WO2011118600A1 - Method for manufacturing a semiconductor wafer assembly, semiconductor wafer assembly, and semiconductor device - Google Patents

Method for manufacturing a semiconductor wafer assembly, semiconductor wafer assembly, and semiconductor device Download PDF

Info

Publication number
WO2011118600A1
WO2011118600A1 PCT/JP2011/056877 JP2011056877W WO2011118600A1 WO 2011118600 A1 WO2011118600 A1 WO 2011118600A1 JP 2011056877 W JP2011056877 W JP 2011056877W WO 2011118600 A1 WO2011118600 A1 WO 2011118600A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
spacer
transparent substrate
wall portion
resin
Prior art date
Application number
PCT/JP2011/056877
Other languages
French (fr)
Japanese (ja)
Inventor
裕久 出島
川田 政和
正洋 米山
高橋 豊誠
白石 史広
敏寛 佐藤
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN2011800133493A priority Critical patent/CN102792440A/en
Priority to KR1020127026118A priority patent/KR20130018260A/en
Publication of WO2011118600A1 publication Critical patent/WO2011118600A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for manufacturing a semiconductor wafer bonded body, a semiconductor wafer bonded body, and a semiconductor device.
  • a semiconductor device typified by a light receiving device such as a CMOS image sensor or a CCD image sensor
  • a semiconductor substrate provided with a light receiving portion and a light receiving portion side with respect to the semiconductor substrate are formed so as to surround the light receiving portion.
  • a transparent substrate bonded to a semiconductor substrate through the spacer see, for example, Patent Document 1.
  • a method for manufacturing a semiconductor device includes a step of attaching a photosensitive adhesive film (spacer forming layer) to a semiconductor wafer provided with a plurality of light receiving portions, and a mask for the adhesive film.
  • the uncured portion of the adhesive film is dissolved and removed with a developer. At that time, the uncured portion may not be completely dissolved in the developer, and a part of the uncured portion may become a solid suspended matter.
  • the cured portion (spacer) of the adhesive film is cleaned with a cleaning liquid before the semiconductor wafer and the transparent substrate are bonded via the spacer. Still, this was a problem.
  • An object of the present invention is to suppress or prevent the solid floating matter generated in the development process from remaining as a residue when the spacer provided between the semiconductor wafer and the transparent substrate is formed through the exposure process and the development process.
  • An object of the present invention is to provide a method of manufacturing a semiconductor wafer bonded body that can be manufactured, and to provide a semiconductor wafer bonded body and a semiconductor device excellent in reliability.
  • a method for producing a semiconductor wafer assembly comprising a spacer having Forming a spacer forming layer composed of a photosensitive resin composition on one of the semiconductor wafer and the transparent substrate; Exposing the spacer forming layer by selectively irradiating exposure light, and developing with a developer to leave the wall portion; and Bonding the other of the semiconductor wafer and the transparent substrate to the wall,
  • W [ ⁇ m] the width of the wall portion
  • H [ ⁇ m] the height of the wall portion
  • the developer is applied to the spacer forming layer while rotating the semiconductor wafer or the transparent substrate on which the spacer forming layer is formed around an axis line perpendicular to the plate surface and passing through the center.
  • the wall portion and the wall portion are formed while the semiconductor wafer or the transparent substrate on which the wall portion is formed is rotated around an axis line perpendicular to the plate surface and passing through the center.
  • the step of removing the cleaning liquid is performed by rotating the semiconductor wafer or the transparent substrate on which the wall portion is formed around an axis that is perpendicular to the plate surface and passes near the center.
  • FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing a semiconductor wafer bonded body according to an embodiment of the present invention.
  • FIG. 3 is a plan view showing the bonded semiconductor wafer shown in FIG. 4 is a process diagram showing an example of a method for manufacturing the semiconductor device shown in FIG. 1 (the semiconductor wafer bonded body shown in FIG. 2).
  • FIG. 5 is a process diagram showing an example of a method for manufacturing the semiconductor device shown in FIG. 1 (the semiconductor wafer bonded body shown in FIG. 2).
  • 6 is a process diagram showing an example of a method for manufacturing the semiconductor device shown in FIG. 1 (the semiconductor wafer bonded body shown in FIG. 2).
  • FIG. 7 is a diagram for explaining the development processing shown in FIG.
  • FIG. 8 is a diagram for explaining the operation in the development processing shown in FIG.
  • FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention.
  • the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
  • the semiconductor device 100 shown in FIG. 1 is a light receiving device such as a CMOS image sensor or a CCD image sensor.
  • such a semiconductor device (light receiving device) 100 is provided on a base substrate 101, a transparent substrate 102 disposed so as to face the base substrate 101, and a surface of the base substrate 101 on the transparent substrate 102 side.
  • the individual circuit 103 including the received light receiving portion, the spacer 104 provided between the transparent substrate 102 and the individual circuit 103, and the solder bump 106 provided on the surface of the base substrate 101 opposite to the individual circuit 103. And have.
  • the semiconductor device 100 is obtained by separating a semiconductor wafer bonded body 1000 of the present invention described later.
  • the base substrate 101 is a semiconductor substrate and is provided with a circuit (not shown) (an individual circuit included in a semiconductor wafer described later).
  • the individual circuit 103 is provided over almost the entire surface.
  • the individual circuit 103 includes a light receiving portion, and has, for example, a configuration in which a light receiving element and a microlens array are stacked in this order on the base substrate 101.
  • Examples of the light receiving element included in the individual circuit 103 include a charge coupled device (CCD), a complementary metal oxide semiconductor (CMOS), and the like.
  • the individual circuit 103 including such a light receiving element converts the light received by the individual circuit 103 into an electrical signal.
  • the transparent substrate 102 is disposed so as to face one surface (upper surface) of the base substrate 101, and has substantially the same planar dimension as the planar dimension of the base substrate 101.
  • Examples of the transparent substrate 102 include an acrylic resin substrate, a polyethylene terephthalate resin (PET) substrate, and a glass substrate.
  • PET polyethylene terephthalate resin
  • the spacer 104 is directly bonded to the individual circuit 103 and the transparent substrate 102, respectively. Thereby, the base substrate 101 and the transparent substrate 102 are bonded via the spacer 104.
  • the spacer 104 has a frame shape so as to follow the outer peripheral edge portions of the individual circuit 103 and the transparent substrate 102. As a result, a gap 105 is formed between the individual circuit 103 and the transparent substrate 102.
  • the spacer 104 is provided so as to surround the center of the individual circuit 103, but the part surrounded by the spacer 104 in the individual circuit 103, that is, the part exposed to the gap 105 is substantially individual. Functions as a circuit.
  • the solder bump 106 has conductivity, and is electrically connected to the wiring provided on the base substrate 101 on the lower surface of the base substrate 101. As a result, an electrical signal converted from light by the individual circuit 103 is transmitted to the solder bump 106.
  • FIG. 2 is a longitudinal sectional view showing a semiconductor wafer bonded body according to an embodiment of the present invention
  • FIG. 3 is a plan view showing the semiconductor wafer bonded body shown in FIG.
  • the semiconductor wafer bonded body 1000 is composed of a laminated body in which a semiconductor wafer 101 ', a spacer 12A, and a transparent substrate 102' are sequentially laminated. That is, in the semiconductor wafer bonded body 1000, the semiconductor wafer 101 'and the transparent substrate 102' are bonded via the spacer 12A.
  • the semiconductor wafer 101 ′ is a substrate that becomes the base substrate 101 of the semiconductor device 100 as described above by performing an individualization process as described later.
  • the semiconductor wafer 101 ′ is provided with a plurality of individual circuits (not shown).
  • the individual circuit 103 as described above is formed corresponding to each individual circuit.
  • the spacer 12 ⁇ / b> A is a member that becomes the spacer 104 of the semiconductor device 100 as described above by going through an individualization process as described later.
  • the spacer 12A has a wall portion 104 'provided so as to define a plurality of gaps 105 between the semiconductor wafer 101' and the transparent substrate 102 '.
  • the wall 104 ' has a shape that combines a plurality of ridges.
  • the wall portion 104 ′ is formed so that the plurality of gap portions 105 each have a quadrangular shape and are arranged in a matrix in a plan view.
  • the plurality of gaps 105 correspond to the plurality of individual circuits (individual circuits 103) on the semiconductor wafer 101 ′ described above, and the wall 104 ′ corresponds to each individual circuit on the semiconductor wafer 101 ′. It is formed so as to surround the circuit (individual circuit 103).
  • the spacer 12A has the following ⁇ 1> to ⁇ 1> when the width of the wall 104 ′ (projection) is W [ ⁇ m] and the height of the wall 104 ′ (projection) is H [ ⁇ m]. 3> is satisfied.
  • the transparent substrate 102 ' is bonded to the semiconductor wafer 101' via the spacer 12A.
  • the transparent substrate 102 ′ is a member that becomes the transparent substrate 102 of the semiconductor device 100 as described above by performing an individualization process as described later.
  • a plurality of semiconductor devices 100 can be obtained by dividing such a semiconductor wafer bonded body 1000 into individual pieces as will be described later.
  • FIG. 4 to 6 are process diagrams showing an example of a manufacturing method of the semiconductor device shown in FIG. 1 (the semiconductor wafer bonded body shown in FIG. 2), and FIG. 7 explains the development processing shown in FIG. 5A.
  • FIG. 8 is a diagram for explaining the operation in the development processing shown in FIG.
  • the manufacturing method of the semiconductor device 100 includes [A] a process of manufacturing the semiconductor wafer bonded body 1000 and [B] a process of separating the semiconductor wafer bonded body 1000 into pieces.
  • the manufacturing method of the semiconductor wafer bonded body 1000 includes ⁇ A1 >> a step of attaching the spacer formation layer 12 on the semiconductor wafer 101 ′, and ⁇ A2 >> exposure and development of the spacer formation layer 12 Forming the spacer 12A by selectively removing the transparent substrate 102 ′ on the surface of the spacer 12A opposite to the semiconductor wafer 101 ′, and “A4” of the semiconductor wafer 101 ′. And a step of performing predetermined processing or processing on the lower surface.
  • A1-1 First, as shown in FIG. 4A, a spacer forming film 1 is prepared.
  • the spacer forming film 1 has a supporting base 11 and a spacer forming layer 12 supported on the supporting base 11.
  • the support substrate 11 has a sheet shape and has a function of supporting the spacer forming layer 12.
  • This support base material 11 has optical transparency. Thereby, it is possible to irradiate the spacer forming layer 12 with exposure light through the support base material 11 while the support base material 11 is attached to the spacer forming layer 12 in the exposure process in the step ⁇ A2 >> described later.
  • the constituent material of the support base 11 is not particularly limited as long as it has the function of supporting the spacer forming layer 12 and the light transmittance as described above.
  • polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), etc. are mentioned.
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PET is used as the constituent material of the support substrate 11 because it can make the balance between the light transmittance and the breaking strength of the support substrate 11 excellent. preferable.
  • Such an average thickness of the support base 11 is preferably 5 to 100 ⁇ m, and more preferably 15 to 50 ⁇ m. Thereby, the handleability of the film for forming a spacer can be improved, and the thickness of the portion of the spacer forming layer that is in contact with the supporting substrate can be made uniform.
  • the support substrate 11 cannot exhibit the function of supporting the spacer forming layer 12.
  • the handleability of the spacer forming film 1 is lowered.
  • the transmittance of the exposure light in the thickness direction of the support substrate 11 is not particularly limited, but is preferably 20% or more and 100% or less, and more preferably 40% or more and 100% or less. Thereby, in the exposure process mentioned later, exposure light can be reliably performed by irradiating exposure light to the spacer formation layer 12 via the support base material 11.
  • the spacer forming layer 12 has adhesiveness to the surface of the semiconductor wafer 101 '. Thereby, the spacer forming layer 12 and the semiconductor wafer 101 ′ can be bonded (bonded).
  • the spacer forming layer 12 has photocurability (photosensitivity).
  • the spacer 12A can be formed by patterning so as to have a desired shape by an exposure process and a development process in a process ⁇ A2 >> described later.
  • the spacer forming layer 12 has thermosetting properties. Thereby, the spacer formation layer 12 has adhesiveness by thermosetting even after performing the exposure process in process ⁇ A2 >> mentioned later. Therefore, in the step ⁇ A3 >> described later, the spacer 12A and the transparent substrate 102 'can be bonded by thermosetting.
  • Such a spacer forming layer 12 is not particularly limited as long as it has adhesiveness, photocurability, and thermosetting properties as described above, but an alkali-soluble resin, a thermosetting resin, and a photopolymerization initiator are used. It is preferably composed of a material (hereinafter referred to as “resin composition”).
  • alkali-soluble resin examples include novolak resins such as cresol type, phenol type, bisphenol A type, bisphenol F type, catechol type, resorcinol type, pyrogallol type, phenol aralkyl resin, hydroxystyrene resin, methacrylic acid resin, and methacrylic acid ester.
  • novolak resins such as cresol type, phenol type, bisphenol A type, bisphenol F type, catechol type, resorcinol type, pyrogallol type, phenol aralkyl resin, hydroxystyrene resin, methacrylic acid resin, and methacrylic acid ester.
  • Acrylic resins such as resins, cyclic olefin resins containing hydroxyl groups and carboxyl groups, polyamide resins (specifically, having at least one of a polybenzoxazole structure and a polyimide structure and having hydroxyl groups in the main chain or side chain Resin having a carboxyl group, an ether group or an ester group, a resin having a polybenzoxazole precursor structure, a resin having a polyimide precursor structure, a resin having a polyamic acid ester structure, and the like. It can be used singly or in combination of two or more.
  • the spacer forming layer 12 configured to include such an alkali-soluble resin has an alkali developability with less environmental load.
  • alkali-soluble resins described above those having both an alkali-soluble group contributing to alkali development and a double bond are preferably used.
  • alkali-soluble group examples include a hydroxyl group and a carboxyl group.
  • the alkali-soluble group can contribute to alkali development and can also contribute to a thermosetting reaction.
  • alkali-soluble resin can contribute to photocuring reaction by having a double bond.
  • Examples of such a resin having an alkali-soluble group and a double bond include a curable resin that can be cured by both light and heat, and specifically, for example, an acryloyl group, a methacryloyl group, and a vinyl. And a thermosetting resin having a photoreactive group such as a group, and a photocurable resin having a thermoreactive group such as a phenolic hydroxyl group, an alcoholic hydroxyl group, a carboxyl group, and an acid anhydride group.
  • the compatibility between the photocurable resin and the thermosetting resin described later can be improved.
  • the strength of the spacer forming layer 12 after curing, that is, the spacer 12A can be increased.
  • the photocurable resin having a thermally reactive group may further have another thermally reactive group such as an epoxy group, an amino group, or a cyanate group.
  • the photocurable resin having such a structure include (meth) acryl-modified phenolic resins, (meth) acryloyl group-containing acrylic acid polymers, carboxyl group-containing (epoxy) acrylates, and the like.
  • a thermoplastic resin such as a carboxyl group-containing acrylic resin may be used.
  • the resins having an alkali-soluble group and a double bond as described above it is preferable to use a (meth) acryl-modified phenol resin.
  • a (meth) acrylic modified phenolic resin it contains an alkali-soluble group. Therefore, when an unreacted resin is removed by a development process, instead of an organic solvent that is usually used as a developer, the load on the environment is reduced. Less alkaline solution can be applied.
  • the double bond contributes to the curing reaction, and as a result, the heat resistance of the resin composition can be improved.
  • the (meth) acryl-modified phenol resin is preferably used from the viewpoint that the warpage of the semiconductor wafer bonded body 1000 can be reliably reduced by using the (meth) acryl-modified phenol resin.
  • the (meth) acryl-modified phenol resin for example, a (meth) acryloyl-modified bisphenol resin obtained by reacting a hydroxyl group of a bisphenol with an epoxy group of a compound having an epoxy group and a (meth) acryloyl group is used. Can be mentioned.
  • examples of such a (meth) acryloyl-modified bisphenol resin include those shown in Chemical Formula 1 below.
  • a resin having an alkali-soluble group and a double bond in the molecular chain of a (meth) acryloyl-modified epoxy resin in which a (meth) acryloyl group is introduced at both ends of the epoxy resin,
  • a compound in which a dibasic acid is introduced by bonding a hydroxyl group in the molecular chain of the (meth) acryloyl-modified epoxy resin and one carboxyl group in the dibasic acid by an ester bond in addition, an epoxy in this compound
  • the repeating unit of the resin is 1 or more, and the number of dibasic acids introduced into the molecular chain is 1 or more.
  • such a compound for example, first, by reacting an epoxy group at both ends of an epoxy resin obtained by polymerizing epichlorohydrin and a polyhydric alcohol and (meth) acrylic acid, at both ends of the epoxy resin.
  • an epoxy resin obtained by polymerizing epichlorohydrin and a polyhydric alcohol and (meth) acrylic acid at both ends of the epoxy resin.
  • a (meth) acryloyl-modified epoxy resin having a (meth) acryloyl group introduced By obtaining a (meth) acryloyl-modified epoxy resin having a (meth) acryloyl group introduced, and then reacting the hydroxyl group in the molecular chain of the obtained (meth) acryloyl-modified epoxy resin with an anhydride of a dibasic acid It is obtained by forming an ester bond with one carboxyl group of this dibasic acid.
  • the modification rate (substitution rate) of the photoreactive group is not particularly limited, but 20% of the total reactive groups of the resin having an alkali-soluble group and a double bond. It is preferably about 80%, more preferably about 30-70%. By setting the modification amount of the photoreactive group within the above range, a resin composition having particularly excellent resolution can be provided.
  • the modification rate (substitution rate) of the thermally reactive group is not particularly limited, but is 20 to 20% of the total reactive group of the resin having an alkali-soluble group and a double bond. It is preferably about 80%, more preferably about 30 to 70%.
  • the weight average molecular weight of the resin is not particularly limited, but is preferably 30000 or less, more preferably about 5000 to 150,000. preferable. When the weight average molecular weight is within the above range, the film formability when the spacer forming layer 12 is formed on the support substrate 11 is particularly excellent.
  • the weight average molecular weight of the alkali-soluble resin is, for example, G.P. P. C.
  • the weight average molecular weight can be calculated from a calibration curve prepared in advance using a styrene standard substance. At that time, tetrahydrofuran (THF) is used as a measurement solvent, and measurement is performed at a temperature of 40 ° C.
