WO2011122413A1 - Branched duct construct, and uniaxial eccentric screw pump system - Google Patents

Branched duct construct, and uniaxial eccentric screw pump system Download PDF

Info

Publication number
WO2011122413A1
WO2011122413A1 PCT/JP2011/056956 JP2011056956W WO2011122413A1 WO 2011122413 A1 WO2011122413 A1 WO 2011122413A1 JP 2011056956 W JP2011056956 W JP 2011056956W WO 2011122413 A1 WO2011122413 A1 WO 2011122413A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
relay
discharge
branch
introduction
Prior art date
Application number
PCT/JP2011/056956
Other languages
French (fr)
Japanese (ja)
Inventor
教晃 榊原
洋平 高橋
Original Assignee
兵神装備株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兵神装備株式会社 filed Critical 兵神装備株式会社
Priority to CN201180016457.6A priority Critical patent/CN102893030B/en
Priority to KR1020127025724A priority patent/KR101801995B1/en
Publication of WO2011122413A1 publication Critical patent/WO2011122413A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/10Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • F04C15/0049Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/20Fluid liquid, i.e. incompressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Definitions

  • the present invention relates to a branch flow path structure capable of branching a fluid introduced into an introduction section into a plurality of systems, and a uniaxial eccentric screw pump system including the branch flow path structure.
  • n natural number
  • in order to make the arrangement of each branch flow path arbitrary there is a problem that it becomes more difficult to equalize the discharge pressure and discharge amount of the fluid discharged from each branch flow path.
  • complicated adjustment is required, such as adjusting a discharge pressure or a discharge amount by attaching a valve, a nozzle or the like to each branch flow path and finely adjusting them. Therefore, in the prior art, it is extremely difficult to form a branch flow path so that a fluid can be discharged to a desired position with a desired number of branches, and there is a problem that significant restrictions are imposed on the flow path design.
  • an object of the present invention is to provide a branch flow passage structure capable of achieving uniform discharge pressure and discharge amount in each branch flow path, and a uniaxial eccentric screw pump system including the branch flow path structure.
  • the branched flow path structure of the present invention provided to solve the above-described problem is capable of forming a branched flow path for discharging fluid introduced from the introduction portion evenly from the n discharge portions.
  • n relay portions are provided so as to correspond to the n discharge portions, and there are n systems connecting the introduction portion and the n relay portions.
  • the relay portion is arranged at a position corresponding to a point where the circumference of a virtual circle centered on one point on a vertical line passing through the axis of the introduction portion is divided into n.
  • the lengths of the flow paths between the n-system relay / discharge sections are the same.
  • the relay portion is arranged at a position that divides the circumference of the virtual circle into approximately n equal parts.
  • the branch flow path structure includes a descending section in which each of the flow paths between the relay and discharge sections can flow a fluid downward, and a horizontal section capable of flowing a fluid in a horizontal direction.
  • a flow path having a bent portion between the horizontal portion and the descending portion, and the sum of the lengths of the horizontal portions related to each inter-relay / discharge portion flow path is the same. It is desirable that the total sum of the lengths of the descending parts related to the flow path between the discharge parts is the same, and the number of the bent parts in the flow path between the relay / discharge parts is the same.
  • each relay / discharge portion flow path constituting the branch flow path structure of the present invention has a plurality of bent portions formed in the vertical direction.
  • the branch flow channel structure of the present invention may be provided with a reduced diameter portion in which the flow channel diameter is reduced in each of the flow paths between the relay and discharge portions.
  • the flow path diameter in each part constituting each branched flow path is substantially uniform regardless of the branched flow path.
  • the branch channel structure of the present invention may be configured by stacking plates on which grooves forming the respective branch channels are formed.
  • the cross-sectional shape of the introduction portion is circular or a positive n ⁇ a square (a is an arbitrary natural number).
  • the uniaxial eccentric screw pump system of the present invention includes the above-described branch flow path structure of the present invention and a uniaxial eccentric screw pump, and the fluid discharged from the uniaxial eccentric screw pump is supplied to the branch flow path structure. It can be introduced into the introduction section.
  • the relay section is provided at a position corresponding to a point where the circumference of a virtual circle centering on one point on the vertical line passing through the axis of the introduction section is divided into n. Further, since there are n channels for introduction / relay units so as to connect the introduction unit and each relay unit, the lengths of the channels for introduction / relay units are uniform for each system. Therefore, in the section from the introduction part to the relay part, the fluid flows in each branch flow path with a substantially uniform pressure and flow rate. Further, in the branch flow path structure of the present invention, the lengths of the n-system relay / discharge section flow paths from the n relay sections to the n discharge sections are uniform.
  • branch flow path structure of the present invention it is possible to branch the fluid introduced into the introduction portion into a desired number of branches while making the discharge amount and discharge pressure substantially constant.
  • the branched flow path structure of the present invention it is possible to make the discharge amount and discharge pressure uniform in each discharge section without providing a separate valve or nozzle. Therefore, it is possible to simplify the flow path configuration, and it is possible to minimize the installation work and maintenance work as much as the adjustment of the valves and nozzles described above is unnecessary.
  • the length of the flow path between each relay / discharge section is uniform, and no special restriction is imposed on the arrangement thereof. Therefore, according to the branch flow path structure of the present invention, the discharge part of each branch flow path can be arranged at a desired position, and the degree of freedom in designing the flow path becomes extremely high.
  • the flow rate of the fluid flowing through the flow path between each introduction / relay section is determined by arranging each relay section at a position that substantially divides the virtual circle concentric with the introduction section. It becomes possible to make the pressure more uniform. Therefore, according to the present invention, it is possible to make the flow rate and discharge pressure of the fluid in each discharge section more uniform.
  • each relay / discharge section flow path is a bent flow path having a descending portion and a horizontal portion, and the total length of the horizontal portion and the descending portion
  • the total length is made uniform for each relay / discharge section flow path, and the number of the bent portions in each relay / discharge section flow path is the same, so that each relay / discharge section flow path is It is possible to make the pressure loss generated by the flow of fluid and the flow rate distribution uniform. Therefore, by making each inter-relay / discharge section flow path a flow path having a bent flow path constituting section as described above, it becomes possible to further uniform the flow rate and discharge pressure of the fluid in each discharge section. .
  • each of the flow paths between the relay and discharge portions includes a plurality of bent portions in the vertical direction
  • the orientation of the horizontal portion located downstream of the bent portions in the fluid flow direction is set to It is possible to face the direction different from the horizontal portion located on the upstream side, and it is possible to increase the degree of freedom of the layout of each discharge portion accordingly.
  • the branch flow path structure of the present invention has a substantially uniform flow path diameter of each branch flow path regardless of the branch flow path, thereby substantially reducing the discharge amount and discharge pressure in the discharge section connected to each branch flow path. It is possible to make it uniform.
  • a reduced diameter portion with a reduced flow path diameter is provided in the middle of the flow path between the introduction / relay section and the flow path between the relay / discharge section, or the flow path diameter is increased.
  • the flow diameter of the reduced diameter part and the enlarged diameter part is substantially uniform regardless of the branch flow path system, so that the discharge amount and discharge pressure in each branch flow path are substantially uniform.
  • the branch flow path structure of the present invention is such that each branch flow path is formed by superimposing plates with grooves, thereby easily and reliably forming a branch flow path that meets the above-described conditions. It becomes possible to do. Moreover, when it is set as this structure, an assembly, decomposition
  • the branch flow path structure of the present invention is formed from the introduction portion by n systems by forming the introduction portion so that the cross-sectional shape is circular or a positive n ⁇ a square (a is an arbitrary natural number). Further, the flow rate and pressure of the fluid flowing into each of the introduction / relay unit flow paths can be made uniform.
  • the uniaxial eccentric screw pump system of the present invention includes the above-described branch flow path structure of the present invention and a uniaxial eccentric screw pump, and introduces the fluid discharged from the uniaxial eccentric screw pump into the branch flow path structure. Therefore, the fluid supplied from the uniaxial eccentric screw pump can be branched into a desired number of branches, and the discharge portions of the respective branch flow paths can be arranged at desired positions. In the uniaxial eccentric screw pump system of the present invention, it is possible to easily and appropriately equalize the discharge pressure and the discharge amount in each branch flow path.
  • the pump system 1 is configured by a combination of a uniaxial eccentric screw pump 5 and a branch flow path structure 50.
  • the pump system 1 of the present embodiment is characterized by the branch flow path structure 50.
  • the structure of the uniaxial eccentric screw pump 5 will be outlined.
  • the uniaxial eccentric screw pump 5 is a so-called rotary displacement pump, and is configured such that the stator 10, the rotor 30, the power transmission mechanism 40, and the like are accommodated in the casing 20.
  • the stator 10 is a member incorporated in the uniaxial eccentric screw pump 5, and is a cylindrical body having an oval cross-sectional shape and having two female screw-shaped holes.
  • the stator 10 is made of rubber or the like. The type of rubber composing the stator 10 can be appropriately selected according to the type and properties of the object to be transported transferred by the uniaxial eccentric screw pump 5.
  • the casing 20 is a metallic and cylindrical member, and a first opening 22a is provided in a disc-shaped end stud 20a attached to one end in the longitudinal direction.
  • a second opening 22 b is provided in the outer peripheral portion of the casing 20.
  • the second opening 22 b communicates with the internal space of the casing 20 at the intermediate portion 20 d located at the intermediate portion in the longitudinal direction of the casing 20.
  • the first and second openings 22a and 22b function as a discharge port and a suction port of the uniaxial eccentric screw pump 5, respectively.
  • the stator 10 described above is housed and fixed in a stator attachment portion 22c provided at a position adjacent to the first opening 22a in the casing 20.
  • the stator 10 is fixed by sandwiching the flange portion 10a at the end portion of the casing 20 by the end stud 20a and attaching and tightening the stay bolt 24 across the end stud 20a and the main body portion of the casing 20.
  • the rotor 30 is a metal shaft and has a single male thread shape.
  • the rotor 30 is inserted into the stator 10 described above, and can be freely eccentrically rotated inside the stator 10.
  • the rotor 30 is inserted through the through-hole 16 of the stator 10 described above, and the outer peripheral surface of the rotor 30 and the inner peripheral surface of the stator 10 are in contact with each other over the tangent line therebetween. Further, in this state, a fluid conveyance path 32 is formed between the inner peripheral surface of the stator 10 forming the through hole 16 and the outer peripheral surface of the rotor 30.
  • the fluid conveyance path 32 extends spirally in the longitudinal direction of the stator 10 and the rotor 30, and when the rotor 30 is rotated in the through hole 16 of the stator 10, the longitudinal direction of the stator 10 is rotated while rotating in the stator 10. Go in the direction. Therefore, when the rotor 30 is rotated, fluid is sucked into the fluid conveyance path 32 from one end side of the stator 10, and is transferred toward the other end side of the stator 10 in a state of being confined in the fluid conveyance path 32. It is possible to discharge at the other end side of the stator 10.
  • the power transmission mechanism 40 is provided for transmitting power from the power source (not shown) such as a motor provided outside the casing 20 to the rotor 30 described above.
  • the power transmission mechanism 40 is capable of transmitting the rotational power transmitted from the power source described above to the rotor 30 and rotating the rotor 30 eccentrically.
  • the uniaxial eccentric screw pump 5 can transport the fluid via the fluid transport path 32 by operating the power source described above and rotating the rotor 30.
  • the branch flow path structure 50 is connected to the first opening 22a functioning as a discharge port of the uniaxial eccentric screw pump 5 having the above-described structure. As shown in FIG. 2, the branch channel constituting body 50 is inserted so that metal channel constituting plates P1 to P4 are overlapped in the vertical direction and penetrated between the plates P1 to P4 in the vertical direction. Integrated with bolts.
  • the branch flow path structure 50 connects the introduction part S and each of the n discharge parts Fn.
  • a branch flow path Bn of the system is provided, and the fluid introduced into the introduction part S can be branched almost evenly into the n system of branch flow paths Bn and discharged from each of the n discharge parts Fn. Is.
  • the introduction portion S is a substantially circular portion having a cross-sectional shape provided on the flow path configuration plate P ⁇ b> 1 disposed at the uppermost position in the branch flow path structure 50.
  • the flow path constituting plate P1 is a disk-shaped metal plate, and the introduction part S is provided at the approximate center of the flow path constituting plate P1.
  • the discharge part Fn is provided on the flow path configuration plate P4 arranged at the lowest position in the branch flow path structure 50.
  • the branch channel Bn is configured by grooves formed in the channel configuration plates P1 to P4.
  • seven discharge portions Fn are provided, seven branch channels Bn including the first branch channel B1 to the seventh branch channel B7 are formed.
  • each descending part Dnp and each horizontal part Lnq is substantially the same for each system, and the inner diameter is also substantially the same.
  • the total length and the opening diameter of the relay / discharge portion flow path RFn are substantially the same regardless of the system, and the pressure loss caused by the passage of fluid through the inside is also substantially uniform.
  • the design method of the first branch flow path B1 will be described as an example.
  • the discharge reference point f1 is set at a position corresponding to the discharge portion F1 as shown in FIG. Is done.
  • a virtual circle C21 having a radius r2 centered on the relay reference point r1 assumed in the first branch flow path B1 and a virtual circle C31 having a radius r3 centered on the discharge reference point f1 are set.
  • a horizontal portion L11 is set at a position connecting the intersection point X1 of the virtual circles C21 and C31 and the relay reference point r1
  • a horizontal portion L12 is set at a position connecting the intersection point X1 and the discharge reference point f1.
  • the intersection of the vertical line Vxn and the horizontal plane J2 becomes the boundary between the horizontal portion Ln1 and the descending portion Dn2, and the intersection of the vertical line Vxn and the horizontal plane J3 becomes the boundary between the descending portion Dn2 and the horizontal portion Ln2. Furthermore, the intersection of the vertical line Vfn and the horizontal plane J3 becomes the boundary between the horizontal portion Ln2 and the descending portion Dn3.
  • n relay references are provided at positions where the circumference of the virtual circle C1 centered on the introduction reference point s concentric with the introduction part S is divided into n.
  • a point rn is set, and a relay unit Rn is provided at a position corresponding to each relay reference point rn on the horizontal plane J1.
  • the n-system introduction / relay unit flow path SRn is provided so as to connect the introduction section S and each relay section Rn, the length of the introduction / relay section flow path SRn is uniform for each system. It is. For this reason, in the branch flow path structure 50, the fluid introduced from the uniaxial eccentric screw pump 5 to the introduction part S reaches the relay part Rn at a substantially uniform pressure and flow rate with respect to each branch flow path Bn. It can be distributed.
  • the branch flow path structure 50 of this embodiment by designing in accordance with the flow path design method as described above, from the n relay sections Rn to the discharge sections Fn provided corresponding thereto.
  • the length of each of the relay-discharge portion flow paths RFn is made uniform. Therefore, in the branch flow path structure 50, it is possible to make the pressure loss and the flow rate of the fluid generated by the fluid flowing through each relay / discharge portion flow path RFn uniform, regardless of the branch flow path Bn. Therefore, according to the branch flow path structure 50, it is possible to branch the fluid introduced into the introduction section S into a desired number of branches while making the discharge amount and discharge pressure substantially constant.
  • the discharge amount and discharge pressure of the fluid in each discharge portion Fn can be made uniform. Therefore, it is not necessary to provide a valve or nozzle for adjusting the discharge amount or discharge pressure in each discharge portion Fn or a flow path separately connected to the discharge portion Fn as in the prior art, and there is no need to adjust the valve or nozzle. . Therefore, if the fluid supplied from the uniaxial eccentric screw pump 5 is branched into a plurality of systems using the above-described branch flow path structure 50, the flow path structure is simplified and the discharge amount and the discharge pressure are adjusted. Is eliminated, and the labor required for maintenance and installation work can be minimized.
  • the branch flow path structure 50 has the same flow path length between the introduction / relay section flow path SRn and the relay / discharge section flow path RFn regardless of the branch flow path Bn by performing the flow path design as described above. Is possible. Therefore, the branch flow path structure 50 can arrange not only the discharge part Fn on a predetermined straight line as described above, but also can appropriately arrange the discharge part Fn according to the demand, and freedom of layout selection of the discharge part Fn. The degree is extremely high. Further, according to the branch flow path structure 50, the discharge amount and discharge pressure of the fluid in each discharge portion Fn can be made uniform even if the number of the discharge portions Fn is not 2 n as in the prior art. It is possible to adjust the number of ejection portions Fn as appropriate according to demand.
  • the branch flow path structure 50 of this embodiment the sum of the lengths of the descending portions Dnp and the sum of the lengths of the horizontal portions Lnq are the same regardless of the system of the branch flow paths Bn.
  • the branch flow path structure 50 includes the size of each part constituting each branch flow path Bn, specifically, the size of the pipe line constituting the flow path SRn between the introduction / relay part and the flow path RFn between the relay / discharge part.
  • the cross-sectional shapes are substantially the same.
  • the total number of bent portions formed at the boundary between the horizontal portion Lnq and the descending portion Dnp is the same in each branch system Bn. Therefore, the pressure loss caused by the fluid flowing through each relay / discharge portion flow path RFn and the uniform flow distribution are substantially uniform regardless of the branch flow path Bn system, and the amount of fluid discharged from each discharge portion Fn. And the discharge pressure can be made uniform.
  • the branch flow path Bn shown in the present embodiment exemplifies an example in which the horizontal portion Lnq and the descending portion Dnp are bent without greatly bending at the boundary portion, but the present invention is not limited to this. That is, the branch flow path structure 50 according to the present embodiment is formed by superimposing the flow path configuration plates P1 to P4 in which grooves are formed, so that each branch flow path Bn is configured. Therefore, the horizontal portion Lnq and the descending portion Dnp In the case where each branch passage Bn is formed by bending a pipe of a copper tube, for example, it is more horizontal than that shown in the present embodiment. It must be greatly curved at the boundary portion between the portion Lnq and the descending portion Dnp. Therefore, as shown in FIG. 7A, the branch channel Bn may be one in which the boundary portion is curved with a larger curvature than that shown in the present embodiment.
  • the branch flow path Bn has the substantially same flow path length as a whole regardless of the system, and the sum of the lengths of the descending portions Dnp regardless of the system. Are the same, the total sum of the lengths of the horizontal portions Lnq is the same, and the flow paths must be designed so that the number of bent portions is the same. As long as these conditions are satisfied, it is possible to make the discharge pressure and discharge amount of the fluid in each discharge portion Fn substantially uniform, similar to those exemplified in the present embodiment.
  • each of the relay / discharge section flow paths RFn includes a bent portion, and the horizontal portion Lnq on the downstream side is located upstream of the bent portion (above the bent portion). Can be directed in a direction different from the horizontal portion Lnq.
  • the relay / discharge portion flow path RFn is configured to include bent portions at a plurality of locations in the vertical direction. Therefore, the branch flow path structure 50 can reach each relay / discharge section flow path RFn to an arbitrary position in the horizontal direction according to the layout of each discharge section Fn. High degree.
  • each branch flow path Bn the opening diameter of the flow path constituting each branch flow path Bn is uniform regardless of the part, but the present invention is not limited to this.
  • the part (reduced diameter part 60) in which the opening diameter of the flow path is reduced as shown in FIG. is there.
  • each branch channel Bn can be provided with a portion (diameter enlarged portion) in which the channel diameter is larger than other portions.
  • the site parts from which the flow path diameters and cross-sectional shape different from others, such as the diameter reducing part 60 mentioned above, in order to aim at equalization of the pressure loss generated by the fluid flowing in each branch flow path Bn, the fluid flow rate, etc. It is desirable to provide a portion such as the reduced diameter portion 60 at the same position in each branch channel Bn. Further, it is desirable that the channel diameter and the channel cross-sectional area of a portion such as the reduced diameter portion 60 provided in each branch channel Bn are substantially uniform regardless of the system of the branch channel Bn. In this way, even when the reduced diameter portion 60 is provided, it is possible to further uniform the balance of pressure loss and fluid flow rate in each branch flow path Bn, and fluid in each discharge portion Fn. It is possible to prevent variations in the discharge amount and discharge pressure.
  • each branch channel Bn is formed by overlapping the channel constituting plates P1 to P4 in which grooves are formed, the branch channel designed by the above-described design method. It is possible to form Bn easily and accurately.
  • the example in which each branch channel Bn is configured by overlapping the channel configuration plates P1 to P4 is illustrated, but the present invention is not limited to this, and a metal tube or a resin tube is used.
  • the above-described branch flow path Bn may be formed by appropriately bending or the like.
  • the branch flow path structure 50 may be configured by a plurality of types of common parts, and the branch flow path Bn having a desired arrangement and shape may be formed by appropriately combining the common parts. .
  • branch flow path structure 50 is configured by connecting a part constituting the introduction / relay part flow path SRn and a part constituting the relay / discharge part pipe flow path RFn as separate parts.
  • each branch channel Bn may be configured.
  • a part that constitutes the descending part Dnp and a part that constitutes the horizontal part Lnq are separately prepared, and the relay / discharge part pipe flow path RFn may be configured by appropriately connecting them.
  • each branch channel Bn is bent at the same height, but the present invention is not limited to this, as long as the total length of each branch flow path Bn is the same, Each branch channel Bn may be bent at different heights.
  • interference between the branch flow paths Bn can be easily avoided, and the layout of each branch flow path Bn and each discharge portion Fn can be further improved. It becomes possible to increase the degree of freedom.
  • each branch channel Bn connected to the introduction part S forms a series of channels without branching in the middle, but the present invention is not limited to this, and each branch The flow paths Bn may be formed so as to further branch into multiple systems on the way.
  • each branch flow path Bn when branching each branch flow path Bn on the way, it is desirable to make the number of branches the same for each branch flow path Bn.
  • each branch channel Bn is branched in the middle, by designing the channel according to the above-described channel design method, the pressure loss and the flow rate generated by the flow of fluid are made uniform, and each discharge unit Fn It is possible to make the discharge pressure and discharge amount of the fluid uniform.
  • the cross-sectional shape of the introduction part S is circular and each branch flow path Bn is connected at substantially equal intervals in the circumferential direction.
  • the fluid introduced into S can be supplied substantially uniformly to each branch channel Bn.
  • the introduction portion S is not limited to a circular cross-sectional shape, and may have a polygonal cross-sectional shape. However, when the fluid is supplied substantially uniformly to each branch channel Bn. From this point of view, it is preferable that the cross-sectional shape is a substantially positive n-gon or a substantially positive n ⁇ a square (a is a natural number).
  • the cross-sectional shape of the introduction part S is an equilateral triangle as shown in FIG.
  • the introduction / intermediate portion flow path SRn has only a portion extending in the horizontal direction, but the present invention may be limited to this, and the relay / discharge section flow path It may have a portion extending in the vertical direction (vertical direction) like the descending portion Dnp of RFn. Also in the case of such a configuration, the relay part Rn and the introduction part S provided at the position where the circumference of the virtual circle C1 is divided into n are connected, as described in the method for designing the branch flow path Bn. As described above, by designing the flow paths SRn between the introduction / intermediate sections, it becomes possible to supply the fluid from the introduction section S to the branch flow paths Bn substantially uniformly.
  • the uniaxial eccentric screw pump system 1 is configured by combining the branch flow path structure 50 with the uniaxial eccentric screw pump 5 is illustrated, but the present invention is not limited to this, and the branch flow The path structure 50 may be used in combination with a conventionally known pump other than the uniaxial eccentric screw pump 5.

