WO2011122056A1 - Methane fermentation treatment method - Google Patents

Methane fermentation treatment method Download PDF

Info

Publication number
WO2011122056A1
WO2011122056A1 PCT/JP2011/050166 JP2011050166W WO2011122056A1 WO 2011122056 A1 WO2011122056 A1 WO 2011122056A1 JP 2011050166 W JP2011050166 W JP 2011050166W WO 2011122056 A1 WO2011122056 A1 WO 2011122056A1
Authority
WO
WIPO (PCT)
Prior art keywords
methane fermentation
methane
concentration
tank
organic waste
Prior art date
Application number
PCT/JP2011/050166
Other languages
French (fr)
Japanese (ja)
Inventor
豊 森
Original Assignee
メタウォーター株式会社
ユニバーシティー オブ スマトラ ウタラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メタウォーター株式会社, ユニバーシティー オブ スマトラ ウタラ filed Critical メタウォーター株式会社
Publication of WO2011122056A1 publication Critical patent/WO2011122056A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/005Black water originating from toilets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • C02F2103/322Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters from vegetable oil production, e.g. olive oil production
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/12Volatile Fatty Acids (VFAs)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/26H2S
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Disclosed is a methane fermentation treatment method which enables the highly efficient methane fermentation treatment of an organic waste material having a low nitrogen concentration. Specifically disclosed is a methane fermentation treatment method comprising supplying an organic waste material having a ratio of the COD concentration to the nitrogen concentration (i.e., a COD/N ratio) of 50 or more to a methane fermentation vessel to cause the methane fermentation of the organic waste material, removing predetermined amounts of portions of the resulting fermentation liquor one after another from the methane fermentation vessel, separating each of the removed portions into a separated sludge and a separated solution, and redelivering at least a portion of the separated sludge to the methane fermentation vessel, wherein the concentration of ammonia nitrogen in the fermentation liquor contained in the methane fermentation vessel is measured directly or indirectly and the amount of the separated sludge to be redelivered to the methane fermentation vessel is so controlled that the concentration of ammonia nitrogen exceeds a predetermined value.

