WO2011118918A2 - Microcurrent stimulating sock - Google Patents

Microcurrent stimulating sock Download PDF

Info

Publication number
WO2011118918A2
WO2011118918A2 PCT/KR2011/001342 KR2011001342W WO2011118918A2 WO 2011118918 A2 WO2011118918 A2 WO 2011118918A2 KR 2011001342 W KR2011001342 W KR 2011001342W WO 2011118918 A2 WO2011118918 A2 WO 2011118918A2
Authority
WO
WIPO (PCT)
Prior art keywords
microcurrent
control signal
generator
level
human body
Prior art date
Application number
PCT/KR2011/001342
Other languages
French (fr)
Korean (ko)
Other versions
WO2011118918A3 (en
Inventor
이지훈
Original Assignee
Lee Ji Hun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100027302A external-priority patent/KR100994208B1/en
Application filed by Lee Ji Hun filed Critical Lee Ji Hun
Publication of WO2011118918A2 publication Critical patent/WO2011118918A2/en
Publication of WO2011118918A3 publication Critical patent/WO2011118918A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/322Electromedical brushes, combs, massage devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/048Electrodes characterised by a specific connection between lead and electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0484Garment electrodes worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/26Electromedical brushes; Electromedical massage devices ; Combs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36034Control systems specified by the stimulation parameters
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B11/00Hosiery; Panti-hose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6807Footwear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/10Characteristics of apparatus not provided for in the preceding codes with further special therapeutic means, e.g. electrotherapy, magneto therapy or radiation therapy, chromo therapy, infrared or ultraviolet therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/12Feet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0452Specially adapted for transcutaneous muscle stimulation [TMS]

