WO2011122191A1 - Wireless communication system, mobile station device, base station device, wireless communication method, and integrated circuit - Google Patents

Wireless communication system, mobile station device, base station device, wireless communication method, and integrated circuit Download PDF

Info

Publication number
WO2011122191A1
WO2011122191A1 PCT/JP2011/054356 JP2011054356W WO2011122191A1 WO 2011122191 A1 WO2011122191 A1 WO 2011122191A1 JP 2011054356 W JP2011054356 W JP 2011054356W WO 2011122191 A1 WO2011122191 A1 WO 2011122191A1
Authority
WO
WIPO (PCT)
Prior art keywords
station apparatus
mobile station
component carrier
base station
uplink
Prior art date
Application number
PCT/JP2011/054356
Other languages
French (fr)
Japanese (ja)
Inventor
翔一 鈴木
大一郎 中嶋
克成 上村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011122191A1 publication Critical patent/WO2011122191A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a radio communication system, a mobile station apparatus, a base station apparatus, a radio communication method, and an integrated circuit.
  • the third generation partnership project (3rd Generation Generation) is the evolution of wireless access systems and wireless networks for cellular mobile communications (hereinafter referred to as "Long Term Evolution (LTE)” or “Evolved Universal Terrestrial Radio Access (EUTRA)”).
  • LTE Long Term Evolution
  • EUTRA Evolved Universal Terrestrial Radio Access
  • 3GPP 3rd Generation Generation
  • OFDM Orthogonal frequency division multiplexing
  • OFDM Orthogonal Division Multiplexing
  • uplink wireless communication method from the mobile station device to the base station device
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • a base station apparatus is a channel for transmitting uplink data (transport block, transport block) using downlink control information (Downlink control information: DCI) transmitted on PDCCH (Physical Downlink Control Channel).
  • DCI Downlink control information
  • PDCCH Physical Downlink Control Channel
  • the mobile station apparatus is instructed to perform initial transmission or retransmission of PUSCH (Physical (Uplink Shared Channel). Further, the base station apparatus receives the PUSCH transmitted from the mobile station apparatus, and transmits a HARQ (Hybrid Automatic Repeat reQuest) indicator indicating the success or failure of decoding of the PUSCH using a PHICH (Physical HARQ Indicator Channel).
  • HARQ Hybrid Automatic Repeat reQuest
  • the HARQ indicator indicates ACK or NACK.
  • the HARQ indicator indicates ACK (ACKnowledgement)
  • the HARQ indicator indicates NACK (Negative ACKnowledgement).
  • the mobile station apparatus first detects a signal using PHICH. When the mobile station apparatus detects a signal by PHICH, the mobile station apparatus sets ACK or NACK indicated by the HARQ indicator received by PHICH for HARQ feedback. When the mobile station apparatus does not detect the signal by PHICH, the mobile station apparatus sets nothing for the HARQ feedback (holds the HARQ feedback state).
  • the mobile station apparatus detects downlink control information.
  • the mobile station apparatus determines the uplink data to be transmitted on the PUSCH, stores the uplink data in the HARQ buffer, and determines the initial PUSCH according to the downlink control information. Transmit and set NACK as HARQ feedback.
  • the mobile station apparatus receives the downlink control information instructing the PUSCH retransmission, the mobile station apparatus retransmits the uplink data stored in the HARQ buffer according to the downlink control information using the PUSCH, and sets NACK as the HARQ feedback.
  • the mobile station apparatus detects downlink control information instructing initial transmission or retransmission of PUSCH, the mobile station apparatus operates based on the HARQ indicator received by PHICH (that is, ACK or NACK set as HARQ feedback). Do not do.
  • the mobile station apparatus When the mobile station apparatus does not receive the downlink control information for the PUSCH, the mobile station apparatus transmits the PUSCH based on the set HARQ feedback.
  • NACK is set for HARQ feedback
  • the mobile station apparatus retransmits PUSCH
  • ACK is set for HARQ feedback
  • the mobile station apparatus does not transmit PUSCH and stores it in the HARQ buffer. Keep the data.
  • the mobile station apparatus When NACK is set for HARQ feedback, the mobile station apparatus finally receives until receiving a HARQ indicator indicating ACK by PHICH or newly receiving downlink control information for PUSCH on PDCCH.
  • the PUSCH is retransmitted based on the downlink control information. For example, the mobile station apparatus retransmits PUSCH when no signal is detected by PHICH in a state where NACK is set for HARQ feedback.
  • LTE-A Long Term Evolution-Advanced
  • A-EUTRA Universal Terrestrial Radio Access
  • LTE-A there is backward compatibility with LTE, that is, the LTE-A base station apparatus performs radio communication simultaneously with both LTE-A and LTE mobile station apparatuses, and LTE.
  • -A mobile station apparatus is required to be able to perform radio communication with both LTE-A and LTE base station apparatuses, and LTE-A is considered to use the same channel structure as LTE. ing.
  • a frequency band having the same channel structure as LTE (hereinafter referred to as “Component Carrier (CC)”) is aggregated and used as a single frequency band (broadband frequency band).
  • Frequency band aggregation also called Spectrum aggregation, Carrier aggregation, Frequency aggregation, etc.
  • a downlink channel is transmitted for each downlink component carrier, and an uplink channel is transmitted for each uplink component carrier.
  • frequency band aggregation is a technology in which a base station apparatus and a plurality of mobile station apparatuses simultaneously transmit and receive a plurality of data and a plurality of control information using a plurality of channels and a plurality of component carriers in the uplink and the downlink. It is.
  • the base station apparatus sets the downlink component carrier and the uplink component carrier used for communication to the mobile station apparatus by using an RRC signal (Radio Resource Control Control signal) and the like. It has been proposed that an activation command (activation command) indicating a downlink component carrier used for downlink communication among link component carriers is notified using PDCCH or MAC (Medium Access Control) CE (Control Element). ing.
  • the downlink component carrier for this PUSCH is a downlink component used for downlink communication.
  • the mobile station apparatus When removed from the carrier, the mobile station apparatus repeatedly performs PUSCH retransmission regardless of the success or failure of the PUSCH decoding of the base station apparatus.
  • the present invention has been made in view of the above points, and an object thereof is to control PUSCH retransmission in a wireless communication system in which a mobile station apparatus and a base station apparatus communicate using a plurality of downlink component carriers.
  • An object of the present invention is to provide a wireless communication system, a mobile station device, a base station device, a wireless communication method, and an integrated circuit that can be efficiently performed.
  • the radio communication system of the present invention is a radio communication system in which a mobile station apparatus and a base station apparatus communicate with each other using a plurality of downlink component carriers, and an uplink transmitted from the mobile station apparatus to the base station apparatus
  • the mobile station device may pending deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted to the base station device
  • the apparatus determines that the mobile station apparatus is pending deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted to the base station apparatus.
  • the mobile station apparatus of the present invention is a mobile station apparatus that communicates with a base station apparatus using a plurality of downlink component carriers, and the mobile station apparatus transmits an uplink transmitted to the base station apparatus.
  • the deactivation of the downlink component carrier that receives the HARQ indicator for the uplink data transmitted to the base station apparatus is pending.
  • the base station apparatus of this invention is a base station apparatus which communicates with a mobile station apparatus using a some downlink component carrier,
  • the said base station apparatus is the said base station apparatus. If there is a possibility that retransmission of uplink data transmitted to the mobile station apparatus will occur, the mobile station apparatus will pending deactivation of the downlink component carrier that receives the HARQ indicator for the uplink data transmitted to the base station apparatus. It is characterized by being judged.
  • the radio communication method of the present invention is a radio communication method used for a mobile station apparatus that communicates with a base station apparatus using a plurality of downlink component carriers, and the uplink transmitted to the base station apparatus.
  • a means for pending deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted to the base station apparatus In a case where there is a possibility that retransmission of data occurs, there is provided a means for pending deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted to the base station apparatus.
  • wireless communication method of this invention is a radio
  • the said mobile station apparatus is the said base station apparatus. If there is a possibility that retransmission of uplink data transmitted to the mobile station apparatus will occur, the mobile station apparatus will pending deactivation of the downlink component carrier that receives the HARQ indicator for the uplink data transmitted to the base station apparatus. It is characterized by being judged.
  • the integrated circuit of the present invention is an integrated circuit used in a mobile station apparatus that communicates with a base station apparatus using a plurality of downlink component carriers, and for the uplink data transmitted to the base station apparatus If there is a possibility that retransmission will occur, it has a function of pending deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted to the base station apparatus.
  • the integrated circuit of the present invention is an integrated circuit used in a base station apparatus that communicates with a mobile station apparatus using a plurality of downlink component carriers, and the mobile station apparatus transmits to the base station apparatus. If there is a possibility of retransmission of the uplink data, the mobile station device is pending deactivation of the downlink component carrier that receives the HARQ indicator for the uplink data transmitted to the base station device. It has the function to judge.
  • the mobile station apparatus in a radio communication system in which a mobile station apparatus and a base station apparatus communicate using a plurality of downlink component carriers, the mobile station apparatus can efficiently perform PUSCH retransmission.
  • FIG. 1 is a conceptual diagram of a wireless communication system according to an embodiment of the present invention. It is a figure which shows an example of the frequency band aggregation process of this invention. It is the schematic which shows an example of a structure of the downlink radio frame of this invention. It is the schematic which shows an example of a structure of the uplink radio frame of this invention.
  • FIG. 3 is a schematic diagram for explaining an uplink HARQ process according to the present invention; It is a flowchart which shows an example of operation
  • FIG. 1 is a conceptual diagram of a wireless communication system according to an embodiment of the present invention.
  • the radio communication system includes mobile station apparatuses 1 A to 1 C and a base station apparatus 3.
  • FIG. 1 shows a synchronization signal (Synchronization signal: SS), downlink reference signal (Downlink Reference Signal: DL RS), physical broadcast channel in wireless communication (downlink) from the base station device 3 to the mobile station devices 1A to 1C (Physical Broadcast Channel: PBCH), Physical Downlink Control Channel (Physical Downlink Control Channel: PDCCH), Physical Downlink Shared Channel (Physical Downlink Shared Channel: PDSCH), Physical Multicast Channel (Physical Multicast Channel: PMCH), Physical Control Format This indicates that an indicator channel (Physical Control Indicator Channel: PCFICH) and a physical HARQ indicator channel (Physical Hybrid ARQ Indicator Channel: PHICH) are allocated.
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDCCH
  • FIG. 1 shows an uplink reference signal (Uplink Reference Signal: UL ⁇ ⁇ RS), physical uplink control channel (Physical Uplink Control Channel) in wireless communication (uplink) from the mobile station devices 1A to 1C to the base station device 3. : PUCCH), physical uplink shared channel (Physical Uplink Shared Channel: PUSCH), and physical random access channel (Physical Random Access Channel: PRACH).
  • the mobile station apparatuses 1A to 1C are referred to as the mobile station apparatus 1.
  • FIG. 2 is a diagram showing an example of the frequency band aggregation processing of the present invention.
  • the horizontal axis represents the frequency domain
  • the vertical axis represents the time domain.
  • the downlink subframe D1 includes four downlink component carriers (DL CC-1; Downlink Component Carrier-1, DL CC-2, DL CC-3, DL) having a bandwidth of 20 MHz. It is composed of DL CC-4) subframes.
  • DL CC-1 Downlink Component Carrier-1, DL CC-2, DL CC-3, DL
  • DL downlink component carriers
  • DL CC-1 Downlink Component Carrier-1
  • DL CC-2 Downlink Component Carrier-1
  • DL CC-3 DL
  • the region where the PDSCH indicated by the non-hatched region is arranged.
  • the region where the PHICH is arranged and the region where the PDCCH is arranged are frequency multiplexed and / or time multiplexed.
  • the region where PHICH and PDCCH are frequency-multiplexed and / or time-multiplexed and the region where PDSCH is arranged are time-multiplexed.
  • the uplink subframe U1 is composed of three uplink component carriers (UL-CC-1; Uplink-Component Carrier-1, UL-CC-2, UL-CC-3) having a bandwidth of 20 MHz.
  • Each of the subframes of the uplink component carrier has a frequency in which a PUCCH indicated by a hatched area with a diagonally downward slanting line and a region in which a PUSCH indicated by a hatched area with a horizontal line are arranged. Is multiplexed.
  • the mobile station apparatus 1 performs initial access with the base station apparatus 3 using any one set of downlink component carrier and uplink component carrier.
  • the base station apparatus 3 uses the RRC signal (Radio Resource Control signal) transmitted using the PDSCH of the downlink component carrier that the mobile station device 1 has made initial access to set the downlink component carrier set for the mobile station device 1.
  • RRC signal Radio Resource Control signal
  • an uplink component carrier hereinafter, referred to as “configured component (carrier)”.
  • the base station apparatus 3 sends an activation command (activation command) indicating a downlink component carrier to be used for downlink communication from among the set downlink component carriers, PDCCH or MAC (Medium Access Control) CE (Control Element) Notify using etc.
  • the activation command is composed of a bitmap, and when the value of the bit corresponding to each downlink component carrier is “1”, this indicates that the downlink component carrier is used for downlink communication, and the bit value “0” indicates that the downlink component carrier is not used for downlink communication.
  • the activation command is applied after a predetermined time after receiving the activation command (for example, after one subframe or after four subframes). Note that the MAC-CE is transmitted using PDSCH.
  • the base station apparatus 3 When the base station apparatus 3 notifies the mobile station apparatus 1 that the downlink component carrier is used for downlink communication with an activation command, it is referred to as activating the downlink component carrier. Notifying the mobile station device 1 that the downlink component carrier is not used for downlink communication by the activation command by the base station device 3 is referred to as deactivating the downlink component carrier.
  • An activated downlink component carrier is called an activated downlink component carrier (activated downlink component carrier) or configured and activated downlink component carrier (configured and activated downlink component carrier) and is deactivated
  • the component carrier is referred to as a deactivated downlink component carrier (deactivated downlink component carrier) or a configured and deactivated downlink component carrier (configured and deactivated downlink component carrier).
  • the mobile station device 1 may deactivate the downlink component carrier by a method different from the method of deactivating the downlink component carrier notified by the activation command that it is not used for downlink communication. For example, the mobile station device 1 may deactivate the downlink component carrier when a predetermined time has elapsed after the activation of the downlink component carrier with the activation command, or the activated downlink component carrier The downlink component carrier may be deactivated when a predetermined time has elapsed since the last reception of PDCCH or PDSCH. That is, the downlink component carrier may be deactivated based on the judgment of the mobile station device 1 itself. Note that the base station apparatus 3 may set the predetermined time and notify the mobile station apparatus 1 of information including this setting with an RRC signal.
  • the mobile station device 1 does not receive the deactivated downlink component carrier signal.
  • the base station apparatus 3 determines that the mobile station apparatus 1 does not receive the deactivated downlink component carrier signal. For example, the base station apparatus 3 arranges a signal (PDSCH, PDCCH, PHICH, etc.) on one or more downlink component carriers among the activated downlink component carriers in the downlink subframe, and Transmit to device 1.
  • the mobile station apparatus 1 performs monitoring and reception processing only on the activated downlink component carrier signals (PDSCH, PDCCH, PHICH, etc.).
  • the base station apparatus 3 includes a downlink primary component carrier (downlink primary component carrier: DL PCC) and uplink primary component carrier (uplink primary component carrier: UL PCC) among the set downlink component carrier and uplink component carrier. Is set for each mobile station apparatus 1 and an RRC signal including information related to this setting is notified to the mobile station apparatus 1. Until the setting of the downlink primary component carrier and the uplink primary component carrier, the mobile station device 1 uses the downlink component carrier and the uplink component carrier used for the initial access as the downlink primary component carrier and the uplink primary component. Set as a component carrier.
  • DL PCC downlink primary component carrier
  • uplink primary component carrier uplink primary component carrier
  • the base station apparatus 3 cannot deactivate the downlink primary component carrier, that is, the downlink primary component carrier is always activated.
  • the uplink primary component carrier is used to transmit uplink control information.
  • the base station apparatus 3 allocates the PUSCH radio resource of one or more uplink component carriers among the configured uplink component carriers in the uplink subframe, and indicates the radio resource allocation to this PUSCH.
  • Control information (Downlink Control Information: DCI) is transmitted on the activated PDCCH of the downlink component carrier.
  • the mobile station apparatus 1 arranges a signal on the PUSCH of one or a plurality of uplink component carriers among the configured uplink component carriers in accordance with the downlink control information indicating the allocation of the radio resources of the PUSCH, and the base station apparatus 3 to send.
  • the downlink control information for the PDSCH of the downlink component carrier and the PUSCH of the uplink component carrier is one of the downlink component carriers set and activated. It is transmitted to mobile station apparatus 1 using the PDCCH of the carrier.
  • the PDCCH for the PDSCH of the downlink component carrier and the PDCCH for the PUSCH of the uplink component carrier may be arranged in different downlink component carriers for each subframe.
  • the PDCCH corresponding to the PU of UL CC-1 is one downlink component carrier (DL CC-1 or DL CC-1) among DL CC-1 to DL CC-4. -2, or DL CC-3 or DL CC-4).
  • the downlink component carrier that can transmit the PDSCH of the downlink component carrier or the PUSCH of the uplink component carrier can be limited.
  • the PDCCH for the UL ⁇ CC-1 PUSCH may be limited to be transmitted only on one downlink component carrier among DL-CC1 and DL CC2 for each subframe.
  • the PDCCH for the UL ⁇ CC-1 PUSCH may be limited to be transmitted only on the DL CC-1 for each subframe.
  • the HARQ (Hybrid Automatic Repeat Repeat) reQuest (HARQ) indicator that indicates the success or failure of decoding of the PUSCH transmitted by the mobile station apparatus 1 on the uplink component carrier is transmitted on the PHICH of the downlink component carrier on which the PDCCH for this PUSCH was last transmitted.
  • the HARQ indicator for this PUSCH is DL CC- 1 is transmitted with PHICH.
  • the HARQ indicator indicates ACK (ACKnowledgement)
  • the HARQ indicator indicates NACK (Negative ACKnowledgement).
  • FIG. 3 is a schematic diagram illustrating an example of a configuration of a downlink radio frame according to the present invention.
  • FIG. 3 shows a configuration of a radio frame in the downlink component carrier.
  • the horizontal axis is the time domain
  • the vertical axis is the frequency domain.
  • the radio frame of the downlink component carrier is composed of a plurality of downlink physical resource block (PhysicalPhysResource Block; PRB) pairs (for example, an area surrounded by a broken line in FIG. 3).
  • PRB downlink physical resource block
  • One downlink physical resource block pair is composed of two downlink physical resource blocks (PRB bandwidth ⁇ slot) that are continuous in the time domain.
  • One downlink physical resource block (unit surrounded by a thick line in FIG. 3) is composed of 12 subcarriers (15 kHz) in the frequency domain, and 7 OFDMs (Orthogonal Frequency Frequency Division) in the time domain. Multiplexing) symbol (71 ⁇ s).
  • TITTI Transmit Time Interval
  • a plurality of downlink physical resource blocks are arranged according to the bandwidth of the downlink component carrier.
  • a unit composed of one subcarrier and one OFDM symbol is referred to as a downlink resource element.
  • PDCCH Physical Downlink Control
  • PHICH Physical Downlink Control
  • PDSCH Physical Downlink Reference Signal
  • a downlink reference signal a downlink reference signal
  • PDCCH is arranged from the OFDM symbol at the head of the subframe (the area hatched with a diagonal line rising to the right in FIG. 3). Note that the number of OFDM symbols in which the PDCCH is arranged is 1 to 3, and is different for each subframe.
  • the PDCCH includes downlink control information, which is information used for communication control, configured in an information format such as downlink assignment (also referred to as downlink assignment) or uplink grant (Uplink grant). A signal is placed.
  • a plurality of PDCCHs are frequency-multiplexed and time-multiplexed in each downlink component carrier.
  • the downlink assignment includes information regarding modulation scheme and coding for PDSCH, information indicating radio resource allocation, information regarding HARQ indicating initial transmission or retransmission, a TPC command, and the like.
  • the uplink grant includes information on modulation scheme and coding for PUSCH, information indicating radio resource allocation, information on HARQ indicating initial transmission or retransmission, a TPC command, and the like.
  • HARQ means that, for example, the mobile station apparatus 1 (base station apparatus 3) transmits HARQ feedback indicating success or failure of data decoding to the base station apparatus 3 (mobile station apparatus 1), and the mobile station apparatus 1 (base station apparatus).
  • the base station device 3 When the device 3) cannot decode data due to an error (NACK), the base station device 3 (mobile station device 1) retransmits the signal, and the mobile station device 1 (base station device 3) has already received the signal again.
  • NACK an error
  • NDI New Data Indicator
  • the mobile station apparatus 1 When receiving the downlink assignment or the uplink grant, the mobile station apparatus 1 stores the NDI included in the received downlink assignment or the uplink grant. At this time, if the mobile station apparatus 1 already stores the NDI, it is determined whether the NDI is toggled, and then overwritten with the new NDI.
  • the mobile station apparatus 1 determines that the downlink assignment or uplink grant indicates initial transmission. When the NDI is not toggled, the mobile station apparatus 1 determines the downlink assignment or uplink. It is determined that the grant indicates retransmission.
  • NDI is toggled means that the stored NDI value is different from the received NDI value. If NDI is not toggled, the stored NDI value is the same as the received NDI value. It is to be.
  • the NDI included in the downlink assignment or uplink grant is toggled, and the downlink assignment or uplink grant is referred to as instructing initial transmission, and the NDI is not toggled. It is said that the downlink assignment or the uplink grant is instructing retransmission.
  • the base station apparatus 3 adds, to the downlink control information, a sequence obtained by scrambling the cyclic redundancy check (Cyclic Redundancy Check: CRC) code generated based on the downlink control information with an RNTI (Radio Network Temporary Identifier). .
  • CRC Cyclic Redundancy Check
  • RNTI Radio Network Temporary Identifier
  • the cyclic redundancy check code is scrambled by the C-RNTI (Cell-Radio Network Temporary Identity) assigned by the mobile station apparatus 1 from the base station apparatus 3, the downlink control information is addressed to the mobile station apparatus 1 It is determined that the radio resource is indicated.
  • C-RNTI Cell-Radio Network Temporary Identity
  • the addition of a cyclic redundancy check code scrambled with RNTI to downlink control information is simply expressed as RNTI included in downlink control information or RNTI included in PDCCH.
  • the mobile station apparatus 1 decodes the PDCCH, descrambles the sequence corresponding to the cyclic redundancy check code scrambled by the RNTI with the RNTI stored by the mobile station apparatus 1, and makes an error based on the descrambled cyclic redundancy check code.
  • it is detected that there is no PDCCH it is determined that acquisition of the PDCCH is successful. This process is called blind decoding.
  • PHICH will be described.
  • PHICH and PDCCH are frequency-multiplexed within the same OFDM symbol (the area hatched with a mesh line in FIG. 3).
  • the PHICH may be arranged only in the first OFDM symbol of the subframe, or may be arranged dispersed in a plurality of OFDM symbols.
  • a HARQ indicator indicating success / failure of PUSCH decoding (ACK / NACK) is arranged.
  • a plurality of PHICHs are frequency-multiplexed and code-multiplexed in each downlink component carrier.
  • the HARQ indicator indicating the success or failure of decoding of the PUSCH transmitted by the mobile station apparatus 1 using the uplink component carrier is transmitted using the PHICH of the downlink component carrier that is the last transmitted uplink grant for this PUSCH. Also, in which PHICH in the downlink component carrier the HARQ indicator for the PUSCH is arranged is the physical resource block with the smallest number (of the lowest frequency region) among the physical resource blocks allocated to this PUSCH. It is determined from the number and information related to the cyclic shift of the uplink reference signal time-multiplexed with the PUSCH, which is included in the uplink grant.
  • the mobile station apparatus 1 receives HARQ feedback for this PUSCH in a PHICH of a downlink subframe after a predetermined time (for example, 4 ms, 4 subframes, 4 TTIs) after transmitting the PUSCH.
  • a predetermined time for example, 4 ms, 4 subframes, 4 TTIs
  • code multiplexing is used, and a plurality of different codes are used.
  • a plurality of different codes are generated by periodically shifting (referred to as cyclic shift) a predetermined basic sequence, and different codes are generated by cyclic shifts of different shift amounts.
  • the PDSCH is arranged in an OFDM symbol other than the OFDM symbol in which the PDCCH and / or PHICH of the subframe is arranged (in FIG. 3, a region not hatched).
  • a signal of downlink data (or “transport block”) is arranged.
  • PDSCH radio resources are allocated using downlink assignment.
  • the PDSCH radio resources are arranged in the same downlink subframe as the PDCCH including the downlink assignment used for the PDSCH assignment in the time domain, and the downlink used for the PDSCH assignment in the frequency domain. It is arranged on the same downlink component carrier as the PDCCH including the link assignment or on a different downlink component carrier.
  • the downlink assignment includes information (hereinafter referred to as “downlink carrier indicator”) indicating which downlink component carrier the PDSCH is for which downlink component carrier.
  • downlink carrier indicator information indicating which downlink component carrier the PDSCH is for which downlink component carrier.
  • the downlink assignment not including the downlink carrier indicator and the PDSCH corresponding to the downlink assignment are transmitted on the same downlink component carrier.
  • a plurality of PDSCHs are frequency-multiplexed and spatially multiplexed in each downlink component carrier.
  • the downlink reference signal is not shown in FIG. 3 for simplicity of explanation, but the downlink reference signal is distributed and arranged in the frequency domain and the time domain.
  • FIG. 4 is a schematic diagram showing an example of the configuration of an uplink radio frame according to the present invention.
  • FIG. 4 shows a configuration of a radio frame in the uplink component carrier.
  • the horizontal axis is the time domain
  • the vertical axis is the frequency domain.
  • the uplink radio frame is composed of a plurality of uplink physical resource block pairs (for example, an area surrounded by a broken line in FIG. 4).
  • One uplink physical resource block pair is composed of two uplink physical resource blocks (PRB bandwidth ⁇ slot) that are continuous in the time domain.
  • One uplink physical resource block (a unit surrounded by a thick line in FIG. 4) is composed of 12 subcarriers (15 kHz) in the frequency domain, and 7 SC-FDMA symbols ( 71 ⁇ s).
  • a slot (0.5 ms) composed of seven SC-FDMA (Single-Carrier Frequency Division Multiple Access) symbols (71 ⁇ s), a subframe (1 ms) composed of two slots, 10
  • a radio frame (10 ms) composed of subframes. 1 ms, which is the same time interval as the subframe, is also referred to as a transmission time interval (Transmit Time Interval: TITTI).
  • TITTI Transmit Time Interval
  • a plurality of uplink physical resource blocks are arranged according to the bandwidth of the uplink component carrier.
  • a unit composed of one subcarrier and one SC-FDMA symbol is referred to as an uplink resource element.
  • the channels allocated in the uplink radio frame will be described.
  • a PUCCH In each uplink subframe, for example, a PUCCH, a PUSCH, and an uplink reference signal are allocated.
  • PUCCH will be described.
  • the PUCCH is allocated to uplink physical resource block pairs (regions hatched with diagonal lines rising to the right) at both ends of the band of the uplink component carrier.
  • the PUCCH includes communication quality control such as channel quality information (Channel Quality Information) indicating downlink channel quality, a scheduling request (Scheduling Request: SR) indicating a request for allocation of uplink radio resources, and ACK / NACK for the PDSCH.
  • Uplink control information Uplink Control Information (Uplink Control Information: UCI) signal, which is information used for the transmission, is arranged.
  • a plurality of PUCCHs are frequency-multiplexed and code-multiplexed in each uplink component carrier.
  • the PUSCH is assigned to an uplink physical resource block pair (an area that is not hatched) other than the uplink physical resource block in which the PUCCH is arranged.
  • uplink control information and uplink data (transport block; Transport Block) signals that are information other than the uplink control information are arranged.
  • PUSCH radio resources are allocated using an uplink grant, and after a predetermined time from a downlink subframe in which a PDCCH including the uplink grant is arranged (for example, 4 ms later, 4 subframes later, 4 TTI later) Are arranged in uplink subframes.
  • the uplink grant includes information (hereinafter referred to as “uplink carrier indicator”) indicating which uplink component carrier the PUSCH is for the uplink component carrier. Further, when the uplink grant does not include an uplink carrier indicator, the uplink grant that does not include the uplink carrier indicator is a downlink component that is associated in advance with the uplink component carrier to which the uplink grant corresponds. Sent on carrier. In each subframe, a plurality of PUSCHs are frequency-multiplexed and spatially multiplexed in each uplink component carrier.
  • the uplink reference signal is time-multiplexed with PUCCH and PUSCH, but detailed description is omitted for the sake of simplicity.
  • FIG. 5 is a schematic diagram for explaining the uplink HARQ process of the present invention.
  • the horizontal axis is the time domain
  • a square hatched with a mesh-like line indicates PHICH
  • a square hatched with an upward slanting diagonal line indicates PDCCH (uplink grant)
  • a horizontal line hatches The marked squares indicate PUSCH, and the numbers given to PHICH, PDCCH, and PUSCH indicate the number of the HARQ process to which each channel corresponds.
  • multiple (eight) HARQ processes operate independently and simultaneously for each uplink component carrier.
  • the HARQ process number corresponding to the PUSCH is associated with the uplink subframe number. For example, the remainder of dividing the subframe number by the number of HARQ processes operating simultaneously in the uplink component carrier is set as the HARQ process number in the uplink component carrier corresponding to the subframe.
  • the number of the HARQ process to which PHICH and PDCCH (uplink grant) correspond is associated with the number of the downlink subframe. In the uplink and downlink, the corresponding HARQ process number is shifted by four.
  • FIG. 5 shows only the PUSCH of one uplink component carrier.
  • Each HARQ process is associated with one HARQ buffer.
  • the mobile station apparatus 1 stores the uplink data (transport block) transmitted on the PUSCH in the HARQ buffer of the HARQ process corresponding to the PUSCH, stores the uplink grant received last on the corresponding PDCCH, and HARQ. ACK or NACK set as feedback is stored.
  • the base station apparatus 3 stores the uplink data received and decoded on the PUSCH in the HARQ buffer of the HARQ process corresponding to the PUSCH, and the uplink grant transmitted last on the corresponding PDCCH.