Abstract

Disclosed is a branched duct construct that branches a fluid into a desired number of branches, can dispose the discharge section of each branched duct at a desired position, and can equalize the discharge pressure and discharge quantity at each branched duct. Further disclosed is a uniaxial eccentric screw pump system provided with said branched duct construct. The branched duct (Bn) of the branched duct construct has n relay sections (Rn) so as to correspond to each of n discharge sections (Fn), and has: n systems of introduction-to-relay section ducts (SRn) that connect an introduction section (S) to the relay sections (Rn); and n systems of relay-to-discharge section ducts (RFn) that connect the aforementioned n relay sections (Rn) and discharge sections (Fn). Also, with the branched duct construct, the relay sections (Rn) are disposed at positions corresponding to n points that divide the circumference of an imaginary circle centered around a point on a vertical line passing through the center axis of the introduction section (S), and the branched duct (Bn) is formed in a manner so that the lengths of the n systems of relay-to-discharge section ducts (RFn) are each the same.

Description

分岐流路構成体及び一軸偏心ねじポンプシステムBranch channel structure and uniaxial eccentric screw pump system
 本発明は、導入部に導入された流動体を複数系統に分岐させることが可能な分岐流路構成体、及び当該分岐流路構成体を備えた一軸偏心ねじポンプシステムに関する。 The present invention relates to a branch flow path structure capable of branching a fluid introduced into an introduction section into a plurality of systems, and a uniaxial eccentric screw pump system including the branch flow path structure.
 従来、下記特許文献1に開示されているような一軸偏心ねじポンプにより圧送された非搬送物(流体)を複数の流路に分岐させる場合は、前記一軸偏心ねじポンプに接続された流路を次々と分岐させる等の方策が採用されている。また、従来は、調整用の弁やノズル等を各分岐流路に設け、個別に微調整するといった方策を講じることにより、各分岐流路における吐出圧や吐出量の安定化を図っている。 Conventionally, when a non-conveyed object (fluid) pumped by a uniaxial eccentric screw pump as disclosed in Patent Document 1 below is branched into a plurality of flow paths, a flow path connected to the uniaxial eccentric screw pump is used. Measures such as branching one after another are adopted. In addition, conventionally, by adjusting the branch pressures and the discharge amount in each branch flow path, an adjustment valve, a nozzle, or the like is provided in each branch flow path and a fine adjustment is taken individually.
特開2008-175199号公報JP 2008-175199 A
 しかし、上述したようにして一軸偏心ねじポンプに接続された流路を分岐させる場合は、吐出圧や吐出量を均一化させるために分岐数が2のn乗(n=自然数)に限定されてしまい、所望の分岐数に分岐できない場合があるという問題がある。また、各分岐流路の配置を任意のものとするためには、各分岐流路から吐出される流体の吐出圧や吐出量の均一化がさらに困難になるという問題がある。具体的には、弁やノズル等を各分岐流路に取り付け、これらを微調整することにより吐出圧や吐出量を調整するなど、複雑な調整が必要になるという問題がある。したがって、従来技術では、流体を所望の分岐数で所望の位置に吐出可能なように分岐流路を形成することが極めて困難であり、流路設計上、大幅な制限が加わるといった問題がある。 However, when the flow path connected to the uniaxial eccentric screw pump is branched as described above, the number of branches is limited to the nth power of 2 (n = natural number) in order to make the discharge pressure and discharge amount uniform. In other words, there is a problem in that it may not be possible to branch to a desired number of branches. Further, in order to make the arrangement of each branch flow path arbitrary, there is a problem that it becomes more difficult to equalize the discharge pressure and discharge amount of the fluid discharged from each branch flow path. Specifically, there is a problem that complicated adjustment is required, such as adjusting a discharge pressure or a discharge amount by attaching a valve, a nozzle or the like to each branch flow path and finely adjusting them. Therefore, in the prior art, it is extremely difficult to form a branch flow path so that a fluid can be discharged to a desired position with a desired number of branches, and there is a problem that significant restrictions are imposed on the flow path design.
 また、弁やノズル等を各分岐流路に取り付け、これらを微調整することにより吐出圧や吐出量を調整するような方策を講じた場合は、前述した弁やノズルの微調整に熟練を要し、吐出圧や吐出量の均一化を図ることが極めて困難であるという問題があった。 In addition, when measures such as adjusting the discharge pressure or discharge amount by attaching valves and nozzles to each branch flow path and making fine adjustments to these are required, skill is required for fine adjustment of the valves and nozzles described above. However, there has been a problem that it is extremely difficult to achieve uniform discharge pressure and discharge amount.
 そこで、本発明は、一軸偏心ねじポンプなどから吐出されてきた流体を所望の分岐数に分岐し、各分岐流路の吐出部を所望の位置に配置することが可能であると共に、容易かつ適切に各分岐流路における吐出圧や吐出量の均一化を図ることが可能な分岐流路構成体、及び当該分岐流路構成体を備えた一軸偏心ねじポンプシステムの提供を目的とした。 Therefore, the present invention can branch the fluid discharged from a uniaxial eccentric screw pump or the like into a desired number of branches, and can easily and appropriately arrange the discharge portions of the respective branch flow paths at desired positions. In addition, an object of the present invention is to provide a branch flow passage structure capable of achieving uniform discharge pressure and discharge amount in each branch flow path, and a uniaxial eccentric screw pump system including the branch flow path structure.
 上述した課題を解決すべく提供される本発明の分岐流路構成体は、導入部から導入された流体をn個の吐出部から均等に吐出させるための分岐流路を構成可能なものである。本発明の分岐流路構成体は、前記n個の吐出部のそれぞれに対応するようにn個の中継部が設けられており、前記導入部と前記n個の中継部とを繋ぐn系統の導入・中継部間流路と、前記n個の中継部と当該中継部に対応する吐出部とを繋ぐn系統の中継・吐出部間流路とを有している。また、本発明の分岐流路構成体は、導入部の軸心を通る鉛直線上の一点を中心とする仮想円の円周をn分割する点に対応する位置に前記中継部が配置されており、前記n系統の中継・吐出部間流路の長さがそれぞれ同一であることを特徴としている。 The branched flow path structure of the present invention provided to solve the above-described problem is capable of forming a branched flow path for discharging fluid introduced from the introduction portion evenly from the n discharge portions. . In the branch flow path structure of the present invention, n relay portions are provided so as to correspond to the n discharge portions, and there are n systems connecting the introduction portion and the n relay portions. A flow path between the introduction / relay sections; and n channels of flow paths between the relay / discharge sections that connect the n relay sections and the discharge sections corresponding to the relay sections. Further, in the branch flow path structure of the present invention, the relay portion is arranged at a position corresponding to a point where the circumference of a virtual circle centered on one point on a vertical line passing through the axis of the introduction portion is divided into n. The lengths of the flow paths between the n-system relay / discharge sections are the same.
 本発明の分岐流路構成体は、前記中継部が、前記仮想円の円周を略n等分する位置に配置されたものであることが好ましい。 In the branch flow path structure according to the present invention, it is preferable that the relay portion is arranged at a position that divides the circumference of the virtual circle into approximately n equal parts.
 本発明の分岐流路構成体は、前記各中継・吐出部間流路が、下方に向けて流体を流動させることが可能な下降部と、水平方向に流体を流動させることが可能な水平部とを備え、前記水平部と前記下降部との間に屈曲部を有する流路であり、各中継・吐出部間流路に係る前記水平部の長さの総和が同一であり、各中継・吐出部間流路に係る前記下降部の長さの総和が同一であり、各中継・吐出部間流路における前記屈曲部の数が同一であるものであることが望ましい。 The branch flow path structure according to the present invention includes a descending section in which each of the flow paths between the relay and discharge sections can flow a fluid downward, and a horizontal section capable of flowing a fluid in a horizontal direction. A flow path having a bent portion between the horizontal portion and the descending portion, and the sum of the lengths of the horizontal portions related to each inter-relay / discharge portion flow path is the same. It is desirable that the total sum of the lengths of the descending parts related to the flow path between the discharge parts is the same, and the number of the bent parts in the flow path between the relay / discharge parts is the same.
 また、本発明の分岐流路構成体を構成する各中継・吐出部間流路は、屈曲部が上下方向に複数形成されたものであることが好ましい。 In addition, it is preferable that each relay / discharge portion flow path constituting the branch flow path structure of the present invention has a plurality of bent portions formed in the vertical direction.
 本発明の分岐流路構成体は、前記各中継・吐出部間流路に流路径が縮小された縮径部が設けられたものとすることも可能である。 The branch flow channel structure of the present invention may be provided with a reduced diameter portion in which the flow channel diameter is reduced in each of the flow paths between the relay and discharge portions.
 本発明の分岐流路構成体は、各分岐流路を構成する各部位における流路径が、分岐流路によらず略均一であることが望ましい。 In the branched flow path structure of the present invention, it is desirable that the flow path diameter in each part constituting each branched flow path is substantially uniform regardless of the branched flow path.
 本発明の分岐流路構成体は、前記各分岐流路を構成する溝が形成されたプレートを重ね合わせることにより構成されるものであってもよい。また、本発明の分岐流路構成体は、導入部の断面形状が円形、あるいは、正n×a角形(aは任意の自然数)であることが好ましい。 The branch channel structure of the present invention may be configured by stacking plates on which grooves forming the respective branch channels are formed. In the branched flow path structure of the present invention, it is preferable that the cross-sectional shape of the introduction portion is circular or a positive n × a square (a is an arbitrary natural number).
 本発明の一軸偏心ねじポンプシステムは、上述した本発明の分岐流路構成体と、一軸偏心ねじポンプとを有し、前記一軸偏心ねじポンプから吐出された流体を、前記分岐流路構成体の導入部に導入可能とされたものである。 The uniaxial eccentric screw pump system of the present invention includes the above-described branch flow path structure of the present invention and a uniaxial eccentric screw pump, and the fluid discharged from the uniaxial eccentric screw pump is supplied to the branch flow path structure. It can be introduced into the introduction section.
 本発明の分岐流路構成体では、導入部の軸心を通る鉛直線上の一点を中心とする仮想円の円周をn分割する点に対応する位置に前記中継部が設けられている。さらに、導入部と各中継部とを繋ぐようにn系統の導入・中継部間流路が設けられていることから導入・中継部間流路の長さが各系統毎に均一である。そのため、導入部から中継部に至るまでの区間において、流体が各分岐流路に略均一の圧力及び流量で流れることになる。また、本発明の分岐流路構成体では、n個の中継部からn個の吐出部まで至るn系統の中継・吐出部間流路の長さがそれぞれ均一とされているため、各中継・吐出部間流路を流体が流れることにより発生する圧損や流体の流量の均一化を図ることが可能である。したがって、本発明の分岐流路構成体によれば、導入部に導入された流体を吐出量や吐出圧を略一定としつつ、所望の分岐数に分岐することが可能となる。 In the branch flow path structure of the present invention, the relay section is provided at a position corresponding to a point where the circumference of a virtual circle centering on one point on the vertical line passing through the axis of the introduction section is divided into n. Further, since there are n channels for introduction / relay units so as to connect the introduction unit and each relay unit, the lengths of the channels for introduction / relay units are uniform for each system. Therefore, in the section from the introduction part to the relay part, the fluid flows in each branch flow path with a substantially uniform pressure and flow rate. Further, in the branch flow path structure of the present invention, the lengths of the n-system relay / discharge section flow paths from the n relay sections to the n discharge sections are uniform. It is possible to make the pressure loss generated by the fluid flowing through the flow path between the discharge sections and the fluid flow rate uniform. Therefore, according to the branch flow path structure of the present invention, it is possible to branch the fluid introduced into the introduction portion into a desired number of branches while making the discharge amount and discharge pressure substantially constant.
 本発明の分岐流路構成体では、別途弁やノズルを設ける等しなくても各吐出部における吐出量や吐出圧の均一化を図ることが可能である。そのため、流路構成を簡略化することが可能となり、前述した弁やノズルの調整が不要となる分、設置作業やメンテナンスの手間を最小限に抑制することが可能となる。 In the branched flow path structure of the present invention, it is possible to make the discharge amount and discharge pressure uniform in each discharge section without providing a separate valve or nozzle. Therefore, it is possible to simplify the flow path configuration, and it is possible to minimize the installation work and maintenance work as much as the adjustment of the valves and nozzles described above is unnecessary.
 また、本発明の分岐流路構成体では、各中継・吐出部間流路の長さが均一であればよく、その配置に特別な制限が加わらない。そのため、本発明の分岐流路構成体によれば、所望の位置に各分岐流路の吐出部を配置することが可能となり、流路設計上の自由度が極めて高くなる。 Further, in the branch flow path structure of the present invention, it is sufficient that the length of the flow path between each relay / discharge section is uniform, and no special restriction is imposed on the arrangement thereof. Therefore, according to the branch flow path structure of the present invention, the discharge part of each branch flow path can be arranged at a desired position, and the degree of freedom in designing the flow path becomes extremely high.