Definitions

  • the present invention relates to a sock worn on the foot of the human body to be used for treatment or massage purposes, and more particularly, microcurrent stimulation that can increase the effect of massage or treatment by stimulating by delivering a microcurrent to the foot of the human body. It is about dragon socks.
  • the foot is the body part located at the end of the leg, which is a delicate human organ with 26 bones, 39 joints, 38 muscles, 107 ligaments, and many other capillaries and autonomic nerves. These feet have two pulses, one on the instep and one on the Achilles tendon, and acupuncture points that cover 63 parts of the human body. In addition, the foot is a very important role and function of the human body, such as maintaining the balance of the body, weight support, shock absorption, movement.
  • the most important function of the foot function is the walking function, the pump function of the foot.
  • the pump function of the foot is to help the heart to promote blood circulation and metabolism. Since the position of the heart is higher from the ground since humans start walking upright, the blood circulation becomes more difficult as the blood circulation becomes more difficult. Pump function should be smooth. Thus, the foot is also referred to as the second heart function.
  • Diabetes is known to be caused by changes in diet, bad drinking culture, and lack of exercise caused by modern people's busy schedules.
  • the appearance of diabetes initially causes problems throughout the body, but gradually causes nerves, blood vessels, and the immune system to break down, the nerves are gradually destroyed and blood vessels become clogged, causing the most serious problems in the foot at the end of the body.
  • 15-20% of patients hospitalized with diabetes may show foot ulcers. Foot ulcers are a major obstacle in diabetics, ranging from 28% to amputation, which is astronomical.
  • Diabetic foot disease which is caused by a combination of microvascular disorders, free radicals and glycation of proteins due to prolonged hyperglycemia, includes abnormalities, necrosis, calluses, and refractory athlete's foot. If you have diabetes, your feet will be easily injured. If you are infected with a wound, you will not be treated well, unlike a healthy person, and will gradually spread to the upper part.If you miss the initial treatment period, the disease will progress rapidly and irreversibly. Can cause. In addition, as diabetes progresses, most patients have neuropathy, which is a symptom of sensory neuropathy at the extremities of the lower extremities, resulting in cold, numb, and burning symptoms.
  • the present invention has been made in view of the above point, by being worn on the foot of the human body to deliver a microcurrent to the toes, soles, insteps, ankles, etc. can effectively achieve the foot massage effect or the treatment effect of diabetes mellitus
  • the purpose is to provide a sock for the current stimulation.
  • a microcurrent stimulator formed on at least a portion of the sock and made of conductive yarns
  • a microcurrent generator attached to an upper portion of the ankle part and generating a microcurrent to be applied to a conductive yarn constituting the microcurrent stimulation portion, and applying the microcurrent at a predetermined period during an enable time;
  • connection part formed of the same material as the microcurrent stimulation part to electrically connect the microcurrent stimulation part and the microcurrent generator
  • It includes; the base portion formed of a general yarn on the remaining portion except the microcurrent stimulation portion and the connection portion.
  • the microcurrent generator is attached to a predetermined portion of the ankle top of the microcurrent stimulation socks, a button attachment method that performs the attachment and application of microcurrent simultaneously using a snap fastener of conductive metal material, velcro (velcro) Velcro attachment method using a), having a length adjustable band to the microcurrent generator and can be attached to the microcurrent stimulating socks by any one method selected from the band attachment method worn on the ankle or calf.
  • a pocket portion for accommodating the microcurrent generator, a pair of first connection terminal is formed in the microcurrent generator, a pair of second connection terminal is connected to the connection portion in the pocket portion And the first and second connection terminals are electrically connected as the microcurrent generator is accommodated in the pocket part.
  • the cover part is formed to be openable and closeable on the upper side of the pocket part, and an inner side surface of the cover part and an outer side surface of the pocket part are provided with corresponding coupling means.
  • a power supply unit having a power supply switch for supplying power to the microcurrent generator
  • the microcurrent is generated by using the power supplied through the power supply unit, and the generation period of the microcurrent is controlled using the frequency generated by the frequency generator, and in response to the enable signal input from the outside.
  • a generation current level control unit for adjusting the microcurrent generated in the control chip to a desired level.
  • An embodiment of the microcurrent generator may further include a generation voltage level control unit for controlling the output voltage generated by the control chip to a desired final voltage.
  • a booster boosting a power supply voltage to a boosted voltage of a predetermined level in response to the third control signal of the control unit;
  • a microcurrent having a desired level is generated and supplied to a specific part of the human body through connection terminals connected to the human body, and when the first control signal is input, And a microcurrent output unit for supplying the microcurrent having a phase and supplying the microcurrent having a negative phase when the second control signal is input.
  • the microcurrent output unit includes at least one voltage distribution circuit and a plurality of switching elements, and each of the plurality of switching elements performs a switching operation in response to the first control signal or the second control signal. .
  • the microcurrent output unit generates and supplies a supply level confirmation signal for confirming a human supply level of the microcurrent supplied to the human body, and provides the control unit, and the control unit generates a boosted voltage in response to the supply level confirmation signal. Characterized by controlling the level.
  • the first control signal and the second control signal is a pulse signal having a predetermined period and a certain duty ratio, characterized in that the first control signal and the second control signal has a predetermined phase difference.
  • the control unit may determine whether the human body connection terminals are actually connected to the human body through the supply level confirmation signal, and control whether microcurrent is generated.
  • the microcurrent is transmitted through the microcurrent stimulus formed on the toe, the sole, the instep, the ankle, and the like to be worn on the foot of the human body, so that the massage effect or the treatment effect of diabetes can be more effectively implemented.
  • FIG. 1 is a view showing a sock for microcurrent stimulation according to a first embodiment of the present invention.
  • FIG. 2 is a view showing a sock for microcurrent stimulation according to a second embodiment of the present invention.
  • FIG. 3 is an exploded perspective view showing a sock for microcurrent stimulation according to a third embodiment of the present invention.
  • Figure 4 is a side view showing a sock for microcurrent stimulation according to a third embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line A-A of FIG. 4.
  • FIG. 6 is a cross-sectional view showing a sock for microcurrent stimulation according to a fourth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a sock for microcurrent stimulation according to a fifth embodiment of the present invention.
  • FIG. 8 is a circuit diagram of a microcurrent generator according to a first embodiment applied to a sock for microcurrent stimulation of the present invention.
  • FIG. 9 is a block diagram showing a microcurrent generator according to a second embodiment applied to a sock for microcurrent stimulation of the present invention.
  • FIG. 10 is a circuit diagram of an example of the microcurrent generator of FIG. 9.
  • FIG. 11 is an operation timing diagram of FIG. 10.
  • FIG. 12 illustrates another embodiment of the boosting unit of FIG. 9.
  • FIG. 1 illustrates a microcurrent stimulating sock 100 according to a first embodiment of the present invention.
  • the microcurrent stimulation socks 100 is a microcurrent stimulation unit (120a, 120b, 120c, 120d), which is formed of a good conductive yarn, the general yarn The base 110 is formed, and the microcurrent generator 150 is formed.
  • the microcurrent stimulation part 120a, 120b, 120c, 120d is selected from at least one selected from the toe part 120a, the ankle part 120c, the instep part 120d, and the sole part 120b of the microcurrent stimulating sock.
  • the portion may be formed by knitting or the like by a conductive yarn of a conductive material.
  • a conductive yarn may be made of a highly conductive thread such as gold sand, silver, or a verb.
  • the ankle portion 120c of the microcurrent stimulation portions 120a, 120b, 120c, and 120d may be formed in a round shape to surround the acupoints behind the ankle or wrap the back portion only at the peach bone portion.
  • the toe portion 120a is formed to cover the entire toe
  • the instep portion 120d and the sole portion 120b are formed to cover the acupoints of the instep and the sole of the foot.
  • the connecting portions 120e and 120f are connected to the microcurrent magnetic pole portions 120a, 120b, 120c and 120d, and the connecting portions 120e and 120f are formed by conductive yarns.
  • the microcurrent stimulation parts 120a, 120b, 120c, and 120d are electrically connected to the microcurrent generator 150 through the connection parts 120e and 120f.
  • the connection part 120e electrically connects the ankle part 120c and the remaining parts 120a, 120b, and 120d of the microcurrent stimulation part 120a, 120b, 120c, and 120d, and the connection part 120f is a microcurrent stimulation part (
  • the ankle portion 120c of the 120a, 120b, 120c, and 120d and the microcurrent generator 150 are electrically connected to each other.
  • connection parts 120e and 120f are formed to be narrow and long and are electrically connected to the terminals of the microcurrent generator 150, respectively.
  • connection part 120f is illustrated only on the front side in the drawing, the same structure is also formed on the back side so that the front and back connection parts 120f are electrically connected to each other to apply a microcurrent, or the microcurrent generators 150 are separated from each other. ) Terminals can be electrically connected.
  • the microcurrent magnetic pole portions 120a, 120b, 120c, and 120d and the connecting portions 120e and 120f may be formed of only conductive yarns, or may be formed by mixing conductive yarns with ordinary yarns. In the case of forming a mixture of conductive yarns and ordinary yarns, the mixing ratio may be appropriately determined to have an optimum effect through various experiments.
  • All of the conduction conductors constituting the microcurrent magnetic pole portions 120a, 120b, 120c, and 120d and the connection portions 120e and 120f should be electrically connected to each other.
  • the base 110 is the remaining portion except for the microcurrent stimulation part 120a, 120b, 120c, 120d and the connection part 120e, 120f of the microcurrent stimulation socks 100, the base part 110 is a general yarn It is formed by knitting. Ordinary yarns are used for the manufacture of socks, yarns well known to those skilled in the art to which the present invention pertains may be used.
  • the microcurrent generator 150 is configured to be detachably attached to an upper side of the ankle portion, and generates a microcurrent of 0 to 1000 mA (not including 0) to generate a microcurrent stimulation part 120a, 120b, or 120c. 120d) and the micro-currents are applied to the connection portions 120e and 120f at regular intervals during the enable time.
  • the microcurrent generator 150 is attached to the upper part of the ankle in order to reduce the discomfort when the user wears as a sock in everyday life, the shape of the part touching the leg can also be rounded to minimize the inconvenience.
  • the attachment portion for attaching the microcurrent generator 150 to the sock is a Velcro attachment method for attaching and attaching a velcro to the sock 100 and the microcurrent generator 150, respectively, or a snap button attached to the sock and the microcurrent generator. (snap fastener) is a button that can be fixed by inserting.
  • the band method can be worn on the ankle or calf. In this case, the length of the band can be in the form of a velcro, a ring, a buckle, and the like.
  • connection portion 120f and the microcurrent generator 150 that transfer the microcurrent supplied from the microcurrent generator 150 to the microcurrent stimulation units 120a, 120b, 120c, and 120d are microcurrent generators 150.
  • the button is made of a conductor such as metal, and the attachment portion of the sock 100 is knitted with a conductive yarn so as to have a function of a connection portion that flows a microcurrent to the sock at the same time.
  • one of the buttons connects the positive electrode and one of the negative poles so that the positive and negative poles of the microcurrent can be differently connected as necessary.
  • a method of connecting the metal terminal attached to the conductive yarn portion of the socks by extracting the positive and negative wires from the microcurrent generator 150 may be used.
  • a metallic material made of a material resistant to corrosion or rust such as copper.
  • FIG. 2 illustrates a microcurrent stimulating sock 100a according to a second embodiment of the present invention.
  • the microcurrent stimulation sock 100a according to the second embodiment of the present invention includes a microcurrent stimulation part 130 that occupies the entire ankle or less of the sock and a base portion 140 positioned at the top of the ankle.
  • the microcurrent stimulation unit 130 may be formed by knitting a conductive yarn and a general yarn as shown in FIG.
  • the microcurrent generator 150 may be detachably attached to the upper portion of the ankle, and a connecting portion electrically connecting the microcurrent generator 150 and the microcurrent unit 130 ( 120f) is formed.
  • 3 to 5 illustrate a microcurrent stimulating sock 100b according to a third embodiment of the present invention.
  • the microcurrent stimulation socks 100b according to the third embodiment of the present invention includes the first and second microcurrent stimulation parts 131 and 132 formed on the sole side of the socks,
  • the base 110 is formed of a general yarn, and a microcurrent generator 150.
  • the first and second microcurrent stimulation parts 131 and 132 are formed spaced apart at a predetermined interval on the sole side of the sock, and the first and second connection parts are provided on the first and second microcurrent stimulation parts 131 and 132, respectively. 161 and 162 are electrically connected.
  • the first and second microcurrent magnetic pole parts 131 and 132 and the first and second connection parts 161 and 162 are formed of a conductive yarn having good conductivity as in the previous embodiment.
  • the pocket part 200 is formed on the upper side of the sock, and the receiving space 210 in which the microcurrent generator 150 is accommodated is formed inside the pocket part 200.
  • a pair of first connection terminals 171 and 172 are connected to the microcurrent generator 150 through power lines 150a and 150b, and the first connection terminals 171 and 172 are made of a conductive material.
  • the one connecting terminal 171, 172 is formed in the groove shape.
  • the first and second connection parts 161 and 162 extend toward the pocket part 200, and a pair of second connection terminals 221 and 222 are formed on one side of the pocket part 200, and the second connection terminal (
  • the 221 and 222 are made of a conductive material and configured to be individually connected to the first and second connection portions 161 and 162.
  • Each of the second connection terminals 221 and 222 is formed in a protrusion shape.
  • the microcurrent generator 150 is accommodated in the accommodation space 210 of the pocket 200, and the first connection terminals 171 and 172 of the microcurrent generator 150 extend toward the pocket 200. It is electrically connected to the 2nd connection terminal 221,222 side.
  • the cover portion 230 is formed on the upper side of the pocket portion 200 to be opened and closed, and coupling means such as Velcro fasteners and snap buttons on the inner side of the cover portion 230 and one side of the pocket portion 200. 242 is provided, the cover portion 230 is coupled to the pocket portion 200 by the coupling means (241, 242) can maintain its closed state.
  • FIG. 6 illustrates a microcurrent stimulating sock 100c according to a fourth embodiment of the present invention.
  • a pair of first connection terminals 173 and 174 are formed in a protrusion shape on one side of the microcurrent generator 150 and a pair of second connections formed on the pocket part 200 side.
  • the terminals 223 and 224 are formed in a groove shape. Accordingly, the microcurrent generator 150 is accommodated in the accommodation space 210 of the pocket part 200, and the first connection terminals 173 and 174 of the microcurrent generator 150 extend toward the pocket part 200. It is electrically connected to the connection terminals 223 and 224 side.
  • FIG. 7 illustrates a microcurrent stimulating sock 100d according to a fifth embodiment of the present invention.
  • a pair of first connection terminals 175 and 176 are formed in a protrusion shape on one side of the microcurrent generator 150 and a pair of second connections formed on the pocket part 200 side.
  • the terminals 225 and 226 are formed in a projection shape. Accordingly, the microcurrent generator 150 is accommodated in the accommodation space 210 of the pocket part 200, and the second connection terminals 175 and 176 of the microcurrent generator 150 extend toward the pocket part 200. It is electrically connected to the connection terminals 225 and 226 side.
  • one side of the microcurrent generator 150 is attached to the coupling means 250, such as a clip or tongs, the microcurrent generator 150 by the coupling means 250 can be coupled to the pocket portion 200 side. have.
  • FIG 8 shows a circuit diagram according to a first embodiment of the microcurrent generator 150 used in the present invention.
  • the microcurrent generator 150 includes a power supply unit 152, a frequency generator 156, a control chip 157, and a generation current level control unit 158.
  • the generation voltage level control unit 154 for controlling the level of the generated voltage generated by the control chip 157 to the final voltage required for the human body may be further provided.
  • the generated voltage level controller 154 has a wiring structure shown in FIG. 8 including a resistor R3, a capacitor C1, and an inductor L. Referring to FIG. 8
  • the power supply unit 152 is connected to a battery for supplying power to the microcurrent generator 150.
  • the power supply unit 152 may include a battery for supplying power, a power switch S / W1 for determining whether the power is supplied to the microcurrent generator 150, and a battery level indicator D1 indicating the remaining amount of the battery. ) And battery indicator indicator switch (S / W2). At this time, the power switch (S / W1), the remaining battery indicator (D1), the remaining battery indicator indicator switch (S / W2) is exposed to the outside of the case for the user's operation and convenience, open for the user's battery replacement Closed lid is provided.
  • the power switch (S / W1) may be in a form that can be directly operated by the user, and also, if necessary, using a film switch, a resistance switch, a thermal switch, a touch switch, and the like, automatically and manually as needed. It is also possible to configure it to turn on and off.
  • the power supply unit 152 operates the microcurrent generator 150 only when the power switch S / W1 connected to the input terminal VIN of the control chip 157 is on to minimize battery consumption.
  • the battery power remaining indicator (D1) is connected to the LED control unit (LED) in the control chip 157, it is possible to turn on the LED lamp for each color such as red, blue, yellow so that the user can know.
  • the battery power indicator indicator switch (S / W2) is attached so that the user can specify whether the LED is on or off.
  • the brightness of the LED In addition, through the diode (D1) and the resistor (R4) connected to the LED control terminal (LED) of the control chip 157, the brightness of the LED, the interval of lighting (in seconds), the lighting time (in seconds or milliseconds) Adjust to minimize battery drain.
  • batteries all the batteries known to those skilled in the art may be used as the batteries. That is, all batteries can be used, including primary batteries such as alkaline batteries and manganese batteries, and secondary batteries such as lithium-ion, nickel-hydrogen and nickel-cadmium batteries.
  • primary batteries such as alkaline batteries and manganese batteries
  • secondary batteries such as lithium-ion, nickel-hydrogen and nickel-cadmium batteries.
  • battery power 3V coin battery as well as 1.5V general battery can be arranged in series to supply 3 ⁇ 12V DC power.
  • the frequency generator 156 is for controlling the generation cycle of the microcurrent generated through the microcurrent generator 150, by connecting a frequency crystal CRYSTAL to the Xin and Xout terminals of the control chip 157. Configure. Using the frequency generated by the frequency generator 156, the control chip 157 or the microcurrent generator 150 outputs a microcurrent at a desired time interval (seconds or milliseconds), and the enable terminal ( EN) to maintain the output for the desired time (in seconds or milliseconds).
  • the control chip 157 generates the microcurrent using the power supplied through the power supply unit 152, and controls the generation period of the microcurrent using the frequency generated by the frequency generator 156.
  • the generation time of the microcurrent is controlled in response to the enable signal input through the enable terminal EN from the outside.
  • the control chip 157 is configured to generate a microcurrent having the required voltage and current by using the power supplied from the battery of the power supply unit 152, the microcurrent generation cycle, the fine using the power supplied from the battery It converts a microcurrent with a current holding time, voltage and current of the required size.
  • the control chip 157 converts the power of the 2.5V ⁇ 12V voltage input through the battery into a voltage of 9V ⁇ 50V and a microcurrent of 1,000 kHz or less to supply a microcurrent beneficial to the human body.
  • the generation current level control unit 158 is to adjust the micro current generated by the control chip 157 to a desired level, and has a wiring structure as shown in FIG. 3 (R1, R2) and a variable resistor. (VR), condenser (C2), diode (D2), and transistor (TR1), through the microcurrent output from the control chip 157 to convert to a microcurrent of several hundreds to hundreds of microwatts to deliver to the human body do.
  • VR variable resistor
  • the overall operation of the microcurrent generator 150 is as follows.
  • the input power is amplified from 9V to 50V in the circuit in the control chip 157 and output to the outside of the control chip.
  • the amplified 9V to 50V voltage is output to the outside of the control chip 157 through the SW terminal SW in the control chip as the output voltage of the control chip 157.
  • the output voltage is readjusted to the final voltage required by the human body through the resistor R3, the capacitor C1, and the inductor L present in the generated voltage level controller 154 that is external to the control chip 157. .
  • the microcurrent output from the control chip 157 is output to the outside of the control chip 157 with a microcurrent size of at most 1,000 mA or less through the VSW terminal VSW of the control chip 157 as necessary.
  • the microcurrent is provided in the generation current level control unit 158, and is connected to the output terminals of the microcurrent generator 150, resistors R1 and R2, variable resistors VR, capacitors C2, and diodes D2.
  • the final output is adjusted to the current of the desired size.
  • the control chip 157 the original DC current only has a positive phase in nature, it has a function to alternately output a positive phase and a negative phase through the transistor (TR1).
  • the feedback (FB) of the control chip serves as a feedback function to check the accuracy of the final output.
  • the microcurrent generator 150 includes a control unit 310, a boosting unit 320, and a microcurrent output unit 330.
  • the control unit 310 is a first control signal (S1) for generating a fine current having a positive phase, a second control signal (S2) for generating a fine current having a negative phase, and for boosting the power supply voltage
  • the third control signal S3 is generated to control the generation of the microcurrent.
  • the control unit 310 checks the level of the microcurrent supplied to the human body through the microcurrent generator 150 and controls the third control signal S3 when the level is not a predetermined level, thereby increasing the voltage level of the boosted voltage. By varying the control the human body supply level of the microcurrent.
  • the control unit 310 may include a control chip having a CPU to generate the first to third control signals S1, S2, and S3.
  • the booster 320 boosts the power voltages Vdd and Vcc to a boosted voltage of a predetermined level in response to the third control signal S3 of the control unit 310 to the microcurrent output unit 330. Supply.
  • the booster circuit constituting the booster unit 320 includes a booster circuit of a DC-DC converter type using a back electromotive force of an inductor, a charge pump circuit using a capacitor, and to those skilled in the art.
  • Various well known boost circuits can be used.
  • the microcurrent output unit 330 generates a microcurrent of a desired level based on the boosted voltage boosted by the booster 320 and supplies the microcurrent to the specific site of the human body through contact terminals in contact with the human body. .
  • the microcurrent output unit 330 supplies the microcurrent having a positive phase when the first control signal S1 is input, and a negative phase when the second control signal S2 is input. Supply the microcurrent having a.
  • the microcurrent is a current level of 0-1500 mA (not including 0) and refers to the micro current in microamps.
  • the microcurrent output unit 330 is generated by selecting any current level that is determined to have the highest therapeutic effect or massage effect among current levels of 0 to 1500 mA (not including 0). For example, a microcurrent of 0 to 300 mA or a micro current of 150 to 150 mA can be output.
  • the microcurrent output unit 330 includes at least one voltage distribution circuit and a plurality of switching elements, and each of the plurality of switching elements may include the first control signal S1 or the first control element.
  • the switching operation may be performed in response to the two control signal S2.
  • the microcurrent can be varied in response to the skin resistance of the human body used to make the level of the microcurrent actually supplied to the human body constant.
  • the microcurrent output unit 330 generates a supply level confirmation signal for confirming the human body supply level of the microcurrent supplied to the human body and provides it to the control unit 310, and the control unit 310 provides the In response to the supply level confirmation signal, the level of the boosted voltage of the booster 320 is controlled.
  • the supply level confirmation signal in addition to the function of confirming the level of the microcurrent actually supplied to the human body also provides a function of confirming whether the conditions for the actual contact with the human body has been established.
  • FIG. 10 is a circuit diagram illustrating an example of implementation of the microcurrent generator of FIG. 9.
  • control unit 310a is a control chip (for example, PIC16F716) (U2), resistor (R4), capacitor (C4), power (Vcc), LED to determine whether the power supply ( Including the D2) has a wiring structure as shown in FIG.
  • the control chip U2 may be a generator of a control signal having various kinds of frequencies.
  • control unit 310a may include a first control signal S1 for generating a microcurrent having a positive phase, a second control signal S2 for generating a microcurrent having a negative phase, And generating a third control signal S3 for boosting the power voltage to control the microcurrent generation.
  • control unit 310a receives the supply level confirmation signal MC for confirming the human body supply level of the microcurrent supplied to the human body provided by the microcurrent output unit 330a to receive the booster 320a.
  • the level of the boosted voltage VC can be controlled.
  • the level control of the boosted voltage VC is possible through the third control signal.
  • control unit 310a checks the human body supply level of the microcurrent through the supply level confirmation signal MC, it is also possible to check whether the human body contact terminals P1 and P2 actually contact the human body. . This is because it is possible to determine that the human body contact terminals P1 and P2 are in contact with the human body if the supply level confirmation signal MC is within a certain range corresponding to the skin resistance because the range of the human body's skin resistance is determined. .
  • the control unit 310a first checks whether the human body contact terminals P1 and P2 are in contact with the human body through the supply level confirmation signal MC, and whether a microcurrent is generated. It is decided. That is, when it is confirmed that the human body is contacted through the supply level confirmation signal MC, the microcurrent generation is performed through the microcurrent generator, and then the function of confirming the actual human supply level of the microcurrent is performed. .
  • the power supply voltage may be configured to be supplied through a battery.
  • the booster 320a may include a switching element Q7, which is repeatedly switched by the third control signal S3 generated by the control unit 310a, an inductor L1, rectification and ripple prevention, and boost voltage.
  • a diode D1 for storage, capacitors C1 and C2, and a resistor R10 have a wiring structure as shown in FIG. 10.
  • a transistor is used as the switching element Q7, but various switching elements including a MOSFET may be used.
  • the boosting unit 320a may be configured through a DC-DC converter type boosting circuit including the boosting stage 10 in multiple stages, and may include various boosting circuits such as a boosting circuit. It is possible to implement
  • the microcurrent output unit 330a includes a plurality of voltage dividers using a plurality of resistors R1, R6, R2, R7, R8, and R9 and a plurality of switching elements Q1, Q2, Q3, Q4, Q5, and Q6. ) To output the microcurrent to the human body contact terminals (P1, P2).
  • the plurality of switching elements Q1, Q2, Q3, Q4, Q5, and Q6 use transistors, but various switching elements including MOSFETs may be applied.
  • Some switching elements Q6 and Q3 of the switching elements Q1, Q2, Q3, Q4, Q5 and Q6 are controlled by the first control signal S1 and some switching elements Q5 and Q4. Is controlled by the second control signal S2, and the remaining switching elements Q1 and Q2 are controlled by the voltage of the first node n1, that is, the boosted voltage VC.
  • the human body contact terminals P1 and P2 are mounted on specific parts of the human body (sites requiring treatment or massage), and the second human body contacts the microcurrent applied through the first human contact terminal P1 through the human body. It may be configured to return to the terminal (P2), or to allow the micro-current applied through the second human contact terminal (P2) to pass through the human body to return to the first human contact terminal (P1).
  • FIG. 11 is a timing diagram of the control signal and the fine current of FIG. 10.
  • the microcurrent generator 150 operates while the human body contact terminals P1 and P2 of the microcurrent generator 330a of the microcurrent generator 150 are mounted on a specific part of the human body.
  • control unit 310a When power is supplied through a battery, the control unit 310a generates a signal for confirming whether the human body is in contact with the microcurrent output unit 330a or the third control signal S3 for generating a general microcurrent. In addition, the supply level confirmation signal MC is received to check whether the human body contact terminals P1 and P2 actually touch the human body.
  • control unit 110a supplies the third control signal S3 for generating a microcurrent to the boosting unit 320a.
  • the third control signal S3 is a control signal whose width and period are adjusted for boosting.
  • the control unit 310a supplies the third control signal S3 to the boosting unit 320a.
  • the third control signal S3 is a control signal whose width and period are adjusted for boosting.
  • the switching element Q7 of the boosting unit 320a is turned on / off in response to the third control signal S3.
  • a forward bias is applied to the diode D2, and the capacitor C2 stores a voltage output through the diode D2, and the output voltage, that is, the boost voltage VC Eliminate pulsations (ripples).
  • the first node n1 Generates a boosted voltage VC several times to several ten times higher than the power supply voltages Vcc and Vdd. For example, assuming that the power supply voltage is 3V, it is possible to obtain a voltage of 30V. Of course, it is also possible to generate higher levels of voltage.
  • the switching element Q7 when the switching element Q7 repeatedly performs the on / off operation according to the width and the period of the third control signal S3 of the control unit 310a, the boosted voltage VC has a desired level. .
  • the control unit 310a When the boosted voltage VC reaches a desired level, the control unit 310a generates a first control signal S1 and a second control signal S2.
  • the first control signal S1 and the second control signal S2 may be generated at the same time as the supply of the power supply voltage of the control unit 310a, but it does not mean that the boosted voltage VC reaches a desired level. Therefore, it is assumed here that it occurs when the boosted voltage VC reaches a desired level.
  • the first control signal S1 is for generating a micro current having a positive phase
  • the second control signal S2 is for generating a micro current having a negative phase.
  • the first control signal S1 is shown in FIG. 11. It may have a waveform structure of the pulse (pulse) having a certain period and a certain duty ratio (duty ratio). For example, it may have a waveform structure having a period of 1 second and a constant voltage level for a time of 150 ms, and a voltage level of 0 for the remaining time.
  • the period or duty ratio may be changed by a unit of time, and the period or duty ratio may have a different waveform structure.
  • the second control signal S2 may have a waveform structure in the form of a pulse having a certain period and a constant duty ratio in a form having a predetermined phase difference from the first control signal S1.
  • the second control signal S2 has the same shape except that it has a predetermined phase difference from the first control signal S1.
  • the second control signal S2 should have a voltage level of 0 in a time interval t1 in which the first control signal S1 has a constant voltage level, and the first control signal S1 has a voltage of 0.
  • the waveform structure has a constant voltage level.
  • the pulse of the first control signal S1 and the pulse of the second control signal S2 are generated so as not to overlap. That is, the timing at which the switching elements Q6 and Q3 are turned on by the first control signal S1 and the timing at which the switching elements Q5 and Q4 are turned on by the second control signal S2 should be different. Immediately after the switching elements Q6 and Q3 are turned on by the first control signal S1 and turned off again, the switching elements Q5 and Q4 are turned on by the second control signal S2. Also, the switching elements Q6 and Q3 are turned on by the first control signal S1 and then turned off again, and after a predetermined time, the switching elements Q5 and Q4 are turned on by the second control signal S2. It is also possible to turn on. This is possible by controlling the timing of the pulse generation of the second control signal S2, and may be determined differently as necessary in consideration of treatment or massage effects.
  • the microcurrent output unit 330a turns on the switching element Q1 by the voltage divided by the voltage distribution of the resistors R1 and R6.
  • the voltage divided by the voltage distribution of R2 and R7 turns on the switching element Q2. This is possible when the switching elements Q5 and Q6 are turned off.
  • the switching element Q6 is turned on by the first control signal S1 even when the boost voltage VC reaches a predetermined level.
  • the switching device Q2 is turned on and the switching device Q1 is turned off, and the switching device Q5 is turned on by the second control signal S2, the switching device Q1 is turned on and switched. Element Q2 is turned off.
  • the switching device Q2 When the switching devices Q6 and Q3 are turned on by the first control signal S1 and the switching devices Q5 and Q4 are turned off by the second control signal S2, the switching device Q2. ) Is turned on, and the microcurrent is supplied to the human body through the switching element Q2 and the human body contact terminal P1 at the first node n1, and the microcurrent supplied to the human body is the human body contact terminal P2 and It is recovered through the switching element Q3 and the resistors R8 and R9. At this time, the switching elements Q5, Q4, and Q1 are turned off by the second control signal S2. At this time, the microcurrent supplied to the human body has a positive phase, as shown in the microcurrent graphs P1-P2 of FIG. 11.
  • the switching devices Q6 and Q3 are turned off by the first control signal S1 and the switching devices Q5 and Q4 are turned on by the second control signal S2, the switching device Q1.
  • the microcurrent is supplied to the human body through the switching element Q1 and the human body contact terminal P2 at the first node, and the microcurrent supplied to the human body is the human body contact terminal P1 and the switching element ( Q4), it is recovered through the resistors R8 and R9.
  • the switching elements Q6, Q3, and Q2 are turned off by the first control signal S2.
  • the microcurrent supplied to the human body has a negative phase, as shown in the microcurrent graphs P1-P2 of FIG. 11.
  • the level of microcurrent supplied to the human body is different for each human body because the skin resistance is different for each human body. Therefore, in order to increase the massage or treatment effect, since the microcurrent within a certain level range must be supplied, there is a need to check the level of the microcurrent actually supplied to the human body.
  • the microcurrent output unit 330a has a configuration capable of controlling the level of the microcurrent supplied to the human body by checking the level of the microcurrent recovered through the human body contact terminals P1 and P2.
  • the supply level confirmation signal MC may send a minute current flowing through the resistors R8 and R9 to the control unit 310a. As shown in FIG. 10, the voltage distribution of the resistors R8 and R9 may be divided. It is also possible to use the divided voltage level as the supply level confirmation signal MC.
  • the supply level confirmation signal MC is provided to the control chip U2 of the control unit 310a, and when the supply level confirmation signal MC is provided, the control unit 310a analyzes the supply level confirmation signal MC to the human body. It is confirmed whether the level of the microcurrent actually supplied is the desired level.
  • the boosting unit 320a is boosted through the third control signal S3.
  • the level of the voltage VC is controlled.
  • the level of the boosted voltage VC When the level of the boosted voltage VC is controlled, the level of the microcurrent actually supplied to the human body through the human body contact terminals P1 and P2 is changed, and the control through the control unit 310a is controlled by the human body. The level of microcurrent actually supplied is continued until the desired level range is reached.
  • microcurrent stimulation socks of the present invention it is very useful for the healing of damaged tissues by flowing a microcurrent to the damaged tissues such as pressure ulcers, congestive ulcers and diabetic ulcers.
  • the most direct effect of microcurrent stimulation is to reduce the stimulation of the sympathetic nerve, which causes the contraction of muscles located in the vessel wall in the peripheral blood vessels, thereby reducing blood flow, thereby increasing blood flow to the skin.
  • various studies have shown that the effect of microcurrent can increase tissue oxygen saturation with the increase of blood flow in diabetic ulcer sites.
  • microcurrent stimulation stimulates angiogenesis, increases the biosynthesis of fibroblasts and proteins, and the flow of current from the cathode to the anode increases the migration of fibroblasts and synthesized proteins in wound margins, preventing bacterial growth. It has an effect on wound healing with an increase in tissue oxygen saturation copper due to increased blood flow.
  • the angiogenic stimulating effect of the microcurrent is caused by the increased production of VEGF by the current.
  • Microcurrent during electrostimulation therapy is also called “biological stimulation” or “bioengineering” because of its ability to stimulate cell physiology and growth.
  • Microcurrent has an excellent effect on wound healing, and one of the mechanisms of wound healing has been hypothesized to facilitate intracellular metabolism and stimulate ATP production by energizing the body with the same microcurrent. Since microcurrents have been found to directly affect local microcirculation to soothe inflammation, many studies have been conducted and the high effects of microcurrents on the treatment and wound healing of Achilles tendonitis have been reported in several papers. In addition, since the microcurrent is carried out in a range below the sensory sense almost no current has the advantage that can be treated without the discomfort caused by the current appearing in the previous electrotherapy.
  • Percutaneous oxygen partial pressure measurement has been widely used as the most important method for determining the effects of electrostimulation therapy in diabetic foot disease patients.
  • Percutaneous oxygen partial pressure measurement is a non-invasive test method that can measure the skin micro blood flow and blood gas by measuring the absolute value of oxygen partial pressure in the epidermis and dermis.
  • Percutaneous oxygen partial pressure measurement is also an important indicator for predicting the risk of wound healing and amputation. If the percutaneous oxygen partial pressure measured at the wound is less than 20 mmHg, healing of the wound can hardly occur. After electrical stimulation treatment, sympathetic nerve stimulation is reduced, and peripheral blood vessel response causes vasodilation and an increase in capillaries at the electrical stimulation site, indicating an increase in percutaneous oxygen partial pressure. Many previous studies have shown that the percutaneous partial pressure of oxygen measured after electrostimulation has increased by an average of 14 mmHg, resulting in reduced amputation in diabetic foot disease patients.
  • the microcurrent stimulation therapy can be used for the control of pain in various musculoskeletal disorders and neurological diseases such as myofascial pain syndrome, tennis elbow, shoulder adhesive adhesions, arthritis, as well as peripheral neuropathy such as diabetic neuropathy and disc disease.
  • myofascial pain syndrome such as myofascial pain syndrome, tennis elbow, shoulder adhesive adhesions, arthritis, as well as peripheral neuropathy such as diabetic neuropathy and disc disease.
  • peripheral neuropathy such as diabetic neuropathy and disc disease.
  • Pain threshold can be lowered by promoting back secretion.
  • the present invention it is possible to generate a microcurrent through the microcurrent generator, to control the level of the generated microcurrent, and to deliver the microcurrent through the conduction yarn to treat the foot massage effect or diabetes. Can be more effectively achieved.

