場合には、該均一溶液に使用する溶媒は、高分子電解質の構造を破壊することなく、溶液塗工が可能な程度の粘度の溶液を調製することが可能なものであれば特に制限されない。具体的には、塩化メチレン等のハロゲン化炭化水素類、トルエン、キシレン、ベンゼン等の芳香族炭化水素類、ヘキサン、ヘプタン等の直鎖式脂肪族炭化水素類、シクロヘキサン等の環式脂肪族炭化水素類、テトラヒドロフラン等のエーテル類、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、イソブチルアルコール等のアルコール類、あるいはこれらの混合溶媒等が例示できる。
 高分子電解質を成す共重合体の重合体ブロックの構成、分子量、イオン交換容量等に応じて、上記に例示した溶媒の中から、1種又は2種以上の組み合わせを適宜選択し使用することができるが、特に強靭性を有する高分子電解質膜を作製しやすい観点から、トルエンとイソブチルアルコールの混合溶媒、トルエンとイソプロピルアルコールの混合溶媒、シクロヘキサンとイソプロピルアルコールの混合溶媒、シクロヘキサンとイソブチルアルコールの混合溶媒、テトラヒドロフラン溶媒、テトラヒドロフランとメタノールの混合溶媒が好ましく、特に、トルエンとイソブチルアルコールの混合溶媒、トルエンとイソプロピルアルコールの混合溶媒が好ましい。
When the polymer electrolyte membrane of the present invention is produced using a uniform solution, the solvent used in the homogeneous solution is a solution having a viscosity that allows solution coating without destroying the structure of the polymer electrolyte. As long as it can be prepared, it is not particularly limited. Specifically, halogenated hydrocarbons such as methylene chloride, aromatic hydrocarbons such as toluene, xylene, and benzene, linear aliphatic hydrocarbons such as hexane and heptane, and cyclic aliphatic carbonization such as cyclohexane. Examples thereof include ethers such as hydrogen and tetrahydrofuran, alcohols such as methanol, ethanol, propanol, isopropyl alcohol, butanol and isobutyl alcohol, or mixed solvents thereof.
Depending on the composition of the polymer block of the copolymer constituting the polymer electrolyte, the molecular weight, the ion exchange capacity, etc., one or more combinations of the above exemplified solvents may be appropriately selected and used. However, from the viewpoint of easy production of a tough polymer electrolyte membrane, a mixed solvent of toluene and isobutyl alcohol, a mixed solvent of toluene and isopropyl alcohol, a mixed solvent of cyclohexane and isopropyl alcohol, a mixed solvent of cyclohexane and isobutyl alcohol , Tetrahydrofuran solvent, a mixed solvent of tetrahydrofuran and methanol are preferable, and a mixed solvent of toluene and isobutyl alcohol and a mixed solvent of toluene and isopropyl alcohol are particularly preferable.
 高分子電解質膜を本発明の高分子電解質の乳化液を用いて作製する場合について述べる。本発明の高分子電解質は、イオン伝導性基を有する重合体ブロック(A)が親水性、重合体ブロック(B)及び重合体ブロック(C)が疎水性であるため保護コロイド形成能があり、界面活性剤を使用することなく乳化物を得ることができる。また、水などの極性溶媒を分散媒に使用することで、極性の高いイオン伝導性基を外殻に有する粒子を容易に製造することができる。 The case where a polymer electrolyte membrane is produced using the polymer electrolyte emulsion of the present invention will be described. The polymer electrolyte of the present invention has a protective colloid forming ability because the polymer block (A) having an ion conductive group is hydrophilic, and the polymer block (B) and the polymer block (C) are hydrophobic. An emulsion can be obtained without using a surfactant. In addition, by using a polar solvent such as water as a dispersion medium, particles having an ion conductive group having a high polarity in the outer shell can be easily produced.
 上記乳化液を作成する方法としては公知の方法を用いることができるが、狭い粒径分布の乳化物が得られる点で転相乳化法を応用するのが好ましい。即ち、該高分子電解質を適当な有機溶剤に溶解した液を乳化機などで攪拌しながら水等の極性溶剤を加えていく。初期は有機溶剤系の中に水などの極性溶剤が粒子として分散している状態にあるが、極性溶剤がある量を超えると共連続状態となり、急激に粘度が上昇する。さらに極性溶剤を添加すると極性溶剤が連続相、有機溶媒が微粒子となり、粘度は急激に低下する。この方法を用いることで、粒径の揃った乳化液を得ることができる。 Although a known method can be used as a method for preparing the emulsion, the phase inversion emulsification method is preferably applied in that an emulsion having a narrow particle size distribution can be obtained. That is, a polar solvent such as water is added while stirring a solution obtained by dissolving the polymer electrolyte in an appropriate organic solvent with an emulsifier. Initially, a polar solvent such as water is dispersed in the organic solvent system as particles, but when the polar solvent exceeds a certain amount, it becomes a co-continuous state, and the viscosity rapidly increases. Further, when a polar solvent is added, the polar solvent becomes a continuous phase and the organic solvent becomes fine particles, and the viscosity rapidly decreases. By using this method, an emulsion having a uniform particle size can be obtained.
 ただし、乳化物の直径が1μmを超える大粒径である場合、粒子内で高分子電解質が相分離した構造となり、全てのイオン伝導性基が外殻に出てきていないため、イオン伝導性基を有効に使用することができない。したがって、高分子電解質を成す共重合体の分子量や該共重合体の各重合体ブロックの比率にもよるが、平均粒径が1μm以下の粒子径になるまで微粒子化するのが望ましい。多くの場合、上記プレ乳化での平均粒径は1μm以上となるため、さらなる微分散化が必要となる。
 微分散化の手法としては公知の方法を用いることができるが、不純物混入防止の観点でボールミルにおける粉砕用のボールのようなメディアを使用しない方法が好ましい。具体例としては高圧衝突法などが挙げられる。
However, if the emulsion has a large particle diameter exceeding 1 μm, the polymer electrolyte has a phase-separated structure within the particle, and not all ion-conducting groups have come out in the outer shell. Cannot be used effectively. Therefore, although it depends on the molecular weight of the copolymer constituting the polymer electrolyte and the ratio of each polymer block of the copolymer, it is desirable to make the particles finer until the average particle size becomes 1 μm or less. In many cases, since the average particle diameter in the pre-emulsification is 1 μm or more, further fine dispersion is required.
As a fine dispersion method, a known method can be used, but a method that does not use a medium such as a ball for grinding in a ball mill is preferable from the viewpoint of preventing impurities from being mixed. Specific examples include a high-pressure collision method.
 また、コーターやアプリケーター等を用いて塗布した後、適切な条件で溶媒を除去することによって、所望の厚みを有する高分子電解質膜を得る場合における溶媒除去の条件は、高分子電解質のスルホン酸基等のイオン伝導性基が脱落する温度以下で、溶媒を完全に除去できる条件であれば任意に選択することが可能である。所望の物性を発現させるため、複数の温度を任意に組み合わせたり、通風気下と真空下等を任意に組み合わせてもよい。具体的には、60~100℃程度の熱風乾燥にて4分以上かけて溶媒を除去する方法や、100~140℃程度の熱風乾燥にて2~4分にて溶媒を除去する方法や、25℃程度で1~3時間程度、予備乾燥させた後、100℃程度の熱風乾燥にて数分かけて乾燥する方法や、25℃程度で1~3時間程度、予備乾燥させた後、25~40℃程度の雰囲気下、真空乾燥にて1~12時間程度乾燥する方法などが挙げられる。
 良好な強靭性を有する高分子電解質膜を作製しやすい観点から、60~100℃程度の熱風乾燥にて4分以上かけて溶媒を除去する方法や、25℃程度で1~3時間程度予備乾燥させた後、100℃程度の熱風乾燥にて数分かけて乾燥する方法や、25℃程度で1~3時間程度予備乾燥させた後、25~40℃程度の雰囲気下、真空乾燥にて1~12時間程度乾燥する方法などが好適に用いられる。
In addition, after applying using a coater, applicator, etc., the solvent is removed under appropriate conditions to obtain a polymer electrolyte membrane having a desired thickness. Any conditions can be selected as long as the solvent can be completely removed at a temperature equal to or lower than the temperature at which the ion-conducting group is removed. In order to express desired physical properties, a plurality of temperatures may be arbitrarily combined, or a combination of ventilation and vacuum may be arbitrarily combined. Specifically, a method of removing the solvent by hot air drying at about 60 to 100 ° C. over 4 minutes, a method of removing the solvent in 2 to 4 minutes by hot air drying at about 100 to 140 ° C., After preliminarily drying at about 25 ° C. for about 1 to 3 hours and then drying with hot air drying at about 100 ° C. for several minutes, or after preliminary drying at about 25 ° C. for about 1 to 3 hours, 25 Examples include a method of drying for about 1 to 12 hours by vacuum drying under an atmosphere of about 40 ° C.
From the viewpoint of easily producing a polymer electrolyte membrane having good toughness, a method of removing the solvent by hot air drying at about 60 to 100 ° C. over 4 minutes, or preliminary drying at about 25 ° C. for about 1 to 3 hours And then drying by hot air drying at about 100 ° C. for several minutes, or by pre-drying at about 25 ° C. for about 1 to 3 hours, and then by vacuum drying in an atmosphere at about 25 to 40 ° C. A method of drying for about 12 hours is preferably used.
[膜-電極接合体]
 次に、本発明の高分子電解質膜を用いた膜-電極接合体について述べる。膜-電極接合体の製造については特に制限はなく、公知の方法を適用することができ、例えば、イオン伝導性バインダー、導電性触媒担体、分散媒を含む触媒ペーストを印刷法やスプレー法により、ガス拡散層上に塗布し乾燥することで触媒層とガス拡散層との接合体を形成させ、ついで1対の接合体をそれぞれ触媒層を内側にして、高分子電解質膜の両側にホットプレスなどにより接合させる方法や、上記触媒ペーストを印刷法やスプレー法により高分子電解質膜の両側に塗布し、乾燥して触媒層を形成させ、それぞれの触媒層に、ホットプレスなどによりガス拡散層を圧着させる方法がある。
 さらに別の製造方法として、イオン伝導性バインダーを含む溶液又は懸濁液を、高分子電解質膜の両面及び/又は1対のガス拡散電極の触媒層面に塗布し、高分子電解質膜と触媒層面とを張り合わせ、熱圧着などにより接合させる方法がある。この場合、該溶液又は懸濁液は電解質膜及び触媒層面のいずれか一方に塗付してもよいし、両方に塗付してもよい。
 さらに他の製造方法として、まず、上記触媒ペーストをポリテトラフルオロエチレン(PTFE)製などの基材フィルムに塗布し、乾燥して触媒層を形成させ、ついで、1対のこの基材フィルム上の触媒層を高分子電解質膜の両側に加熱圧着により転写し、基材フィルムを剥離することで高分子電解質膜と触媒層との接合体を得、それぞれの触媒層にホットプレスによりガス拡散層を圧着する方法がある。
 これらの方法においては、イオン伝導性基をナトリウムなどの金属との塩にした状態で行い、接合後の酸処理によってプロトン型に戻す処理を行ってもよい。
[Membrane-electrode assembly]
Next, a membrane-electrode assembly using the polymer electrolyte membrane of the present invention will be described. The production of the membrane-electrode assembly is not particularly limited, and a known method can be applied. For example, an ion conductive binder, a conductive catalyst carrier, and a catalyst paste containing a dispersion medium can be printed or sprayed. By applying and drying on the gas diffusion layer, a bonded body of the catalyst layer and the gas diffusion layer is formed, and then a pair of bonded bodies with the catalyst layer inside, hot pressing on both sides of the polymer electrolyte membrane, etc. The above catalyst paste is applied to both sides of the polymer electrolyte membrane by the printing method or spray method and dried to form a catalyst layer, and a gas diffusion layer is pressure-bonded to each catalyst layer by hot press etc. There is a way to make it.