Description

メタン発酵処理方法Methane fermentation treatment method
 本発明は、窒素濃度の低い有機性廃棄物のメタン発酵処理方法に関する。 The present invention relates to a method for methane fermentation of organic waste having a low nitrogen concentration.
 メタン発酵処理は、有機性廃棄物を嫌気性下でメタン菌により発酵処理してメタンガスに転換するもので、有機性廃棄物をバイオガスと水とに分解して大幅に減量することができる。しかも、副産物として生成するメタンガスをエネルギーとして回収できるメリットがある。 Methane fermentation treatment is a process in which organic waste is fermented with methane bacteria under anaerobic conditions and converted to methane gas. Organic waste can be decomposed into biogas and water to greatly reduce the amount of waste. In addition, there is a merit that methane gas generated as a by-product can be recovered as energy.
 ところで、メタン発酵処理効率は、メタン菌等のメタン発酵に関係する微生物の活性によって影響される。そして、メタン菌等の活性が低下する要因の一つとして、アンモニアなどの阻害物質の増加が挙げられる。このため、例えば、下記特許文献1に記されるように、発酵液中のアンモニア性窒素濃度が所定濃度以下になるように発酵状態を制御することが、従来より行われている。 By the way, the efficiency of methane fermentation treatment is affected by the activity of microorganisms related to methane fermentation such as methane bacteria. One factor that reduces the activity of methane bacteria and the like is an increase in inhibitors such as ammonia. For this reason, for example, as described in Patent Document 1 below, it has been conventionally performed to control the fermentation state so that the ammoniacal nitrogen concentration in the fermentation broth becomes a predetermined concentration or less.
 また、発酵液のアルカリ度が低下することにより、メタン発酵槽内の発酵液内の炭酸イオンを緩衝しきれなくなって、発酵液のpHが低下し、メタン発酵性能が低下することが知られている。そこで、発酵液のアルカリ度が所定値を超えるように発酵状態を制御する方法がある。 Moreover, it is known that when the alkalinity of the fermentation broth decreases, the carbonate ions in the fermentation broth in the methane fermentation tank cannot be buffered, the pH of the fermentation broth decreases, and the methane fermentation performance decreases. Yes. Therefore, there is a method for controlling the fermentation state so that the alkalinity of the fermentation broth exceeds a predetermined value.
 例えば、特許文献2には、メタン発酵槽内の発酵液の電気伝導率と、有機性廃棄物の電気伝導率との差が所定値以下の場合には、発酵液のアルカリ度を高めるようにしてメタン発酵を行うことが開示されている。そして、アルカリ度を高める手段の一つとして、メタン発酵槽に供給する有機性廃棄物に、窒素分を多く含む他の有機性廃棄物を添加して窒素濃度を増加させ、発酵により分解されるアンモニア性窒素を増大させてアルカリ度を高める方法が挙げられている。 For example, in Patent Document 2, when the difference between the electrical conductivity of the fermentation liquid in the methane fermentation tank and the electrical conductivity of the organic waste is less than a predetermined value, the alkalinity of the fermentation liquid is increased. It is disclosed that methane fermentation is performed. And as one of the means to increase the alkalinity, the organic waste supplied to the methane fermenter is added with other organic waste containing a lot of nitrogen to increase the nitrogen concentration and decomposed by fermentation A method for increasing the alkalinity by increasing ammoniacal nitrogen is mentioned.
特許第3630165号公報(請求項1)Japanese Patent No. 3630165 (Claim 1) 特開2009-219960号公報(請求項3、段落番号0013、0020参照)JP 2009-219960 A (refer to claim 3, paragraphs 0013 and 0020)
 生ごみ、糞尿などのタンパク質等の窒素成分を多く含む有機性廃棄物をメタン発酵処理する場合であれば、外部から窒素成分を添加しなくてもメタン菌等の微生物の活動に必要な窒素を確保できる。 If organic waste containing a large amount of nitrogen components such as food waste and manure is processed by methane fermentation, nitrogen necessary for the activity of microorganisms such as methane bacteria can be obtained without adding nitrogen components from the outside. It can be secured.
 しかしながら、一部の工場廃水などに見られる窒素濃度の低い有機性廃棄物を高負荷運転でメタン発酵処理する場合、微生物の活動に必要な窒素を十分に確保できないことがあり、窒素不足に陥って微生物の活性が低下する問題があった。 However, when organic waste with a low nitrogen concentration found in some factory wastewater is subjected to methane fermentation at high load operation, sufficient nitrogen for microbial activities may not be secured, resulting in a shortage of nitrogen. Therefore, there was a problem that the activity of microorganisms was reduced.
 このため、窒素濃度の低い有機性廃棄物を高負荷運転でメタン発酵処理する場合においては、外部から窒素分を供給して不足分を補ったり、滞留時間を長めに設定する必要があった。 For this reason, when organic waste with a low nitrogen concentration is subjected to methane fermentation treatment under high load operation, it is necessary to supply nitrogen from the outside to compensate for the shortage or to set a longer residence time.
 上記特許文献2では、メタン発酵槽に供給する有機性廃棄物に、窒素分を多く含む他の有機性廃棄物を添加して窒素濃度を増加させ、発酵により分解されるアンモニア性窒素を増大させてアルカリ度を高めることが開示されている。 In the above-mentioned Patent Document 2, other organic waste containing a large amount of nitrogen is added to the organic waste supplied to the methane fermenter to increase the nitrogen concentration and increase ammonia nitrogen decomposed by fermentation. Increasing the alkalinity is disclosed.
 しかしながら、このようにしてメタン発酵処理した場合、処理対象となる有機性廃棄物の貯留槽の他に、窒素分を多く含む他の有機性廃棄物の貯留槽などを別途設ける必要があるので、装置が大型化する問題があった。また、窒素分を多く含む他の有機性廃棄物を別途用意する必要があるので、運搬費用等が嵩み、ランニングコストが増大する問題があった。 However, when methane fermentation treatment is performed in this manner, in addition to the organic waste storage tank to be processed, it is necessary to separately provide other organic waste storage tanks containing a large amount of nitrogen. There was a problem that the apparatus became large. In addition, since it is necessary to separately prepare other organic waste containing a large amount of nitrogen, there is a problem that the transportation cost increases and the running cost increases.
 本発明の目的は、窒素濃度の低い有機性廃棄物を効率よくメタン発酵処理することが可能なメタン発酵処理方法を提供することにある。 An object of the present invention is to provide a methane fermentation treatment method capable of efficiently treating methane fermentation of organic waste having a low nitrogen concentration.