Abstract

The present invention relates to a sock that is to be worn on a person's foot region so as to be used for therapeutic or massage purposes, and more particularly, to a microcurrent stimulating sock that stimulates a person's foot region by transmitting a microcurrent, so as to improve effects for massaging, therapy, etc. The microcurrent stimulating sock according to the present invention comprises: a microcurrent stimulating unit formed with conductive yarn on at least one portion of the sock; a microcurrent generator attached to a certain portion at the top of the ankle area to generate a microcurrent to be applied to the conductive yarn configuring the microcurrent stimulating unit at certain intervals during an enable time; a connecting portion formed of the same material as the microcurrent stimulating unit so as to electrically connect the microcurrent stimulating unit to the microcurrent generator; and a background portion made of conventional yarn to constitute the remaining portions of the sock other than the microcurrent stimulating unit and the connecting portion.

Description

미세전류 자극용 양말Microcurrent Sock
본 발명은 치료 내지 마사지 용도로 이용되도록 인체의 발부분에 착용하는 양말에 관한 것으로, 보다 상세하게는 인체의 발부분에 미세전류를 전달하여 자극함으로써 마사지 내지 치료의 효과를 높일 수 있는 미세전류 자극용 양말에 관한 것이다. The present invention relates to a sock worn on the foot of the human body to be used for treatment or massage purposes, and more particularly, microcurrent stimulation that can increase the effect of massage or treatment by stimulating by delivering a microcurrent to the foot of the human body. It is about dragon socks.
발(foot)은 다리의 끝부분에 위치한 신체 부위로서, 26개의 뼈, 39개의 관절, 38개의 근육, 107개의 인대, 그외 수많은 모세혈관과 자율신경 등이 복잡하게 얽혀있는 섬세한 인체기관이다. 이러한 발은 발등과 아킬레스건에 각각 한 개씩 두개의 맥박이 뛰고 있으며, 인체의 63곳을 관장하는 경혈이 모여 있다. 그리고, 발은 인체의 균형유지와 체중지탱, 충격흡수, 이동 등 인체에서 발이 차지하는 역할과 기능이 매우 중요하다. The foot is the body part located at the end of the leg, which is a delicate human organ with 26 bones, 39 joints, 38 muscles, 107 ligaments, and many other capillaries and autonomic nerves. These feet have two pulses, one on the instep and one on the Achilles tendon, and acupuncture points that cover 63 parts of the human body. In addition, the foot is a very important role and function of the human body, such as maintaining the balance of the body, weight support, shock absorption, movement.
이러한 발의 기능 중에서 가장 중요한 기능은 보행기능, 발의 펌프기능이다. 특히, 발의 펌프기능은 심장을 도와 혈액순환과 신진대사를 촉진시키는 기능으로, 인간이 직립보행을 시작한 이래로 심장의 위치가 지면으로부터 더 높아진 만큼 혈액순환이 더 어려워짐에 따라 원활한 혈액순환을 위하여 발의 펌프기능이 원활하여야 한다. 이에, 발을 제2의 심장기능이라고도 한다. The most important function of the foot function is the walking function, the pump function of the foot. In particular, the pump function of the foot is to help the heart to promote blood circulation and metabolism. Since the position of the heart is higher from the ground since humans start walking upright, the blood circulation becomes more difficult as the blood circulation becomes more difficult. Pump function should be smooth. Thus, the foot is also referred to as the second heart function.
우리의 생명과 건강은 규칙적인 호흡을 통해 인체에 산소를 공급하고, 심장으로부터 혈액을 모든 기관으로 보내줌으로써 기본적으로 유지되고 있다. 심장이 혈관을 통해 혈액을 보내줌으로써 인체의 모든 기관과 세포군에 산소와 영양분, 호르몬 등을 옮겨주는 역할을 한다. 동시에 그것들을 옮겨주고 나면 혈액은 체내에 침전되었던 독소와 노폐물을 회수하면서 심장으로 돌아오게 되고, 이를 되돌리는데 에 필요한 것이 제2의 심장이라 불리는 발의 펌프기능이다. 이에 따라, 최근에는 족욕, 발바닥 지압 등과 같은 발의 건강관리에 대한 관심이 증가하고 있다. Our lives and health are basically maintained by supplying oxygen to the body through regular breathing and sending blood from the heart to all organs. By sending blood through the blood vessels, the heart transfers oxygen, nutrients, and hormones to all organs and cell groups in the body. At the same time, after they are transported, the blood returns to the heart, recovering toxins and wastes that have settled in the body, and what is needed to return it is the pump function of the foot, called the second heart. Accordingly, in recent years, interest in the health care of the foot, such as foot bath, plantar acupressure and the like has increased.
또한, 최근에는 당뇨병 환자가 급속도로 증가하여 전체인구의 10% 가량이 당뇨병에 시달리는 것으로 알려졌다. 당뇨병은 현대인들의 바쁜 스케줄로 인해 생긴 식생활의 변화, 잘못된 음주문화, 운동부족 등으로 인하여 많이 발생되는 것으로 알려졌다.In recent years, the number of diabetics has increased rapidly, and it is known that about 10% of the total population suffers from diabetes. Diabetes is known to be caused by changes in diet, bad drinking culture, and lack of exercise caused by modern people's busy schedules.
일반적으로 당뇨병이 나타나면 처음에는 전신에 문제를 일으키지만 점차 신경이나 혈관, 면역계에 이상을 초래해서 신경은 서서히 파괴되고 혈관이 점점 막히게 되면서 몸의 말단에 위치한 발에 가장 심각한 문제를 발생시킨다. 그 예로 당뇨로 입원한 환자 중 15-20%가 족부 궤양이 나타났음을 제시 할 수 있다. 당뇨환자에서 족부 궤양은 28%에서 절단에 이르는 등 주요한 장애요인이며 이로 인해 천문학적 비용이 소요된다. In general, the appearance of diabetes initially causes problems throughout the body, but gradually causes nerves, blood vessels, and the immune system to break down, the nerves are gradually destroyed and blood vessels become clogged, causing the most serious problems in the foot at the end of the body. For example, 15-20% of patients hospitalized with diabetes may show foot ulcers. Foot ulcers are a major obstacle in diabetics, ranging from 28% to amputation, which is astronomical.
미세혈관장애, 자유라디칼, 장시간의 고혈당으로 인한 단백질의 당화 등의 복합적인 원인으로 발생하는 당뇨병성 족부질환은 이상감각, 괴사, 굳은살, 난치성 무좀 등이 포함된다. 당뇨병에 걸리면 발에 쉽게 상처가 나게 되고, 상처로 인해 감염이 되면 건강한 사람과는 달리 잘 치료가 되지 않고 점점 상부로 번지게 되는데 초기에 치료시기를 놓치게 되면 병이 급속히 진행하여 돌이킬 수 없는 결과를 초래할 수 있다. 또한 당뇨가 계속 진행되면서 대부분의 환자에게서 신경병증이 나타나는데 그 증상으로 하지의 말단에 감각 신경장애로 인한 이상감각이 나타나 발이 시리고 저리고 화끈거리는 증상이 나타난다. 또한 발의 감각이 둔해져서 외상이 쉽게 나타나고 이로 인한 감염등으로 괴저가 생기게 되며, 적절한 관리를 하지 않을 시에는 하지절단과 같은 심각한 문제를 일으키기도 한다. 이와 같이, 발의 혈액순환의 호전과 신경병성 치료는 당뇨병으로 인한 하지절단을 사전에 예방하기 위해서 매우 중요한 것이다.Diabetic foot disease, which is caused by a combination of microvascular disorders, free radicals and glycation of proteins due to prolonged hyperglycemia, includes abnormalities, necrosis, calluses, and refractory athlete's foot. If you have diabetes, your feet will be easily injured. If you are infected with a wound, you will not be treated well, unlike a healthy person, and will gradually spread to the upper part.If you miss the initial treatment period, the disease will progress rapidly and irreversibly. Can cause. In addition, as diabetes progresses, most patients have neuropathy, which is a symptom of sensory neuropathy at the extremities of the lower extremities, resulting in cold, numb, and burning symptoms. In addition, the sensation of the foot is dull, the trauma easily appears, resulting in gangrene due to infection, etc., if not properly managed can cause serious problems such as cutting the lower limbs. Thus, improvement of the blood circulation of the foot and neuropathic treatment are very important to prevent the lower limb cutting due to diabetes in advance.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 인체의 발부분에 착용되어 발가락, 발바닥, 발등, 발목 등에 미세전류를 전달함으로써 발 마사지효과 또는 당뇨병의 치료효과 등을 효과적으로 달성할 수 있는 미세전류 자극용 양말을 제공하는 데 그 목적이 있다. The present invention has been made in view of the above point, by being worn on the foot of the human body to deliver a microcurrent to the toes, soles, insteps, ankles, etc. can effectively achieve the foot massage effect or the treatment effect of diabetes mellitus The purpose is to provide a sock for the current stimulation.
상기한 기술적 과제들의 일부를 달성하기 위한 본 발명의 일 실시예에 따른 미세전류 자극용 양말은, Socks for microcurrent stimulation according to an embodiment of the present invention for achieving some of the above technical problems,
양말의 적어도 일부분에 형성되고, 전도사에 의해 이루어진 미세전류 자극부;A microcurrent stimulator formed on at least a portion of the sock and made of conductive yarns;
발목부위 상부의 일정부위에 부착되며, 미세전류를 발생하여 상기 미세전류자극부를 구성하는 전도사에 인가하되 상기 미세전류를 인에이블 시간동안 일정주기로 인가하는 미세전류발생기; A microcurrent generator attached to an upper portion of the ankle part and generating a microcurrent to be applied to a conductive yarn constituting the microcurrent stimulation portion, and applying the microcurrent at a predetermined period during an enable time;
상기 미세전류 자극부와 상기 미세전류발생기를 전기적으로 연결하기 위하여 상기 미세전류 자극부와 동일재질로 형성되는 연결부; 및 A connection part formed of the same material as the microcurrent stimulation part to electrically connect the microcurrent stimulation part and the microcurrent generator; And
상기 미세전류 자극부 및 연결부를 제외한 나머지 부위에 일반원사로 형성되는 바탕부;를 포함한다. It includes; the base portion formed of a general yarn on the remaining portion except the microcurrent stimulation portion and the connection portion.
상기 미세전류발생기는 상기 미세전류자극용 양말의 발목상단의 일정부위에 부착되되, 전도성 금속재질의 똑딱이 단추(snap fastener)를 이용하여 부착 및 미세전류인가를 동시에 수행하는 단추부착방식, 벨크로(velcro)를 이용한 벨크로 부착방식, 상기 미세전류발생기에 길이조절이 가능한 밴드를 구비하고 이를 발목 또는 종아리부위에 착용하는 밴드부착방식 중에서 선택된 어느 하나의 방식으로 상기 미세전류자극용 양말에 부착될 수 있다.The microcurrent generator is attached to a predetermined portion of the ankle top of the microcurrent stimulation socks, a button attachment method that performs the attachment and application of microcurrent simultaneously using a snap fastener of conductive metal material, velcro (velcro) Velcro attachment method using a), having a length adjustable band to the microcurrent generator and can be attached to the microcurrent stimulating socks by any one method selected from the band attachment method worn on the ankle or calf.
상기 양말의 상측에는 상기 미세전류발생기가 수용되는 포켓부가 형성되고, 상기 미세전류발생기에는 한 쌍의 제1접속단자가 형성되고, 상기 포켓부에는 상기 연결부가 접속되는 한 쌍의 제2접속단자가 형성되며, 상기 미세전류발생기가 상기 포켓부 내에 수용됨에 따라 제1 및 제2 접속단자는 전기적으로 접속되는 것을 특징으로 한다. On the upper side of the sock is formed a pocket portion for accommodating the microcurrent generator, a pair of first connection terminal is formed in the microcurrent generator, a pair of second connection terminal is connected to the connection portion in the pocket portion And the first and second connection terminals are electrically connected as the microcurrent generator is accommodated in the pocket part.
상기 포켓부의 상측에는 덮개부가 개폐가능하게 형성되고, 상기 덮개부의 내측면과 상기 포켓부의 외측면에는 상호 대응하는 결합수단이 구비되는 것을 특징으로 한다. The cover part is formed to be openable and closeable on the upper side of the pocket part, and an inner side surface of the cover part and an outer side surface of the pocket part are provided with corresponding coupling means.
상기 미세전류발생기의 일 실시예는, One embodiment of the microcurrent generator,
전원공급 스위치를 구비하며 상기 미세전류발생기에 전원을 공급하기 위한 전원공급부; A power supply unit having a power supply switch for supplying power to the microcurrent generator;
일정주파수를 발생시키는 주파수 발생부;A frequency generator for generating a constant frequency;
상기 전원공급부를 통해 공급되는 전원을 이용하여 상기 미세전류를 발생시키되, 상기 주파수 발생부에서 발생되는 주파수를 이용하여 상기 미세전류의 발생주기를 컨트롤하고, 외부에서 입력되는 인에이블신호에 응답하여 상기 미세전류의 발생유지시간을 컨트롤하는 컨트롤칩; 및The microcurrent is generated by using the power supplied through the power supply unit, and the generation period of the microcurrent is controlled using the frequency generated by the frequency generator, and in response to the enable signal input from the outside. A control chip for controlling the holding time of the micro current generation; And
상기 컨트롤칩에서 발생되는 미세전류를 원하는 레벨로 조절하기 위한 발생전류 레벨조절부;를 가지는 것을 특징으로 한다. And a generation current level control unit for adjusting the microcurrent generated in the control chip to a desired level.
상기 미세전류발생기의 일 실시예는, 상기 컨트롤칩에서 발생되는 출력전압을 원하는 최종전압으로 컨트롤하기 위한 발생전압 레벨조절부를 더 구비할 수 있다.An embodiment of the microcurrent generator may further include a generation voltage level control unit for controlling the output voltage generated by the control chip to a desired final voltage.
상기 미세전류발생기의 다른 실시예는, Another embodiment of the microcurrent generator,
양의 위상을 가지는 미세전류 발생을 위한 제1컨트롤신호, 음의 위상을 가지는 미세전류 발생을 위한 제2컨트롤신호, 및 전원전압의 승압을 위한 제3컨트롤신호를 발생하여 상기 미세전류 발생을 제어하고, 상기 미세전류발생장치를 통해 인체에 공급되는 미세전류의 레벨을 확인하여 미리 정해진 레벨이 아닌 경우에 상기 제3컨트롤신호를 컨트롤하여 승압전압의 레벨을 변동시킴에 의해 상기 미세전류의 인체공급레벨을 컨트롤하는 컨트롤부;Generating a first control signal for generating a microcurrent having a positive phase, a second control signal for generating a microcurrent having a negative phase, and a third control signal for boosting a power supply voltage to control the microcurrent generation And checking the level of the microcurrent supplied to the human body through the microcurrent generator, and controlling the third control signal to change the voltage level of the boosted voltage when it is not a predetermined level, thereby supplying the human body of the microcurrent. A control unit for controlling the level;
상기 컨트롤부의 상기 제3컨트롤신호에 응답하여 전원전압을 일정레벨의 승압전압으로 승압시키는 승압부; 및 A booster boosting a power supply voltage to a boosted voltage of a predetermined level in response to the third control signal of the control unit; And
상기 승압부에 의해 승압된 상기 승압전압을 바탕으로 하여 원하는 레벨의 미세전류를 발생시켜 인체와 접속되는 접속단자들을 통해 인체의 특정부위에 공급하되, 상기 제1컨트롤 신호가 입력되는 경우에는 양의 위상을 가지는 상기 미세전류를 공급하고, 상기 제2컨트롤 신호가 입력되는 경우에는 음의 위상을 가지는 상기 미세전류를 공급하는 미세전류 출력부;를 가지는 것을 특징으로 한다. On the basis of the boosted voltage boosted by the booster, a microcurrent having a desired level is generated and supplied to a specific part of the human body through connection terminals connected to the human body, and when the first control signal is input, And a microcurrent output unit for supplying the microcurrent having a phase and supplying the microcurrent having a negative phase when the second control signal is input.
상기 미세전류출력부는 적어도 하나의 전압분배회로 및 복수의 스위칭 소자들을 구비하며, 상기 복수의 스위칭 소자들 각각은 상기 제1컨트롤 신호 또는 상기 제2컨트롤 신호에 응답하여 스위칭동작을 수행함을 특징으로 한다. The microcurrent output unit includes at least one voltage distribution circuit and a plurality of switching elements, and each of the plurality of switching elements performs a switching operation in response to the first control signal or the second control signal. .
상기 미세전류출력부는 인체에 공급되는 미세전류의 인체공급 레벨을 확인할 수 있는 공급레벨 확인신호를 발생하여 상기 컨트롤부에 제공하고, 상기 컨트롤부는 상기 공급레벨확인신호에 응답하여 상기 승압부의 승압전압의 레벨을 컨트롤함을 특징으로 한다. The microcurrent output unit generates and supplies a supply level confirmation signal for confirming a human supply level of the microcurrent supplied to the human body, and provides the control unit, and the control unit generates a boosted voltage in response to the supply level confirmation signal. Characterized by controlling the level.
상기 제1컨트롤신호와 상기 제2컨트롤신호는 일정주기와 일정 듀티비를 가지는 펄스 신호이며, 상기 제1컨트롤신호와 상기 제2컨트롤신호는 일정 위상차를 가짐을 특징으로 한다. The first control signal and the second control signal is a pulse signal having a predetermined period and a certain duty ratio, characterized in that the first control signal and the second control signal has a predetermined phase difference.
상기 컨트롤부는, 상기 공급레벨확인신호를 통해 상기 인체접속단자들이 인체에 실제로 접속되었는지를 확인하여, 미세전류의 발생여부를 컨트롤할 수 있다. The control unit may determine whether the human body connection terminals are actually connected to the human body through the supply level confirmation signal, and control whether microcurrent is generated.
본 발명에 따르면, 인체의 발부분에 착용되어 발가락, 발바닥, 발등, 발목 등에 형성된 미세전류 자극부를 통해 미세전류를 전달함으로써 마사지효과 또는 당뇨의 치료효과를 더욱 효과적으로 구현할 수 있는 장점이 있다. According to the present invention, the microcurrent is transmitted through the microcurrent stimulus formed on the toe, the sole, the instep, the ankle, and the like to be worn on the foot of the human body, so that the massage effect or the treatment effect of diabetes can be more effectively implemented.
도 1은 본 발명의 제1실시예에 따른 미세전류 자극용 양말을 도시한 도면이다. 1 is a view showing a sock for microcurrent stimulation according to a first embodiment of the present invention.
도 2는 본 발명의 제2실시예에 따른 미세전류 자극용 양말을 도시한 도면이다. 2 is a view showing a sock for microcurrent stimulation according to a second embodiment of the present invention.
도 3은 본 발명의 제3실시예에 따른 미세전류 자극용 양말을 도시한 분해사시도이다. 3 is an exploded perspective view showing a sock for microcurrent stimulation according to a third embodiment of the present invention.
도 4는 본 발명의 제3실시예에 따른 미세전류 자극용 양말을 도시한 측면도이다. Figure 4 is a side view showing a sock for microcurrent stimulation according to a third embodiment of the present invention.
도 5는 도 4의 A-A선을 따라 도시한 단면도이다. FIG. 5 is a cross-sectional view taken along the line A-A of FIG. 4.
도 6은 본 발명의 제4실시예에 따른 미세전류 자극용 양말을 도시한 단면도이다. 6 is a cross-sectional view showing a sock for microcurrent stimulation according to a fourth embodiment of the present invention.
도 7은 본 발명의 제5실시예에 따른 미세전류 자극용 양말을 도시한 단면도이다. 7 is a cross-sectional view showing a sock for microcurrent stimulation according to a fifth embodiment of the present invention.
도 8은 본 발명의 미세전류 자극용 양말에 적용되는 제1실시예에 의한 미세전류발생기의 회로도이다. 8 is a circuit diagram of a microcurrent generator according to a first embodiment applied to a sock for microcurrent stimulation of the present invention.
도 9는 본 발명의 미세전류 자극용 양말에 적용되는 제2실시예에 따른 미세전류발생기를 도시한 블록도이다. 9 is a block diagram showing a microcurrent generator according to a second embodiment applied to a sock for microcurrent stimulation of the present invention.
도 10은 도 9의 미세전류발생기의 구현예인 회로도이다. FIG. 10 is a circuit diagram of an example of the microcurrent generator of FIG. 9.
도 11은 도 10의 동작타이밍도이고,FIG. 11 is an operation timing diagram of FIG. 10.
도 12는 도 9의 승압부의 다른 구현예를 나타낸 것이다.12 illustrates another embodiment of the boosting unit of FIG. 9.
이하에서는 본 발명의 바람직한 실시예가, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 철저한 이해를 제공할 의도 외에는 다른 의도 없이, 첨부한 도면들을 참조로 하여 상세히 설명될 것이다. DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, without any other intention than to provide a thorough understanding of the present invention to those skilled in the art.
도 1은 본 발명의 제1실시예에 따른 미세전류 자극용 양말(100)을 도시한 것이다.1 illustrates a microcurrent stimulating sock 100 according to a first embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 제1실시예에 따른 미세전류 자극용 양말(100)은 전도성이 양호한 전도사로 형성되는 미세전류 자극부(120a,120b,120c,120d), 일반원사로 형성되는 바탕부(110), 및 미세전류발생기(150)를 포함한다. As shown in Figure 1, the microcurrent stimulation socks 100 according to the first embodiment of the present invention is a microcurrent stimulation unit (120a, 120b, 120c, 120d), which is formed of a good conductive yarn, the general yarn The base 110 is formed, and the microcurrent generator 150 is formed.
미세전류 자극부(120a, 120b, 120c, 120d)는 미세전류 자극용 양말의 발가락부위(120a), 발목부위(120c), 발등부위(120d), 및 발바닥 부위(120b) 중에서 선택된 적어도 하나의 선택부위가 전도성 재질의 전도사에 의해 편직 등을 통해 형성될 수 있다. 이러한 전도사는 금사, 은사, 동사 등과 같은 전도성이 양호한 실로 이루어질 수 있다. The microcurrent stimulation part 120a, 120b, 120c, 120d is selected from at least one selected from the toe part 120a, the ankle part 120c, the instep part 120d, and the sole part 120b of the microcurrent stimulating sock. The portion may be formed by knitting or the like by a conductive yarn of a conductive material. Such a conductive yarn may be made of a highly conductive thread such as gold sand, silver, or a verb.
미세전류 자극부(120a, 120b, 120c, 120d) 중에서 발목부위(120c)는 발목뒤의 경혈점들을 감쌀 수 있도록 전체를 둥글게 형성되거나 복숭아뼈 부분에서 뒷부분만 감싸는 형태로 형성될 수 있다.The ankle portion 120c of the microcurrent stimulation portions 120a, 120b, 120c, and 120d may be formed in a round shape to surround the acupoints behind the ankle or wrap the back portion only at the peach bone portion.
또한, 발가락부위(120a)는 발가락 전체를 감싸도록 형성되고, 발등부위(120d) 및 발바닥부위(120b)는 발등과 발바닥의 경혈점들을 감쌀 수 있도록 형성된다. In addition, the toe portion 120a is formed to cover the entire toe, and the instep portion 120d and the sole portion 120b are formed to cover the acupoints of the instep and the sole of the foot.