  • each HARQ process has one It is necessary to be associated with the same number of HARQ buffers as the number of uplink data (transport blocks) transmitted on the PUSCH.
  • a PDCCH (uplink grant) for a HARQ process of a certain uplink component carrier may be transmitted using a different downlink component carrier for each HARQ process timing, or a downlink component carrier corresponding to each uplink component carrier. May be sent only.
  • the PHICH for the HARQ process of a certain uplink component carrier is transmitted on the downlink component carrier to which the PDCCH (uplink grant) related to the HARQ process is last transmitted.
  • the mobile station apparatus 1 receives a PDCCH (uplink grant) instructing initial transmission related to the HARQ process No. 0 in the nth downlink subframe, and the n + 4th uplink subframe. Then, the PUSCH for the HARQ process number 0 is initially transmitted according to this PDCCH (uplink grant).
  • the mobile station apparatus 1 receives the PHICH and the PDCCH (uplink grant) related to the HARQ process # 0 in the (n + 8) th downlink subframe, and receives this PHICH or PDCCH (uplink grant) in the (n + 12) th uplink subframe.
  • initial transmission or retransmission of PUSCH related to the HARQ process of No. 0 is performed.
  • the downlink subframe and the uplink subframe corresponding to the same HARQ process are shifted by 4 ms (4 subframes, 4 TTIs).
  • PHICH, PDCCH (uplink grant) and PUSCH for the same HARQ process are transmitted at intervals of 8 ms (8 subframes, 8 TTI).
  • the mobile station apparatus 1 first sets ACK or NACK indicated by the HARQ indicator received by PHICH as HARQ feedback.
  • the mobile station apparatus 1 receives the uplink grant instructing the initial transmission of the PUSCH on the PDCCH, the mobile station apparatus 1 determines new uplink data to be transmitted on the PUSCH without depending on the ACK or NACK set as the HARQ feedback.
  • the uplink data is stored in the HARQ buffer, the received uplink grant is stored, PUSCH is initially transmitted according to the stored uplink grant, and NACK is set as HARQ feedback.
  • the mobile station apparatus 1 When the mobile station apparatus 1 receives the uplink grant instructing the PUSCH retransmission on the PDCCH, the mobile station apparatus 1 does not depend on the ACK or NACK set as the HARQ feedback and receives the stored uplink grant. Overwrite the link grant, retransmit the uplink data stored in the HARQ buffer according to the overwritten uplink grant on the PUSCH, and set NACK as HARQ feedback.
  • the HARQ buffer is empty, the mobile station device 1 determines the uplink data to be transmitted on the PUSCH without depending on whether the uplink grant instructs initial transmission or re-transmission. Uplink data is stored in the HARQ buffer, the received uplink grant is stored, PUSCH is initially transmitted according to the stored uplink grant, and NACK is set as HARQ feedback.
  • the mobile station apparatus 1 When the mobile station apparatus 1 does not receive the uplink grant for the PUSCH and NACK is set as the HARQ feedback, the mobile station apparatus 1 retransmits the uplink data stored in the HARQ buffer on the PUSCH according to the stored uplink grant. Send.
  • the mobile station apparatus 1 does not receive the uplink grant for the PUSCH and ACK is set as the HARQ feedback, the mobile station apparatus 1 does not transmit the PUSCH, and is stored in the HARQ buffer managed by the HARQ process. Retain data.
  • the mobile station apparatus 1 When the mobile station apparatus 1 receives the uplink grant for the PUSCH of the UL CC-1 in the n th subframe of the DL -1 CC-1 in Fig. 5, the n + 4th subframe of the UL CC-1 according to the received uplink grant. Transmits PUSCH and sets NACK as HARQ feedback.
  • DL CC-1 is deactivated before the n + 8th subframe in which the mobile station device 1 receives the PHICH for this PUSCH in the DL CC-1, the mobile station device 1 performs the DL in the n + 8th subframe. Cannot receive PHICH on CC-1.
  • the mobile station apparatus 1 is an uplink subframe corresponding to the 0th HARQ process ((n + 4 + 8 ⁇ i) th subframe: i is an integer), and n
  • the PUSCH retransmission is continued according to the uplink grant received in the subframe of the DL DL CC-1.
  • the present invention takes the following measures. Even if the mobile station apparatus 1 satisfies the condition for deactivating the downlink component carrier, there is a possibility that retransmission of PUSCH (uplink data) transmitted according to the uplink grant received by the downlink component carrier may occur. If there is, it is pending that this downlink component carrier is deactivated, that is, the period during which the downlink component carrier is activated is postponed. In other words, the mobile station apparatus 1 pending that the downlink component carrier that receives the PHICH (HARQ indicator) for the uplink data transmitted to the base station apparatus 3 is deactivated, that is, the downlink component carrier is activated. Extend the period
  • the base station apparatus 3 Even if the base station apparatus 3 satisfies the condition for the downlink component carrier set in the mobile station apparatus 1 to be deactivated, the base station apparatus 3 is transmitted according to the uplink grant received by the downlink component carrier in the mobile station apparatus 1.
  • the mobile station apparatus 1 has pending that this downlink component carrier is deactivated, that is, the downlink component carrier is activated. Judge that the period has been postponed.
  • a PUSCH retransmission may occur when a NACK is received in PHICH, or a NACK is set as HARQ feedback in a subframe (timing) corresponding to the HARQ process, or a retransmission is indicated.
  • An uplink grant may be received.
  • the possibility that a PUSCH retransmission may occur is also referred to as a pending PUSCH retransmission.
  • the mobile station apparatus 1 is set so that the uplink grant for UL CC-1 is allocated to DL CC-1 and DL CC-2, and the uplink grant received by DL CC-1
  • the mobile station apparatus 1 deselects DL-CC-1. Pending activation is performed, DL-CC-2 is deactivated, and PHICH reception and PDCCH blind decoding are performed on DL-CC-1.
  • FIG. 6 is a flowchart showing an example of the operation of the mobile station apparatus 1 of the present invention.
  • the mobile station apparatus 1 performs the process of FIG. 6 for every downlink component carrier.
  • the mobile station device 1 determines whether or not the activated downlink component carrier satisfies a deactivation condition for each subframe. (Step S101). If the mobile station apparatus 1 determines in step S101 that the condition for deactivating the downlink component carrier is not satisfied, the mobile station apparatus 1 proceeds to the next subframe (step S102) and returns to step S101.
  • step S101 determines in step S101 that the condition for deactivating the downlink component carrier is satisfied, there is a possibility that retransmission of PUSCH related to the uplink grant received by this downlink component carrier may occur. It is determined whether or not there is (step S103). If the mobile station apparatus 1 determines in step S103 that there is a possibility of retransmission of PUSCH, the mobile station apparatus 1 proceeds to the next subframe (step S104) and returns to step S103. If the mobile station apparatus 1 determines in step S103 that there is no possibility of PUSCH retransmission, the mobile station apparatus 1 deactivates the downlink component carrier (step S105). The mobile station apparatus 1 ends the process related to deactivating the downlink component carrier after step S105.
  • step S103 and step S104 are delayed, so that the deactivation of the downlink component carrier is postponed.
  • the process returns to step S101.
  • FIG. 7 is a schematic block diagram showing the configuration of the mobile station apparatus 1 of the present invention.
  • the mobile station apparatus 1 includes an upper layer processing unit 101, a control unit 103, a receiving unit 105, a transmitting unit 107, and a transmission / reception antenna 109.
  • the upper layer processing unit 101 includes a radio resource control unit 1011, a HARQ control unit 1013, and a HARQ storage unit 1015.
  • the reception unit 105 includes a decoding unit 1051, a demodulation unit 1053, a demultiplexing unit 1055, a radio reception unit 1057, and a channel measurement unit 1059.
  • the transmission unit 107 includes an encoding unit 1071, a modulation unit 1073, a multiplexing unit 1075, a radio transmission unit 1077, and an uplink reference signal generation unit 1079.
  • the upper layer processing unit 101 outputs the uplink data, the RRC signal, and the MAC-CE generated by a user operation or the like to the transmission unit 107.
  • the upper layer processing unit 101 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and radio resource control. Process the (Radio Resource Control: RRC) layer. Further, upper layer processing section 101 generates control information for controlling receiving section 105 and transmitting section 107 based on downlink control information received by PDCCH, and outputs the control information to control section 103.
  • the radio resource control unit 1011 included in the higher layer processing unit 101 manages various setting information of the own device. For example, the radio resource control unit 1011 manages RNTI such as C-RNTI. Also, the radio resource control unit 1011 generates information arranged in each uplink channel and outputs the information to the transmission unit 107.
  • the radio resource control unit 1011 manages the downlink component carrier in which the downlink assignment for the configured downlink component carrier and the uplink grant for the configured uplink component carrier are arranged.
  • the radio resource control unit 1011 manages the downlink component carrier and the uplink component carrier set by the RRC signal notified from the base station apparatus 3, and the downlink component carrier activated or deactivated by an activation command or the like. Do.
  • the radio resource control unit 1011 satisfies the condition for deactivating the downlink component carrier, the retransmission of PUSCH (uplink data) transmitted according to the uplink grant received by the downlink component carrier may occur. If there is a possibility, the fact that this downlink component carrier is deactivated is pending, that is, the period during which the downlink component carrier is activated is postponed.
  • the HARQ control unit 1013 included in the higher layer processing unit 101 manages an uplink HARQ process.
  • the HARQ storage unit 1015 included in the higher layer processing unit 101 includes a HARQ buffer associated with each uplink HARQ process managed by the HARQ control unit 1013.
  • the HARQ storage unit 1015 stores uplink grants and HARQ feedback (ACK or NACK) related to each HARQ process.
  • ACK or NACK HARQ feedback
  • the HARQ control unit 1013 performs the following operation for each HARQ process.
  • the HARQ control unit 1013 inputs uplink data (transport block) transmitted on the PUSCH to the HARQ buffer, and receives the ACK or NACK indicated by the HARQ indicator received from the PHICH input from the reception unit 105 and the PDCCH.
  • the uplink grant is stored in the HARQ storage unit 1015.
  • the HARQ control unit 1013 performs HARQ control based on the ACK or NACK stored in the HARQ storage unit 1015 and the uplink grant.
  • the HARQ control unit 1013 associates the HARQ process with the uplink component carrier and subframe number (timing) in which the PUSCH is transmitted.
  • HARQ control section 1013 assigns PUSCH physical resource blocks among a plurality of PHICHs in the downlink component carrier in which the uplink grant was last received, and cyclic shift of the uplink reference signal that is time-multiplexed with PUSCH.
  • the PHICH corresponding to this HARQ process is determined from the information included in the uplink grant.
  • the HARQ control unit 1013 determines the HARQ process corresponding to the received uplink grant from the uplink carrier indicator included in the uplink grant and the number (timing) of the subframe in which the uplink grant is received. When the uplink grant does not include the uplink carrier indicator, the HARQ control unit 1013 determines that the received uplink grant is based on the downlink component carrier and the subframe number (timing) from which the uplink grant is received. Determine the corresponding HARQ process.
  • the control unit 103 generates a control signal for controlling the receiving unit 105 and the transmitting unit 107 based on the control information from the higher layer processing unit 101.
  • Control unit 103 outputs the generated control signal to receiving unit 105 and transmitting unit 107 to control receiving unit 105 and transmitting unit 107.
  • the receiving unit 105 separates, demodulates, and decodes the received signal received from the base station apparatus 3 via the transmission / reception antenna 109 according to the control signal input from the control unit 103, and sends the decoded information to the upper layer processing unit 101. Output.
  • the radio reception unit 1057 converts the downlink signal received via the transmission / reception antenna 109 into an intermediate frequency (down-conversion: down covert), removes unnecessary frequency components, and maintains the signal level appropriately. Then, the amplification level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the quadrature demodulated analog signal is converted into a digital signal.
  • the radio reception unit 1057 removes a portion corresponding to a guard interval (Guard Interval: GI) from the converted digital signal, performs a fast Fourier transform (FFT Fourier Transform: FFT) on the signal from which the guard interval is removed, Extract the region signal.
  • GI Guard Interval
  • FFT fast Fourier transform
  • the demultiplexing unit 1055 separates the extracted signals into PHICH, PDCCH, PDSCH, and downlink reference signals. This separation is performed based on radio resource allocation information notified by downlink assignment. Further, demultiplexing section 1055 compensates the propagation path of PHICH, PDCCH, and PDSCH from the estimated propagation path value input from channel measurement section 1059. Also, the demultiplexing unit 1055 outputs the demultiplexed downlink reference signal to the channel measurement unit 1059.
  • the demodulator 1053 demodulates the PHICH using a BPSK (Binary Phase Shift Keying) modulation method and outputs the demodulated signal to the decoding unit 1051.
  • Decoding section 1051 decodes the PHICH addressed to the own apparatus, and outputs the decoded HARQ indicator to higher layer processing section 101.
  • Demodulation section 1053 demodulates the QPSK modulation scheme for PDCCH and outputs the result to decoding section 1051.
  • Decoding section 1051 attempts blind decoding of PDCCH, and when blind decoding is successful, decodes downlink control information and outputs RNTI included in downlink control information to higher layer processing section 101.
  • the demodulation unit 1053 demodulates the modulation scheme notified by downlink assignment such as QPSK (Quadrature Phase Shift Keying), 16QAM (Quadrature Amplitude Modulation), 64QAM, etc., and outputs the result to the decoding unit 1051.
  • Decoding section 1051 performs decoding based on the information regarding the coding rate notified by the downlink control information, and outputs the decoded downlink data (transport block) to higher layer processing section 101.
  • the channel measurement unit 1059 measures the downlink path loss and channel state from the downlink reference signal input from the demultiplexing unit 1055, and outputs the measured path loss and channel state to the upper layer processing unit 101. Also, channel measurement section 1059 calculates an estimated value of the downlink propagation path from the downlink reference signal, and outputs it to demultiplexing section 1055.
  • the transmission unit 107 generates an uplink reference signal according to the control signal input from the control unit 103, encodes and modulates the uplink data (transport block) input from the higher layer processing unit 101, PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 3 via the transmission / reception antenna 109.
  • the coding unit 1071 performs coding such as convolution coding and block coding on the uplink control information input from the higher layer processing unit 101, and relates to the coding rate in which the uplink data is notified by the uplink grant. Turbo coding is performed based on the information.
  • the modulation unit 1073 modulates the coded bits input from the coding unit 1071 using a modulation method notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation method predetermined for each channel. .
  • the uplink reference signal generation unit 1079 is a physical cell identifier for identifying the base station device 3 (referred to as physical cell ⁇ ⁇ identity: ⁇ ⁇ ⁇ PCI, Cell ⁇ ID, etc.), a bandwidth for arranging the uplink reference signal, and an uplink grant. Based on the notified cyclic shift or the like, the base station apparatus 3 obtains a known sequence that is obtained by a predetermined rule.
  • the multiplexing unit 1075 rearranges the PUSCH modulation symbols in parallel in accordance with the control signal input from the control unit 103, and then performs discrete Fourier transform (Discrete Fourier Transform: DFT) to generate the PUCCH and PUSCH signals and the generated uplink reference Multiplex the signal.
  • DFT discrete Fourier Transform
  • the radio transmission unit 1077 performs inverse fast Fourier transform (IFFT) on the multiplexed signal, performs SC-FDMA modulation, and adds a guard interval to the SC-FDMA modulated SC-FDMA symbol.
  • IFFT inverse fast Fourier transform
  • Generating a baseband digital signal converting the baseband digital signal to an analog signal, generating an in-phase component and a quadrature component of an intermediate frequency from the analog signal, removing an extra frequency component for the intermediate frequency band,
  • the intermediate frequency signal is converted to a high frequency signal (up-conversion: up convert), an extra frequency component is removed, the power is amplified, and output to the transmission / reception antenna 109 for transmission.
  • FIG. 8 is a schematic block diagram showing the configuration of the base station apparatus 3 of the present invention.
  • the base station apparatus 3 includes an upper layer processing unit 301, a control unit 303, a reception unit 305, a transmission unit 307, and a transmission / reception antenna 309.
  • the upper layer processing unit 301 includes a radio resource control unit 3011, a HARQ control unit 3013, and a HARQ storage unit 3015.
  • the reception unit 305 includes a decoding unit 3051, a demodulation unit 3053, a demultiplexing unit 3055, a wireless reception unit 3057, and a channel measurement unit 3059.
  • the transmission unit 307 includes an encoding unit 3071, a modulation unit 3073, a multiplexing unit 3075, a radio transmission unit 3077, and a downlink reference signal generation unit 3079.
  • the upper layer processing unit 301 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). Resource (Control: RRC) layer processing. Further, upper layer processing section 301 generates control information for controlling receiving section 305 and transmitting section 307 and outputs the control information to control section 303.
  • the radio resource control unit 3011 included in the upper layer processing unit 301 generates downlink data (transport block), RRC signal, MAC CE arranged in the downlink PDSCH, or acquires from the upper node, and transmits the transmission unit 307. Output to. Further, the radio resource control unit 3011 manages various setting information of each mobile station apparatus 1. For example, the radio resource control unit 3011 performs RNTI management such as assigning C-RNTI to the mobile station apparatus 1.
  • RNTI management such as assigning C-RNTI to the mobile station apparatus 1.
  • the radio resource control unit 3011 manages the downlink component carrier and the uplink component carrier set for each mobile station apparatus 1 and the activated or deactivated downlink component carrier.
  • the radio resource control unit 3011 sets a downlink component carrier and an uplink component carrier to be used for communication to each mobile station apparatus 1 and transmits via the control unit 303 so as to notify information related to this setting with an RRC signal.
  • the unit 307 is controlled.
  • the radio resource control unit 3011 sets the downlink component carrier used for communication and the downlink component carrier on which the PDCCH for the uplink component carrier is arranged for each mobile station apparatus 1, and notifies information related to this setting using an RRC signal.
  • the transmission unit 307 is controlled via the control unit 303.
  • the radio resource control unit 3011 controls the transmission unit 307 via the control unit 303 so that each mobile station apparatus 1 is notified of the activation command by PDCCH or MAC / CE.
  • the HARQ control unit 3013 provided in the higher layer processing unit 301 manages the uplink HARQ process of each mobile station apparatus 1.
  • the HARQ storage unit 3015 provided in the higher layer processing unit 301 includes a plurality of HARQ buffers corresponding to each uplink HARQ process managed by the HARQ control unit 3013.
  • the downlink HARQ process is not related to the present invention, and thus the description thereof is omitted.
  • the HARQ control unit 3013 inputs the uplink data (transport block) received by the PUSCH input from the receiving unit 305 to the HARQ buffer, and receives the error detection code (cyclic redundancy check code) added to the uplink data. To determine whether or not the decoding of the uplink data is successful.
  • the HARQ control unit 3013 generates a HARQ indicator indicating ACK when determining that the decoding of uplink data is successful, and generates a HARQ indicator indicating NACK when determining that the decoding of the uplink data has failed. And output to the transmission unit 307.
  • the HARQ control unit 3013 determines that the decoding of the uplink data has failed, the HARQ control unit 3013 changes the information on the radio resource allocation, the modulation scheme, and the coding rate, and sets the uplink grant that instructs retransmission including the changed information.
  • the transmission unit 307 may be controlled via the control unit 303 so as to transmit.
  • the HARQ control unit 3013 When the uplink data retransmitted in the mobile station apparatus 1 is input from the reception unit 305, the HARQ control unit 3013 combines the uplink data already stored in the HARQ buffer and the retransmitted uplink data. Then, it is determined whether or not the uplink data has been successfully decoded. The HARQ control unit 3013 associates the uplink component carrier and subframe number (timing) with which the mobile station apparatus 1 transmits the PUSCH with the HARQ process number.
  • the HARQ control unit 3013 allocates PUSCH physical resource blocks among a plurality of PHICHs in a downlink component carrier in which an uplink grant is last transmitted for a certain HARQ process, and an uplink that is time-multiplexed with the PUSCH.
  • a PHICH used to transmit ACK / NACK corresponding to this HARQ process is determined from information included in the uplink grant related to the cyclic shift of the reference signal.
  • the control unit 303 generates a control signal for controlling the reception unit 305 and the transmission unit 307 based on the control information from the higher layer processing unit 301.
  • the control unit 303 outputs the generated control signal to the reception unit 305 and the transmission unit 307 and controls the reception unit 305 and the transmission unit 307.
  • the receiving unit 305 separates, demodulates and decodes the received signal received from the mobile station apparatus 1 via the transmission / reception antenna 309 according to the control signal input from the control unit 303, and outputs the decoded information to the higher layer processing unit 301.
  • the radio reception unit 3057 converts the uplink signal received via the transmission / reception antenna 309 to an intermediate frequency (down-conversion: down covert), removes unnecessary frequency components, and maintains the signal level appropriately. Then, the amplification level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the quadrature demodulated analog signal is converted into a digital signal.
  • the wireless reception unit 3057 removes a portion corresponding to a guard interval (Guard Interval: GI) from the converted digital signal.
  • the radio reception unit 3057 performs fast Fourier transform (FFT Fourier Transform: ⁇ FFT) on the signal from which the guard interval is removed, extracts a frequency domain signal, and outputs the signal to the demultiplexing unit 3055.
  • FFT Fourier Transform FFT Fourier Transform: ⁇ FFT
  • the demultiplexing unit 3055 demultiplexes the signal input from the radio receiving unit 3057 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 3011 by the base station device 3 and notified to each mobile station device 1. In addition, demultiplexing section 3055 compensates for the propagation paths of PUCCH and PUSCH from the propagation path estimation value input from channel measurement section 3059. Further, the demultiplexing unit 3055 outputs the separated uplink reference signal to the channel measurement unit 3059.
  • the demodulator 3053 performs inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH, acquires modulation symbols, and performs BPSK (Binary Shift Keying), QPSK, 16QAM, and PUCCH and PUSCH modulation symbols, respectively.
  • IDFT inverse discrete Fourier transform
  • BPSK Binary Shift Keying
  • QPSK Quadrature Discrete Fourier Transform
  • 16QAM 16QAM
  • PUCCH and PUSCH modulation symbols respectively.
  • the received signal is demodulated using a predetermined modulation scheme such as 64QAM, or a modulation scheme that the own device has previously notified to each mobile station device 1 using an uplink grant.
  • Decoding section 3051 encodes the demodulated PUCCH and PUSCH encoded bits in a predetermined encoding scheme, or a coding rate at which the device itself has previously notified mobile station device 1 with an uplink grant. And the decoded uplink data and the uplink control information are output to the higher layer processing unit 301.
  • decoding section 3051 performs decoding using the encoded bits held in the HARQ buffer input from higher layer processing section 301 and the received encoded bits.
  • Channel measurement section 3059 measures an estimated value of the propagation path, channel quality, and the like from the uplink reference signal input from demultiplexing section 3055 and outputs the result to demultiplexing section 3055 and higher layer processing section 301.
  • the transmission unit 307 generates a downlink reference signal according to the control signal input from the control unit 303, encodes and modulates the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 301. Then, the PHICH, PDCCH, PDSCH, and downlink reference signal are multiplexed, and the signal is transmitted to the mobile station device 1 via the transmission / reception antenna 309.
  • the encoding unit 3071 is a predetermined encoding method such as block encoding, convolutional encoding, turbo encoding, and the like for the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 301 Or is encoded using the encoding method determined by the radio resource control unit 3011.
  • the modulation unit 3073 modulates the coded bits input from the coding unit 3071 with a modulation scheme determined in advance by the radio resource control unit 3011 such as BPSK, QPSK, 16QAM, and 64QAM.
  • the downlink reference signal generation unit 3079 obtains a sequence known by the mobile station device 1 as a downlink reference signal, which is obtained by a predetermined rule based on a physical cell identifier (PCI) for identifying the base station device 3 or the like. Generate.
  • the multiplexing unit 3075 multiplexes each modulated channel and the generated downlink reference signal.
  • the wireless transmission unit 3077 performs inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed modulation symbols, modulates the OFDM scheme, adds a guard interval to the OFDM symbol that has been OFDM-modulated, and Generate digital signal, convert baseband digital signal to analog signal, generate in-phase and quadrature components of intermediate frequency from analog signal, remove excess frequency components for intermediate frequency band, convert intermediate frequency signal The signal is converted into a high-frequency signal (up-conversion: up convert), the excess frequency component is removed, the power is amplified, and output to the transmission / reception antenna 309 for transmission.
  • IFFT inverse fast Fourier transform
  • the PUSCH transmitted from the mobile station apparatus 1 to the base station apparatus 3 When there is a possibility that retransmission for (uplink data) may occur, the mobile station apparatus 1 receives a downlink component carrier for receiving a PHICH (HARQ indicator) for PUSCH (uplink data) transmitted to the base station apparatus 3 Is deactivated, and the base station apparatus 3 receives the PHICH (HARQ indicator) for the PUSCH (uplink data) transmitted from the mobile station apparatus 1 to the base station apparatus 3, and the downlink component carrier is deactivated. It is determined that it is pending .
  • PHICH HARQ indicator
  • the mobile station apparatus 1 keeps the fact that the downlink component carrier that receives the PHICH (HARQ indicator) satisfies the deactivation condition, and is deactivated, and the PHICH (HARQ indicator) and PDCCH (uplink) Since the link grant can be received, the base station apparatus 3 can efficiently control the retransmission of the PUSCH using the PHICH (HARQ indicator) and the PDCCH (uplink grant).
  • the base station apparatus 3 can efficiently control the retransmission of the PUSCH using the PHICH (HARQ indicator) and the PDCCH (uplink grant).
  • the mobile station apparatus 1 may switch the process of deactivating a downlink component carrier based on which conditions which deactivate a downlink component carrier were satisfy
  • the mobile station apparatus 1 is shown to explicitly deactivate the downlink component carrier by the activation command. After receiving the activation command, the mobile station apparatus 1 immediately deactivates the downlink component carrier or receives the activation command.
  • the downlink component carrier is deactivated after a predetermined time elapses (for example, after 4 ms, after 4 subframes, and after 4 TTIs).
  • the mobile station apparatus 1 When the mobile station apparatus 1 is explicitly instructed by the activation command and deactivates the downlink component carrier, the mobile station apparatus 1 does not apply the present invention, and explicitly indicates that the downlink component carrier is activated.
  • the present invention is applied to the case where the downlink component carrier is deactivated by the mobile station apparatus 1 itself after a predetermined time has elapsed (for example, 100 ms, 100 subframes, 100 TTI) since the activation command is received.
  • the base station apparatus 1 determines that there is no possibility of retransmission of PUSCH in the uplink component carrier, the base station apparatus 1 explicitly corresponds to the uplink component carrier with an activation command (corresponding PHICH and PDCCH are arranged). Deactivate the downlink component carrier.
  • the mobile station apparatus 1 When the mobile station apparatus 1 decides to deactivate the downlink component carrier by itself, the mobile station apparatus 1 retransmits the PUSCH (uplink data) transmitted according to the uplink grant received by the downlink component carrier.
  • the PUSCH (uplink data) transmitted according to the uplink grant received by this downlink component carrier is retransmitted. When there is no possibility to do so, the downlink component carrier is deactivated.
  • the base station apparatus 3 wants to keep the uplink component carrier and the downlink component carrier corresponding to the uplink component carrier in an activated state in consideration of the possibility of PUSCH retransmission in the uplink component carrier.
  • An activation command that explicitly indicates that the downlink component carrier is to be activated is transmitted to the mobile station apparatus 1, but this activation command is detected without error in the mobile station apparatus 1 due to the influence of interference, propagation path fluctuation, etc. You may not be able to. In consideration of such a situation, the mobile station apparatus 1 does not perform PUSCH retransmission on the uplink component carrier unless the activation command explicitly indicates that the downlink component carrier is to be deactivated.
  • the mobile station apparatus 1 can accurately implement the PUSCH re-transmission by postponing the corresponding downlink component carrier being deactivated. Further, the base station apparatus 3 Transmits the activation command again in the activated downlink component carrier, and can continue to maintain the activated state of the downlink component carrier.
  • FIG. 9 is a flowchart showing an example of the operation of the mobile station apparatus 1 of the present invention.
  • step S206 hatched with a diagonal line rising to the right is different.
  • the configuration and function of the other steps are the same as those in the flowchart of FIG. 6, and thus the description of the same steps as those in the flowchart of FIG. 6 is omitted.
  • the mobile station apparatus 1 determines that the activated downlink component carrier satisfies the condition for deactivation (step S201)
  • the mobile station apparatus 1 further uses the activation command notified from the base station apparatus 3 for the downlink component. It is determined whether it is instructed to deactivate the carrier or whether it is decided to deactivate the downlink component carrier by the mobile station apparatus 1 itself (step S206).
  • step S206 If the mobile station apparatus 1 determines that the mobile station apparatus 1 itself has decided to deactivate in step S206, the PUSCH related to the uplink grant received on this downlink component carrier may be retransmitted. It is determined whether or not there is a property (step S203). If the mobile station apparatus 1 determines that the downlink component carrier is instructed to be deactivated by the activation command notified from the base station apparatus 3 in step S206, the mobile station apparatus 1 deactivates the downlink component carrier (step S205). ).
  • a program that operates in the base station apparatus 3 and the mobile station apparatus 1 related to the present invention is a program (computer functions as a computer) that controls a CPU (Central Processing Unit) so as to realize the functions of the above-described embodiments related to the present invention.
  • Program Information handled by these devices is temporarily accumulated in RAM (Random Access Memory) during the processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the “computer system” here is a computer system built in the mobile station apparatus 1 or the base station apparatus 3 and includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In such a case, a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • part or all of the mobile station device 1 and the base station device 3 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit.
  • Each functional block of the mobile station device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.