  • THF tetrahydrofuran
  • the content of the alkali-soluble resin in the resin composition is not particularly limited, but it is preferably about 15 to 50 wt%, more preferably about 20 to 40 wt% with respect to the entire resin composition. . Further, when the resin composition contains a filler described later, the content of the alkali-soluble resin is about 10 to 80 wt% with respect to the resin components of the resin composition (all components except the filler). It is preferably about 15 to 70 wt%.
  • the blending balance of the alkali-soluble resin and the thermosetting resin described later in the spacer forming layer 12 can be optimized. Therefore, while making the resolution and developability of the patterning of the spacer forming layer 12 excellent in the exposure process and the developing process in the process ⁇ A2 >> described later, the adhesion of the spacer forming layer 12, that is, the spacer 12A is improved. It can be good.
  • the content of the alkali-soluble resin is less than the lower limit, there is an effect of improving the compatibility with other components (for example, a photocurable resin described later) in the resin composition using the alkali-soluble resin. May decrease.
  • the content of the alkali-soluble resin exceeds the upper limit, the developability or the resolution of the patterning of the spacer 12A formed by the photolithography technique may be deteriorated.
  • thermosetting resin examples include phenol novolak resins, cresol novolak resins, novolac type phenol resins such as bisphenol A novolak resin, phenol resins such as resol phenol resin, bisphenol type epoxy such as bisphenol A epoxy resin and bisphenol F epoxy resin.
  • novolak epoxy resin novolak epoxy resin, cresol novolak epoxy resin, etc., novolak epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, di Epoxy resins such as cyclopentadiene-modified phenolic epoxy resins, urea (urea) resins, resins having a triazine ring such as melamine resins, unsaturated polymers Examples include ester resins, bismaleimide resins, polyurethane resins, diallyl phthalate resins, silicone resins, resins having a benzoxazine ring, cyanate ester resins, epoxy-modified siloxanes, and the like. Can do.
  • the spacer forming layer 12 including such a thermosetting resin exhibits adhesiveness even after being exposed to light and developed.
  • the transparent substrate 102 can be thermocompression bonded to the spacer forming layer 12 (spacer 12A).
  • thermosetting resin when a curable resin that can be cured by heat is used as the aforementioned alkali-soluble resin, a resin different from this resin is selected.
  • thermosetting resins it is particularly preferable to use an epoxy resin. Thereby, the heat resistance of the spacer forming layer 12 (spacer 12A) after curing and the adhesion to the transparent substrate 102 can be further improved.
  • the epoxy resin when used as the thermosetting resin, includes an epoxy resin that is solid at room temperature (particularly bisphenol type epoxy resin) and an epoxy resin that is liquid at room temperature (particularly a silicone-modified epoxy resin that is liquid at room temperature). It is preferable to use together. Thereby, it is possible to obtain the spacer forming layer 12 that is excellent in both flexibility and resolution while maintaining excellent heat resistance.
  • the content of the thermosetting resin in the resin composition is not particularly limited, but is preferably about 10 to 40 wt%, more preferably about 15 to 35 wt% with respect to the entire resin composition. If the content of the thermosetting resin is less than the lower limit, the effect of improving the heat resistance of the spacer forming layer 12 by the thermosetting resin may be reduced. On the other hand, if the content of the thermosetting resin exceeds the upper limit, the effect of improving the toughness of the spacer forming layer 12 by the thermosetting resin may be reduced.
  • thermosetting resin when used as the thermosetting resin, it is preferable that the thermosetting resin further contains a phenol novolac resin in addition to the epoxy resin.
  • a phenol novolac resin By adding a phenol novolac resin to the epoxy resin, the developability of the resulting spacer forming layer 12 can be improved.
  • thermosetting property of the epoxy resin is further improved, and the strength of the spacer 104 to be formed is further improved.
  • Photopolymerization initiator examples include benzophenone, acetophenone, benzoin, benzoin isobutyl ether, methyl benzoin benzoate, benzoin benzoic acid, benzoin methyl ether, benzylfinyl sulfide, benzyl, dibenzyl, diacetyl, benzyldimethyl ketal, and the like. .
  • the spacer forming layer 12 including such a photopolymerization initiator can be more efficiently patterned by photopolymerization.
  • the content of the photopolymerization initiator in the resin composition is not particularly limited, but is preferably about 0.5 to 5 wt%, and about 0.8 to 3.0 wt% with respect to the entire resin composition. It is more preferable that If the content of the photopolymerization initiator is less than the lower limit, the effect of initiating the photopolymerization of the spacer forming layer 12 may not be sufficiently obtained. On the other hand, when the content of the photopolymerization initiator exceeds the upper limit, the reactivity of the spacer forming layer 12 is increased, and the storage stability and resolution may be deteriorated.
  • the resin composition constituting the spacer forming layer 12 preferably contains a photopolymerizable resin in addition to the above components. Thereby, the patternability of the spacer formation layer 12 obtained can be improved more.
  • this photopolymerizable resin when a curable resin curable with light is used as the alkali-soluble resin described above, a resin different from this resin is selected.
  • the photopolymerizable resin is not particularly limited.
  • an unsaturated polyester an acrylic compound such as an acrylic monomer or oligomer having at least one acryloyl group or methacryloyl group in one molecule, or a vinyl type such as styrene.
  • acrylic compound such as an acrylic monomer or oligomer having at least one acryloyl group or methacryloyl group in one molecule
  • vinyl type such as styrene.
  • examples thereof include compounds, and these can be used alone or in combination of two or more.
  • an ultraviolet curable resin mainly composed of an acrylic compound is preferable.
  • Acrylic compounds have a high curing rate when irradiated with light, and thus can pattern a resin with a relatively small amount of exposure.
  • acrylic compound examples include monomers of acrylic acid ester or methacrylic acid ester, and specifically include ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) acrylate.
  • the spacer 104 obtained from the spacer formation layer 12 can exhibit excellent strength.
  • the semiconductor device 100 including the spacer 104 is more excellent in shape retention.
  • the acrylic polyfunctional monomer means a monomer of (meth) acrylic acid ester having a tri- or higher functional acryloyl group or methacryloyl group.
  • acrylic polyfunctional monomers it is particularly preferable to use trifunctional (meth) acrylate or tetrafunctional (meth) acrylate. Thereby, the effect becomes more remarkable.
  • an acrylic polyfunctional monomer as the photopolymerizable resin
  • an acrylic polyfunctional monomer and epoxy vinyl ester resin carry out radical polymerization, the intensity
  • the solubility with respect to the alkali developing solution of the part which is not exposed of the spacer formation layer 12 can be improved at the time of image development, the residue after image development can be reduced.
  • Epoxy vinyl ester resins include 2-hydroxy-3-phenoxypropyl acrylate, Epolite 40E methacrylic adduct, Epolite 70P acrylic acid adduct, Epolite 200P acrylic acid adduct, Epolite 80MF acrylic acid adduct, Epolite 3002 methacrylic acid adduct.
  • the content of the acrylic polyfunctional polymer in the resin composition is not particularly limited, but is about 1 to 50 wt% in the entire resin composition. It is preferably about 5% to 25% by weight.
  • the photopolymerizable resin contains an epoxy vinyl ester resin in addition to the acrylic polyfunctional polymer
  • the content of the epoxy vinyl ester resin is not particularly limited, but is 3 to 30 wt% with respect to the entire resin composition. %, Preferably about 5% to 15 wt%.
  • the photopolymerizable resin as described above is preferably liquid at normal temperature.
  • the curing reactivity by the light irradiation (for example, ultraviolet irradiation) of the spacer formation layer 12 can be improved more.
  • work with the optical slave constituent resin and other compounding components (for example, alkali-soluble resin) in a resin composition can be made easy.
  • the photopolymerizable resin that is liquid at normal temperature include, for example, an ultraviolet curable resin mainly composed of the acrylic compound described above.
  • the weight average molecular weight of the photopolymerizable resin is not particularly limited, but is preferably 5,000 or less, and more preferably about 150 to 3,000. When the weight average molecular weight is within the above range, the sensitivity of the spacer forming layer 12 is particularly excellent. Furthermore, the resolution of the spacer formation layer 12 is also excellent.
  • the weight average molecular weight of the photopolymerizable resin is, for example, G.P. P. C. And can be calculated using the same method as described above.
  • the resin composition constituting the spacer forming layer 12 may contain an inorganic filler. Thereby, the strength of the spacer 104 formed by the spacer forming layer 12 can be further improved.
  • the content of the inorganic filler in the resin composition is preferably 60 wt% or less, more preferably 40 wt% or less, and more preferably 0 wt% or less (substantially) with respect to the entire resin composition. In particular).
  • the strength of the spacer 12A formed by the spacer forming layer 12 can be sufficiently improved by adding the acrylic polyfunctional monomer.
  • the addition of an inorganic filler into the resin composition can be omitted.
  • inorganic fillers include fibrous fillers such as alumina fibers and glass fibers, potassium titanate, wollastonite, aluminum borate, acicular magnesium hydroxide, acicular fillers such as whiskers, talc, and mica. , Sericite, glass flakes, flake graphite, platy fillers such as platy calcium carbonate, spherical fillers such as calcium carbonate, silica, fused silica, calcined clay, unfired clay, zeolite, silica gel And the like, and the like. These may be used alone or in combination. Among these, it is particularly preferable to use a porous filler.
  • the average particle size of the inorganic filler is not particularly limited, but is preferably about 0.01 to 90 ⁇ m, and more preferably about 0.1 to 40 ⁇ m.
  • the average particle diameter exceeds the upper limit, there is a risk that the appearance of the spacer forming layer 12 may be abnormal or the resolution may be poor. Further, if the average particle diameter is less than the lower limit value, there is a risk of poor adhesion when the spacer 104 is heated and pasted to the transparent substrate 102.
  • the average particle size can be evaluated using, for example, a laser diffraction particle size distribution analyzer SALD-7000 (manufactured by Shimadzu Corporation).
  • the average pore diameter of the porous filler is preferably about 0.1 to 5 nm, and more preferably about 0.3 to 1 nm.
  • the resin composition constituting the spacer forming layer 12 can contain additives such as a plastic resin, a leveling agent, an antifoaming agent, and a coupling agent within the range not impairing the object of the present invention in addition to the above-described components. .
  • the visible light transmittance of the spacer forming layer 12 can be made more suitable, and exposure defects in the exposure process can be more effectively prevented. can do. As a result, the semiconductor device 100 with higher reliability can be provided.
  • the average thickness (thickness after pasting) of the spacer forming layer 12 is not particularly limited, but is preferably 3 to 300 ⁇ m. Thereby, the spacer 104 forms the gap 105 having a necessary size, and in the exposure process described later, the exposure light is irradiated to the spacer forming layer 12 through the support base material 11 and the exposure process is reliably performed. Can do.
  • the gap portion 105 having a size required for the spacer 104 cannot be formed.
  • the average thickness of the spacer forming layer 12 exceeds the upper limit, it is difficult to form the spacer 104 having a uniform thickness. Further, in the exposure process described later, it is difficult to reliably perform exposure processing by irradiating the spacer forming layer 12 with exposure light through the support base 11.
  • the transmittance of exposure light in the thickness direction of the spacer forming layer 12 is not particularly limited, but is preferably 0.1 or more and 0.9 or less. Thereby, in the exposure process mentioned later, exposure light can be reliably performed by irradiating exposure light to the spacer formation layer 12 via the support base material 11.
  • the transmittance of exposure light in the thickness direction of the support substrate 11 and the spacer formation layer 12 is the peak wavelength of exposure light in the thickness direction of the support substrate 11 and the spacer formation layer 12. It refers to the transmittance (for example, 365 nm).
  • the light transmittance in the thickness direction of the support base 11 and the spacer forming layer 12 can be measured using, for example, a transmittance measuring device (manufactured by Shimadzu Corporation, UV-160A). .
  • the average thickness of the spacer forming film 1 is not particularly limited, but is preferably 8 to 400 ⁇ m. On the other hand, when the average thickness is less than 10 ⁇ m, the support base material 11 cannot exhibit the function of supporting the spacer forming layer 12, or the spacer 104 forms a gap 105 having a necessary size. I can't do it. On the other hand, when the average thickness exceeds 400 ⁇ m, the handleability of the spacer forming film 1 is lowered.
  • a plurality of individual circuits 103 are formed on one surface of the semiconductor wafer 101 ′. Specifically, a plurality of light receiving elements and a plurality of microlens arrays are stacked in this order on one surface of the semiconductor wafer 101 ′.
  • the spacer formation layer 12 of the film 1 for spacer formation is affixed on the said one surface side of semiconductor wafer 101 '(lamination process).
  • ⁇ A2 Step of selectively removing the spacer forming layer 12 to form the spacer 12A A2-1
  • the spacer forming layer 12 is irradiated with exposure light (ultraviolet rays) to perform exposure processing (exposure process).
  • the spacer forming layer 12 is irradiated with exposure light through a mask 20 including a light transmission portion 201 having a plan view shape corresponding to the plan view shape of the spacer 104.
  • the light transmitting portion 201 has light transmittance, and the exposure light transmitted through the light transmitting portion 201 is applied to the spacer forming layer 12. Thereby, the spacer formation layer 12 is selectively exposed, and a portion (exposed portion) irradiated with the exposure light is photocured.
  • the exposure processing is performed so that the width and height of the exposure portion, that is, the width and height of the wall portion 104 'satisfy the above-described relational expressions ⁇ 1> to ⁇ 3>, respectively.
  • the spacer forming layer 12 is exposed to the spacer forming layer 12 with the support base 11 attached thereto, and the spacer forming layer 12 is exposed through the support base 11. Irradiate light.
  • the support base 11 functions as a protective layer of the spacer forming layer 12, and it is possible to effectively prevent foreign matters such as dust from adhering to the surface of the spacer forming layer 12. Moreover, even if a foreign substance adheres on the support substrate 11, the foreign substance can be easily removed. Further, as described above, when the mask 20 is installed, the distance between the mask 20 and the spacer forming layer 12 can be further reduced without the mask 20 sticking to the spacer forming layer 12. As a result, it is possible to prevent the image formed by the exposure light applied to the spacer forming layer 12 through the mask 20 from being blurred, and to sharpen the boundary between the exposed portion and the unexposed portion. Can do. As a result, the spacer 12A can be formed with excellent dimensional accuracy, and the gap portion 105 can be formed with a desired shape and size close to the design. Thereby, the reliability of the semiconductor device 100 can be improved.
  • the alignment of the mask 20 with respect to the semiconductor wafer 101 ′ can be performed by aligning the alignment mark provided on the semiconductor wafer 101 ′ with the alignment mark provided on the mask 20. it can.
  • the distance between the support base 11 and the mask 20 is preferably 0 to 2000 ⁇ m, and more preferably 0 to 1000 ⁇ m. Thereby, the image formed by the exposure light irradiated to the spacer formation layer 12 through the mask 20 can be made clearer, and the spacer 104 can be formed with excellent dimensional accuracy.
  • the exposure process in a state where the support base 11 and the mask 20 are in contact with each other.
  • the distance between the spacer formation layer 12 and the mask 20 can be stably kept constant over the whole area.
  • the portion of the spacer forming layer 12 to be exposed can be exposed uniformly, and the spacer 12A having excellent dimensional accuracy can be formed more efficiently.
  • the distance between the spacer formation layer 12 and the mask 20 can be freely chosen by selecting the thickness of the support base material 11 suitably. Can be set accurately. Further, by reducing the thickness of the support substrate 11, the distance between the spacer formation layer 12 and the mask 20 is made smaller, and the support substrate 11 is formed by light irradiated to the spacer formation layer 12 through the mask 20. It is possible to prevent image blurring.
  • the spacer forming layer 12 may be subjected to a heat treatment at a temperature of about 40 to 80 ° C. as necessary (post-exposure heating step (PEB step)).
  • PEB step post-exposure heating step
  • the temperature of the heat treatment may be in the above range, but is more preferably 50 to 70 ° C. In development processing described later, unintentional peeling of the photocured portion of the spacer forming layer 12 can be more effectively prevented.
  • the support base material 11 is removed (support base material removal process). That is, the support base material 11 is peeled from the spacer forming layer 12.
  • the support base 11 is removed prior to development, thereby preventing the adhesion of foreign matters such as dust to the spacer formation layer 12 during the exposure as described above. Twelve patterning can be performed.
  • the uncured portion (unexposed portion) of the spacer forming layer 12 is removed using a developer (development process). Thereby, the photocured portion (that is, the wall portion 104 ′) of the spacer forming layer 12 remains, and the spacer 12A and the gap portion 105 are formed.
  • the developing method is not particularly limited as long as the uncured portion of the spacer forming layer 12 can be removed.
  • a liquid piling method, a dipping method, a shower developing method, etc. can be used.
  • the development in this step is performed by developing the developer L while rotating the semiconductor wafer 101 ′ on which the spacer forming layer 12 is formed around an axis Z perpendicular to the plate surface and passing near the center. Is preferably applied to the spacer forming layer 12.
  • the nozzle 300 provided above the semiconductor wafer 101 ′ sprays or sprays the developer L downward to apply the developer L to the spacer forming layer 12.
  • the spraying direction of the developer L (the axial direction of the nozzle 300) may be orthogonal to or inclined with respect to the plate surface of the semiconductor wafer 101 '.
  • the direction of jetting the developer L (the axial direction of the nozzle 300) is inclined with respect to the plate surface of the semiconductor wafer 101 ′, the developer L is jetted in the same direction with respect to the rotation direction of the semiconductor wafer 101 ′ (parallel).
  • the axial direction of the nozzle 300 may be inclined so as to flow), or the axial direction of the nozzle 300 may be inclined so that the developer L is jetted in the opposite direction (counterflow) with respect to the rotation direction of the semiconductor wafer 101 ′. You may do it.
  • the axial direction of the nozzle 300 may be inclined so that the developer L is ejected from the center of the semiconductor wafer 101 ′ toward the outside.
  • the spray pressure of the developer L from the nozzle 300 is not particularly limited, but is preferably 0.01 to 0.5 MPa, more preferably 0.1 to 0.3 MPa.
  • the ejection time (development processing time) of the developer L from the nozzle 300 is not particularly limited, but is preferably 3 to 3600 seconds, and more preferably 15 to 1800 seconds.
  • the jet of the developer L from the nozzle 300 may be continuous or intermittent (intermittent).