미세전류 자극부(120a, 120b, 120c, 120d)에는 연결부(120e, 120f)가 접속되고, 이 연결부(120e, 120f)는 전도사에 의해 형성된다. 연결부(120e, 120f)를 통해 미세전류 자극부(120a, 120b, 120c, 120d)는 미세전류발생기(150)측에 전기적으로 접속된다. 연결부(120e)는 미세전류 자극부(120a, 120b, 120c, 120d)의 발목부위(120c)와 나머지 부위(120a, 120b, 120d)를 전기적으로 연결하며, 연결부(120f)는 미세전류 자극부(120a, 120b, 120c, 120d)의 발목부위(120c)와 미세전류발생기(150)와 전기적으로 연결한다. The connecting portions 120e and 120f are connected to the microcurrent magnetic pole portions 120a, 120b, 120c and 120d, and the connecting portions 120e and 120f are formed by conductive yarns. The microcurrent stimulation parts 120a, 120b, 120c, and 120d are electrically connected to the microcurrent generator 150 through the connection parts 120e and 120f. The connection part 120e electrically connects the ankle part 120c and the remaining parts 120a, 120b, and 120d of the microcurrent stimulation part 120a, 120b, 120c, and 120d, and the connection part 120f is a microcurrent stimulation part ( The ankle portion 120c of the 120a, 120b, 120c, and 120d and the microcurrent generator 150 are electrically connected to each other.
연결부(120e, 120f)는 좁고 길게 형성되고, 미세전류발생기(150)의 단자들에 각각 대응하여 전기적으로 연결되도록 한다. 연결부(120f)는 도면상에서는 앞면에만 도시되어 있으나, 뒷면에도 동일한 구조로 형성되어 앞면과 뒷면의 연결부(120f)가 서로 전기적으로 연결하여 미세전류를 인가하거나, 서로 분리한 상태에서 미세전류발생기(150)의 단자들을 전기적으로 연결할 수 있다.The connecting parts 120e and 120f are formed to be narrow and long and are electrically connected to the terminals of the microcurrent generator 150, respectively. Although the connection part 120f is illustrated only on the front side in the drawing, the same structure is also formed on the back side so that the front and back connection parts 120f are electrically connected to each other to apply a microcurrent, or the microcurrent generators 150 are separated from each other. ) Terminals can be electrically connected.
미세전류 자극부(120a, 120b, 120c, 120d) 및 연결부(120e, 120f)들은 전도사로만 형성될 수도 있고, 전도사와 일반원사를 혼합하여 형성하는 것도 가능하다. 전도사와 일반원사를 혼합하여 형성하는 경우 혼합비율은 다양한 실험을 통해 최적의 효과를 가질 수 있도록 적절하게 정해질 수 있다.The microcurrent magnetic pole portions 120a, 120b, 120c, and 120d and the connecting portions 120e and 120f may be formed of only conductive yarns, or may be formed by mixing conductive yarns with ordinary yarns. In the case of forming a mixture of conductive yarns and ordinary yarns, the mixing ratio may be appropriately determined to have an optimum effect through various experiments.
미세전류 자극부(120a, 120b, 120c, 120d) 및 연결부(120e, 120f)를 구성하는 전도사들 모두는 서로 전기적으로 연결되어 있어야 한다. All of the conduction conductors constituting the microcurrent magnetic pole portions 120a, 120b, 120c, and 120d and the connection portions 120e and 120f should be electrically connected to each other.
바탕부(110)는 미세전류 자극용 양말(100)의 미세전류 자극부(120a, 120b, 120c, 120d) 및 연결부(120e, 120f)를 제외한 나머지 부분으로, 바탕부(110)는 일반원사를 이용하여 편직함으로써 형성된다. 일반원사는 양말 제조를 위해 사용되는 원사로써 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 잘 알려져 있는 원사가 이용될 수 있다. The base 110 is the remaining portion except for the microcurrent stimulation part 120a, 120b, 120c, 120d and the connection part 120e, 120f of the microcurrent stimulation socks 100, the base part 110 is a general yarn It is formed by knitting. Ordinary yarns are used for the manufacture of socks, yarns well known to those skilled in the art to which the present invention pertains may be used.
미세전류발생기(150)는 발목부위의 상부 일측에 분리가능하게 부착되는 형태로 구성되며, 0~1000㎂(0을 포함하지 않음)의 미세전류를 발생하여 미세전류 자극부(120a, 120b, 120c, 120d) 및 연결부(120e, 120f)에 인에이블 시간동안에 미세전류를 일정주기로 인가한다.The microcurrent generator 150 is configured to be detachably attached to an upper side of the ankle portion, and generates a microcurrent of 0 to 1000 mA (not including 0) to generate a microcurrent stimulation part 120a, 120b, or 120c. 120d) and the micro-currents are applied to the connection portions 120e and 120f at regular intervals during the enable time.
미세전류발생기(150)는 사용자가 일상생활에서 양말로 착용하는 데 있어서의 불편함을 덜어주기 위해 발목보다 윗부분에 부착되고, 다리에 닿는 부분의 형태 또한 둥글게 하여 불편함을 최소화 할 수 있다.  The microcurrent generator 150 is attached to the upper part of the ankle in order to reduce the discomfort when the user wears as a sock in everyday life, the shape of the part touching the leg can also be rounded to minimize the inconvenience.
미세전류발생기(150)를 양말에 부착하는 부착부위는 양말(100)과 미세전류발생기(150)에 각각 벨크로(velcro)를 부착하여 붙이는 벨크로 부착방식, 또는 양말과 미세전류발생기에 부착된 똑딱단추(snap fastener)로 끼워서 고정하는 단추 방식이 가능하다. 또한 미세전류발생기(150)에 길이 조절이 가능한 밴드를 부착하여 발목 또는 종아리에 착용하는 밴드 방식도 가능하며, 이 경우 밴드의 길이 조절은 벨크로, 고리, 버클 등의 형태가 가능하다. The attachment portion for attaching the microcurrent generator 150 to the sock is a Velcro attachment method for attaching and attaching a velcro to the sock 100 and the microcurrent generator 150, respectively, or a snap button attached to the sock and the microcurrent generator. (snap fastener) is a button that can be fixed by inserting. In addition, by attaching the adjustable band to the microcurrent generator 150, the band method can be worn on the ankle or calf. In this case, the length of the band can be in the form of a velcro, a ring, a buckle, and the like.
미세전류발생기(150)에서 공급되는 미세전류를 상기 미세전류 자극부(120a, 120b, 120c, 120d)에 전달하는 연결부(120f)와 상기 미세전류발생기(150)의 연결부위는 미세전류발생기(150)의 부착 방식에 따라 다르다. 단추 방식의 경우 단추를 금속 등의 전도체를 사용하고, 양말(100)의 부착부위를 전도사로 편직하여 양말에 미세전류를 흘려주는 연결부위의 기능을 동시에 갖도록 한다. 또한 단추 중 하나는 양극, 하나는 음극을 연결하여 필요에 따라 미세전류의 양극과 음극의 연결을 다르게 할 수 있도록 한다. The connection portion 120f and the microcurrent generator 150 that transfer the microcurrent supplied from the microcurrent generator 150 to the microcurrent stimulation units 120a, 120b, 120c, and 120d are microcurrent generators 150. ) Depends on the attachment method. In the case of a button method, the button is made of a conductor such as metal, and the attachment portion of the sock 100 is knitted with a conductive yarn so as to have a function of a connection portion that flows a microcurrent to the sock at the same time. In addition, one of the buttons connects the positive electrode and one of the negative poles so that the positive and negative poles of the microcurrent can be differently connected as necessary.
벨크로 방식이나 밴드 방식의 경우에는 미세전류발생기(150)에서 양극과 음극의 선을 뽑아서 양말의 전도사 부분에 부착된 금속성 단자로 연결하는 방식을 사용할 수 있다. In the case of the Velcro method or the band method, a method of connecting the metal terminal attached to the conductive yarn portion of the socks by extracting the positive and negative wires from the microcurrent generator 150 may be used.
그리고 똑딱이 단추나 금속성 단자는 세탁시 부식이나 녹을 방지하기 위해 구리 등 부식이나 녹에 강한 재질의 금속성 소재를 사용하는 것이 바람직하다. In addition, in order to prevent corrosion or rust during washing, it is preferable to use a metallic material made of a material resistant to corrosion or rust such as copper.
도 2는 본 발명의 제2실시예에 따른 미세전류 자극용 양말(100a)을 도시한다.2 illustrates a microcurrent stimulating sock 100a according to a second embodiment of the present invention.
도 2에 도시된 바와 같이, 본 발명의 제2실시예에 따른 미세전류 자극용 양말(100a)은, 발목 이하 전체를 상기 미세전류자극부(130)로 구성한다는 점을 제외하고는 도 1에서 설명한 바와 동일한 구성을 가진다. 즉 본 발명의 제2실시예에 따른 미세전류 자극용 양말(100a)은 양말의 발목 이하 전체를 차지하는 미세전류자극부(130) 및 발목의 상단에 위치하는 바탕부(140)를 포함한다. 또한, 미세전류 자극부(130)는 도 1과 같이 전도사와 일반원사를 혼합하여 편직 등을 통해 형성하는 것도 가능하다.As shown in FIG. 2, in the microcurrent stimulation sock 100a according to the second embodiment of the present invention, except that the entire ankle is formed with the microcurrent stimulation part 130. It has the same configuration as described. That is, the microcurrent stimulation sock 100a according to the second embodiment of the present invention includes a microcurrent stimulation part 130 that occupies the entire ankle or less of the sock and a base portion 140 positioned at the top of the ankle. In addition, the microcurrent stimulation unit 130 may be formed by knitting a conductive yarn and a general yarn as shown in FIG.
그리고, 제1실시예와 유사하게, 발목의 상측 부분에는 미세전류발생기(150)가 분리가능하게 부착될 수 있고, 미세전류발생기(150)와 미세전류부(130)를 전기적으로 연결하는 연결부(120f)가 형성된다. And, similarly to the first embodiment, the microcurrent generator 150 may be detachably attached to the upper portion of the ankle, and a connecting portion electrically connecting the microcurrent generator 150 and the microcurrent unit 130 ( 120f) is formed.
도 3 내지 도 5는 본 발명의 제3실시예에 따른 미세전류 자극용 양말(100b)을 도시한다. 3 to 5 illustrate a microcurrent stimulating sock 100b according to a third embodiment of the present invention.
도 3 내지 도 5에 도시된 바와 같이, 본 발명의 제3실시예에 따른 미세전류 자극용 양말(100b)은 양말의 발바닥 측에 형성된 제1 및 제2 미세전류 자극부(131, 132), 일반원사로 형성되는 바탕부(110), 및 미세전류발생기(150)를 포함한다. 3 to 5, the microcurrent stimulation socks 100b according to the third embodiment of the present invention includes the first and second microcurrent stimulation parts 131 and 132 formed on the sole side of the socks, The base 110 is formed of a general yarn, and a microcurrent generator 150.
제1 및 제2 미세전류 자극부(131, 132)는 양말의 발바닥 측에 일정간격으로 이격되어 형성되고, 제1 및 제2 미세전류 자극부(131, 132) 각각에는 제1 및 제2 연결부(161, 162)가 전기적으로 접속된다. The first and second microcurrent stimulation parts 131 and 132 are formed spaced apart at a predetermined interval on the sole side of the sock, and the first and second connection parts are provided on the first and second microcurrent stimulation parts 131 and 132, respectively. 161 and 162 are electrically connected.
제1 및 제2 미세전류 자극부(131, 132)와 제1 및 제2 연결부(161, 162)는 선행하는 실시예와 마찬가지로 전도성이 양호한 전도사로 형성된다. The first and second microcurrent magnetic pole parts 131 and 132 and the first and second connection parts 161 and 162 are formed of a conductive yarn having good conductivity as in the previous embodiment.
한편, 본 발명의 제3실시예에서는 양말의 상측에 포켓부(200)가 형성되고, 포켓부(200)의 내측에는 미세전류발생기(150)가 수용되는 수용공간(210)이 형성된다. 미세전류발생기(150)에는 한 쌍의 제1접속단자(171, 172)가 전원선(150a, 150b)을 통해 연결되고, 제1접속단자(171, 172)는 전도성 재질로 구성되며, 각 제1접속단자(171, 172)는 홈 형상으로 형성된다. Meanwhile, in the third embodiment of the present invention, the pocket part 200 is formed on the upper side of the sock, and the receiving space 210 in which the microcurrent generator 150 is accommodated is formed inside the pocket part 200. A pair of first connection terminals 171 and 172 are connected to the microcurrent generator 150 through power lines 150a and 150b, and the first connection terminals 171 and 172 are made of a conductive material. The one connecting terminal 171, 172 is formed in the groove shape.
그리고, 제1 및 제2 연결부(161,162)는 포켓부(200)측으로 연장되고, 포켓부(200)의 일측에는 한 쌍의 제2접속단자(221, 222)가 형성되며, 제2접속단자(221, 222)는 전도성 재질로 이루어져 제1 및 제2 연결부(161, 162)측에 개별적으로 접속되도록 구성된다. 각 제2접속단자(221, 222)는 돌기 형상으로 형성된다. The first and second connection parts 161 and 162 extend toward the pocket part 200, and a pair of second connection terminals 221 and 222 are formed on one side of the pocket part 200, and the second connection terminal ( The 221 and 222 are made of a conductive material and configured to be individually connected to the first and second connection portions 161 and 162. Each of the second connection terminals 221 and 222 is formed in a protrusion shape.
이에 의해, 미세전류발생기(150)는 포켓부(200)의 수용공간(210) 내에 수용되고, 미세전류발생기(150)의 제1접속단자(171, 172)가 포켓부(200)측으로 연장된 제2접속단자(221, 222)측에 전기적으로 접속된다. As a result, the microcurrent generator 150 is accommodated in the accommodation space 210 of the pocket 200, and the first connection terminals 171 and 172 of the microcurrent generator 150 extend toward the pocket 200. It is electrically connected to the 2nd connection terminal 221,222 side.
포켓부(200)의 상측에는 덮개부(230)가 개폐가능하게 형성되고, 덮개부(230)의 내측면과 포켓부(200)의 일측면에는 벨크로파스너, 똑딱단추 등과 같은 결합수단(241, 242)이 구비되며, 이러한 결합수단(241, 242)에 의해 덮개부(230)는 포켓부(200)측에 결합됨으로써 그 폐쇄상태를 유지할 수 있다. The cover portion 230 is formed on the upper side of the pocket portion 200 to be opened and closed, and coupling means such as Velcro fasteners and snap buttons on the inner side of the cover portion 230 and one side of the pocket portion 200. 242 is provided, the cover portion 230 is coupled to the pocket portion 200 by the coupling means (241, 242) can maintain its closed state.
도 6은 본 발명의 제4실시예에 따른 미세전류 자극용 양말(100c)을 도시한다. 6 illustrates a microcurrent stimulating sock 100c according to a fourth embodiment of the present invention.
본 제4실시예에 따르면, 미세전류발생기(150)의 일측에는 한 쌍의 제1접속단자(173, 174)가 돌기 형상으로 형성되고, 포켓부(200)측에 형성된 한 쌍의 제2접속단자(223, 224)는 홈 형상으로 형성된다. 이에 미세전류발생기(150)는 포켓부(200)의 수용공간(210) 내에 수용되고, 미세전류발생기(150)의 제1접속단자(173, 174)가 포켓부(200)측으로 연장된 제2접속단자(223, 224)측에 전기적으로 접속된다. According to the fourth embodiment, a pair of first connection terminals 173 and 174 are formed in a protrusion shape on one side of the microcurrent generator 150 and a pair of second connections formed on the pocket part 200 side. The terminals 223 and 224 are formed in a groove shape. Accordingly, the microcurrent generator 150 is accommodated in the accommodation space 210 of the pocket part 200, and the first connection terminals 173 and 174 of the microcurrent generator 150 extend toward the pocket part 200. It is electrically connected to the connection terminals 223 and 224 side.
그외 나머지 구성은 선행하는 제1 내지 제3실시예와 동일하므로 자세한 설명은 생략한다. The rest of the configuration is the same as that of the first to third embodiments, so detailed description thereof is omitted.
도 7은 본 발명의 제5실시예에 따른 미세전류 자극용 양말(100d)을 도시한다. 7 illustrates a microcurrent stimulating sock 100d according to a fifth embodiment of the present invention.
본 제5실시예에 따르면, 미세전류발생기(150)의 일측에는 한 쌍의 제1접속단자(175, 176)가 돌기 형상으로 형성되고, 포켓부(200)측에 형성된 한 쌍의 제2접속단자(225, 226)는 돌기 형상으로 형성된다. 이에 미세전류발생기(150)는 포켓부(200)의 수용공간(210) 내에 수용되고, 미세전류발생기(150)의 제1접속단자(175, 176)가 포켓부(200)측으로 연장된 제2접속단자(225, 226)측에 전기적으로 접속된다. According to the fifth embodiment, a pair of first connection terminals 175 and 176 are formed in a protrusion shape on one side of the microcurrent generator 150 and a pair of second connections formed on the pocket part 200 side. The terminals 225 and 226 are formed in a projection shape. Accordingly, the microcurrent generator 150 is accommodated in the accommodation space 210 of the pocket part 200, and the second connection terminals 175 and 176 of the microcurrent generator 150 extend toward the pocket part 200. It is electrically connected to the connection terminals 225 and 226 side.
그리고, 미세전류발생기(150)의 일측에는 클립 또는 집게 등과 같은 결합수단(250)이 부착되고, 이 결합수단(250)에 의해 미세전류발생기(150)는 포켓부(200)측에 결합될 수 있다. And, one side of the microcurrent generator 150 is attached to the coupling means 250, such as a clip or tongs, the microcurrent generator 150 by the coupling means 250 can be coupled to the pocket portion 200 side. have.
그외 나머지 구성은 선행하는 제1 내지 제3실시예와 동일하므로 자세한 설명은 생략한다. The rest of the configuration is the same as that of the first to third embodiments, so detailed description thereof is omitted.
도 8은 본 발명에 이용되는 미세전류발생기(150)의 제1실시예에 따른 회로도를 도시한다. 8 shows a circuit diagram according to a first embodiment of the microcurrent generator 150 used in the present invention.
도 8에 도시된 바와 같이, 미세전류발생기(150)는, 전원공급부(152), 주파수 발생부(156), 컨트롤칩(157), 및 발생전류 레벨조절부(158)를 구비한다. As shown in FIG. 8, the microcurrent generator 150 includes a power supply unit 152, a frequency generator 156, a control chip 157, and a generation current level control unit 158.
추가적으로, 상기 컨트롤칩(157)에서 발생된 발생전압의 레벨을 인체에 필요한 최종전압으로 컨트롤하기 위한 발생전압 레벨조절부(154)를 더 구비할 수 있다. 상기 발생전압 레벨조절부(154)는 저항(R3), 커패시터(C1), 및 인덕터(L)를 구비하여 도 8에 도시된 결선 구조를 가진다.In addition, the generation voltage level control unit 154 for controlling the level of the generated voltage generated by the control chip 157 to the final voltage required for the human body may be further provided. The generated voltage level controller 154 has a wiring structure shown in FIG. 8 including a resistor R3, a capacitor C1, and an inductor L. Referring to FIG.
상기 전원공급부(152)는 배터리에 연결되어 상기 미세전류발생기(150)에 전원을 공급하기 위한 것이다. The power supply unit 152 is connected to a battery for supplying power to the microcurrent generator 150.
상기 전원공급부(152)는 전원을 공급하는 배터리와, 상기 미세전류발생기(150)에 대한 전원 공급여부를 사용자가 결정하는 전원스위치(S/W1), 배터리의 잔량을 나타내는 배터리잔량 표시등(D1) 및 배터리잔량 표시등 확인 스위치(S/W2)로 구성된다. 이때 상기 전원스위치(S/W1), 배터리잔량 표시등(D1), 배터리잔량 표시등 확인 스위치(S/W2)는 사용자의 조작과 편의를 위해 케이스 외부에 노출되고, 사용자의 배터리 교체를 위해 열고 닫을 수 있는 뚜껑이 구비된다. 전원스위치(S/W1)는 사용자가 직접 조작할 수 있는 형태가 될 수 있으며, 또한 필요에 따라 필름 스위치, 저항 스위치, 열감지 스위치, 터치형 스위치 등을 사용하여, 필요에 따라 자동 및 수동으로 켜지고, 꺼지도록 구성하는 것도 가능하다.The power supply unit 152 may include a battery for supplying power, a power switch S / W1 for determining whether the power is supplied to the microcurrent generator 150, and a battery level indicator D1 indicating the remaining amount of the battery. ) And battery indicator indicator switch (S / W2). At this time, the power switch (S / W1), the remaining battery indicator (D1), the remaining battery indicator indicator switch (S / W2) is exposed to the outside of the case for the user's operation and convenience, open for the user's battery replacement Closed lid is provided. The power switch (S / W1) may be in a form that can be directly operated by the user, and also, if necessary, using a film switch, a resistance switch, a thermal switch, a touch switch, and the like, automatically and manually as needed. It is also possible to configure it to turn on and off.
상기 전원공급부(152)는 상기 컨트롤칩(157)의 입력 단자(VIN)에 연결된 전원 스위치(S/W1)가 온(on)일 경우에만 미세전류발생기(150)가 작동하여 배터리 소모를 최소화하고, 배터리 전원잔량 표시등(D1)은 상기 컨트롤 칩(157) 내의 LED 조절부 단자(LED)와 연결되어 사용자가 알 수 있게 빨강, 파랑, 노랑 등 색상별 LED 램프 점등이 가능하다. 또한 LED 점등으로 인한 불필요한 배터리 소모를 막기 위해 배터리 전원 잔량 표시등 확인 스위치(S/W2)를 부착하여 LED 점등 여부를 사용자가 지정할 수 있도록 구성된다. The power supply unit 152 operates the microcurrent generator 150 only when the power switch S / W1 connected to the input terminal VIN of the control chip 157 is on to minimize battery consumption. In addition, the battery power remaining indicator (D1) is connected to the LED control unit (LED) in the control chip 157, it is possible to turn on the LED lamp for each color such as red, blue, yellow so that the user can know. In addition, to prevent unnecessary battery consumption due to LED lighting, the battery power indicator indicator switch (S / W2) is attached so that the user can specify whether the LED is on or off.
또한 상기 컨트롤 칩(157)의 LED 조절부 단자(LED)에 연결된 다이오드(D1), 저항(R4)을 통해 LED의 밝기와 점등 간격(초 단위), 점등 시간(초 또는 밀리초 단위) 등을 조절하여 배터리 소모를 최소화할 수 있다.In addition, through the diode (D1) and the resistor (R4) connected to the LED control terminal (LED) of the control chip 157, the brightness of the LED, the interval of lighting (in seconds), the lighting time (in seconds or milliseconds) Adjust to minimize battery drain.
상기 배터리는, 일반적으로 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 알려진 모든 건전지가 다 사용 가능하다. 즉, 알카라인 전지, 망간 전지 같은 1차 전지와 리튬-이온, 니켈-수소, 니켈-카드뮴 전지와 같은 2차 전지 등을 포함하여 모든 건전지를 사용할 수 있다. 배터리 전원은 3V 코인 배터리는 물론, 1.5V의 일반 건전지를 직렬로 배열하여 3 ~ 12V의 직류전원을 공급하면 된다.In general, all the batteries known to those skilled in the art may be used as the batteries. That is, all batteries can be used, including primary batteries such as alkaline batteries and manganese batteries, and secondary batteries such as lithium-ion, nickel-hydrogen and nickel-cadmium batteries. As for battery power, 3V coin battery as well as 1.5V general battery can be arranged in series to supply 3 ~ 12V DC power.
상기 주파수 발생부(156)는 상기 미세전류발생기(150)를 통해 발생되는 미세전류의 발생주기를 컨트롤 하기 위한 것으로, 상기 컨트롤 칩(157)의 Xin, Xout 단자에 주파수 크리스탈(CRYSTAL)을 연결하여 구성한다. 상기 주파수 발생부(156)에서 발생되는 주파수를 이용하여 상기 컨트롤칩(157) 또는 상기 미세전류발생기(150)는 원하는 시간(초 또는 밀리 초 단위) 간격으로 미세전류를 출력시키고, 인에이블 단자(EN)를 통하여 원하는 시간(초 또는 밀리 초 단위) 동안 출력을 유지시킨다.The frequency generator 156 is for controlling the generation cycle of the microcurrent generated through the microcurrent generator 150, by connecting a frequency crystal CRYSTAL to the Xin and Xout terminals of the control chip 157. Configure. Using the frequency generated by the frequency generator 156, the control chip 157 or the microcurrent generator 150 outputs a microcurrent at a desired time interval (seconds or milliseconds), and the enable terminal ( EN) to maintain the output for the desired time (in seconds or milliseconds).
상기 컨트롤칩(157)은 상기 전원공급부(152)를 통해 공급되는 전원을 이용하여 상기 미세전류를 발생시키되, 상기 주파수 발생부(156)에서 발생되는 주파수를 이용하여 상기 미세전류의 발생주기를 컨트롤하고, 외부에서 인에이블단자(EN)를 통하여 입력되는 인에이블신호에 응답하여 상기 미세전류의 발생유지시간을 컨트롤한다. The control chip 157 generates the microcurrent using the power supplied through the power supply unit 152, and controls the generation period of the microcurrent using the frequency generated by the frequency generator 156. The generation time of the microcurrent is controlled in response to the enable signal input through the enable terminal EN from the outside.