 上記目的を達成するにあたり、本発明のメタン発酵処理方法は、COD濃度と窒素濃度の比(COD/N比)が50以上の有機性廃棄物をメタン発酵槽に供給してメタン発酵処理し、前記メタン発酵槽から発酵液を所定量ずつ取出して分離汚泥と分離液とに分離して、前記分離汚泥の少なくとも一部を前記メタン発酵槽に返送するメタン発酵処理方法において、前記メタン発酵槽内の発酵液中のアンモニア性窒素濃度を直接又は間接的に測定し、該アンモニア性窒素濃度が所定値を超えるように、前記分離汚泥の前記メタン発酵槽への返送量を制御することを特徴とする。 In achieving the above object, the methane fermentation treatment method of the present invention supplies an organic waste having a COD concentration / nitrogen concentration ratio (COD / N ratio) of 50 or more to a methane fermentation tank to perform methane fermentation treatment, In the methane fermentation treatment method, the fermented liquor is taken out from the methane fermentation tank by a predetermined amount and separated into separated sludge and separated liquid, and at least a part of the separated sludge is returned to the methane fermentation tank. Measuring the ammonia nitrogen concentration in the fermentation broth directly or indirectly, and controlling the return amount of the separated sludge to the methane fermentation tank so that the ammonia nitrogen concentration exceeds a predetermined value. To do.
 本発明のメタン発酵処理方法は、前記メタン発酵槽内のアンモニア性窒素濃度が40mg/L以上となるように、前記分離汚泥の前記メタン発酵槽への返送量を制御することが好ましい。 In the methane fermentation treatment method of the present invention, it is preferable to control the return amount of the separated sludge to the methane fermentation tank so that the ammoniacal nitrogen concentration in the methane fermentation tank is 40 mg / L or more.
 本発明のメタン発酵処理方法は、前記メタン発酵槽内のアンモニア性窒素濃度が所定値以下となったときに、前記分離汚泥の前記メタン発酵槽への返送量を増大させると共に、該返送量が上限に達しても、アンモニア性窒素濃度が所定値を超えない場合は、前記分離液に含まれるアンモニア性窒素を前記メタン発酵槽に供給することが好ましい。 The methane fermentation treatment method of the present invention increases the return amount of the separated sludge to the methane fermentation tank when the ammoniacal nitrogen concentration in the methane fermentation tank becomes a predetermined value or less, and the return amount is When the ammonia nitrogen concentration does not exceed a predetermined value even when the upper limit is reached, it is preferable to supply ammonia nitrogen contained in the separated liquid to the methane fermenter.
 本発明のメタン発酵処理方法は、前記有機性廃棄物が、パーム油排液であることが好ましい。 In the methane fermentation treatment method of the present invention, the organic waste is preferably palm oil drainage.
 メタン発酵槽から取出した発酵液を固液分離した分離汚泥には、メタン発酵槽から流出したメタン菌等の微生物の死骸由来の窒素や、メタン発酵時に生じたアンモニアなどが濃縮されて含まれている。COD/N比が50以上の有機性廃棄物は、窒素濃度が極めて低いので、窒素不足に陥って微生物の活性が低下し易く、発酵効率が経時低下し易かった。本発明によれば、メタン発酵槽内の発酵液中のアンモニア性窒素濃度が所定値を超えるように分離汚泥のメタン発酵槽への返送量を制御するので、高負荷運転でメタン発酵処理を行っても、分離汚泥に含まれる微生物の死骸由来の窒素やアンモニアなどがメタン発酵槽に返送され、窒素不足による微生物の活性低下を抑制でき、長期にわたって安定して有機性廃棄物をメタン発酵処理できる。 The separated sludge obtained by solid-liquid separation of the fermentation liquor extracted from the methane fermenter contains the concentrated nitrogen derived from the dead bodies of microorganisms such as methane bacteria that have flowed out of the methane fermenter and ammonia produced during the methane fermentation. Yes. Organic waste having a COD / N ratio of 50 or more has a very low nitrogen concentration. Therefore, the activity of microorganisms easily falls due to nitrogen shortage, and the fermentation efficiency tends to decrease with time. According to the present invention, since the amount of separated sludge returned to the methane fermentation tank is controlled so that the ammoniacal nitrogen concentration in the fermentation broth in the methane fermentation tank exceeds a predetermined value, the methane fermentation treatment is performed at high load operation. However, nitrogen and ammonia derived from microbial dead bodies contained in the separated sludge are returned to the methane fermentation tank, which can suppress microbial activity decline due to lack of nitrogen, and can stably treat organic waste for methane fermentation over a long period of time. .
本発明のメタン発酵処理で用いる処理装置の概略図である。It is the schematic of the processing apparatus used by the methane fermentation process of this invention. 実施例1において、メタン発酵槽内の発酵液のpH、アルカリ度、アンモニア性窒素濃度、揮発性脂肪酸濃度、硫化水素濃度の経時変化を示す図表である。In Example 1, it is a graph which shows the time-dependent change of pH of the fermentation liquid in a methane fermenter, alkalinity, ammonia nitrogen concentration, volatile fatty acid concentration, and hydrogen sulfide concentration.
 本発明のメタン発酵処理に用いるメタン発酵装置の一実施形態について、図1を用いて説明する。 An embodiment of a methane fermentation apparatus used for the methane fermentation treatment of the present invention will be described with reference to FIG.
 図1に示すように、このメタン発酵装置は、メタン発酵槽1と、固液分離槽2とで主に構成されている。 As shown in FIG. 1, this methane fermentation apparatus mainly includes a methane fermentation tank 1 and a solid-liquid separation tank 2.
 メタン発酵槽1は、槽内に供給された有機性廃液をメタン菌等の嫌気性微生物の作用で嫌気処理し、メタンガス等のバイオガスに分解する処理槽である。メタン発酵槽1には、有機性廃棄物の供給源から伸びた配管L1と、固液分離槽2の底部(側面の下部に接続してもよい)から伸びた配管L2とが連結している。また、メタン発酵槽1内には、槽内の発酵液を攪拌する攪拌装置(図示しない)と、アンモニア計10とが配置されている。また、メタン発酵槽1の上部からは、バイオガス取出し用の配管L3が伸びて、ガスホルダやガス利用設備等に接続している。 The methane fermentation tank 1 is a treatment tank that anaerobically treats the organic waste liquid supplied in the tank by the action of anaerobic microorganisms such as methane bacteria and decomposes it into biogas such as methane gas. The methane fermentation tank 1 is connected to a pipe L1 extending from the organic waste supply source and a pipe L2 extending from the bottom of the solid-liquid separation tank 2 (may be connected to the lower portion of the side surface). . Further, in the methane fermentation tank 1, a stirring device (not shown) for stirring the fermentation liquid in the tank and an ammonia meter 10 are arranged. Moreover, from the upper part of the methane fermentation tank 1, the biogas extraction pipe L3 extends and is connected to a gas holder, a gas utilization facility, and the like.