  • the number of nozzles 300 is one in the example shown in FIG. 7, but a plurality of nozzles 300 may be provided.
  • the uncured portion of the spacer forming layer 12 is dissolved and removed in the developer L.
  • the uncured part may not be completely dissolved in the developer L, and a part of the uncured part may become a solid suspended matter.
  • the wall portion 104 ′ is formed such that the plurality of gap portions 105 each have a rectangular shape and are arranged in a matrix.
  • the spacer 12A having the wall portion 104 'having such a shape is used, the above problem becomes particularly significant.
  • the present inventors have found that the occurrence of the above problem can be prevented by optimizing the width and height of the wall 104 '.
  • the suspended matter S can be efficiently removed by the flow of the developer L.
  • the developer L when the developer L is applied to the spacer forming layer 12 while rotating the semiconductor wafer 101 ′ around the axis Z as shown in FIG. 7, such development is performed by providing the spacer forming layer 12 of the semiconductor wafer 101 ′.
  • the solid suspended matter S moves over the wall 104 ′ and is removed by the centrifugal force generated by the rotation of the semiconductor wafer 101 ′.
  • the obtained semiconductor wafer bonded body 1000 has excellent reliability.
  • the width W of the wall portion 104 ′ may be any width that satisfies the above relational expressions ⁇ 1> and ⁇ 3>, but is preferably 50 to 2500 ⁇ m, and more preferably 100 to 2000 ⁇ m. . This makes it easier for the suspended matter to get over the wall portion 104 ′ and to ensure the strength required for the spacer 104.
  • the width W of the wall 104 ′ refers to the average width of the wall portion 104 ′.
  • the height H of the wall portion 104 ′ may be any as long as it satisfies the above relational expressions ⁇ 2> and ⁇ 3>, but is preferably 5 to 250 ⁇ m, and more preferably 10 to 200 ⁇ m. . This makes it easier for the suspended matter to get over the wall portion 104 ′ and to ensure the strength required for the spacer 104.
  • the gap portion 105 having a size required for the spacer 104 cannot be formed in the obtained semiconductor device 100.
  • the height H of the wall portion 104 ′ exceeds the upper limit value, it becomes difficult for the solid suspended matter S to get over the wall portion 104 ′.
  • the ratio W / H between the width W and the height H of the wall portion 104 ′ may satisfy the relational expressions ⁇ 1> to ⁇ 3>, but is 0.22 to 480. Preferably, it is 0.52 to 180.
  • the suspended matter S can easily and reliably get over the wall portion 104 ′, and as a result, the above problem can be solved while preventing the time required for the development processing of the spacer forming layer 12 from being prolonged. it can.
  • the developer L is determined according to the constituent material of the spacer forming layer 12 and the like, and is not particularly limited. Various developers can be used, but the specific gravity of the developer L is A, and the wall portion 104 ′. When the specific gravity of the resin composition constituting 0.5 ⁇ A / B ⁇ 2 It is preferable to satisfy the following relational expression. In particular, it is more preferable to satisfy the relational expression of 0.60 ⁇ A / B ⁇ 1.5, and it is even more preferable to satisfy the relational expression of 0.65 ⁇ A / B ⁇ 1.2. Thereby, the solid suspended matter can be efficiently removed by the flow of the developer.
  • a / B is less than the lower limit value, the solid suspended matter S tends to adhere to the wall 104 'or the like.
  • a / B exceeds the upper limit, the developer L may remain on the semiconductor wafer 101 'or the like even after a cleaning step described later.
  • the spacer forming layer 12 is configured to contain the alkali-soluble resin as described above, an alkali solution can be used as the developer.
  • the pH of the alkaline solution used is preferably 9.5 or more, more preferably about 11.0 to 14.0. Thereby, the spacer forming layer 12 can be efficiently removed.
  • Examples of such an alkaline solution include an aqueous solution of an alkali metal hydroxide such as NaOH and KOH, an aqueous solution of an alkaline earth metal hydroxide such as Mg (OH) 2 , an aqueous solution of tetramethylammonium hydroxide, Examples thereof include amide organic solvents such as N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMA), and these can be used alone or in combination.
  • an alkali metal hydroxide such as NaOH and KOH
  • an aqueous solution of an alkaline earth metal hydroxide such as Mg (OH) 2
  • an aqueous solution of tetramethylammonium hydroxide examples thereof include amide organic solvents such as N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMA), and these can be used alone or in combination.
  • the wall 104 ′ and the semiconductor wafer 101 ′ on which the wall 104 ′ is formed are cleaned using a cleaning liquid (cleaning process).
  • step A2-3) and before the joining step (step ⁇ A3 >>) described later even if the solid suspended matter S remains after the development, The suspended matter S can be efficiently removed by the flow of the cleaning liquid.
  • This cleaning method (a method for applying a cleaning liquid) is not particularly limited, and for example, a known method such as a liquid filling method, a dipping method, or a shower cleaning method can be used.
  • the cleaning in this step is performed so that the semiconductor wafer 101 ′ on which the spacer forming layer 12 (wall portion 104 ′) is formed is perpendicular to the plate surface.
  • the cleaning liquid is not particularly limited, and various cleaning liquids can be used.
  • the specific gravity of the resin composition constituting the wall 104 ′ is B and the specific gravity of the cleaning liquid is C, 0.5 ⁇ C / B ⁇ 2 It is preferable to satisfy the following relational expression. In particular, it is more preferable to satisfy the relational expression of 0.60 ⁇ C / B ⁇ 1.5, and it is even more preferable to satisfy the relational expression of 0.65 ⁇ C / B ⁇ 1.2. Thereby, the solid suspended matter S can be efficiently removed by the flow of the cleaning liquid.
  • step A2-5 Next, as shown in FIG. 5C, the cleaning liquid used in step A2-4 described above is removed (drying step).
  • the cleaning step is performed after the cleaning (step A2-4) and before the bonding step (step ⁇ A3 >>), the cleaning liquid remains in the finally obtained semiconductor wafer bonded body 1000, and the adverse effect is caused. Can be prevented. Further, in the manufacture of the semiconductor wafer bonded body 1000, the production efficiency can be improved while improving the quality.
  • This drying step is the same as the rotation of the semiconductor wafer 101 ′ in the development method of the above-described step A2-3 (see FIG. 7), and the semiconductor wafer 101 ′ on which the wall 104 ′ is formed is perpendicular to the plate surface and It is preferably performed by rotating around an axis passing through the vicinity of the center. As a result, even if the solid suspended matter S remains after the cleaning step described above, the solid suspended matter S gets over the wall 104 ′ by the centrifugal force generated by the rotation of the semiconductor wafer 101 ′ when the cleaning liquid is removed. Removed.
  • the bonding between the spacer 12A and the transparent substrate 102 ' can be performed, for example, by bonding the upper surface of the formed spacer 12A and the transparent substrate 102' and then thermocompression bonding.
  • thermocompression bonding is preferably performed within a temperature range of 80 to 180 ° C.
  • ⁇ A4 Step of performing predetermined processing or processing on the lower surface of the semiconductor wafer 101 ′ A4-1
  • the surface (lower surface) 111 opposite to the transparent substrate 102 of the semiconductor wafer 101 ′ is ground (back grinding process).
  • the grinding of the surface 111 of the semiconductor wafer 101 ′ can be performed using, for example, a grinding device (grinder).
  • the thickness of the semiconductor wafer 101 ′ varies depending on the electronic device to which the semiconductor device 100 is applied, but is usually set to about 100 to 600 ⁇ m and is applied to a smaller electronic device. Is set to about 50 ⁇ m.
  • solder bumps 106 are formed on the surface 111 of the semiconductor wafer 101 ′.
  • wiring is also formed on the surface 111 of the semiconductor wafer 101 '.
  • the semiconductor wafer bonded body 1000 is separated into pieces for each individual circuit formed on the semiconductor wafer 101 ′, that is, for each gap portion 105.
  • the wall 104 ' is formed such that the plurality of gaps 105 form a square shape and are arranged in a matrix. Therefore, by cutting (dicing) the semiconductor wafer bonded body 1000 into a lattice shape and dividing it into pieces, a plurality of semiconductor devices 100 can be obtained simply and efficiently.
  • the semiconductor wafer bonded body 1000 is divided into notches 21 along the lattice of the spacer 104 by a dicing saw from the semiconductor wafer 101 ′ side. After the insertion, it is performed by making a cut corresponding to the cut 21 using a dicing saw from the transparent substrate 102 ′ side.
  • the semiconductor device 100 can be manufactured. In this way, by separating the semiconductor wafer bonded body 1000 into individual pieces and obtaining a plurality of semiconductor devices 100 in a lump, the semiconductor devices 100 can be mass-produced and productivity can be improved.
  • the semiconductor device 100 obtained by separating the semiconductor wafer bonded body 1000 into individual pieces also has excellent reliability.
  • the semiconductor wafer bonded body 1000 and the semiconductor device 100 having excellent reliability can be manufactured with a high yield.
  • the semiconductor device 100 thus obtained is mounted on, for example, a substrate on which wiring is patterned, and the wiring on the substrate and the wiring formed on the lower surface of the base substrate 101 are connected via the solder bumps 106. Are electrically connected.
  • the semiconductor device 100 can be widely applied to electronic devices such as a mobile phone, a digital camera, a video camera, and a small camera, for example, while being mounted on a substrate as described above.
  • one or two or more arbitrary steps may be added.
  • PLB process post-lamination heating process
  • the exposure is performed once has been described.
  • the present invention is not limited to this.
  • the exposure may be performed a plurality of times.
  • each part of the semiconductor wafer bonded body and the semiconductor device of the present invention can be replaced with any configuration that exhibits the same function, and any configuration can be added.
  • the spacer forming layer is formed by transferring from the sheet-like support substrate to one surface side of the semiconductor wafer 101 ′.
  • the method for forming the spacer forming layer is not limited thereto. Instead, for example, a curable resin composition (resin varnish) may be directly formed on one surface side of the semiconductor wafer 101 ′ using various coating methods.
  • the case where a negative resin composition in which an exposed portion is removed by a developer is used as the resin composition of the spacer forming layer 12 is described as an example.
  • an unexposed portion is formed by a developer.
  • the positive-type resin composition to be removed may be used.
  • the glycidyl methacrylate 180.9g was dripped in it in 30 minutes, and the methacryloyl modified novolak-type bisphenol A resin MPN001 (methacryloyl modification rate 50%) with a solid content of 74% was obtained by stirring reaction at 100 ° C. for 5 hours. .
  • resin varnish of resin composition constituting spacer forming layer As photopolymerizable resin, 15% by weight of trimethylolpropane trimethacrylate (manufactured by Kyoeisha Chemical Co., Ltd., Light Ester TMP), epoxy vinyl ester resin (Kyoeisha Chemical Co., Ltd.) ), Epoxy ester 3002M) 5% by weight, epoxy resin which is a thermosetting resin, 5% by weight of bisphenol A novolac type epoxy resin (manufactured by Dainippon Ink & Chemicals, Inc., Epicron N-865), bisphenol A type 10% by weight of epoxy resin (Japan Epoxy Resin Co., Ltd., YL6810), 5% by weight of silicone epoxy resin (Toray Dow Corning Silicone Co., Ltd., BY16-115), phenol novolac resin (Sumitomo Bakelite Co., Ltd.) PR53647) 3% by weight, alkali acceptable As a soluble resin, 55 wt
  • the resin varnish prepared as described above is applied onto the supporting base material with a comma coater (manufactured by Yurai Seiki Co., Ltd., “Model No. MFG No. 194001 type 3-293”) to form a coating film composed of the resin varnish. Formed. Then, the film for spacer formation was obtained by drying the formed coating film at 80 degreeC for 20 minutes, and forming a spacer formation layer. In the obtained spacer forming film, the average thickness of the spacer forming layer was 50 ⁇ m. Moreover, the specific gravity of the resin composition (after drying) constituting the spacer forming layer was 1.2.
  • bonded body First, a semiconductor wafer (Si wafer, diameter 20.3 cm, thickness 725 ⁇ m) having an approximately circular shape and 8 inches in diameter was prepared.
  • the spacer forming film manufactured above was laminated on the semiconductor wafer under the conditions of a roll temperature of 60 ° C., a roll speed of 0.3 m / min, and a syringe pressure of 2.0 kgf / cm 2.
  • a semiconductor wafer with a spacer forming film was obtained.
  • a mask having a light transmission part having the same shape as that of the spacer to be formed in plan view was prepared, and the mask was placed so as to face the spacer forming film. At this time, the distance between the mask and the supporting substrate was set to 0 mm.
  • the spacer forming layer is selected in a lattice pattern by irradiating the semiconductor wafer with the spacer forming film through the mask with ultraviolet rays (wavelength 365 nm, integrated light quantity 700 mJ / cm 2 ) from the spacer forming film side. After the exposure, the supporting substrate was removed. In the exposure of the spacer forming layer, 50% of the spacer forming layer was seen in plan view so that the width of the exposed portion exposed in a grid pattern was 600 ⁇ m.
  • TMAH tetramethylammonium hydroxide
  • alkaline solution alkaline solution
  • the development was performed by spraying the developer toward the spacer forming layer at a developer pressure (spray pressure) of 0.2 MPa for 90 seconds while rotating the semiconductor wafer. Further, the specific gravity of the developer was 1.0.
  • the spacer (wall part) was washed with pure water as a washing liquid, and then dried.
  • the cleaning was performed by spraying the cleaning liquid toward the wall (spacer) and the semiconductor wafer at a cleaning liquid pressure (spray pressure) of 0.2 MPa for 90 seconds while rotating the semiconductor wafer. .
  • the specific gravity of the cleaning liquid was 1.0.
  • the drying was performed by rotating the semiconductor wafer for 90 seconds as shown in FIG.
  • a transparent substrate (quartz glass substrate, diameter: 20.3 cm, thickness: 725 ⁇ m) is prepared, and the substrate is bonded to a semiconductor wafer on which a spacer is formed, a substrate bonder (manufactured by SUSS MICROTECH, “SB8e”). ) was used to produce a bonded semiconductor wafer in which the semiconductor wafer and the transparent substrate were bonded via a spacer.
  • a substrate bonder manufactured by SUSS MICROTECH, “SB8e”.
  • Example 2 A bonded semiconductor wafer was produced in the same manner as in Example 1, except that the resin varnish of the resin composition constituting the spacer forming layer was prepared as follows.
  • photopolymerizable resin trimethylolpropane trimethacrylate (manufactured by Kyoeisha Chemical Co., Ltd., light ester TMP) 11% by weight, epoxy vinyl ester resin (manufactured by Kyoeisha Chemical Co., Ltd., epoxy ester 3002M) 4% by weight, thermosetting As an epoxy resin, which is a resin, 4% by weight of bisphenol A novolak type epoxy resin (Dainippon Ink and Chemicals, Epicron N-865), bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YL6810) 8 4% by weight, silicone epoxy resin (Toray Dow Corning Silicone Co., Ltd., BY16-115) 4% by weight, phenol novolac resin (Sumitomo Bakelite Co., Ltd., PR53647) 2% by weight, MPN001 as an alkali-soluble resin is solid 42 weight per minute , 2% by weight of a photopolymerization
  • the floating material when developing the exposed spacer forming layer, even if a solid floating material is generated, the floating material easily gets over the wall. Therefore, the suspended matter can be efficiently removed by the flow of the developing solution. Therefore, it is possible to prevent the floating substance from remaining as a residue in the obtained semiconductor wafer bonded body. As a result, the obtained semiconductor wafer bonded body has excellent reliability.
  • a semiconductor device obtained by separating such a semiconductor wafer bonded body has excellent reliability.
  • the present invention has industrial applicability.

Abstract

The disclosed method for manufacturing a semiconductor wafer assembly includes a step in which a spacer formation layer is exposed via selective illumination with exposure light and then developed using a developer, leaving a wall section (104'). The width (W, in μm) of the wall section (104') and the height (H, in μm) of the wall section (104') satisfy each of the following relations: (1) 15 ≤ W ≤ 3000, (2) 3 ≤ H ≤ 300, and (3) 0.10 ≤ W/H ≤ 900. This configuration can inhibit or prevent a residue of suspended solids, created during the developing process when forming a spacer between a semiconductor wafer and a transparent substrate via an exposure process and a developing process, from being left behind.

Description

半導体ウエハー接合体の製造方法、半導体ウエハー接合体および半導体装置Manufacturing method of semiconductor wafer bonded body, semiconductor wafer bonded body, and semiconductor device
 本発明は、半導体ウエハー接合体の製造方法、半導体ウエハー接合体および半導体装置に関する。 The present invention relates to a method for manufacturing a semiconductor wafer bonded body, a semiconductor wafer bonded body, and a semiconductor device.
 CMOSイメージセンサーやCCDイメージセンサー等の受光装置に代表される半導体装置としては、受光部が設けられた半導体基板と、半導体基板に対して受光部側に設けられ、受光部を囲むように形成されたスペーサと、該スペーサを介して半導体基板に接合された透明基板とを有するものが知られている(例えば、特許文献1参照)。 As a semiconductor device typified by a light receiving device such as a CMOS image sensor or a CCD image sensor, a semiconductor substrate provided with a light receiving portion and a light receiving portion side with respect to the semiconductor substrate are formed so as to surround the light receiving portion. And a transparent substrate bonded to a semiconductor substrate through the spacer (see, for example, Patent Document 1).
 例えば、特許文献1にかかる半導体装置の製造方法は、複数の受光部が設けられた半導体ウエハーに、感光性の接着フィルム(スペーサ形成層)を貼り付ける工程と、該接着フィルムに対してマスクを介して化学線を選択的に照射し、接着フィルムを露光する工程と、露光した接着フィルムを現像し、スペーサを形成する工程と、形成されたスペーサ上に透明基板を接合する工程と、半導体ウエハーと透明基板とをスペーサを介して接合した接合体をダイシングする工程とを有する。 For example, a method for manufacturing a semiconductor device according to Patent Document 1 includes a step of attaching a photosensitive adhesive film (spacer forming layer) to a semiconductor wafer provided with a plurality of light receiving portions, and a mask for the adhesive film. A process of selectively irradiating actinic radiation through the substrate, exposing the adhesive film, developing the exposed adhesive film to form a spacer, bonding a transparent substrate on the formed spacer, and a semiconductor wafer And a step of dicing a joined body obtained by joining the transparent substrate and the transparent substrate through a spacer.