상기 컨트롤칩(157)은 상기 전원공급부(152)의 배터리에서 공급되는 전원을 이용하여 필요한 전압과 전류를 가진 미세전류를 발생시키는 구성으로써, 배터리로부터 공급받은 전원을 이용하여 미세전류 발생 주기, 미세전류 유지 시간, 필요로 하는 크기의 전압 및 전류를 가진 미세전류로 변환하는 기능을 수행한다. The control chip 157 is configured to generate a microcurrent having the required voltage and current by using the power supplied from the battery of the power supply unit 152, the microcurrent generation cycle, the fine using the power supplied from the battery It converts a microcurrent with a current holding time, voltage and current of the required size.
상기 컨트롤 칩(157)은 배터리를 통해 입력된 2.5V~12V 전압의 전원을 9V~50V의 전압과 1,000㎂ 이하의 미세 전류로 변환하여 출력함으로써 인체에 유익한 미세전류를 공급하게 된다. The control chip 157 converts the power of the 2.5V ~ 12V voltage input through the battery into a voltage of 9V ~ 50V and a microcurrent of 1,000 kHz or less to supply a microcurrent beneficial to the human body.
상기 발생전류 레벨조절부(158)는 상기 컨트롤칩(157)에서 발생되는 미세전류를 원하는 레벨로 조절하기 위한 것으로, 도 3에 도시된 바와 같은 결선 구조를 가지는 저항(R1,R2), 가변저항(VR), 콘덴서(C2), 다이오드(D2), 트랜지스터(TR1)를 구비하여, 상기 컨트롤 칩(157)에서 출력된 미세전류를 통해 수㎂~수백㎂의 미세전류로 변환하여 인체에 전달하게 된다. The generation current level control unit 158 is to adjust the micro current generated by the control chip 157 to a desired level, and has a wiring structure as shown in FIG. 3 (R1, R2) and a variable resistor. (VR), condenser (C2), diode (D2), and transistor (TR1), through the microcurrent output from the control chip 157 to convert to a microcurrent of several hundreds to hundreds of microwatts to deliver to the human body do.
상기 미세전류발생기(150)의 전체 동작을 설명하면 다음과 같다.The overall operation of the microcurrent generator 150 is as follows.
상기 컨트롤칩(157)의 입력단자(VIN)에 배터리(2.5V~12V 사이의 1차, 2차 전지 사용 가능)가 연결된 상태에서, 전원 스위치(S/W1)가 온(on)되면 배터리로부터 입력되는 전원이 컨트롤 칩(157) 내의 VCC 단자(VCC)를 통하여 컨트롤 칩(157)으로 입력되게 된다.When the power switch S / W1 is turned on while the battery (primary and secondary batteries between 2.5V and 12V are connected) is connected to the input terminal VIN of the control chip 157, The input power is input to the control chip 157 through the VCC terminal VCC in the control chip 157.
입력된 전원은 컨트롤 칩(157) 내의 회로에서 필요에 따라 9V~50V로 증폭되어 컨트롤 칩 외부로 출력된다. 여기서 증폭된 9V~50V 전압은 상기 컨트롤칩(157)출력 전압으로서 컨트롤 칩 내의 SW 단자(SW)를 통하여 상기 컨트롤 칩(157) 외부로 출력된다. 상기 출력전압은 상기 컨트롤 칩(157)의 외부에 존재하는 발생전압 레벨조절부(154)에 존재하는 저항(R3)과 콘덴서(C1), 인덕터(L)를 통하여 인체에 필요한 최종 전압으로 재조정된다. The input power is amplified from 9V to 50V in the circuit in the control chip 157 and output to the outside of the control chip. The amplified 9V to 50V voltage is output to the outside of the control chip 157 through the SW terminal SW in the control chip as the output voltage of the control chip 157. The output voltage is readjusted to the final voltage required by the human body through the resistor R3, the capacitor C1, and the inductor L present in the generated voltage level controller 154 that is external to the control chip 157. .
한편, 상기 컨트롤칩(157)에서 출력되는 미세전류는, 상기 컨트롤 칩(157) 의 VSW단자(VSW)를 통하여 필요에 따라 최고 1,000㎂ 이하의 미세전류 크기로 컨트롤 칩(157) 외부로 출력된다. 상기 미세전류는 상기 발생전류 레벨조절부(158)에 구비되며, 상기 미세전류발생기(150)의 출력단자에 연결된 저항(R1,R2), 가변저항(VR), 콘덴서(C2), 다이오드(D2)를 통하여 원하는 크기의 전류로 조절하여 최종 출력하게 된다. 또한 컨트롤 칩(157)은, 원래 직류 전류는 특성상 양의 위상만 가지고 있는데, 이를 트랜지스터(TR1)를 통해 양의 위상과 음의 위상을 교대로 출력할 수 있도록 하는 기능을 가진다. 컨트롤 칩의 피드백(FB)은 최종 출력의 정확성에 여부에 대한 사항을 체크하는 피드백 기능을 한다.On the other hand, the microcurrent output from the control chip 157 is output to the outside of the control chip 157 with a microcurrent size of at most 1,000 mA or less through the VSW terminal VSW of the control chip 157 as necessary. . The microcurrent is provided in the generation current level control unit 158, and is connected to the output terminals of the microcurrent generator 150, resistors R1 and R2, variable resistors VR, capacitors C2, and diodes D2. ) And the final output is adjusted to the current of the desired size. In addition, the control chip 157, the original DC current only has a positive phase in nature, it has a function to alternately output a positive phase and a negative phase through the transistor (TR1). The feedback (FB) of the control chip serves as a feedback function to check the accuracy of the final output.
도 9는 본 발명의 미세전류발생기의 제2실시예에 따른 블록도이다. 도시된 바와 같이, 본 발명의 제2실시예에 따른 미세전류발생기(150)는 컨트롤부(310), 승압부(320), 및 미세전류 출력부(330)를 구비한다.9 is a block diagram according to a second embodiment of the microcurrent generator of the present invention. As illustrated, the microcurrent generator 150 according to the second embodiment of the present invention includes a control unit 310, a boosting unit 320, and a microcurrent output unit 330.
상기 컨트롤부(310)는 양의 위상을 가지는 미세전류 발생을 위한 제1컨트롤신호(S1), 음의 위상을 가지는 미세전류 발생을 위한 제2컨트롤신호(S2), 및 전원전압의 승압을 위한 제3컨트롤신호(S3)를 발생하여 상기 미세전류 발생을 제어한다. 상기 컨트롤부(310)는 상기 미세전류발생장치(150)를 통해 인체에 공급되는 미세전류의 레벨을 확인하여 미리 정해진 레벨이 아닌 경우에 상기 제3컨트롤신호(S3)를 컨트롤하여 승압전압의 레벨을 변동시킴에 의해 상기 미세전류의 인체공급레벨을 컨트롤하게 된다.The control unit 310 is a first control signal (S1) for generating a fine current having a positive phase, a second control signal (S2) for generating a fine current having a negative phase, and for boosting the power supply voltage The third control signal S3 is generated to control the generation of the microcurrent. The control unit 310 checks the level of the microcurrent supplied to the human body through the microcurrent generator 150 and controls the third control signal S3 when the level is not a predetermined level, thereby increasing the voltage level of the boosted voltage. By varying the control the human body supply level of the microcurrent.
상기 컨트롤부(310)는 CPU를 가지는 컨트롤칩을 구비하여 상기 제1 내지 제3컨트롤신호(S1, S2, S3)를 발생할 수 있다.The control unit 310 may include a control chip having a CPU to generate the first to third control signals S1, S2, and S3.
상기 승압부(320)는 상기 컨트롤부(310)의 상기 제3컨트롤신호(S3)에 응답하여 전원전압(Vdd, Vcc)을 일정레벨의 승압전압으로 승압시켜 상기 미세전류출력부(330)에 공급한다.The booster 320 boosts the power voltages Vdd and Vcc to a boosted voltage of a predetermined level in response to the third control signal S3 of the control unit 310 to the microcurrent output unit 330. Supply.
상기 승압부(320)를 구성하는 승압회로는 인덕터의 역기전력을 이용하는 DC-DC 컨버터 타입의 승압회로, 커패시터를 이용하는 차지펌프회로를 포함하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 잘 알려진 다양한 승압회로가 이용될 수 있다.The booster circuit constituting the booster unit 320 includes a booster circuit of a DC-DC converter type using a back electromotive force of an inductor, a charge pump circuit using a capacitor, and to those skilled in the art. Various well known boost circuits can be used.
상기 미세전류 출력부(330)는 상기 승압부(320)에 의해 승압된 상기 승압전압을 바탕으로 하여 원하는 레벨의 미세전류를 발생시켜 인체와 접촉되는 접촉단자들을 통해 인체의 특정부위에 공급하게 된다. The microcurrent output unit 330 generates a microcurrent of a desired level based on the boosted voltage boosted by the booster 320 and supplies the microcurrent to the specific site of the human body through contact terminals in contact with the human body. .
상기 미세전류 출력부(330)는 상기 제1컨트롤 신호(S1)가 입력되는 경우에는 양의 위상을 가지는 상기 미세전류를 공급하고, 상기 제2컨트롤 신호(S2)가 입력되는 경우에는 음의 위상을 가지는 상기 미세전류를 공급하게 된다.The microcurrent output unit 330 supplies the microcurrent having a positive phase when the first control signal S1 is input, and a negative phase when the second control signal S2 is input. Supply the microcurrent having a.
여기서 미세전류는 0~1500㎂(0을 포함하지 않음)의 전류레벨로써 마이크로암페어(㎂) 단위의 미세전류를 말한다. 상기 미세전류 출력부(330)는 0~1500㎂(0을 포함하지 않음)의 전류레벨 중에서 치료효과나 마사지 효과가 가장 높다고 판단되는 어느 하나의 전류레벨을 선택하여 발생하게 된다. 예를 들면 0~300㎂의 미세전류 또는 150~150㎂의 미세전류를 출력할 수 있다.Here, the microcurrent is a current level of 0-1500 mA (not including 0) and refers to the micro current in microamps. The microcurrent output unit 330 is generated by selecting any current level that is determined to have the highest therapeutic effect or massage effect among current levels of 0 to 1500 mA (not including 0). For example, a microcurrent of 0 to 300 mA or a micro current of 150 to 150 mA can be output.
상기 미세전류의 발생을 위하여 상기 미세전류출력부(330)는 적어도 하나의 전압분배회로 및 복수의 스위칭 소자들을 구비하며, 상기 복수의 스위칭 소자들 각각은 상기 제1컨트롤 신호(S1) 또는 상기 제2컨트롤 신호(S2)에 응답하여 스위칭동작을 수행할 수 있다. In order to generate the microcurrent, the microcurrent output unit 330 includes at least one voltage distribution circuit and a plurality of switching elements, and each of the plurality of switching elements may include the first control signal S1 or the first control element. The switching operation may be performed in response to the two control signal S2.
상기 미세전류는 인체에 실제로 공급되는 미세전류의 레벨이 일정하도록 하기 위하여 사용되는 인체의 피부저항에 대응하여 변동되는 것이 가능하다. The microcurrent can be varied in response to the skin resistance of the human body used to make the level of the microcurrent actually supplied to the human body constant.
이를 위해 상기 미세전류출력부(330)는 인체에 공급되는 미세전류의 인체공급 레벨을 확인할 수 있는 공급레벨 확인신호를 발생하여 상기 컨트롤부(310)에 제공하고, 상기 컨트롤부(310)는 상기 공급레벨확인신호에 응답하여 상기 승압부(320)의 승압전압의 레벨을 컨트롤하게 된다. To this end, the microcurrent output unit 330 generates a supply level confirmation signal for confirming the human body supply level of the microcurrent supplied to the human body and provides it to the control unit 310, and the control unit 310 provides the In response to the supply level confirmation signal, the level of the boosted voltage of the booster 320 is controlled.
여기서, 상기 공급레벨 확인신호는 인체에 실제로 공급되는 미세전류의 레벨을 확인할 수 있는 기능이외에 인체에 실제로 접촉되어 미세전류가 공급될 수 있는 여건이 조성되었는지를 확인할 수 있는 기능도 제공한다.Here, the supply level confirmation signal, in addition to the function of confirming the level of the microcurrent actually supplied to the human body also provides a function of confirming whether the conditions for the actual contact with the human body has been established.
도 10은 도 9의 미세전류발생장치의 구현 예를 나타낸 회로도이다.10 is a circuit diagram illustrating an example of implementation of the microcurrent generator of FIG. 9.
도시된 바와 같이, 상기 컨트롤부(310a)는 컨트롤칩(예를 들면, PIC16F716)(U2), 저항(R4), 커패시터(C4), 전원(Vcc), 전원공급여부를 판단할 수 있는 LED(D2)를 포함하여 도 10과 같은 결선구조를 가진다. 상기 컨트롤칩(U2)은 다양한 종류의 주파수를 가지는 컨트롤 신호의 발생기 가능하다.As shown, the control unit 310a is a control chip (for example, PIC16F716) (U2), resistor (R4), capacitor (C4), power (Vcc), LED to determine whether the power supply ( Including the D2) has a wiring structure as shown in FIG. The control chip U2 may be a generator of a control signal having various kinds of frequencies.
상기 컨트롤부(310a)는 도 9에서 설명한 바와 같이, 양의 위상을 가지는 미세전류 발생을 위한 제1컨트롤신호(S1), 음의 위상을 가지는 미세전류 발생을 위한 제2컨트롤신호(S2), 및 전원전압의 승압을 위한 제3컨트롤신호(S3)를 발생하여 상기 미세전류 발생을 제어한다. As illustrated in FIG. 9, the control unit 310a may include a first control signal S1 for generating a microcurrent having a positive phase, a second control signal S2 for generating a microcurrent having a negative phase, And generating a third control signal S3 for boosting the power voltage to control the microcurrent generation.
또한 상기 컨트롤부(310a)는 상기 미세전류 출력부(330a)에서 제공되는 인체에 공급되는 미세전류의 인체공급 레벨을 확인할 수 있는 공급레벨 확인신호(MC)를 수신하여 상기 승압부(320a)의 승압전압(VC)의 레벨을 컨트롤 할 수 있다. 상기 승압전압(VC)의 레벨 컨트롤은 상기 제3컨트롤 신호를 통해 가능하다. In addition, the control unit 310a receives the supply level confirmation signal MC for confirming the human body supply level of the microcurrent supplied to the human body provided by the microcurrent output unit 330a to receive the booster 320a. The level of the boosted voltage VC can be controlled. The level control of the boosted voltage VC is possible through the third control signal.
상기 컨트롤부(310a)는 상기 공급레벨확인신호(MC)를 통하여 미세전류의 인체공급레벨을 확인하기도 하지만, 실제로 인체접촉단자(P1, P2)가 인체에 접촉되었는지의 여부를 확인하는 것도 가능하다. 인체의 피부저항의 범위는 정해져 있으므로, 상기 공급레벨확인신호(MC)가 피부저항에 대응되는 어느 범위내에 있으면 상기 인체접촉단자(P1, P2)가 인체에 접촉된 것으로 판단하는 것이 가능하기 때문이다.Although the control unit 310a checks the human body supply level of the microcurrent through the supply level confirmation signal MC, it is also possible to check whether the human body contact terminals P1 and P2 actually contact the human body. . This is because it is possible to determine that the human body contact terminals P1 and P2 are in contact with the human body if the supply level confirmation signal MC is within a certain range corresponding to the skin resistance because the range of the human body's skin resistance is determined. .
따라서, 상기 컨트롤부(310a)는 전원이 공급되면, 우선적으로 상기 인체접촉단자(P1, P2)가 인체에 접촉되었는지 여부를 상기 공급레벨확인신호(MC)를 통해서 확인하고, 미세전류 발생여부를 결정하게 되는 것이다. 즉 상기 공급레벨확인신호(MC)를 통해서 인체에 접촉된 것이 확인되면 상기 미세전류 발생장치를 통한 미세전류 발생을 수행하고, 이후에 미세전류의 실제 인체공급레벨을 확인하는 기능을 수행하게 되는 것이다. Therefore, when power is supplied, the control unit 310a first checks whether the human body contact terminals P1 and P2 are in contact with the human body through the supply level confirmation signal MC, and whether a microcurrent is generated. It is decided. That is, when it is confirmed that the human body is contacted through the supply level confirmation signal MC, the microcurrent generation is performed through the microcurrent generator, and then the function of confirming the actual human supply level of the microcurrent is performed. .
상기 컨트롤부(310a)는 이동이 가능하고 휴대가 가능한 구성을 가져야 하기 때문에 전원전압은 배터리(battery)를 통해 공급받는 구성을 가질 수 있다. Since the control unit 310a has to be movable and portable, the power supply voltage may be configured to be supplied through a battery.
상기 승압부(320a)는 상기 컨트롤부(310a)에서 발생되는 상기 제3컨트롤신호(S3)에 의해 스위칭이 반복되는 스위칭소자(Q7)와, 인덕터(L1), 정류 및 리플방지, 승압전압의 저장을 위한 다이오드(D1)와 커패시터(C1, C2), 및 저항(R10)을 구비하여 도 10과 같은 결선구조를 가진다. 여기서 상기 스위칭소자(Q7)는 트랜지스터가 이용되고 있으나 이외에도 MOSFET을 포함한 다양한 스위칭 소자가 적용될 수 있다. The booster 320a may include a switching element Q7, which is repeatedly switched by the third control signal S3 generated by the control unit 310a, an inductor L1, rectification and ripple prevention, and boost voltage. A diode D1 for storage, capacitors C1 and C2, and a resistor R10 have a wiring structure as shown in FIG. 10. In this case, a transistor is used as the switching element Q7, but various switching elements including a MOSFET may be used.
상기 승압부(320a)는 도 12에 도시된 바와 같이, 승압단(10)을 다단으로 구성한 DC-DC 컨버터 타입의 승압회로를 통하여 구성하는 것도 가능하고, 부스팅(boosting) 회로 등 다양한 승압회로를 통해 구현하는 것이 가능하다.As shown in FIG. 12, the boosting unit 320a may be configured through a DC-DC converter type boosting circuit including the boosting stage 10 in multiple stages, and may include various boosting circuits such as a boosting circuit. It is possible to implement
상기 미세전류 출력부(330a)는 복수의 저항들(R1, R6, R2, R7, R8, R9)을 이용한 복수의 전압분배기와 복수의 스위칭소자들(Q1, Q2, Q3, Q4, Q5, Q6)을 이용하여 미세전류를 인체접촉단자(P1, P2)로 출력하게 된다. 상기 복수의 스위칭소자들(Q1, Q2, Q3, Q4, Q5, Q6)은 트랜지스터를 이용하고 있으나, 이외에도 MOSFET을 포함한 다양한 스위칭 소자가 적용될 수 있다.  The microcurrent output unit 330a includes a plurality of voltage dividers using a plurality of resistors R1, R6, R2, R7, R8, and R9 and a plurality of switching elements Q1, Q2, Q3, Q4, Q5, and Q6. ) To output the microcurrent to the human body contact terminals (P1, P2). The plurality of switching elements Q1, Q2, Q3, Q4, Q5, and Q6 use transistors, but various switching elements including MOSFETs may be applied.
상기 스위칭소자들(Q1, Q2, Q3, Q4, Q5, Q6) 중 일부 스위칭소자들(Q6, Q3)은 상기 제1컨트롤신호(S1)에 의해 컨트롤되고, 일부 스위칭소자들(Q5, Q4)은 상기 제2컨트롤신호(S2)에 의해 컨트롤되고, 나머지 스위칭소자들(Q1, Q2)은 제1노드(n1)의 전압 즉 상기 승압전압(VC)에 의해 컨트롤되는 구조를 가진다.Some switching elements Q6 and Q3 of the switching elements Q1, Q2, Q3, Q4, Q5 and Q6 are controlled by the first control signal S1 and some switching elements Q5 and Q4. Is controlled by the second control signal S2, and the remaining switching elements Q1 and Q2 are controlled by the voltage of the first node n1, that is, the boosted voltage VC.
상기 인체접촉단자(P1, P2)는 인체의 특정부위(치료를 요하거나 마사지를 원하는 부위)에 장착되어 제1인체접촉단자(P1)를 통해 인가되는 미세전류가 인체를 통과하여 제2인체접촉단자(P2)로 되돌아오도록 하거나, 상기 제2인체접촉단자(P2)를 통해 인가되는 미세전류가 인체를 통과하여 제1인체접촉단자(P1)로 되돌아오도록 하는 구성을 가질 수 있다.The human body contact terminals P1 and P2 are mounted on specific parts of the human body (sites requiring treatment or massage), and the second human body contacts the microcurrent applied through the first human contact terminal P1 through the human body. It may be configured to return to the terminal (P2), or to allow the micro-current applied through the second human contact terminal (P2) to pass through the human body to return to the first human contact terminal (P1).
도 11은 도 10의 컨트롤신호 및 미세전류의 타이밍도를 나타낸 것이다.FIG. 11 is a timing diagram of the control signal and the fine current of FIG. 10.
이하에서는 도 11의 타이밍도를 통해 도 10의 미세전류발생기(150)의 동작을 설명하기로 한다.Hereinafter, the operation of the microcurrent generator 150 of FIG. 10 will be described with reference to the timing diagram of FIG. 11.
우선 상기 미세전류발생기(150)의 미세전류 출력부(330a)의 인체접촉단자(P1, P2)가 인체의 특정부위에 장착되도록 한 상태에서 상기 미세전류발생기(150)가 동작한다.First, the microcurrent generator 150 operates while the human body contact terminals P1 and P2 of the microcurrent generator 330a of the microcurrent generator 150 are mounted on a specific part of the human body.
배터리를 통해 전원이 공급되면, 상기 컨트롤부(310a)에서는 상기 미세전류출력부(330a)에 인체접촉여부를 확인할 수 있는 신호 또는 통상적인 미세전류 발생을 위한 상기 제3컨트롤 신호(S3)를 발생하고, 상기 공급레벨확인신호(MC)를 수신하여 상기 인체접촉단자(P1, P2)가 실제로 인체에 접촉되었는지 여부를 확인한다. When power is supplied through a battery, the control unit 310a generates a signal for confirming whether the human body is in contact with the microcurrent output unit 330a or the third control signal S3 for generating a general microcurrent. In addition, the supply level confirmation signal MC is received to check whether the human body contact terminals P1 and P2 actually touch the human body.
통상적인 인체의 피부저항을 고려하여 미리 정해진 범위 내에 상기 공급레벨확인신호(MC)의 레벨이 위치하게 되면 인체에 접촉된 것으로 판단하는 것이 가능하기 때문이다. This is because when the level of the supply level confirmation signal MC is positioned within a predetermined range in consideration of the skin resistance of a general human body, it is possible to determine that the human body is in contact with the human body.
이후 상기 컨트롤부(110a)에는 상기 승압부(320a)에 미세전류 발생을 위한 상기 제3컨트롤신호(S3)를 공급한다. 상기 제3컨트롤 신호(S3)는 승압을 위해 폭과 주기가 조절된 컨트롤 신호이다.Thereafter, the control unit 110a supplies the third control signal S3 for generating a microcurrent to the boosting unit 320a. The third control signal S3 is a control signal whose width and period are adjusted for boosting.
배터리를 통해 전원이 공급되면, 상기 컨트롤부(310a)에는 상기 승압부(320a)에 상기 제3컨트롤신호(S3)를 공급한다. 상기 제3컨트롤 신호(S3)는 승압을 위해 폭과 주기가 조절된 컨트롤 신호이다.When power is supplied through a battery, the control unit 310a supplies the third control signal S3 to the boosting unit 320a. The third control signal S3 is a control signal whose width and period are adjusted for boosting.
상기 제3컨트롤 신호(S3)가 인가되면, 상기 제3컨트롤신호(S3)에 응답하여 상기 승압부(320a)의 스위칭소자(Q7)는 온/오프된다. When the third control signal S3 is applied, the switching element Q7 of the boosting unit 320a is turned on / off in response to the third control signal S3.
상기 스위칭소자(Q7)가 턴온(turn-on) 되면, 상기 인덕터(L1)의 전류는 증가하기 시작하고, 상기 다이오드(D1)는 역방향으로 바이어스(bias)가 걸리므로 오프되고, 이에 따라 상기 인덕터(L1) 전압은 상기 전원전압(Vcc, Vdd)과 동일해진다. 다시 상기 제3컨트롤신호(S3)에 의해 상기 스위칭소자(Q7)이 턴 오프(tura-off)되면, 상기 인덕터(L1)의 전류는 감소하기 시작하고, 이에 따라 상기 인덕터(L1)의 전압은 극성이 바뀌어 상기 전원전압과 합쳐진다. 이 전압은 커패시터(C1)에 저장된다.When the switching element Q7 is turned on, the current of the inductor L1 starts to increase, and the diode D1 is turned off because the bias is applied in the reverse direction, and thus the inductor The voltage (L1) becomes equal to the power supply voltages Vcc and Vdd. When the switching device Q7 is turned off by the third control signal S3 again, the current of the inductor L1 starts to decrease, and accordingly, the voltage of the inductor L1 The polarity is changed to merge with the power supply voltage. This voltage is stored in capacitor C1.