As yet another production method, a solution or suspension containing an ion conductive binder is applied to both surfaces of the polymer electrolyte membrane and / or the catalyst layer surface of a pair of gas diffusion electrodes, and the polymer electrolyte membrane and the catalyst layer surface There is a method of bonding them together by thermocompression bonding. In this case, the solution or suspension may be applied to either the electrolyte membrane or the catalyst layer surface, or may be applied to both.
As another manufacturing method, first, the catalyst paste is applied to a base film made of polytetrafluoroethylene (PTFE) and dried to form a catalyst layer, and then a pair of base films on the base film is formed. The catalyst layer is transferred to both sides of the polymer electrolyte membrane by thermocompression bonding, and the base film is peeled off to obtain a joined body of the polymer electrolyte membrane and the catalyst layer. A gas diffusion layer is formed on each catalyst layer by hot pressing. There is a method of crimping.
In these methods, the ion conductive group may be converted into a salt with a metal such as sodium, and a treatment for returning to a proton type by an acid treatment after bonding may be performed.
 上記膜-電極接合体を構成するイオン伝導性バインダーとしては、例えば、「Nafion」(登録商標、デュポン社製)や「Gore-select」(登録商標、ゴア社製)などの既存のパーフルオロスルホン酸系ポリマーからなるイオン伝導性バインダー、スルホン化ポリエーテルスルホンやスルホン化ポリエーテルケトンからなるイオン伝導性バインダー、リン酸や硫酸を含浸したポリベンズイミダゾールからなるイオン伝導性バインダー等を用いることができる。また、本発明の高分子電解質膜を構成する高分子電解質をイオン伝導性バインダーとして用いてもよい。
 なお、高分子電解質とガス拡散電極との密着性を一層高めるためには、ガス拡散電極と密着する面に位置する高分子電解質膜と同様の構造(重合体の繰り返し単位、共重合比率、分子量、イオン伝導性基、イオン交換容量などが共通、または類似している、特に重合体の繰り返し単位、イオン伝導性基が共通、または類似している)からなるイオン伝導性バインダーを用いることが好ましい。
Examples of the ion-conductive binder constituting the membrane-electrode assembly include existing perfluorosulfones such as “Nafion” (registered trademark, manufactured by DuPont) and “Gore-select” (registered trademark, manufactured by Gore). An ion conductive binder made of an acid polymer, an ion conductive binder made of sulfonated polyethersulfone or sulfonated polyetherketone, an ion conductive binder made of polybenzimidazole impregnated with phosphoric acid or sulfuric acid can be used. . Moreover, you may use the polymer electrolyte which comprises the polymer electrolyte membrane of this invention as an ion conductive binder.
In order to further improve the adhesion between the polymer electrolyte and the gas diffusion electrode, the same structure as the polymer electrolyte membrane located on the surface in close contact with the gas diffusion electrode (polymer repeating unit, copolymerization ratio, molecular weight) It is preferable to use an ion conductive binder having a common or similar ion conductive group, ion exchange capacity, etc., in particular, a polymer repeating unit or a common or similar ion conductive group). .
 上記膜-電極接合体の触媒層の構成材料について、導電性触媒担体としては特に制限はなく、例えば炭素材料が挙げられる。炭素材料としては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック等のカーボンブラック、活性炭、黒鉛などが挙げられ、これら単独であるいは2種以上混合して使用される。触媒金属としては、水素やメタノールなどの燃料の酸化反応及び酸素の還元反応を促進する金属であればいずれのものでもよく、例えば、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、パラジウム等、あるいはそれらの合金、例えば白金-ルテニウム合金が挙げられる。中でも白金や白金合金が多くの場合用いられる。触媒金属の粒径は、通常は、10~300オングストロームである。これら触媒金属はカーボン等の導電性触媒担体に担持させた方が使用量は少なくコスト的に有利である。また、触媒層には、必要に応じて撥水剤が含まれていてもよい。撥水剤としては例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレンブタジエン共重合体、ポリエーテルエーテルケトン等の各種熱可塑性樹脂が挙げられる。 Regarding the constituent material of the catalyst layer of the membrane-electrode assembly, the conductive catalyst carrier is not particularly limited, and examples thereof include a carbon material. Examples of the carbon material include carbon black such as furnace black, channel black, and acetylene black, activated carbon, graphite, and the like. These may be used alone or in combination of two or more. The catalyst metal may be any metal that promotes the oxidation reaction of fuel such as hydrogen or methanol and the reduction reaction of oxygen, such as platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron, Cobalt, nickel, chromium, tungsten, manganese, palladium, etc., or alloys thereof, for example, platinum-ruthenium alloy can be mentioned. Of these, platinum and platinum alloys are often used. The particle size of the catalytic metal is usually 10 to 300 angstroms. The amount of the catalyst metal supported on a conductive catalyst carrier such as carbon is small and advantageous in terms of cost. The catalyst layer may contain a water repellent as necessary. Examples of the water repellent include various thermoplastic resins such as polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene copolymer, and polyether ether ketone.
 上記膜-電極接合体のガス拡散層は、導電性及びガス透過性を備えた材料から構成され、かかる材料として例えばカーボンペーパーやカーボンクロス等の炭素繊維よりなる多孔性材料が挙げられる。また、かかる材料には、撥水性を向上させるために、撥水化処理を施してもよい。 The gas diffusion layer of the membrane-electrode assembly is made of a material having conductivity and gas permeability, and examples of such a material include porous materials made of carbon fibers such as carbon paper and carbon cloth. Moreover, in order to improve water repellency, this material may be subjected to water repellency treatment.
[固体高分子型燃料電池]
 上記のような方法で得られた膜-電極接合体を、極室分離と電極へのガス供給流路の役割を兼ねた導電性のセパレータ材の間に挿入することにより、固体高分子型燃料電池が得られる。本発明の膜-電極接合体は、燃料ガスとして水素を使用した純水素型、メタノールを改質して得られる水素を使用したメタノール改質型、天然ガスを改質して得られる水素を使用した天然ガス改質型、ガソリンを改質して得られる水素を使用したガソリン改質型、メタノールを直接使用する直接メタノール型等の固体高分子型燃料電池用膜-電極接合体として使用可能である。
[Polymer fuel cell]
By inserting the membrane-electrode assembly obtained by the method as described above between the conductive separator material that also serves as a gas supply flow path to the electrode separation and the electrode, a solid polymer fuel A battery is obtained. The membrane-electrode assembly of the present invention uses a pure hydrogen type using hydrogen as a fuel gas, a methanol reforming type using hydrogen obtained by reforming methanol, and hydrogen obtained by reforming natural gas. Natural gas reforming type, gasoline reforming type using hydrogen obtained by reforming gasoline, direct methanol type using methanol directly, etc. is there.
 以下、参考例、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be more specifically described with reference to reference examples, examples and comparative examples, but the present invention is not limited to these examples.
(ブロック共重合体のイオン交換容量の測定方法)
 試料を密閉できるガラス容器中にブロック共重合体を秤量(秤量値a(g))し、過剰量の塩化ナトリウム飽和水溶液((300~500)×a(ml))を添加して12時間攪拌した。フェノールフタレインを指示薬として、水中に発生した塩化水素を0.01規定のNaOH標準水溶液(力価f)にて滴定(滴定量b(ml))した。
 イオン交換容量は次式により求めた。
イオン交換容量(meq/g)=(0.01×b×f)/a
(Measurement method of ion exchange capacity of block copolymer)
Weigh the block copolymer (weighing value a (g)) in a glass container that can seal the sample, add an excess amount of a saturated aqueous sodium chloride solution ((300 to 500) × a (ml)), and stir for 12 hours. did. Using phenolphthalein as an indicator, hydrogen chloride generated in water was titrated (a titration b (ml)) with a 0.01 N NaOH standard aqueous solution (titer f).
The ion exchange capacity was determined by the following formula.
Ion exchange capacity (meq / g) = (0.01 × b × f) / a
(ブロック共重合体の数平均分子量の測定方法)
 数平均分子量はゲルパーミエーションクロマトグラフィー(GPC)法により下記の条件で測定した。
  装置:東ソー(株)製、商品名:HLC-8220GPC
  溶離液:THF
  カラム:東ソー(株)製、商品名:TSK-GEL(TSKgel G3000HxL(内径7.6mm、有効長30cm)を1本、TSKgel Super Multipore HZ-M(内径4.6mm、有効長15cm)を2本の計3本を直列で接続)
  カラム温度:40℃
  検出器:RI
  送液量:0.35ml/分
  数平均分子量計算:標準ポリスチレン換算
(Method for measuring the number average molecular weight of the block copolymer)
The number average molecular weight was measured by the gel permeation chromatography (GPC) method under the following conditions.
Device: manufactured by Tosoh Corporation, trade name: HLC-8220GPC
Eluent: THF
Column: manufactured by Tosoh Corporation, trade name: 1 TSK-GEL (TSKgel G3000HxL (inner diameter 7.6 mm, effective length 30 cm)), TSKgel Super Multipore HZ-M (inner diameter 4.6 mm, effective length 15 cm) 3 in total)
Column temperature: 40 ° C
Detector: RI
Liquid feed amount: 0.35 ml / min Number average molecular weight calculation: Standard polystyrene conversion
(貯蔵弾性率及び軟化温度)
 高分子電解質膜を広域動的粘弾性測定装置(レオロジ社製「DVE-V4FTレオスペクトラー」)を使用して、引張りモード(周波数 11Hz)で、-80℃から250℃まで、昇温速度を毎分3℃として、貯蔵弾性率E’、損失弾性率E’’及び損失正接tanδを測定し、損失正接のピーク温度Tα(℃)を軟化温度とした。なお、重合体ブロック(C)と重合体ブロック(A)の損失正接のピーク温度が近いためピーク分割処理にてそれぞれのピークに分割し、上記ピーク温度Tα(℃)を特定した。
(Storage modulus and softening temperature)
Using a wide-range dynamic viscoelasticity measuring device (“DVE-V4FT Rheospectr” manufactured by Rheology Co., Ltd.), the polymer electrolyte membrane is heated in a tensile mode (frequency 11 Hz) from −80 ° C. to 250 ° C. The storage elastic modulus E ′, loss elastic modulus E ″ and loss tangent tan δ were measured at 3 ° C. per minute, and the peak temperature Tα (° C.) of the loss tangent was defined as the softening temperature. In addition, since the peak temperature of the loss tangent of a polymer block (C) and a polymer block (A) is near, it divided | segmented into each peak by the peak division | segmentation process, and specified the said peak temperature T (alpha) (degreeC).