 前述したように露光後の接着フィルムを現像するに際しては、接着フィルムのうち未硬化部分を現像液により溶解し除去する。その際、前記未硬化部分が現像液に完全に溶解せず、前記未硬化部分の一部が固形状の浮遊物となってしまう場合がある。 As described above, when developing the exposed adhesive film, the uncured portion of the adhesive film is dissolved and removed with a developer. At that time, the uncured portion may not be completely dissolved in the developer, and a part of the uncured portion may become a solid suspended matter.
 そのため、従来では、前記浮遊物が半導体ウエハー上や接着フィルムの露光部分に付着し残渣として残存してしまうと言う問題があった。かかる問題は、半導体装置の信頼性を低下させたり、半導体装置の製造における歩留まりを低下させたりする。 Therefore, conventionally, there has been a problem that the suspended matter adheres to the exposed portion of the semiconductor wafer or the adhesive film and remains as a residue. Such a problem reduces the reliability of the semiconductor device and reduces the yield in manufacturing the semiconductor device.
 一般に、前述したように露光後の前記接着フィルムを現像した後には、半導体ウエハーと透明基板とをスペーサを介して接合する前に、洗浄液によって接着フィルムの硬化部分(スペーサ)の洗浄が行われるが、それでも、かかる問題が生じていた。 In general, after developing the exposed adhesive film as described above, the cured portion (spacer) of the adhesive film is cleaned with a cleaning liquid before the semiconductor wafer and the transparent substrate are bonded via the spacer. Still, this was a problem.
特開2008-91399号公報JP 2008-91399 A
 本発明の目的は、半導体ウエハーと透明基板との間に設けるスペーサを露光処理、現像処理を経て形成するに際し、現像処理で生じた固形状の浮遊物が残渣として残るのを抑制または防止することができる半導体ウエハー接合体の製造方法を提供すること、および、信頼性に優れた半導体ウエハー接合体および半導体装置を提供することにある。 An object of the present invention is to suppress or prevent the solid floating matter generated in the development process from remaining as a residue when the spacer provided between the semiconductor wafer and the transparent substrate is formed through the exposure process and the development process. An object of the present invention is to provide a method of manufacturing a semiconductor wafer bonded body that can be manufactured, and to provide a semiconductor wafer bonded body and a semiconductor device excellent in reliability.
 このような目的は、下記(1)~(14)に記載の本発明により達成される。
 (1) 半導体ウエハーと、該半導体ウエハーの一方の面側に対向配置された透明基板と、前記半導体ウエハーと前記透明基板との間に複数の空隙部を画成するように設けられた壁部を有するスペーサとを備える半導体ウエハー接合体を製造する方法であって、
 前記半導体ウエハーおよび前記透明基板のうちの一方に、感光性を有する樹脂組成物で構成されたスペーサ形成層を形成する工程と、
 前記スペーサ形成層に露光光を選択的に照射することにより露光し、現像液を用いて現像することにより、前記壁部を残存させる工程と、
 前記壁部に前記半導体ウエハーおよび前記透明基板のうちの他方を接合する工程とを有し、
 前記壁部の幅をW[μm]とし、前記壁部の高さをH[μm]としたとき、
 下記<1>~<3>の関係式をそれぞれ満たすことを特徴とする半導体ウエハー接合体の製造方法。
 15≦W≦3000   ・・・<1>
 3≦H≦300     ・・・<2>
 0.10≦W/H≦900・・・<3>
Such an object is achieved by the present invention described in the following (1) to (14).
(1) A semiconductor wafer, a transparent substrate disposed opposite to one surface of the semiconductor wafer, and a wall portion provided so as to define a plurality of gaps between the semiconductor wafer and the transparent substrate. A method for producing a semiconductor wafer assembly comprising a spacer having
Forming a spacer forming layer composed of a photosensitive resin composition on one of the semiconductor wafer and the transparent substrate;
Exposing the spacer forming layer by selectively irradiating exposure light, and developing with a developer to leave the wall portion; and
Bonding the other of the semiconductor wafer and the transparent substrate to the wall,
When the width of the wall portion is W [μm] and the height of the wall portion is H [μm],
A method for producing a bonded semiconductor wafer, wherein the following relational expressions <1> to <3> are satisfied:
15 ≦ W ≦ 3000 ... <1>
3 ≦ H ≦ 300 (2)
0.10 <= W / H <= 900 ... <3>
 (2) 前記現像液の比重をAとし、前記樹脂組成物の比重をBとしたとき、
 0.5≦A/B≦2
 なる関係式を満たす上記(1)に記載の半導体ウエハー接合体の製造方法。
(2) When the specific gravity of the developer is A and the specific gravity of the resin composition is B,
0.5 ≦ A / B ≦ 2
The manufacturing method of the semiconductor wafer bonded body according to the above (1), which satisfies the following relational expression:
 (3) 前記壁部は、平面視にて、前記複数の空隙部がそれぞれ四角形状をなすとともに行列状に配置されるように形成されている上記(1)または(2)に記載の半導体ウエハー接合体の製造方法。 (3) The semiconductor wafer according to (1) or (2), wherein the wall portion is formed so that each of the plurality of gap portions has a square shape and is arranged in a matrix in a plan view. Manufacturing method of joined body.
 (4) 前記現像は、前記スペーサ形成層が形成された前記半導体ウエハーまたは前記透明基板をその板面に垂直でかつ中心付近を通る軸線まわりに回転させながら、前記現像液を前記スペーサ形成層に付与することにより行う上記(1)ないし(3)のいずれかに記載の半導体ウエハー接合体の製造方法。 (4) In the development, the developer is applied to the spacer forming layer while rotating the semiconductor wafer or the transparent substrate on which the spacer forming layer is formed around an axis line perpendicular to the plate surface and passing through the center. The method for producing a bonded semiconductor wafer according to any one of (1) to (3), wherein the bonding is performed.
 (5) 前記現像は、前記半導体ウエハーまたは前記透明基板の前記スペーサ形成層が設けられた面側を上方に向けた状態で行う上記(4)に記載の半導体ウエハー接合体の製造方法。 (5) The method for producing a semiconductor wafer bonded body according to (4), wherein the development is performed with the surface side of the semiconductor wafer or the transparent substrate on which the spacer forming layer is provided facing upward.
 (6) 前記現像後、かつ、前記壁部に前記半導体ウエハーおよび前記透明基板のうちの他方を接合する工程前に、前記壁部と、当該壁部が形成された前記半導体ウエハーまたは前記透明基板とを洗浄液を用いて洗浄する上記(1)ないし(5)のいずれかに記載の半導体ウエハー接合体の製造方法。 (6) After the development and before the step of bonding the other of the semiconductor wafer and the transparent substrate to the wall, the wall and the semiconductor wafer or the transparent substrate on which the wall is formed The method for producing a semiconductor wafer bonded body according to any one of the above (1) to (5), wherein:
 (7) 前記樹脂組成物の比重をBとし、前記洗浄液の比重をCとしたとき、
 0.5≦C/B≦2
 なる関係式を満たす上記(6)に記載の半導体ウエハー接合体の製造方法。
(7) When the specific gravity of the resin composition is B and the specific gravity of the cleaning liquid is C,
0.5 ≦ C / B ≦ 2
The method for producing a bonded semiconductor wafer according to the above (6), which satisfies the following relational expression:
 (8) 前記洗浄は、前記壁部が形成された前記半導体ウエハーまたは前記透明基板をその板面に垂直でかつ中心付近を通る軸線まわりに回転させながら、前記壁部と、当該壁部が形成された前記半導体ウエハーまたは前記透明基板とに前記洗浄液を付与することにより行う上記(6)または(7)に記載の半導体ウエハー接合体の製造方法。 (8) In the cleaning, the wall portion and the wall portion are formed while the semiconductor wafer or the transparent substrate on which the wall portion is formed is rotated around an axis line perpendicular to the plate surface and passing through the center. The method for producing a bonded semiconductor wafer according to (6) or (7), wherein the cleaning liquid is applied to the semiconductor wafer or the transparent substrate.
 (9) 前記洗浄は、前記半導体ウエハーまたは前記透明基板の前記壁部が設けられた面側を上方に向けた状態で行う上記(8)に記載の半導体ウエハー接合体の製造方法。 (9) The method for producing a bonded semiconductor wafer according to (8), wherein the cleaning is performed with the surface side of the semiconductor wafer or the transparent substrate provided with the wall portion facing upward.
 (10) 前記洗浄後、かつ、前記壁部に前記半導体ウエハーおよび前記透明基板のうちの他方を接合する工程の前に、前記洗浄液を除去する工程を有する上記(6)ないし(9)のいずれかに記載の半導体ウエハー接合体の製造方法。 (10) Any of the above (6) to (9) including a step of removing the cleaning liquid after the cleaning and before the step of bonding the other of the semiconductor wafer and the transparent substrate to the wall portion A method for producing a semiconductor wafer bonded body according to claim 1.
 (11) 前記洗浄液を除去する工程は、前記壁部が形成された前記半導体ウエハーまたは前記透明基板をその板面に垂直でかつ中心付近を通る軸線まわりに回転させることにより行う上記(10)に記載の半導体ウエハー接合体の製造方法。 (11) In the above (10), the step of removing the cleaning liquid is performed by rotating the semiconductor wafer or the transparent substrate on which the wall portion is formed around an axis that is perpendicular to the plate surface and passes near the center. The manufacturing method of the semiconductor wafer bonded body of description.
 (12) 上記(1)ないし(11)のいずれかに記載の方法により製造されたことを特徴とする半導体ウエハー接合体。 (12) A semiconductor wafer bonded body manufactured by the method according to any one of (1) to (11) above.
 (13) 半導体ウエハーと、該半導体ウエハーの一方の面側に対向配置された透明基板と、前記半導体ウエハーと前記透明基板との間に複数の空隙部を画成するように設けられた壁部を備えるスペーサとを有する半導体ウエハー接合体であって、
 前記壁部の幅をW[μm]とし、前記各壁部の高さをH[μm]としたとき、
 下記<1>~<3>の関係式をそれぞれ満たすことを特徴とする半導体ウエハー接合体。
 15≦W≦3000   ・・・<1>
 3≦H≦300     ・・・<2>
 0.10≦W/H≦900・・・<3>
(13) A semiconductor wafer, a transparent substrate disposed opposite to one surface of the semiconductor wafer, and a wall portion provided so as to define a plurality of gaps between the semiconductor wafer and the transparent substrate. A semiconductor wafer assembly having a spacer comprising:
When the width of the wall portion is W [μm] and the height of each wall portion is H [μm],
A bonded semiconductor wafer, which satisfies the following relational expressions <1> to <3>.
15 ≦ W ≦ 3000 ... <1>
3 ≦ H ≦ 300 (2)
0.10 <= W / H <= 900 ... <3>
 (14) 上記(12)または(13)に記載の半導体ウエハー接合体を個片化することにより得られたことを特徴とする半導体装置。 (14) A semiconductor device obtained by separating the semiconductor wafer assembly according to (12) or (13) above.
図1は、本発明の実施形態にかかる半導体装置を示す断面図である。FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention. 図2は、本発明の実施形態にかかる半導体ウエハー接合体を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing a semiconductor wafer bonded body according to an embodiment of the present invention. 図3は、図2に示す半導体ウエハー接合体を示す平面図である。FIG. 3 is a plan view showing the bonded semiconductor wafer shown in FIG. 図4は、図1に示す半導体装置(図2に示す半導体ウエハー接合体)の製造方法の一例を示す工程図である。4 is a process diagram showing an example of a method for manufacturing the semiconductor device shown in FIG. 1 (the semiconductor wafer bonded body shown in FIG. 2). 図5は、図1に示す半導体装置(図2に示す半導体ウエハー接合体)の製造方法の一例を示す工程図である。FIG. 5 is a process diagram showing an example of a method for manufacturing the semiconductor device shown in FIG. 1 (the semiconductor wafer bonded body shown in FIG. 2). 図6は、図1に示す半導体装置(図2に示す半導体ウエハー接合体)の製造方法の一例を示す工程図である。6 is a process diagram showing an example of a method for manufacturing the semiconductor device shown in FIG. 1 (the semiconductor wafer bonded body shown in FIG. 2). 図7は、図5(a)に示す現像処理を説明するための図である。FIG. 7 is a diagram for explaining the development processing shown in FIG. 図8は、図5(a)に示す現像処理における作用を説明するための図である。FIG. 8 is a diagram for explaining the operation in the development processing shown in FIG.
 以下、本発明の実施形態を添付図面に基づいて説明する。
 <半導体装置(イメージセンサ)>
 まず、本発明の半導体装置を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
<Semiconductor device (image sensor)>
First, the semiconductor device of the present invention will be described.
 図1は、本発明の実施形態にかかる半導体装置を示す断面図である。なお、以下の説明では、説明の便宜上、図1中の上側を「上」、下側を「下」と言う。 FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention. In the following description, for convenience of description, the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
 図1に示す半導体装置100は、CMOSイメージセンサーやCCDイメージセンサー等の受光装置である。 The semiconductor device 100 shown in FIG. 1 is a light receiving device such as a CMOS image sensor or a CCD image sensor.
 このような半導体装置(受光装置)100は、図1に示すように、ベース基板101と、ベース基板101に対向配置された透明基板102と、ベース基板101の透明基板102側の面上に設けられた受光部を含む個別回路103と、透明基板102と個別回路103との間に設けられたスペーサ104と、ベース基板101の個別回路103とは反対側の面上に設けられた半田バンプ106とを有する。なお、この半導体装置100は、後述する本発明の半導体ウエハー接合体1000を個片化することにより得られるものである。 As shown in FIG. 1, such a semiconductor device (light receiving device) 100 is provided on a base substrate 101, a transparent substrate 102 disposed so as to face the base substrate 101, and a surface of the base substrate 101 on the transparent substrate 102 side. The individual circuit 103 including the received light receiving portion, the spacer 104 provided between the transparent substrate 102 and the individual circuit 103, and the solder bump 106 provided on the surface of the base substrate 101 opposite to the individual circuit 103. And have. The semiconductor device 100 is obtained by separating a semiconductor wafer bonded body 1000 of the present invention described later.
 ベース基板101は、半導体基板であり、図示しない回路(後述する半導体ウエハーが備える個別回路)が設けられている。 The base substrate 101 is a semiconductor substrate and is provided with a circuit (not shown) (an individual circuit included in a semiconductor wafer described later).
 このようなベース基板101の一方の面(上面)上には、そのほぼ全面に亘って個別回路103が設けられている。 On the one surface (upper surface) of the base substrate 101, the individual circuit 103 is provided over almost the entire surface.
 個別回路103は、受光部を含むものであり、例えば、ベース基板101上に受光素子とマイクロレンズアレイとがこの順で積層された構成となっている。 The individual circuit 103 includes a light receiving portion, and has, for example, a configuration in which a light receiving element and a microlens array are stacked in this order on the base substrate 101.
 個別回路103が備える受光素子としては、例えば、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等が挙げられる。このような受光素子を備える個別回路103は、個別回路103で受光した光を電気信号に変換する。 Examples of the light receiving element included in the individual circuit 103 include a charge coupled device (CCD), a complementary metal oxide semiconductor (CMOS), and the like. The individual circuit 103 including such a light receiving element converts the light received by the individual circuit 103 into an electrical signal.
 透明基板102は、ベース基板101の一方の面(上面)に対向配置されており、ベース基板101の平面寸法と略同じ平面寸法となっている。 The transparent substrate 102 is disposed so as to face one surface (upper surface) of the base substrate 101, and has substantially the same planar dimension as the planar dimension of the base substrate 101.
 透明基板102としては、例えば、アクリル樹脂基板、ポリエチレンテレフタレート樹脂(PET)基板、ガラス基板等が挙げられる。 Examples of the transparent substrate 102 include an acrylic resin substrate, a polyethylene terephthalate resin (PET) substrate, and a glass substrate.
 スペーサ104は、個別回路103および透明基板102にそれぞれ直接接着されている。これにより、ベース基板101と透明基板102とがスペーサ104を介して接合されている。 The spacer 104 is directly bonded to the individual circuit 103 and the transparent substrate 102, respectively. Thereby, the base substrate 101 and the transparent substrate 102 are bonded via the spacer 104.
 また、スペーサ104は、個別回路103および透明基板102のそれぞれの外周縁部に沿うように枠状をなしている。これにより、個別回路103と透明基板102との間には、空隙部105が形成されている。 Further, the spacer 104 has a frame shape so as to follow the outer peripheral edge portions of the individual circuit 103 and the transparent substrate 102. As a result, a gap 105 is formed between the individual circuit 103 and the transparent substrate 102.
 ここで、個別回路103の中心部を取り囲むようにスペーサ104が設けられているが、個別回路103のうちスペーサ104によって取り囲まれた部分、すなわち空隙部105に露出している部分が実質的な個別回路として機能する。 Here, the spacer 104 is provided so as to surround the center of the individual circuit 103, but the part surrounded by the spacer 104 in the individual circuit 103, that is, the part exposed to the gap 105 is substantially individual. Functions as a circuit.
 半田バンプ106は、導電性を有し、ベース基板101の下面において、このベース基板101に設けられた配線と電気的に接続されている。これにより、個別回路103で光から変換された電気信号が半田バンプ106に伝達される。 The solder bump 106 has conductivity, and is electrically connected to the wiring provided on the base substrate 101 on the lower surface of the base substrate 101. As a result, an electrical signal converted from light by the individual circuit 103 is transmitted to the solder bump 106.
 <半導体ウエハー接合体>
 次に、本発明の半導体ウエハー接合体を説明する。
<Semiconductor wafer assembly>
Next, the semiconductor wafer bonded body of the present invention will be described.
 図2は、本発明の実施形態にかかる半導体ウエハー接合体を示す縦断面図、図3は、図2に示す半導体ウエハー接合体を示す平面図である。 FIG. 2 is a longitudinal sectional view showing a semiconductor wafer bonded body according to an embodiment of the present invention, and FIG. 3 is a plan view showing the semiconductor wafer bonded body shown in FIG.
 図2に示すように、半導体ウエハー接合体1000は、半導体ウエハー101’と、スペーサ12Aと、透明基板102’とが順に積層した積層体で構成されている。すなわち、半導体ウエハー接合体1000は、半導体ウエハー101’と透明基板102’とがスペーサ12Aを介して接合されている。 As shown in FIG. 2, the semiconductor wafer bonded body 1000 is composed of a laminated body in which a semiconductor wafer 101 ', a spacer 12A, and a transparent substrate 102' are sequentially laminated. That is, in the semiconductor wafer bonded body 1000, the semiconductor wafer 101 'and the transparent substrate 102' are bonded via the spacer 12A.