이렇게 되면, 상기 다이오드(D2)에는 순방향 바이어스가 걸리게 되어 온(On) 되고, 상기 커패시터(C2)는 상기 다이오드(D2)를 통해 출력되는 전압을 저장하며, 상기 출력전압 즉 승압전압(VC)의 맥동(리플)을 제거해 준다. In this case, a forward bias is applied to the diode D2, and the capacitor C2 stores a voltage output through the diode D2, and the output voltage, that is, the boost voltage VC Eliminate pulsations (ripples).
다음 스위칭 동작이 수행되면, 상기 커패시터(C1)에 저장된 전압의 2배에 해당되는 전압이 상기 커패시터(C2)에 저장되게 되고, 이러한 방식으로 복수의 스위칭 동작이 수행되면, 상기 제1노드(n1)에는 전원전압(Vcc, Vdd)보다 수배~수십배 높은 승압전압(VC)이 발생하게 된다. 예를 들어 전원전압이 3V라고 가정할 경우에 30V의 전압을 얻는 것이 가능해진다. 물론 이보다 높은 레벨의 전압을 발생시키는 것도 가능하다.When the next switching operation is performed, a voltage corresponding to twice the voltage stored in the capacitor C1 is stored in the capacitor C2. When a plurality of switching operations are performed in this manner, the first node n1 ) Generates a boosted voltage VC several times to several ten times higher than the power supply voltages Vcc and Vdd. For example, assuming that the power supply voltage is 3V, it is possible to obtain a voltage of 30V. Of course, it is also possible to generate higher levels of voltage.
즉 상기 컨트롤부(310a)의 제3컨트롤신호(S3)의 폭과 주기에 따라 상기 스위칭소자(Q7)가 온/오프 동작을 반복적으로 수행하면, 상기 승압전압(VC)은 원하는 레벨을 가지게 된다.That is, when the switching element Q7 repeatedly performs the on / off operation according to the width and the period of the third control signal S3 of the control unit 310a, the boosted voltage VC has a desired level. .
상기 승압전압(VC)이 원하는 레벨에 도달하게 되면, 상기 컨트롤부(310a)에서는 제1컨트롤신호(S1) 및 제2컨트롤신호(S2)를 발생한다. 상기 제1컨트롤신호(S1) 및 제2컨트롤신호(S2)는 상기 컨트롤부(310a)의 전원전압의 공급과 동시에 발생될 수도 있으나, 상기 승압전압(VC)이 원하는 레벨에 도달하기 까지는 의미가 없으므로, 여기서는 상기 승압전압(VC)이 원하는 레벨에 도달하게 되면 발생하는 것으로 가정한다.When the boosted voltage VC reaches a desired level, the control unit 310a generates a first control signal S1 and a second control signal S2. The first control signal S1 and the second control signal S2 may be generated at the same time as the supply of the power supply voltage of the control unit 310a, but it does not mean that the boosted voltage VC reaches a desired level. Therefore, it is assumed here that it occurs when the boosted voltage VC reaches a desired level.
상기 제1컨트롤신호(S1)는 양의 위상을 가지는 미세전류를 발생시키기 위한 것이고, 상기 제2컨트롤신호(S2)는 음의 위상을 가지는 미세전류를 발생시키기 위한 것이다.The first control signal S1 is for generating a micro current having a positive phase, and the second control signal S2 is for generating a micro current having a negative phase.
양의 위상과 음의 위상을 가지는 미세전류를 발생시켜 인체에 공급하게 되면, 양의 위상 만을 가지는 미세전류의 경우보다 치료 및 마사지 효과가 우수한 것으로 알려져 있다.When a microcurrent having a positive phase and a negative phase is generated and supplied to the human body, the treatment and massage effects are known to be superior to those of the microcurrent having only a positive phase.
상기 제1컨트롤 신호(S1)는 도 11에 도시된 바와 같이. 일정주기와 일정듀디비(duty ratio)를 가지는 펄스(pulse) 형태의 파형구조를 가질 수 있다. 예를 들면, 1초의 주기를 가지고 150ms의 시간동안에는 일정전압레벨을 가지고, 나머지 시간동안에는 0의 전압레벨을 가지는 파형구조를 가질 수 있다. The first control signal S1 is shown in FIG. 11. It may have a waveform structure of the pulse (pulse) having a certain period and a certain duty ratio (duty ratio). For example, it may have a waveform structure having a period of 1 second and a constant voltage level for a time of 150 ms, and a voltage level of 0 for the remaining time.
그러나 이는 하나의 예 일뿐 치료나 마사지의 효과적 측면을 고려하여 주기나 듀티비가 일정시간단위로 변화하도록 하는 것도 가능하고, 주기나 듀티비가 다른 형태의 파형구조를 가지는 것도 가능하다.However, this is just one example. In consideration of the effective aspects of treatment or massage, the period or duty ratio may be changed by a unit of time, and the period or duty ratio may have a different waveform structure.
상기 제2컨트롤신호(S2)는 상기 제1컨트롤신호(S1)와는 일정위상차를 가지는 형태로 일정주기와 일정듀티비를 가지는 펄스 형태의 파형구조를 가질 수 있다. 상기 제2컨트롤신호(S2)는 상기 제1컨트롤신호(S1)와 일정위상차를 가지는 것을 제외하고는 그 형태가 동일하다. The second control signal S2 may have a waveform structure in the form of a pulse having a certain period and a constant duty ratio in a form having a predetermined phase difference from the first control signal S1. The second control signal S2 has the same shape except that it has a predetermined phase difference from the first control signal S1.
여기서 상기 제2컨트롤신호(S2)는 상기 제1컨트롤신호(S1)가 일정전압레벨을 가지는 시간구간(t1)에는 0의 전압레벨을 가져야 하고, 상기 제1컨트롤신호(S1)이 0의 전압레벨을 가지는 시간구간(T-t1)의 일부구간에서 일정전압레벨을 가지는 파형구조를 가지게 된다. Here, the second control signal S2 should have a voltage level of 0 in a time interval t1 in which the first control signal S1 has a constant voltage level, and the first control signal S1 has a voltage of 0. In some sections of the time section T-t1 having the level, the waveform structure has a constant voltage level.
즉 상기 제1컨트롤신호(S1)의 펄스와 상기 제2컨트롤신호(S2)의 펄스는 중복되지 않게 발생된다. 즉 상기 제1컨트롤신호(S1)에 의해 스위칭소자(Q6, Q3)가 턴온되는 시점과 상기 제2컨트롤신호(S2)에 의해 스위칭소자(Q5, Q4)가 턴온되는 시점이 달라야 한다. 상기 제1컨트롤신호(S1)에 의해 스위칭소자(Q6, Q3)가 턴온되었다가 다시 턴 오프되는 시점에 바로 이어서 상기 제2컨트롤신호(S2)에 의해 스위칭소자(Q5, Q4)가 턴온되도록 하는 것도 가능하고, 상기 제1컨트롤신호(S1)에 의해 스위칭소자(Q6, Q3)가 턴온되었다가 다시 턴 오프되고 일정시간이후에 상기 제2컨트롤신호(S2)에 의해 스위칭소자(Q5, Q4)가 턴온되도록 하는 것도 가능하다. 이는 상기 제2컨트롤신호(S2)의 펄스 발생시점을 컨트롤하는 것으로 가능하며, 치료나 마사지 효과를 고려하여 필요에 따라 달리 정할 수 있다.That is, the pulse of the first control signal S1 and the pulse of the second control signal S2 are generated so as not to overlap. That is, the timing at which the switching elements Q6 and Q3 are turned on by the first control signal S1 and the timing at which the switching elements Q5 and Q4 are turned on by the second control signal S2 should be different. Immediately after the switching elements Q6 and Q3 are turned on by the first control signal S1 and turned off again, the switching elements Q5 and Q4 are turned on by the second control signal S2. Also, the switching elements Q6 and Q3 are turned on by the first control signal S1 and then turned off again, and after a predetermined time, the switching elements Q5 and Q4 are turned on by the second control signal S2. It is also possible to turn on. This is possible by controlling the timing of the pulse generation of the second control signal S2, and may be determined differently as necessary in consideration of treatment or massage effects.
상기 미세전류 출력부(330a)는 상기 승압전압(VC)이 일정레벨에 도달하게 되면, 저항(R1, R6)의 전압분배에 의해 분배된 전압이 스위칭 소자(Q1)를 턴온시키게되고, 저항(R2, R7)의 전압분배에 의해 분배된 전압이 스위칭 소자(Q2)를 턴온 시키게 된다. 이는 스위칭소자(Q5, Q6)가 턴 오프 상태일 때 가능하며, 승압전압(VC)이 일정레벨에 도달하였다고 해도, 상기 제1컨트롤신호(S1)에 의해 스위칭소자(Q6)가 턴 온되게 되면, 스위칭소자(Q2)는 턴 온되고 스위칭소자(Q1)는 턴 오프되며, 상기 제2컨트롤신호(S2)에 의해 스위칭소자(Q5)가 턴 온 되면, 스위칭소자(Q1)는 턴 온되고 스위칭소자(Q2)는 턴 오프된다. When the boosted voltage VC reaches a predetermined level, the microcurrent output unit 330a turns on the switching element Q1 by the voltage divided by the voltage distribution of the resistors R1 and R6. The voltage divided by the voltage distribution of R2 and R7 turns on the switching element Q2. This is possible when the switching elements Q5 and Q6 are turned off. When the switching element Q6 is turned on by the first control signal S1 even when the boost voltage VC reaches a predetermined level. When the switching device Q2 is turned on and the switching device Q1 is turned off, and the switching device Q5 is turned on by the second control signal S2, the switching device Q1 is turned on and switched. Element Q2 is turned off.
미세전류 공급을 위해 상기 제1컨트롤신호(S1) 및 상기 제2컨트롤신호(S2)가 인가되면, 미세전류 공급이 시작된다.When the first control signal S1 and the second control signal S2 are applied to supply the microcurrent, the microcurrent supply is started.
상기 제1컨트롤 신호(S1)에 의해 상기 스위칭소자(Q6, Q3)가 턴 온되고, 상기 제2컨트롤신호(S2)에 의해 상기 스위칭소자(Q5, Q4)가 턴 오프되면, 스위칭소자(Q2)가 턴 온되어, 미세전류는 상기 제1노드(n1)에서 스위칭소자(Q2) 및 인체접촉단자(P1)를 통해 인체에 공급되고, 인체에 공급된 미세전류는 인체접촉단자(P2) 및 스위칭소자(Q3), 저항(R8, R9)을 통해 회수되게 된다. 이때 스위칭소자(Q5, Q4, Q1)는 상기 제2컨트롤신호(S2)에 의해 턴 오프 상태이다. 이때 인체에 공급되는 미세전류는 도 11의 미세전류 그래프(P1-P2)에 나타난 바와 같이, 양의 위상을 가지게 된다.When the switching devices Q6 and Q3 are turned on by the first control signal S1 and the switching devices Q5 and Q4 are turned off by the second control signal S2, the switching device Q2. ) Is turned on, and the microcurrent is supplied to the human body through the switching element Q2 and the human body contact terminal P1 at the first node n1, and the microcurrent supplied to the human body is the human body contact terminal P2 and It is recovered through the switching element Q3 and the resistors R8 and R9. At this time, the switching elements Q5, Q4, and Q1 are turned off by the second control signal S2. At this time, the microcurrent supplied to the human body has a positive phase, as shown in the microcurrent graphs P1-P2 of FIG. 11.
이후 상기 제1컨트롤신호(S1)에 의해 상기 스위칭소자(Q6, Q3)가 턴 오프되고, 상기 제2컨트롤신호(S2)에 의해 스위칭소자(Q5, Q4)가 턴 온되면, 스위칭소자(Q1)이 턴 온되어, 미세전류는 상기 제1노드에서 스위칭소자(Q1) 및 인체접촉단자(P2)를 통해 인체에 공급되고, 인체에 공급된 미세전류는 인체접촉단자(P1) 및 스위칭소자(Q4), 저항(R8, R9)을 통해 회수되게 된다. 이때 스위칭소자(Q6, Q3, Q2)는 상기 제1컨트롤신호(S2)에 의해 턴 오프 상태이다. 이때 인체에 공급되는 미세전류는 도 11의 미세전류 그래프(P1-P2)에 나타난 바와 같이, 음의 위상을 가지게 된다.Thereafter, when the switching devices Q6 and Q3 are turned off by the first control signal S1 and the switching devices Q5 and Q4 are turned on by the second control signal S2, the switching device Q1. ) Is turned on, and the microcurrent is supplied to the human body through the switching element Q1 and the human body contact terminal P2 at the first node, and the microcurrent supplied to the human body is the human body contact terminal P1 and the switching element ( Q4), it is recovered through the resistors R8 and R9. At this time, the switching elements Q6, Q3, and Q2 are turned off by the first control signal S2. At this time, the microcurrent supplied to the human body has a negative phase, as shown in the microcurrent graphs P1-P2 of FIG. 11.
이미 설명한 바와 같이, 인체마다 피부저항이 다르기 때문에 인체에 공급되는 미세전류의 레벨은 인체마다 다르다. 따라서, 마사지 또는 치료효과를 높이기 위해서는 일정레벨범위 내의 미세전류가 공급되어야 하기 때문에 인체에 실제로 공급되는 미세전류의 레벨을 체크할 필요성이 제기된다. As already described, the level of microcurrent supplied to the human body is different for each human body because the skin resistance is different for each human body. Therefore, in order to increase the massage or treatment effect, since the microcurrent within a certain level range must be supplied, there is a need to check the level of the microcurrent actually supplied to the human body.
따라서, 상기 미세전류 출력부(330a)에서는 인체접촉단자(P1, P2)를 통해 회수되는 미세전류의 레벨을 확인하여 인체에 공급되는 미세전류의 레벨을 컨트롤할 수 있는 구성을 가지고 있다. Therefore, the microcurrent output unit 330a has a configuration capable of controlling the level of the microcurrent supplied to the human body by checking the level of the microcurrent recovered through the human body contact terminals P1 and P2.
상기 저항(R8, R9)를 통해 흐르는 미세전류 또는 미세전류에 대응되는 전압을 인체에 공급되는 미세전류의 인체공급 레벨을 확인할 수 있는 공급레벨 확인신호(MC)로 사용하는 것이 가능하다.It is possible to use the voltage corresponding to the microcurrent or the microcurrent flowing through the resistors R8 and R9 as the supply level confirmation signal MC for confirming the human body supply level of the microcurrent supplied to the human body.
상기 공급레벨확인신호(MC)는 상기 저항(R8, R9)을 통해 흐르는 미세전류를 상기 컨트롤부(310a)로 보내는 것이 가능하고, 도 10에서와 같이, 저항(R8, R9)의 전압분배를 통해 분배된 전압레벨을 상기 공급레벨확인신호(MC)로 사용하는 것도 가능하다.The supply level confirmation signal MC may send a minute current flowing through the resistors R8 and R9 to the control unit 310a. As shown in FIG. 10, the voltage distribution of the resistors R8 and R9 may be divided. It is also possible to use the divided voltage level as the supply level confirmation signal MC.
상기 공급레벨확인신호(MC)는 상기 컨트롤부(310a)의 컨트롤칩(U2)으로 제공되며, 상기 컨트롤부(310a)에서는 상기 공급레벨확인신호(MC)가 제공되면, 이를 분석하여, 인체에 실제공급되는 미세전류의 레벨이 원하는 레벨상태인가를 확인하게 된다.The supply level confirmation signal MC is provided to the control chip U2 of the control unit 310a, and when the supply level confirmation signal MC is provided, the control unit 310a analyzes the supply level confirmation signal MC to the human body. It is confirmed whether the level of the microcurrent actually supplied is the desired level.
인체에 실제로 공급되는 미세전류의 레벨이 원하는 레벨범위내에 있으면, 별도의 동작을 수행하지 않지만, 원하는 레벨범위를 벗어나는 경우에는, 상기 제3컨트롤신호(S3)를 통해 상기 승압부(320a)의 승압전압(VC)의 레벨을 컨트롤하게 된다. If the level of the microcurrent actually supplied to the human body is within the desired level range, no separate operation is performed, but if the level of the microcurrent is out of the desired level range, the boosting unit 320a is boosted through the third control signal S3. The level of the voltage VC is controlled.
상기 승압전압(VC)의 레벨이 컨트롤되게 되면, 상기 인체접촉단자(P1, P2)를 통해 인체에 실제로 공급되는 미세전류의 레벨이 변동되게 되고, 상기 컨트롤부(310a)를 통한 컨트롤은 인체에 실제로 공급되는 미세전류의 레벨이 원하는 레벨범위 상태가 될 때까지 계속된다. When the level of the boosted voltage VC is controlled, the level of the microcurrent actually supplied to the human body through the human body contact terminals P1 and P2 is changed, and the control through the control unit 310a is controlled by the human body. The level of microcurrent actually supplied is continued until the desired level range is reached.
한편, 본 발명의 미세전류 자극용 양말을 착용하면, 압박성 궤양, 울혈성 궤양 및 당뇨병성 궤양 등에서 손상된 조직에 미세전류를 흘려 손상된 조직의 치유에 매우 유용하다. 미세전류 자극의 가장 직접적인 효과는 말초혈관에서 혈관벽에 위치한 근육의 수축을 유발하여 혈류를 감소시키는 교감신경의 자극을 감소시켜, 피부로의 혈류 증가를 시키는 것이다. 창상치유에 있어 다양한 연구에서 미세전류의 효과로 당뇨병성 궤양 부위에서 혈류의 증가와 함께 조직산소포화도의 증가를 나타낼수 있다. 또한 미세전류 자극은 혈관신생을 자극하고, 섬유모세포와 단백질의 생합성을 증가시키고, 음극에서 양극으로 향하는 전류의 흐름은 창상변연에서 섬유모세포와 합성된 단백질의 이동을 증가시키며, 세균의 증식을 막아주어 혈류 증가로 인한 조직 산소포화동의 증가와 함께 창상치유에 효과를 나타낸다. 미세전류의 혈관신생 자극 효과는 전류에 의한 VEGF 등의 생성증가에 의해 나타난다. Clover 등의 연구에 의하면 말초혈관 질환 환자에서 근육의 단축을 일으키지 않을 정도의 미세전류로 6주간 자극한 결과 모세혈관 현미경 관찰에서 전기자극 전과 비교하여 25%의 모세혈관의 증가를 나타낸다. On the other hand, wearing the microcurrent stimulation socks of the present invention, it is very useful for the healing of damaged tissues by flowing a microcurrent to the damaged tissues such as pressure ulcers, congestive ulcers and diabetic ulcers. The most direct effect of microcurrent stimulation is to reduce the stimulation of the sympathetic nerve, which causes the contraction of muscles located in the vessel wall in the peripheral blood vessels, thereby reducing blood flow, thereby increasing blood flow to the skin. In wound healing, various studies have shown that the effect of microcurrent can increase tissue oxygen saturation with the increase of blood flow in diabetic ulcer sites. In addition, microcurrent stimulation stimulates angiogenesis, increases the biosynthesis of fibroblasts and proteins, and the flow of current from the cathode to the anode increases the migration of fibroblasts and synthesized proteins in wound margins, preventing bacterial growth. It has an effect on wound healing with an increase in tissue oxygen saturation copper due to increased blood flow. The angiogenic stimulating effect of the microcurrent is caused by the increased production of VEGF by the current. According to Clover et al., A 6-week stimulation with a microcurrent that does not cause muscle shortening in patients with peripheral vascular disease shows a 25% increase in capillary blood vessels compared with pre-stimulation on capillary microscopy.
전기자극치료 중 미세전류는 세포의 생리와 성장을 자극하는 능력 때문에 “생물학적 자극” 또는 “생체공학적 요법”이라고도 불리고 있다. 미세전류는 상처 치유에 탁월한 효과를 나타내며, 이런 상처치유의 기전 중 하나로 생체전류와 동일한 미세한 전류를 신체에 통전시킴으로써 세포내 대사를 원활히 하고 ATP 생성을 활발히 한다는 가설이 제시 되고 있다. 미세전류가 염증을 진정시키기 위한 국소적인 미세순환에 직접적으로 영향을 줄 수 있다고 밝혀진 이래 많은 연구가 진행되었고 미세전류를 이용한 아킬레스 건염에 대한 치료와 상처치료에 대한 높은 효과는 여러 논문에서 보고되었다. 또한 미세전류는 전류를 거의 느끼지 못하는 감각이하의 범위로 시행되기 때문에 종전의 전기치료 시 나타나는 전류에 의한 불쾌감 없이 치료가 가능한 장점을 지닌다.Microcurrent during electrostimulation therapy is also called "biological stimulation" or "bioengineering" because of its ability to stimulate cell physiology and growth. Microcurrent has an excellent effect on wound healing, and one of the mechanisms of wound healing has been hypothesized to facilitate intracellular metabolism and stimulate ATP production by energizing the body with the same microcurrent. Since microcurrents have been found to directly affect local microcirculation to soothe inflammation, many studies have been conducted and the high effects of microcurrents on the treatment and wound healing of Achilles tendonitis have been reported in several papers. In addition, since the microcurrent is carried out in a range below the sensory sense almost no current has the advantage that can be treated without the discomfort caused by the current appearing in the previous electrotherapy.
경피적 산소분압 측정은 당뇨병성 족부질환 환자에서 전기자극치료의 효과를 판정하기 위한 가장 중요한 방법으로서 많이 사용되어 왔다. 경피적 산소분압 측정은 표피와 진피에서 산소분압의 절대치를 측정하여 피부의 미세혈류 및 혈액 가스를 측정할 수 있는 비침습적인 검사방법이다. 또한 경피적 산소분압 측정은 창상의 치유, 절단의 위험도를 예견하는 중요한 지표이다. 창상부위에서 측정한 경피적 산소분압이 20mmHg이하일 경우 창상의 치유는 거의 일어날 수 없다. 전기자극치료 이후 교감신경 자극의 감소를 일으켜 말초혈관의 반응으로 혈관 확장 및 전기자극 부위의 모세혈관의 증가가 일어나 경피적 산소분압의 증가를 나타낸다. 이전의 많은 연구들에서 전기자극치료 이후 측정한 경피적 산소분압이 평균 14mmHg 정도 증가한 결과를 보여 당뇨병성 족부질환 환자의 절단을 감소시키는 결과를 나타내었다. Percutaneous oxygen partial pressure measurement has been widely used as the most important method for determining the effects of electrostimulation therapy in diabetic foot disease patients. Percutaneous oxygen partial pressure measurement is a non-invasive test method that can measure the skin micro blood flow and blood gas by measuring the absolute value of oxygen partial pressure in the epidermis and dermis. Percutaneous oxygen partial pressure measurement is also an important indicator for predicting the risk of wound healing and amputation. If the percutaneous oxygen partial pressure measured at the wound is less than 20 mmHg, healing of the wound can hardly occur. After electrical stimulation treatment, sympathetic nerve stimulation is reduced, and peripheral blood vessel response causes vasodilation and an increase in capillaries at the electrical stimulation site, indicating an increase in percutaneous oxygen partial pressure. Many previous studies have shown that the percutaneous partial pressure of oxygen measured after electrostimulation has increased by an average of 14 mmHg, resulting in reduced amputation in diabetic foot disease patients.
이러한 미세전류 자극치료는 비단 당뇨병성 신경병증, 디스크 질환 같은 말초신경질환 이외에도 근막동통증후군, 테니스엘보, 어깨의 유착성 피낭염, 관절염 등 다양한 근골격계 질환 및 신경질환에서 통증의 조절을 위해 사용될 수 있고, 미세전류 자극치료 효과의 기전으로는 통증을 조절하는 C-fber의 속도에 비해서 감각신경을 전달하는 Aδ-fiber의 신경전도속도가 빨라 통증자극을 전달하지 못하게 차단하는 관문조절설과 뇌에서 endorphin 등의 분비를 촉진하여 통증역치를 낮출수 있다. The microcurrent stimulation therapy can be used for the control of pain in various musculoskeletal disorders and neurological diseases such as myofascial pain syndrome, tennis elbow, shoulder adhesive adhesions, arthritis, as well as peripheral neuropathy such as diabetic neuropathy and disc disease. As a mechanism of microcurrent stimulation treatment, the rate of nerve conduction of Aδ-fiber, which delivers sensory nerves, is faster than that of C-fber, which controls pain. Pain threshold can be lowered by promoting back secretion.
상술한 바와 같이, 본 발명에 따르면, 미세전류발생기를 통해 미세전류를 발생하고, 발생된 미세전류의 레벨을 조절하는 것이 가능하며, 전도사를 통해 미세전류를 전달함으로써 발 마사지효과 또는 당뇨의 치료효과를 보다 효과적으로 달성할 수 있게 된다. As described above, according to the present invention, it is possible to generate a microcurrent through the microcurrent generator, to control the level of the generated microcurrent, and to deliver the microcurrent through the conduction yarn to treat the foot massage effect or diabetes. Can be more effectively achieved.
상기한 실시예의 설명은 본 발명의 더욱 철저한 이해를 위하여 도면을 참조로 예를 든 것에 불과하므로, 본 발명을 한정하는 의미로 해석되어서는 안될 것이다. 또한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기본적 원리를 벗어나지 않는 범위 내에서 다양한 변화와 변경이 가능함은 명백하다 할 것이다. The description of the above embodiments is merely given by way of example with reference to the drawings for a more thorough understanding of the present invention, and should not be construed as limiting the present invention. In addition, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the basic principles of the present invention.