[参考例1:ポリスチレン、水添ポリイソプレン及びポリ(4-tert-ブチルスチレン)からなるブロック共重合体の製造]
 WO2007/94185号公報に記載の方法と同様の方法で、1000mLオートクレーブに、脱水シクロヘキサン450ml及びsec-ブチルリチウム(1.05M-シクロヘキサン溶液)1.50mlを仕込んだ後、4-tert-ブチルスチレン5.20ml、スチレン14.3ml、4-tert-ブチルスチレン5.20ml、イソプレン40.7ml、4-tert-ブチルスチレン5.20ml、スチレン14.3ml、及び4-tert-ブチルスチレン5.20mlを逐次添加し、60℃で重合させ、ポリ(4-tert-ブチルスチレン)―b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)―b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下、TSTITSTと略記する)を合成した。
 得られたTSTITSTの数平均分子量は73,230であり、1H-NMR(400MHz)測定から求めたポリイソプレン部位の1,4-結合量は94.0%、スチレン単位の含有量は36.0質量%、4-tert-ブチルスチレン単位の含有量は24.0質量%であった。
[Reference Example 1: Production of block copolymer comprising polystyrene, hydrogenated polyisoprene and poly (4-tert-butylstyrene)]
In the same manner as described in WO2007 / 94185, 450 ml of dehydrated cyclohexane and 1.50 ml of sec-butyllithium (1.05 M-cyclohexane solution) were charged into a 1000 ml autoclave, and then 4-tert-butylstyrene 5 .20 ml, 14.3 ml of styrene, 5.20 ml of 4-tert-butylstyrene, 40.7 ml of isoprene, 5.20 ml of 4-tert-butylstyrene, 14.3 ml of styrene, and 5.20 ml of 4-tert-butylstyrene Added, polymerized at 60 ° C., poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-polyisoprene-b-poly (4-tert-butylstyrene) ) -B-polystyrene-b-poly (4-t rt- butylstyrene) (hereinafter, abbreviated as TSTITST) was synthesized.
The number average molecular weight of TSTITST obtained was 73,230, the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%, and the content of styrene units was 36. The content of 0% by mass and 4-tert-butylstyrene unit was 24.0% by mass.
 合成したTSTITSTのシクロヘキサン溶液を調製し、十分に窒素置換を行った耐圧容器に仕込んだ後、Ni/Al系のZiegler系水素添加触媒を用いて、0.5~1.0MPaの水素圧下において70℃で18時間水素添加反応を行い、ポリ(4-tert-ブチルスチレン)―b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-水添ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)―b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下、TSTETSTと略記する)を得た。
 得られたTSTETSTの残存二重結合量を1H-NMR(400MHz)スペクトル測定によって算出を試みたが、検出限界以下であった。
A cyclohexane solution of synthesized TSTISTST was prepared and charged into a pressure-resistant vessel that had been sufficiently purged with nitrogen, and then a Ni / Al Ziegler-based hydrogenation catalyst was used under a hydrogen pressure of 0.5 to 1.0 MPa under a hydrogen pressure of 0.5 to 1.0 MPa. A hydrogenation reaction was carried out at a temperature of 18 ° C. for 18 hours, and poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene-b-poly (4-tert -Butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as TSSETST).
An attempt was made to calculate the amount of residual double bonds of the obtained TSETST by 1 H-NMR (400 MHz) spectrum measurement, which was below the detection limit.
[製造例1:スルホン化TSTETSTの合成]
 WO2007/94185号公報に記載の方法と同様の方法で、塩化メチレン122ml中、0℃にて無水酢酸61.2mlと硫酸27.4mlとを反応させてスルホン化試薬を調製した。一方、参考例1で得られたブロック共重合体TSTETST30gを、3L攪拌機付きのガラス製反応容器に入れ、真空-窒素導入を3回繰り返した後、窒素を導入した状態で、塩化メチレン400mlを加え、常温にて4時間攪拌して溶解させた。溶解後、スルホン化試薬176mlを、5分かけて滴下した。常温にて48時間攪拌後、蒸留水22mlを加えて反応を停止した。その後、攪拌下、蒸留水500mlを徐々に滴下し、重合体を凝固析出させた。塩化メチレンを常圧留去にて除去した後、ろ過した。ろ過により得られた固形分をビーカーに移し、蒸留水を1.0L添加して、攪拌下で洗浄を行った後、濾過により固形分の回収を行った。この洗浄及びろ過の操作を洗浄水のpHに変化がなくなるまで繰り返し、最後に回収した重合体を真空乾燥して、本発明の高分子電解質を成す共重合体であるスルホン化TSTETSTを得た。
 得られたスルホン化TSTETSTのスチレン単位のベンゼン環のスルホン化率は1H-NMR(400MHz)分析から100mol%、滴定の結果イオン交換容量は2.71meq/gであった。
[Production Example 1: Synthesis of sulfonated TSSETST]
A sulfonating reagent was prepared by reacting 61.2 ml of acetic anhydride and 27.4 ml of sulfuric acid at 0 ° C. in 122 ml of methylene chloride by the same method as described in WO2007 / 94185. On the other hand, 30 g of the block copolymer TSETST obtained in Reference Example 1 was put in a glass reaction vessel equipped with a 3 L stirrer, vacuum-nitrogen introduction was repeated three times, and 400 ml of methylene chloride was added while nitrogen was introduced. The mixture was dissolved by stirring at room temperature for 4 hours. After dissolution, 176 ml of sulfonation reagent was added dropwise over 5 minutes. After stirring at room temperature for 48 hours, 22 ml of distilled water was added to stop the reaction. Thereafter, 500 ml of distilled water was gradually added dropwise with stirring to solidify and precipitate the polymer. The methylene chloride was removed by distillation at atmospheric pressure, followed by filtration. The solid content obtained by filtration was transferred to a beaker, 1.0 L of distilled water was added, and after washing with stirring, the solid content was collected by filtration. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the finally recovered polymer was vacuum-dried to obtain a sulfonated TSSETST, which is a copolymer constituting the polymer electrolyte of the present invention.
The sulfonation rate of the benzene ring of the styrene unit in the obtained sulfonated TSSETST was 100 mol% from 1 H-NMR (400 MHz) analysis, and the result of titration was an ion exchange capacity of 2.71 meq / g.
[参考例2:ポリスチレン、水添ポリイソプレン及びポリ(4-tert-ブチルスチレン)からなるブロック共重合体の製造]
 参考例1と同様の方法で、1400mLオートクレーブに、脱水シクロヘキサン675ml及びsec-ブチルリチウム(1.05M-シクロヘキサン溶液)2.30mlを仕込んだ後、4-tert-ブチルスチレン13.0ml、スチレン21.9ml、4-tert-ブチルスチレン13.0ml、イソプレン37.1ml、4-tert-ブチルスチレン13.0ml、スチレン21.9ml、及び4-tert-ブチルスチレン13.0mlを逐次添加し、60℃で重合させ、ポリ(4-tert-ブチルスチレン)―b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリイソプレン-bポリ(4-tert-ブチルスチレン)―b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下、TSTITSTと略記する)を合成した。
 得られたTSTITSTの数平均分子量は61,900であり、1H-NMR(400MHz)測定から求めたポリイソプレン部位の1,4-結合量は94.0%、スチレン単位の含有量は34.9質量%、4-tert-ブチルスチレン単位の含有量は40.4質量%であった。
[Reference Example 2: Production of block copolymer comprising polystyrene, hydrogenated polyisoprene and poly (4-tert-butylstyrene)]
In the same manner as in Reference Example 1, 675 ml of dehydrated cyclohexane and 2.30 ml of sec-butyllithium (1.05 M-cyclohexane solution) were charged into a 1400 mL autoclave, and then 13.0 ml of 4-tert-butylstyrene and 21.styrene of styrene. 9 ml, 4-tert-butylstyrene 13.0 ml, isoprene 37.1 ml, 4-tert-butylstyrene 13.0 ml, styrene 21.9 ml, and 4-tert-butylstyrene 13.0 ml were sequentially added at 60 ° C. Polymerized poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-polyisoprene-b poly (4-tert-butylstyrene) -b-polystyrene-b -Poly (4-tert-butylstyrene) (hereinafter TS Abbreviated as ITST) was synthesized.
The number average molecular weight of TSTITST obtained was 61,900, the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%, and the styrene unit content was 34. The content of 9% by mass and 4-tert-butylstyrene unit was 40.4% by mass.
 合成したTSTITSTのシクロヘキサン溶液を調製し、十分に窒素置換を行った耐圧容器に仕込んだ後、Ni/Al系のZiegler系水素添加触媒を用いて、0.5~1.0MPaの水素圧下において70℃で18時間水素添加反応を行い、ポリ(4-tert-ブチルスチレン)―b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-水添ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)―b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下、TSTETSTと略記する)を得た。
 得られたTSTETSTの残存二重結合量を1H-NMR(400MHz)スペクトル測定によって算出を試みたが、検出限界以下であった。
A cyclohexane solution of synthesized TSTISTST was prepared and charged into a pressure-resistant vessel that had been sufficiently purged with nitrogen, and then a Ni / Al Ziegler-based hydrogenation catalyst was used under a hydrogen pressure of 0.5 to 1.0 MPa under a hydrogen pressure of 0.5 to 1.0 MPa. A hydrogenation reaction was carried out at a temperature of 18 ° C. for 18 hours, and poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene-b-poly (4-tert -Butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as TSSETST).
An attempt was made to calculate the amount of residual double bonds of the obtained TSETST by 1 H-NMR (400 MHz) spectrum measurement, which was below the detection limit.
[製造例2:スルホン化TSTETSTの合成]
 製造例1と同様の方法で、塩化メチレン123ml中、0℃にて無水酢酸61.5mlと硫酸27.5mlとを反応させてスルホン化試薬を調製した。一方、参考例2で得られたブロック共重合体TSTETST30gを、3L攪拌機付きのガラス製反応容器に入れ、真空-窒素導入を3回繰り返した後、窒素を導入した状態で、塩化メチレン400mlを加え、常温にて4時間攪拌して溶解させた。溶解後、スルホン化試薬177mlを、5分かけて滴下した。常温にて48時間攪拌後、蒸留水22mlを加えて反応を停止した。その後、攪拌下、蒸留水500mlを徐々に滴下し、重合体を凝固析出させた。塩化メチレンを常圧留去にて除去した後、ろ過した。ろ過により得られた固形分をビーカーに移し、蒸留水を1.0L添加して、攪拌下で洗浄を行った後、ろ過により固形分の回収を行った。この洗浄及びろ過の操作を洗浄水のpHに変化がなくなるまで繰り返し、最後に回収した重合体を真空乾燥して本発明の高分子電解質を成す共重合体であるスルホン化TSTETSTを得た。
 得られたスルホン化TSTETSTのスチレン単位のベンゼン環のスルホン化率は1H-NMR(400MHz)分析から100mol%、滴定の結果イオン交換容量は2.61meq/gであった。
[Production Example 2: Synthesis of sulfonated TSSETST]
In the same manner as in Production Example 1, a sulfonating reagent was prepared by reacting 61.5 ml of acetic anhydride and 27.5 ml of sulfuric acid at 123C in 123 ml of methylene chloride. On the other hand, 30 g of the block copolymer TSETST obtained in Reference Example 2 was put in a glass reaction vessel equipped with a 3 L stirrer, vacuum-nitrogen introduction was repeated three times, and 400 ml of methylene chloride was added with nitrogen introduced. The mixture was dissolved by stirring at room temperature for 4 hours. After dissolution, 177 ml of the sulfonation reagent was added dropwise over 5 minutes. After stirring at room temperature for 48 hours, 22 ml of distilled water was added to stop the reaction. Thereafter, 500 ml of distilled water was gradually added dropwise with stirring to solidify and precipitate the polymer. The methylene chloride was removed by distillation at atmospheric pressure, followed by filtration. The solid content obtained by filtration was transferred to a beaker, 1.0 L of distilled water was added, and after washing with stirring, the solid content was collected by filtration. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the finally recovered polymer was vacuum dried to obtain a sulfonated TSSETST, which is a copolymer constituting the polymer electrolyte of the present invention.