 攪拌装置は、槽内の発酵液を攪拌出来るものであれば特に限定はない。例えば、攪拌翼を備えた攪拌機等が挙げられる。また、槽内の発酵液を循環する経路を形成して、槽内の発酵液に上昇流又は下降流を形成するような機構を設けたり、発生したバイオガスを循環させて吹き込みバブリングさせるガス攪拌装置を設けても良い。 The stirring device is not particularly limited as long as it can stir the fermentation broth in the tank. For example, a stirrer equipped with a stirring blade may be used. In addition, a gas agitation that forms a path for circulating the fermented liquid in the tank and provides a mechanism for forming an upward flow or a downward flow in the fermented liquid in the tank, or circulates the generated biogas for bubbling. An apparatus may be provided.
 アンモニア計10としては、発酵液中のアンモニア性窒素濃度を測定できるものであればよく、特に限定は無い。例えば、電極式アンモニア計等が挙げられる。また、特許第3630165号、特開2009-219960号等に記載されるように、発酵液の電気伝導率はアンモニア性窒素濃度と相関関係を有していることが知られているので、発酵液の電気伝導率を測定して、間接的に発酵液のアンモニア性窒素濃度を測定できるものであってもよい。 The ammonia meter 10 is not particularly limited as long as it can measure the ammoniacal nitrogen concentration in the fermentation broth. For example, an electrode type ammonia meter can be used. Further, as described in Japanese Patent No. 3630165, Japanese Patent Application Laid-Open No. 2009-219960, etc., it is known that the electrical conductivity of the fermentation broth has a correlation with the ammoniacal nitrogen concentration. It may be possible to measure the electrical conductivity of the fermented liquid and indirectly measure the ammoniacal nitrogen concentration of the fermentation broth.
 メタン発酵槽1の後段には、固液分離槽2が配置されている。メタン発酵槽1と固液分離槽2は配管L4を介して連結している。 A solid-liquid separation tank 2 is arranged at the subsequent stage of the methane fermentation tank 1. The methane fermentation tank 1 and the solid-liquid separation tank 2 are connected via a pipe L4.
 固液分離槽2は、メタン発酵槽1から取出した発酵液を、分離液と分離汚泥とに固液分離できるような構成を有するものであれば特に限定はなく、重力沈澱槽、遠心分離装置、膜分離装置等の固液分離槽を広く利用できる。 The solid-liquid separation tank 2 is not particularly limited as long as it has a configuration capable of solid-liquid separation of the fermentation liquid extracted from the methane fermentation tank 1 into a separated liquid and separated sludge, and a gravity precipitation tank and a centrifugal separator. In addition, a solid-liquid separation tank such as a membrane separator can be widely used.
 固液分離槽2の側部からは、分離液を排出する配管L5が伸びている。また、固液分離槽2の下部(本実施例では底部)からは、送液ポンプP1が介装された配管L2が伸びて、メタン発酵槽1に接続しており、分離汚泥の少なくとも一部をメタン発酵槽1に返送できるように構成されている。 A pipe L5 for discharging the separation liquid extends from the side of the solid-liquid separation tank 2. Further, from the lower part of the solid-liquid separation tank 2 (the bottom part in this embodiment), a pipe L2 provided with a liquid feed pump P1 extends and is connected to the methane fermentation tank 1, and at least a part of the separated sludge. Can be returned to the methane fermentation tank 1.
 次に、このメタン発酵装置を用いた場合を例にして、本発明のメタン発酵方法について説明する。 Next, the methane fermentation method of the present invention will be described using the case of using this methane fermentation apparatus as an example.
 本発明のメタン発酵処理では、COD濃度と窒素濃度の比(COD/N比)が50以上、好ましくは65~80程度の有機性廃棄物を処理対象物として用いる。 In the methane fermentation treatment of the present invention, organic waste having a COD concentration / nitrogen concentration ratio (COD / N ratio) of 50 or more, preferably about 65 to 80, is used as a treatment object.
 上記有機性廃棄物は、窒素濃度が極めて低いので、メタン発酵槽内が窒素不足に陥り易かった。特に、高負荷運転時に窒素不足に陥り易かった。本発明によれば、かかる窒素濃度の極めて低い有機性廃棄物を高負荷運転でメタン発酵処理した場合であっても、後述する理由から効率よくメタン発酵することができるので、処理対象物として好適に用いることができる。このような有機性廃棄物は、タンパク質含有量の低い有機性廃棄物等が挙げられ、具体的な一例としては、パーム油排液、アルコール廃液等が挙げられる。なお、パーム油排液とは、パームヤシを圧搾してパーム油を回収した後の残さを洗浄した際に排出される洗浄排液であって、後述する実施例に示すように、タンパク質含量が低い有機性廃棄物である。 Since the organic waste has a very low nitrogen concentration, the inside of the methane fermentation tank easily falls into a nitrogen shortage. In particular, it was prone to nitrogen shortage during high-load operation. According to the present invention, even when such organic waste having a very low nitrogen concentration is subjected to methane fermentation treatment at high load operation, it can be efficiently methane-fermented for the reasons described later, and thus is suitable as a processing object. Can be used. Examples of such organic waste include organic waste having a low protein content, and specific examples include palm oil drainage and alcohol waste. The palm oil drainage is a washing drainage discharged when the residue after the palm palm is squeezed to recover the palm oil, and has a low protein content as shown in the examples described later. Organic waste.
 本発明では、メタン発酵槽1に、有機性廃棄物と分離汚泥とを、それぞれ配管L1、配管L2を通して供給する。そして、槽内の発酵液の汚泥濃度及び温度がほぼ均一になるように、図示しない攪拌手段で連続的又は間欠的に攪拌しつつ、供給した有機性廃液を所定期間滞留して、メタン菌などの嫌気性微生物の作用でメタン発酵する。 In the present invention, the organic waste and the separated sludge are supplied to the methane fermentation tank 1 through the pipe L1 and the pipe L2, respectively. Then, while continuously or intermittently stirring with a stirring means (not shown) so that the sludge concentration and temperature of the fermentation liquor in the tank are substantially uniform, the supplied organic waste liquid is retained for a predetermined period, such as methane bacteria Fermented with methane by the action of anaerobic microorganisms.