 本発明の分岐流路構成体は、導入部と同心位置にある仮想円を略n等分する位置に各中継部を配置することにより、各導入・中継部間流路を流れる流体の流量や圧力をより一層確実に均一化することが可能となる。したがって、本発明によれば、各吐出部における流体の流量や吐出圧をより一層均一化することが可能となる。 According to the branch flow path structure of the present invention, the flow rate of the fluid flowing through the flow path between each introduction / relay section is determined by arranging each relay section at a position that substantially divides the virtual circle concentric with the introduction section. It becomes possible to make the pressure more uniform. Therefore, according to the present invention, it is possible to make the flow rate and discharge pressure of the fluid in each discharge section more uniform.
 本発明の分岐流路構成体は、上述したように各中継・吐出部間流路を下降部と水平部とを備え屈曲した流路とし、前記水平部の長さの総和及び前記下降部の長さの総和を各中継・吐出部間流路毎に均一化すると共に、各中継・吐出部間流路における前記屈曲部の数を同一とすることにより、各中継・吐出部間流路を流体が流れることにより発生する圧損や、流量分布を均一化することが可能となる。したがって、各中継・吐出部間流路を前述したような屈曲流路構成部を有する流路とすることにより、各吐出部における流体の流量や吐出圧の均一化をさらに図ることが可能となる。 As described above, the branch flow path structure of the present invention is configured such that each relay / discharge section flow path is a bent flow path having a descending portion and a horizontal portion, and the total length of the horizontal portion and the descending portion The total length is made uniform for each relay / discharge section flow path, and the number of the bent portions in each relay / discharge section flow path is the same, so that each relay / discharge section flow path is It is possible to make the pressure loss generated by the flow of fluid and the flow rate distribution uniform. Therefore, by making each inter-relay / discharge section flow path a flow path having a bent flow path constituting section as described above, it becomes possible to further uniform the flow rate and discharge pressure of the fluid in each discharge section. .
 また、前記各中継・吐出部間流路が屈曲部を上下方向に複数備えたものである場合は、屈曲部に対して流体の流れ方向下流側に位置する水平部の向きを、これよりも上流側に位置する水平部とは異なる方向に向けることが可能となり、その分だけ各吐出部のレイアウトの自由度を高めることが可能となる。 In addition, when each of the flow paths between the relay and discharge portions includes a plurality of bent portions in the vertical direction, the orientation of the horizontal portion located downstream of the bent portions in the fluid flow direction is set to It is possible to face the direction different from the horizontal portion located on the upstream side, and it is possible to increase the degree of freedom of the layout of each discharge portion accordingly.
 また、本発明の分岐流路構成体は、各分岐流路の流路径を、分岐流路によらず略均一とすることにより、各分岐流路に繋がる吐出部における吐出量や吐出圧を略均一化することが可能である。また、上述したように、本発明では、導入・中継部間流路や中継・吐出部間流路の途中に流路径が縮小された縮径部を設けた場合や、流路径が拡大された拡径部を設けた場合は、この縮径部や拡径部の流路径についても、分岐流路の系統によらず略均一することにより、各分岐流路における吐出量や吐出圧を略均一化することが可能である。このように、分岐流路の各部位における流路径を分岐流路の系統によらず略均一とすることにより、流体が流れることにより生じる圧損などの流動条件の略均一化を図ることが可能となり、各吐出部における吐出量や吐出圧の略均一化も図ることが可能となる。 In addition, the branch flow path structure of the present invention has a substantially uniform flow path diameter of each branch flow path regardless of the branch flow path, thereby substantially reducing the discharge amount and discharge pressure in the discharge section connected to each branch flow path. It is possible to make it uniform. In addition, as described above, in the present invention, when a reduced diameter portion with a reduced flow path diameter is provided in the middle of the flow path between the introduction / relay section and the flow path between the relay / discharge section, or the flow path diameter is increased. When the enlarged diameter part is provided, the flow diameter of the reduced diameter part and the enlarged diameter part is substantially uniform regardless of the branch flow path system, so that the discharge amount and discharge pressure in each branch flow path are substantially uniform. It is possible to Thus, by making the flow path diameter at each part of the branch flow path substantially uniform regardless of the branch flow path system, it becomes possible to achieve substantially uniform flow conditions such as pressure loss caused by the flow of fluid. In addition, the discharge amount and discharge pressure in each discharge unit can be substantially uniformed.
 本発明の分岐流路構成体は、溝が形成されたプレートを重ね合わせることにより各分岐流路が形成されるものとすることにより、上述した条件に合致する分岐流路を容易かつ確実に形成することが可能となる。また、かかる構成とした場合は、分岐流路構成体の組み立てや分解、清掃等が容易であり、分岐流路構成体の設置やメンテナンスが実施しやすくなる。 The branch flow path structure of the present invention is such that each branch flow path is formed by superimposing plates with grooves, thereby easily and reliably forming a branch flow path that meets the above-described conditions. It becomes possible to do. Moreover, when it is set as this structure, an assembly, decomposition | disassembly, cleaning, etc. of a branch flow path structure are easy, and it becomes easy to install and maintain a branch flow path structure.
 また、本発明の分岐流路構成体は、導入部を断面形状が円形、あるいは正n×a角形(aは任意の自然数)となるように形成することにより、導入部からn系統分形成された導入・中継部間流路のそれぞれに流入する流体の流量や圧力を均一化することが可能となる。 In addition, the branch flow path structure of the present invention is formed from the introduction portion by n systems by forming the introduction portion so that the cross-sectional shape is circular or a positive n × a square (a is an arbitrary natural number). Further, the flow rate and pressure of the fluid flowing into each of the introduction / relay unit flow paths can be made uniform.
 本発明の一軸偏心ねじポンプシステムは、上述した本発明の分岐流路構成体と、一軸偏心ねじポンプとを有し、前記一軸偏心ねじポンプから吐出された流体を前記分岐流路構成体の導入部に導入可能なものであるため、一軸偏心ねじポンプから供給されてきた流体を所望の分岐数に分岐し、各分岐流路の吐出部を所望の位置に配置することが可能である。また、本発明の一軸偏心ねじポンプシステムでは、容易かつ適切に各分岐流路における吐出圧や吐出量の均一化を図ることが可能である。 The uniaxial eccentric screw pump system of the present invention includes the above-described branch flow path structure of the present invention and a uniaxial eccentric screw pump, and introduces the fluid discharged from the uniaxial eccentric screw pump into the branch flow path structure. Therefore, the fluid supplied from the uniaxial eccentric screw pump can be branched into a desired number of branches, and the discharge portions of the respective branch flow paths can be arranged at desired positions. In the uniaxial eccentric screw pump system of the present invention, it is possible to easily and appropriately equalize the discharge pressure and the discharge amount in each branch flow path.
本発明の一実施形態に係る一軸偏心ねじポンプシステムを示す説明図である。It is explanatory drawing which shows the uniaxial eccentric screw pump system which concerns on one Embodiment of this invention. (a)は本発明の一実施形態に係る分岐流路構成体を示す平面図、(b)はこの側面図である。(A) is a top view which shows the branch flow-path structure based on one Embodiment of this invention, (b) is this side view. 図2に示す分岐流路構成体に形成される分岐流路の構成を示す斜視図である。It is a perspective view which shows the structure of the branch flow path formed in the branch flow path structure shown in FIG. 分岐流路の構成を説明するための斜視図である。It is a perspective view for demonstrating the structure of a branch flow path. 分岐流路の流路設計における中継部及び導入・中間部間経路の設計方法を説明する説明図である。It is explanatory drawing explaining the design method of the relay part in the flow path design of a branched flow path, and the path | route between introduction | transduction / intermediate parts. 分岐流路の流路設計における中継部及び吐出部を結ぶ中継・吐出部間流路の水平部の設計方法を説明する説明図である。It is explanatory drawing explaining the design method of the horizontal part of the flow path between the relay part and discharge part which connects the relay part and discharge part in the flow path design of a branch flow path. (a),(b)はそれぞれ分岐流路を構成する管路の変形例を示す説明図である。(A), (b) is explanatory drawing which shows the modification of the pipe line which comprises a branch flow path, respectively. (a),(b)はそれぞれ導入部の変形例を示す説明図である。(A), (b) is explanatory drawing which shows the modification of an introduction part, respectively.
 続いて、本発明の一軸偏心ねじポンプシステム1(以下、単に「ポンプシステム1」とも称す)、及び分岐流路構成体50について、図面を参照しつつ詳細に説明する。ポンプシステム1は、一軸偏心ねじポンプ5と、分岐流路構成体50との組み合わせによって構成されている。本実施形態のポンプシステム1は、分岐流路構成体50に特徴を有するものであるが、これについての説明に先立って一軸偏心ねじポンプ5の構成について概説する。 Subsequently, the uniaxial eccentric screw pump system 1 (hereinafter also simply referred to as “pump system 1”) and the branch flow path structure 50 of the present invention will be described in detail with reference to the drawings. The pump system 1 is configured by a combination of a uniaxial eccentric screw pump 5 and a branch flow path structure 50. The pump system 1 of the present embodiment is characterized by the branch flow path structure 50. Prior to the description of this, the structure of the uniaxial eccentric screw pump 5 will be outlined.
≪一軸偏心ねじポンプ5について≫
 一軸偏心ねじポンプ5は、いわゆる回転容積型のポンプであり、ケーシング20の内部にステータ10や、ロータ30、動力伝達機構40などが収容された構成とされている。図2に示すように、ステータ10は、一軸偏心ねじポンプ5に組み込まれる部材であり、断面形状が長円であって2条の雌ねじ形状の孔を有する筒体である。ステータ10は、ゴムなどによって形成されている。ステータ10を構成するゴムの種類は、一軸偏心ねじポンプ5において移送する被搬送物の種類や性状などにあわせて適宜選択可能である。
≪About single-shaft eccentric screw pump 5≫
The uniaxial eccentric screw pump 5 is a so-called rotary displacement pump, and is configured such that the stator 10, the rotor 30, the power transmission mechanism 40, and the like are accommodated in the casing 20. As shown in FIG. 2, the stator 10 is a member incorporated in the uniaxial eccentric screw pump 5, and is a cylindrical body having an oval cross-sectional shape and having two female screw-shaped holes. The stator 10 is made of rubber or the like. The type of rubber composing the stator 10 can be appropriately selected according to the type and properties of the object to be transported transferred by the uniaxial eccentric screw pump 5.
 ケーシング20は、金属製で筒状の部材あり、長手方向一端側に取り付けられた円板形のエンドスタッド20aに第1開口22aが設けられている。また、ケーシング20の外周部分には、第2開口22bが設けられている。第2開口22bは、ケーシング20の長手方向中間部分に位置する中間部20dにおいてケーシング20の内部空間に連通している。第1,2開口22a,22bは、それぞれ一軸偏心ねじポンプ5の吐出口および吸込口として機能する。上述したステータ10は、ケーシング20において第1開口22aに隣接する位置に設けられたステータ取付部22c内に収容され、固定されている。ステータ10は、フランジ部10aをケーシング20の端部においてエンドスタッド20aによって挟み込み、エンドスタッド20aとケーシング20の本体部分とに亘ってステーボルト24を取り付けて締め付けることにより固定されている。 The casing 20 is a metallic and cylindrical member, and a first opening 22a is provided in a disc-shaped end stud 20a attached to one end in the longitudinal direction. A second opening 22 b is provided in the outer peripheral portion of the casing 20. The second opening 22 b communicates with the internal space of the casing 20 at the intermediate portion 20 d located at the intermediate portion in the longitudinal direction of the casing 20. The first and second openings 22a and 22b function as a discharge port and a suction port of the uniaxial eccentric screw pump 5, respectively. The stator 10 described above is housed and fixed in a stator attachment portion 22c provided at a position adjacent to the first opening 22a in the casing 20. The stator 10 is fixed by sandwiching the flange portion 10a at the end portion of the casing 20 by the end stud 20a and attaching and tightening the stay bolt 24 across the end stud 20a and the main body portion of the casing 20.
 ロータ30は、金属製の軸体であり、1条の雄ねじ形状とされている。ロータ30は、上述したステータ10に挿通され、ステータ10の内部において自由に偏心回転可能とされている。ロータ30は、上述したステータ10の貫通孔16に挿通され、ロータ30の外周面とステータ10の内周面とが両者の接線にわたって当接した状態とされている。また、この状態において、貫通孔16を形成しているステータ10の内周面と、ロータ30の外周面との間には、流体搬送路32が形成されている。 The rotor 30 is a metal shaft and has a single male thread shape. The rotor 30 is inserted into the stator 10 described above, and can be freely eccentrically rotated inside the stator 10. The rotor 30 is inserted through the through-hole 16 of the stator 10 described above, and the outer peripheral surface of the rotor 30 and the inner peripheral surface of the stator 10 are in contact with each other over the tangent line therebetween. Further, in this state, a fluid conveyance path 32 is formed between the inner peripheral surface of the stator 10 forming the through hole 16 and the outer peripheral surface of the rotor 30.