The sulfonation rate of the benzene ring of the styrene unit in the obtained sulfonated TSSETST was 100 mol% from 1 H-NMR (400 MHz) analysis, and the ion exchange capacity was 2.61 meq / g as a result of titration.
[参考例3:ポリスチレン、水添ポリイソプレン及びポリ(4-tert-ブチルスチレン)からなるブロック共重合体の製造]
 参考例1と同様の方法で、1400mLオートクレーブに、脱水シクロヘキサン519ml及びsec-ブチルリチウム(1.0M-シクロヘキサン溶液)2.36mlを仕込んだ後、4-tert-ブチルスチレン21.6ml、スチレン30.1ml、イソプレン86.9ml、スチレン30.1ml及び4-tert-ブチルスチレン21.6mlを逐次添加し、60℃で重合させ、ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリイソプレン-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下、TSISTと略記する)を合成した。
 得られたTSISTの数平均分子量は79,100であり、1H-NMR(400MHz)測定から求めたポリイソプレン部位の1,4-結合量は94.0%、スチレン単位の含有量は35.0質量%、4-tert-ブチルスチレン単位の含有量は24.0質量%であった。
[Reference Example 3: Production of block copolymer comprising polystyrene, hydrogenated polyisoprene and poly (4-tert-butylstyrene)]
In the same manner as in Reference Example 1, 519 ml of dehydrated cyclohexane and 2.36 ml of sec-butyllithium (1.0 M-cyclohexane solution) were charged into a 1400 mL autoclave, and then 21.6 ml of 4-tert-butylstyrene and 30.styrene of 30. 1 ml, 86.9 ml of isoprene, 30.1 ml of styrene and 21.6 ml of 4-tert-butylstyrene were added successively and polymerized at 60 ° C. to obtain poly (4-tert-butylstyrene) -b-polystyrene-b-polyisoprene. -B-Polystyrene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as TSIST) was synthesized.
The number average molecular weight of the obtained TSIST was 79,100, the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%, and the content of styrene units was 35. The content of 0% by mass and 4-tert-butylstyrene unit was 24.0% by mass.
 合成したTSISTのシクロヘキサン溶液を調製し、十分に窒素置換を行った耐圧容器に仕込んだ後、Ni/Al系のZiegler系水素添加触媒を用いて、0.5~1.0MPaの水素圧下において、70℃で18時間水素添加反応を行い、ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-水添ポリイソプレン-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下、TSESTと略記する)を得た。
 得られたTSESTの残存二重結合量を1H-NMR(400MHz)スペクトル測定によって算出を試みたが、検出限界以下であった。
A cyclohexane solution of the synthesized TSIST was prepared and charged in a pressure-resistant vessel that had been sufficiently purged with nitrogen. Then, using a Ni / Al Ziegler hydrogenation catalyst under a hydrogen pressure of 0.5 to 1.0 MPa, A hydrogenation reaction was carried out at 70 ° C. for 18 hours, and poly (4-tert-butylstyrene) -b-polystyrene-b-hydrogenated polyisoprene-b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter referred to as “poly (4-tert-butylstyrene)”) (Abbreviated as TSEST).
An attempt was made to calculate the amount of residual double bonds of the obtained TSEST by 1 H-NMR (400 MHz) spectrum measurement, but it was below the detection limit.
[製造例3:スルホン化TSESTの合成]
 製造例1と同様の方法で、塩化メチレン119ml中、0℃にて無水酢酸59.5mlと硫酸26.6mlとを反応させてスルホン化試薬を調製した。一方、参考例3で得られたブロック共重合体TSEST30gを、3L攪拌機付きのガラス製反応容器に入れ、真空-窒素導入を3回繰り返した後、窒素を導入した状態で、塩化メチレン400mlを加え、常温にて4時間攪拌して溶解させた。溶解後、スルホン化試薬171mlを、5分かけて滴下した。常温にて48時間攪拌後、蒸留水22mlを加えて反応を停止した。その後、攪拌下、蒸留水500mlを徐々に滴下し、重合体を凝固析出させた。塩化メチレンを常圧留去にて除去した後、ろ過した。ろ過により得られた固形分をビーカーに移し、蒸留水を1.0L添加して、攪拌下で洗浄を行った後、ろ過により固形分の回収を行った。この洗浄及びろ過の操作を洗浄水のpHに変化がなくなるまで繰り返し、最後に回収した重合体を真空乾燥して、本発明に属さない高分子電解質を成す共重合体であるスルホン化TSESTを得た。
 得られたスルホン化TSESTのスチレン単位のベンゼン環のスルホン化率は1H-NMR(400MHz)分析から100mol%、滴定の結果イオン交換容量は2.65meq/gであった。
[Production Example 3: Synthesis of sulfonated TSEST]
In the same manner as in Production Example 1, 59.5 ml of acetic anhydride and 26.6 ml of sulfuric acid were reacted in 119 ml of methylene chloride at 0 ° C. to prepare a sulfonation reagent. On the other hand, 30 g of the block copolymer TSEST obtained in Reference Example 3 was put in a glass reaction vessel equipped with a 3 L stirrer, vacuum-nitrogen introduction was repeated three times, and 400 ml of methylene chloride was added with nitrogen introduced. The mixture was dissolved by stirring at room temperature for 4 hours. After dissolution, 171 ml of the sulfonation reagent was added dropwise over 5 minutes. After stirring at room temperature for 48 hours, 22 ml of distilled water was added to stop the reaction. Thereafter, 500 ml of distilled water was gradually added dropwise with stirring to solidify and precipitate the polymer. The methylene chloride was removed by distillation at atmospheric pressure, followed by filtration. The solid content obtained by filtration was transferred to a beaker, 1.0 L of distilled water was added, and after washing with stirring, the solid content was collected by filtration. This washing and filtration operation is repeated until there is no change in the pH of the washing water, and the finally recovered polymer is vacuum-dried to obtain a sulfonated TSEST that is a copolymer that does not belong to the present invention. It was.
The sulfonation rate of the benzene ring of the styrene unit in the obtained sulfonated TSEST was 100 mol% from 1 H-NMR (400 MHz) analysis, and the ion exchange capacity was 2.65 meq / g as a result of titration.
[参考例4:ポリスチレン、水添ポリイソプレン及びポリ(4-tert-ブチルスチレン)からなるブロック共重合体の製造]
 参考例3と同様の方法で、1400mLオートクレーブに、脱水シクロヘキサン600ml及びsec-ブチルリチウム(1.0M-シクロヘキサン溶液)5.57mlを仕込んだ後、4-tert-ブチルスチレン35.6ml、スチレン29.1ml、イソプレン54.3ml、スチレン29.1ml及び4-tert-ブチルスチレン35.6mlを逐次添加し、60℃で重合させ、ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリイソプレン-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下、TSISTと略記する)を合成した。
 得られたTSISTの数平均分子量は26,000であり、1H-NMR(400MHz)測定から求めたポリイソプレン部位の1,4-結合量は94.0%、スチレン単位の含有量は33.4質量%、4-tert-ブチルスチレン単位の含有量は42.2質量%であった。
[Reference Example 4: Production of block copolymer comprising polystyrene, hydrogenated polyisoprene and poly (4-tert-butylstyrene)]
In the same manner as in Reference Example 3, a 1400 mL autoclave was charged with 600 ml of dehydrated cyclohexane and 5.57 ml of sec-butyllithium (1.0 M-cyclohexane solution), and then 35.6 ml of 4-tert-butylstyrene and 29.29 of styrene. 1 ml, 54.3 ml of isoprene, 29.1 ml of styrene and 35.6 ml of 4-tert-butylstyrene are added successively, polymerized at 60 ° C., and poly (4-tert-butylstyrene) -b-polystyrene-b-polyisoprene. -B-Polystyrene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as TSIST) was synthesized.
The number average molecular weight of the obtained TSIST was 26,000, the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%, and the styrene unit content was 33. The content of 4% by mass and 4-tert-butylstyrene unit was 42.2% by mass.
 合成したTSISTのシクロヘキサン溶液を調製し、十分に窒素置換を行った耐圧容器に仕込んだ後、Ni/Al系のZiegler系水素添加触媒を用いて、0.5~1.0MPaの水素圧下において、70℃で18時間水素添加反応を行い、ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-水添ポリイソプレン-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下、TSESTと略記する)を得た。
 得られたTSESTの残存二重結合量を1H-NMR(400MHz)スペクトル測定によって算出を試みたが、検出限界以下であった。
A cyclohexane solution of the synthesized TSIST was prepared and charged in a pressure-resistant vessel that had been sufficiently purged with nitrogen. Then, using a Ni / Al Ziegler hydrogenation catalyst under a hydrogen pressure of 0.5 to 1.0 MPa, A hydrogenation reaction was carried out at 70 ° C. for 18 hours, and poly (4-tert-butylstyrene) -b-polystyrene-b-hydrogenated polyisoprene-b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter referred to as “poly (4-tert-butylstyrene)”) (Abbreviated as TSEST).
An attempt was made to calculate the amount of residual double bonds of the obtained TSEST by 1 H-NMR (400 MHz) spectrum measurement, but it was below the detection limit.