Abstract

In the disclosed wireless communication system, which uses a plurality of downlink component carriers, PUSCH retransmission is efficiently controlled. When a mobile station device (1) determines that conditions are met for a downlink component carrier to be deactivated, the mobile station device (1) determines whether or not there is a possibility of PUSCH retransmission in relation to an uplink grant received through the downlink component carrier. When the mobile station device (1) determines that there is the possibility of PUSCH retransmission, the mobile station device (1) proceeds to the next subframe, and returns to the decision of whether or not there is the possibility of PUSCH retransmission. When the mobile station device (1) determines that there is no possibility of PUSCH retransmission, the downlink component carrier is deactivated. Afterwards, the mobile station device (1) ends processes relating to deactivating the downlink component carrier.

Description

無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路Wireless communication system, mobile station apparatus, base station apparatus, wireless communication method, and integrated circuit
 本発明は、無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路に関する。 The present invention relates to a radio communication system, a mobile station apparatus, a base station apparatus, a radio communication method, and an integrated circuit.
 セルラー移動通信の無線アクセス方式および無線ネットワークの進化(以下、「Long Term Evolution (LTE)」、または、「Evolved Universal Terrestrial Radio Access(EUTRA)」と称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において検討されている。LTEでは、基地局装置から移動局装置への無線通信(下りリンク)の通信方式として、マルチキャリア送信である直交周波数分割多重(Orthogonal Frequency Division Multiplexing: OFDM)方式が用いられる。また、移動局装置から基地局装置への無線通信(上りリンク)の通信方式として、シングルキャリア送信であるSC-FDMA(Single-Carrier Frequency Division Multiple Access)方式が用いられる。 The third generation partnership project (3rd Generation Generation) is the evolution of wireless access systems and wireless networks for cellular mobile communications (hereinafter referred to as "Long Term Evolution (LTE)" or "Evolved Universal Terrestrial Radio Access (EUTRA)"). Partnership Project: 3GPP) In LTE, an orthogonal frequency division multiplexing (Orthogonal Division Multiplexing: OFDM) method, which is multicarrier transmission, is used as a wireless communication (downlink) communication method from a base station device to a mobile station device. Further, as a wireless communication (uplink) communication method from the mobile station device to the base station device, an SC-FDMA (Single-Carrier Frequency Division Multiple Access) method that is single carrier transmission is used.
 LTEでは、基地局装置は、PDCCH(Physical Downlink Control Channel)で送信される下りリンク制御情報(Downlink Control Information: DCI)を用いて上りリンクデータ(トランスポートブロック、Transport block)送信用のチャネルであるPUSCH(Physical Uplink Shared Channel)の初期送信または再送信を移動局装置に指示する。また、基地局装置は、移動局装置が送信するPUSCHを受信し、PUSCHの復号の成否を示すHARQ(Hybrid Automatic Repeat reQuest)インディケータをPHICH(Physical HARQ Indicator Channel)で送信する。 In LTE, a base station apparatus is a channel for transmitting uplink data (transport block, transport block) using downlink control information (Downlink control information: DCI) transmitted on PDCCH (Physical Downlink Control Channel). The mobile station apparatus is instructed to perform initial transmission or retransmission of PUSCH (Physical (Uplink Shared Channel). Further, the base station apparatus receives the PUSCH transmitted from the mobile station apparatus, and transmits a HARQ (Hybrid Automatic Repeat reQuest) indicator indicating the success or failure of decoding of the PUSCH using a PHICH (Physical HARQ Indicator Channel).
 HARQインディケータは、ACKまたはNACKを示す。基地局装置がPUSCHの復号に成功した場合は、HARQインディケータはACK(ACKnowledgement)を示し、基地局装置がPUSCHの復号に失敗した場合は、HARQインディケータはNACK(Negative ACKnowledgement)を示す。 The HARQ indicator indicates ACK or NACK. When the base station apparatus successfully decodes the PUSCH, the HARQ indicator indicates ACK (ACKnowledgement), and when the base station apparatus fails to decode the PUSCH, the HARQ indicator indicates NACK (Negative ACKnowledgement).
 移動局装置は、まずPHICHで信号の検出を行なう。移動局装置は、PHICHで信号を検出した場合、PHICHで受信したHARQインディケータが示すACKまたはNACKをHARQフィードバックに対してセットする。移動局装置は、PHICHで信号を検出しなかった場合、HARQフィードバックに対して何もセットしない(HARQフィードバックの状態を保持する)。 The mobile station apparatus first detects a signal using PHICH. When the mobile station apparatus detects a signal by PHICH, the mobile station apparatus sets ACK or NACK indicated by the HARQ indicator received by PHICH for HARQ feedback. When the mobile station apparatus does not detect the signal by PHICH, the mobile station apparatus sets nothing for the HARQ feedback (holds the HARQ feedback state).
 次に移動局装置は、下りリンク制御情報の検出を行なう。移動局装置はPUSCHの初期送信を指示する下りリンク制御情報を受信した場合、PUSCHで送信する上りリンクデータを決定し、この上りリンクデータをHARQバッファに記憶し、下りリンク制御情報に従ってPUSCHの初期送信を行ない、HARQフィードバックとしてNACKをセットする。移動局装置はPUSCHの再送信を指示する下りリンク制御情報を受信した場合、下りリンク制御情報に従ってHARQバッファに記憶されている上りリンクデータの再送信をPUSCHで行ない、HARQフィードバックとしてNACKをセットする。尚、移動局装置は、PUSCHの初期送信または再送信を指示する下りリンク制御情報を検出した場合、PHICHで受信したHARQインディケータ(つまり、HARQフィードバックとしてセットされているACKまたはNACK)に基づいて動作を行なわない。 Next, the mobile station apparatus detects downlink control information. When the mobile station apparatus receives the downlink control information instructing the initial transmission of the PUSCH, the mobile station apparatus determines the uplink data to be transmitted on the PUSCH, stores the uplink data in the HARQ buffer, and determines the initial PUSCH according to the downlink control information. Transmit and set NACK as HARQ feedback. When the mobile station apparatus receives the downlink control information instructing the PUSCH retransmission, the mobile station apparatus retransmits the uplink data stored in the HARQ buffer according to the downlink control information using the PUSCH, and sets NACK as the HARQ feedback. . When the mobile station apparatus detects downlink control information instructing initial transmission or retransmission of PUSCH, the mobile station apparatus operates based on the HARQ indicator received by PHICH (that is, ACK or NACK set as HARQ feedback). Do not do.
 移動局装置はPUSCHに対する下りリンク制御情報を受信しなかった場合は、セットされているHARQフィードバックに基づきPUSCHの送信を行なう。移動局装置は、HARQフィードバックに対してNACKがセットされている場合はPUSCHの再送信を行ない、HARQフィードバックに対してACKがセットされている場合はPUSCHの送信を行なわず、HARQバッファに記憶されているデータを保持する。移動局装置は、HARQフィードバックに対してNACKがセットされている場合は、PHICHでACKを示すHARQインディケータを受信するまで、または新たにPDCCHでPUSCHに対する下りリンク制御情報を受信するまで、最後に受信した下りリンク制御情報に基づいてPUSCHの再送信を行なう。例えば、移動局装置は、HARQフィードバックに対してNACKがセットされている状態においてPHICHで信号を検出しなかった場合はPUSCHの再送信を行なう。 When the mobile station apparatus does not receive the downlink control information for the PUSCH, the mobile station apparatus transmits the PUSCH based on the set HARQ feedback. When NACK is set for HARQ feedback, the mobile station apparatus retransmits PUSCH, and when ACK is set for HARQ feedback, the mobile station apparatus does not transmit PUSCH and stores it in the HARQ buffer. Keep the data. When NACK is set for HARQ feedback, the mobile station apparatus finally receives until receiving a HARQ indicator indicating ACK by PHICH or newly receiving downlink control information for PUSCH on PDCCH. The PUSCH is retransmitted based on the downlink control information. For example, the mobile station apparatus retransmits PUSCH when no signal is detected by PHICH in a state where NACK is set for HARQ feedback.
 3GPPでは、LTEより広帯域な周波数帯域を利用して、さらに高速なデータの通信を実現する無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution-Advanced (LTE-A)」、または、「Advanced Evolved Universal Terrestrial Radio Access (A-EUTRA)」と称する。)が検討されている。LTE-Aでは、LTEとの後方互換性(backward compatibility)を持つこと、つまり、LTE-Aの基地局装置が、LTE-AおよびLTE両方の移動局装置と同時に無線通信を行なうこと、およびLTE-Aの移動局装置が、LTE-AおよびLTE両方の基地局装置と無線通信を行なえるようにすることが求められており、LTE-AはLTEと同一のチャネル構造を用いることが検討されている。 In 3GPP, a wireless access method and a wireless network (hereinafter referred to as “Long Term Evolution-Advanced (LTE-A)” or “Advanced Evolved”) that realizes higher-speed data communication using a frequency band wider than LTE. Universal Terrestrial Radio Access (A-EUTRA) ”). In LTE-A, there is backward compatibility with LTE, that is, the LTE-A base station apparatus performs radio communication simultaneously with both LTE-A and LTE mobile station apparatuses, and LTE. -A mobile station apparatus is required to be able to perform radio communication with both LTE-A and LTE base station apparatuses, and LTE-A is considered to use the same channel structure as LTE. ing.
 LTE-Aでは、LTEと同一のチャネル構造の周波数帯域(以下、「コンポーネントキャリア(Component Carrier; CC)」と称する。)を集約して、1つの周波数帯域(広帯域な周波数帯域)として使用する技術(周波数帯域集約;Spectrum aggregation、Carrier aggregation、Frequency aggregation等とも称される。)が検討されている。具体的には、周波数帯域集約を用いた通信では、下りリンクコンポーネントキャリア毎に、下りリンクのチャネルが送信され、上りリンクコンポーネントキャリア毎に上りリンクのチャネルが送信される。つまり、周波数帯域集約は、上りリンクと下りリンクにおいて、基地局装置と複数の移動局装置が複数のチャネルを、複数のコンポーネントキャリアを用いて、複数のデータや複数の制御情報を同時に送受信する技術である。 In LTE-A, a frequency band having the same channel structure as LTE (hereinafter referred to as “Component Carrier (CC)”) is aggregated and used as a single frequency band (broadband frequency band). (Frequency band aggregation; also called Spectrum aggregation, Carrier aggregation, Frequency aggregation, etc.) has been studied. Specifically, in communication using frequency band aggregation, a downlink channel is transmitted for each downlink component carrier, and an uplink channel is transmitted for each uplink component carrier. That is, frequency band aggregation is a technology in which a base station apparatus and a plurality of mobile station apparatuses simultaneously transmit and receive a plurality of data and a plurality of control information using a plurality of channels and a plurality of component carriers in the uplink and the downlink. It is.
 周波数帯域集約を用いた通信では、基地局装置が、移動局装置に通信に用いる下りリンクコンポーネントキャリアと上りリンクコンポーネントキャリアをRRCシグナル(Radio Resource Control signal)などを用いて設定し、この設定した下りリンクコンポーネントキャリアの中から下りリンクの通信に用いる下りリンクコンポーネントキャリアを示すアクティベーションコマンド(activation command)を、PDCCHまたはMAC(Medium Access Control)CE(Control Element)などを用いて通知することが提案されている。(非特許文献1) In communication using frequency band aggregation, the base station apparatus sets the downlink component carrier and the uplink component carrier used for communication to the mobile station apparatus by using an RRC signal (Radio Resource Control Control signal) and the like. It has been proposed that an activation command (activation command) indicating a downlink component carrier used for downlink communication among link component carriers is notified using PDCCH or MAC (Medium Access Control) CE (Control Element). ing. (Non-Patent Document 1)
 しかしながら、従来の技術では、移動局装置において上りリンクで送信したPUSCHに関連するHARQフィードバックにNACKがセットされている状態で、このPUSCHに対する下りリンクコンポーネントキャリアが、下りリンクの通信に用いる下りリンクコンポーネントキャリアから除かれると、移動局装置は、基地局装置のPUSCHの復号の成否に係らず、PUSCHの再送信を繰り返し行なってしまうという問題があった。 However, in the conventional technology, in a state where NACK is set in the HARQ feedback related to the PUSCH transmitted in the uplink in the mobile station apparatus, the downlink component carrier for this PUSCH is a downlink component used for downlink communication. When removed from the carrier, the mobile station apparatus repeatedly performs PUSCH retransmission regardless of the success or failure of the PUSCH decoding of the base station apparatus.
 本発明は上記の点に鑑みてなされたものであり、その目的は、複数の下りリンクコンポーネントキャリアを用いて移動局装置と基地局装置が通信する無線通信システムにおいて、PUSCHの再送信の制御を効率的に行なうことができる無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路を提供することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to control PUSCH retransmission in a wireless communication system in which a mobile station apparatus and a base station apparatus communicate using a plurality of downlink component carriers. An object of the present invention is to provide a wireless communication system, a mobile station device, a base station device, a wireless communication method, and an integrated circuit that can be efficiently performed.
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の無線通信システムは、複数の下りリンクコンポーネントキャリアを用いて移動局装置と基地局装置が通信をする無線通信システムであり、前記移動局装置が前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、前記移動局装置は、前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングし、前記基地局装置は、前記移動局装置が前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングしていると判断することを特徴としている。 (1) In order to achieve the above object, the present invention has taken the following measures. That is, the radio communication system of the present invention is a radio communication system in which a mobile station apparatus and a base station apparatus communicate with each other using a plurality of downlink component carriers, and an uplink transmitted from the mobile station apparatus to the base station apparatus When there is a possibility that retransmission of data will occur, the mobile station device may pending deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted to the base station device, and The apparatus determines that the mobile station apparatus is pending deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted to the base station apparatus.
 (2)また、本発明の移動局装置は、複数の下りリンクコンポーネントキャリアを用いて基地局装置と通信をする移動局装置であり、前記移動局装置は、前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングすることを特徴としている。 (2) The mobile station apparatus of the present invention is a mobile station apparatus that communicates with a base station apparatus using a plurality of downlink component carriers, and the mobile station apparatus transmits an uplink transmitted to the base station apparatus. When re-transmission of data is likely to occur, the deactivation of the downlink component carrier that receives the HARQ indicator for the uplink data transmitted to the base station apparatus is pending.
 (3)また、本発明の基地局装置は、複数の下りリンクコンポーネントキャリアを用いて移動局装置と通信をする基地局装置であり、前記基地局装置は、前記移動局装置が前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、前記移動局装置が前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングしていると判断することを特徴としている。 (3) Moreover, the base station apparatus of this invention is a base station apparatus which communicates with a mobile station apparatus using a some downlink component carrier, The said base station apparatus is the said base station apparatus. If there is a possibility that retransmission of uplink data transmitted to the mobile station apparatus will occur, the mobile station apparatus will pending deactivation of the downlink component carrier that receives the HARQ indicator for the uplink data transmitted to the base station apparatus. It is characterized by being judged.
 (4)また、本発明の無線通信方法は、複数の下りリンクコンポーネントキャリアを用いて基地局装置と通信をする移動局装置に用いられる無線通信方法であり、前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングする手段を有することを特徴としている。 (4) The radio communication method of the present invention is a radio communication method used for a mobile station apparatus that communicates with a base station apparatus using a plurality of downlink component carriers, and the uplink transmitted to the base station apparatus In a case where there is a possibility that retransmission of data occurs, there is provided a means for pending deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted to the base station apparatus.
 (5)また、本発明の無線通信方法は、複数の下りリンクコンポーネントキャリアを用いて移動局装置と通信をする基地局装置に用いられる無線通信方法であり、前記移動局装置が前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、前記移動局装置が前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングしていると判断することを特徴としている。 (5) Moreover, the radio | wireless communication method of this invention is a radio | wireless communication method used for the base station apparatus which communicates with a mobile station apparatus using a some downlink component carrier, The said mobile station apparatus is the said base station apparatus. If there is a possibility that retransmission of uplink data transmitted to the mobile station apparatus will occur, the mobile station apparatus will pending deactivation of the downlink component carrier that receives the HARQ indicator for the uplink data transmitted to the base station apparatus. It is characterized by being judged.
 (6)また、本発明の集積回路は、複数の下りリンクコンポーネントキャリアを用いて基地局装置と通信をする移動局装置に用いられる集積回路であり、前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングする機能を有することを特徴としている。 (6) Moreover, the integrated circuit of the present invention is an integrated circuit used in a mobile station apparatus that communicates with a base station apparatus using a plurality of downlink component carriers, and for the uplink data transmitted to the base station apparatus If there is a possibility that retransmission will occur, it has a function of pending deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted to the base station apparatus.
 (7)また、本発明の集積回路は、複数の下りリンクコンポーネントキャリアを用いて移動局装置と通信をする基地局装置に用いられる集積回路であり、前記移動局装置が前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、前記移動局装置が前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングしていると判断する機能を有することを特徴としている。 (7) The integrated circuit of the present invention is an integrated circuit used in a base station apparatus that communicates with a mobile station apparatus using a plurality of downlink component carriers, and the mobile station apparatus transmits to the base station apparatus. If there is a possibility of retransmission of the uplink data, the mobile station device is pending deactivation of the downlink component carrier that receives the HARQ indicator for the uplink data transmitted to the base station device. It has the function to judge.
 この発明によれば、複数の下りリンクコンポーネントキャリアを用いて移動局装置と基地局装置が通信する無線通信システムにおいて、移動局装置がPUSCHの再送信を効率的に行なうことができる。 According to the present invention, in a radio communication system in which a mobile station apparatus and a base station apparatus communicate using a plurality of downlink component carriers, the mobile station apparatus can efficiently perform PUSCH retransmission.
本発明の実施形態に係る無線通信システムの概念図である。1 is a conceptual diagram of a wireless communication system according to an embodiment of the present invention. 本発明の周波数帯域集約処理の一例を示す図である。It is a figure which shows an example of the frequency band aggregation process of this invention. 本発明の下りリンクの無線フレームの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the downlink radio frame of this invention. 本発明の上りリンクの無線フレームの構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the uplink radio frame of this invention. 本発明の上りリンクのHARQプロセスを説明するための概略図である。FIG. 3 is a schematic diagram for explaining an uplink HARQ process according to the present invention; 本発明の移動局装置1の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the mobile station apparatus 1 of this invention. 本発明の移動局装置1の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the mobile station apparatus 1 of this invention. 本発明の基地局装置3の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the base station apparatus 3 of this invention. 本発明の移動局装置1の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the mobile station apparatus 1 of this invention.
 以下、図面を参照しながら本発明の実施形態について詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の実施形態に係る無線通信システムの概念図である。図1において、無線通信システムは、移動局装置1A~1C、および基地局装置3を具備する。図1は、基地局装置3から移動局装置1A~1Cへの無線通信(下りリンク)では、同期シグナル(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)、物理報知チャネル(Physical Broadcast Channel: PBCH)、物理下りリンク制御チャネル(Physical Downlink Control Channel: PDCCH)、物理下りリンク共用チャネル(Physical Downlink Shared Channel: PDSCH)、物理マルチキャストチャネル(Physical Multicast Channel: PMCH)、物理制御フォーマットインディケータチャネル(Physical Control Format Indicator Channel: PCFICH)、物理HARQインディケータチャネル(Physical Hybrid ARQ Indicator Channel: PHICH)が割り当てられることを示す。 FIG. 1 is a conceptual diagram of a wireless communication system according to an embodiment of the present invention. In FIG. 1, the radio communication system includes mobile station apparatuses 1 A to 1 C and a base station apparatus 3. FIG. 1 shows a synchronization signal (Synchronization signal: SS), downlink reference signal (Downlink Reference Signal: DL RS), physical broadcast channel in wireless communication (downlink) from the base station device 3 to the mobile station devices 1A to 1C (Physical Broadcast Channel: PBCH), Physical Downlink Control Channel (Physical Downlink Control Channel: PDCCH), Physical Downlink Shared Channel (Physical Downlink Shared Channel: PDSCH), Physical Multicast Channel (Physical Multicast Channel: PMCH), Physical Control Format This indicates that an indicator channel (Physical Control Indicator Channel: PCFICH) and a physical HARQ indicator channel (Physical Hybrid ARQ Indicator Channel: PHICH) are allocated.
 また、図1は、移動局装置1A~1Cから基地局装置3への無線通信(上りリンク)では、上りリンク参照信号(Uplink Reference Signal: UL RS)、物理上りリンク制御チャネル(Physical Uplink Control Channel: PUCCH)、物理上りリンク共用チャネル(Physical Uplink Shared Channel: PUSCH)、物理ランダムアクセスチャネル(Physical Random Access Channel: PRACH)が割り当てられることを示す。以下、移動局装置1A~1Cを移動局装置1という。 FIG. 1 shows an uplink reference signal (Uplink Reference Signal: UL 上 り RS), physical uplink control channel (Physical Uplink Control Channel) in wireless communication (uplink) from the mobile station devices 1A to 1C to the base station device 3. : PUCCH), physical uplink shared channel (Physical Uplink Shared Channel: PUSCH), and physical random access channel (Physical Random Access Channel: PRACH). Hereinafter, the mobile station apparatuses 1A to 1C are referred to as the mobile station apparatus 1.
 図2は、本発明の周波数帯域集約処理の一例を示す図である。図2において、横軸は周波数領域、縦軸は時間領域を示す。図2に示すように、下りリンクのサブフレームD1は、20MHzの帯域幅を持った4つの下りリンクコンポーネントキャリア(DL CC-1; Downlink Component Carrier-1、DL CC-2、DL CC-3、DL CC-4)のサブフレームによって構成されている。この下りリンクコンポーネントキャリアのサブフレーム各々には、網目状の線でハッチングがされた領域が示すPHICHが配置される領域と、右上がりの斜線でハッチングがされた領域が示すPDCCHが配置される領域と、ハッチングがされない領域が示すPDSCHが配置される領域がある。PHICHが配置される領域とPDCCHが配置される領域は、周波数多重および/または時間多重される。PHICHとPDCCHが周波数多重および/または時間多重される領域と、PDSCHが配置される領域は時間多重される。 FIG. 2 is a diagram showing an example of the frequency band aggregation processing of the present invention. In FIG. 2, the horizontal axis represents the frequency domain, and the vertical axis represents the time domain. As shown in FIG. 2, the downlink subframe D1 includes four downlink component carriers (DL CC-1; Downlink Component Carrier-1, DL CC-2, DL CC-3, DL) having a bandwidth of 20 MHz. It is composed of DL CC-4) subframes. In each subframe of the downlink component carrier, a region where a PHICH indicated by a hatched region with a mesh line is disposed, and a region where a PDCCH indicated by a hatched region with a right-upward diagonal line is disposed. And there is a region where the PDSCH indicated by the non-hatched region is arranged. The region where the PHICH is arranged and the region where the PDCCH is arranged are frequency multiplexed and / or time multiplexed. The region where PHICH and PDCCH are frequency-multiplexed and / or time-multiplexed and the region where PDSCH is arranged are time-multiplexed.