 流体搬送路32は、ステータ10やロータ30の長手方向に向けて螺旋状に延びており、ロータ30をステータ10の貫通孔16内において回転させると、ステータ10内を回転しながらステータ10の長手方向に進む。そのため、ロータ30を回転させると、ステータ10の一端側から流体搬送路32内に流体を吸い込むと共に、この流体を流体搬送路32内に閉じこめた状態でステータ10の他端側に向けて移送し、ステータ10の他端側において吐出させることが可能である。 The fluid conveyance path 32 extends spirally in the longitudinal direction of the stator 10 and the rotor 30, and when the rotor 30 is rotated in the through hole 16 of the stator 10, the longitudinal direction of the stator 10 is rotated while rotating in the stator 10. Go in the direction. Therefore, when the rotor 30 is rotated, fluid is sucked into the fluid conveyance path 32 from one end side of the stator 10, and is transferred toward the other end side of the stator 10 in a state of being confined in the fluid conveyance path 32. It is possible to discharge at the other end side of the stator 10.
 動力伝達機構40は、ケーシング20の外部に設けられたモータなどの動力源(図示せず)から上述したロータ30に対して動力を伝達するために設けられている。動力伝達機構40は、前述した動力源から伝達された回転動力をロータ30に伝達し、ロータ30を偏心回転させることが可能とされている。一軸偏心ねじポンプ5は、前述した動力源を作動させロータ30を回転させることにより、流体搬送路32を介して流体を搬送することが可能である。 The power transmission mechanism 40 is provided for transmitting power from the power source (not shown) such as a motor provided outside the casing 20 to the rotor 30 described above. The power transmission mechanism 40 is capable of transmitting the rotational power transmitted from the power source described above to the rotor 30 and rotating the rotor 30 eccentrically. The uniaxial eccentric screw pump 5 can transport the fluid via the fluid transport path 32 by operating the power source described above and rotating the rotor 30.
≪分岐流路構成体50について≫
 分岐流路構成体50は、上述したような構成の一軸偏心ねじポンプ5の吐出口として機能する第1開口22aに対して配管接続されている。図2に示すように、分岐流路構成体50は、金属製の流路構成プレートP1~P4を、上下方向に重ね合わせ、上下方向に各プレートP1~P4間を貫通するように挿通されたボルトによって一体化したものである。分岐流路構成体50は、導入部Sと、n個(nは2以上の自然数。以下同様。)の吐出部Fnに加え、導入部Sとn個の吐出部Fnのそれぞれとを繋ぐn系統の分岐流路Bnとを備えており、導入部Sに導入された流体をn系統の分岐流路Bnに略均等に分岐させ、n個の吐出部Fnのそれぞれから吐出させることが可能なものである。
<< About the branch channel structure 50 >>
The branch flow path structure 50 is connected to the first opening 22a functioning as a discharge port of the uniaxial eccentric screw pump 5 having the above-described structure. As shown in FIG. 2, the branch channel constituting body 50 is inserted so that metal channel constituting plates P1 to P4 are overlapped in the vertical direction and penetrated between the plates P1 to P4 in the vertical direction. Integrated with bolts. In addition to the introduction part S and n (n is a natural number greater than or equal to 2) discharge parts Fn, the branch flow path structure 50 connects the introduction part S and each of the n discharge parts Fn. A branch flow path Bn of the system is provided, and the fluid introduced into the introduction part S can be branched almost evenly into the n system of branch flow paths Bn and discharged from each of the n discharge parts Fn. Is.
 流路構成プレートP1~P4には、上述した導入部Sやn個の吐出部Fnに加え、これらを繋ぐn系統の分岐流路Bnを構成する溝が形成されている。以下、導入部Sやn個の吐出部Fn、n系統の分岐流路Bnの構成についてさらに詳細に説明する。 In the flow path constituting plates P1 to P4, in addition to the introduction part S and the n discharge parts Fn described above, grooves for forming n systems of branch flow paths Bn connecting them are formed. Hereinafter, the configuration of the introduction section S, the n discharge sections Fn, and the n-system branch flow paths Bn will be described in more detail.
 図2や図3に示すように、導入部Sは、分岐流路構成体50において最も上方に配される流路構成プレートP1に設けられた断面形状略円形の部分である。流路構成プレートP1は円盤状で金属製のプレートであり、導入部Sはこの流路構成プレートP1の略中央に設けられている。また、吐出部Fnは、分岐流路構成体50において最も下方に配される流路構成プレートP4に設けられている。吐出部Fnの配置や個数(n個)は任意のものとすることができるが、本実施形態では図3に示すように、7個の吐出部Fn(n=1~7)が直線L上に並ぶように形成されている。 As shown in FIG. 2 and FIG. 3, the introduction portion S is a substantially circular portion having a cross-sectional shape provided on the flow path configuration plate P <b> 1 disposed at the uppermost position in the branch flow path structure 50. The flow path constituting plate P1 is a disk-shaped metal plate, and the introduction part S is provided at the approximate center of the flow path constituting plate P1. Further, the discharge part Fn is provided on the flow path configuration plate P4 arranged at the lowest position in the branch flow path structure 50. The arrangement and the number (n) of the discharge portions Fn can be arbitrary, but in this embodiment, as shown in FIG. 3, seven discharge portions Fn (n = 1 to 7) are on the straight line L. It is formed to line up.
 分岐流路Bnは、流路構成プレートP1~P4に形成された溝によって構成されるものである。分岐流路Bnは、n個設けられている吐出部Fn(n=1~7)のそれぞれに対応してn系統分だけ形成されている。すなわち、第1~第nの分岐流路Bnが形成される。本実施形態では、吐出部Fnが7個設けられているため、第1の分岐流路B1~第7の分岐流路B7からなる7系統の分岐流路Bnが形成されている。 The branch channel Bn is configured by grooves formed in the channel configuration plates P1 to P4. The branch flow path Bn is formed for n systems corresponding to each of the n discharge sections Fn (n = 1 to 7). That is, the first to nth branch flow paths Bn are formed. In the present embodiment, since seven discharge portions Fn are provided, seven branch channels Bn including the first branch channel B1 to the seventh branch channel B7 are formed.
 図4に示すように、分岐流路Bn(n=1~7)は、吐出部Fn(n=1~7)に対応して設けられた各中継部Rn(n=1~7)と導入部Sとを繋ぐ導入・中継部間流路SRn(n=1~7)と、各中継部Rn(n=1~7)と各吐出部Fn(n=1~7)とを繋ぐ中継・吐出部間流路RFn(n=1~7)とに大別される。各導入・中継部間流路SRn(n=1~7)と、各中継・吐出部間流路RFn(n=1~7)とはそれぞれ連通しており、一連の流路を形成している。 As shown in FIG. 4, the branch channel Bn (n = 1 to 7) is introduced into each relay unit Rn (n = 1 to 7) provided corresponding to the discharge unit Fn (n = 1 to 7). A relay connecting the introduction / relay unit flow path SRn (n = 1 to 7) connecting the part S and each relay unit Rn (n = 1 to 7) and each discharge unit Fn (n = 1 to 7). It is broadly divided into discharge part flow paths RFn (n = 1 to 7). Each introduction / relay unit flow path SRn (n = 1 to 7) and each relay / discharge section flow path RFn (n = 1 to 7) communicate with each other to form a series of flow paths. Yes.
 図5に示すように、中継部Rn(n=1~7)は、上述した導入部Sと同心の仮想円C1上に配置されている。また、中継部Rn(n=1~7)は、仮想円C1の円周をn分割(本実施形態では7分割)する位置に配置されている。中継部Rn(n=1~7)は、仮想円C1の円周をn分割するように配置されていれば良いが、各分岐流路Bn(n=1~7)に流体を略均等に供給することを考慮すれば、仮想円C1の円周を略n等分する位置に配置することが好ましい。かかる観点から、本実施形態では、中継部Rn(n=1~7)が仮想円C1の円周を略n等分(本実施形態では7等分)する位置に配置されている。そのため、各導入・中継部間流路SRn(n=1~7)は、導入部Sを中心として放射状に形成されている。 As shown in FIG. 5, the relay part Rn (n = 1 to 7) is arranged on a virtual circle C1 concentric with the introduction part S described above. Further, the relay unit Rn (n = 1 to 7) is arranged at a position where the circumference of the virtual circle C1 is divided into n (in this embodiment, divided into 7). The relay part Rn (n = 1 to 7) may be arranged so as to divide the circumference of the virtual circle C1 into n parts, but the fluid is substantially evenly distributed to each branch channel Bn (n = 1 to 7). In consideration of supply, it is preferable to arrange the circumference of the virtual circle C1 at a position that divides the circumference of the virtual circle C1 into approximately n equal parts. From this point of view, in the present embodiment, the relay portion Rn (n = 1 to 7) is arranged at a position that divides the circumference of the virtual circle C1 into approximately n equal parts (7 equal parts in the present embodiment). Therefore, each introduction / relay part flow path SRn (n = 1 to 7) is formed radially with the introduction part S as the center.
 図4に示すように、中継・吐出部間流路RFn(n=1~7)は、それぞれ下降部Dnp(n=1~7,p=1~3)と、水平部Lnq(n=1~7,q=1~2)とを有し、これらを連通させることにより形成された屈曲流路である。具体的には、各中継・吐出部間流路RFn(n=1~7)は、下降部Dn1→水平部Ln1→下降部Dn2→水平部Ln2→下降部Dn3の順で連通し、吐出部Fn(n=1~7)に繋がるように形成された流路である。 As shown in FIG. 4, the relay-discharge part flow path RFn (n = 1 to 7) includes a descending part Dnp (n = 1 to 7, p = 1 to 3) and a horizontal part Lnq (n = 1). 7 and q = 1 to 2), and these are bent flow paths formed by communicating them. Specifically, each relay / discharge unit flow path RFn (n = 1 to 7) communicates in the order of the descending part Dn1 → the horizontal part Ln1 → the descending part Dn2 → the horizontal part Ln2 → the descending part Dn3. The flow path is formed so as to be connected to Fn (n = 1 to 7).
 本実施形態では、各下降部Dnp及び各水平部Lnqの長さが各系統毎に略同一であり、内径も略同一とされている。そのため、中継・吐出部間流路RFnの全長及び開口径は、系統によらず略同一であり、内部を流体が通過することにより発生する圧損についても略均一となる。 In this embodiment, the length of each descending part Dnp and each horizontal part Lnq is substantially the same for each system, and the inner diameter is also substantially the same. For this reason, the total length and the opening diameter of the relay / discharge portion flow path RFn are substantially the same regardless of the system, and the pressure loss caused by the passage of fluid through the inside is also substantially uniform.
≪分岐流路Bnの設計方法について≫
 続いて、上述した分岐流路Bn(n=1~7)の設計方法について説明する。分岐流路Bnにおいて、下降部Dn1,Dn2,Dn3(n=1~7)は、それぞれ流路構成プレートP2,P3,P4を上下方向に貫通するように形成された、同一開口径の貫通孔によって形成される。そのため、下降部Dn1,Dn2,Dn3(n=1~7)の長さや開口径は、分岐流路Bn(n=1~7)の系統によらず均一である。したがって、分岐流路Bを設計する場合は、水平方向に延びる部分、具体的には導入・中継部間流路SRn(n=1~7)や、中継・吐出部間流路RFn(n=1~7)を構成する水平部Lnq(n=1~7,q=1~2)の配置が問題となる。以下、導入・中継部間流路SRn(n=1~7)や、水平部Lnq(n=1~7,q=1~2)の設計方法を中心に説明する。
≪About design method of branch channel Bn≫
Next, a method for designing the above-described branch channel Bn (n = 1 to 7) will be described. In the branch flow path Bn, the descending portions Dn1, Dn2, Dn3 (n = 1 to 7) are through holes having the same opening diameter formed so as to penetrate the flow path constituting plates P2, P3, P4 in the vertical direction, respectively. Formed by. Therefore, the lengths and opening diameters of the descending portions Dn1, Dn2, Dn3 (n = 1 to 7) are uniform regardless of the system of the branch flow path Bn (n = 1 to 7). Therefore, when the branch flow path B is designed, a portion extending in the horizontal direction, specifically, the introduction / relay section flow path SRn (n = 1 to 7) or the relay / discharge section flow path RFn (n = The arrangement of the horizontal portions Lnq (n = 1 to 7, q = 1 to 2) constituting 1 to 7) becomes a problem. Hereinafter, the design method of the introduction / relay unit flow path SRn (n = 1 to 7) and the horizontal part Lnq (n = 1 to 7, q = 1 to 2) will be mainly described.
 導入・中継部間流路SRn(n=1~7)や、水平部Lnq(n=1~7,q=1~2)は、導入部Sや、中継部Rn、吐出部Fn(n=1~7)の水平方向の位置関係は、これらを仮想の水平面H上に投影した地点を基準にして定められる。具体的には、導入部Sや中継部Rn、吐出部Fn(n=1~7)の軸心位置を通る鉛直線と水平面Hとの交点が、それぞれ導入基準点s、中継基準点rn、吐出基準点fnとして定められる(図4参照)。 The introduction / relay unit flow path SRn (n = 1 to 7) and the horizontal portion Lnq (n = 1 to 7, q = 1 to 2) are introduced into the introduction unit S, the relay unit Rn, and the discharge unit Fn (n = The positional relationship in the horizontal direction of 1 to 7) is determined with reference to a point where these are projected on the virtual horizontal plane H. Specifically, the intersections of the vertical line passing through the axial position of the introduction part S, the relay part Rn, and the discharge part Fn (n = 1 to 7) and the horizontal plane H are respectively the introduction reference point s, the relay reference point rn, It is determined as a discharge reference point fn (see FIG. 4).
 導入・中継部間流路SRn(n=1~7)は、導入部Sと中継部Rnとを結ぶ流路であるため、中継部Rn(n=1~7)を定める必要がある。図5に示すように、中継部Rn(n=1~7)は、導入部Sに対応して水平面H上に設定された導入基準点sを中心として半径r1の仮想円C1が規定され、仮想円C1の円周を略n等分する位置に中継部Rn(n=1~7)に対応する中継基準点rnが設定される。本実施形態では、分岐流路Bnを7系統形成する必要があるため、仮想円C1の円周上に、360/7[度]毎に中継基準点rn(n=1~7)が設定される。 Since the introduction / relay unit flow path SRn (n = 1 to 7) is a flow path connecting the introduction part S and the relay part Rn, it is necessary to define the relay part Rn (n = 1 to 7). As shown in FIG. 5, the relay part Rn (n = 1 to 7) defines a virtual circle C1 having a radius r1 around the introduction reference point s set on the horizontal plane H corresponding to the introduction part S, A relay reference point rn corresponding to the relay unit Rn (n = 1 to 7) is set at a position that divides the circumference of the virtual circle C1 into approximately n equal parts. In this embodiment, since it is necessary to form seven branches Bn, the relay reference point rn (n = 1 to 7) is set every 360/7 [degree] on the circumference of the virtual circle C1. The