[製造例4:スルホン化TSESTの合成]
 製造例1と同様の方法で、塩化メチレン142ml中、0℃にて無水酢酸70.9mlと硫酸31.7mlとを反応させてスルホン化試薬を調製した。一方、参考例4で得られたブロック共重合体TSEST30gを、3L攪拌機付きのガラス製反応容器に入れ、真空-窒素導入を3回繰り返した後、窒素を導入した状態で、塩化メチレン400mlを加え、常温にて4時間攪拌して溶解させた。溶解後、スルホン化試薬204mlを、5分かけて滴下した。常温にて48時間攪拌後、蒸留水22mlを加えて反応を停止した。その後、攪拌下、蒸留水500mlを徐々に滴下し、重合体を凝固析出させた。塩化メチレンを常圧留去にて除去した後、ろ過した。ろ過により得られた固形分をビーカーに移し、蒸留水を1.0L添加して、攪拌下で洗浄を行った後、ろ過により固形分の回収を行った。この洗浄及びろ過の操作を洗浄水のpHに変化がなくなるまで繰り返し、最後に回収した重合体を真空乾燥して本発明に属さない高分子電解質を成す共重合体であるスルホン化TSESTを得た。
 得られたスルホン化TSESTのスチレン単位のベンゼン環のスルホン化率は1H-NMR(400MHz)分析から100mol%、滴定の結果イオン交換容量は2.56meq/gであった。
[Production Example 4: Synthesis of sulfonated TSEST]
In the same manner as in Production Example 1, 70.9 ml of acetic anhydride and 31.7 ml of sulfuric acid were reacted in 142 ml of methylene chloride at 0 ° C. to prepare a sulfonation reagent. On the other hand, 30 g of the block copolymer TSEST obtained in Reference Example 4 was put into a glass reaction vessel equipped with a 3 L stirrer, vacuum-nitrogen introduction was repeated three times, and 400 ml of methylene chloride was added while nitrogen was introduced. The mixture was dissolved by stirring at room temperature for 4 hours. After dissolution, 204 ml of sulfonation reagent was added dropwise over 5 minutes. After stirring at room temperature for 48 hours, 22 ml of distilled water was added to stop the reaction. Thereafter, 500 ml of distilled water was gradually added dropwise with stirring to solidify and precipitate the polymer. The methylene chloride was removed by distillation at atmospheric pressure, followed by filtration. The solid content obtained by filtration was transferred to a beaker, 1.0 L of distilled water was added, and after washing with stirring, the solid content was collected by filtration. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the finally recovered polymer was vacuum-dried to obtain a sulfonated TSEST, which is a copolymer that does not belong to the present invention. .
The sulfonation rate of the benzene ring of the styrene unit in the obtained sulfonated TSEST was 100 mol% from 1 H-NMR (400 MHz) analysis, and the ion exchange capacity was 2.56 meq / g as a result of titration.
[参考例5:ポリスチレン、水添ポリイソプレン及びポリ(4-tert-ブチルスチレン)からなるブロック共重合体の製造]
 参考例1と同様の方法で、1400mLオートクレーブに、脱水シクロヘキサン593ml及びsec-ブチルリチウム(1.00M-シクロヘキサン溶液)2.92mlを仕込んだ後、4-tert-ブチルスチレン11.9ml、スチレン32.6ml、4-tert-ブチルスチレン11.90ml、イソプレン59.0ml、4-tert-ブチルスチレン11.9ml、スチレン32.6ml、及び4-tert-ブチルスチレン11.9mlを逐次添加し、60℃で重合させ、ポリ(4-tert-ブチルスチレン)―b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下、TSTITSTと略記する)を合成した。
 得られたTSTITSTの数平均分子量は64,100であり、1H-NMR(400MHz)測定から求めたポリイソプレン部位の1,4-結合量は94.0%、スチレン単位の含有量は41.0質量%、4-tert-ブチルスチレン単位の含有量は29.0質量%であった。
[Reference Example 5: Production of block copolymer composed of polystyrene, hydrogenated polyisoprene and poly (4-tert-butylstyrene)]
In the same manner as in Reference Example 1, 593 ml of dehydrated cyclohexane and 2.92 ml of sec-butyllithium (1.00 M-cyclohexane solution) were charged in a 1400 mL autoclave, then 11.9 ml of 4-tert-butylstyrene and 32.styrene. 6 ml, 4-tert-butylstyrene 11.90 ml, isoprene 59.0 ml, 4-tert-butylstyrene 11.9 ml, styrene 32.6 ml, and 4-tert-butylstyrene 11.9 ml were sequentially added at 60 ° C. Polymerized poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-polyisoprene-b-poly (4-tert-butylstyrene) -b-polystyrene- b-poly (4-tert-butylstyrene) Abbreviated as STITST) was synthesized.
The number average molecular weight of the obtained TSTITST was 64,100, the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%, and the content of styrene units was 41.100. The content of 0% by mass and 4-tert-butylstyrene unit was 29.0% by mass.
 合成したTSTITSTのシクロヘキサン溶液を調製し、十分に窒素置換を行った耐圧容器に仕込んだ後、Ni/Al系のZiegler系水素添加触媒を用いて、0.5~1.0MPaの水素圧下において70℃で18時間水素添加反応を行い、ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-水添ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下、TSTETSTと略記する)を得た。
 得られたTSTETSTの残存二重結合量を1H-NMR(400MHz)スペクトル測定によって算出を試みたが、検出限界以下であった。
A cyclohexane solution of synthesized TSTISTST was prepared and charged into a pressure-resistant vessel that had been sufficiently purged with nitrogen, and then a Ni / Al Ziegler-based hydrogenation catalyst was used under a hydrogen pressure of 0.5 to 1.0 MPa under a hydrogen pressure of 0.5 to 1.0 MPa. A hydrogenation reaction was carried out for 18 hours at a temperature of poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene-b-poly (4-tert -Butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as TSSETST).
An attempt was made to calculate the amount of residual double bonds of the obtained TSETST by 1 H-NMR (400 MHz) spectrum measurement, which was below the detection limit.
[製造例5:スルホン化TSTETSTの合成]
 製造例1と同様の方法で、塩化メチレン127ml中、0℃にて無水酢酸63.7mlと硫酸28.5mlとを反応させてスルホン化試薬を調製した。一方、参考例5で得られたブロック共重合体TSTETST30gを、3L攪拌機付きのガラス製反応容器に入れ、真空-窒素導入を3回繰り返した後、窒素を導入した状態で、塩化メチレン400mlを加え、常温にて4時間攪拌して溶解させた。溶解後、スルホン化試薬200mlを、5分かけて滴下した。常温にて48時間攪拌後、蒸留水22mlを加えて反応を停止した。その後、攪拌下、蒸留水500mlを徐々に滴下し、重合体を凝固析出させた。塩化メチレンを常圧留去にて除去した後、ろ過した。ろ過により得られた固形分をビーカーに移し、蒸留水を1.0L添加して、攪拌下で洗浄を行った後、濾過により固形分の回収を行った。この洗浄及びろ過の操作を洗浄水のpHに変化がなくなるまで繰り返し、最後に回収した重合体を真空乾燥して本発明の高分子電解質を成す共重合体であるスルホン化TSTETSTを得た。
 得られたスルホン化TSTETSTのスチレン単位のベンゼン環のスルホン化率は1H-NMR(400MHz)分析から100mol%、滴定の結果イオン交換容量は3.00meq/gであった。
[Production Example 5: Synthesis of sulfonated TSSETST]
In the same manner as in Production Example 1, 63.7 ml of acetic anhydride and 28.5 ml of sulfuric acid were reacted in 127 ml of methylene chloride at 0 ° C. to prepare a sulfonation reagent. On the other hand, 30 g of the block copolymer TSETST obtained in Reference Example 5 was placed in a glass reaction vessel equipped with a 3 L stirrer, vacuum-nitrogen introduction was repeated three times, and 400 ml of methylene chloride was added while nitrogen was introduced. The mixture was dissolved by stirring at room temperature for 4 hours. After dissolution, 200 ml of the sulfonation reagent was added dropwise over 5 minutes. After stirring at room temperature for 48 hours, 22 ml of distilled water was added to stop the reaction. Thereafter, 500 ml of distilled water was gradually added dropwise with stirring to solidify and precipitate the polymer. The methylene chloride was removed by distillation at atmospheric pressure, followed by filtration. The solid content obtained by filtration was transferred to a beaker, 1.0 L of distilled water was added, and after washing with stirring, the solid content was collected by filtration. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the finally recovered polymer was vacuum dried to obtain a sulfonated TSSETST, which is a copolymer constituting the polymer electrolyte of the present invention.
The sulfonation rate of the benzene ring of the styrene unit in the obtained sulfonated TSSETST was 100 mol% from 1 H-NMR (400 MHz) analysis, and the ion exchange capacity was 3.00 meq / g as a result of titration.
[参考例6:ポリスチレン、水添ポリイソプレン及びポリ(4-tert-ブチルスチレン)からなるブロック共重合体の製造]
 参考例1と同様の方法で、1000mLオートクレーブに、脱水シクロヘキサン514ml及びsec-ブチルリチウム(1.00M-シクロヘキサン溶液)1.95mlを仕込んだ後、4-tert-ブチルスチレン5.8ml、スチレン16.1ml、4-tert-ブチルスチレン5.8ml、スチレン16.1ml、4-tert-ブチルスチレン5.8ml、イソプレン42.6ml、及び4-tert-ブチルスチレン5.8mlを逐次添加し、60℃で重合させ、ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)―b-ポリイソプレン-b―ポリ(4-tert-ブチルスチレン)(以下、TSTSTITと略記する)を合成した。
 得られたTSTSTITの数平均分子量は38,700であり、1H-NMR(400MHz)測定から求めたポリイソプレン部位の1,4-結合量は94.0%、スチレン単位の含有量は36.0質量%、4-tert-ブチルスチレン単位の含有量は25.0質量%であった。
[Reference Example 6: Production of block copolymer comprising polystyrene, hydrogenated polyisoprene and poly (4-tert-butylstyrene)]
In the same manner as in Reference Example 1, after charging 514 ml of dehydrated cyclohexane and 1.95 ml of sec-butyllithium (1.00 M-cyclohexane solution) into a 1000 mL autoclave, 5.8 ml of 4-tert-butylstyrene, 16. 1 ml, 4-tert-butylstyrene 5.8 ml, styrene 16.1 ml, 4-tert-butylstyrene 5.8 ml, isoprene 42.6 ml, and 4-tert-butylstyrene 5.8 ml were sequentially added at 60 ° C. Polymerized, poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-polyisoprene- b-poly (4-tert-butylstyrene) (hereinafter TSTST) Abbreviated as T) was synthesized.
The number average molecular weight of TSTSTIT obtained was 38,700, the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%, and the content of styrene units was 36. The content of 0% by mass and 4-tert-butylstyrene unit was 25.0% by mass.
 合成したTSTSTITのシクロヘキサン溶液を調製し、十分に窒素置換を行った耐圧容器に仕込んだ後、Ni/Al系のZiegler系水素添加触媒を用いて、0.5~1.0MPaの水素圧下において70℃で18時間水素添加反応を行い、ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)―b-水添ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)(以下、TSTSTETと略記する)を得た。得られたTSTSTETの残存二重結合量を1H-NMR(400MHz)スペクトル測定によって算出を試みたが、検出限界以下であった。 A cyclohexane solution of synthesized TSTSTIT was prepared and charged into a pressure-resistant vessel that had been sufficiently purged with nitrogen, and then a Ni / Al Ziegler hydrogenation catalyst was used under a hydrogen pressure of 0.5 to 1.0 MPa under a hydrogen pressure of 0.5 to 1.0 MPa. Hydrogenation reaction was carried out at 18 ° C. for 18 hours, and poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) ) -B-hydrogenated polyisoprene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as TSTSTET) was obtained. An attempt was made to calculate the residual double bond amount of the obtained TSTSTET by 1 H-NMR (400 MHz) spectrum measurement, which was below the detection limit.