 一方、上りリンクのサブフレームU1は、20MHzの帯域幅を持った3つの上りリンクコンポーネントキャリア(UL CC-1; Uplink Component Carrier-1、UL CC-2、UL CC-3)によって構成されている。この上りリンクコンポーネントキャリアのサブフレーム各々には、右下がりの斜線でハッチングがされた領域が示すPUCCHが配置される領域と、横線でハッチングがされた領域が示すPUSCHが配置される領域とが周波数多重される。 On the other hand, the uplink subframe U1 is composed of three uplink component carriers (UL-CC-1; Uplink-Component Carrier-1, UL-CC-2, UL-CC-3) having a bandwidth of 20 MHz. . Each of the subframes of the uplink component carrier has a frequency in which a PUCCH indicated by a hatched area with a diagonally downward slanting line and a region in which a PUSCH indicated by a hatched area with a horizontal line are arranged. Is multiplexed.
 まず、移動局装置1は、いずれか1組の下りリンクコンポーネントキャリアと上りリンクコンポーネントキャリアを用いて基地局装置3との初期アクセスを行なう。基地局装置3は、移動局装置1が初期アクセスを行なった下りリンクコンポーネントキャリアのPDSCHを用いて送信するRRCシグナル(Radio Resource Control signal)で、移動局装置1に対して設定した下りリンクコンポーネントキャリアと上りリンクコンポーネントキャリア(以下、「設定されたコンポーネントキャリア(configured component carrier)」と称する。)を通知する。 First, the mobile station apparatus 1 performs initial access with the base station apparatus 3 using any one set of downlink component carrier and uplink component carrier. The base station apparatus 3 uses the RRC signal (Radio Resource Control signal) transmitted using the PDSCH of the downlink component carrier that the mobile station device 1 has made initial access to set the downlink component carrier set for the mobile station device 1. And an uplink component carrier (hereinafter, referred to as “configured component (carrier)”).
 基地局装置3は、設定された下りリンクコンポーネントキャリアの中から下りリンクの通信に用いる下りリンクコンポーネントキャリアを示すアクティベーションコマンド(activation command)を、PDCCHまたはMAC(Medium Access Control)CE(Control Element)などを用いて通知する。例えば、アクティベーションコマンドはビットマップで構成され、下りリンクコンポーネントキャリアそれぞれに対応するビットの値が“1”の場合は、その下りリンクコンポーネントキャリアを下りリンクの通信に用いることを示し、ビットの値が“0”の場合は、その下りリンクコンポーネントキャリアを下りリンクの通信に用いないことを示す。アクティベーションコマンドは、アクティベーションコマンドを受信してから所定の時間後(例えば、1サブフレーム後や4サブフレーム後など)に適用する。なお、MAC CEはPDSCHを用いて送信される。 The base station apparatus 3 sends an activation command (activation command) indicating a downlink component carrier to be used for downlink communication from among the set downlink component carriers, PDCCH or MAC (Medium Access Control) CE (Control Element) Notify using etc. For example, the activation command is composed of a bitmap, and when the value of the bit corresponding to each downlink component carrier is “1”, this indicates that the downlink component carrier is used for downlink communication, and the bit value “0” indicates that the downlink component carrier is not used for downlink communication. The activation command is applied after a predetermined time after receiving the activation command (for example, after one subframe or after four subframes). Note that the MAC-CE is transmitted using PDSCH.
 基地局装置3が移動局装置1に、アクティベーションコマンドで下りリンクコンポーネントキャリアを下りリンクの通信に用いると通知することを、下りリンクコンポーネントキャリアをアクティベートする(activate)と称する。基地局装置3が移動局装置1に、アクティベーションコマンドで下りリンクコンポーネントキャリアを下りリンクの通信に用いないと通知することを、下りリンクコンポーネントキャリアをデアクティベートする(deactivate)と称する。 When the base station apparatus 3 notifies the mobile station apparatus 1 that the downlink component carrier is used for downlink communication with an activation command, it is referred to as activating the downlink component carrier. Notifying the mobile station device 1 that the downlink component carrier is not used for downlink communication by the activation command by the base station device 3 is referred to as deactivating the downlink component carrier.
 アクティベートされている下りリンクコンポーネントキャリアを、アクティベートされた下りリンクコンポーネントキャリア(activated downlink component carrier)または設定されてアクティベートされた下りリンクコンポーネントキャリア(configured and activated downlink component carrier)と称し、デアクティベートされているコンポーネントキャリアを、デアクティベートされた下りリンクコンポーネントキャリア(deactivated downlink component carrier)または設定されてデアクティベートされた下りリンクコンポーネントキャリア(configured and deactivated downlink component carrier)と称する。 An activated downlink component carrier is called an activated downlink component carrier (activated downlink component carrier) or configured and activated downlink component carrier (configured and activated downlink component carrier) and is deactivated The component carrier is referred to as a deactivated downlink component carrier (deactivated downlink component carrier) or a configured and deactivated downlink component carrier (configured and deactivated downlink component carrier).
 移動局装置1はアクティベーションコマンドで下りリンクの通信に用いないと通知された下りリンクコンポーネントキャリアをデアクティベートする方法とは異なる方法で下りリンクコンポーネントキャリアをデアクティベートしてもよい。例えば、移動局装置1は、アクティベーションコマンドで下りリンクコンポーネントキャリアがアクティベートされてから所定の時間が経過した場合に、下りリンクコンポーネントキャリアをデアクティベートしてもよいし、アクティベートされた下りリンクコンポーネントキャリアで最後にPDCCHまたはPDSCHを受信してから所定の時間が経過した場合に、下りリンクコンポーネントキャリアをデアクティベートしてもよい。つまり、移動局装置1自身の判断で下りリンクコンポーネントキャリアをデアクティベートしてもよい。尚、基地局装置3は、上記所定の時間を設定し、この設定を含む情報をRRCシグナルで移動局装置1に通知してもよい。 The mobile station device 1 may deactivate the downlink component carrier by a method different from the method of deactivating the downlink component carrier notified by the activation command that it is not used for downlink communication. For example, the mobile station device 1 may deactivate the downlink component carrier when a predetermined time has elapsed after the activation of the downlink component carrier with the activation command, or the activated downlink component carrier The downlink component carrier may be deactivated when a predetermined time has elapsed since the last reception of PDCCH or PDSCH. That is, the downlink component carrier may be deactivated based on the judgment of the mobile station device 1 itself. Note that the base station apparatus 3 may set the predetermined time and notify the mobile station apparatus 1 of information including this setting with an RRC signal.
 移動局装置1は、デアクティベートされた下りリンクコンポーネントキャリアの信号を受信しない。基地局装置3は、デアクティベートされた下りリンクコンポーネントキャリアの信号を移動局装置1が受信しないと判断する。例えば、基地局装置3は、下りリンクのサブフレームにおいて、アクティベートされた下りリンクコンポーネントキャリアのうち1つまたは複数の下りリンクコンポーネントキャリアに信号(PDSCH、PDCCH、PHICHなど)を配置して、移動局装置1へ送信する。移動局装置1は、アクティベートされた下りリンクコンポーネントキャリアの信号(PDSCH、PDCCH、PHICHなど)のみ監視および受信処理を行なう。 The mobile station device 1 does not receive the deactivated downlink component carrier signal. The base station apparatus 3 determines that the mobile station apparatus 1 does not receive the deactivated downlink component carrier signal. For example, the base station apparatus 3 arranges a signal (PDSCH, PDCCH, PHICH, etc.) on one or more downlink component carriers among the activated downlink component carriers in the downlink subframe, and Transmit to device 1. The mobile station apparatus 1 performs monitoring and reception processing only on the activated downlink component carrier signals (PDSCH, PDCCH, PHICH, etc.).
 基地局装置3は、設定された下りリンクコンポーネントキャリアと上りリンクコンポーネントキャリアの中から下りリンクプライマリーコンポーネントキャリア(downlink primary component carrier: DL PCC)と上りリンクプライマリーコンポーネントキャリア(uplink primary component carrier: UL PCC)を移動局装置1毎に設定し、この設定に関する情報を含むRRCシグナルを移動局装置1に通知する。移動局装置1は、下りリンクプライマリーコンポーネントキャリアと上りリンクプライマリーコンポーネントキャリアの設定をされるまでは、初期アクセスに用いた下りリンクコンポーネントキャリアおよび上りリンクコンポーネントキャリアを、下りリンクプライマリーコンポーネントキャリアおよび上りリンクプライマリーコンポーネントキャリアとして設定する。 The base station apparatus 3 includes a downlink primary component carrier (downlink primary component carrier: DL PCC) and uplink primary component carrier (uplink primary component carrier: UL PCC) among the set downlink component carrier and uplink component carrier. Is set for each mobile station apparatus 1 and an RRC signal including information related to this setting is notified to the mobile station apparatus 1. Until the setting of the downlink primary component carrier and the uplink primary component carrier, the mobile station device 1 uses the downlink component carrier and the uplink component carrier used for the initial access as the downlink primary component carrier and the uplink primary component. Set as a component carrier.
 基地局装置3は、下りリンクプライマリーコンポーネントキャリアはデアクティベートすることができない、つまり下りリンクプライマリーコンポーネントキャリアは必ずアクティベートされている。上りリンクプライマリーコンポーネントキャリアは、上りリンク制御情報を送信するのに用いられる。 The base station apparatus 3 cannot deactivate the downlink primary component carrier, that is, the downlink primary component carrier is always activated. The uplink primary component carrier is used to transmit uplink control information.
 基地局装置3は、上りリンクのサブフレームにおいて、設定された上りリンクコンポーネントキャリアのうち1つまたは複数の上りリンクコンポーネントキャリアのPUSCHの無線リソースを割り当て、このPUSCHに対する無線リソースの割り当てを示す下りリンク制御情報(Downlink Control Information: DCI)をアクティベートされた下りリンクコンポーネントキャリアのPDCCHで送信する。移動局装置1は、PUSCHの無線リソースの割り当てを示す下りリンク制御情報に従って、設定された上りリンクコンポーネントキャリアのうち1つまたは複数の上りリンクコンポーネントキャリアのPUSCHに信号を配置して、基地局装置3へ送信する。 The base station apparatus 3 allocates the PUSCH radio resource of one or more uplink component carriers among the configured uplink component carriers in the uplink subframe, and indicates the radio resource allocation to this PUSCH. Control information (Downlink Control Information: DCI) is transmitted on the activated PDCCH of the downlink component carrier. The mobile station apparatus 1 arranges a signal on the PUSCH of one or a plurality of uplink component carriers among the configured uplink component carriers in accordance with the downlink control information indicating the allocation of the radio resources of the PUSCH, and the base station apparatus 3 to send.
 尚、下りリンクのサブフレームにおいて、下りリンクコンポーネントキャリアのPDSCH、上りリンクコンポーネントキャリアのPUSCHに対する下りリンク制御情報は、設定されてアクティベートされた下りリンクコンポーネントキャリアの中で、いずれか1つの下りリンクコンポーネントキャリアのPDCCHを用いて移動局装置1に送信される。下りリンクコンポーネントキャリアのPDSCHに対するPDCCH、および上りリンクコンポーネントキャリアのPUSCHに対するPDCCHは、サブフレーム毎に異なる下りリンクコンポーネントキャリアに配置されてもよい。 In the downlink subframe, the downlink control information for the PDSCH of the downlink component carrier and the PUSCH of the uplink component carrier is one of the downlink component carriers set and activated. It is transmitted to mobile station apparatus 1 using the PDCCH of the carrier. The PDCCH for the PDSCH of the downlink component carrier and the PDCCH for the PUSCH of the uplink component carrier may be arranged in different downlink component carriers for each subframe.
 つまり、下りリンクコンポーネントキャリアの1個のPDSCH、または上りリンクコンポーネントキャリアの1個のPUSCHに対して、複数のPDCCHが1個の下りリンクコンポーネントキャリアでも、複数の下りリンクコンポーネントキャリアでも同時に送信されることはない。例えば、図2において、下りリンクのサブフレームにおいて、UL CC-1のPUSCHに対するPDCCHは、DL CC-1からDL CC-4のうち、1つの下りリンクコンポーネントキャリア(DL CC-1、またはDL CC-2、またはDL CC-3、またはDL CC-4)のPDCCHで送信される。 That is, for one PDSCH of a downlink component carrier or one PUSCH of an uplink component carrier, a plurality of PDCCHs are simultaneously transmitted by one downlink component carrier or a plurality of downlink component carriers. There is nothing. For example, in FIG. 2, in the downlink subframe, the PDCCH corresponding to the PU of UL CC-1 is one downlink component carrier (DL CC-1 or DL CC-1) among DL CC-1 to DL CC-4. -2, or DL CC-3 or DL CC-4).
 尚、下りリンクコンポーネントキャリアのPDSCH、または上りリンクコンポーネントキャリアのPUSCHに対するPDCCHが送信されることができる下りリンクコンポーネントキャリアは制限されてもよい。例えば、図2において、UL CC-1のPUSCHに対するPDCCHを、サブフレーム毎にDL-CC1とDL CC2のうち、1つの下りリンクコンポーネントキャリアでのみ送信されるように制限されてもよい。また、UL CC-1のPUSCHに対するPDCCHを、サブフレーム毎にDL CC-1でのみ送信されるように制限されてもよい。 Note that the downlink component carrier that can transmit the PDSCH of the downlink component carrier or the PUSCH of the uplink component carrier can be limited. For example, in FIG. 2, the PDCCH for the UL の CC-1 PUSCH may be limited to be transmitted only on one downlink component carrier among DL-CC1 and DL CC2 for each subframe. Also, the PDCCH for the UL の CC-1 PUSCH may be limited to be transmitted only on the DL CC-1 for each subframe.
 上りリンクコンポーネントキャリアで移動局装置1が送信したPUSCHの復号の成否を示すHARQ(Hybrid Automatic Repeat reQuest)インディケータは、このPUSCHに対するPDCCHが最後に送信された下りリンクコンポーネントキャリアのPHICHで送信される。例えば、図2において、移動局装置1がDL CC-1でUL CC-1のPUSCHに対するPDCCHを最後に受信し、UL CC-1でPUSCHを送信した場合、このPUSCHに対するHARQインディケータはDL CC-1のPHICHで送信される。基地局装置3がPUSCHの復号に成功した場合は、HARQインディケータはACK(ACKnowledgement)を示し、基地局装置がPUSCHの復号に失敗した場合は、HARQインディケータはNACK(Negative ACKnowledgement)を示す。 The HARQ (Hybrid Automatic Repeat Repeat) reQuest (HARQ) indicator that indicates the success or failure of decoding of the PUSCH transmitted by the mobile station apparatus 1 on the uplink component carrier is transmitted on the PHICH of the downlink component carrier on which the PDCCH for this PUSCH was last transmitted. For example, in FIG. 2, when the mobile station apparatus 1 finally receives the PDCCH for the PUSCH of the UL CC-1 at DL CC-1 and transmits the PUSCH on the UL CC-1, the HARQ indicator for this PUSCH is DL CC- 1 is transmitted with PHICH. When the base station apparatus 3 successfully decodes the PUSCH, the HARQ indicator indicates ACK (ACKnowledgement), and when the base station apparatus fails to decode the PUSCH, the HARQ indicator indicates NACK (Negative ACKnowledgement).
 図3は、本発明の下りリンクの無線フレームの構成の一例を示す概略図である。図3は、下りリンクコンポーネントキャリアにおける無線フレームの構成を示す。図3において、横軸は時間領域、縦軸は周波数領域である。図3に示すように、下りリンクコンポーネントキャリアの無線フレームは、複数の下りリンクの物理リソースブロック(Physical Resource Block; PRB)ペア(例えば、図3の破線で囲まれた領域)から構成されている。この下りリンクの物理リソースブロックペアは、無線リソースの割り当てなどの単位であり、予め決められた幅の周波数帯(PRB帯域幅;180kHz)および時間帯(2個のスロット=1個のサブフレーム;1ms)からなる。 FIG. 3 is a schematic diagram illustrating an example of a configuration of a downlink radio frame according to the present invention. FIG. 3 shows a configuration of a radio frame in the downlink component carrier. In FIG. 3, the horizontal axis is the time domain, and the vertical axis is the frequency domain. As shown in FIG. 3, the radio frame of the downlink component carrier is composed of a plurality of downlink physical resource block (PhysicalPhysResource Block; PRB) pairs (for example, an area surrounded by a broken line in FIG. 3). . This downlink physical resource block pair is a unit such as radio resource allocation, and has a predetermined frequency band (PRB bandwidth; 180 kHz) and time band (2 slots = 1 subframe; 1 ms).
 1個の下りリンクの物理リソースブロックペアは、時間領域で連続する2個の下りリンクの物理リソースブロック(PRB帯域幅×スロット)から構成される。1個の下りリンクの物理リソースブロック(図3において、太線で囲まれている単位)は、周波数領域において12個のサブキャリア(15kHz)から構成され、時間領域において7個のOFDM(Orthogonal Frequency Division Multiplexing)シンボル(71μs)から構成される。 One downlink physical resource block pair is composed of two downlink physical resource blocks (PRB bandwidth × slot) that are continuous in the time domain. One downlink physical resource block (unit surrounded by a thick line in FIG. 3) is composed of 12 subcarriers (15 kHz) in the frequency domain, and 7 OFDMs (Orthogonal Frequency Frequency Division) in the time domain. Multiplexing) symbol (71 μs).
 時間領域においては、7個のOFDMシンボル(71μs)から構成されるスロット(0.5ms)、2個のスロットから構成されるサブフレーム(1ms)、10個のサブフレームから構成される無線フレーム(10ms)がある。サブフレームと同じ時間間隔である1msのことを、送信時間間隔(Transmit Time Interval: TTI)とも称する。周波数領域においては、下りリンクコンポーネントキャリアの帯域幅に応じて複数の下りリンクの物理リソースブロックが配置される。尚、1個のサブキャリアと1個のOFDMシンボルから構成されるユニットを下りリンクリソースエレメントと称する。 In the time domain, a slot composed of 7 OFDM symbols (71 μs) (0.5 ms), a subframe composed of 2 slots (1 ms), and a radio frame composed of 10 subframes ( 10 ms). 1 ms, which is the same time interval as the subframe, is also referred to as a transmission time interval (Transmit Time Interval: TITTI). In the frequency domain, a plurality of downlink physical resource blocks are arranged according to the bandwidth of the downlink component carrier. A unit composed of one subcarrier and one OFDM symbol is referred to as a downlink resource element.
 以下、下りリンクコンポーネントキャリア内に割り当てられるチャネルについて説明をする。下りリンクの各サブフレームでは、例えば、PDCCH、PHICH、PDSCH、および下りリンク参照信号が割り当てられる。まず、PDCCHについて説明をする。PDCCHはサブフレームの先頭のOFDMシンボルから(図3において、右上がりの斜線でハッチングされた領域)配置される。尚、PDCCHが配置されるOFDMシンボルの数は1から3であり、サブフレーム毎に異なる。PDCCHには、下りリンクアサインメント(downlink assignment、またはdownlink grantとも称する。)、上りリンクグラント(Uplink grant)などの情報フォーマットで構成される、通信の制御に用いられる情報である下りリンク制御情報の信号が配置される。また、各サブフレームでは、各下りリンクコンポーネントキャリアにおいて複数のPDCCHが周波数多重および時間多重される。 Hereinafter, the channels allocated in the downlink component carrier will be described. In each downlink subframe, for example, PDCCH, PHICH, PDSCH, and a downlink reference signal are allocated. First, PDCCH will be described. PDCCH is arranged from the OFDM symbol at the head of the subframe (the area hatched with a diagonal line rising to the right in FIG. 3). Note that the number of OFDM symbols in which the PDCCH is arranged is 1 to 3, and is different for each subframe. The PDCCH includes downlink control information, which is information used for communication control, configured in an information format such as downlink assignment (also referred to as downlink assignment) or uplink grant (Uplink grant). A signal is placed. In each subframe, a plurality of PDCCHs are frequency-multiplexed and time-multiplexed in each downlink component carrier.
 下りリンクアサインメントは、PDSCHに対する変調方式および符号化に関する情報、無線リソースの割り当てを示す情報、初期送信または再送信などを示すHARQに関する情報、TPCコマンドなどから構成される。また、上りリンクグラントは、PUSCHに対する変調方式および符号化に関する情報、無線リソースの割り当てを示す情報、初期送信または再送信などを示すHARQに関する情報、TPCコマンドなどから構成される。尚、HARQとは、例えば、移動局装置1(基地局装置3)がデータの復号の成否を示すHARQフィードバックを基地局装置3(移動局装置1)に送信し、移動局装置1(基地局装置3)が誤りによりデータを復号できない(NACK)場合に基地局装置3(移動局装置1)が信号を再送し、移動局装置1(基地局装置3)が再度受信した信号と既に受信した信号との合成信号に対して復号処理を行なう技術である。 The downlink assignment includes information regarding modulation scheme and coding for PDSCH, information indicating radio resource allocation, information regarding HARQ indicating initial transmission or retransmission, a TPC command, and the like. Further, the uplink grant includes information on modulation scheme and coding for PUSCH, information indicating radio resource allocation, information on HARQ indicating initial transmission or retransmission, a TPC command, and the like. Note that HARQ means that, for example, the mobile station apparatus 1 (base station apparatus 3) transmits HARQ feedback indicating success or failure of data decoding to the base station apparatus 3 (mobile station apparatus 1), and the mobile station apparatus 1 (base station apparatus). When the device 3) cannot decode data due to an error (NACK), the base station device 3 (mobile station device 1) retransmits the signal, and the mobile station device 1 (base station device 3) has already received the signal again. This is a technique for performing a decoding process on a combined signal with a signal.
 下りリンクアサインメントと上りリンクグラントを構成するHARQに関する情報には、NDI(New Data Indicator)が含まれる。移動局装置1は、下りリンクアサインメントまたは上りリンクグラントを受信した場合は、受信した下りリンクアサインメントまたは上りリンクグラントに含まれるNDIを記憶する。このとき、移動局装置1が既にNDIを記憶している場合は、NDIがトグル(toggle)されているか判定してから、新しいNDIに上書きする。 NDI (New Data Indicator) is included in the information regarding HARQ constituting the downlink assignment and the uplink grant. When receiving the downlink assignment or the uplink grant, the mobile station apparatus 1 stores the NDI included in the received downlink assignment or the uplink grant. At this time, if the mobile station apparatus 1 already stores the NDI, it is determined whether the NDI is toggled, and then overwritten with the new NDI.
 移動局装置1は、NDIがトグルされている場合は、下りリンクアサインメントまたは上りリンクグラントが初期送信を示していると判定し、NDIがトグルされていない場合は、下りリンクアサインメントまたは上りリンクグラントが再送信を示していると判定する。NDIがトグルされているとは、既に記憶しているNDIと受信したNDIの値が異なることであり、NDIがトグルされていないとは、既に記憶しているNDIと受信したNDIの値が同じであることである。以下、下りリンクアサインメントまたは上りリンクグラントに含まれるNDIがトグルされていることを、下りリンクアサインメントまたは上りリンクグラントが初期送信を指示していると称し、NDIがトグルされていないことを、下りリンクアサインメントまたは上りリンクグラントが再送信を指示していると称する。 When the NDI is toggled, the mobile station apparatus 1 determines that the downlink assignment or uplink grant indicates initial transmission. When the NDI is not toggled, the mobile station apparatus 1 determines the downlink assignment or uplink. It is determined that the grant indicates retransmission. NDI is toggled means that the stored NDI value is different from the received NDI value. If NDI is not toggled, the stored NDI value is the same as the received NDI value. It is to be. Hereinafter, the NDI included in the downlink assignment or uplink grant is toggled, and the downlink assignment or uplink grant is referred to as instructing initial transmission, and the NDI is not toggled. It is said that the downlink assignment or the uplink grant is instructing retransmission.
 下りリンク制御情報の符号化方法について説明する。まず基地局装置3は、下りリンク制御情報を基に生成した巡回冗長検査(Cyclic Redundancy Check: CRC)符号をRNTI(Radio Network Temporary Identifier)でスクランブル(scramble)した系列を下りリンク制御情報に付加する。移動局装置1は、巡回冗長検査符号がいずれのRNTIでスクランブルされているかによって下りリンク制御情報の解釈を変更する。例えば、移動局装置1は、自装置が基地局装置3から割り当てられたC-RNTI(Cell-Radio Network Temporary Identity)で巡回冗長検査符号がスクランブルされていた場合、下りリンク制御情報が自装置宛の無線リソースを示していると判断する。以下、下りリンク制御情報にRNTIでスクランブルされた巡回冗長検査符号が付加されていることを、単に下りリンク制御情報にRNTIが含まれている、またはPDCCHにRNTIが含まれていると表現する。 Described below is a method for encoding downlink control information. First, the base station apparatus 3 adds, to the downlink control information, a sequence obtained by scrambling the cyclic redundancy check (Cyclic Redundancy Check: CRC) code generated based on the downlink control information with an RNTI (Radio Network Temporary Identifier). . The mobile station apparatus 1 changes the interpretation of the downlink control information depending on which RNTI the cyclic redundancy check code is scrambled. For example, if the cyclic redundancy check code is scrambled by the C-RNTI (Cell-Radio Network Temporary Identity) assigned by the mobile station apparatus 1 from the base station apparatus 3, the downlink control information is addressed to the mobile station apparatus 1 It is determined that the radio resource is indicated. Hereinafter, the addition of a cyclic redundancy check code scrambled with RNTI to downlink control information is simply expressed as RNTI included in downlink control information or RNTI included in PDCCH.
 移動局装置1は、PDCCHをデコード処理し、RNTIでスクランブルされた巡回冗長検査符号に相当する系列を自装置が記憶するRNTIでデスクランブル(descramble)し、デスクランブルした巡回冗長検査符号に基づき誤りがないことを検出した場合にPDCCHの取得に成功したと判断する。この処理をブラインドデコーディング(blind decoding)と呼ぶ。 The mobile station apparatus 1 decodes the PDCCH, descrambles the sequence corresponding to the cyclic redundancy check code scrambled by the RNTI with the RNTI stored by the mobile station apparatus 1, and makes an error based on the descrambled cyclic redundancy check code. When it is detected that there is no PDCCH, it is determined that acquisition of the PDCCH is successful. This process is called blind decoding.
 次に、PHICHについて説明をする。各サブフレームにおいて、PHICHとPDCCHは同一OFDMシンボル内で周波数多重(図3において、網目状の線でハッチングがされた領域)される。PHICHは、サブフレームの先頭のOFDMシンボルのみに配置されてもよいし、複数のOFDMシンボルに分散して配置されてもよい。PHICHには、PUSCHの復号の成否(ACK/NACK)を示すHARQインディケータが配置される。また、各サブフレームでは、各下りリンクコンポーネントキャリアにおいて複数のPHICHが周波数多重および符号多重される。 Next, PHICH will be described. In each subframe, PHICH and PDCCH are frequency-multiplexed within the same OFDM symbol (the area hatched with a mesh line in FIG. 3). The PHICH may be arranged only in the first OFDM symbol of the subframe, or may be arranged dispersed in a plurality of OFDM symbols. In the PHICH, a HARQ indicator indicating success / failure of PUSCH decoding (ACK / NACK) is arranged. In each subframe, a plurality of PHICHs are frequency-multiplexed and code-multiplexed in each downlink component carrier.