 メタン発酵条件は、特に限定はないが、有機物負荷が5~25g/l/day、滞留時間が4~20日の条件でメタン発酵処理することが好ましく、有機物負荷が10~25g/l/day、滞留時間が4~10日が特に好ましい。本発明では、このような、高速かつ高負荷の条件で運転しても、メタン発酵槽内が窒素不足に陥ることなく、安定してメタン発酵処理することができる。 The methane fermentation conditions are not particularly limited, but it is preferable to perform the methane fermentation treatment under conditions where the organic load is 5 to 25 g / l / day and the residence time is 4 to 20 days, and the organic load is 10 to 25 g / l / day. A residence time of 4 to 10 days is particularly preferred. In this invention, even if it operates on such conditions of high speed and high load, the inside of the methane fermentation tank can be stably subjected to methane fermentation treatment without falling into nitrogen deficiency.
 そして、メタン発酵槽1に供給した有機性廃液と同量の発酵液を配管L4から引き抜き、後段の固液分離槽2に供給する。また、有機性廃棄物をメタン発酵した際に発生したメタンガス等のバイオガスは、配管L3から槽外に取り出し、図示しないバイオガスホルダ等に貯留する。 Then, the same amount of the fermented liquid as the organic waste liquid supplied to the methane fermentation tank 1 is extracted from the pipe L4 and supplied to the subsequent solid-liquid separation tank 2. Also, biogas such as methane gas generated when methane fermentation of organic waste is taken out from the tank from the pipe L3 and stored in a biogas holder (not shown) or the like.
 固液分離槽2では、メタン発酵槽1から取出した発酵液を、分離液と分離汚泥とに固液分離する。そして、分離液の少なくとも一部を、配管L5を通して槽外に排出すると共に、分離汚泥の少なくとも一部を、配管L2を通してメタン発酵槽1に返送する。 In the solid-liquid separation tank 2, the fermentation liquid taken out from the methane fermentation tank 1 is subjected to solid-liquid separation into a separated liquid and separated sludge. Then, at least a part of the separation liquid is discharged out of the tank through the pipe L5, and at least a part of the separated sludge is returned to the methane fermentation tank 1 through the pipe L2.
 上記分離汚泥は、メタン発酵槽から流出したメタン菌等の微生物及びこれらの死骸由来の窒素や、メタン発酵時に生じたアンモニアなどが濃縮されているので、分離汚泥をメタン発酵槽1に返送することで、これらの分離汚泥に含まれる窒素成分が、メタン発酵槽内の微生物の養分等として利用される。 The separated sludge is enriched with microorganisms such as methane bacteria that have flowed out of the methane fermentation tank, nitrogen derived from these dead bodies, ammonia generated during the methane fermentation, etc., so the separated sludge should be returned to the methane fermentation tank 1. Thus, nitrogen components contained in these separated sludges are used as nutrients for microorganisms in the methane fermentation tank.
 そこで、本発明では、メタン発酵槽1内のアンモニア性窒素濃度が、予め設定した閾値を超えるように分離汚泥の前記メタン発酵槽1への返送量を制御する。この実施形態では、アンモニア計10による測定値が閾値を越えるように、送液ポンプP1の駆動を制御して、分離汚泥の返送量を制御する。 Therefore, in the present invention, the return amount of the separated sludge to the methane fermentation tank 1 is controlled so that the ammonia nitrogen concentration in the methane fermentation tank 1 exceeds a preset threshold value. In this embodiment, the drive of the liquid feed pump P1 is controlled so that the measured value by the ammonia meter 10 exceeds the threshold value, and the return amount of the separated sludge is controlled.
 分離汚泥の返送量は、メタン発酵槽1内のアンモニア性窒素濃度が検出限界値を超えるように検出されるように送液ポンプP1の作動を制御することが好ましい。より好ましくは、アンモニア性窒素濃度が40mg/L以上となるように、送液ポンプP1の作動を制御し、特に好ましくは、アンモニア性窒素濃度が40~100mg/Lとなるように送液ポンプP1の作動を制御する。 It is preferable to control the operation of the liquid feed pump P1 so that the return amount of the separated sludge is detected so that the ammoniacal nitrogen concentration in the methane fermentation tank 1 exceeds the detection limit value. More preferably, the operation of the liquid feed pump P1 is controlled so that the ammoniacal nitrogen concentration is 40 mg / L or more, and particularly preferably, the liquid feed pump P1 is set so that the ammoniacal nitrogen concentration is 40 to 100 mg / L. Control the operation of
 メタン発酵槽内にアンモニア性窒素濃度が検出されれば、槽内が窒素不足に陥っておらず、微生物の活動に必要な窒素成分が存在していると推測できる。そして、アンモニア性窒素濃度が40mg/L以上であれば、メタン菌等の活性状態を特に良好にでき、より高いメタン発酵効率が期待できる。また、COD/N比が50以上の有機性廃棄物をメタン発酵処理する場合は、アンモニア性窒素濃度が高くなりすぎる虞れは少ないが、アンモニア性窒素濃度が2500mg/Lを超えるとメタン菌の活性が阻害されるので、上限は2000mg/L程度が好ましい。 If an ammoniacal nitrogen concentration is detected in the methane fermentation tank, it can be assumed that the tank is not deficient in nitrogen and that nitrogen components necessary for the activity of microorganisms are present. And if ammoniacal nitrogen concentration is 40 mg / L or more, the active state of methane bacteria etc. can be made especially favorable, and higher methane fermentation efficiency can be expected. When organic waste with a COD / N ratio of 50 or more is subjected to methane fermentation, there is little possibility that the ammoniacal nitrogen concentration will be too high, but if the ammoniacal nitrogen concentration exceeds 2500 mg / L, Since the activity is inhibited, the upper limit is preferably about 2000 mg / L.
 なお、分離汚泥の返送量が上限に達しても、メタン発酵槽1内のアンモニア性窒素濃度が閾値を超えない場合は、分離液に含まれるアンモニア性窒素を、アンモニアストリッピング、イオン交換膜等の方法により分離回収し、メタン発酵槽1へ返送することが好ましい。 If the ammonia nitrogen concentration in the methane fermentation tank 1 does not exceed the threshold even when the separation sludge return amount reaches the upper limit, ammonia nitrogen contained in the separation liquid is removed by ammonia stripping, ion exchange membrane, etc. It is preferable to separate and collect by the above method and return to the methane fermentation tank 1.