 ここで、水平部Ln1(n=1~7)は、流路構成プレートP2,P3の間に形成され、上述した中継部Rn(n=1~7)の直下の位置を基準として水平方向に延びる流路である。また、水平部Ln2(n=1~7)は、流路構成プレートP3,P4の間に形成され、上述した吐出部Fn(n=1~7)の直上の位置を基準として水平方向に延びる流路である。さらに、水平部Ln1(n=1~7)の流路長は各系統毎に均一である必要があり、水平部Ln2(n=1~7)の流路長も各系統毎に均一である必要がある。 Here, the horizontal portion Ln1 (n = 1 to 7) is formed between the flow path constituting plates P2 and P3, and is set in the horizontal direction with reference to the position directly below the relay portion Rn (n = 1 to 7). It is an extending flow path. Further, the horizontal portion Ln2 (n = 1 to 7) is formed between the flow path constituting plates P3 and P4 and extends in the horizontal direction with reference to the position immediately above the discharge portion Fn (n = 1 to 7). It is a flow path. Further, the channel length of the horizontal portion Ln1 (n = 1 to 7) needs to be uniform for each system, and the channel length of the horizontal portion Ln2 (n = 1 to 7) is also uniform for each system. There is a need.
 そこで、水平部Ln1,Ln2の設計に際しては、先ず、図6に示すように、吐出部Fn(n=1~7)に対応するように水平面H上に設定された中継基準点rn(n=1~7)を中心とする半径r2の仮想円C2n(n=1~7)、及び吐出基準点fn(n=1~7)を中心とし仮想円C2n(n=1~7)と交差する半径r3の仮想円C3n(n=1~7)が水平面H上に設定される。これにより形成された仮想円C2n(n=1~7)と仮想円C3n(n=1~7)との交点が、屈曲基準点xn(n=1~7)として定められる。 Therefore, when designing the horizontal portions Ln1 and Ln2, first, as shown in FIG. 6, the relay reference point rn (n = n) set on the horizontal plane H so as to correspond to the discharge portion Fn (n = 1 to 7). 1 to 7) intersects a virtual circle C2n (n = 1 to 7) with a radius r2 centered on the center and a virtual circle C2n (n = 1 to 7) centered on a discharge reference point fn (n = 1 to 7). A virtual circle C3n (n = 1 to 7) having a radius r3 is set on the horizontal plane H. The intersection of the virtual circle C2n (n = 1 to 7) and the virtual circle C3n (n = 1 to 7) formed thereby is determined as the bending reference point xn (n = 1 to 7).
 第1の分岐流路B1の設計方法を例に挙げて具体的に説明すると、水平部L11,L12の設計に際して、図6に示すように吐出部F1に相当する位置に吐出基準点f1が設定される。また、第1の分岐流路B1において想定される中継基準点r1を中心として半径r2の仮想円C21、及び吐出基準点f1を中心とする半径r3の仮想円C31が設定される。仮想円C21,C31の交点X1と中継基準点r1とを結ぶ位置に水平部L11が設定され、交点X1と吐出基準点f1とを結ぶ位置に水平部L12が設定される。これと同様にして、第2~第7の分岐流路B2~B7の水平部Ln1,Ln2(n=1~7)が設定される。 Specifically, the design method of the first branch flow path B1 will be described as an example. When designing the horizontal portions L11 and L12, the discharge reference point f1 is set at a position corresponding to the discharge portion F1 as shown in FIG. Is done. Further, a virtual circle C21 having a radius r2 centered on the relay reference point r1 assumed in the first branch flow path B1 and a virtual circle C31 having a radius r3 centered on the discharge reference point f1 are set. A horizontal portion L11 is set at a position connecting the intersection point X1 of the virtual circles C21 and C31 and the relay reference point r1, and a horizontal portion L12 is set at a position connecting the intersection point X1 and the discharge reference point f1. Similarly, horizontal portions Ln1 and Ln2 (n = 1 to 7) of the second to seventh branch flow paths B2 to B7 are set.
 上述したようにして中継基準点rn、屈曲基準点xn、及び吐出基準点fnが定められると、図4に示すように、これらを通る鉛直線Vrn,Vxn,Vfnが設定される。また、流路構成プレートP1,P2間を通る水平面J1、流路構成プレートP2,P3間を通る水平面J2、流路構成プレートP3,P4間を通る水平面J3が想定される。鉛直線Vrnと水平面J1との交点が導入・中継部間流路SRn(n=1~7)と下降部Dn1との境界部となる。また、鉛直線Vxnと水平面J2との交点が水平部Ln1と下降部Dn2との境界部となり、鉛直線Vxnと水平面J3との交点が下降部Dn2と水平部Ln2との境界部となる。さらに、鉛直線Vfnと水平面J3との交点が水平部Ln2と下降部Dn3との境界部となる。このようにして導入・中間部流路Srnと、中継・吐出部間流路RFn(n=1~7)とを設計することにより、流路長が同一であり導入部Sから各吐出部Fnに繋がる一連の分岐流路Bn(n=1~7)を形成することができる。 When the relay reference point rn, the bending reference point xn, and the discharge reference point fn are determined as described above, vertical lines Vrn, Vxn, and Vfn passing through these are set as shown in FIG. Further, a horizontal plane J1 passing between the flow path component plates P1 and P2, a horizontal plane J2 passing between the flow path component plates P2 and P3, and a horizontal plane J3 passing between the flow path component plates P3 and P4 are assumed. The intersection of the vertical line Vrn and the horizontal plane J1 serves as a boundary between the introduction / relay unit flow path SRn (n = 1 to 7) and the descending part Dn1. Further, the intersection of the vertical line Vxn and the horizontal plane J2 becomes the boundary between the horizontal portion Ln1 and the descending portion Dn2, and the intersection of the vertical line Vxn and the horizontal plane J3 becomes the boundary between the descending portion Dn2 and the horizontal portion Ln2. Furthermore, the intersection of the vertical line Vfn and the horizontal plane J3 becomes the boundary between the horizontal portion Ln2 and the descending portion Dn3. Thus, by designing the introduction / intermediate part flow path Srn and the relay / discharge part flow path RFn (n = 1 to 7), the flow path length is the same, and the introduction part S to each discharge part Fn. A series of branch flow paths Bn (n = 1 to 7) connected to can be formed.
 上述したように、本実施形態の分岐流路構成体50では、導入部Sと同心位置にある導入基準点sを中心とする仮想円C1の円周をn分割する位置にn個の中継基準点rnが設定され、水平面J1上において各中継基準点rnに対応する位置に中継部Rnが設けられている。さらに、導入部Sと各中継部Rnとを繋ぐようにn系統の導入・中継部間流路SRnが設けられていることから導入・中継部間流路SRnの長さが各系統毎に均一である。そのため、分岐流路構成体50では、一軸偏心ねじポンプ5から導入部Sに導入された流体を中継部Rnに至るまでの区間において、各分岐流路Bnに対して略均一の圧力及び流量で流通させることが可能である。 As described above, in the branch flow path structure 50 of the present embodiment, n relay references are provided at positions where the circumference of the virtual circle C1 centered on the introduction reference point s concentric with the introduction part S is divided into n. A point rn is set, and a relay unit Rn is provided at a position corresponding to each relay reference point rn on the horizontal plane J1. Further, since the n-system introduction / relay unit flow path SRn is provided so as to connect the introduction section S and each relay section Rn, the length of the introduction / relay section flow path SRn is uniform for each system. It is. For this reason, in the branch flow path structure 50, the fluid introduced from the uniaxial eccentric screw pump 5 to the introduction part S reaches the relay part Rn at a substantially uniform pressure and flow rate with respect to each branch flow path Bn. It can be distributed.
 また、本実施形態の分岐流路構成体50では、上述したような流路設計法に則って設計することにより、n個の中継部Rnからこれらに対応して設けられた各吐出部Fnまで至る各中継・吐出部間流路RFnの長さがそれぞれ均一とされている。そのため、分岐流路構成体50では、各中継・吐出部間流路RFnを流体が流れることにより発生する圧損や流体の流量を分岐流路Bnによらず均一化することが可能である。したがって、分岐流路構成体50によれば、導入部Sに導入された流体を吐出量や吐出圧を略一定としつつ、所望の分岐数に分岐することが可能となる。 Moreover, in the branch flow path structure 50 of this embodiment, by designing in accordance with the flow path design method as described above, from the n relay sections Rn to the discharge sections Fn provided corresponding thereto. The length of each of the relay-discharge portion flow paths RFn is made uniform. Therefore, in the branch flow path structure 50, it is possible to make the pressure loss and the flow rate of the fluid generated by the fluid flowing through each relay / discharge portion flow path RFn uniform, regardless of the branch flow path Bn. Therefore, according to the branch flow path structure 50, it is possible to branch the fluid introduced into the introduction section S into a desired number of branches while making the discharge amount and discharge pressure substantially constant.
 上述したように、分岐流路構成体50を用いることにより、各吐出部Fnにおける流体の吐出量や吐出圧を均一化することができる。そのため、従来技術のように各吐出部Fnやこれに別途接続された流路に吐出量や吐出圧を調整するための弁やノズルなどを設ける必要がなく、弁やノズルの調整の必要もない。したがって、上述した分岐流路構成体50を用いて一軸偏心ねじポンプ5から供給されてきた流体を複数系統に分岐させることとすれば、流路構成が簡略化され、吐出量や吐出圧の調整が不要となり、メンテナンスや設置作業に要する手間を最小限に抑制することが可能となる。 As described above, by using the branch flow path structure 50, the discharge amount and discharge pressure of the fluid in each discharge portion Fn can be made uniform. Therefore, it is not necessary to provide a valve or nozzle for adjusting the discharge amount or discharge pressure in each discharge portion Fn or a flow path separately connected to the discharge portion Fn as in the prior art, and there is no need to adjust the valve or nozzle. . Therefore, if the fluid supplied from the uniaxial eccentric screw pump 5 is branched into a plurality of systems using the above-described branch flow path structure 50, the flow path structure is simplified and the discharge amount and the discharge pressure are adjusted. Is eliminated, and the labor required for maintenance and installation work can be minimized.
 分岐流路構成体50は、上述したようにして流路設計を行うことにより導入・中継部間流路SRn及び中継・吐出部間流路RFnの流路長を分岐流路Bnによらず同一とすることが可能である。したがって、分岐流路構成体50は、上述したように吐出部Fnを所定の直線上に配置するだけでなく、要望に応じて適宜配置することが可能であり、吐出部Fnのレイアウト選択の自由度が極めて高い。また、分岐流路構成体50によれば、従来技術のように吐出部Fnの数を2のn乗個としなくても各吐出部Fnにおける流体の吐出量や吐出圧を均一化することが可能であり、吐出部Fnの数を要望に応じて適宜調整することが可能である。 The branch flow path structure 50 has the same flow path length between the introduction / relay section flow path SRn and the relay / discharge section flow path RFn regardless of the branch flow path Bn by performing the flow path design as described above. Is possible. Therefore, the branch flow path structure 50 can arrange not only the discharge part Fn on a predetermined straight line as described above, but also can appropriately arrange the discharge part Fn according to the demand, and freedom of layout selection of the discharge part Fn. The degree is extremely high. Further, according to the branch flow path structure 50, the discharge amount and discharge pressure of the fluid in each discharge portion Fn can be made uniform even if the number of the discharge portions Fn is not 2 n as in the prior art. It is possible to adjust the number of ejection portions Fn as appropriate according to demand.
 本実施形態の分岐流路構成体50は、下降部Dnpの長さの総和、及び水平部Lnqの長さの総和が分岐流路Bnの系統によらず同一とされている。また、分岐流路構成体50は、各分岐流路Bnを構成する各部位、具体的には導入・中継部間流路SRn、中継・吐出部間流路RFnを構成する管路の大きさや断面形状が略同一とされている。さらに、各分岐系統Bnにおいて水平部Lnqと下降部Dnpとの境界に形成される屈曲部分の総数が同一である。そのため、各中継・吐出部間流路RFnを流体が流れることにより発生する圧損や、流量分布を均一が分岐流路Bnの系統によらず略均一であり、各吐出部Fnにおける流体の吐出量や吐出圧を均一化することができる。 In the branch flow path structure 50 of this embodiment, the sum of the lengths of the descending portions Dnp and the sum of the lengths of the horizontal portions Lnq are the same regardless of the system of the branch flow paths Bn. Further, the branch flow path structure 50 includes the size of each part constituting each branch flow path Bn, specifically, the size of the pipe line constituting the flow path SRn between the introduction / relay part and the flow path RFn between the relay / discharge part. The cross-sectional shapes are substantially the same. Furthermore, the total number of bent portions formed at the boundary between the horizontal portion Lnq and the descending portion Dnp is the same in each branch system Bn. Therefore, the pressure loss caused by the fluid flowing through each relay / discharge portion flow path RFn and the uniform flow distribution are substantially uniform regardless of the branch flow path Bn system, and the amount of fluid discharged from each discharge portion Fn. And the discharge pressure can be made uniform.
 本実施形態で示した分岐流路Bnは、水平部Lnqと下降部Dnpとが、境界部分において大きく湾曲することなく屈曲した例を例示したが、本発明はこれに限定されるものではない。すなわち、本実施形態の分岐流路構成体50は、溝を形成した流路構成プレートP1~P4を重ね合わせることにより各分岐流路Bnを構成したものであるため、水平部Lnqと下降部Dnpとの境界部分を大きく湾曲させることなく連続させることが可能であったが、例えば銅管の配管を屈曲させて各分岐流路Bnを形成する場合は、本実施形態で示したものよりも水平部Lnqと下降部Dnpとの境界部分において大きく湾曲させざるを得ない。そのため、分岐流路Bnは、図7(a)に示すように本実施形態において示したものよりも大きな曲率で前記境界部分が湾曲したものであってもよい。 The branch flow path Bn shown in the present embodiment exemplifies an example in which the horizontal portion Lnq and the descending portion Dnp are bent without greatly bending at the boundary portion, but the present invention is not limited to this. That is, the branch flow path structure 50 according to the present embodiment is formed by superimposing the flow path configuration plates P1 to P4 in which grooves are formed, so that each branch flow path Bn is configured. Therefore, the horizontal portion Lnq and the descending portion Dnp In the case where each branch passage Bn is formed by bending a pipe of a copper tube, for example, it is more horizontal than that shown in the present embodiment. It must be greatly curved at the boundary portion between the portion Lnq and the descending portion Dnp. Therefore, as shown in FIG. 7A, the branch channel Bn may be one in which the boundary portion is curved with a larger curvature than that shown in the present embodiment.