Claims (11)

  1. 양말의 적어도 일부분에 형성되고, 전도사에 의해 이루어진 미세전류 자극부;A microcurrent stimulator formed on at least a portion of the sock and made of conductive yarns;
    발목부위 상부의 일정부위에 부착되며, 미세전류를 발생하여 상기 미세전류자극부를 구성하는 전도사에 인가하되 상기 미세전류를 인에이블 시간동안 일정주기로 인가하는 미세전류발생기; A microcurrent generator attached to an upper portion of the ankle part and generating a microcurrent to be applied to a conductive yarn constituting the microcurrent stimulation portion, and applying the microcurrent at a predetermined period during an enable time;
    상기 미세전류 자극부와 상기 미세전류발생기를 전기적으로 연결하기 위하여 상기 미세전류 자극부와 동일재질로 형성되는 연결부; 및 A connection part formed of the same material as the microcurrent stimulation part to electrically connect the microcurrent stimulation part and the microcurrent generator; And
    상기 미세전류 자극부 및 연결부를 제외한 나머지 부위에 일반원사로 형성되는 바탕부;를 포함하는 미세전류 자극용 양말.Socks for microcurrent stimulation comprising ;;
  2. 제1항에 있어서, The method of claim 1,
    상기 미세전류발생기는 상기 미세전류자극용 양말의 발목상단의 일정부위에 부착되되, 전도성 금속재질의 똑딱이 단추(snap fastener)를 이용하여 부착 및 미세전류인가를 동시에 수행하는 단추부착방식, 벨크로(velcro)를 이용한 벨크로 부착방식, 상기 미세전류발생기에 길이조절이 가능한 밴드를 구비하고 이를 발목 또는 종아리부위에 착용하는 밴드부착방식 중에서 선택된 어느 하나의 방식으로 상기 미세전류자극용 양말에 부착되는 것을 특징으로 하는 미세전류 자극용 양말.The microcurrent generator is attached to a predetermined portion of the upper ankle of the sock for the microcurrent stimulation, using a snap fastener of a conductive metal material (button fastening method to perform the attachment and microcurrent at the same time, velcro (velcro) Velcro attachment method using the), having a length adjustable band to the microcurrent generator and is attached to the microcurrent stimulating socks in any one method selected from the band attachment method worn on the ankle or calf area. Socks for microcurrent stimulation.
  3. 제1항에 있어서,The method of claim 1,
    상기 양말의 상측에는 상기 미세전류발생기가 수용되는 포켓부가 형성되고, 상기 미세전류발생기에는 한 쌍의 제1접속단자가 형성되고, 상기 포켓부에는 상기 연결부가 접속되는 한 쌍의 제2접속단자가 형성되며, 상기 미세전류발생기가 상기 포켓부 내에 수용됨에 따라 제1 및 제2 접속단자는 전기적으로 접속되는 것을 특징으로 하는 미세전류 자극용 양말.On the upper side of the sock is formed a pocket portion for accommodating the microcurrent generator, a pair of first connection terminal is formed in the microcurrent generator, a pair of second connection terminal is connected to the connection portion in the pocket portion And the first and second connection terminals are electrically connected as the microcurrent generator is accommodated in the pocket part.
  4. 제1항에 있어서, The method of claim 1,
    상기 포켓부의 상측에는 덮개부가 개폐가능하게 형성되고, 상기 덮개부의 내측면과 상기 포켓부의 외측면에는 상호 대응하는 결합수단이 구비되는 것을 특징으로 하는 미세전류 자극용 양말.The upper part of the pocket portion is formed so as to be open and close the cover portion, the inner side of the cover portion and the outer surface of the pocket portion microcurrent stimulation socks, characterized in that the coupling means corresponding to each other is provided.
  5. 제1항에 있어서, The method of claim 1,
    상기 미세전류발생기는, The microcurrent generator,
    전원공급 스위치를 구비하며 상기 미세전류발생기에 전원을 공급하기 위한 전원공급부; A power supply unit having a power supply switch for supplying power to the microcurrent generator;
    일정주파수를 발생시키는 주파수 발생부;A frequency generator for generating a constant frequency;
    상기 전원공급부를 통해 공급되는 전원을 이용하여 상기 미세전류를 발생시키되, 상기 주파수 발생부에서 발생되는 주파수를 이용하여 상기 미세전류의 발생주기를 컨트롤하고, 외부에서 입력되는 인에이블신호에 응답하여 상기 미세전류의 발생유지시간을 컨트롤하는 컨트롤칩; 및The microcurrent is generated by using the power supplied through the power supply unit, and the generation period of the microcurrent is controlled using the frequency generated by the frequency generator, and in response to the enable signal input from the outside. A control chip for controlling the holding time of the micro current generation; And
    상기 컨트롤칩에서 발생되는 미세전류를 원하는 레벨로 조절하기 위한 발생전류 레벨조절부;를 가지는 것을 특징으로 하는 미세전류 자극용 양말.Socks for microcurrent stimulation, characterized in that it has; generating current level control unit for adjusting the microcurrent generated in the control chip to a desired level.
  6. 제5항에 있어서, The method of claim 5,
    상기 미세전류발생기는, 상기 컨트롤칩에서 발생되는 출력전압을 원하는 최종전압으로 컨트롤하기 위한 발생전압 레벨조절부를 더 구비하는 것을 특징으로 하는 미세전류 자극용 양말.The microcurrent generator, microcurrent stimulation socks further comprising a generation voltage level control unit for controlling the output voltage generated in the control chip to a desired final voltage.
  7. 제1항에 있어서, The method of claim 1,
    상기 미세전류발생기는, The microcurrent generator,
    양의 위상을 가지는 미세전류 발생을 위한 제1컨트롤신호, 음의 위상을 가지는 미세전류 발생을 위한 제2컨트롤신호, 및 전원전압의 승압을 위한 제3컨트롤신호를 발생하여 상기 미세전류 발생을 제어하고, 상기 미세전류발생장치를 통해 인체에 공급되는 미세전류의 레벨을 확인하여 미리 정해진 레벨이 아닌 경우에 상기 제3컨트롤신호를 컨트롤하여 승압전압의 레벨을 변동시킴에 의해 상기 미세전류의 인체공급레벨을 컨트롤하는 컨트롤부;Generating a first control signal for generating a microcurrent having a positive phase, a second control signal for generating a microcurrent having a negative phase, and a third control signal for boosting a power supply voltage to control the microcurrent generation And checking the level of the microcurrent supplied to the human body through the microcurrent generator, and controlling the third control signal to change the voltage level of the boosted voltage when it is not a predetermined level, thereby supplying the human body of the microcurrent. A control unit for controlling the level;
    상기 컨트롤부의 상기 제3컨트롤신호에 응답하여 전원전압을 일정레벨의 승압전압으로 승압시키는 승압부; 및 A booster boosting a power supply voltage to a boosted voltage of a predetermined level in response to the third control signal of the control unit; And
    상기 승압부에 의해 승압된 상기 승압전압을 바탕으로 하여 원하는 레벨의 미세전류를 발생시켜 인체와 접속되는 접속단자들을 통해 인체의 특정부위에 공급하되, 상기 제1컨트롤 신호가 입력되는 경우에는 양의 위상을 가지는 상기 미세전류를 공급하고, 상기 제2컨트롤 신호가 입력되는 경우에는 음의 위상을 가지는 상기 미세전류를 공급하는 미세전류 출력부;를 가지는 것을 특징으로 하는 미세전류 자극용 양말.On the basis of the boosted voltage boosted by the booster, a microcurrent having a desired level is generated and supplied to a specific part of the human body through connection terminals connected to the human body, and when the first control signal is input, And a microcurrent output unit for supplying the microcurrent having a phase and supplying the microcurrent having a negative phase when the second control signal is input.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 미세전류출력부는 적어도 하나의 전압분배회로 및 복수의 스위칭 소자들을 구비하며, 상기 복수의 스위칭 소자들 각각은 상기 제1컨트롤 신호 또는 상기 제2컨트롤 신호에 응답하여 스위칭동작을 수행함을 특징으로 하는 미세전류 자극용 양말.The microcurrent output unit includes at least one voltage distribution circuit and a plurality of switching elements, and each of the plurality of switching elements performs a switching operation in response to the first control signal or the second control signal. Socks for microcurrent stimulation.
  9. 제8항에 있어서, The method of claim 8,
    상기 미세전류출력부는 인체에 공급되는 미세전류의 인체공급 레벨을 확인할 수 있는 공급레벨 확인신호를 발생하여 상기 컨트롤부에 제공하고, 상기 컨트롤부는 상기 공급레벨확인신호에 응답하여 상기 승압부의 승압전압의 레벨을 컨트롤함을 특징으로 하는 미세전류 자극용 양말. The microcurrent output unit generates and supplies a supply level confirmation signal for confirming a human supply level of the microcurrent supplied to the human body, and provides the control unit, and the control unit generates a boosted voltage in response to the supply level confirmation signal. Socks for microcurrent stimulation characterized by controlling the level.
  10. 제8항에 있어서, The method of claim 8,
    상기 제1컨트롤신호와 상기 제2컨트롤신호는 일정주기와 일정 듀티비를 가지는 펄스 신호이며, 상기 제1컨트롤신호와 상기 제2컨트롤신호는 일정 위상차를 가짐을 특징으로 하는 미세전류 자극용 양말. And the first control signal and the second control signal are pulse signals having a predetermined period and a certain duty ratio, and the first control signal and the second control signal have a predetermined phase difference.
  11. 제9항에 있어서,The method of claim 9,
    상기 컨트롤부는, 상기 공급레벨확인신호를 통해 상기 인체접속단자들이 인체에 실제로 접속되었는지를 확인하여, 미세전류의 발생여부를 컨트롤함을 특징으로 하는 미세전류발생장치.The control unit checks whether the human body connection terminals are actually connected to the human body through the supply level confirmation signal, and controls whether a microcurrent is generated.
PCT/KR2011/001342 2010-03-26 2011-02-25 Microcurrent stimulating sock WO2011118918A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0027302 2010-03-26
KR1020100027302A KR100994208B1 (en) 2009-07-28 2010-03-26 Socks for micro current stimulation