 このように、本発明によれば、メタン発酵槽1内の発酵液中のアンモニア性窒素濃度が閾値を超えるように分離汚泥のメタン発酵槽への返送量を制御するので、高負荷運転でメタン発酵処理を行っても、分離汚泥に含まれる微生物の死骸由来の窒素やアンモニアなどがメタン発酵槽に返送されて、微生物の活動に必要な窒素を供給できる。このため、滞留時間を長めに設定したり、炭酸アンモニウム等の窒素分となりうる含窒素化合物や、生ゴミ、糞尿等のタンパク質含量の高い有機性廃棄物等を添加するといった処置を行わなくても、窒素不足による微生物の活性低下を抑制して、有機性廃棄物を、長期にわたって、高速かつ高負荷で、メタン発酵処理できる。そして、炭酸アンモニウム等の窒素分となりうる含窒素化合物や、生ゴミ、糞尿等のタンパク質含量の高い有機性廃棄物を別途用意する必要がないので、これらの原料を貯留する設備、搬送費、材料費等を抑えることができ、運転コストをより低減できる。 Thus, according to the present invention, the return amount of the separated sludge to the methane fermentation tank is controlled so that the ammoniacal nitrogen concentration in the fermentation broth in the methane fermentation tank 1 exceeds the threshold value. Even if the fermentation treatment is performed, nitrogen or ammonia derived from the dead bodies of microorganisms contained in the separated sludge is returned to the methane fermentation tank, and nitrogen necessary for the activities of the microorganisms can be supplied. For this reason, it is not necessary to set a long residence time or to add a nitrogen-containing compound that can be a nitrogen component such as ammonium carbonate, organic waste with a high protein content such as raw garbage or manure, etc. The organic waste can be treated with methane fermentation at high speed and high load over a long period of time by suppressing the decrease in the activity of microorganisms due to lack of nitrogen. In addition, there is no need to separately prepare nitrogen-containing compounds that can be nitrogen components such as ammonium carbonate, or organic wastes with high protein content such as garbage and manure, so facilities for storing these materials, transportation costs, materials Costs and the like can be suppressed, and the operating cost can be further reduced.
 (実施例1)
 以下の表1に示す組成のパーム油排液(COD/N比=72)を用い、図1に示す装置を用いて、滞留時間10日の条件でメタン発酵処理を行った。メタン発酵槽1は、容積5Lの槽を用いた。固液分離槽2は、容積0.5Lの重力沈殿槽3を用いた。
Example 1
Using the palm oil drainage (COD / N ratio = 72) having the composition shown in Table 1 below, the apparatus shown in FIG. 1 was used to perform the methane fermentation treatment under conditions of a residence time of 10 days. As the methane fermentation tank 1, a tank having a volume of 5 L was used. As the solid-liquid separation tank 2, a gravity precipitation tank 3 having a volume of 0.5 L was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、TS濃度は、下水試験方法-2.2.9に準じて測定した。すなわち、試料液を110℃で蒸発乾固して残った固形物量を試料液体積で割って求めた。また、VS濃度は、試料液を600℃±25℃で加熱した残った固形物(灰分)の質量を試料体積で割って求めた灰分濃度を、上記で求めたTS濃度から差し引いて求めた。また、COD/N比は、表1中のCODcr/Kj-N(ケルダール窒素)から算出した。 The TS concentration was measured according to the sewage test method-2.2.9. That is, the amount of solid matter remaining after evaporation of the sample solution at 110 ° C. was divided by the sample solution volume. The VS concentration was obtained by subtracting the ash concentration obtained by dividing the mass of the remaining solid (ash) obtained by heating the sample solution at 600 ° C. ± 25 ° C. by the sample volume from the TS concentration obtained above. The COD / N ratio was calculated from CODcr / Kj-N (Kjeldahl nitrogen) in Table 1.
 メタン発酵槽1には、1日当たり、パーム油排液500mLを投入し、固液分離槽2から分離汚泥(固形物(TS)濃度:66000mg/L、不揮発性有機物(VS)濃度:46000mg/L)を125mL返送した。また、メタン発酵槽1から同量の発酵液625mlを引き抜いて固液分離槽2に導入した。メタン発酵槽1内の発酵液のpH、アルカリ度(M-alk)、アンモニア性窒素(NH-N)濃度、揮発性脂肪酸(VFA)濃度、硫化水素(HS)濃度を測定した。図2に結果を記す。 The methane fermentation tank 1 is charged with 500 mL of palm oil effluent per day and separated from the solid-liquid separation tank 2 (serum (TS) concentration: 66000 mg / L, nonvolatile organic matter (VS) concentration: 46000 mg / L). ) Was returned 125 mL. Further, 625 ml of the same amount of fermentation broth was extracted from the methane fermentation tank 1 and introduced into the solid-liquid separation tank 2. The pH, alkalinity (M-alk), ammoniacal nitrogen (NH 4 -N) concentration, volatile fatty acid (VFA) concentration, and hydrogen sulfide (H 2 S) concentration of the fermentation broth in the methane fermenter 1 were measured. The results are shown in FIG.
 図2に示すように、メタン発酵処理中は、発酵液のアンモニア性窒素濃度が平均値で94mg/Lであった。そして、pH、アルカリ度、揮発性脂肪酸濃度、硫化水素濃度のバラつきがなく、発酵状態が安定していた。 As shown in FIG. 2, during the methane fermentation treatment, the ammoniacal nitrogen concentration of the fermentation broth was 94 mg / L on average. And there was no variation in pH, alkalinity, volatile fatty acid concentration, and hydrogen sulfide concentration, and the fermentation state was stable.
 また、メタン発酵槽1に投入された有機性廃棄物の滞留時間10日になってから31日間経過した後のメタン発酵槽2内の発酵液のVS濃度を測定したところ、17000mg/Lであり、VS分解率は69%であった。 Moreover, it was 17000 mg / L when the VS density | concentration of the fermented liquid in the methane fermenter 2 after 31 days passed since the residence time of the organic waste thrown into the methane fermenter 1 became 10 days. The VS decomposition rate was 69%.
 (比較例1)
 表2に示す組成のパーム油排液(COD/N比=78)に、100mg/Lのアンモニア性窒素を添加した有機性廃棄物を、滞留時間8日の条件でメタン発酵処理を行った。この有機性廃棄物のアンモニア性窒素濃度は144mg/Lであったと推定される。
(Comparative Example 1)
Organic waste obtained by adding 100 mg / L of ammonia nitrogen to palm oil drainage (COD / N ratio = 78) having the composition shown in Table 2 was subjected to methane fermentation treatment under conditions of a residence time of 8 days. It is estimated that the ammoniacal nitrogen concentration of this organic waste was 144 mg / L.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 40日間運転経過後、メタン発酵槽内の発酵液のアンモニア性窒素濃度を測定したところ、平均値で60mg/Lであった。 After 40 days of operation, when the ammoniacal nitrogen concentration of the fermentation broth in the methane fermenter was measured, the average value was 60 mg / L.
 このことから、アンモニア性窒素を添加しなければ、発酵槽内のアンモニア性窒素は検出されずに、窒素不足になっていたと推定される。 From this, it is presumed that if ammonia nitrogen was not added, ammonia nitrogen in the fermenter was not detected and nitrogen was insufficient.
1:メタン発酵槽
2:固液分離槽
10:アンモニア計
L1~L5:配管
P1:送液ポンプ
1: Methane fermentation tank 2: Solid-liquid separation tank 10: Ammonia meters L1 to L5: Piping P1: Liquid feed pump