 なお、上述したように境界部分を大きく湾曲させた場合についても、分岐流路Bnは系統によらず全体として略同一の流路長を有し、系統によらず下降部Dnpの長さの総和が同一であり、水平部Lnqの長さの総和が同一であり、さらに屈曲部分の数が同一となるように流路設計される必要がある。これらの条件を満足する限りにおいて、本実施形態において例示したものと同様に、各吐出部Fnにおける流体の吐出圧や吐出量を略均一化することが可能である。 Even when the boundary portion is largely curved as described above, the branch flow path Bn has the substantially same flow path length as a whole regardless of the system, and the sum of the lengths of the descending portions Dnp regardless of the system. Are the same, the total sum of the lengths of the horizontal portions Lnq is the same, and the flow paths must be designed so that the number of bent portions is the same. As long as these conditions are satisfied, it is possible to make the discharge pressure and discharge amount of the fluid in each discharge portion Fn substantially uniform, similar to those exemplified in the present embodiment.
 分岐流路構成体50においては、前記各中継・吐出部間流路RFnが屈曲部を備えており、屈曲部を境として下流側の水平部Lnqの向きを、屈曲部よりも上流側(上方側)の水平部Lnqとは異なる方向に向けることが可能である。また、中継・吐出部間流路RFnは、それぞれ上下方向に複数箇所において屈曲部を備えた構成とされている。そのため、分岐流路構成体50は、各吐出部Fnのレイアウトにあわせて各中継・吐出部間流路RFnを水平方向に任意の位置まで到達させることが可能であり、流路構成上の自由度が高い。 In the branch flow path structure 50, each of the relay / discharge section flow paths RFn includes a bent portion, and the horizontal portion Lnq on the downstream side is located upstream of the bent portion (above the bent portion). Can be directed in a direction different from the horizontal portion Lnq. In addition, the relay / discharge portion flow path RFn is configured to include bent portions at a plurality of locations in the vertical direction. Therefore, the branch flow path structure 50 can reach each relay / discharge section flow path RFn to an arbitrary position in the horizontal direction according to the layout of each discharge section Fn. High degree.
 本実施形態において示した分岐流路構成体50は、各分岐流路Bnを構成する流路の開口径が部位によらず均一のものであったが、本発明はこれに限定されるものではなく、全系統の中継・吐出部間流路RFnに、図7(b)に示すように流路の開口径が縮小された部位(縮径部60)を設けた構成とすることも可能である。また逆に、各分岐流路Bnに、流路径が他の部位よりも拡大した部位(拡径部)を設けることも可能である。さらに、各分岐流路Bnを構成する部位の一つとして流路の断面形状が他の部位とは異なる部位を設けることも可能である。なお、前述した縮径部60などの流路径や断面形状が他と異なる部位を設ける場合は、各分岐流路Bnにおいて流体が流れることにより発生する圧損や流体の流量等の均一化を図るべく、各分岐流路Bnにおいて同様の位置に縮径部60などの部位を設けることが望ましい。また、各分岐流路Bnに設ける縮径部60などの部位の流路径や流路断面積は、分岐流路Bnの系統によらず略均一であることが望ましい。このようにすることにより、縮径部60を設けた場合であっても、各分岐流路Bnにおける圧損や流体の流量のバランスをより一層均一化することが可能となり、各吐出部Fnにおける流体の吐出量や吐出圧のばらつきが発生するのを防止することができる。 In the branch flow path structure 50 shown in the present embodiment, the opening diameter of the flow path constituting each branch flow path Bn is uniform regardless of the part, but the present invention is not limited to this. Alternatively, it is also possible to adopt a configuration in which the part (reduced diameter part 60) in which the opening diameter of the flow path is reduced as shown in FIG. is there. Conversely, each branch channel Bn can be provided with a portion (diameter enlarged portion) in which the channel diameter is larger than other portions. Furthermore, it is also possible to provide a part where the cross-sectional shape of the flow path is different from other parts as one of the parts constituting each branch flow path Bn. In addition, when providing the site | parts from which the flow path diameters and cross-sectional shape different from others, such as the diameter reducing part 60 mentioned above, in order to aim at equalization of the pressure loss generated by the fluid flowing in each branch flow path Bn, the fluid flow rate, etc. It is desirable to provide a portion such as the reduced diameter portion 60 at the same position in each branch channel Bn. Further, it is desirable that the channel diameter and the channel cross-sectional area of a portion such as the reduced diameter portion 60 provided in each branch channel Bn are substantially uniform regardless of the system of the branch channel Bn. In this way, even when the reduced diameter portion 60 is provided, it is possible to further uniform the balance of pressure loss and fluid flow rate in each branch flow path Bn, and fluid in each discharge portion Fn. It is possible to prevent variations in the discharge amount and discharge pressure.
 分岐流路構成体50は、溝が形成された流路構成プレートP1~P4を重ね合わせることにより各分岐流路Bnが形成されるものであるため、上述した設計方法により設計された分岐流路Bnを容易かつ的確に形成することが可能である。なお、本実施形態では、流路構成プレートP1~P4を重ね合わせることにより各分岐流路Bnを構成する例を例示したが、本発明はこれに限定されるものではなく、金属管や樹脂管などを適宜屈曲等させることにより、上述した分岐流路Bnを形成することとしてもよい。また、分岐流路構成体50を複数種類の共通部品によって構成されるものとしておき、前記共通部品を適宜組み合わせることにより所望の配置や形状の分岐流路Bnを形成可能なものであってもよい。さらに、分岐流路構成体50は、導入・中継部間流路SRnを構成する部分と、中継・吐出部管流路RFnを構成する部分とを別々のパーツして構成し、これらを連結することにより各分岐流路Bnを構成可能なものであってもよい。また、例えば下降部Dnpを構成するパーツと水平部Lnqを構成するパーツとを別々に準備し、これらを適宜接続することにより中継・吐出部管流路RFnを構成可能なものとしてもよい。 Since the branch channel constituting body 50 is such that each branch channel Bn is formed by overlapping the channel constituting plates P1 to P4 in which grooves are formed, the branch channel designed by the above-described design method. It is possible to form Bn easily and accurately. In the present embodiment, the example in which each branch channel Bn is configured by overlapping the channel configuration plates P1 to P4 is illustrated, but the present invention is not limited to this, and a metal tube or a resin tube is used. The above-described branch flow path Bn may be formed by appropriately bending or the like. Further, the branch flow path structure 50 may be configured by a plurality of types of common parts, and the branch flow path Bn having a desired arrangement and shape may be formed by appropriately combining the common parts. . Further, the branch flow path structure 50 is configured by connecting a part constituting the introduction / relay part flow path SRn and a part constituting the relay / discharge part pipe flow path RFn as separate parts. Thus, each branch channel Bn may be configured. Further, for example, a part that constitutes the descending part Dnp and a part that constitutes the horizontal part Lnq are separately prepared, and the relay / discharge part pipe flow path RFn may be configured by appropriately connecting them.
 本実施形態で示した分岐流路構成体50は、各流路構成プレートP1~P4の境界に想定される水平面J1~J3に相当する位置において各分岐流路Bnを屈曲させたものであるため、同一の高さにおいて各分岐流路Bnが屈曲したものであったが、本発明はこれに限定されるものではなく、各分岐流路Bnの全長が同一になるという条件を満足する限り、各分岐流路Bnが異なる高さにおいて屈曲したものであってもよい。各分岐流路Bnが異なる高さにおいて屈曲した構成とした場合は、分岐流路Bn同士の干渉を容易に回避することが可能となり、より一層各分岐流路Bnや各吐出部Fnのレイアウトの自由度を高めることが可能となる。 Since the branch channel structure 50 shown in the present embodiment is formed by bending each branch channel Bn at a position corresponding to the horizontal planes J1 to J3 assumed at the boundaries of the channel configuration plates P1 to P4. Each branch flow path Bn is bent at the same height, but the present invention is not limited to this, as long as the total length of each branch flow path Bn is the same, Each branch channel Bn may be bent at different heights. When each branch flow path Bn is bent at different heights, interference between the branch flow paths Bn can be easily avoided, and the layout of each branch flow path Bn and each discharge portion Fn can be further improved. It becomes possible to increase the degree of freedom.
 本実施形態では、導入部Sに繋がる各分岐流路Bnが途中で分岐することなく、一連の流路を構成するものであったが、本発明はこれに限定されるものではなく、各分岐流路Bnがそれぞれ途中においてさらに多系統に分岐するように形成されてもよい。なお、各分岐流路Bnを途中で分岐させる場合は、各分岐流路Bn毎に分岐数を同一にすることが望ましい。また、各分岐流路Bnを途中で分岐させる場合についても、上述した流路設計法に準じて流路設計することにより、流体が流れることにより発生する圧損や流量を均一化し、各吐出部Fnにおける流体の吐出圧や吐出量を均一化することが可能となる。 In the present embodiment, each branch channel Bn connected to the introduction part S forms a series of channels without branching in the middle, but the present invention is not limited to this, and each branch The flow paths Bn may be formed so as to further branch into multiple systems on the way. In addition, when branching each branch flow path Bn on the way, it is desirable to make the number of branches the same for each branch flow path Bn. In addition, also when each branch channel Bn is branched in the middle, by designing the channel according to the above-described channel design method, the pressure loss and the flow rate generated by the flow of fluid are made uniform, and each discharge unit Fn It is possible to make the discharge pressure and discharge amount of the fluid uniform.
 本実施形態の分岐流路構成体50では、導入部Sの断面形状が円形であり、周方向に略等間隔に各分岐流路Bnが接続されているため、一軸偏心ねじポンプ5から導入部Sに導入された流体を各分岐流路Bnに対して略均一に供給することができる。なお、導入部Sは、断面形状が円形のものに限定される訳ではなく、断面形状が多角形のものであっても良いが、各分岐流路Bnに対して略均一に流体を供給するとの観点からすると断面形状が略正n角形、あるいは、略正n×a角形(aは自然数)であることが好ましい。具体的には、例えば吐出部Fnが3つ設けられており、分岐流路Bnが3系統形成される場合は、図8(a)に示すように導入部Sの断面形状を正三角形としたり、図8(b)に示すように正六角形(n=3,a=2,n×a=6)としたりすることが可能である。このように導入部Sの形状を調整することにより、一軸偏心ねじポンプ5側から導入部Sに導入された流体を角分岐流路Bnに略均一に供給することが可能となる。 In the branch flow path structure 50 of this embodiment, the cross-sectional shape of the introduction part S is circular and each branch flow path Bn is connected at substantially equal intervals in the circumferential direction. The fluid introduced into S can be supplied substantially uniformly to each branch channel Bn. The introduction portion S is not limited to a circular cross-sectional shape, and may have a polygonal cross-sectional shape. However, when the fluid is supplied substantially uniformly to each branch channel Bn. From this point of view, it is preferable that the cross-sectional shape is a substantially positive n-gon or a substantially positive n × a square (a is a natural number). Specifically, for example, when three discharge parts Fn are provided and three branch flow paths Bn are formed, the cross-sectional shape of the introduction part S is an equilateral triangle as shown in FIG. As shown in FIG. 8B, a regular hexagon (n = 3, a = 2, nxa = 6) can be used. By adjusting the shape of the introduction part S in this way, the fluid introduced into the introduction part S from the uniaxial eccentric screw pump 5 side can be supplied to the angular branch flow path Bn substantially uniformly.
 本実施形態では、導入・中間部間流路SRnが水平方向に延びる部分のみを有するものであったが、本発明はこれに限定されるものであってもよく、中継・吐出部間流路RFnの下降部Dnpのように上下方向(鉛直方向)に延びる部分を有するものであってもよい。かかる構成とした場合についても、上述した分岐流路Bnの設計方法において説明したのと同様に、仮想円C1の円周をn分割する位置に設けられた中継部Rnと導入部Sとを繋ぐよう、各導入・中間部間流路SRnが流路設計されることにより、導入部Sから各分岐流路Bnに対して流体を略均一に供給することが可能となる。 In this embodiment, the introduction / intermediate portion flow path SRn has only a portion extending in the horizontal direction, but the present invention may be limited to this, and the relay / discharge section flow path It may have a portion extending in the vertical direction (vertical direction) like the descending portion Dnp of RFn. Also in the case of such a configuration, the relay part Rn and the introduction part S provided at the position where the circumference of the virtual circle C1 is divided into n are connected, as described in the method for designing the branch flow path Bn. As described above, by designing the flow paths SRn between the introduction / intermediate sections, it becomes possible to supply the fluid from the introduction section S to the branch flow paths Bn substantially uniformly.
 本実施形態では、分岐流路構成体50を一軸偏心ねじポンプ5と組み合わせることにより一軸偏心ねじポンプシステム1を構成した例を例示したが、本発明はこれに限定されるものではなく、分岐流路構成体50は一軸偏心ねじポンプ5以外の従来公知のポンプなどと組み合わせて使用される等してもよい。 In the present embodiment, the example in which the uniaxial eccentric screw pump system 1 is configured by combining the branch flow path structure 50 with the uniaxial eccentric screw pump 5 is illustrated, but the present invention is not limited to this, and the branch flow The path structure 50 may be used in combination with a conventionally known pump other than the uniaxial eccentric screw pump 5.
  1   一軸偏心ねじポンプシステム
  5   一軸偏心ねじポンプ
 50   分岐流路構成体
 60   縮径部
 Pn   流路構成プレート
  S   導入部
 Fn   吐出部
 Bn   分岐流路
 Rn   中継部
SRn   導入・中継部間流路
RFn   中継・吐出部間流路
Dnp   下降部
Lnq   水平部
  s   導入基準点
 rn   中継基準点
 fn   吐出基準点
  H   水平面
  V   鉛直線
DESCRIPTION OF SYMBOLS 1 Uniaxial eccentric screw pump system 5 Uniaxial eccentric screw pump 50 Branch flow path structure 60 Reduced diameter part Pn Flow path structure plate S Introduction part Fn Discharge part Bn Branch flow path Rn Relay part SRn Introduction / relay part flow path RFn Discharge part flow path Dnp Lower part Lnq Horizontal part s Introduction reference point rn Relay reference point fn Discharge reference point H Horizontal plane V Vertical line