 半導体ウエハー101’は、後述するような個片化工程を経ることにより、上述したような半導体装置100のベース基板101となる基板である。
 また、半導体ウエハー101’には、複数の個別回路(図示せず)が設けられている。
The semiconductor wafer 101 ′ is a substrate that becomes the base substrate 101 of the semiconductor device 100 as described above by performing an individualization process as described later.
The semiconductor wafer 101 ′ is provided with a plurality of individual circuits (not shown).
 そして、半導体ウエハー101’の一方の面(上面)上には、上記各個別回路毎に対応して、上述したような個別回路103が形成されている。 Further, on the one surface (upper surface) of the semiconductor wafer 101 ′, the individual circuit 103 as described above is formed corresponding to each individual circuit.
 スペーサ12Aは、後述するような個片化工程を経ることにより、上述したような半導体装置100のスペーサ104となる部材である。 The spacer 12 </ b> A is a member that becomes the spacer 104 of the semiconductor device 100 as described above by going through an individualization process as described later.
 このスペーサ12Aは、半導体ウエハー101’と透明基板102’との間に複数の空隙部105を画成するように設けられた壁部104’を有する。 The spacer 12A has a wall portion 104 'provided so as to define a plurality of gaps 105 between the semiconductor wafer 101' and the transparent substrate 102 '.
 壁部104’は、複数の凸条を組み合わせたような形状をなしている。本実施形態では、壁部104’は、図3に示すように、平面視にて、複数の空隙部105がそれぞれ四角形状をなすとともに行列状に配置されるように形成されている。また、平面視したときに、複数の空隙部105が前述した半導体ウエハー101’上の複数の個別回路(個別回路103)に対応していて、壁部104’が半導体ウエハー101’上の各個別回路(個別回路103)を取り囲むように形成されている。 The wall 104 'has a shape that combines a plurality of ridges. In the present embodiment, as shown in FIG. 3, the wall portion 104 ′ is formed so that the plurality of gap portions 105 each have a quadrangular shape and are arranged in a matrix in a plan view. When viewed in plan, the plurality of gaps 105 correspond to the plurality of individual circuits (individual circuits 103) on the semiconductor wafer 101 ′ described above, and the wall 104 ′ corresponds to each individual circuit on the semiconductor wafer 101 ′. It is formed so as to surround the circuit (individual circuit 103).
 特に、このスペーサ12Aは、壁部104’(凸条)の幅をW[μm]とし、壁部104’(凸条)の高さをH[μm]としたとき、下記<1>~<3>の関係式をそれぞれ満たす。 In particular, the spacer 12A has the following <1> to <1> when the width of the wall 104 ′ (projection) is W [μm] and the height of the wall 104 ′ (projection) is H [μm]. 3> is satisfied.
 15≦W≦3000   ・・・<1>
 3≦H≦300     ・・・<2>
 0.10≦W/H≦900・・・<3>
 なお、上記<1>~<3>の関係式については、後に詳述する。
15 ≦ W ≦ 3000 ... <1>
3 ≦ H ≦ 300 (2)
0.10 <= W / H <= 900 ... <3>
The relational expressions <1> to <3> will be described in detail later.
 透明基板102’は、スペーサ12Aを介して半導体ウエハー101’に接合されている。 The transparent substrate 102 'is bonded to the semiconductor wafer 101' via the spacer 12A.
 この透明基板102’は、後述するような個片化工程を経ることにより、上述したような半導体装置100の透明基板102となる部材である。 The transparent substrate 102 ′ is a member that becomes the transparent substrate 102 of the semiconductor device 100 as described above by performing an individualization process as described later.
 このような半導体ウエハー接合体1000を後述するように個片化することにより、複数の半導体装置100を得ることができる。 A plurality of semiconductor devices 100 can be obtained by dividing such a semiconductor wafer bonded body 1000 into individual pieces as will be described later.
 <半導体装置(半導体ウエハー接合体)の製造方法>
 次に、本発明の半導体装置(半導体ウエハー接合体)の製造方法の好適な実施形態について説明する。なお、以下では、本発明の半導体ウエハー接合体の製造方法について、前述した半導体装置100および半導体ウエハー接合体1000を製造する場合を一例として説明する。
<Method for Manufacturing Semiconductor Device (Semiconductor Wafer Assembly)>
Next, a preferred embodiment of a method for manufacturing a semiconductor device (semiconductor wafer assembly) of the present invention will be described. In the following, a method for manufacturing a semiconductor wafer bonded body according to the present invention will be described by taking as an example the case where the semiconductor device 100 and the semiconductor wafer bonded body 1000 described above are manufactured.
 図4~図6は、それぞれ、図1に示す半導体装置(図2に示す半導体ウエハー接合体)の製造方法の一例を示す工程図、図7は、図5(a)に示す現像処理を説明するための図、図8は、図5(a)に示す現像処理における作用を説明するための図である。 4 to 6 are process diagrams showing an example of a manufacturing method of the semiconductor device shown in FIG. 1 (the semiconductor wafer bonded body shown in FIG. 2), and FIG. 7 explains the development processing shown in FIG. 5A. FIG. 8 is a diagram for explaining the operation in the development processing shown in FIG.
 半導体装置100の製造方法は、[A]半導体ウエハー接合体1000を製造する工程と、[B]半導体ウエハー接合体1000を個片化する工程とを有する。 The manufacturing method of the semiconductor device 100 includes [A] a process of manufacturing the semiconductor wafer bonded body 1000 and [B] a process of separating the semiconductor wafer bonded body 1000 into pieces.
 ここで、半導体ウエハー接合体1000の製造方法(上記工程[A])は、《A1》半導体ウエハー101’上にスペーサ形成層12を貼り付ける工程と、《A2》スペーサ形成層12を露光、現像により選択的に除去してスペーサ12Aを形成する工程と、《A3》スペーサ12Aの半導体ウエハー101’とは反対側の面に透明基板102’を接合する工程と、《A4》半導体ウエハー101’の下面に所定の加工または処理を施す工程とを有する。 Here, the manufacturing method of the semiconductor wafer bonded body 1000 (the above step [A]) includes << A1 >> a step of attaching the spacer formation layer 12 on the semiconductor wafer 101 ′, and << A2 >> exposure and development of the spacer formation layer 12 Forming the spacer 12A by selectively removing the transparent substrate 102 ′ on the surface of the spacer 12A opposite to the semiconductor wafer 101 ′, and “A4” of the semiconductor wafer 101 ′. And a step of performing predetermined processing or processing on the lower surface.
 以下、半導体装置100の製造方法の各工程を順次詳細に説明する。
 [A]半導体ウエハー接合体1000の製造工程
 《A1》半導体ウエハー101’上にスペーサ形成層12を貼り付ける工程
Hereinafter, each process of the manufacturing method of the semiconductor device 100 will be sequentially described in detail.
[A] Manufacturing Step of Semiconductor Wafer Bonded Body 1000 << A1 >> Step of Affixing Spacer Formation Layer 12 on Semiconductor Wafer 101 '
 A1-1
 まず、図4(a)に示すように、スペーサ形成用フィルム1を用意する。
A1-1
First, as shown in FIG. 4A, a spacer forming film 1 is prepared.
 このスペーサ形成用フィルム1は、支持基材11と、支持基材11上に支持されたスペーサ形成層12とを有している。 The spacer forming film 1 has a supporting base 11 and a spacer forming layer 12 supported on the supporting base 11.
 支持基材11は、シート状をなし、スペーサ形成層12を支持する機能を有する。
 この支持基材11は、光透過性を有している。これにより、後述する工程《A2》における露光処理において、支持基材11をスペーサ形成層12に付けたまま、支持基材11を介してスペーサ形成層12に露光光を照射することができる。
The support substrate 11 has a sheet shape and has a function of supporting the spacer forming layer 12.
This support base material 11 has optical transparency. Thereby, it is possible to irradiate the spacer forming layer 12 with exposure light through the support base material 11 while the support base material 11 is attached to the spacer forming layer 12 in the exposure process in the step << A2 >> described later.
 このような支持基材11の構成材料としては、前述したようなスペーサ形成層12を支持する機能および光透過性を有するものであれば、特に限定されないが、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)等が挙げられる。これらの中でも、支持基材11の構成材料としては、支持基材11の光透過性と破断強度のバランスを優れたものとすることができると言う点から、ポリエチレンテレフタレート(PET)を用いるのが好ましい。 The constituent material of the support base 11 is not particularly limited as long as it has the function of supporting the spacer forming layer 12 and the light transmittance as described above. For example, polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), etc. are mentioned. Among these, polyethylene terephthalate (PET) is used as the constituent material of the support substrate 11 because it can make the balance between the light transmittance and the breaking strength of the support substrate 11 excellent. preferable.
 このような支持基材11の平均厚さは、5~100μmであるのが好ましく、15~50μmであるのがより好ましい。これにより、スペーサ形成用フィルムの取り扱い性を良好なものとするとともに、スペーサ形成層のうち支持基材に接触している部分の厚さの均一化を図ることができる。 Such an average thickness of the support base 11 is preferably 5 to 100 μm, and more preferably 15 to 50 μm. Thereby, the handleability of the film for forming a spacer can be improved, and the thickness of the portion of the spacer forming layer that is in contact with the supporting substrate can be made uniform.
 これに対し、支持基材11の平均厚さが前記下限値未満であると、支持基材11がスペーサ形成層12を支持する機能を発揮することができない。一方、支持基材11の平均厚さが前記上限値を超えると、スペーサ形成用フィルム1の取り扱い性が低下する。 On the other hand, if the average thickness of the support substrate 11 is less than the lower limit value, the support substrate 11 cannot exhibit the function of supporting the spacer forming layer 12. On the other hand, when the average thickness of the support substrate 11 exceeds the upper limit, the handleability of the spacer forming film 1 is lowered.
 また、支持基材11の厚さ方向における露光光の透過率は、特に限定されないが、20%以上100%以下であるのが好ましく、40%以上100%以下であるのがより好ましい。これにより、後述する露光工程において、支持基材11を介してスペーサ形成層12に露光光を照射して露光処理を確実に行うことができる。 Further, the transmittance of the exposure light in the thickness direction of the support substrate 11 is not particularly limited, but is preferably 20% or more and 100% or less, and more preferably 40% or more and 100% or less. Thereby, in the exposure process mentioned later, exposure light can be reliably performed by irradiating exposure light to the spacer formation layer 12 via the support base material 11.
 一方、スペーサ形成層12は、半導体ウエハー101’の表面に対して接着性を有する。これにより、スペーサ形成層12と半導体ウエハー101’とを接着(接合)することができる。 On the other hand, the spacer forming layer 12 has adhesiveness to the surface of the semiconductor wafer 101 '. Thereby, the spacer forming layer 12 and the semiconductor wafer 101 ′ can be bonded (bonded).
 また、スペーサ形成層12は、光硬化性(感光性)を有する。これにより、後述する工程《A2》における露光処理および現像処理により、所望の形状となるようにパターンニングして、スペーサ12Aを形成することができる。 Further, the spacer forming layer 12 has photocurability (photosensitivity). Thus, the spacer 12A can be formed by patterning so as to have a desired shape by an exposure process and a development process in a process << A2 >> described later.
 また、スペーサ形成層12は、熱硬化性を有する。これにより、スペーサ形成層12は、後述する工程《A2》における露光処理を経た後であっても、熱硬化性による接着性を有する。したがって、後述する工程《A3》において、熱硬化によりスペーサ12Aと透明基板102’とを接合することができる。 Further, the spacer forming layer 12 has thermosetting properties. Thereby, the spacer formation layer 12 has adhesiveness by thermosetting even after performing the exposure process in process << A2 >> mentioned later. Therefore, in the step << A3 >> described later, the spacer 12A and the transparent substrate 102 'can be bonded by thermosetting.
 このようなスペーサ形成層12は、前述したような接着性、光硬化性および熱硬化性を有するものであれば、特に限定されないが、アルカリ可溶性樹脂と熱硬化性樹脂と光重合開始剤とを含む材料(以下、「樹脂組成物」と言う)で構成されているのが好ましい。 Such a spacer forming layer 12 is not particularly limited as long as it has adhesiveness, photocurability, and thermosetting properties as described above, but an alkali-soluble resin, a thermosetting resin, and a photopolymerization initiator are used. It is preferably composed of a material (hereinafter referred to as “resin composition”).
 以下、この樹脂組成物の各構成材料について詳述する。
 (アルカリ可溶性樹脂)
 アルカリ可溶性樹脂としては、例えば、クレゾール型、フェノール型、ビスフェノールA型、ビスフェノールF型、カテコール型、レゾルシノール型、ピロガロール型等のノボラック樹脂、フェノールアラルキル樹脂、ヒドロキシスチレン樹脂、メタクリル酸樹脂、メタクリル酸エステル樹脂等のアクリル系樹脂、水酸基およびカルボキシル基等を含む環状オレフィン系樹脂、ポリアミド系樹脂(具体的には、ポリベンゾオキサゾール構造およびポリイミド構造の少なくとも一方を有し、かつ主鎖または側鎖に水酸基、カルボキシル基、エーテル基またはエステル基を有する樹脂、ポリベンゾオキサゾール前駆体構造を有する樹脂、ポリイミド前駆体構造を有する樹脂、ポリアミド酸エステル構造を有する樹脂等)等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
Hereinafter, each constituent material of the resin composition will be described in detail.
(Alkali-soluble resin)
Examples of the alkali-soluble resin include novolak resins such as cresol type, phenol type, bisphenol A type, bisphenol F type, catechol type, resorcinol type, pyrogallol type, phenol aralkyl resin, hydroxystyrene resin, methacrylic acid resin, and methacrylic acid ester. Acrylic resins such as resins, cyclic olefin resins containing hydroxyl groups and carboxyl groups, polyamide resins (specifically, having at least one of a polybenzoxazole structure and a polyimide structure and having hydroxyl groups in the main chain or side chain Resin having a carboxyl group, an ether group or an ester group, a resin having a polybenzoxazole precursor structure, a resin having a polyimide precursor structure, a resin having a polyamic acid ester structure, and the like. It can be used singly or in combination of two or more.
 このようなアルカリ可溶性樹脂を含んで構成されたスペーサ形成層12は、環境に対する負荷のより少ないアルカリ現像性を有するものとなる。 The spacer forming layer 12 configured to include such an alkali-soluble resin has an alkali developability with less environmental load.
 特に、前述したアルカリ可溶性樹脂の中でも、アルカリ現像に寄与するアルカリ可溶性基および二重結合の双方を有するものを用いるのが好ましい。 In particular, among the alkali-soluble resins described above, those having both an alkali-soluble group contributing to alkali development and a double bond are preferably used.
 アルカリ可溶性基としては、例えば、水酸基、カルボキシル基等が挙げられる。このアルカリ可溶性基は、アルカリ現像に寄与することができるとともに、熱硬化反応に寄与することもできる。また、アルカリ可溶性樹脂は、二重結合を有していることにより、光硬化反応に寄与することができる。 Examples of the alkali-soluble group include a hydroxyl group and a carboxyl group. The alkali-soluble group can contribute to alkali development and can also contribute to a thermosetting reaction. Moreover, alkali-soluble resin can contribute to photocuring reaction by having a double bond.
 このようなアルカリ可溶性基および二重結合を有する樹脂としては、例えば、光および熱の両方で硬化可能な硬化性樹脂を挙げることができ、具体的には、例えば、アクリロイル基、メタクリロイル基およびビニル基等の光反応基を有する熱硬化性樹脂や、フェノール性水酸基、アルコール性水酸基、カルボキシル基、酸無水物基等の熱反応基を有する光硬化性樹脂等が挙げられる。このような光および熱の両方で硬化可能な硬化性樹脂をアルカリ可溶性樹脂として用いると、光硬化性樹脂と後述する熱硬化性樹脂との相溶性を向上させることができる。その結果、硬化後のスペーサ形成層12、すなわちスペーサ12Aの強度を高めることができる。 Examples of such a resin having an alkali-soluble group and a double bond include a curable resin that can be cured by both light and heat, and specifically, for example, an acryloyl group, a methacryloyl group, and a vinyl. And a thermosetting resin having a photoreactive group such as a group, and a photocurable resin having a thermoreactive group such as a phenolic hydroxyl group, an alcoholic hydroxyl group, a carboxyl group, and an acid anhydride group. When such a curable resin that can be cured by both light and heat is used as the alkali-soluble resin, the compatibility between the photocurable resin and the thermosetting resin described later can be improved. As a result, the strength of the spacer forming layer 12 after curing, that is, the spacer 12A can be increased.
 なお、熱反応基を有する光硬化性樹脂は、さらに、エポキシ基、アミノ基、シアネート基等の他の熱反応基を有していてもよい。かかる構成の光硬化性樹脂としては、具体的には、(メタ)アクリル変性フェノール樹脂、(メタ)アクリロイル基含有アクリル酸重合体およびカルボキシル基含有(エポキシ)アクリレート等が挙げられる。また、カルボキシル基含有アクリル樹脂のような熱可塑性樹脂であっても構わない。 In addition, the photocurable resin having a thermally reactive group may further have another thermally reactive group such as an epoxy group, an amino group, or a cyanate group. Specific examples of the photocurable resin having such a structure include (meth) acryl-modified phenolic resins, (meth) acryloyl group-containing acrylic acid polymers, carboxyl group-containing (epoxy) acrylates, and the like. Further, a thermoplastic resin such as a carboxyl group-containing acrylic resin may be used.