[製造例6:スルホン化TSTSTETの合成]
 製造例1と同様の方法で、塩化メチレン36.5ml中、0℃にて無水酢酸18.3mlと硫酸8.2mlとを反応させてスルホン化試薬を調製した。一方、参考例6で得られたブロック共重合体TSTSTET10gを、2L攪拌機付きのガラス製反応容器に入れ、真空-窒素導入を3回繰り返した後、窒素を導入した状態で、塩化メチレン125mlを加え、常温にて4時間攪拌して溶解させた。溶解後、スルホン化試薬57.2mlを、5分かけて滴下した。常温にて48時間攪拌後、蒸留水22mlを加えて反応を停止した。その後、攪拌下、蒸留水400mlを徐々に滴下し、重合体を凝固析出させた。塩化メチレンを常圧留去にて除去した後、ろ過した。ろ過により得られた固形分をビーカーに移し、蒸留水を1.0L添加して、攪拌下で洗浄を行った後、ろ過により固形分の回収を行った。この洗浄及びろ過の操作を洗浄水のpHに変化がなくなるまで繰り返し、最後に回収した重合体を真空乾燥して本発明の高分子電解質を成す共重合体であるスルホン化TSTSTETを得た。
 得られたスルホン化TSTSTETのスチレン単位のベンゼン環のスルホン化率は1H-NMR(400MHz)分析から92mol%、滴定の結果イオン交換容量は2.50meq/gであった。
[Production Example 6: Synthesis of sulfonated TSTSTET]
In the same manner as in Production Example 1, 18.3 ml of acetic anhydride and 8.2 ml of sulfuric acid were reacted in 36.5 ml of methylene chloride at 0 ° C. to prepare a sulfonation reagent. On the other hand, 10 g of the block copolymer TSTSTET obtained in Reference Example 6 was put into a glass reaction vessel equipped with a 2 L stirrer, vacuum-nitrogen introduction was repeated three times, and 125 ml of methylene chloride was added with nitrogen introduced. The mixture was dissolved by stirring at room temperature for 4 hours. After dissolution, 57.2 ml of the sulfonation reagent was added dropwise over 5 minutes. After stirring at room temperature for 48 hours, 22 ml of distilled water was added to stop the reaction. Thereafter, 400 ml of distilled water was gradually added dropwise with stirring to solidify and precipitate the polymer. The methylene chloride was removed by distillation at atmospheric pressure, followed by filtration. The solid content obtained by filtration was transferred to a beaker, 1.0 L of distilled water was added, and after washing with stirring, the solid content was collected by filtration. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the finally recovered polymer was vacuum dried to obtain a sulfonated TSTSTET which is a copolymer constituting the polymer electrolyte of the present invention.
The sulfonation rate of the benzene ring of the styrene unit of the obtained sulfonated TSTSTET was 92 mol% from 1 H-NMR (400 MHz) analysis, and the ion exchange capacity was 2.50 meq / g as a result of titration.
[参考例7:ポリスチレン、水添ポリイソプレン及びポリ(4-tert-ブチルスチレン)からなるブロック共重合体の製造]
 参考例1と同様の方法で、1000mLオートクレーブに、脱水シクロヘキサン500ml及びsec-ブチルリチウム(1.10M-シクロヘキサン溶液)3.2mlを仕込んだ後、4-tert-ブチルスチレン6.0ml、スチレン26.5ml、4-tert-ブチルスチレン6.0ml、イソプレン24.3ml、4-tert-ブチルスチレン6.0mlを逐次添加し、60℃で重合させ、ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)(以下、TSTITと略記する)を合成した。
 得られたTSTITの数平均分子量は49,000であり、1H-NMR(400MHz)測定から求めたポリイソプレン部位の1,4-結合量は94.0%、スチレン単位の含有量は44.0質量%、4-tert-ブチルスチレン単位の含有量は20.6質量%であった。
[Reference Example 7: Production of block copolymer comprising polystyrene, hydrogenated polyisoprene and poly (4-tert-butylstyrene)]
In the same manner as in Reference Example 1, 500 ml of dehydrated cyclohexane and 3.2 ml of sec-butyllithium (1.10 M-cyclohexane solution) were charged into a 1000 ml autoclave, and then 6.0 ml of 4-tert-butylstyrene and 26.styrene of 26. 5 ml, 4-tert-butylstyrene 6.0 ml, isoprene 24.3 ml, 4-tert-butylstyrene 6.0 ml were sequentially added, polymerized at 60 ° C., and poly (4-tert-butylstyrene) -b-polystyrene. -B-poly (4-tert-butylstyrene) -b-polyisoprene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as TSTIT) was synthesized.
The number average molecular weight of TSTIT obtained was 49,000, the 1,4-bond content of the polyisoprene moiety determined from 1 H-NMR (400 MHz) measurement was 94.0%, and the content of styrene units was 44. The content of 0% by mass and 4-tert-butylstyrene unit was 20.6% by mass.
 合成したTSTITのシクロヘキサン溶液を調製し、十分に窒素置換を行った耐圧容器に仕込んだ後、Ni/Al系のZiegler系水素添加触媒をポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-水添ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)(以下、TSTETと略記する)を得た。
 得られたTSTETの残存二重結合量を1H-NMR(400MHz)スペクトル測定によって算出を試みたが、検出限界以下であった。
A synthesized cyclohexane solution of TSTIT was prepared and charged into a pressure-resistant vessel that had been sufficiently purged with nitrogen, and then a Ni / Al Ziegler hydrogenation catalyst was added to poly (4-tert-butylstyrene) -b-polystyrene-b. -Poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene-b-poly (4-tert-butylstyrene) (hereinafter abbreviated as TSETET) was obtained.
An attempt was made to calculate the amount of residual double bonds in the obtained TSETET by 1 H-NMR (400 MHz) spectrum measurement, which was below the detection limit.
[製造例7:スルホン化TSTETの合成]
 製造例1と同様の方法で、塩化メチレン125ml中、0℃にて無水酢酸22.9mlと硫酸10.2mlとを反応させてスルホン化試薬を調製した。一方、参考例7で得られたブロック共重合体TSTET10gを、2L攪拌機付きのガラス製反応容器に入れ、真空-窒素導入を3回繰り返した後、窒素を導入した状態で、塩化メチレン400mlを加え、常温にて4時間攪拌して溶解させた。溶解後、スルホン化試薬71.7mlを、5分かけて滴下した。常温にて48時間攪拌後、蒸留水22mlを加えて反応を停止した。その後、攪拌下、蒸留水500mlを徐々に滴下し、重合体を凝固析出させた。塩化メチレンを常圧留去にて除去した後、ろ過した。ろ過により得られた固形分をビーカーに移し、蒸留水を1.0L添加して、攪拌下で洗浄を行った後、ろ過により固形分の回収を行った。この洗浄及びろ過の操作を洗浄水のpHに変化がなくなるまで繰り返し、最後に回収した重合体を真空乾燥して本発明に属さない高分子電解質を成す共重合体であるスルホン化TSTETを得た。
 得られたスルホン化TSTETのスチレン単位のベンゼン環のスルホン化率は1H-NMR(400MHz)分析から95mol%、滴定の結果イオン交換容量は3.00meq/gであった。
[Production Example 7: Synthesis of sulfonated TSSET]
In the same manner as in Production Example 1, a sulfonation reagent was prepared by reacting 22.9 ml of acetic anhydride and 10.2 ml of sulfuric acid at 125C in 125 ml of methylene chloride. On the other hand, 10 g of the block copolymer TSETET obtained in Reference Example 7 was put in a glass reaction vessel equipped with a 2 L stirrer, vacuum-nitrogen introduction was repeated three times, and 400 ml of methylene chloride was added with nitrogen introduced. The mixture was dissolved by stirring at room temperature for 4 hours. After dissolution, 71.7 ml of the sulfonation reagent was added dropwise over 5 minutes. After stirring at room temperature for 48 hours, 22 ml of distilled water was added to stop the reaction. Thereafter, 500 ml of distilled water was gradually added dropwise with stirring to solidify and precipitate the polymer. The methylene chloride was removed by distillation at atmospheric pressure, followed by filtration. The solid content obtained by filtration was transferred to a beaker, 1.0 L of distilled water was added, and after washing with stirring, the solid content was collected by filtration. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the finally recovered polymer was vacuum dried to obtain a sulfonated TSSET which is a copolymer that does not belong to the present invention. .
The sulfonation rate of the benzene ring of the styrene unit of the obtained sulfonated TSETET was 95 mol% from 1 H-NMR (400 MHz) analysis, and the ion exchange capacity was 3.00 meq / g as a result of titration.
 製造例1~7で得られた共重合体の組成、構造及び特性を表1に示す。 Table 1 shows the composition, structure and properties of the copolymers obtained in Production Examples 1 to 7.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実施例1>
(高分子電解質膜の作製)
 製造例1で得られた共重合体を本発明の高分子電解質として、本発明の高分子電解質膜を作成した。製造例1で得られたスルホン化TSTETST(イオン交換容量2.71meq/g)の18質量%のトルエン/イソブチルアルコール(質量比7/3)溶液を調製し、離型処理済みPETフィルム[三菱樹脂(株)製、MRV(商品名)]上に約300μmの厚みでコートし、熱風乾燥機にて、100℃、4分間乾燥させることで、厚さ30μmの膜を得た。
<Example 1>
(Production of polymer electrolyte membrane)
The polymer electrolyte membrane of the present invention was prepared using the copolymer obtained in Production Example 1 as the polymer electrolyte of the present invention. An 18% by mass toluene / isobutyl alcohol (mass ratio 7/3) solution of the sulfonated TSSETST (ion exchange capacity 2.71 meq / g) obtained in Production Example 1 was prepared, and a release-treated PET film [Mitsubishi Resin Co., Ltd., MRV (trade name)] was coated with a thickness of about 300 μm, and dried with a hot air dryer at 100 ° C. for 4 minutes to obtain a film with a thickness of 30 μm.
<実施例2>
(高分子電解質膜の作製)
 製造例2で得られた共重合体を本発明の高分子電解質として、本発明の高分子電解質膜を作成した。製造例2で得られたスルホン化TSTETST(イオン交換容量2.61meq/g)の12質量%のトルエン/イソブチルアルコール(質量比8/2)溶液を調製し、離型処理済みPETフィルム[三菱樹脂(株)製、MRV(商品名)]上に約125μmの厚みでコートし、熱風乾燥機にて、100℃、4分間乾燥させた後、再度その上に、前記溶液を約350μmの厚みでコートし、熱風乾燥機にて、100℃、4分間乾燥させることで、厚さ30μmの膜を得た。
<Example 2>
(Production of polymer electrolyte membrane)
The polymer electrolyte membrane of the present invention was prepared using the copolymer obtained in Production Example 2 as the polymer electrolyte of the present invention. A 12% by mass toluene / isobutyl alcohol (mass ratio 8/2) solution of the sulfonated TSSETST (ion exchange capacity 2.61 meq / g) obtained in Production Example 2 was prepared, and a release-treated PET film [Mitsubishi Resin Co., Ltd., MRV (trade name)] with a thickness of about 125 μm, dried with a hot air dryer at 100 ° C. for 4 minutes, and then again with the solution with a thickness of about 350 μm. The film was coated and dried in a hot air dryer at 100 ° C. for 4 minutes to obtain a film having a thickness of 30 μm.