Claims (9)

  1.  導入部から導入された流体をn個の吐出部から均等に吐出させるための分岐流路を構成可能な分岐流路構成体であって、
     前記n個の吐出部のそれぞれに対応するようにn個の中継部が設けられており、
     各分岐流路が、
     前記導入部と前記n個の中継部とを繋ぐn系統の導入・中継部間流路と、
     前記n個の中継部と当該中継部に対応する吐出部とを繋ぐn系統の中継・吐出部間流路とを有し、
     導入部の軸心を通る鉛直線上の一点を中心とする仮想円の円周をn分割する点に対応する位置に前記中継部が配置され、
     前記n系統の中継・吐出部間流路の長さがそれぞれ同一のものであることを特徴とする分岐流路構成体。
    A branch flow path structure capable of configuring a branch flow path for discharging fluid introduced from the introduction section uniformly from the n discharge sections,
    N relay portions are provided so as to correspond to each of the n discharge portions,
    Each branch channel is
    N system introduction / relay unit flow paths connecting the introduction unit and the n relay units;
    Having n channels of relay / discharge unit channels connecting the n relay units and the discharge units corresponding to the relay units,
    The relay unit is arranged at a position corresponding to a point that divides the circumference of a virtual circle centered on one point on a vertical line passing through the axis of the introduction unit into n parts,
    The length of the flow path between the n systems of the relay / discharge sections is the same.
  2.  前記中継部が、前記仮想円の円周を略n等分する位置に配置されていることを特徴とする請求項1に記載の分岐流路構成体。 The branch flow path structure according to claim 1, wherein the relay section is arranged at a position that divides the circumference of the virtual circle into approximately n equal parts.
  3.  前記各中継・吐出部間流路が、下方に向けて流体を流動させることが可能な下降部と、水平方向に流体を流動させることが可能な水平部とを備え、前記水平部と前記下降部との間に屈曲部を有する流路であり、
     各中継・吐出部間流路に係る前記水平部の長さの総和が同一であり、
     各中継・吐出部間流路に係る前記下降部の長さの総和が同一であり、
     各中継・吐出部間流路における前記屈曲部の数が同一であることを特徴とする請求項1又は2に記載の分岐流路構成体。
    Each of the flow paths between the relay / discharge sections includes a descending portion capable of causing fluid to flow downward, and a horizontal portion capable of causing fluid to flow in a horizontal direction, and the horizontal portion and the descending portion. A flow path having a bent portion between the portion and
    The sum of the lengths of the horizontal portions related to the flow paths between the relay and discharge portions is the same,
    The total sum of the lengths of the descending portions related to the flow paths between the relay and discharge portions is the same,
    3. The branch flow path structure according to claim 1, wherein the number of the bent portions in each relay / discharge section flow path is the same.
  4.  前記各中継・吐出部間流路が、屈曲部が上下方向に複数形成されたものであることを特徴とする請求項3に記載の分岐流路構成体。 The branch flow path structure according to claim 3, wherein each of the flow paths between the relay / discharge sections has a plurality of bent portions formed in the vertical direction.
  5.  前記各中継・吐出部間流路に、流路径が縮小された縮径部が設けられていることを特徴とする請求項1~4のいずれかに記載の分岐流路構成体。 The branch flow path structure according to any one of claims 1 to 4, wherein each of the flow paths between the relays and the discharge sections is provided with a reduced diameter portion having a reduced flow path diameter.
  6.  各分岐流路の流路径が、分岐流路によらず略均一であることを特徴とする請求項1~5のいずれかに記載の分岐流路構成体。 6. The branch channel structure according to claim 1, wherein the channel diameter of each branch channel is substantially uniform regardless of the branch channel.
  7.  前記各分岐流路を構成する溝が形成されたプレートを重ね合わせることにより構成されることを特徴とする請求項1~6のいずれかに記載の分岐流路構成体。 The branch flow path structure according to any one of claims 1 to 6, wherein the branch flow path structure is configured by superposing plates on which grooves forming the respective branch flow paths are formed.
  8.  導入部の断面形状が円形、あるいは、正n×a角形(aは任意の自然数)であることを特徴とする請求項1~7のいずれかに記載の分岐流路構成体。 The branch channel structure according to any one of claims 1 to 7, wherein a cross-sectional shape of the introduction portion is a circle or a regular n × a square (a is an arbitrary natural number).
  9.  請求項1~8のいずれかに記載の分岐流路構成体と、一軸偏心ねじポンプとを有し、
     前記一軸偏心ねじポンプから吐出された流体を、前記分岐流路構成体の導入部に導入可能とされていることを特徴とする一軸偏心ねじポンプシステム。
    A branch channel structure according to any one of claims 1 to 8 and a uniaxial eccentric screw pump,
    A uniaxial eccentric screw pump system characterized in that fluid discharged from the uniaxial eccentric screw pump can be introduced into an introduction portion of the branch flow path structure.
PCT/JP2011/056956 2010-03-29 2011-03-23 Branched duct construct, and uniaxial eccentric screw pump system WO2011122413A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180016457.6A CN102893030B (en) 2010-03-29 2011-03-23 Difference flow channel structure and a uniaxial eccentric screw pump system
KR1020127025724A KR101801995B1 (en) 2010-03-29 2011-03-23 Branched duct construct, and uniaxial eccentric screw pump system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-075776 2010-03-29
JP2010075776A JP5614740B2 (en) 2010-03-29 2010-03-29 Branch channel structure and uniaxial eccentric screw pump system