 上りリンクコンポーネントキャリアで移動局装置1が送信したPUSCHの復号の成否を示すHARQインディケータは、このPUSCHに対する上りリンクグラントが最後に送信されたのと同じ下りリンクコンポーネントキャリアのPHICHで送信される。また、PUSCHに対するHARQインディケータが下りリンクコンポーネントキャリア内のいずれのPHICHに配置されるかは、このPUSCHに割り当てられた物理リソースブロックのうち、最も番号の小さい(最も低い周波数領域の)物理リソースブロックの番号および、上りリンクグラントに含まれる、PUSCHと時間多重される上りリンク参照信号のサイクリックシフトに関する情報から決定される。 The HARQ indicator indicating the success or failure of decoding of the PUSCH transmitted by the mobile station apparatus 1 using the uplink component carrier is transmitted using the PHICH of the downlink component carrier that is the last transmitted uplink grant for this PUSCH. Also, in which PHICH in the downlink component carrier the HARQ indicator for the PUSCH is arranged is the physical resource block with the smallest number (of the lowest frequency region) among the physical resource blocks allocated to this PUSCH. It is determined from the number and information related to the cyclic shift of the uplink reference signal time-multiplexed with the PUSCH, which is included in the uplink grant.
 移動局装置1は、PUSCHを送信してから所定の時間後(例えば、4ms後、4サブフレーム後、4TTI後)の下りリンクのサブフレームのPHICHで、このPUSCHに対するHARQフィードバックを受信する。上りリンク参照信号では、符号多重が用いられ、複数の異なる符号が用いられる。例えば、複数の異なる符号は予め決められた基礎系列を周期的にシフト(サイクリックシフトと称す)することにより生成され、異なるシフト量のサイクリックシフトにより異なる符号が生成される。 The mobile station apparatus 1 receives HARQ feedback for this PUSCH in a PHICH of a downlink subframe after a predetermined time (for example, 4 ms, 4 subframes, 4 TTIs) after transmitting the PUSCH. In the uplink reference signal, code multiplexing is used, and a plurality of different codes are used. For example, a plurality of different codes are generated by periodically shifting (referred to as cyclic shift) a predetermined basic sequence, and different codes are generated by cyclic shifts of different shift amounts.
 次に、PDSCHについて説明をする。PDSCHは、サブフレームのPDCCHおよび/またはPHICHが配置されるOFDMシンボル以外のOFDMシンボル(図3において、ハッチングがされない領域)に配置される。PDSCHには、下りリンクデータ(または「トランスポートブロック(Transport Block)」と称する。)の信号が配置される。PDSCHの無線リソースは、下りリンクアサインメントを用いて割り当てられる。PDSCHの無線リソースは、時間領域において、このPDSCHの割り当てに用いられた下りリンクアサインメントを含むPDCCHと同一の下りリンクのサブフレームに配置され、周波数領域において、このPDSCHの割り当てに用いられた下りリンクアサインメントを含むPDCCHと同じ下りリンクコンポーネントキャリア、または異なる下りリンクコンポーネントキャリアに配置される。 Next, PDSCH will be described. The PDSCH is arranged in an OFDM symbol other than the OFDM symbol in which the PDCCH and / or PHICH of the subframe is arranged (in FIG. 3, a region not hatched). In the PDSCH, a signal of downlink data (or “transport block”) is arranged. PDSCH radio resources are allocated using downlink assignment. The PDSCH radio resources are arranged in the same downlink subframe as the PDCCH including the downlink assignment used for the PDSCH assignment in the time domain, and the downlink used for the PDSCH assignment in the frequency domain. It is arranged on the same downlink component carrier as the PDCCH including the link assignment or on a different downlink component carrier.
 下りリンクアサインメントには、この下りリンクアサインメントが、いずれの下りリンクコンポーネントキャリアのPDSCHに対するものかを示す情報(以下、「下りリンクキャリアインディケータ(downlink carrier indicator)」と称する。)が含められる。下りリンクアサインメントに下りリンクキャリアインディケータが含まれていない場合、下りリンクキャリアインディケータを含まない下りリンクアサインメントと、この下りリンクアサインメントが対応するPDSCHは同じ下りリンクコンポーネントキャリアで送信される。各サブフレームでは、各下りリンクコンポーネントキャリアにおいて複数のPDSCHが周波数多重および空間多重される。下りリンク参照信号については、説明の簡略化のため図3において図示を省略するが、下りリンク参照信号は周波数領域と時間領域において分散して配置される。 The downlink assignment includes information (hereinafter referred to as “downlink carrier indicator”) indicating which downlink component carrier the PDSCH is for which downlink component carrier. When a downlink carrier indicator is not included in the downlink assignment, the downlink assignment not including the downlink carrier indicator and the PDSCH corresponding to the downlink assignment are transmitted on the same downlink component carrier. In each subframe, a plurality of PDSCHs are frequency-multiplexed and spatially multiplexed in each downlink component carrier. The downlink reference signal is not shown in FIG. 3 for simplicity of explanation, but the downlink reference signal is distributed and arranged in the frequency domain and the time domain.
 図4は、本発明の上りリンクの無線フレームの構成の一例を示す概略図である。図4は、上りリンクコンポーネントキャリアにおける無線フレームの構成を示す。図4において、横軸は時間領域、縦軸は周波数領域である。図4に示すように、上りリンクの無線フレームは、複数の上りリンクの物理リソースブロックペア(例えば、図4の破線で囲まれた領域)から構成されている。この上りリンクの物理リソースブロックペアは、無線リソースの割り当てなどの単位であり、予め決められた幅の周波数帯(PRB帯域幅;180kHz)および時間帯(2個のスロット=1個のサブフレーム;1ms)からなる。 FIG. 4 is a schematic diagram showing an example of the configuration of an uplink radio frame according to the present invention. FIG. 4 shows a configuration of a radio frame in the uplink component carrier. In FIG. 4, the horizontal axis is the time domain, and the vertical axis is the frequency domain. As shown in FIG. 4, the uplink radio frame is composed of a plurality of uplink physical resource block pairs (for example, an area surrounded by a broken line in FIG. 4). This uplink physical resource block pair is a unit such as radio resource allocation, and has a predetermined frequency band (PRB bandwidth; 180 kHz) and time band (2 slots = 1 subframe; 1 ms).
 1個の上りリンクの物理リソースブロックペアは、時間領域で連続する2個の上りリンクの物理リソースブロック(PRB帯域幅×スロット)から構成される。1個の上りリンクの物理リソースブロック(図4において、太線で囲まれている単位)は、周波数領域において12個のサブキャリア(15kHz)から構成され、時間領域において7個のSC-FDMAシンボル(71μs)から構成される。 One uplink physical resource block pair is composed of two uplink physical resource blocks (PRB bandwidth × slot) that are continuous in the time domain. One uplink physical resource block (a unit surrounded by a thick line in FIG. 4) is composed of 12 subcarriers (15 kHz) in the frequency domain, and 7 SC-FDMA symbols ( 71 μs).
 時間領域においては、7個のSC-FDMA(Single-Carrier Frequency Division Multiple Access)シンボル(71μs)から構成されるスロット(0.5ms)、2個のスロットから構成されるサブフレーム(1ms)、10個のサブフレームから構成される無線フレーム(10ms)がある。サブフレームと同じ時間間隔である1msのことを、送信時間間隔(Transmit Time Interval: TTI)とも称する。周波数領域においては、上りリンクコンポーネントキャリアの帯域幅に応じて複数の上りリンクの物理リソースブロックが配置される。尚、1個のサブキャリアと1個のSC-FDMAシンボルから構成されるユニットを上りリンクリソースエレメントと称する。 In the time domain, a slot (0.5 ms) composed of seven SC-FDMA (Single-Carrier Frequency Division Multiple Access) symbols (71 μs), a subframe (1 ms) composed of two slots, 10 There is a radio frame (10 ms) composed of subframes. 1 ms, which is the same time interval as the subframe, is also referred to as a transmission time interval (Transmit Time Interval: TITTI). In the frequency domain, a plurality of uplink physical resource blocks are arranged according to the bandwidth of the uplink component carrier. A unit composed of one subcarrier and one SC-FDMA symbol is referred to as an uplink resource element.
 以下、上りリンクの無線フレーム内に割り当てられるチャネルについて説明をする。上りリンクの各サブフレームでは、例えば、PUCCH、PUSCH、および上りリンク参照信号が割り当てられる。まず、PUCCHについて説明をする。PUCCHは、上りリンクコンポーネントキャリアの帯域の両端の上りリンクの物理リソースブロックペア(右上がりの斜線でハッチングがされた領域)に割り当てられる。PUCCHには、下りリンクのチャネル品質を示すチャネル品質情報(Channel Quality Information)、上りリンクの無線リソースの割り当ての要求を示すスケジューリング要求(Scheduling Request: SR)、PDSCHに対するACK/NACKなど、通信の制御に用いられる情報である上りリンク制御情報(Uplink Control Information: UCI)の信号が配置される。各サブフレームでは、各上りリンクコンポーネントキャリアにおいて複数のPUCCHが周波数多重および符号多重される。 Hereinafter, the channels allocated in the uplink radio frame will be described. In each uplink subframe, for example, a PUCCH, a PUSCH, and an uplink reference signal are allocated. First, PUCCH will be described. The PUCCH is allocated to uplink physical resource block pairs (regions hatched with diagonal lines rising to the right) at both ends of the band of the uplink component carrier. The PUCCH includes communication quality control such as channel quality information (Channel Quality Information) indicating downlink channel quality, a scheduling request (Scheduling Request: SR) indicating a request for allocation of uplink radio resources, and ACK / NACK for the PDSCH. Uplink control information (Uplink Control Information: UCI) signal, which is information used for the transmission, is arranged. In each subframe, a plurality of PUCCHs are frequency-multiplexed and code-multiplexed in each uplink component carrier.
 次に、PUSCHについて説明をする。PUSCHは、PUCCHが配置される上りリンクの物理リソースブロック以外の上りリンクの物理リソースブロックペア(ハッチングされない領域)に割り当てられる。PUSCHには、上りリンク制御情報、および上りリンク制御情報以外の情報である上りリンクデータ(トランスポートブロック; Transport Block)の信号が配置される。PUSCHの無線リソースは、上りリンクグラントを用いて割り当てられ、この上りリンクグラントを含むPDCCHが配置された下りリンクのサブフレームから所定の時間後(例えば、4ms後、4サブフレーム後、4TTI後)の上りリンクのサブフレームに配置される。 Next, PUSCH will be described. The PUSCH is assigned to an uplink physical resource block pair (an area that is not hatched) other than the uplink physical resource block in which the PUCCH is arranged. In the PUSCH, uplink control information and uplink data (transport block; Transport Block) signals that are information other than the uplink control information are arranged. PUSCH radio resources are allocated using an uplink grant, and after a predetermined time from a downlink subframe in which a PDCCH including the uplink grant is arranged (for example, 4 ms later, 4 subframes later, 4 TTI later) Are arranged in uplink subframes.
 上りリンクグラントには、この上りリンクグラントが、いずれの上りリンクコンポーネントキャリアのPUSCHに対するものかを示す情報(以下、「上りリンクキャリアインディケータ(uplink carrier indicator)」と称する。)が含められる。また、上りリンクグラントに上りリンクキャリアインディケータが含まれていない場合は、上りリンクキャリアインディケータを含まない上りリンクグラントは、この上りリンクグラントが対応する上りリンクコンポーネントキャリアと予め対応付けられた下りリンクコンポーネントキャリアで送信される。各サブフレームでは、各上りリンクコンポーネントキャリアにおいて複数のPUSCHが周波数多重および空間多重される。上りリンク参照信号は、PUCCHやPUSCHと時間多重されるが、説明の簡略化のため詳細な説明は省略する。 The uplink grant includes information (hereinafter referred to as “uplink carrier indicator”) indicating which uplink component carrier the PUSCH is for the uplink component carrier. Further, when the uplink grant does not include an uplink carrier indicator, the uplink grant that does not include the uplink carrier indicator is a downlink component that is associated in advance with the uplink component carrier to which the uplink grant corresponds. Sent on carrier. In each subframe, a plurality of PUSCHs are frequency-multiplexed and spatially multiplexed in each uplink component carrier. The uplink reference signal is time-multiplexed with PUCCH and PUSCH, but detailed description is omitted for the sake of simplicity.
 図5は、本発明の上りリンクのHARQプロセスを説明するための概略図である。図5において、横軸は時間領域であり、網目状の線でハッチングがされた四角はPHICHを示し、右上がりの斜線でハッチングがされた四角はPDCCH(上りリンクグラント)を示し、横線でハッチングがされた四角はPUSCHを示し、PHICHおよびPDCCHおよびPUSCHに付された番号は、各チャネルが対応するHARQプロセスの番号を示している。本発明では、上りリンクコンポーネントキャリア毎に複数(8つ)のHARQプロセスが独立して同時に動作する。 FIG. 5 is a schematic diagram for explaining the uplink HARQ process of the present invention. In FIG. 5, the horizontal axis is the time domain, a square hatched with a mesh-like line indicates PHICH, a square hatched with an upward slanting diagonal line indicates PDCCH (uplink grant), and a horizontal line hatches. The marked squares indicate PUSCH, and the numbers given to PHICH, PDCCH, and PUSCH indicate the number of the HARQ process to which each channel corresponds. In the present invention, multiple (eight) HARQ processes operate independently and simultaneously for each uplink component carrier.
 PUSCHが対応するHARQプロセスの番号は上りリンクのサブフレームの番号と対応付けられる。例えば、サブフレームの番号を上りリンクコンポーネントキャリア内で同時に動作するHARQプロセスの数で割った余りの値を、そのサブフレームに対応する上りリンクコンポーネントキャリア内のHARQプロセスの番号とする。PHICHおよびPDCCH(上りリンクグラント)が対応するHARQプロセスの番号は下りリンクのサブフレームの番号と対応付けられる。上りリンクと下りリンクでは対応するHARQプロセスの番号が4つシフトされている。 The HARQ process number corresponding to the PUSCH is associated with the uplink subframe number. For example, the remainder of dividing the subframe number by the number of HARQ processes operating simultaneously in the uplink component carrier is set as the HARQ process number in the uplink component carrier corresponding to the subframe. The number of the HARQ process to which PHICH and PDCCH (uplink grant) correspond is associated with the number of the downlink subframe. In the uplink and downlink, the corresponding HARQ process number is shifted by four.
 異なる上りリンクコンポーネントキャリアに関連するHARQプロセスは、同一のサブフレームで同時に実行することができる。例えば、図2のように3つの上りリンクコンポーネントキャリアを用いて移動局装置1と基地局装置3が通信を行なう場合、8×3=24のHARQプロセスが独立して同時に動作することになる。説明の簡略化のため、図5では1つの上りリンクコンポーネントキャリアのPUSCHのみ示す。 HARQ processes related to different uplink component carriers can be executed simultaneously in the same subframe. For example, when the mobile station device 1 and the base station device 3 communicate using three uplink component carriers as shown in FIG. 2, 8 × 3 = 24 HARQ processes operate independently and simultaneously. For simplicity of explanation, FIG. 5 shows only the PUSCH of one uplink component carrier.
 HARQプロセスそれぞれは、1つのHARQバッファに関連している。移動局装置1は、PUSCHで送信する上りリンクデータ(トランスポートブロック)を、そのPUSCHと対応するHARQプロセスのHARQバッファに保存し、対応するPDCCHで最後に受信した上りリンクグラントを保存し、HARQフィードバックとしてセットしたACKまたはNACKを記憶する。基地局装置3は、PUSCHで受信し、復号した上りリンクデータをそのPUSCHと対応するHARQプロセスのHARQバッファに保存し、対応するPDCCHで最後に送信した上りリンクグラントを保存する。 Each HARQ process is associated with one HARQ buffer. The mobile station apparatus 1 stores the uplink data (transport block) transmitted on the PUSCH in the HARQ buffer of the HARQ process corresponding to the PUSCH, stores the uplink grant received last on the corresponding PDCCH, and HARQ. ACK or NACK set as feedback is stored. The base station apparatus 3 stores the uplink data received and decoded on the PUSCH in the HARQ buffer of the HARQ process corresponding to the PUSCH, and the uplink grant transmitted last on the corresponding PDCCH.
 尚、移動局装置1がMIMO(Multiple Input Multiple Output)SM(Spatial Multiplexing)を用いて、1つのPUSCHで複数の上りリンクデータ(トランスポートブロック)を送信できる場合は、HARQプロセスそれぞれは、1つのPUSCHで送信される上りリンクデータ(トランスポートブロック)の数と同じ数のHARQバッファに関連付けられる必要がある。 In addition, when the mobile station apparatus 1 can transmit a plurality of uplink data (transport blocks) on one PUSCH using MIMO (Multiple Input Multiple Multiple Output) SM (Spatial Multiplexing), each HARQ process has one It is necessary to be associated with the same number of HARQ buffers as the number of uplink data (transport blocks) transmitted on the PUSCH.
 ある上りリンクコンポーネントキャリアのHARQプロセスに対するPDCCH(上りリンクグラント)は、HARQプロセスのタイミング毎に異なる下りリンクコンポーネントキャリアで送信されてもよいし、上りリンクコンポーネントキャリア毎に対応させた下りリンクコンポーネントキャリアでのみ送信されてもよい。ある上りリンクコンポーネントキャリアのHARQプロセスに対するPHICHは、そのHARQプロセスに関するPDCCH(上りリンクグラント)が最後に送信された下りリンクコンポーネントキャリアで送信される。 A PDCCH (uplink grant) for a HARQ process of a certain uplink component carrier may be transmitted using a different downlink component carrier for each HARQ process timing, or a downlink component carrier corresponding to each uplink component carrier. May be sent only. The PHICH for the HARQ process of a certain uplink component carrier is transmitted on the downlink component carrier to which the PDCCH (uplink grant) related to the HARQ process is last transmitted.
 例えば、図5において、移動局装置1は、n番目の下りリンクのサブフレームで0番のHARQプロセスに関する初期送信を指示するPDCCH(上りリンクグラント)を受信し、n+4番目の上りリンクのサブフレームで、このPDCCH(上りリンクグラント)に従って0番のHARQプロセスに関するPUSCHの初期送信を行なう。移動局装置1は、n+8番目の下りリンクのサブフレームで0番のHARQプロセスに関するPHICHとPDCCH(上りリンクグラント)を受信し、n+12番目の上りリンクのサブフレームで、このPHICH、またはPDCCH(上りリンクグラント)に従って0番のHARQプロセスに関するPUSCHの初期送信または再送信を行なう。 For example, in FIG. 5, the mobile station apparatus 1 receives a PDCCH (uplink grant) instructing initial transmission related to the HARQ process No. 0 in the nth downlink subframe, and the n + 4th uplink subframe. Then, the PUSCH for the HARQ process number 0 is initially transmitted according to this PDCCH (uplink grant). The mobile station apparatus 1 receives the PHICH and the PDCCH (uplink grant) related to the HARQ process # 0 in the (n + 8) th downlink subframe, and receives this PHICH or PDCCH (uplink grant) in the (n + 12) th uplink subframe. In accordance with (link grant), initial transmission or retransmission of PUSCH related to the HARQ process of No. 0 is performed.
 このように、同じHARQプロセスに対応する下りリンクのサブフレームと上りリンクのサブフレームは4ms(4サブフレーム、4TTI)ずれている。また、同じHARQプロセスに対するPHICHおよびPDCCH(上りリンクグラント)およびPUSCHは8ms(8サブフレーム、8TTI)間隔で送信される。 Thus, the downlink subframe and the uplink subframe corresponding to the same HARQ process are shifted by 4 ms (4 subframes, 4 TTIs). Also, PHICH, PDCCH (uplink grant) and PUSCH for the same HARQ process are transmitted at intervals of 8 ms (8 subframes, 8 TTI).
 本発明の上りリンクのHARQプロセスにおいて、移動局装置1は、まずPHICHで受信したHARQインディケータが示すACKまたはNACKをHARQフィードバックとしてセットする。移動局装置1は、PUSCHの初期送信を指示する上りリンクグラントをPDCCHで受信した場合は、HARQフィードバックとしてセットされているACKまたはNACKに依存せず、PUSCHで送信する新しい上りリンクデータを決定し、この上りリンクデータをHARQバッファに記憶し、受信した上りリンクグラントを記憶し、記憶されている上りリンクグラントに従ってPUSCHの初期送信を行ない、HARQフィードバックとしてNACKをセットする。 In the uplink HARQ process of the present invention, the mobile station apparatus 1 first sets ACK or NACK indicated by the HARQ indicator received by PHICH as HARQ feedback. When the mobile station apparatus 1 receives the uplink grant instructing the initial transmission of the PUSCH on the PDCCH, the mobile station apparatus 1 determines new uplink data to be transmitted on the PUSCH without depending on the ACK or NACK set as the HARQ feedback. The uplink data is stored in the HARQ buffer, the received uplink grant is stored, PUSCH is initially transmitted according to the stored uplink grant, and NACK is set as HARQ feedback.
 移動局装置1は、PUSCHの再送信を指示する上りリンクグラントをPDCCHで受信した場合は、HARQフィードバックとしてセットされているACKまたはNACKに依存せず、記憶している上りリンクグラントを受信した上りリンクグラントに上書きし、上書きされた上りリンクグラントに従ってHARQバッファに記憶されている上りリンクデータをPUSCHで再送信し、HARQフィードバックとしてNACKをセットする。移動局装置1は、HARQバッファが空の場合は、上りリンクグラントが初期送信を指示しているか、再送信を指示しているかに依存せず、PUSCHで送信する上りリンクデータを決定し、この上りリンクデータをHARQバッファに記憶し、受信した上りリンクグラントを記憶し、記憶されている上りリンクグラントに従ってPUSCHの初期送信を行ない、HARQフィードバックとしてNACKをセットする。 When the mobile station apparatus 1 receives the uplink grant instructing the PUSCH retransmission on the PDCCH, the mobile station apparatus 1 does not depend on the ACK or NACK set as the HARQ feedback and receives the stored uplink grant. Overwrite the link grant, retransmit the uplink data stored in the HARQ buffer according to the overwritten uplink grant on the PUSCH, and set NACK as HARQ feedback. When the HARQ buffer is empty, the mobile station device 1 determines the uplink data to be transmitted on the PUSCH without depending on whether the uplink grant instructs initial transmission or re-transmission. Uplink data is stored in the HARQ buffer, the received uplink grant is stored, PUSCH is initially transmitted according to the stored uplink grant, and NACK is set as HARQ feedback.
 移動局装置1は、PUSCHに対する上りリンクグラントを受信せず、HARQフィードバックとしてNACKがセットされている場合は、記憶されている上りリンクグラントに従ってHARQバッファに記憶されている上りリンクデータをPUSCHで再送信する。移動局装置1は、PUSCHに対する上りリンクグラントを受信せず、HARQフィードバックとしてACKがセットされている場合は、PUSCHの送信を行なわず、そのHARQプロセスが管理するHARQバッファに記憶されている上りリンクデータを保持する。 When the mobile station apparatus 1 does not receive the uplink grant for the PUSCH and NACK is set as the HARQ feedback, the mobile station apparatus 1 retransmits the uplink data stored in the HARQ buffer on the PUSCH according to the stored uplink grant. Send. When the mobile station apparatus 1 does not receive the uplink grant for the PUSCH and ACK is set as the HARQ feedback, the mobile station apparatus 1 does not transmit the PUSCH, and is stored in the HARQ buffer managed by the HARQ process. Retain data.
 移動局装置1は、図5においてDL CC-1のn番目のサブフレームにおいてUL CC-1のPUSCHに対する上りリンクグラントを受信すると、受信した上りリンクグラントに従ってUL CC-1のn+4番目のサブフレームにおいてPUSCHを送信し、HARQフィードバックとしてNACKをセットする。移動局装置1が、このPUSCHに対するPHICHをDL CC-1で受信するn+8番目のサブフレームの前にDL CC-1がデアクティベートされた場合に、移動局装置1はn+8番目のサブフレームにおいてDL CC-1でPHICHを受信できない。このとき移動局装置1は、HARQフィードバックとしてNACKをセットしたままだと、0番目のHARQプロセスに対応する上りリンクのサブフレーム((n+4+8×i)番目のサブフレーム:iは整数)で、n番目のDL CC-1のサブフレームにおいて受信した上りリンクグラントに従ってPUSCHの再送信を続けることになる。 When the mobile station apparatus 1 receives the uplink grant for the PUSCH of the UL CC-1 in the n th subframe of the DL -1 CC-1 in Fig. 5, the n + 4th subframe of the UL CC-1 according to the received uplink grant. Transmits PUSCH and sets NACK as HARQ feedback. When DL CC-1 is deactivated before the n + 8th subframe in which the mobile station device 1 receives the PHICH for this PUSCH in the DL CC-1, the mobile station device 1 performs the DL in the n + 8th subframe. Cannot receive PHICH on CC-1. At this time, if the NACK is still set as the HARQ feedback, the mobile station apparatus 1 is an uplink subframe corresponding to the 0th HARQ process ((n + 4 + 8 × i) th subframe: i is an integer), and n The PUSCH retransmission is continued according to the uplink grant received in the subframe of the DL DL CC-1.
 このような不必要なPUSCHの再送信を避けるため、本発明では以下の手段を講じる。移動局装置1は、下りリンクコンポーネントキャリアがデアクティベートされる条件を満たしたとしても、この下りリンクコンポーネントキャリアで受信した上りリンクグラントに従って送信したPUSCH(上りリンクデータ)の再送信が発生する可能性がある場合は、この下りリンクコンポーネントキャリアがデアクティベートされることをペンディング(pending)する、つまり、下りリンクコンポーネントキャリアがアクティベートされる期間を延期する。換言すると、移動局装置1は、基地局装置3に送信した上りリンクデータに対するPHICH(HARQインディケータ)を受信する下りリンクコンポーネントキャリアがデアクティベートされることをペンディングする、つまり、下りリンクコンポーネントキャリアがアクティベートされる期間を延長する。 In order to avoid such unnecessary PUSCH retransmission, the present invention takes the following measures. Even if the mobile station apparatus 1 satisfies the condition for deactivating the downlink component carrier, there is a possibility that retransmission of PUSCH (uplink data) transmitted according to the uplink grant received by the downlink component carrier may occur. If there is, it is pending that this downlink component carrier is deactivated, that is, the period during which the downlink component carrier is activated is postponed. In other words, the mobile station apparatus 1 pending that the downlink component carrier that receives the PHICH (HARQ indicator) for the uplink data transmitted to the base station apparatus 3 is deactivated, that is, the downlink component carrier is activated. Extend the period
 基地局装置3は、移動局装置1に設定した下りリンクコンポーネントキャリアがデアクティベートされる条件を満たしたとしても、移動局装置1においてこの下りリンクコンポーネントキャリアで受信された上りリンクグラントに従って送信されたPUSCH(上りリンクデータ)の再送信が発生する可能性がある場合は、移動局装置1が、この下りリンクコンポーネントキャリアがデアクティベートされることをペンディングした、つまり、下りリンクコンポーネントキャリアがアクティベートされる期間を延期したと判断する。 Even if the base station apparatus 3 satisfies the condition for the downlink component carrier set in the mobile station apparatus 1 to be deactivated, the base station apparatus 3 is transmitted according to the uplink grant received by the downlink component carrier in the mobile station apparatus 1. When there is a possibility that retransmission of PUSCH (uplink data) may occur, the mobile station apparatus 1 has pending that this downlink component carrier is deactivated, that is, the downlink component carrier is activated. Judge that the period has been postponed.
 HARQプロセスのHARQフィードバックとしてNACKがセットされており、HARQプロセスに対応するHARQバッファに上りリンクデータが記憶されている場合に、このHARQプロセスでPUSCHの再送信が発生する可能性がある。PUSCHの再送信が発生する可能性があるとは、PHICHでNACKが受信される、またはHARQプロセスが対応するサブフレーム(タイミング)でHARQフィードバックとしてNACKがセットされている、または再送信を指示する上りリンクグラントが受信される可能性があることである。PUSCHの再送信が発生する可能性があることを、PUSCHの再送信がペンディングされているとも言う。 When NACK is set as the HARQ feedback of the HARQ process and uplink data is stored in the HARQ buffer corresponding to the HARQ process, there is a possibility that PUSCH retransmission may occur in this HARQ process. A PUSCH retransmission may occur when a NACK is received in PHICH, or a NACK is set as HARQ feedback in a subframe (timing) corresponding to the HARQ process, or a retransmission is indicated. An uplink grant may be received. The possibility that a PUSCH retransmission may occur is also referred to as a pending PUSCH retransmission.