 以上のようなアルカリ可溶性基および二重結合を有する樹脂(光および熱の両方で硬化可能な硬化性樹脂)の中でも、(メタ)アクリル変性フェノール樹脂を用いるのが好ましい。(メタ)アクリル変性フェノール樹脂を用いれば、アルカリ可溶性基を含有することから、現像処理により未反応の樹脂を除去する際に、現像液として通常用いられる有機溶剤の代わりに、環境に対する負荷のより少ないアルカリ液を適用することができる。さらに、二重結合を含有することにより、この二重結合が硬化反応に寄与することとなり、その結果として、樹脂組成物の耐熱性を向上させることができる。また、(メタ)アクリル変性フェノール樹脂を用いることにより、半導体ウエハー接合体1000の反りの大きさを確実に小さくできる点からも(メタ)アクリル変性フェノール樹脂が好ましく用いられる。 Of the resins having an alkali-soluble group and a double bond as described above (a curable resin curable by both light and heat), it is preferable to use a (meth) acryl-modified phenol resin. If a (meth) acrylic modified phenolic resin is used, it contains an alkali-soluble group. Therefore, when an unreacted resin is removed by a development process, instead of an organic solvent that is usually used as a developer, the load on the environment is reduced. Less alkaline solution can be applied. Furthermore, by containing a double bond, the double bond contributes to the curing reaction, and as a result, the heat resistance of the resin composition can be improved. In addition, the (meth) acryl-modified phenol resin is preferably used from the viewpoint that the warpage of the semiconductor wafer bonded body 1000 can be reliably reduced by using the (meth) acryl-modified phenol resin.
 (メタ)アクリル変性フェノール樹脂としては、例えば、ビスフェノール類が備える水酸基と、エポキシ基および(メタ)アクリロイル基を有する化合物のエポキシ基とを反応させて得られた、(メタ)アクリロイル変性ビスフェノール樹脂が挙げられる。 As the (meth) acryl-modified phenol resin, for example, a (meth) acryloyl-modified bisphenol resin obtained by reacting a hydroxyl group of a bisphenol with an epoxy group of a compound having an epoxy group and a (meth) acryloyl group is used. Can be mentioned.
 具体的には、このような(メタ)アクリロイル変性ビスフェノール樹脂としては、例えば、下記化1に示すようなものが挙げられる。 Specifically, examples of such a (meth) acryloyl-modified bisphenol resin include those shown in Chemical Formula 1 below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、上記の他に、アルカリ可溶性基および二重結合を有する樹脂としては、エポキシ樹脂の両末端に(メタ)アクリロイル基が導入された(メタ)アクリロイル変性エポキシ樹脂の分子鎖中に、この(メタ)アクリロイル変性エポキシ樹脂の分子鎖中の水酸基と、二塩基酸中の一つのカルボキシル基とがエステル結合で結合することにより、二塩基酸が導入されている化合物(なお、この化合物中のエポキシ樹脂の繰り返し単位は1以上、分子鎖中に導入されている二塩基酸の数は1以上)が挙げられる。なお、かかる化合物は、例えば、先ず、エピクロルヒドリンと多価アルコールとを重合させて得られるエポキシ樹脂の両末端のエポキシ基と、(メタ)アクリル酸とを反応させることにより、エポキシ樹脂の両末端に(メタ)アクリロイル基が導入された(メタ)アクリロイル変性エポキシ樹脂を得、次いで、得られた(メタ)アクリロイル変性エポキシ樹脂の分子鎖中の水酸基と、二塩基酸の無水物を反応させることにより、この二塩基酸の一方のカルボキシル基とエステル結合を形成させることにより得られる。 In addition to the above, as a resin having an alkali-soluble group and a double bond, in the molecular chain of a (meth) acryloyl-modified epoxy resin in which a (meth) acryloyl group is introduced at both ends of the epoxy resin, A compound in which a dibasic acid is introduced by bonding a hydroxyl group in the molecular chain of the (meth) acryloyl-modified epoxy resin and one carboxyl group in the dibasic acid by an ester bond (in addition, an epoxy in this compound) The repeating unit of the resin is 1 or more, and the number of dibasic acids introduced into the molecular chain is 1 or more. In addition, such a compound, for example, first, by reacting an epoxy group at both ends of an epoxy resin obtained by polymerizing epichlorohydrin and a polyhydric alcohol and (meth) acrylic acid, at both ends of the epoxy resin. By obtaining a (meth) acryloyl-modified epoxy resin having a (meth) acryloyl group introduced, and then reacting the hydroxyl group in the molecular chain of the obtained (meth) acryloyl-modified epoxy resin with an anhydride of a dibasic acid It is obtained by forming an ester bond with one carboxyl group of this dibasic acid.
 ここで、光反応基を有する熱硬化性樹脂を用いる場合、この光反応基の変性率(置換率)は、特に限定されないが、アルカリ可溶性基および二重結合を有する樹脂の反応基全体の20~80%程度であるのが好ましく、30~70%程度であるのがより好ましい。光反応基の変性量を上記の範囲とすることで、特に解像性に優れる樹脂組成物を提供することができる。 Here, when a thermosetting resin having a photoreactive group is used, the modification rate (substitution rate) of the photoreactive group is not particularly limited, but 20% of the total reactive groups of the resin having an alkali-soluble group and a double bond. It is preferably about 80%, more preferably about 30-70%. By setting the modification amount of the photoreactive group within the above range, a resin composition having particularly excellent resolution can be provided.
 一方、熱反応基を有する光硬化性樹脂を用いる場合、この熱反応基の変性率(置換率)は、特に限定されないが、アルカリ可溶性基および二重結合を有する樹脂の反応基全体の20~80%程度であるのが好ましく、30~70%程度であるのがより好ましい。熱反応基の変性量を上記の範囲とすることで、特に解像性に優れる樹脂組成物を提供することができる。 On the other hand, when a photocurable resin having a thermally reactive group is used, the modification rate (substitution rate) of the thermally reactive group is not particularly limited, but is 20 to 20% of the total reactive group of the resin having an alkali-soluble group and a double bond. It is preferably about 80%, more preferably about 30 to 70%. By setting the modification amount of the heat-reactive group within the above range, it is possible to provide a resin composition that is particularly excellent in resolution.
 また、アルカリ可溶性樹脂としてアルカリ可溶性基および二重結合を有する樹脂を用いる場合、この樹脂の重量平均分子量は、特に限定されないが、30000以下であることが好ましく、5000~150000程度であるのがより好ましい。重量平均分子量が前記範囲内であると、支持基材11上にスペーサ形成層12を形成する際の成膜性に特に優れるものとなる。 Further, when a resin having an alkali-soluble group and a double bond is used as the alkali-soluble resin, the weight average molecular weight of the resin is not particularly limited, but is preferably 30000 or less, more preferably about 5000 to 150,000. preferable. When the weight average molecular weight is within the above range, the film formability when the spacer forming layer 12 is formed on the support substrate 11 is particularly excellent.
 ここで、アルカリ可溶性樹脂の重量平均分子量は、例えばG.P.C.を用いて評価でき、予め、スチレン標準物質を用いて作成された検量線により重量平均分子量を算出することができる。その際、測定溶媒としてテトラヒドロフラン(THF)を用い、40℃の温度条件下で測定する。 Here, the weight average molecular weight of the alkali-soluble resin is, for example, G.P. P. C. The weight average molecular weight can be calculated from a calibration curve prepared in advance using a styrene standard substance. At that time, tetrahydrofuran (THF) is used as a measurement solvent, and measurement is performed at a temperature of 40 ° C.
 また、樹脂組成物におけるアルカリ可溶性樹脂の含有量は、特に限定されないが、この樹脂組成物全体に対して、15~50wt%程度であるのが好ましく、20~40wt%程度であるのがより好ましい。また、樹脂組成物が後述する充填材を含有する場合、アルカリ可溶性樹脂の含有量は、樹脂組成物の樹脂成分(充填材を除く全部の成分)に対して、10~80wt%程度であるのが好ましく、15~70wt%程度であるのがより好ましい。 Further, the content of the alkali-soluble resin in the resin composition is not particularly limited, but it is preferably about 15 to 50 wt%, more preferably about 20 to 40 wt% with respect to the entire resin composition. . Further, when the resin composition contains a filler described later, the content of the alkali-soluble resin is about 10 to 80 wt% with respect to the resin components of the resin composition (all components except the filler). It is preferably about 15 to 70 wt%.
 アルカリ可溶性樹脂の含有量を上記の範囲内とすることで、スペーサ形成層12中におけるアルカリ可溶性樹脂および後述する熱硬化性樹脂の配合バランスを最適化することができる。そのため、後述する工程《A2》の露光処理および現像処理におけるスペーサ形成層12のパターンニングの解像性および現像性を優れたものとしつつ、その後のスペーサ形成層12、すなわちスペーサ12Aの接着性を良好なものとすることができる。 By setting the content of the alkali-soluble resin within the above range, the blending balance of the alkali-soluble resin and the thermosetting resin described later in the spacer forming layer 12 can be optimized. Therefore, while making the resolution and developability of the patterning of the spacer forming layer 12 excellent in the exposure process and the developing process in the process << A2 >> described later, the adhesion of the spacer forming layer 12, that is, the spacer 12A is improved. It can be good.
 これに対し、アルカリ可溶性樹脂の含有量が前記下限値未満であると、アルカリ可溶性樹脂による樹脂組成物中の他の成分(例えば、後述する光硬化性樹脂)との相溶性を向上させる効果が低下する場合がある。一方、アルカリ可溶性樹脂の含有量が前記上限値を超えると、現像性またはフォトリソグラフィ技術により形成されるスペーサ12Aのパターニングの解像性が低下するおそれがある。 On the other hand, when the content of the alkali-soluble resin is less than the lower limit, there is an effect of improving the compatibility with other components (for example, a photocurable resin described later) in the resin composition using the alkali-soluble resin. May decrease. On the other hand, if the content of the alkali-soluble resin exceeds the upper limit, the developability or the resolution of the patterning of the spacer 12A formed by the photolithography technique may be deteriorated.
 (熱硬化性樹脂)
 熱硬化性樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、レゾールフェノール樹脂等のフェノール樹脂、ビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂等のビスフェノール型エポキシ樹脂、ノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等のエポキシ樹脂、ユリア(尿素)樹脂、メラミン樹脂等のトリアジン環を有する樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、シアネートエステル樹脂、エポキシ変性シロキサン等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
(Thermosetting resin)
Examples of the thermosetting resin include phenol novolak resins, cresol novolak resins, novolac type phenol resins such as bisphenol A novolak resin, phenol resins such as resol phenol resin, bisphenol type epoxy such as bisphenol A epoxy resin and bisphenol F epoxy resin. Resin, novolak epoxy resin, cresol novolak epoxy resin, etc., novolak epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, di Epoxy resins such as cyclopentadiene-modified phenolic epoxy resins, urea (urea) resins, resins having a triazine ring such as melamine resins, unsaturated polymers Examples include ester resins, bismaleimide resins, polyurethane resins, diallyl phthalate resins, silicone resins, resins having a benzoxazine ring, cyanate ester resins, epoxy-modified siloxanes, and the like. Can do.
 このような熱硬化性樹脂を含んで構成されたスペーサ形成層12は、露光、現像した後でも、その硬化により接着性を発揮するものとなる。これにより、スペーサ形成層12と半導体ウエハー101’とを接合して、露光、現像した後、透明基板102をスペーサ形成層12(スペーサ12A)に熱圧着することができる。 The spacer forming layer 12 including such a thermosetting resin exhibits adhesiveness even after being exposed to light and developed. Thus, after the spacer forming layer 12 and the semiconductor wafer 101 'are bonded, exposed and developed, the transparent substrate 102 can be thermocompression bonded to the spacer forming layer 12 (spacer 12A).
 なお、この熱硬化性樹脂としては、前述したアルカリ可溶性樹脂として、熱で硬化可能な硬化性樹脂を用いた場合には、この樹脂とは異なるものが選択される。 In addition, as this thermosetting resin, when a curable resin that can be cured by heat is used as the aforementioned alkali-soluble resin, a resin different from this resin is selected.
 また、上記の熱硬化性樹脂の中でも、特に、エポキシ樹脂を用いるのが好ましい。これにより、硬化後のスペーサ形成層12(スペーサ12A)の耐熱性および透明基板102との密着性をより向上させることができる。 Of the above-mentioned thermosetting resins, it is particularly preferable to use an epoxy resin. Thereby, the heat resistance of the spacer forming layer 12 (spacer 12A) after curing and the adhesion to the transparent substrate 102 can be further improved.
 さらに、熱硬化性樹脂としてエポキシ樹脂を用いる場合、エポキシ樹脂としては、室温で固形のエポキシ樹脂(特にビスフェノール型エポキシ樹脂)と、室温で液状のエポキシ樹脂(特に室温で液状のシリコーン変性エポキシ樹脂)とを併用することが好ましい。これにより、優れた耐熱性を維持しつつ、可撓性と解像性との両方に優れるスペーサ形成層12をとすることができる。 Furthermore, when an epoxy resin is used as the thermosetting resin, the epoxy resin includes an epoxy resin that is solid at room temperature (particularly bisphenol type epoxy resin) and an epoxy resin that is liquid at room temperature (particularly a silicone-modified epoxy resin that is liquid at room temperature). It is preferable to use together. Thereby, it is possible to obtain the spacer forming layer 12 that is excellent in both flexibility and resolution while maintaining excellent heat resistance.
 樹脂組成物における熱硬化性樹脂の含有量は、特に限定されないが、この樹脂組成物全体に対して、10~40wt%程度であるのが好ましく、15~35wt%程度であるのがより好ましい。熱硬化性樹脂の含有量が前記下限値未満であると、熱硬化性樹脂によるスペーサ形成層12の耐熱性を向上する効果が低下する場合がある。一方、熱硬化性樹脂の含有量が前記上限値を超えると、熱硬化性樹脂によるスペーサ形成層12の靭性を向上させる効果が低下する場合がある。 The content of the thermosetting resin in the resin composition is not particularly limited, but is preferably about 10 to 40 wt%, more preferably about 15 to 35 wt% with respect to the entire resin composition. If the content of the thermosetting resin is less than the lower limit, the effect of improving the heat resistance of the spacer forming layer 12 by the thermosetting resin may be reduced. On the other hand, if the content of the thermosetting resin exceeds the upper limit, the effect of improving the toughness of the spacer forming layer 12 by the thermosetting resin may be reduced.
 また、熱硬化性樹脂として上述したようなエポキシ樹脂を用いる場合、熱硬化性樹脂には、このエポキシ樹脂の他に、フェノールノボラック樹脂をさらに含んでいるのが好ましい。エポキシ樹脂にフェノールノボラック樹脂を添加することにより、得られるスペーサ形成層12の現像性を向上させることができる。さらに、樹脂組成物中の熱硬化性樹脂としてエポキシ樹脂とフェノールノボラック樹脂との双方を含ませることにより、エポキシ樹脂の熱硬化性がより向上し、形成されるスペーサ104の強度をさらに向上させることができるという利点も得られる。 Further, when the above-described epoxy resin is used as the thermosetting resin, it is preferable that the thermosetting resin further contains a phenol novolac resin in addition to the epoxy resin. By adding a phenol novolac resin to the epoxy resin, the developability of the resulting spacer forming layer 12 can be improved. Furthermore, by including both an epoxy resin and a phenol novolac resin as the thermosetting resin in the resin composition, the thermosetting property of the epoxy resin is further improved, and the strength of the spacer 104 to be formed is further improved. The advantage of being able to
 (光重合開始剤)
 光重合開始剤としては、例えば、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインイソブチルエーテル、ベンゾイン安息香酸メチル、ベンゾイン安息香酸、ベンゾインメチルエーテル、ベンジルフィニルサルファイド、ベンジル、ジベンジル、ジアセチル、ベンジルジメチルケタール等が挙げられる。
(Photopolymerization initiator)
Examples of the photopolymerization initiator include benzophenone, acetophenone, benzoin, benzoin isobutyl ether, methyl benzoin benzoate, benzoin benzoic acid, benzoin methyl ether, benzylfinyl sulfide, benzyl, dibenzyl, diacetyl, benzyldimethyl ketal, and the like. .
 このような光重合開始剤を含んで構成されたスペーサ形成層12は、光重合をにより効率良くパターニングすることができる。 The spacer forming layer 12 including such a photopolymerization initiator can be more efficiently patterned by photopolymerization.
 樹脂組成物中における光重合開始剤の含有量は、特に限定されないが、この樹脂組成物全体に対して、0.5~5wt%程度であるのが好ましく、0.8~3.0wt%程度であるのがより好ましい。光重合開始剤の含有量が下限値未満であると、スペーサ形成層12の光重合を開始する効果が十分に得られない場合がある。一方、光重合開始剤の含有量が前記上限値を超えると、スペーサ形成層12の反応性が高くなり、保存性や解像性が低下する場合がある。 The content of the photopolymerization initiator in the resin composition is not particularly limited, but is preferably about 0.5 to 5 wt%, and about 0.8 to 3.0 wt% with respect to the entire resin composition. It is more preferable that If the content of the photopolymerization initiator is less than the lower limit, the effect of initiating the photopolymerization of the spacer forming layer 12 may not be sufficiently obtained. On the other hand, when the content of the photopolymerization initiator exceeds the upper limit, the reactivity of the spacer forming layer 12 is increased, and the storage stability and resolution may be deteriorated.
 (光重合性樹脂)
 スペーサ形成層12を構成する樹脂組成物は、上記成分の他、光重合性樹脂を含んでいるのが好ましい。これにより、得られるスペーサ形成層12のパターニング性をより向上させることができる。
(Photopolymerizable resin)
The resin composition constituting the spacer forming layer 12 preferably contains a photopolymerizable resin in addition to the above components. Thereby, the patternability of the spacer formation layer 12 obtained can be improved more.
 なお、この光重合性樹脂としては、前述したアルカリ可溶性樹脂として、光で硬化可能な硬化性樹脂を用いた場合には、この樹脂とは異なるものが選択される。 In addition, as this photopolymerizable resin, when a curable resin curable with light is used as the alkali-soluble resin described above, a resin different from this resin is selected.
 光重合性樹脂としては、特に限定されないが、例えば、不飽和ポリエステル、アクリロイル基またはメタクリロイル基を、一分子中に少なくとも1個以上有するアクリル系モノマーやオリゴマー等のアクリル系化合物、スチレン等のビニル系化合物等が挙げられ、これらは単独で用いることも可能であり、また、2種類以上を混合して用いることもできる。 The photopolymerizable resin is not particularly limited. For example, an unsaturated polyester, an acrylic compound such as an acrylic monomer or oligomer having at least one acryloyl group or methacryloyl group in one molecule, or a vinyl type such as styrene. Examples thereof include compounds, and these can be used alone or in combination of two or more.
 これらの中でも、アクリル系化合物を主成分とする紫外線硬化性樹脂が好ましい。アクリル系化合物は、光を照射した際の硬化速度が速く、これにより、比較的少量の露光量で樹脂をパターニングすることができる。 Among these, an ultraviolet curable resin mainly composed of an acrylic compound is preferable. Acrylic compounds have a high curing rate when irradiated with light, and thus can pattern a resin with a relatively small amount of exposure.