Publications (1)

Publication Number Publication Date
WO2011122413A1 true WO2011122413A1 (en) 2011-10-06

Family

ID=44712123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056956 WO2011122413A1 (en) 2010-03-29 2011-03-23 Branched duct construct, and uniaxial eccentric screw pump system

Country Status (4)

Country Link
JP (1) JP5614740B2 (en)
KR (1) KR101801995B1 (en)
CN (1) CN102893030B (en)
WO (1) WO2011122413A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300075A (en) * 1988-05-25 1989-12-04 Tokyo Seimitsu Hatsujo Kk Fluid pouring device
JPH09220496A (en) * 1996-02-14 1997-08-26 Tadao Nomura Nozzle of atomizer
JP2003503630A (en) * 1999-06-24 2003-01-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Piston pump
WO2008080355A1 (en) * 2006-12-28 2008-07-10 Accelergy Shanghai R & D Center Co., Ltd. Fluid distribution device and method for manufacturing the same
JP2009168195A (en) * 2008-01-18 2009-07-30 Hitachi Appliances Inc Distributor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758311A (en) * 1969-10-31 1971-04-30 Technicon Instr FLUID DISTRIBUTOR MANIFOLD
DE2004952A1 (en) * 1970-02-04 1971-08-12 Hans J Schmidt Gmbh Zentralhei Connection piece for lines
US6267912B1 (en) 1997-04-25 2001-07-31 Exxon Research And Engineering Co. Distributed injection catalytic partial oxidation process and apparatus for producing synthesis gas
US7063276B2 (en) * 2004-03-23 2006-06-20 Agri-Inject, Inc. System for uniform dispersal of agricultural chemicals
JP2008017199A (en) * 2006-07-06 2008-01-24 Nec Saitama Ltd Radio transmitter and phase correcting method
CN201199110Y (en) * 2008-04-30 2009-02-25 王秋霞 Liquid separating machine of air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300075A (en) * 1988-05-25 1989-12-04 Tokyo Seimitsu Hatsujo Kk Fluid pouring device
JPH09220496A (en) * 1996-02-14 1997-08-26 Tadao Nomura Nozzle of atomizer
JP2003503630A (en) * 1999-06-24 2003-01-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Piston pump
WO2008080355A1 (en) * 2006-12-28 2008-07-10 Accelergy Shanghai R & D Center Co., Ltd. Fluid distribution device and method for manufacturing the same
JP2009168195A (en) * 2008-01-18 2009-07-30 Hitachi Appliances Inc Distributor

Also Published As

Publication number Publication date
CN102893030A (en) 2013-01-23
JP5614740B2 (en) 2014-10-29
CN102893030B (en) 2015-11-25
KR101801995B1 (en) 2017-11-27
JP2011208537A (en) 2011-10-20
KR20130029375A (en) 2013-03-22

Similar Documents

Publication Publication Date Title
US8096131B2 (en) Fuel inlet with crescent shaped passage for gas turbine engines
EP2182195B1 (en) Gas turbine combustor
CN101749711B (en) Combustor housing for combustion of low-BTU fuel gases and methods of making and using the same
EP3081783B1 (en) Thermally-coupled fuel manifold
US8556516B2 (en) Compressor bearing cooling inlet plate
CN101892903A (en) Multi-premixer fuel nozzle support system
CN1821549B (en) Steam turbine nozzle box
KR20030040166A (en) Steam turbine inlet and methods of retrofitting
EP2163819A3 (en) Combustor, method of supplying fuel to same, and method of modifying same
CN109415980B (en) Integrated fluid pipeline
US20160061206A1 (en) Flow volume measurement device for turbo compressor, and turbo compressor
US20090107115A1 (en) System for treating exhaust gas
JP5614740B2 (en) Branch channel structure and uniaxial eccentric screw pump system
CN102356224B (en) burner assembly
EP3296514B1 (en) Fluidically controlled steam turbine inlet scroll
US7788931B2 (en) Air-bleed gas turbine
EP2342496A2 (en) A gas burner apparatus with pre-mixing
US11577261B2 (en) High velocity fluid nozzle
JP2020172929A (en) Fuel dispensing device, gas turbine engine and attachment method
US11649903B2 (en) Modular valve assembly
US20090107127A1 (en) System for treating exhaust gas
CN103016402B (en) There is the shell for air engine of discharge orifice
EP2812548B1 (en) Gas turbine engine
US10927764B2 (en) Fuel manifold assembly
CN208605912U (en) A plurality of oil circuit centralized lubrication orients oil supply control mechanism

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016457.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127025724

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1201005215

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762645

Country of ref document: EP

Kind code of ref document: A1