 例えば、図2において、移動局装置1がUL CC-1に対する上りリンクグラントはDL CC-1とDL CC-2に配置されると設定されており、DL CC-1で受信した上りリンクグラントに関連するPUSCHの再送信が発生する可能性がある時に、DL CC-1とDL CC-2両方でデアクティベートされる条件が満たされた場合に、移動局装置1は、DL CC-1がデアクティベートされることをペンディングし、DL CC-2をデアクティベートし、DL CC-1でPHICHの受信およびPDCCHのブラインドデコーディングを行なう。 For example, in FIG. 2, the mobile station apparatus 1 is set so that the uplink grant for UL CC-1 is allocated to DL CC-1 and DL CC-2, and the uplink grant received by DL CC-1 When the conditions for deactivation in both DL-CC-1 and DL-CC-2 are satisfied when there is a possibility that the related PUSCH retransmission may occur, the mobile station apparatus 1 deselects DL-CC-1. Pending activation is performed, DL-CC-2 is deactivated, and PHICH reception and PDCCH blind decoding are performed on DL-CC-1.
 図6は、本発明の移動局装置1の動作の一例を示すフローチャートである。移動局装置1は、下りリンクコンポーネントキャリア毎に図6の処理を行なう。移動局装置1は、下りリンクコンポーネントキャリアがアクティベーションコマンドなどでアクティベートされると(ステップS100)、サブフレーム毎に、アクティベートされた下りリンクコンポーネントキャリアがデアクティベートされる条件を満たしたか否かを判定する(ステップS101)。移動局装置1は、ステップS101において下りリンクコンポーネントキャリアがデアクティベートされる条件を満たしていないと判定した場合は、次のサブフレームに進み(ステップS102)、ステップS101に戻る。 FIG. 6 is a flowchart showing an example of the operation of the mobile station apparatus 1 of the present invention. The mobile station apparatus 1 performs the process of FIG. 6 for every downlink component carrier. When the downlink component carrier is activated by an activation command or the like (step S100), the mobile station device 1 determines whether or not the activated downlink component carrier satisfies a deactivation condition for each subframe. (Step S101). If the mobile station apparatus 1 determines in step S101 that the condition for deactivating the downlink component carrier is not satisfied, the mobile station apparatus 1 proceeds to the next subframe (step S102) and returns to step S101.
 移動局装置1は、ステップS101において下りリンクコンポーネントキャリアがデアクティベートされる条件を満たしたと判定した場合は、この下りリンクコンポーネントキャリアで受信した上りリンクグラントに関連するPUSCHの再送信が発生する可能性があるか否かを判定する(ステップS103)。移動局装置1は、ステップS103においてPUSCHの再送信が発生する可能性があると判定した場合は、次のサブフレームに進み(ステップS104)、ステップS103に戻る。移動局装置1は、ステップS103においてPUSCHの再送信が発生する可能性がないと判定した場合は、この下りリンクコンポーネントキャリアをデアクティベートする(ステップS105)。移動局装置1は、ステップS105の後に下りリンクコンポーネントキャリアをデアクティベートすることに関連する処理を終了する。 If the mobile station apparatus 1 determines in step S101 that the condition for deactivating the downlink component carrier is satisfied, there is a possibility that retransmission of PUSCH related to the uplink grant received by this downlink component carrier may occur. It is determined whether or not there is (step S103). If the mobile station apparatus 1 determines in step S103 that there is a possibility of retransmission of PUSCH, the mobile station apparatus 1 proceeds to the next subframe (step S104) and returns to step S103. If the mobile station apparatus 1 determines in step S103 that there is no possibility of PUSCH retransmission, the mobile station apparatus 1 deactivates the downlink component carrier (step S105). The mobile station apparatus 1 ends the process related to deactivating the downlink component carrier after step S105.
 このように、PUSCHの再送信が発生する可能性がある場合は、ステップS103とステップS104をループするので、下りリンクコンポーネントキャリアがデアクティベートされることが延期される。尚、説明の簡略化のために図6では省略したが、ステップS103とステップS104をループしている時に、アクティベーションコマンドで下りリンクコンポーネントキャリアが再びアクティベートされた場合は、ステップS101に戻る。 As described above, when there is a possibility that PUSCH retransmission may occur, the loop of step S103 and step S104 is delayed, so that the deactivation of the downlink component carrier is postponed. Although omitted in FIG. 6 for simplification of description, when the downlink component carrier is reactivated by the activation command while step S103 and step S104 are looped, the process returns to step S101.
 図7は、本発明の移動局装置1の構成を示す概略ブロック図である。図示するように、移動局装置1は、上位層処理部101、制御部103、受信部105、送信部107および、送受信アンテナ109を含んで構成される。また、上位層処理部101は、無線リソース制御部1011、HARQ制御部1013とHARQ記憶部1015を含んで構成される。また、受信部105は、復号化部1051、復調部1053、多重分離部1055、無線受信部1057とチャネル測定部1059を含んで構成される。また、送信部107は、符号化部1071、変調部1073、多重部1075、無線送信部1077と上りリンク参照信号生成部1079を含んで構成される。 FIG. 7 is a schematic block diagram showing the configuration of the mobile station apparatus 1 of the present invention. As illustrated, the mobile station apparatus 1 includes an upper layer processing unit 101, a control unit 103, a receiving unit 105, a transmitting unit 107, and a transmission / reception antenna 109. The upper layer processing unit 101 includes a radio resource control unit 1011, a HARQ control unit 1013, and a HARQ storage unit 1015. The reception unit 105 includes a decoding unit 1051, a demodulation unit 1053, a demultiplexing unit 1055, a radio reception unit 1057, and a channel measurement unit 1059. The transmission unit 107 includes an encoding unit 1071, a modulation unit 1073, a multiplexing unit 1075, a radio transmission unit 1077, and an uplink reference signal generation unit 1079.
 上位層処理部101は、ユーザの操作等により生成された上りリンクデータやRRCシグナルやMAC CEを、送信部107に出力する。また、上位層処理部101は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部101はPDCCHで受信された下りリンク制御情報などに基づき、受信部105、および送信部107の制御を行なうために制御情報を生成し、制御部103に出力する。上位層処理部101が備える無線リソース制御部1011は、自装置の各種設定情報の管理を行なう。例えば、無線リソース制御部1011は、C-RNTIなどのRNTIの管理を行なう。また、無線リソース制御部1011は、上りリンクの各チャネルに配置される情報を生成し、送信部107に出力する。 The upper layer processing unit 101 outputs the uplink data, the RRC signal, and the MAC-CE generated by a user operation or the like to the transmission unit 107. The upper layer processing unit 101 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and radio resource control. Process the (Radio Resource Control: RRC) layer. Further, upper layer processing section 101 generates control information for controlling receiving section 105 and transmitting section 107 based on downlink control information received by PDCCH, and outputs the control information to control section 103. The radio resource control unit 1011 included in the higher layer processing unit 101 manages various setting information of the own device. For example, the radio resource control unit 1011 manages RNTI such as C-RNTI. Also, the radio resource control unit 1011 generates information arranged in each uplink channel and outputs the information to the transmission unit 107.
 無線リソース制御部1011は、設定された下りリンクコンポーネントキャリアに対する下りリンクアサインメントおよび設定された上りリンクコンポーネントキャリアに対する上りリンクグラントが配置される下りリンクコンポーネントキャリアを管理する。無線リソース制御部1011は、基地局装置3から通知されたRRCシグナルで設定された下りリンクコンポーネントキャリアと上りリンクコンポーネントキャリア、およびアクティベーションコマンドなどでアクティベートまたはデアクティベートされた下りリンクコンポーネントキャリアの管理を行なう。 The radio resource control unit 1011 manages the downlink component carrier in which the downlink assignment for the configured downlink component carrier and the uplink grant for the configured uplink component carrier are arranged. The radio resource control unit 1011 manages the downlink component carrier and the uplink component carrier set by the RRC signal notified from the base station apparatus 3, and the downlink component carrier activated or deactivated by an activation command or the like. Do.
 無線リソース制御部1011は、下りリンクコンポーネントキャリアがデアクティベートされる条件を満たしたとしても、この下りリンクコンポーネントキャリアで受信した上りリンクグラントに従って送信したPUSCH(上りリンクデータ)の再送信が発生する可能性がある場合は、この下りリンクコンポーネントキャリアがデアクティベートされることをペンディングする、つまり、下りリンクコンポーネントキャリアがアクティベートされる期間を延期する。 Even if the radio resource control unit 1011 satisfies the condition for deactivating the downlink component carrier, the retransmission of PUSCH (uplink data) transmitted according to the uplink grant received by the downlink component carrier may occur. If there is a possibility, the fact that this downlink component carrier is deactivated is pending, that is, the period during which the downlink component carrier is activated is postponed.
 上位層処理部101が備えるHARQ制御部1013は、上りリンクのHARQプロセスの管理を行なう。上位層処理部101が備えるHARQ記憶部1015は、HARQ制御部1013が管理する上りリンクのHARQプロセスそれぞれに関連するHARQバッファを有する。HARQ記憶部1015は、HARQプロセスそれぞれに関連する上りリンクグラントやHARQフィードバック(ACKまたはNACK)を記憶する。尚、下りリンクのHARQプロセスは、本発明と関連がないため説明を省略する。 The HARQ control unit 1013 included in the higher layer processing unit 101 manages an uplink HARQ process. The HARQ storage unit 1015 included in the higher layer processing unit 101 includes a HARQ buffer associated with each uplink HARQ process managed by the HARQ control unit 1013. The HARQ storage unit 1015 stores uplink grants and HARQ feedback (ACK or NACK) related to each HARQ process. The downlink HARQ process is not related to the present invention, and thus the description thereof is omitted.
 HARQ制御部1013は、HARQプロセス毎に以下の動作をする。HARQ制御部1013は、PUSCHで送信される上りリンクデータ(トランスポートブロック)をHARQバッファに入力し、受信部105から入力されるPHICHで受信されたHARQインディケータが示すACKまたはNACKと、PDCCHで受信された上りリンクグラントをHARQ記憶部1015に記憶させる。HARQ制御部1013は、HARQ記憶部1015に記憶させたACKまたはNACK、および上りリンクグラントに基づきHARQの制御を行なう。 The HARQ control unit 1013 performs the following operation for each HARQ process. The HARQ control unit 1013 inputs uplink data (transport block) transmitted on the PUSCH to the HARQ buffer, and receives the ACK or NACK indicated by the HARQ indicator received from the PHICH input from the reception unit 105 and the PDCCH. The uplink grant is stored in the HARQ storage unit 1015. The HARQ control unit 1013 performs HARQ control based on the ACK or NACK stored in the HARQ storage unit 1015 and the uplink grant.
 HARQ制御部1013は、PUSCHが送信される上りリンクコンポーネントキャリアおよびサブフレームの番号(タイミング)と、HARQプロセスを対応付ける。HARQ制御部1013は、上りリンクグラントが最後に受信された下りリンクコンポーネントキャリア内の複数のPHICHのうち、PUSCHの物理リソースブロックの割り当てと、PUSCHと時間多重される上りリンク参照信号のサイクリックシフトに関する上りリンクグラントに含まれる情報から、このHARQプロセスに対応するPHICHを決定する。 The HARQ control unit 1013 associates the HARQ process with the uplink component carrier and subframe number (timing) in which the PUSCH is transmitted. HARQ control section 1013 assigns PUSCH physical resource blocks among a plurality of PHICHs in the downlink component carrier in which the uplink grant was last received, and cyclic shift of the uplink reference signal that is time-multiplexed with PUSCH. The PHICH corresponding to this HARQ process is determined from the information included in the uplink grant.
 HARQ制御部1013は、上りリンクグラントに含まれる上りリンクキャリアインディケータと、この上りリンクグラントが受信されたサブフレームの番号(タイミング)から、受信された上りリンクグラントが対応するHARQプロセスを決定する。HARQ制御部1013は、上りリンクグラントに上りリンクキャリアインディケータが含まれない場合は、この上りリンクグラントが受信された下りリンクコンポーネントキャリアとサブフレームの番号(タイミング)から、受信された上りリンクグラントが対応するHARQプロセスを決定する。 The HARQ control unit 1013 determines the HARQ process corresponding to the received uplink grant from the uplink carrier indicator included in the uplink grant and the number (timing) of the subframe in which the uplink grant is received. When the uplink grant does not include the uplink carrier indicator, the HARQ control unit 1013 determines that the received uplink grant is based on the downlink component carrier and the subframe number (timing) from which the uplink grant is received. Determine the corresponding HARQ process.
 制御部103は、上位層処理部101からの制御情報に基づいて、受信部105、および送信部107の制御を行なう制御信号を生成する。制御部103は、生成した制御信号を受信部105、および送信部107に出力して受信部105、および送信部107の制御を行なう。受信部105は、制御部103から入力された制御信号に従って、送受信アンテナ109を介して基地局装置3から受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部101に出力する。 The control unit 103 generates a control signal for controlling the receiving unit 105 and the transmitting unit 107 based on the control information from the higher layer processing unit 101. Control unit 103 outputs the generated control signal to receiving unit 105 and transmitting unit 107 to control receiving unit 105 and transmitting unit 107. The receiving unit 105 separates, demodulates, and decodes the received signal received from the base station apparatus 3 via the transmission / reception antenna 109 according to the control signal input from the control unit 103, and sends the decoded information to the upper layer processing unit 101. Output.
 無線受信部1057は、送受信アンテナ109を介して受信した下りリンクの信号を、中間周波数に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1057は、変換したディジタル信号からガードインターバル(Guard Interval: GI)に相当する部分を除去し、ガードインターバルを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行ない、周波数領域の信号を抽出する。 The radio reception unit 1057 converts the downlink signal received via the transmission / reception antenna 109 into an intermediate frequency (down-conversion: down covert), removes unnecessary frequency components, and maintains the signal level appropriately. Then, the amplification level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the quadrature demodulated analog signal is converted into a digital signal. The radio reception unit 1057 removes a portion corresponding to a guard interval (Guard Interval: GI) from the converted digital signal, performs a fast Fourier transform (FFT Fourier Transform: FFT) on the signal from which the guard interval is removed, Extract the region signal.
 多重分離部1055は、抽出した信号をPHICH、PDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。尚、この分離は、下りリンクアサインメントで通知された無線リソースの割り当て情報などに基づいて行なわれる。また、多重分離部1055は、チャネル測定部1059から入力された伝搬路の推定値から、PHICHとPDCCHとPDSCHの伝搬路の補償を行なう。また、多重分離部1055は、分離した下りリンク参照信号をチャネル測定部1059に出力する。 The demultiplexing unit 1055 separates the extracted signals into PHICH, PDCCH, PDSCH, and downlink reference signals. This separation is performed based on radio resource allocation information notified by downlink assignment. Further, demultiplexing section 1055 compensates the propagation path of PHICH, PDCCH, and PDSCH from the estimated propagation path value input from channel measurement section 1059. Also, the demultiplexing unit 1055 outputs the demultiplexed downlink reference signal to the channel measurement unit 1059.
 復調部1053は、PHICHに対して、BPSK(Binary Phase Shift Keying)変調方式の復調を行ない、復号化部1051へ出力する。復号化部1051は、自装置宛てのPHICHを復号し、復号したHARQインディケータを上位層処理部101に出力する。復調部1053は、PDCCHに対して、QPSK変調方式の復調を行ない、復号化部1051へ出力する。復号化部1051は、PDCCHのブラインドデコーディングを試み、ブラインドデコーディングに成功した場合、復号した下りリンク制御情報と下りリンク制御情報に含まれていたRNTIを上位層処理部101に出力する。 The demodulator 1053 demodulates the PHICH using a BPSK (Binary Phase Shift Keying) modulation method and outputs the demodulated signal to the decoding unit 1051. Decoding section 1051 decodes the PHICH addressed to the own apparatus, and outputs the decoded HARQ indicator to higher layer processing section 101. Demodulation section 1053 demodulates the QPSK modulation scheme for PDCCH and outputs the result to decoding section 1051. Decoding section 1051 attempts blind decoding of PDCCH, and when blind decoding is successful, decodes downlink control information and outputs RNTI included in downlink control information to higher layer processing section 101.
 復調部1053は、PDSCHに対して、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAM等の下りリンクアサインメントで通知された変調方式の復調を行ない、復号化部1051へ出力する。復号化部1051は、下りリンク制御情報で通知された符号化率に関する情報に基づいて復号を行ない、復号した下りリンクデータ(トランスポートブロック)を上位層処理部101へ出力する。 The demodulation unit 1053 demodulates the modulation scheme notified by downlink assignment such as QPSK (Quadrature Phase Shift Keying), 16QAM (Quadrature Amplitude Modulation), 64QAM, etc., and outputs the result to the decoding unit 1051. . Decoding section 1051 performs decoding based on the information regarding the coding rate notified by the downlink control information, and outputs the decoded downlink data (transport block) to higher layer processing section 101.
 チャネル測定部1059は、多重分離部1055から入力された下りリンク参照信号から下りリンクのパスロスやチャネルの状態を測定し、測定したパスロスやチャネルの状態を上位層処理部101へ出力する。また、チャネル測定部1059は、下りリンク参照信号から下りリンクの伝搬路の推定値を算出し、多重分離部1055へ出力する。 The channel measurement unit 1059 measures the downlink path loss and channel state from the downlink reference signal input from the demultiplexing unit 1055, and outputs the measured path loss and channel state to the upper layer processing unit 101. Also, channel measurement section 1059 calculates an estimated value of the downlink propagation path from the downlink reference signal, and outputs it to demultiplexing section 1055.
 送信部107は、制御部103から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部101から入力された上りリンクデータ(トランスポートブロック)を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ109を介して基地局装置3に送信する。符号化部1071は、上位層処理部101から入力された上りリンク制御情報を畳込み符号化、ブロック符号化等の符号化を行ない、上りリンクデータを上りリンクグラントで通知された符号化率に関する情報に基づいてターボ符号化を行なう。変調部1073は、符号化部1071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。 The transmission unit 107 generates an uplink reference signal according to the control signal input from the control unit 103, encodes and modulates the uplink data (transport block) input from the higher layer processing unit 101, PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 3 via the transmission / reception antenna 109. The coding unit 1071 performs coding such as convolution coding and block coding on the uplink control information input from the higher layer processing unit 101, and relates to the coding rate in which the uplink data is notified by the uplink grant. Turbo coding is performed based on the information. The modulation unit 1073 modulates the coded bits input from the coding unit 1071 using a modulation method notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation method predetermined for each channel. .
 上りリンク参照信号生成部1079は、基地局装置3を識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称する。)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフトなどを基に予め定められた規則で求まる、基地局装置3が既知の系列を生成する。多重部1075は、制御部103から入力された制御信号に従って、PUSCHの変調シンボルを並列に並び替えてから離散フーリエ変換(Discrete Fourier Transform: DFT)し、PUCCHとPUSCHの信号と生成した上りリンク参照信号を多重する。 The uplink reference signal generation unit 1079 is a physical cell identifier for identifying the base station device 3 (referred to as physical cell な ど identity: 識別 す る PCI, Cell 装置 ID, etc.), a bandwidth for arranging the uplink reference signal, and an uplink grant. Based on the notified cyclic shift or the like, the base station apparatus 3 obtains a known sequence that is obtained by a predetermined rule. The multiplexing unit 1075 rearranges the PUSCH modulation symbols in parallel in accordance with the control signal input from the control unit 103, and then performs discrete Fourier transform (Discrete Fourier Transform: DFT) to generate the PUCCH and PUSCH signals and the generated uplink reference Multiplex the signal.
 無線送信部1077は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDMA方式の変調を行ない、SC-FDMA変調されたSC-FDMAシンボルにガードインターバルを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: up convert)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ109に出力して送信する。 The radio transmission unit 1077 performs inverse fast Fourier transform (IFFT) on the multiplexed signal, performs SC-FDMA modulation, and adds a guard interval to the SC-FDMA modulated SC-FDMA symbol. Generating a baseband digital signal, converting the baseband digital signal to an analog signal, generating an in-phase component and a quadrature component of an intermediate frequency from the analog signal, removing an extra frequency component for the intermediate frequency band, The intermediate frequency signal is converted to a high frequency signal (up-conversion: up convert), an extra frequency component is removed, the power is amplified, and output to the transmission / reception antenna 109 for transmission.
 図8は、本発明の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、上位層処理部301、制御部303、受信部305、送信部307、および、送受信アンテナ309、を含んで構成される。また、上位層処理部301は、無線リソース制御部3011、HARQ制御部3013とHARQ記憶部3015を含んで構成される。また、受信部305は、復号化部3051、復調部3053、多重分離部3055、無線受信部3057とチャネル測定部3059を含んで構成される。また、送信部307は、符号化部3071、変調部3073、多重部3075、無線送信部3077と下りリンク参照信号生成部3079を含んで構成される。 FIG. 8 is a schematic block diagram showing the configuration of the base station apparatus 3 of the present invention. As illustrated, the base station apparatus 3 includes an upper layer processing unit 301, a control unit 303, a reception unit 305, a transmission unit 307, and a transmission / reception antenna 309. The upper layer processing unit 301 includes a radio resource control unit 3011, a HARQ control unit 3013, and a HARQ storage unit 3015. The reception unit 305 includes a decoding unit 3051, a demodulation unit 3053, a demultiplexing unit 3055, a wireless reception unit 3057, and a channel measurement unit 3059. The transmission unit 307 includes an encoding unit 3071, a modulation unit 3073, a multiplexing unit 3075, a radio transmission unit 3077, and a downlink reference signal generation unit 3079.
 上位層処理部301は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部301は、受信部305、および送信部307の制御を行なうために制御情報を生成し、制御部303に出力する。上位層処理部301が備える無線リソース制御部3011は、下りリンクのPDSCHに配置される下りリンクデータ(トランスポートブロック)、RRCシグナル、MAC CEを生成し、または上位ノードから取得し、送信部307に出力する。また、無線リソース制御部3011は、移動局装置1各々の各種設定情報の管理をする。例えば、無線リソース制御部3011は、移動局装置1にC-RNTIを割り当てるなどRNTIの管理を行なう。 The upper layer processing unit 301 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). Resource (Control: RRC) layer processing. Further, upper layer processing section 301 generates control information for controlling receiving section 305 and transmitting section 307 and outputs the control information to control section 303. The radio resource control unit 3011 included in the upper layer processing unit 301 generates downlink data (transport block), RRC signal, MAC CE arranged in the downlink PDSCH, or acquires from the upper node, and transmits the transmission unit 307. Output to. Further, the radio resource control unit 3011 manages various setting information of each mobile station apparatus 1. For example, the radio resource control unit 3011 performs RNTI management such as assigning C-RNTI to the mobile station apparatus 1.
 無線リソース制御部3011は、移動局装置1それぞれに設定される下りリンクコンポーネントキャリアと上りリンクコンポーネントキャリア、およびアクティベートまたはデアクティベートした下りリンクコンポーネントキャリアの管理を行なう。無線リソース制御部3011は、移動局装置1それぞれに、通信に用いる下りリンクコンポーネントキャリアと上りリンクコンポーネントキャリアを設定し、RRCシグナルでこの設定に関する情報を通知するよう、制御部303を介して、送信部307を制御する。 The radio resource control unit 3011 manages the downlink component carrier and the uplink component carrier set for each mobile station apparatus 1 and the activated or deactivated downlink component carrier. The radio resource control unit 3011 sets a downlink component carrier and an uplink component carrier to be used for communication to each mobile station apparatus 1 and transmits via the control unit 303 so as to notify information related to this setting with an RRC signal. The unit 307 is controlled.
 無線リソース制御部3011は、移動局装置1それぞれに、通信に用いる下りリンクコンポーネントキャリアと上りリンクコンポーネントキャリアに対するPDCCHが配置される下りリンクコンポーネントキャリアを設定し、RRCシグナルでこの設定に関する情報を通知するよう、制御部303を介して、送信部307を制御する。無線リソース制御部3011は、移動局装置1それぞれに、PDCCHまたはMAC CEでアクティベーションコマンドを通知するよう、制御部303を介して、送信部307を制御する。 The radio resource control unit 3011 sets the downlink component carrier used for communication and the downlink component carrier on which the PDCCH for the uplink component carrier is arranged for each mobile station apparatus 1, and notifies information related to this setting using an RRC signal. Thus, the transmission unit 307 is controlled via the control unit 303. The radio resource control unit 3011 controls the transmission unit 307 via the control unit 303 so that each mobile station apparatus 1 is notified of the activation command by PDCCH or MAC / CE.