Publications (2)

Publication Number Publication Date
WO2011118918A2 true WO2011118918A2 (en) 2011-09-29
WO2011118918A3 WO2011118918A3 (en) 2012-01-26

Family

ID=44673941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001342 WO2011118918A2 (en) 2010-03-26 2011-02-25 Microcurrent stimulating sock

Country Status (1)

Country Link
WO (1) WO2011118918A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014018683A1 (en) 2014-12-18 2016-06-23 miha bodytec GmbH EMS stimulus current transmitting element, as well as EMS garment equipped with the EMS stimulus current transmitting element
JP2017159091A (en) * 2017-05-12 2017-09-14 日立マクセル株式会社 Massage device
EP3305362A3 (en) * 2016-10-06 2018-08-01 StimMed LLC Method and apparatus for noninvasive inhibition of deep vein thrombosis
US10213593B2 (en) 2010-01-15 2019-02-26 Stimmed Llc Method and apparatus for noninvasive inhibition of deep vein thrombosis
US10300271B2 (en) 2014-12-16 2019-05-28 miha bodytec GmbH EMS training device, and method for protecting an EMS training device
US10835736B2 (en) 2014-09-05 2020-11-17 miha bodytec GmbH EMS exercise device, EMS electrode, EMS garment, EMS stimulus generating unit, EMS signal cable, and EMS undergarment for an EMS exercise device, and method for operating the EMS exercise device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200325057Y1 (en) * 2003-05-27 2003-09-02 노광균 socks with pocket for keeping article
KR200351588Y1 (en) * 2004-02-23 2004-05-27 류수현 Military socks for prevention of frostbite
KR20040103909A (en) * 2001-12-17 2004-12-09 이노떼라 토픽 엥떼르나씨오날 에스.아. Therapeutic device for electrical muscle stimulation treatment of venous deficiency functional disorders of the lower limbs and for preventing deep venous thrombosis
JP2005245909A (en) * 2004-03-08 2005-09-15 Soeki Yu Electric stimulation massage cover
KR100685445B1 (en) * 2006-02-09 2007-02-26 김병수 Apparatus for rhinitis curing
KR20080031667A (en) * 2005-04-28 2008-04-10 캐롤 콜 컴퍼니 Micro-dermal tone skin stimulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040103909A (en) * 2001-12-17 2004-12-09 이노떼라 토픽 엥떼르나씨오날 에스.아. Therapeutic device for electrical muscle stimulation treatment of venous deficiency functional disorders of the lower limbs and for preventing deep venous thrombosis
KR200325057Y1 (en) * 2003-05-27 2003-09-02 노광균 socks with pocket for keeping article
KR200351588Y1 (en) * 2004-02-23 2004-05-27 류수현 Military socks for prevention of frostbite
JP2005245909A (en) * 2004-03-08 2005-09-15 Soeki Yu Electric stimulation massage cover
KR20080031667A (en) * 2005-04-28 2008-04-10 캐롤 콜 컴퍼니 Micro-dermal tone skin stimulator
KR100685445B1 (en) * 2006-02-09 2007-02-26 김병수 Apparatus for rhinitis curing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10213593B2 (en) 2010-01-15 2019-02-26 Stimmed Llc Method and apparatus for noninvasive inhibition of deep vein thrombosis
US10835736B2 (en) 2014-09-05 2020-11-17 miha bodytec GmbH EMS exercise device, EMS electrode, EMS garment, EMS stimulus generating unit, EMS signal cable, and EMS undergarment for an EMS exercise device, and method for operating the EMS exercise device
US10300271B2 (en) 2014-12-16 2019-05-28 miha bodytec GmbH EMS training device, and method for protecting an EMS training device
DE102014018683A1 (en) 2014-12-18 2016-06-23 miha bodytec GmbH EMS stimulus current transmitting element, as well as EMS garment equipped with the EMS stimulus current transmitting element
US10814123B2 (en) 2014-12-18 2020-10-27 miha bodytec GmbH EMS stimulation current transmission element and EMS garment equipped with the EMS stimulation current transmission element
EP3305362A3 (en) * 2016-10-06 2018-08-01 StimMed LLC Method and apparatus for noninvasive inhibition of deep vein thrombosis
JP2017159091A (en) * 2017-05-12 2017-09-14 日立マクセル株式会社 Massage device

Also Published As

Publication number Publication date
WO2011118918A3 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
US6226552B1 (en) Neuromuscular electrical stimulation for preventing deep vein thrombosis
KR100994208B1 (en) Socks for micro current stimulation
US11446492B2 (en) Electrical stimulation apparatus
WO2011118918A2 (en) Microcurrent stimulating sock
US6507757B1 (en) Apparatus for electrical stimulation of the body
KR101235788B1 (en) Brace for micro current stimulation
WO2020190407A1 (en) Medical therapy arrangement for applying an electrical stimulation to a human or animal subject
US10987508B2 (en) Medical therapy arrangement for applying an electrical stimulation to a human or animal subject
US9204822B2 (en) Apparatus for functional electrical stimulation of the body
KR101235789B1 (en) Bootees for micro current stimulation
KR101235790B1 (en) Footwear for micro current stimulation
WO2011014021A2 (en) Shoe for microcurrent stimulation
US11771888B2 (en) Medical therapy arrangement for applying an electrical stimulation to a human or animal subject
US20200197689A1 (en) Medical therapy arrangement for applying an electrical stimulation to a human or animal subject
WO2010140816A2 (en) Beoseon for microcurrent stimulation
KR100310305B1 (en) Portable electrical stimulator
WO2010140820A2 (en) Guard for microcurrent stimulation
KR100409100B1 (en) Electrical Stimulator using Mobile Phone
CN220757817U (en) Quadriceps femoris electric stimulation device for plantar pressure regulation and control
CN214512279U (en) Meridian electrotherapy sock
US20240131324A1 (en) Medical therapy arrangement for applying an electrical stimulation to a human or animal subject
US20200188653A1 (en) Medical therapy arrangement for applying an electrical stimulation to a human or animal subject
WO2010140819A2 (en) Girdle for microcurrent stimulation
RU2062123C1 (en) Electrotherapeutic device
KR20040055990A (en) Impetus band of low frequency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759667

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC(EPO FORM 1205A DATED 04.12.12)

122 Ep: pct application non-entry in european phase

Ref document number: 11759667

Country of ref document: EP

Kind code of ref document: A2