Claims (4)

  1.  COD濃度と窒素濃度の比(COD/N比)が50以上の有機性廃棄物をメタン発酵槽に供給してメタン発酵処理し、前記メタン発酵槽から発酵液を所定量ずつ取出して分離汚泥と分離液とに分離して、前記分離汚泥の少なくとも一部を前記メタン発酵槽に返送するメタン発酵処理方法において、
     前記メタン発酵槽内の発酵液中のアンモニア性窒素濃度を直接又は間接的に測定し、該アンモニア性窒素濃度が所定値を超えるように、前記分離汚泥の前記メタン発酵槽への返送量を制御することを特徴とするメタン発酵処理方法。
    Organic waste having a COD concentration / nitrogen concentration ratio (COD / N ratio) of 50 or more is supplied to a methane fermentation tank and subjected to methane fermentation treatment. In the methane fermentation treatment method of separating into separated liquid and returning at least a part of the separated sludge to the methane fermentation tank,
    The ammonia nitrogen concentration in the fermentation broth in the methane fermentation tank is measured directly or indirectly, and the return amount of the separated sludge to the methane fermentation tank is controlled so that the ammonia nitrogen concentration exceeds a predetermined value. A methane fermentation treatment method characterized by:
  2.  前記メタン発酵槽内のアンモニア性窒素濃度が40mg/L以上となるように、前記分離汚泥の前記メタン発酵槽への返送量を制御する、請求項1に記載のメタン発酵処理方法。 The methane fermentation treatment method according to claim 1, wherein a return amount of the separated sludge to the methane fermentation tank is controlled so that an ammoniacal nitrogen concentration in the methane fermentation tank is 40 mg / L or more.
  3.  前記メタン発酵槽内のアンモニア性窒素濃度が所定値以下となったときに、前記分離汚泥の前記メタン発酵槽への返送量を増大させると共に、該返送量が上限に達しても、アンモニア性窒素濃度が所定値を超えない場合は、前記分離液に含まれるアンモニア性窒素を前記メタン発酵槽に供給する請求項1又は2記載のメタン発酵処理方法。 When the ammonia nitrogen concentration in the methane fermentation tank becomes a predetermined value or less, the return amount of the separated sludge to the methane fermentation tank is increased, and even if the return amount reaches the upper limit, ammonia nitrogen The methane fermentation treatment method according to claim 1 or 2, wherein ammonia nitrogen contained in the separation liquid is supplied to the methane fermentation tank when the concentration does not exceed a predetermined value.
  4.  前記有機性廃棄物が、パーム油排液である、請求項1~3のいずれか1つに記載のメタン発酵処理方法。 The methane fermentation treatment method according to any one of claims 1 to 3, wherein the organic waste is palm oil drainage.
PCT/JP2011/050166 2010-03-29 2011-01-07 Methane fermentation treatment method WO2011122056A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010074808A JP5006424B2 (en) 2010-03-29 2010-03-29 Methane fermentation treatment method
JP2010-074808 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011122056A1 true WO2011122056A1 (en) 2011-10-06