 上位層処理部301が備えるHARQ制御部3013は、移動局装置1それぞれの上りリンクのHARQプロセスの管理を行なう。上位層処理部301が備えるHARQ記憶部3015は、HARQ制御部3013が管理する上りリンクのHARQプロセスそれぞれに対応する複数のHARQバッファを有する。尚、下りリンクのHARQプロセスは、本発明と関連がないため説明を省略する。HARQ制御部3013は、受信部305から入力されたPUSCHで受信された上りリンクデータ(トランスポートブロック)をHARQバッファに入力し、上りリンクデータに付加された誤り検出符号(巡回冗長検査符号)を用いて上りリンクデータの復号に成功したか否かを判定する。 The HARQ control unit 3013 provided in the higher layer processing unit 301 manages the uplink HARQ process of each mobile station apparatus 1. The HARQ storage unit 3015 provided in the higher layer processing unit 301 includes a plurality of HARQ buffers corresponding to each uplink HARQ process managed by the HARQ control unit 3013. The downlink HARQ process is not related to the present invention, and thus the description thereof is omitted. The HARQ control unit 3013 inputs the uplink data (transport block) received by the PUSCH input from the receiving unit 305 to the HARQ buffer, and receives the error detection code (cyclic redundancy check code) added to the uplink data. To determine whether or not the decoding of the uplink data is successful.
 HARQ制御部3013は、上りリンクデータの復号に成功したと判定した場合は、ACKを示すHARQインディケータを生成し、上りリンクデータの復号に失敗したと判定した場合は、NACKを示すHARQインディケータを生成し、送信部307に出力する。HARQ制御部3013は、上りリンクデータの復号に失敗したと判定した場合は、無線リソース割当や変調方式および符号化率に関する情報を変更し、変更した情報を含む再送信を指示する上りリンクグラントを送信するよう、制御部303を介して、送信部307を制御してもよい。 The HARQ control unit 3013 generates a HARQ indicator indicating ACK when determining that the decoding of uplink data is successful, and generates a HARQ indicator indicating NACK when determining that the decoding of the uplink data has failed. And output to the transmission unit 307. When the HARQ control unit 3013 determines that the decoding of the uplink data has failed, the HARQ control unit 3013 changes the information on the radio resource allocation, the modulation scheme, and the coding rate, and sets the uplink grant that instructs retransmission including the changed information. The transmission unit 307 may be controlled via the control unit 303 so as to transmit.
 HARQ制御部3013は、移動局装置1において再送信された上りリンクデータが受信部305から入力された場合は、既にHARQバッファに保存している上りリンクデータと再送信された上りリンクデータを合成し、上りリンクデータの復号に成功したか否かを判定する。HARQ制御部3013は、移動局装置1がPUSCHを送信する上りリンクコンポーネントキャリアおよびサブフレームの番号(タイミング)と、HARQプロセスの番号を対応付ける。 When the uplink data retransmitted in the mobile station apparatus 1 is input from the reception unit 305, the HARQ control unit 3013 combines the uplink data already stored in the HARQ buffer and the retransmitted uplink data. Then, it is determined whether or not the uplink data has been successfully decoded. The HARQ control unit 3013 associates the uplink component carrier and subframe number (timing) with which the mobile station apparatus 1 transmits the PUSCH with the HARQ process number.
 HARQ制御部3013は、あるHARQプロセスに対して上りリンクグラントが最後に送信された下りリンクコンポーネントキャリア内の複数のPHICHのうち、PUSCHの物理リソースブロックの割り当てと、PUSCHと時間多重される上りリンク参照信号のサイクリックシフトに関する上りリンクグラントに含まれる情報から、このHARQプロセスに対応するACK/NACKを送信するのに用いるPHICHを決定する。 The HARQ control unit 3013 allocates PUSCH physical resource blocks among a plurality of PHICHs in a downlink component carrier in which an uplink grant is last transmitted for a certain HARQ process, and an uplink that is time-multiplexed with the PUSCH. A PHICH used to transmit ACK / NACK corresponding to this HARQ process is determined from information included in the uplink grant related to the cyclic shift of the reference signal.
 制御部303は、上位層処理部301からの制御情報に基づいて、受信部305、および送信部307の制御を行なう制御信号を生成する。制御部303は、生成した制御信号を受信部305、および送信部307に出力して受信部305、および送信部307の制御を行なう。 The control unit 303 generates a control signal for controlling the reception unit 305 and the transmission unit 307 based on the control information from the higher layer processing unit 301. The control unit 303 outputs the generated control signal to the reception unit 305 and the transmission unit 307 and controls the reception unit 305 and the transmission unit 307.
 受信部305は、制御部303から入力された制御信号に従って、送受信アンテナ309を介して移動局装置1から受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部301に出力する。無線受信部3057は、送受信アンテナ309を介して受信した上りリンクの信号を、中間周波数に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部3057は、変換したディジタル信号からガードインターバル(Guard Interval: GI)に相当する部分を除去する。無線受信部3057は、ガードインターバルを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行ない、周波数領域の信号を抽出し多重分離部3055に出力する。 The receiving unit 305 separates, demodulates and decodes the received signal received from the mobile station apparatus 1 via the transmission / reception antenna 309 according to the control signal input from the control unit 303, and outputs the decoded information to the higher layer processing unit 301. To do. The radio reception unit 3057 converts the uplink signal received via the transmission / reception antenna 309 to an intermediate frequency (down-conversion: down covert), removes unnecessary frequency components, and maintains the signal level appropriately. Then, the amplification level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the quadrature demodulated analog signal is converted into a digital signal. The wireless reception unit 3057 removes a portion corresponding to a guard interval (Guard Interval: GI) from the converted digital signal. The radio reception unit 3057 performs fast Fourier transform (FFT Fourier Transform: を FFT) on the signal from which the guard interval is removed, extracts a frequency domain signal, and outputs the signal to the demultiplexing unit 3055.
 多重分離部3055は、無線受信部3057から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。尚、この分離は、予め基地局装置3が無線リソース制御部3011で決定し、各移動局装置1に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。また、多重分離部3055は、チャネル測定部3059から入力された伝搬路の推定値から、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部3055は、分離した上りリンク参照信号をチャネル測定部3059に出力する。 The demultiplexing unit 3055 demultiplexes the signal input from the radio receiving unit 3057 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 3011 by the base station device 3 and notified to each mobile station device 1. In addition, demultiplexing section 3055 compensates for the propagation paths of PUCCH and PUSCH from the propagation path estimation value input from channel measurement section 3059. Further, the demultiplexing unit 3055 outputs the separated uplink reference signal to the channel measurement unit 3059.
 復調部3053は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK(Binary Phase Shift Keying)、QPSK、16QAM、64QAM等の予め定められた、または自装置が移動局装置1各々に上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行なう。 The demodulator 3053 performs inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH, acquires modulation symbols, and performs BPSK (Binary Shift Keying), QPSK, 16QAM, and PUCCH and PUSCH modulation symbols, respectively. The received signal is demodulated using a predetermined modulation scheme such as 64QAM, or a modulation scheme that the own device has previously notified to each mobile station device 1 using an uplink grant.
 復号化部3051は、復調したPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の、予め定められた、または自装置が移動局装置1に上りリンクグラントで予め通知した符号化率で復号を行ない、復号した上りリンクデータと、上りリンク制御情報を上位層処理部301へ出力する。PUSCHが再送信の場合は、復号化部3051は、上位層処理部301から入力されるHARQバッファに保持している符号化ビットと、受信した符号化ビットを用いて復号を行なう。チャネル測定部3059は、多重分離部3055から入力された上りリンク参照信号から伝搬路の推定値、チャネルの品質などを測定し、多重分離部3055および上位層処理部301に出力する。 Decoding section 3051 encodes the demodulated PUCCH and PUSCH encoded bits in a predetermined encoding scheme, or a coding rate at which the device itself has previously notified mobile station device 1 with an uplink grant. And the decoded uplink data and the uplink control information are output to the higher layer processing unit 301. When PUSCH is retransmitted, decoding section 3051 performs decoding using the encoded bits held in the HARQ buffer input from higher layer processing section 301 and the received encoded bits. Channel measurement section 3059 measures an estimated value of the propagation path, channel quality, and the like from the uplink reference signal input from demultiplexing section 3055 and outputs the result to demultiplexing section 3055 and higher layer processing section 301.
 送信部307は、制御部303から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部301から入力されたHARQインディケータ、下りリンク制御情報、下りリンクデータを符号化、および変調し、PHICH、PDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナ309を介して移動局装置1に信号を送信する。 The transmission unit 307 generates a downlink reference signal according to the control signal input from the control unit 303, encodes and modulates the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 301. Then, the PHICH, PDCCH, PDSCH, and downlink reference signal are multiplexed, and the signal is transmitted to the mobile station device 1 via the transmission / reception antenna 309.
 符号化部3071は、上位層処理部301から入力されたHARQインディケータ、下りリンク制御情報、および下りリンクデータを、ブロック符号化、畳込み符号化、ターボ符号化等の予め定められた符号化方式を用いて符号化を行なう、または無線リソース制御部3011が決定した符号化方式を用いて符号化を行なう。変調部3073は、符号化部3071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の予め定められた、または無線リソース制御部3011が決定した変調方式で変調する。下りリンク参照信号生成部3079は、基地局装置3を識別するための物理セル識別子(PCI)などを基に予め定められた規則で求まる、移動局装置1が既知の系列を下りリンク参照信号として生成する。多重部3075は、変調された各チャネルと生成された下りリンク参照信号を多重する。 The encoding unit 3071 is a predetermined encoding method such as block encoding, convolutional encoding, turbo encoding, and the like for the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 301 Or is encoded using the encoding method determined by the radio resource control unit 3011. The modulation unit 3073 modulates the coded bits input from the coding unit 3071 with a modulation scheme determined in advance by the radio resource control unit 3011 such as BPSK, QPSK, 16QAM, and 64QAM. The downlink reference signal generation unit 3079 obtains a sequence known by the mobile station device 1 as a downlink reference signal, which is obtained by a predetermined rule based on a physical cell identifier (PCI) for identifying the base station device 3 or the like. Generate. The multiplexing unit 3075 multiplexes each modulated channel and the generated downlink reference signal.
 無線送信部3077は、多重された変調シンボルを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDM方式の変調を行ない、OFDM変調されたOFDMシンボルにガードインターバルを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: up convert)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ309に出力して送信する。 The wireless transmission unit 3077 performs inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed modulation symbols, modulates the OFDM scheme, adds a guard interval to the OFDM symbol that has been OFDM-modulated, and Generate digital signal, convert baseband digital signal to analog signal, generate in-phase and quadrature components of intermediate frequency from analog signal, remove excess frequency components for intermediate frequency band, convert intermediate frequency signal The signal is converted into a high-frequency signal (up-conversion: up convert), the excess frequency component is removed, the power is amplified, and output to the transmission / reception antenna 309 for transmission.
 このように、本発明によれば、複数の下りリンクコンポーネントキャリアを用いて移動局装置1と基地局装置3が通信をする無線通信システムにおいて、移動局装置1が基地局装置3に送信したPUSCH(上りリンクデータ)に対する再送信が発生する可能性がある場合は、移動局装置1は、基地局装置3に送信したPUSCH(上りリンクデータ)に対するPHICH(HARQインディケータ)を受信する下りリンクコンポーネントキャリアがデアクティベートされることをペンディングし、基地局装置3は、移動局装置1が基地局装置3に送信したPUSCH(上りリンクデータ)に対するPHICH(HARQインディケータ)を受信する下りリンクコンポーネントキャリアがデアクティベートされることをペンディングしていると判断する。 Thus, according to the present invention, in a wireless communication system in which the mobile station apparatus 1 and the base station apparatus 3 communicate using a plurality of downlink component carriers, the PUSCH transmitted from the mobile station apparatus 1 to the base station apparatus 3 When there is a possibility that retransmission for (uplink data) may occur, the mobile station apparatus 1 receives a downlink component carrier for receiving a PHICH (HARQ indicator) for PUSCH (uplink data) transmitted to the base station apparatus 3 Is deactivated, and the base station apparatus 3 receives the PHICH (HARQ indicator) for the PUSCH (uplink data) transmitted from the mobile station apparatus 1 to the base station apparatus 3, and the downlink component carrier is deactivated. It is determined that it is pending .
 これにより、移動局装置1は、PHICH(HARQインディケータ)を受信する下りリンクコンポーネントキャリアがデアクティベートされる条件を満たしても、デアクティベートされることをペンディングし、PHICH(HARQインディケータ)およびPDCCH(上りリンクグラント)を受信することができるため、基地局装置3は、PHICH(HARQインディケータ)およびPDCCH(上りリンクグラント)を用いてPUSCHの再送信を効率的に制御することができる。 As a result, the mobile station apparatus 1 keeps the fact that the downlink component carrier that receives the PHICH (HARQ indicator) satisfies the deactivation condition, and is deactivated, and the PHICH (HARQ indicator) and PDCCH (uplink) Since the link grant can be received, the base station apparatus 3 can efficiently control the retransmission of the PUSCH using the PHICH (HARQ indicator) and the PDCCH (uplink grant).
 尚、移動局装置1は、下りリンクコンポーネントキャリアをデアクティベートする、いずれの条件を満たしたかに基づいて、下りリンクコンポーネントキャリアをデアクティベートする処理を切り替えてもよい。移動局装置1は、アクティベーションコマンドで明示的に下りリンクコンポーネントキャリアをデアクティベートすることが示され、アクティベーションコマンド受信後に即座に下りリンクコンポーネントキャリアをデアクティベートしたり、アクティベーションコマンドを受信してから所定の時間経過後(例えば、4ms後、4サブフレーム後、4TTI後)に下りリンクコンポーネントキャリアをデアクティベートしたりする。 In addition, the mobile station apparatus 1 may switch the process of deactivating a downlink component carrier based on which conditions which deactivate a downlink component carrier were satisfy | filled. The mobile station apparatus 1 is shown to explicitly deactivate the downlink component carrier by the activation command. After receiving the activation command, the mobile station apparatus 1 immediately deactivates the downlink component carrier or receives the activation command. The downlink component carrier is deactivated after a predetermined time elapses (for example, after 4 ms, after 4 subframes, and after 4 TTIs).
 移動局装置1は、アクティベーションコマンドで明示的に指示されて、下りリンクコンポーネントキャリアをデアクティベートした場合は、上記本発明を適用せず、下りリンクコンポーネントキャリアをアクティベートすることを明示的に示すアクティベーションコマンドを受信してから所定の時間が経過(例えば、100ms、100サブフレーム、100TTI)してから下りリンクコンポーネントキャリアを移動局装置1自身でデアクティベートした場合は、上記本発明を適用する。基地局装置1は、上りリンクコンポーネントキャリアでPUSCHの再送が発生する可能性がないと判断した場合に、アクティベーションコマンドで明示的にその上りリンクコンポーネントキャリアと対応する(対応するPHICH、PDCCHが配置される)下りリンクコンポーネントキャリアをデアクティベートする。 When the mobile station apparatus 1 is explicitly instructed by the activation command and deactivates the downlink component carrier, the mobile station apparatus 1 does not apply the present invention, and explicitly indicates that the downlink component carrier is activated. The present invention is applied to the case where the downlink component carrier is deactivated by the mobile station apparatus 1 itself after a predetermined time has elapsed (for example, 100 ms, 100 subframes, 100 TTI) since the activation command is received. When the base station apparatus 1 determines that there is no possibility of retransmission of PUSCH in the uplink component carrier, the base station apparatus 1 explicitly corresponds to the uplink component carrier with an activation command (corresponding PHICH and PDCCH are arranged). Deactivate the downlink component carrier.
 移動局装置1は、移動局装置1自身で下りリンクコンポーネントキャリアをデアクティベートすることを決定した場合は、この下りリンクコンポーネントキャリアで受信した上りリンクグラントに従って送信したPUSCH(上りリンクデータ)の再送信が発生する可能性がある時は、この下りリンクコンポーネントキャリアがデアクティベートされることをペンディングし、この下りリンクコンポーネントキャリアで受信した上りリンクグラントに従って送信したPUSCH(上りリンクデータ)の再送信が発生する可能性がない時は、下りリンクコンポーネントキャリアをデアクティベートする。 When the mobile station apparatus 1 decides to deactivate the downlink component carrier by itself, the mobile station apparatus 1 retransmits the PUSCH (uplink data) transmitted according to the uplink grant received by the downlink component carrier. When the downlink component carrier is deactivated, the PUSCH (uplink data) transmitted according to the uplink grant received by this downlink component carrier is retransmitted. When there is no possibility to do so, the downlink component carrier is deactivated.
 基地局装置3は、上りリンクコンポーネントキャリアにおいてPUSCHの再送信が発生する可能性を考慮して、その上りリンクコンポーネントキャリアと対応する下りリンクコンポーネントキャリアをアクティベートされている状態に維持し続けたい場合は、下りリンクコンポーネントキャリアをアクティベートすることを明示的に示すアクティベーションコマンドを移動局装置1に送信するが、干渉、伝搬路変動の影響などから移動局装置1において、このアクティベーションコマンドが誤り無く検出することができない場合がある。このような状況を考慮して、移動局装置1は、アクティベーションコマンドで下りリンクコンポーネントキャリアがデアクティベートされることが明示的に示された場合以外では、上りリンクコンポーネントキャリアにおいてPUSCHの再送信が発生する可能性がある時は、対応する下りリンクコンポーネントキャリアがデアクティベートされることを延期することにより、移動局装置1はPUSCHの再送信を的確に実現することができ、更に基地局装置3はアクティベートされた下りリンクコンポーネントキャリアにおいてアクティベーションコマンドを再度送信して、下りリンクコンポーネントキャリアがアクティベートされている状態を維持し続けることが可能となる。 In the case where the base station apparatus 3 wants to keep the uplink component carrier and the downlink component carrier corresponding to the uplink component carrier in an activated state in consideration of the possibility of PUSCH retransmission in the uplink component carrier. , An activation command that explicitly indicates that the downlink component carrier is to be activated is transmitted to the mobile station apparatus 1, but this activation command is detected without error in the mobile station apparatus 1 due to the influence of interference, propagation path fluctuation, etc. You may not be able to. In consideration of such a situation, the mobile station apparatus 1 does not perform PUSCH retransmission on the uplink component carrier unless the activation command explicitly indicates that the downlink component carrier is to be deactivated. When there is a possibility of occurrence, the mobile station apparatus 1 can accurately implement the PUSCH re-transmission by postponing the corresponding downlink component carrier being deactivated. Further, the base station apparatus 3 Transmits the activation command again in the activated downlink component carrier, and can continue to maintain the activated state of the downlink component carrier.
 図9は、本発明の移動局装置1の動作の一例を示すフローチャートである。図9のフローチャートと図6のフローチャートとを比較すると、右上がりの斜線でハッチングがされたステップS206が異なる。しかし、他のステップの構成および機能は、図6のフローチャートと同じであるので、図6のフローチャートと同じステップについての説明は省略する。図9において、移動局装置1は、アクティベートされた下りリンクコンポーネントキャリアがデアクティベートされる条件を満たしたと判定した場合(ステップS201)、更に基地局装置3から通知されたアクティベーションコマンドで下りリンクコンポーネントキャリアをデアクティベートすることが指示されたか、移動局装置1自身で下りリンクコンポーネントキャリアをデアクティベートすることを決定したかを判定する(ステップS206)。 FIG. 9 is a flowchart showing an example of the operation of the mobile station apparatus 1 of the present invention. When the flowchart of FIG. 9 is compared with the flowchart of FIG. 6, step S206 hatched with a diagonal line rising to the right is different. However, the configuration and function of the other steps are the same as those in the flowchart of FIG. 6, and thus the description of the same steps as those in the flowchart of FIG. 6 is omitted. In FIG. 9, when the mobile station apparatus 1 determines that the activated downlink component carrier satisfies the condition for deactivation (step S201), the mobile station apparatus 1 further uses the activation command notified from the base station apparatus 3 for the downlink component. It is determined whether it is instructed to deactivate the carrier or whether it is decided to deactivate the downlink component carrier by the mobile station apparatus 1 itself (step S206).
 移動局装置1は、ステップS206において移動局装置1自身でデアクティベートすることを決定したと判定した場合は、この下りリンクコンポーネントキャリアで受信した上りリンクグラントに関連するPUSCHの再送信が発生する可能性があるかを判定する(ステップS203)。移動局装置1は、ステップS206において基地局装置3から通知されたアクティベーションコマンドで下りリンクコンポーネントキャリアをデアクティベートすることを指示されたと判定した場合は、下りリンクコンポーネントキャリアをデアクティベートする(ステップS205)。 If the mobile station apparatus 1 determines that the mobile station apparatus 1 itself has decided to deactivate in step S206, the PUSCH related to the uplink grant received on this downlink component carrier may be retransmitted. It is determined whether or not there is a property (step S203). If the mobile station apparatus 1 determines that the downlink component carrier is instructed to be deactivated by the activation command notified from the base station apparatus 3 in step S206, the mobile station apparatus 1 deactivates the downlink component carrier (step S205). ).
 本発明に関わる基地局装置3、および移動局装置1で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。 A program that operates in the base station apparatus 3 and the mobile station apparatus 1 related to the present invention is a program (computer functions as a computer) that controls a CPU (Central Processing Unit) so as to realize the functions of the above-described embodiments related to the present invention. Program). Information handled by these devices is temporarily accumulated in RAM (Random Access Memory) during the processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
 尚、上述した実施形態における移動局装置1、基地局装置3の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。尚、ここでいう「コンピュータシステム」とは、移動局装置1、または基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。 In addition, you may make it implement | achieve the mobile station apparatus 1 in the embodiment mentioned above, and a part of base station apparatus 3 with a computer. In that case, the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed. The “computer system” here is a computer system built in the mobile station apparatus 1 or the base station apparatus 3 and includes an OS and hardware such as peripheral devices.
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 Further, the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In such a case, a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 また、上述した実施形態における移動局装置1、基地局装置3の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。移動局装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Also, part or all of the mobile station device 1 and the base station device 3 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit. Each functional block of the mobile station device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to progress in semiconductor technology, an integrated circuit based on the technology can also be used.
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the scope of the present invention. It is possible to
1(1A、1B、1C) 移動局装置
3 基地局装置
101 上位層処理部
103 制御部
105 受信部
107 送信部
301 上位層処理部
303 制御部
305 受信部
307 送信部
1011 無線リソース制御部
1013 HARQ制御部
1015 HARQ記憶部
3011 無線リソース制御部
3013 HARQ制御部
3015 HARQ記憶部
1 (1A, 1B, 1C) Mobile station apparatus 3 Base station apparatus 101 Upper layer processing section 103 Control section 105 Reception section 107 Transmission section 301 Upper layer processing section 303 Control section 305 Reception section 307 Transmission section 1011 Radio resource control section 1013 HARQ Control unit 1015 HARQ storage unit 3011 Radio resource control unit 3013 HARQ control unit 3015 HARQ storage unit