<実施例3>
(高分子電解質膜の作製)
 製造例5で得られた共重合体を本発明の高分子電解質として、本発明の高分子電解質膜を作成した。製造例5で得られたスルホン化TSTETST(イオン交換容量3.00meq/g)の18質量%のトルエン/イソブチルアルコール(質量比75/25)溶液を調製し、離型処理済みPETフィルム[三菱樹脂(株)製、MRV(商品名)]上に約300μmの厚みでコートし、熱風乾燥機にて、100℃、4分間乾燥させることで、厚さ30μmの膜を得た。
<Example 3>
(Production of polymer electrolyte membrane)
The polymer electrolyte membrane of the present invention was prepared using the copolymer obtained in Production Example 5 as the polymer electrolyte of the present invention. A 18% by weight toluene / isobutyl alcohol (mass ratio 75/25) solution of the sulfonated TSSETST (ion exchange capacity 3.00 meq / g) obtained in Production Example 5 was prepared, and a release-treated PET film [Mitsubishi Resin Co., Ltd., MRV (trade name)] was coated with a thickness of about 300 μm, and dried with a hot air dryer at 100 ° C. for 4 minutes to obtain a film with a thickness of 30 μm.
<実施例4>
(高分子電解質膜の作製)
 製造例6で得られた共重合体を本発明の高分子電解質として、本発明の高分子電解質膜を作成した。製造例6で得られたスルホン化TSTSTET(イオン交換容量2.50meq/g)の10.2質量%のトルエン/イソブチルアルコール(質量比9/1)溶液を調製し、離型処理済みPETフィルム[三菱樹脂(株)製、MRV(商品名)]上に約275μmの厚みでコートし、熱風乾燥機にて、100℃、4分間乾燥させた後、再度その上に、前記溶液を約150μmの厚みでコートし、熱風乾燥機にて、100℃、4分間乾燥させることで、厚さ30μmの膜を得た。
<Example 4>
(Production of polymer electrolyte membrane)
The polymer electrolyte membrane of the present invention was prepared using the copolymer obtained in Production Example 6 as the polymer electrolyte of the present invention. A 10.2% by mass toluene / isobutyl alcohol (mass ratio 9/1) solution of the sulfonated TSTSTET (ion exchange capacity 2.50 meq / g) obtained in Production Example 6 was prepared, and a release-treated PET film [ MRV (trade name) manufactured by Mitsubishi Resin Co., Ltd.] was coated with a thickness of about 275 μm, dried with a hot air dryer at 100 ° C. for 4 minutes, and then the solution was further coated thereon with about 150 μm. A film having a thickness of 30 μm was obtained by coating with a thickness and drying with a hot air dryer at 100 ° C. for 4 minutes.
<比較例1>
(高分子電解質膜の作製)
 製造例3で得られたスルホン化TSEST(イオン交換容量2.65meq/g)の17質量%のトルエン/イソブチルアルコール(質量比7/3)溶液を調製し、離型処理済みPETフィルム[三菱樹脂(株)製、MRV(商品名)]上に約350μmの厚みでコートし、熱風乾燥機にて、100℃、4分間乾燥させることで、厚さ30μmの膜を得た。
<Comparative Example 1>
(Production of polymer electrolyte membrane)
A 17% by weight toluene / isobutyl alcohol (mass ratio 7/3) solution of the sulfonated TSEST (ion exchange capacity 2.65 meq / g) obtained in Production Example 3 was prepared, and a release-treated PET film [Mitsubishi Resin Co., Ltd., MRV (trade name)] was coated with a thickness of about 350 μm, and dried with a hot air dryer at 100 ° C. for 4 minutes to obtain a film with a thickness of 30 μm.
<比較例2>
(高分子電解質膜の作製)
 製造例4で得られたスルホン化TSEST(イオン交換容量2.56meq/g)の13質量%のトルエン/イソブチルアルコール(質量比85/15)溶液を調製し、離型処理済みPETフィルム[三菱樹脂(株)製、MRV(商品名)]上に約200μmの厚みでコートし、熱風乾燥機にて、100℃、4分間乾燥させた後、再度その上に、前記溶液を約250μmの厚みでコートし、熱風乾燥機にて、100℃、4分間乾燥させることで、厚さ30μmの膜を得た。
<Comparative Example 2>
(Production of polymer electrolyte membrane)
A 13% by mass toluene / isobutyl alcohol (mass ratio 85/15) solution of the sulfonated TSEST (ion exchange capacity 2.56 meq / g) obtained in Production Example 4 was prepared, and a release-treated PET film [Mitsubishi Resin Co., Ltd., MRV (trade name)] with a thickness of about 200 μm, dried in a hot air dryer at 100 ° C. for 4 minutes, and then again with the solution at a thickness of about 250 μm. The film was coated and dried in a hot air dryer at 100 ° C. for 4 minutes to obtain a film having a thickness of 30 μm.
<比較例3>
(高分子電解質膜の作製)
 製造例7で得られたスルホン化TSTET(イオン交換容量3.00meq/g)の15質量%のトルエン/イソブチルアルコール(質量比75/25)溶液を調製し、離型処理済みPETフィルム[三菱樹脂(株)製、MRV(商品名)]上に約350μmの厚みでコートし、熱風乾燥機にて、100℃、4分間乾燥させたが、厚みむらが多く均一な膜を得ることができなかった。
<Comparative Example 3>
(Production of polymer electrolyte membrane)
A 15% by weight toluene / isobutyl alcohol (mass ratio 75/25) solution of the sulfonated TSSET (ion exchange capacity 3.00 meq / g) obtained in Production Example 7 was prepared, and a release-treated PET film [Mitsubishi Resin Co., Ltd., MRV (trade name)] was coated with a thickness of about 350 μm and dried with a hot air dryer at 100 ° C. for 4 minutes, but a uniform film with many thickness variations could not be obtained. It was.
(実施例1~4及び比較例1~3:高分子電解質膜の性能試験及びその結果)
 以下の1)~3)の試験において、各実施例及び比較例で得られた高分子電解質膜を評価した。
(Examples 1 to 4 and Comparative Examples 1 to 3: Performance Test of Polymer Electrolyte Membrane and Results thereof)
In the following tests 1) to 3), the polymer electrolyte membranes obtained in each Example and Comparative Example were evaluated.
1)プロトン伝導度測定
 得られた高分子電解質膜から1cm×4cmの試験片を切り抜き、それを一対の金電極で挟み、開放系セルに装着した。測定セルを温度80℃、相対湿度30%の雰囲気下に設置し、交流インピーダンス法によりプロトン伝導度を測定した。
1) Measurement of proton conductivity A 1 cm × 4 cm test piece was cut out from the obtained polymer electrolyte membrane, sandwiched between a pair of gold electrodes, and attached to an open cell. The measurement cell was placed in an atmosphere at a temperature of 80 ° C. and a relative humidity of 30%, and the proton conductivity was measured by the AC impedance method.
2)水素を用いた固体高分子型燃料電池用単セルの発電試験
 得られた高分子電解質膜を用いて作製した固体高分子型燃料電池用単セルについて、出力性能を評価した。尚、固体高分子型燃料電池用単セルは以下の手順で作製した。
 Pt-Ru合金触媒担持カーボンに、Nafionの10質量%水分散液を、カーボンとNafionとの質量比が1:1になるように添加混合し、ついでn-プロピルアルコールを、水/n-プロピルアルコールの質量比が1/1になるまで添加混合し、均一に分散されたペーストを調製した。このペーストをスプレー法にて、カーボンペーパーの片面に均一に塗布した。130℃で30分乾燥させ、アノード用の電極を作製した。
 また、Pt触媒担持カーボンに、Nafionの10質量%溶液を、カーボンとNafionとの質量比が1:0.75になるように添加混合し、ついでn-プロピルアルコールを、水/n-プロピルアルコールの質量比が1/1になるまで添加混合し、均一に分散されたペーストを調製し、アノード側と同様の方法にてカソード用電極を作製した。
 その後、実施例、比較例で作製した高分子電解質膜を、上記2種類の電極でそれぞれ膜と触媒面とが向かい合うように挟み、その外側を2枚の耐熱性フィルム及び2枚のステンレス板で順に挟み、ホットプレス(115℃、20kg/cm2、8min)により膜-電極接合体を作製した。
 ついで作製した膜-電極接合体を、2枚のガス供給流路の役割を兼ねた導電性のセパレータで挟み、さらにその外側を2枚の集電板及び2枚の締付板で挟み、固体高分子型燃料電池用の評価セル(電極面積は25cm2)を作製した。
2) Power generation test of single cell for polymer electrolyte fuel cell using hydrogen The output performance of the single cell for polymer electrolyte fuel cell produced using the obtained polymer electrolyte membrane was evaluated. In addition, the single cell for polymer electrolyte fuel cells was produced in the following procedures.
A 10% by mass aqueous dispersion of Nafion is added to and mixed with Pt—Ru alloy catalyst-supporting carbon so that the mass ratio of carbon to Nafion is 1: 1, and then n-propyl alcohol is added to water / n-propyl. The mixture was added and mixed until the alcohol mass ratio became 1/1 to prepare a uniformly dispersed paste. This paste was uniformly applied to one side of the carbon paper by a spray method. The electrode for anode was produced by drying at 130 ° C. for 30 minutes.
Further, a 10% by mass solution of Nafion was added to and mixed with Pt catalyst-supporting carbon so that the mass ratio of carbon to Nafion was 1: 0.75, and then n-propyl alcohol was added to water / n-propyl alcohol. Was added and mixed until the mass ratio became 1/1, to prepare a uniformly dispersed paste, and a cathode electrode was produced in the same manner as the anode side.
Thereafter, the polymer electrolyte membranes produced in Examples and Comparative Examples were sandwiched between the two kinds of electrodes so that the membrane and the catalyst surface face each other, and the outside was sandwiched between two heat resistant films and two stainless steel plates. The membrane-electrode assembly was produced by sandwiching in order and hot pressing (115 ° C., 20 kg / cm 2 , 8 min).
Next, the membrane-electrode assembly produced is sandwiched between two conductive separators that also serve as gas supply channels, and the outside is sandwiched between two current collector plates and two clamping plates to form a solid. An evaluation cell (electrode area is 25 cm 2 ) for a polymer fuel cell was produced.
 発電試験においては、燃料として水素を用い、酸化剤として空気を用いた。水素の供給条件は、ストイキ1.5、加湿を30%R.H.とした。空気の供給条件は、ストイキ2.0、加湿を30%R.H.とした。
 セル温度を80℃に設定して、上記の評価セルをセットした。100%R.H.に加湿した水素、酸素を用いて、前処理を行った後、発電試験を実施し、1A/cm2時のセル電圧を評価した。
In the power generation test, hydrogen was used as the fuel and air was used as the oxidant. The supply conditions of hydrogen were stoichiometric 1.5 and humidification 30% R.V. H. It was. The air supply conditions were stoichiometric 2.0 and humidification 30% R.V. H. It was.
The cell temperature was set to 80 ° C., and the evaluation cell was set. 100% R.D. H. A pre-treatment was performed using hydrogen and oxygen that were humidified, and a power generation test was conducted to evaluate the cell voltage at 1 A / cm 2 .