 このアクリル系化合物としては、アクリル酸エステルまたはメタクリル酸エステルのモノマー等が挙げられ、具体的には、エチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレートのような2官能(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートのような三官能(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートのような四官能(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートのような六官能(メタ)アクリレート等が挙げられる。 Examples of the acrylic compound include monomers of acrylic acid ester or methacrylic acid ester, and specifically include ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) acrylate. ) Acrylate, bifunctional (meth) acrylate such as 1,10-decandiol di (meth) acrylate, trifunctional (meth) acrylate such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Tetrafunctional (meth) acrylates such as pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, hexafunctional (meth) acrylates such as dipentaerythritol hexa (meth) acrylate, etc. It is below.
 これらのアクリル系化合物の中でも、アクリル系多官能モノマーを用いるのが好ましい。これにより、スペーサ形成層12から得られるスペーサ104を優れた強度を発揮するものとすることができる。その結果、このスペーサ104を備える半導体装置100は、形状保持性により優れたものとなる。 Among these acrylic compounds, it is preferable to use an acrylic polyfunctional monomer. Thereby, the spacer 104 obtained from the spacer formation layer 12 can exhibit excellent strength. As a result, the semiconductor device 100 including the spacer 104 is more excellent in shape retention.
 なお、本明細書中において、アクリル系多官能モノマーとは、3官能以上のアクリロイル基またはメタアクリロイル基を有する(メタ)アクリル酸エステルのモノマーのことを言うこととする。 In the present specification, the acrylic polyfunctional monomer means a monomer of (meth) acrylic acid ester having a tri- or higher functional acryloyl group or methacryloyl group.
 さらに、アクリル系多官能モノマーの中でも、特に、三官能(メタ)アクリレートまたは四官能(メタ)アクリレートを用いるのが好ましい。これにより、前記効果がより顕著となる。 Furthermore, among the acrylic polyfunctional monomers, it is particularly preferable to use trifunctional (meth) acrylate or tetrafunctional (meth) acrylate. Thereby, the effect becomes more remarkable.
 なお、光重合性樹脂として、アクリル系多官能モノマーを用いる場合、さらに、エポキシビニルエステル樹脂を含有するのが好ましい。これにより、スペーサ形成層12の露光時には、アクリル系多官能モノマーとエポキシビニルエステル樹脂とがラジカル重合するため、形成されるスペーサ104の強度をより効果的に高めることができる。また、現像時には、スペーサ形成層12の露光していない部分のアルカリ現像液に対する溶解性を向上させることができるため、現像後の残渣を低減することができる。 In addition, when using an acrylic polyfunctional monomer as the photopolymerizable resin, it is preferable to further contain an epoxy vinyl ester resin. Thereby, at the time of exposure of the spacer formation layer 12, since an acrylic polyfunctional monomer and epoxy vinyl ester resin carry out radical polymerization, the intensity | strength of the spacer 104 formed can be raised more effectively. Moreover, since the solubility with respect to the alkali developing solution of the part which is not exposed of the spacer formation layer 12 can be improved at the time of image development, the residue after image development can be reduced.
 エポキシビニルエステル樹脂としては、2-ヒドロキシ-3-フェノキシプロピルアクリレート、エポライト40Eメタクリル付加物、エポライト70Pアクリル酸付加物、エポライト200Pアクリル酸付加物、エポライト80MFアクリル酸付加物、エポライト3002メタクリル酸付加物、エポライト3002アクリル酸付加物、エポライト1600アクリル酸付加物、ビスフェノールAジグリシジルエーテルメタクリル酸付加物、ビスフェノールAジグリシジルエーテルアクリル酸付加物、エポライト200Eアクリル酸付加物、エポライト400Eアクリル酸付加物等が挙げられる。 Epoxy vinyl ester resins include 2-hydroxy-3-phenoxypropyl acrylate, Epolite 40E methacrylic adduct, Epolite 70P acrylic acid adduct, Epolite 200P acrylic acid adduct, Epolite 80MF acrylic acid adduct, Epolite 3002 methacrylic acid adduct. Epolite 3002 acrylic acid adduct, Epolite 1600 acrylic acid adduct, bisphenol A diglycidyl ether methacrylic acid adduct, bisphenol A diglycidyl ether acrylic acid adduct, Epolite 200E acrylic acid adduct, Epolite 400E acrylic acid adduct, etc. Can be mentioned.
 光重合性樹脂にアクリル系多官能ポリマーが含まれる場合、樹脂組成物におけるアクリル系多官能ポリマーの含有量は、特に限定されないが、この樹脂組成物全体において、1~50wt%程度であるのが好ましく、5%~25wt%程度であるのがより好ましい。これにより、露光後のスペーサ形成層12すなわちスペーサ104の強度をより効果的に向上させることができ、半導体ウエハー101’と透明基板102とを貼り合せる際の形状保持性をより効果的に向上させることができる。 When the acrylic polyfunctional polymer is contained in the photopolymerizable resin, the content of the acrylic polyfunctional polymer in the resin composition is not particularly limited, but is about 1 to 50 wt% in the entire resin composition. It is preferably about 5% to 25% by weight. Thereby, the strength of the spacer forming layer 12 after exposure, that is, the spacer 104 can be improved more effectively, and the shape retention property when the semiconductor wafer 101 ′ and the transparent substrate 102 are bonded can be improved more effectively. be able to.
 さらに、光重合性樹脂に、アクリル系多官能ポリマーの他にエポキシビニルエステル樹脂を含有する場合、エポキシビニルエステル樹脂の含有量は、特に限定されないが、樹脂組成物全体に対して、3~30wt%程度であるのが好ましく、5%~15wt%程度であるのがより好ましい。これにより、半導体ウエハー101’と透明基板102’との貼り付け後における、半導体ウエハー101’および透明基板102’の各表面に残存する異物の残存率をより効果的に低減させることができる。 Further, when the photopolymerizable resin contains an epoxy vinyl ester resin in addition to the acrylic polyfunctional polymer, the content of the epoxy vinyl ester resin is not particularly limited, but is 3 to 30 wt% with respect to the entire resin composition. %, Preferably about 5% to 15 wt%. Thereby, the residual rate of the foreign matters remaining on the surfaces of the semiconductor wafer 101 ′ and the transparent substrate 102 ′ after the bonding of the semiconductor wafer 101 ′ and the transparent substrate 102 ′ can be more effectively reduced.
 また、以上のような光重合性樹脂は、常温で液状であることが好ましい。これにより、スペーサ形成層12の光照射(例えば、紫外線照射)による硬化反応性をより向上させることができる。また、樹脂組成物中における光従構成樹脂とその他の配合成分(例えば、アルカリ可溶性樹脂)との混合作業を容易にすることができる。常温で液状の光重合性樹脂としては、例えば、前述したアクリル化合物を主成分とする紫外線硬化性樹脂等が挙げられる。 Further, the photopolymerizable resin as described above is preferably liquid at normal temperature. Thereby, the curing reactivity by the light irradiation (for example, ultraviolet irradiation) of the spacer formation layer 12 can be improved more. Moreover, the mixing operation | work with the optical slave constituent resin and other compounding components (for example, alkali-soluble resin) in a resin composition can be made easy. Examples of the photopolymerizable resin that is liquid at normal temperature include, for example, an ultraviolet curable resin mainly composed of the acrylic compound described above.
 なお、光重合性樹脂の重量平均分子量は、特に限定されないが、5,000以下であるのが好ましく、150~3000程度であるのがより好ましい。重量平均分子量が前記範囲内であると、スペーサ形成層12の感度に特に優れる。さらに、スペーサ形成層12の解像性にも優れる。 The weight average molecular weight of the photopolymerizable resin is not particularly limited, but is preferably 5,000 or less, and more preferably about 150 to 3,000. When the weight average molecular weight is within the above range, the sensitivity of the spacer forming layer 12 is particularly excellent. Furthermore, the resolution of the spacer formation layer 12 is also excellent.
 ここで、光重合性樹脂の重量平均分子量は、例えばG.P.C.を用いて評価でき、前述したのと同様の方法を用いて算出することができる。 Here, the weight average molecular weight of the photopolymerizable resin is, for example, G.P. P. C. And can be calculated using the same method as described above.
 (無機充填材)
 なお、スペーサ形成層12を構成する樹脂組成物中には、無機充填材を含有していてもよい。これにより、スペーサ形成層12により形成されるスペーサ104の強度をより向上させることができる。
(Inorganic filler)
In addition, the resin composition constituting the spacer forming layer 12 may contain an inorganic filler. Thereby, the strength of the spacer 104 formed by the spacer forming layer 12 can be further improved.
 ただし、樹脂組成物中における無機充填材の含有量が大きくなり過ぎると、スペーサ形成層12の現像後に半導体ウエハー101’上に無機充填材に起因する異物が付着したり、アンダーカットが発生してしまうという問題が生じる。そのため、樹脂組成物における無機充填材の含有量は、この樹脂組成物全体に対して、60wt%以下とするのが好ましく、40wt%以下とするのがさらに好ましく、0wt%以下とする(実質的に含まない)のが特に好ましい。 However, if the content of the inorganic filler in the resin composition becomes too large, foreign matter due to the inorganic filler adheres to the semiconductor wafer 101 ′ after the development of the spacer forming layer 12, or undercut occurs. Problem arises. Therefore, the content of the inorganic filler in the resin composition is preferably 60 wt% or less, more preferably 40 wt% or less, and more preferably 0 wt% or less (substantially) with respect to the entire resin composition. In particular).
 また、光重合性樹脂として、アクリル系多官能モノマーを含有する場合には、アクリル系多官能モノマーの添加により、スペーサ形成層12により形成されるスペーサ12Aの強度を十分に向上させることができるので、樹脂組成物中への無機充填材の添加を省略することができる。 Further, when an acrylic polyfunctional monomer is contained as a photopolymerizable resin, the strength of the spacer 12A formed by the spacer forming layer 12 can be sufficiently improved by adding the acrylic polyfunctional monomer. The addition of an inorganic filler into the resin composition can be omitted.
 無機充填材としては、例えば、アルミナ繊維、ガラス繊維のような繊維状充填材、チタン酸カリウム、ウォラストナイト、アルミニウムボレート、針状水酸化マグネシウム、ウィスカーのような針状充填材、タルク、マイカ、セリサイト、ガラスフレーク、鱗片状黒鉛、板状炭酸カルシウムのような板状充填材、炭酸カルシウム、シリカ、溶融シリカ、焼成クレー、未焼成クレーのような球状(粒状)充填材、ゼオライト、シリカゲルのような多孔質充填材等が挙げられる。これらを1種または2種以上混合して用いることもできる。これらの中でも、特に、多孔質充填材を用いるのが好ましい。 Examples of inorganic fillers include fibrous fillers such as alumina fibers and glass fibers, potassium titanate, wollastonite, aluminum borate, acicular magnesium hydroxide, acicular fillers such as whiskers, talc, and mica. , Sericite, glass flakes, flake graphite, platy fillers such as platy calcium carbonate, spherical fillers such as calcium carbonate, silica, fused silica, calcined clay, unfired clay, zeolite, silica gel And the like, and the like. These may be used alone or in combination. Among these, it is particularly preferable to use a porous filler.
 無機充填材の平均粒子径は、特に限定されないが、0.01~90μm程度であるのが好ましく、0.1~40μm程度であるのがより好ましい。平均粒子径が前記上限値を超えると、スペーサ形成層12の外観異常や解像性不良となるおそれがある。また、平均粒子径が前記下限値未満であると、スペーサ104の透明基板102に対する加熱貼り付け時の接着不良となるおそれがある。 The average particle size of the inorganic filler is not particularly limited, but is preferably about 0.01 to 90 μm, and more preferably about 0.1 to 40 μm. When the average particle diameter exceeds the upper limit, there is a risk that the appearance of the spacer forming layer 12 may be abnormal or the resolution may be poor. Further, if the average particle diameter is less than the lower limit value, there is a risk of poor adhesion when the spacer 104 is heated and pasted to the transparent substrate 102.
 なお、平均粒子径は、例えばレーザ回折式粒度分布測定装置SALD-7000((株)島津製作所製)を用いて評価することができる。 The average particle size can be evaluated using, for example, a laser diffraction particle size distribution analyzer SALD-7000 (manufactured by Shimadzu Corporation).
 また、無機充填材として多孔質充填材を用いる場合、この多孔質充填材の平均空孔径は、0.1~5nm程度であるのが好ましく、0.3~1nm程度であるのがより好ましい。 Further, when a porous filler is used as the inorganic filler, the average pore diameter of the porous filler is preferably about 0.1 to 5 nm, and more preferably about 0.3 to 1 nm.
 スペーサ形成層12を構成する樹脂組成物は、上述した成分に加え、本発明の目的を損なわない範囲で可塑性樹脂、レベリング剤、消泡剤、カップリング剤等の添加剤を含有することができる。 The resin composition constituting the spacer forming layer 12 can contain additives such as a plastic resin, a leveling agent, an antifoaming agent, and a coupling agent within the range not impairing the object of the present invention in addition to the above-described components. .
 上述したような樹脂組成物によりスペーサ形成層12を構成することにより、スペーサ形成層12の可視光の透過率をより好適なものとすることができ、露光工程における露光不良をより効果的に防止することができる。その結果、より信頼性の高い半導体装置100を提供することができる。 By constituting the spacer forming layer 12 with the resin composition as described above, the visible light transmittance of the spacer forming layer 12 can be made more suitable, and exposure defects in the exposure process can be more effectively prevented. can do. As a result, the semiconductor device 100 with higher reliability can be provided.
 このようなスペーサ形成層12の平均厚さ(貼着後の厚さ)は、特に限定されないが、3~300μmであるのが好ましい。これにより、スペーサ104が必要な大きさの空隙部105を形成するとともに、後述する露光工程において、支持基材11を介してスペーサ形成層12に露光光を照射して露光処理を確実に行うことができる。 The average thickness (thickness after pasting) of the spacer forming layer 12 is not particularly limited, but is preferably 3 to 300 μm. Thereby, the spacer 104 forms the gap 105 having a necessary size, and in the exposure process described later, the exposure light is irradiated to the spacer forming layer 12 through the support base material 11 and the exposure process is reliably performed. Can do.
 これに対し、スペーサ形成層12の平均厚さが前記下限値未満であると、スペーサ104が必要な大きさの空隙部105を形成することができない。一方、スペーサ形成層12の平均厚さが前記上限値を超えると、均一な厚さのスペーサ104を形成するのが難しい。また、後述する露光工程において、支持基材11を介してスペーサ形成層12に露光光を照射して露光処理を確実に行うことが難しい。 On the other hand, when the average thickness of the spacer forming layer 12 is less than the lower limit value, the gap portion 105 having a size required for the spacer 104 cannot be formed. On the other hand, when the average thickness of the spacer forming layer 12 exceeds the upper limit, it is difficult to form the spacer 104 having a uniform thickness. Further, in the exposure process described later, it is difficult to reliably perform exposure processing by irradiating the spacer forming layer 12 with exposure light through the support base 11.
 また、スペーサ形成層12の厚さ方向における露光光の透過率は、特に限定されないが、0.1以上0.9以下であるのが好ましい。これにより、後述する露光工程において、支持基材11を介してスペーサ形成層12に露光光を照射して露光処理を確実に行うことができる。 Further, the transmittance of exposure light in the thickness direction of the spacer forming layer 12 is not particularly limited, but is preferably 0.1 or more and 0.9 or less. Thereby, in the exposure process mentioned later, exposure light can be reliably performed by irradiating exposure light to the spacer formation layer 12 via the support base material 11.
 なお、本明細書において、支持基材11およびスペーサ形成層12の厚さ方向での露光光の透過率とは、支持基材11およびスペーサ形成層12の厚さ方向での露光光のピーク波長(例えば365nm)の透過率を言う。また、支持基材11およびスペーサ形成層12の厚さ方向での光の透過率は、例えば、透過率測定装置((株)島津製作所社製、UV-160A)を用いて計測することができる。 In this specification, the transmittance of exposure light in the thickness direction of the support substrate 11 and the spacer formation layer 12 is the peak wavelength of exposure light in the thickness direction of the support substrate 11 and the spacer formation layer 12. It refers to the transmittance (for example, 365 nm). The light transmittance in the thickness direction of the support base 11 and the spacer forming layer 12 can be measured using, for example, a transmittance measuring device (manufactured by Shimadzu Corporation, UV-160A). .
 また、スペーサ形成用フィルム1の平均厚さは、特に限定されないが、8~400μmであるのが好ましい。これに対し、かかる平均厚さが10μm未満であると、支持基材11がスペーサ形成層12を支持する機能を発揮することができなかったり、スペーサ104が必要な大きさの空隙部105を形成することができなかったりする。一方、かかる平均厚さが400μmを超えると、スペーサ形成用フィルム1の取り扱い性が低下する。 The average thickness of the spacer forming film 1 is not particularly limited, but is preferably 8 to 400 μm. On the other hand, when the average thickness is less than 10 μm, the support base material 11 cannot exhibit the function of supporting the spacer forming layer 12, or the spacer 104 forms a gap 105 having a necessary size. I can't do it. On the other hand, when the average thickness exceeds 400 μm, the handleability of the spacer forming film 1 is lowered.
 A1-2
 一方、図4(b)に示すように、半導体ウエハー101’の一方の面上に、複数の個別回路103を形成する。具体的には、半導体ウエハー101’の一方の面上に、複数の受光素子と複数のマイクロレンズアレイとをこの順で積層する。
A1-2
On the other hand, as shown in FIG. 4B, a plurality of individual circuits 103 are formed on one surface of the semiconductor wafer 101 ′. Specifically, a plurality of light receiving elements and a plurality of microlens arrays are stacked in this order on one surface of the semiconductor wafer 101 ′.
 A1-3
 次に、図4(c)に示すように、半導体ウエハー101’の前記一方の面側に、スペーサ形成用フィルム1のスペーサ形成層12を貼着する(ラミネート加工)。
A1-3
Next, as shown in FIG.4 (c), the spacer formation layer 12 of the film 1 for spacer formation is affixed on the said one surface side of semiconductor wafer 101 '(lamination process).