Claims (7)

  1.  複数の下りリンクコンポーネントキャリアを用いて移動局装置と基地局装置が通信をする無線通信システムにおいて、
     前記移動局装置が前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、
     前記移動局装置は、前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングし、
     前記基地局装置は、前記移動局装置が前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングしていると判断することを特徴とする無線通信システム。
    In a wireless communication system in which a mobile station apparatus and a base station apparatus communicate using a plurality of downlink component carriers,
    When there is a possibility of retransmission for uplink data transmitted by the mobile station device to the base station device,
    The mobile station device is pending deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted to the base station device,
    The radio communication system, wherein the base station apparatus determines that a deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted from the mobile station apparatus to the base station apparatus is pending. .
  2.  複数の下りリンクコンポーネントキャリアを用いて基地局装置と通信をする移動局装置において、
     前記移動局装置は、
     前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングすることを特徴とする移動局装置。
    In a mobile station apparatus that communicates with a base station apparatus using a plurality of downlink component carriers,
    The mobile station device
    When there is a possibility that retransmission of uplink data transmitted to the base station apparatus may occur, pending deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted to the base station apparatus A mobile station apparatus characterized by the above.
  3.  複数の下りリンクコンポーネントキャリアを用いて移動局装置と通信をする基地局装置において、
     前記基地局装置は、
     前記移動局装置が前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、前記移動局装置が前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングしていると判断することを特徴とする基地局装置。
    In a base station apparatus that communicates with a mobile station apparatus using a plurality of downlink component carriers,
    The base station device
    When there is a possibility that retransmission of uplink data transmitted from the mobile station apparatus to the base station apparatus may occur, the mobile station apparatus receives a HARQ indicator for uplink data transmitted to the base station apparatus. A base station apparatus that judges that deactivation of a link component carrier is pending.
  4.  複数の下りリンクコンポーネントキャリアを用いて基地局装置と通信をする移動局装置に用いられる無線通信方法において、
     前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングする手段を有することを特徴とする無線通信方法。
    In a radio communication method used for a mobile station apparatus that communicates with a base station apparatus using a plurality of downlink component carriers,
    A means for pending deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted to the base station apparatus when there is a possibility of retransmission of the uplink data transmitted to the base station apparatus A wireless communication method comprising:
  5.  複数の下りリンクコンポーネントキャリアを用いて移動局装置と通信をする基地局装置に用いられる無線通信方法において、
     前記移動局装置が前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、前記移動局装置が前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングしていると判断することを特徴とする無線通信方法。
    In a radio communication method used for a base station apparatus that communicates with a mobile station apparatus using a plurality of downlink component carriers,
    When there is a possibility that retransmission of uplink data transmitted from the mobile station apparatus to the base station apparatus may occur, the mobile station apparatus receives a HARQ indicator for uplink data transmitted to the base station apparatus. A wireless communication method comprising: determining that deactivation of a link component carrier is pending.
  6.  複数の下りリンクコンポーネントキャリアを用いて基地局装置と通信をする移動局装置に用いられる集積回路において、
     前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングする機能を有することを特徴とする集積回路。
    In an integrated circuit used in a mobile station apparatus that communicates with a base station apparatus using a plurality of downlink component carriers,
    A function of pending deactivation of a downlink component carrier that receives a HARQ indicator for uplink data transmitted to the base station device when there is a possibility of retransmission of the uplink data transmitted to the base station device An integrated circuit comprising:
  7.  複数の下りリンクコンポーネントキャリアを用いて移動局装置と通信をする基地局装置に用いられる集積回路において、
     前記移動局装置が前記基地局装置に送信した上りリンクデータに対する再送信が発生する可能性がある場合は、前記移動局装置が前記基地局装置に送信した上りリンクデータに対するHARQインディケータを受信する下りリンクコンポーネントキャリアのデアクティベーションをペンディングしていると判断する機能を有することを特徴とする集積回路。
    In an integrated circuit used in a base station apparatus that communicates with a mobile station apparatus using a plurality of downlink component carriers,
    When there is a possibility that retransmission of uplink data transmitted from the mobile station apparatus to the base station apparatus may occur, the mobile station apparatus receives a HARQ indicator for uplink data transmitted to the base station apparatus. An integrated circuit having a function of determining that deactivation of a link component carrier is pending.
PCT/JP2011/054356 2010-03-30 2011-02-25 Wireless communication system, mobile station device, base station device, wireless communication method, and integrated circuit WO2011122191A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-077448 2010-03-30
JP2010077448A JP2011211495A (en) 2010-03-30 2010-03-30 Wireless communication system, mobile station device, base station device, wireless communication method, and integrated circuit

Publications (1)

Publication Number Publication Date
WO2011122191A1 true WO2011122191A1 (en) 2011-10-06

Family

ID=44711923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054356 WO2011122191A1 (en) 2010-03-30 2011-02-25 Wireless communication system, mobile station device, base station device, wireless communication method, and integrated circuit

Country Status (2)

Country Link
JP (1) JP2011211495A (en)
WO (1) WO2011122191A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105075168A (en) * 2013-03-15 2015-11-18 苹果公司 Secondary component carrier future scheduling in lte carrier aggregation
CN114070485A (en) * 2020-08-04 2022-02-18 中国信息通信研究院 Data transmission method and equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5009410B2 (en) 2010-10-29 2012-08-22 シャープ株式会社 Mobile station apparatus, radio communication method, and integrated circuit
CN107370577B (en) * 2011-08-12 2020-06-19 松下电器(美国)知识产权公司 Communication apparatus and retransmission control method
WO2014110790A1 (en) 2013-01-18 2014-07-24 华为技术有限公司 Method, base station, and user equipment for processing feedback information

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ETRI: "DL carrier activation/deactivation by MAC", 3GPP TSG RAN WG2 #69, R2-101119, 26 February 2010 (2010-02-26), pages 1 - 4 *
NOKIA SIEMENS NETWORKS ET AL.: "On the possibility for implicit release of activated secondary component carriers", 3GPP TSG-RAN WG2 MEETING #69, R2-101077, 26 February 2010 (2010-02-26), pages 1 - 2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105075168A (en) * 2013-03-15 2015-11-18 苹果公司 Secondary component carrier future scheduling in lte carrier aggregation
CN105075168B (en) * 2013-03-15 2020-11-10 苹果公司 Secondary component carrier future scheduling in LTE carrier aggregation
CN114070485A (en) * 2020-08-04 2022-02-18 中国信息通信研究院 Data transmission method and equipment
CN114070485B (en) * 2020-08-04 2023-12-26 中国信息通信研究院 Data transmission method and device

Also Published As

Publication number Publication date
JP2011211495A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP4823371B2 (en) Wireless communication system, mobile station apparatus, base station apparatus, wireless communication method, and integrated circuit
JP6499976B2 (en) Terminal apparatus, base station apparatus, and communication method
US9379876B2 (en) Mobile station device, radio communication method and circuit device
JP6615617B2 (en) Terminal apparatus, base station apparatus, and communication method
JP6131458B2 (en) Mobile station apparatus, base station apparatus, and radio communication method
WO2011125483A1 (en) Mobile station apparatus, wireless communication method and integrated circuit
WO2011148876A1 (en) Mobile station apparatus, base station apparatus, wireless communication system, wireless communication method and integrated circuit
JP6452048B2 (en) TERMINAL DEVICE, BASE STATION DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
WO2011108673A1 (en) Wireless communication system, base station apparatus, mobile station apparatus, wireless communication method and integrated circuit
WO2015107850A1 (en) Terminal device, base station device, integrated circuit, and communication method
JP6417599B2 (en) Terminal device, wireless communication method, and integrated circuit
WO2015107851A1 (en) Terminal device, base station device, integrated circuit, and communication method
JP2011142532A (en) Wireless communication system, base station apparatus, mobile station device, wireless communication method, and integrated circuit
WO2015129797A1 (en) Terminal device, integrated circuit, and wireless communication method
JP6507454B2 (en) Base station apparatus, terminal apparatus, and communication method
JP2012065126A (en) Radio communication system, base station device, mobile station device, radio communication method and integrated circuit
WO2011122191A1 (en) Wireless communication system, mobile station device, base station device, wireless communication method, and integrated circuit
JP2019514271A (en) Handling of Different Subframe Sets for Uplink 256 QAM
JP2010178130A (en) Wireless communication system, base station apparatus, mobile station apparatus and wireless communication method
JP5568066B2 (en) Wireless communication method, mobile station apparatus, wireless communication system, and integrated circuit
JP6332643B2 (en) Terminal device, integrated circuit, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762431

Country of ref document: EP

Kind code of ref document: A1