Family

ID=44711810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050166 WO2011122056A1 (en) 2010-03-29 2011-01-07 Methane fermentation treatment method

Country Status (3)

Country Link
JP (1) JP5006424B2 (en)
MY (1) MY159770A (en)
WO (1) WO2011122056A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120975A (en) * 2009-12-09 2011-06-23 Metawater Co Ltd Method and apparatus for methane fermentation
US10590439B2 (en) 2012-01-12 2020-03-17 Blaygow Limited Anaerobic process
US11193143B2 (en) 2012-11-16 2021-12-07 Blaygow Limited Grain processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193122A (en) * 2004-01-06 2005-07-21 Takuma Co Ltd Anaerobic hydrogen fermentation treatment system
JP2007098229A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Method and apparatus for treating organic waste material
JP2009219960A (en) * 2008-03-14 2009-10-01 Metawater Co Ltd Methane fermentation process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193122A (en) * 2004-01-06 2005-07-21 Takuma Co Ltd Anaerobic hydrogen fermentation treatment system
JP2007098229A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Method and apparatus for treating organic waste material
JP2009219960A (en) * 2008-03-14 2009-10-01 Metawater Co Ltd Methane fermentation process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120975A (en) * 2009-12-09 2011-06-23 Metawater Co Ltd Method and apparatus for methane fermentation
US10590439B2 (en) 2012-01-12 2020-03-17 Blaygow Limited Anaerobic process
US11193143B2 (en) 2012-11-16 2021-12-07 Blaygow Limited Grain processing

Also Published As

Publication number Publication date
JP2011206639A (en) 2011-10-20
JP5006424B2 (en) 2012-08-22
MY159770A (en) 2017-01-31

Similar Documents

Publication Publication Date Title
De Vrieze et al. Interfacing anaerobic digestion with (bio) electrochemical systems: potentials and challenges
De la Rubia et al. Preliminary trials of in situ ammonia stripping from source segregated domestic food waste digestate using biogas: effect of temperature and flow rate
CN101805066B (en) Method and device for preventing scaling of reactor and simultaneously purifying biogas
Collivignarelli et al. Minimization of municipal sewage sludge by means of a thermophilic membrane bioreactor with intermittent aeration
Yap et al. Comparison of different industrial scale palm oil mill effluent anaerobic systems in degradation of organic contaminants and kinetic performance
JP4834021B2 (en) Methane fermentation treatment method
Yang et al. Separation of swine wastewater into solid fraction, concentrated slurry and dilute liquid and its influence on biogas production
CN104944702B (en) A kind for the treatment of process and system of ice cream waste water
CN102010104A (en) Method for treating riboflavin fermentation waste water
CN101679085A (en) Method of anaerobic treatment and anaerobic treatment apparatus
Ramos et al. The role of the headspace in hydrogen sulfide removal during microaerobic digestion of sludge
WO2014072756A1 (en) A method for organic waste hydrolysis and acidification and an apparatus thereof
JP5006424B2 (en) Methane fermentation treatment method
JPWO2012081715A1 (en) Biological purification agent of treated water, biological purification system, and biological purification method
DE102014001912A1 (en) Process for the material and energetic utilization of biogenic residues of bioethanol recovery plants and arrangement for carrying out the process
Wang et al. Thermophilic anaerobic digestion of sewage sludge with high solids content
UA125721C2 (en) A method for conversion of poultry manure
DK2279153T3 (en) METHOD OF TREATING AND / OR PREPARING LIQUID FERTILIZER OR WASTE FROM BIOGAS SYSTEMS TO ELIMINATE HARMFUL SUBSTANCES, PARTICULAR NITROGEN, PHOSPHORES AND AIR MOLECULES
Müller et al. Current status, gaps and challenges of rendering industries wastewater
JP2004290921A (en) Methane fermentation method and system
JP2003136089A (en) Method for suppressing generation of hydrogen sulfide
US20230271866A1 (en) Method and device for treating organic waste, including the anaerobic digestion thereof and the composting of the digestates
JP2006218422A (en) Process for treating organic waste and apparatus for the same
JP2019130486A (en) Operation method of wet type methane fermentation facility
KR100911835B1 (en) The bacteria digestion tank and it`s use biogas production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762297

Country of ref document: EP

Kind code of ref document: A1