3)膜強度(引裂強さ)の測定
 2.5cm×7.5cmのダンベル型試験片に長軸方向に向かい5cmの切込みを入れ、該試験片を25℃水中に12時間浸漬させた後、インストロンジャパン社製5566型引張試験機にセットし、25℃、相対湿度50%、引張速度250mm/minの条件において応力を測定した。
3) Measurement of film strength (tear strength) After making a 5 cm incision into a 2.5 cm × 7.5 cm dumbbell-shaped test piece in the long axis direction and immersing the test piece in 25 ° C. water for 12 hours, It was set in a 5566 type tensile tester manufactured by Instron Japan, and the stress was measured under the conditions of 25 ° C., relative humidity 50%, and tensile speed 250 mm / min.
 実施例1~4と比較例1、2で作成した高分子電解質膜に関する1)~3)の性能試験結果を表2に示す。 Table 2 shows the performance test results of 1) to 3) regarding the polymer electrolyte membranes prepared in Examples 1 to 4 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~4に示す本発明の高分子電解質膜は、比較例1及び2の高分子電解質膜に比し、同等のイオン伝導性、発電特性を有しつつ、湿潤時の引裂強さに優れていることが確認された。
 また、比較例3のようにブロック構造を有する場合は、製膜性が悪く、膜化することが困難であり、本発明の高分子電解質の構造が重要であることが確認された。
 以上により、本発明の高分子電解質膜を用いた膜-電極接合体及び固体高分子型燃料電池は、耐久性の観点において優れる。
The polymer electrolyte membranes of the present invention shown in Examples 1 to 4 have equivalent ionic conductivity and power generation characteristics as compared with the polymer electrolyte membranes of Comparative Examples 1 and 2, and have a tear strength when wet. It was confirmed to be excellent.
Moreover, when it had a block structure like the comparative example 3, film forming property was bad and it was difficult to form into a film, and it was confirmed that the structure of the polymer electrolyte of this invention is important.
As described above, the membrane-electrode assembly and the polymer electrolyte fuel cell using the polymer electrolyte membrane of the present invention are excellent from the viewpoint of durability.
産業上利用可能性Industrial applicability
 本発明によれば、固体高分子型燃料電池に好適な高分子電解質、これを用いた機械的強度及び電極との良好な接合性を兼ね備えた高分子電解質膜、該高分子電解質膜を備える膜-電極接合体、及び、該膜-電極接合体を用いた、出力特性と湿潤時の機械的強度を両立した固体高分子型燃料電池を提供できる。 According to the present invention, a polymer electrolyte suitable for a solid polymer fuel cell, a polymer electrolyte membrane using the polymer electrolyte, and a polymer electrolyte membrane having good bondability with an electrode, and a membrane comprising the polymer electrolyte membrane An electrode assembly and a polymer electrolyte fuel cell using the membrane-electrode assembly and having both output characteristics and mechanical strength when wet can be provided.

Claims (8)

  1.  イオン伝導性基を有する2つの重合体ブロック(A)と、イオン伝導性を有しない1つの重合体ブロック(B)と、イオン伝導性を有しない4つの重合体ブロック(C)を構成成分とする共重合体からなる高分子電解質であって、前記重合体ブロック(B)は前記重合体ブロック(C)よりも軟化温度が20℃以上低く、前記重合体ブロック(A)および前記重合体ブロック(B)の両端が前記重合体ブロック(C)と結合していることを特徴とする高分子電解質。 Two polymer blocks (A) having an ion conductive group, one polymer block (B) having no ion conductivity, and four polymer blocks (C) having no ion conductivity as constituent components The polymer block (B) has a softening temperature lower by 20 ° C. or more than the polymer block (C), and the polymer block (A) and the polymer block A polymer electrolyte, wherein both ends of (B) are bonded to the polymer block (C).
  2.  前記重合体ブロック(A)が、芳香族ビニル化合物単位の繰り返し単位から構成されることを特徴とする請求項1に記載の高分子電解質。 The polymer electrolyte according to claim 1, wherein the polymer block (A) is composed of a repeating unit of an aromatic vinyl compound unit.
  3.  前記重合体ブロック(C)が、下記の一般式(a)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は水素原子又は炭素数1~4のアルキル基であり、R2~R4はそれぞれ独立に水素原子又は炭素数3~8のアルキル基を表すが、少なくとも1つは炭素数3~8のアルキル基を表す)で表される芳香族ビニル系化合物単位の繰り返し単位から構成されることを特徴とする請求項1または2に記載の高分子電解質。
    The polymer block (C) is represented by the following general formula (a):
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 to R 4 each independently represents a hydrogen atom or an alkyl group having 3 to 8 carbon atoms, but at least one of them is carbon 3. The polymer electrolyte according to claim 1, wherein the polymer electrolyte is a repeating unit of an aromatic vinyl compound unit represented by formula (3).
  4.  前記重合体ブロック(B)が、炭素数2~8のアルケン単位及び炭素数4~8の共役ジエン単位から選ばれる少なくとも1種の繰り返し単位から構成されることを特徴とする請求項1~3のいずれか1項に記載の高分子電解質。 The polymer block (B) is composed of at least one repeating unit selected from alkene units having 2 to 8 carbon atoms and conjugated diene units having 4 to 8 carbon atoms. The polymer electrolyte according to any one of the above.
  5.  前記イオン伝導性基が-SO3M又は-PO3HM(式中、Mは水素原子、アンモニウムイオン又はアルカリ金属イオンを表す)で表される基である請求項1~4のいずれか1項に記載の高分子電解質。 The ion-conductive group is a group represented by -SO 3 M or -PO 3 HM (wherein M represents a hydrogen atom, an ammonium ion, or an alkali metal ion). The polymer electrolyte described in 1.
  6.  請求項1~5のいずれか1項に記載の高分子電解質からなる高分子電解質膜。 A polymer electrolyte membrane comprising the polymer electrolyte according to any one of claims 1 to 5.
  7.  請求項6に記載の高分子電解質膜を備える膜-電極接合体。 A membrane-electrode assembly comprising the polymer electrolyte membrane according to claim 6.
  8.  請求項7に記載の膜-電極接合体を備える固体高分子型燃料電池。 A polymer electrolyte fuel cell comprising the membrane-electrode assembly according to claim 7.
PCT/JP2011/057461 2010-03-29 2011-03-25 Polyelectrolyte, polyelectrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell WO2011122498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012508266A JP5629761B2 (en) 2010-03-29 2011-03-25 Polymer electrolyte, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-074348 2010-03-29
JP2010074348 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011122498A1 true WO2011122498A1 (en) 2011-10-06

Family

ID=44712204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057461 WO2011122498A1 (en) 2010-03-29 2011-03-25 Polyelectrolyte, polyelectrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell

Country Status (3)

Country Link
JP (1) JP5629761B2 (en)
TW (1) TW201203681A (en)
WO (1) WO2011122498A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031634A1 (en) * 2011-08-31 2013-03-07 株式会社クラレ Block copolymer, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP2013080599A (en) * 2011-10-03 2013-05-02 Kuraray Co Ltd Polyelectrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
WO2014030573A1 (en) * 2012-08-23 2014-02-27 株式会社クラレ Polyelectrolyte film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210326A (en) * 2004-12-27 2006-08-10 Kuraray Co Ltd Polymer electrolyte film for solid polymer fuel cells, membrane-electrode assembly, and fuel cell
JP2007258162A (en) * 2006-02-24 2007-10-04 Kuraray Co Ltd Polymer electrolyte, polymer electrolyte membrane, membrane electrode assembly, and polymer electrolyte fuel cell
WO2010095562A1 (en) * 2009-02-17 2010-08-26 株式会社クラレ Electrolyte membrane and membrane-electrode assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210326A (en) * 2004-12-27 2006-08-10 Kuraray Co Ltd Polymer electrolyte film for solid polymer fuel cells, membrane-electrode assembly, and fuel cell
JP2007258162A (en) * 2006-02-24 2007-10-04 Kuraray Co Ltd Polymer electrolyte, polymer electrolyte membrane, membrane electrode assembly, and polymer electrolyte fuel cell
WO2010095562A1 (en) * 2009-02-17 2010-08-26 株式会社クラレ Electrolyte membrane and membrane-electrode assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031634A1 (en) * 2011-08-31 2013-03-07 株式会社クラレ Block copolymer, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP2013080599A (en) * 2011-10-03 2013-05-02 Kuraray Co Ltd Polyelectrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
WO2014030573A1 (en) * 2012-08-23 2014-02-27 株式会社クラレ Polyelectrolyte film

Also Published As

Publication number Publication date
JPWO2011122498A1 (en) 2013-07-08
JP5629761B2 (en) 2014-11-26
TW201203681A (en) 2012-01-16

Similar Documents

Publication Publication Date Title
JP5118484B2 (en) Electrolyte laminated membrane for polymer electrolyte fuel cell, membrane-electrode assembly, and fuel cell
JP5276442B2 (en) Polymer electrolyte, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
TWI451623B (en) Polymer electrolyte membrane, membrane electrode assemblyand solid polymer fuel cell
JP5191139B2 (en) Polymer electrolyte, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
WO2006068279A1 (en) Ion-conductive binder, membrane-electrode assembly and fuel cell
JP5629692B2 (en) Polymer electrolyte, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP2006210326A (en) Polymer electrolyte film for solid polymer fuel cells, membrane-electrode assembly, and fuel cell
JP2010232121A (en) Electrolyte composite membrane, membrane-electrode assembly, and solid polymer fuel cell
JP5188025B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, MEMBRANE-ELECTRODE ASSEMBLY AND FUEL CELL
JP2007258003A (en) Polymer electrolyte membrane, membrane electrode assembly, and polymer electrolyte fuel cell
WO2013031634A1 (en) Block copolymer, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP2006202737A (en) Ion conductive binder, membrane-electrode assembly, and fuel cell
JP2008004312A (en) Ion conductive binder, membrane-electrode assembly and fuel cell
JP5629761B2 (en) Polymer electrolyte, polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP5555636B2 (en) Organic-inorganic composite electrolyte, electrolyte membrane, membrane-electrode assembly, and fuel cell
JP2010135130A (en) Polymer electrolyte membrane for solid polymer electrolyte fuel cell, membrane-electrode assembly, and fuel cell
JPWO2010067743A1 (en) Electrolyte laminated film, membrane-electrode assembly, and fuel cell
JP5706906B2 (en) Polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP5451434B2 (en) Electrolyte, electrolyte membrane, membrane-electrode assembly, and fuel cell
JP2011103176A (en) Electrolyte laminated film, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2011216244A (en) Polymer electrolyte, polymer electrolyte membrane, membrane-electrode assembly, and fuel cell
JP2010067526A (en) Polyelectrolyte membrane for solid polymer fuel cell, membrane-electrode assembly, and fuel cell
JP5792018B2 (en) Polymer electrolyte membrane, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2011145588A1 (en) Polymer electrolyte and polymer electrolyte film comprising same
JP2012104244A (en) Composition for forming catalyst layer, gas diffusion electrode, membrane-electrode assembly and fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762729

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508266

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762729

Country of ref document: EP

Kind code of ref document: A1