 《A2》スペーサ形成層12を選択的に除去してスペーサ12Aを形成する工程
 A2-1
 次に、図4(d)に示すように、スペーサ形成層12に露光光(紫外線)を照射し、露光処理を行う(露光工程)。
<< A2 >> Step of selectively removing the spacer forming layer 12 to form the spacer 12A A2-1
Next, as shown in FIG. 4D, the spacer forming layer 12 is irradiated with exposure light (ultraviolet rays) to perform exposure processing (exposure process).
 その際、図4(d)に示すように、スペーサ104の平面視形状に対応した平面視形状をなす光透過部201を備えるマスク20を介してスペーサ形成層12に露光光を照射する。 At that time, as shown in FIG. 4D, the spacer forming layer 12 is irradiated with exposure light through a mask 20 including a light transmission portion 201 having a plan view shape corresponding to the plan view shape of the spacer 104.
 光透過部201は光透過性を有しており、光透過部201を透過した露光光は、スペーサ形成層12に照射される。これにより、スペーサ形成層12は、選択的に露光され、露光光が照射された部分(露光部)が光硬化する。 The light transmitting portion 201 has light transmittance, and the exposure light transmitted through the light transmitting portion 201 is applied to the spacer forming layer 12. Thereby, the spacer formation layer 12 is selectively exposed, and a portion (exposed portion) irradiated with the exposure light is photocured.
 このとき、前記露光部の幅および高さ、すなわち壁部104’の幅および高さが前述した関係式<1>~<3>をそれぞれ満たすように露光処理を行う。 At this time, the exposure processing is performed so that the width and height of the exposure portion, that is, the width and height of the wall portion 104 'satisfy the above-described relational expressions <1> to <3>, respectively.
 また、スペーサ形成層12に対する露光処理は、図4(d)に示すように、スペーサ形成層12に支持基材11がついた状態で行い、支持基材11を介してスペーサ形成層12に露光光を照射する。 Further, as shown in FIG. 4D, the spacer forming layer 12 is exposed to the spacer forming layer 12 with the support base 11 attached thereto, and the spacer forming layer 12 is exposed through the support base 11. Irradiate light.
 これにより、露光処理の際、支持基材11がスペーサ形成層12の保護層として機能し、スペーサ形成層12の表面に埃等の異物が付着するのを効果的に防止することができる。また、支持基材11上に異物が付着した場合であっても、その異物を容易に除去することが可能である。また、前述したようにマスク20を設置する際に、マスク20がスペーサ形成層12に貼り付いてしまうことなく、マスク20とスペーサ形成層12との距離をより小さくすることができる。その結果、マスク20を介してスペーサ形成層12に照射された露光光で形成される像が暈けるのを防止することができ、露光部と未露光部との境界をシャープなものとすることができる。その結果、優れた寸法精度でスペーサ12Aを形成することができ、設計に近い所望の形状および寸法で空隙部105を形成することができる。これにより、半導体装置100の信頼性を高めることができる。 Thereby, during the exposure process, the support base 11 functions as a protective layer of the spacer forming layer 12, and it is possible to effectively prevent foreign matters such as dust from adhering to the surface of the spacer forming layer 12. Moreover, even if a foreign substance adheres on the support substrate 11, the foreign substance can be easily removed. Further, as described above, when the mask 20 is installed, the distance between the mask 20 and the spacer forming layer 12 can be further reduced without the mask 20 sticking to the spacer forming layer 12. As a result, it is possible to prevent the image formed by the exposure light applied to the spacer forming layer 12 through the mask 20 from being blurred, and to sharpen the boundary between the exposed portion and the unexposed portion. Can do. As a result, the spacer 12A can be formed with excellent dimensional accuracy, and the gap portion 105 can be formed with a desired shape and size close to the design. Thereby, the reliability of the semiconductor device 100 can be improved.
 なお、支持基材11を除去した後に、露光処理を行ってもよい。また、マスク20を設置するに際しては、半導体ウエハー101’に設けたアライメントマークと、マスク20に設けたアライメントマークとを合わせることにより、半導体ウエハー101’に対してマスク20の位置合わせを行うことができる。 In addition, after removing the support base material 11, you may perform an exposure process. Further, when the mask 20 is set, the alignment of the mask 20 with respect to the semiconductor wafer 101 ′ can be performed by aligning the alignment mark provided on the semiconductor wafer 101 ′ with the alignment mark provided on the mask 20. it can.
 支持基材11とマスク20との間の距離は、0~2000μmであるのが好ましく、0~1000μmであるのがより好ましい。これにより、マスク20を介してスペーサ形成層12に照射された露光光により形成される像をより鮮明なものとすることができ、優れた寸法精度でスペーサ104を形成することができる。 The distance between the support base 11 and the mask 20 is preferably 0 to 2000 μm, and more preferably 0 to 1000 μm. Thereby, the image formed by the exposure light irradiated to the spacer formation layer 12 through the mask 20 can be made clearer, and the spacer 104 can be formed with excellent dimensional accuracy.
 特に、支持基材11とマスク20とを接触した状態で前記露光処理を行うのが好ましい。これにより、スペーサ形成層12とマスク20との間の距離を全域にわたって安定的に一定に保つことができる。その結果、スペーサ形成層12の露光すべき部位を均一に露光することができ、寸法精度に優れたスペーサ12Aをより効率よく形成することができる。 In particular, it is preferable to perform the exposure process in a state where the support base 11 and the mask 20 are in contact with each other. Thereby, the distance between the spacer formation layer 12 and the mask 20 can be stably kept constant over the whole area. As a result, the portion of the spacer forming layer 12 to be exposed can be exposed uniformly, and the spacer 12A having excellent dimensional accuracy can be formed more efficiently.
 このように支持基材11とマスク20とを接触した状態で露光する場合、支持基材11の厚みを適宜選択することにより、スペーサ形成層12とマスク20との間の距離を自由に、かつ、正確に設定することができる。また、支持基材11の厚さを薄くすることで、スペーサ形成層12とマスク20との間の距離をより小さくし、マスク20を介してスペーサ形成層12に照射された光により形成される像の暈けを防止することができる。 Thus, when exposing in the state which the support base material 11 and the mask 20 contacted, the distance between the spacer formation layer 12 and the mask 20 can be freely chosen by selecting the thickness of the support base material 11 suitably. Can be set accurately. Further, by reducing the thickness of the support substrate 11, the distance between the spacer formation layer 12 and the mask 20 is made smaller, and the support substrate 11 is formed by light irradiated to the spacer formation layer 12 through the mask 20. It is possible to prevent image blurring.
 なお、前述したような露光後、必要に応じて、スペーサ形成層12に対して、40~80℃程度の温度で加熱処理を施してもよい(露光後加熱工程(PEB工程))。このような加熱処理を施すことにより、露光工程で光硬化した部位(スペーサ12A)と半導体ウエハー101’との密着性をより高いものとすることができる。そのため、後述する現像処理において、スペーサ形成層12の光硬化した部位の不本意な剥離を効果的に防止することができる。 In addition, after the exposure as described above, the spacer forming layer 12 may be subjected to a heat treatment at a temperature of about 40 to 80 ° C. as necessary (post-exposure heating step (PEB step)). By performing such a heat treatment, the adhesion between the portion (spacer 12A) photocured in the exposure step and the semiconductor wafer 101 'can be made higher. Therefore, unintentional peeling of the photocured portion of the spacer forming layer 12 can be effectively prevented in the development processing described later.
 上記加熱処理の温度は、上記範囲であればよいが、50~70℃であるのがより好ましい。後述する現像処理において、スペーサ形成層12の光硬化した部位の不本意な剥離をより効果的に防止することができる。 The temperature of the heat treatment may be in the above range, but is more preferably 50 to 70 ° C. In development processing described later, unintentional peeling of the photocured portion of the spacer forming layer 12 can be more effectively prevented.
 A2-2
 次に、図4(e)に示すように、支持基材11を除去する(支持基材除去工程)。すなわち、支持基材11をスペーサ形成層12から剥離する。
A2-2
Next, as shown in FIG.4 (e), the support base material 11 is removed (support base material removal process). That is, the support base material 11 is peeled from the spacer forming layer 12.
 このように露光を行った後、現像に先立ち、支持基材11を除去することで、前述したように露光時におけるスペーサ形成層12への埃等の異物の付着を防止しつつ、スペーサ形成層12のパターニングを行うことができる。 After the exposure as described above, the support base 11 is removed prior to development, thereby preventing the adhesion of foreign matters such as dust to the spacer formation layer 12 during the exposure as described above. Twelve patterning can be performed.
 A2-3
 次に、図5(a)に示すように、スペーサ形成層12の未硬化の部分(未露光部)を現像液を用いて除去する(現像処理)。これにより、スペーサ形成層12の光硬化した部分(すなわち壁部104’)が残存して、スペーサ12Aおよび空隙部105が形成される。
A2-3
Next, as shown in FIG. 5A, the uncured portion (unexposed portion) of the spacer forming layer 12 is removed using a developer (development process). Thereby, the photocured portion (that is, the wall portion 104 ′) of the spacer forming layer 12 remains, and the spacer 12A and the gap portion 105 are formed.
 この現像方法(現像液の付与方法)は、スペーサ形成層12の未硬化の部分を除去することができるものであれば、特に限定されず、例えば、液盛り法、ディッピング法、シャワー現像法などの公知の方法を用いることができる。 The developing method (developing method) is not particularly limited as long as the uncured portion of the spacer forming layer 12 can be removed. For example, a liquid piling method, a dipping method, a shower developing method, etc. These known methods can be used.
 中でも、かかる現像方法としては、シャワー現像法を用いるのが好ましい。特に、本工程における現像は、図7に示すように、スペーサ形成層12が形成された半導体ウエハー101’をその板面に垂直でかつ中心付近を通る軸線Zまわりに回転させながら、現像液Lをスペーサ形成層12に付与することにより行うのが好ましい。 Above all, it is preferable to use a shower developing method as the developing method. In particular, as shown in FIG. 7, the development in this step is performed by developing the developer L while rotating the semiconductor wafer 101 ′ on which the spacer forming layer 12 is formed around an axis Z perpendicular to the plate surface and passing near the center. Is preferably applied to the spacer forming layer 12.
 図7に示す例では、半導体ウエハー101’の上方に設けられたノズル300が現像液Lを下方に噴射または噴霧することにより、現像液Lをスペーサ形成層12に付与する。 In the example shown in FIG. 7, the nozzle 300 provided above the semiconductor wafer 101 ′ sprays or sprays the developer L downward to apply the developer L to the spacer forming layer 12.
 このとき、現像液Lの噴射方向(ノズル300の軸線方向)は、半導体ウエハー101’の板面に対して直交していてもよいし傾斜していてもよい。 At this time, the spraying direction of the developer L (the axial direction of the nozzle 300) may be orthogonal to or inclined with respect to the plate surface of the semiconductor wafer 101 '.
 現像液Lの噴射方向(ノズル300の軸線方向)を半導体ウエハー101’の板面に対して傾斜させる場合には、半導体ウエハー101’の回転方向に対して現像液Lを同方向に噴射(パラレルフロー)するようにノズル300の軸線方向が傾斜してもよいし、半導体ウエハー101’の回転方向に対して現像液Lを逆方向に噴射(カウンターフロー)するようにノズル300の軸線方向が傾斜していてもよい。また、半導体ウエハー101’の中心から外側に向けて現像液Lを噴射するようにノズル300の軸線方向が傾斜していてもよい。 When the direction of jetting the developer L (the axial direction of the nozzle 300) is inclined with respect to the plate surface of the semiconductor wafer 101 ′, the developer L is jetted in the same direction with respect to the rotation direction of the semiconductor wafer 101 ′ (parallel). The axial direction of the nozzle 300 may be inclined so as to flow), or the axial direction of the nozzle 300 may be inclined so that the developer L is jetted in the opposite direction (counterflow) with respect to the rotation direction of the semiconductor wafer 101 ′. You may do it. Further, the axial direction of the nozzle 300 may be inclined so that the developer L is ejected from the center of the semiconductor wafer 101 ′ toward the outside.
 また、ノズル300からの現像液Lの噴射圧は、特に限定されないが、0.01~0.5MPaであるのが好ましく、0.1~0.3MPaであるのがより好ましい。 The spray pressure of the developer L from the nozzle 300 is not particularly limited, but is preferably 0.01 to 0.5 MPa, more preferably 0.1 to 0.3 MPa.
 また、ノズル300からの現像液Lの噴射時間(現像処理時間)は、特に限定されないが、3~3600秒であるのが好ましく、15~1800秒であるのがより好ましい。 Further, the ejection time (development processing time) of the developer L from the nozzle 300 is not particularly limited, but is preferably 3 to 3600 seconds, and more preferably 15 to 1800 seconds.
 また、ノズル300からの現像液Lの噴射は、連続的であっても、間欠的(断続的)であってもよい。なお、ノズル300は、図7に示す例では1つであるが、複数設けてもよい。 Further, the jet of the developer L from the nozzle 300 may be continuous or intermittent (intermittent). The number of nozzles 300 is one in the example shown in FIG. 7, but a plurality of nozzles 300 may be provided.
 スペーサ形成層12に現像液Lが付与されると、スペーサ形成層12のうち未硬化部分が現像液Lに溶解し除去される。 When the developer L is applied to the spacer forming layer 12, the uncured portion of the spacer forming layer 12 is dissolved and removed in the developer L.
 その際、前記未硬化部分が現像液Lに完全に溶解せず、前記未硬化部分の一部が固形状の浮遊物となってしまう場合がある。 At that time, the uncured part may not be completely dissolved in the developer L, and a part of the uncured part may become a solid suspended matter.
 そのため、従来では、前記浮遊物が半導体ウエハー101’上やスペーサ形成層12の硬化部(壁部104’)に付着し残渣として残存してしまうと言う問題があった。 Therefore, conventionally, there has been a problem that the suspended matter adheres to the cured portion (wall portion 104 ′) of the semiconductor wafer 101 ′ or the spacer forming layer 12 and remains as a residue.
 壁部104’は、前述したように複数の空隙部105がそれぞれ四角形状をなすとともに行列状に配置されるように形成されている。このような形状をなす壁部104’を有するスペーサ12Aを用いる場合、上記問題が特に顕著となる。 As described above, the wall portion 104 ′ is formed such that the plurality of gap portions 105 each have a rectangular shape and are arranged in a matrix. When the spacer 12A having the wall portion 104 'having such a shape is used, the above problem becomes particularly significant.
 そこで、本発明者らは、鋭意検討した結果、壁部104’の幅および高さを最適化することで、前記問題の発生を防止することができることを見出した。 Therefore, as a result of intensive studies, the present inventors have found that the occurrence of the above problem can be prevented by optimizing the width and height of the wall 104 '.
 具体的には、壁部104’の幅をW[μm]とし、壁部104’の高さをH[μm]としたとき、下記<1>~<3>の関係式をそれぞれ満たすことで、前記問題の発生を防止することができることを見出した。 Specifically, when the width of the wall 104 ′ is W [μm] and the height of the wall 104 ′ is H [μm], the following relational expressions <1> to <3> are satisfied respectively. The inventors have found that the occurrence of the problem can be prevented.
 15≦W≦3000   ・・・<1>
 3≦H≦300     ・・・<2>
 0.10≦W/H≦900・・・<3>
15 ≦ W ≦ 3000 ... <1>
3 ≦ H ≦ 300 (2)
0.10 <= W / H <= 900 ... <3>
 このように壁部104’の幅Wおよび高さHが上記<1>~<3>の関係式をそれぞれ満たすことにより、露光処理されたスペーサ形成層12を現像処理する時に、図8に示すように、固形状の浮遊物Sが発生しても、その浮遊物Sが壁部104’を乗り越え易くなる。 As shown in FIG. 8, when the spacer forming layer 12 subjected to the exposure process is developed by the width W and the height H of the wall 104 ′ satisfying the relational expressions <1> to <3>, respectively. As described above, even when the solid suspended matter S is generated, the suspended matter S easily gets over the wall 104 ′.
 したがって、当該浮遊物Sを現像液Lの流れによって効率的に除去することができる。特に、図7に示すように半導体ウエハー101’を軸線Zまわりに回転させながら、現像液Lをスペーサ形成層12に付与した場合、かかる現像は、半導体ウエハー101’のスペーサ形成層12が設けられた面側を上方に向けた状態で行われるが、半導体ウエハー101’の回転によって生じる遠心力により固体状の浮遊物Sが壁部104’を乗り越えて除去される。 Therefore, the suspended matter S can be efficiently removed by the flow of the developer L. In particular, when the developer L is applied to the spacer forming layer 12 while rotating the semiconductor wafer 101 ′ around the axis Z as shown in FIG. 7, such development is performed by providing the spacer forming layer 12 of the semiconductor wafer 101 ′. However, the solid suspended matter S moves over the wall 104 ′ and is removed by the centrifugal force generated by the rotation of the semiconductor wafer 101 ′.
 そのため、最終的に得られる半導体ウエハー接合体1000に当該浮遊物Sが残渣として残存するのを防止することができる。その結果、得られる半導体ウエハー接合体1000は、優れた信頼性を有する。 Therefore, it is possible to prevent the suspended matter S from remaining as a residue in the finally obtained semiconductor wafer bonded body 1000. As a result, the obtained semiconductor wafer bonded body 1000 has excellent reliability.
 ここで、壁部104’の幅Wは、上記<1>および<3>の関係式を満たすものであればよいが、50~2500μmであるのが好ましく、100~2000μmであるのがより好ましい。これにより、浮遊物が壁部104’を乗り越え易くなるとともに、スペーサ104に必要な強度を確保することができる。 Here, the width W of the wall portion 104 ′ may be any width that satisfies the above relational expressions <1> and <3>, but is preferably 50 to 2500 μm, and more preferably 100 to 2000 μm. . This makes it easier for the suspended matter to get over the wall portion 104 ′ and to ensure the strength required for the spacer 104.
 これに対し、壁部104’の幅Wが前記下限値未満であると、壁部104’と半導体ウエハー101’および透明基板102’との接合面の面積が小さくなりすぎて、得られる半導体ウエハー接合体1000の信頼性の低下をもたらす場合がある。一方、壁部104’の幅Wが前記上限値を超えると、固形状の浮遊物Sが壁部104’を乗り越え難くなったり、1つの半導体ウエハー接合体1000から得られる半導体装置100の数が少なくなったりしてしまう。なお、壁部104’の幅Wとは、壁部104’の平均幅を言う。 On the other hand, if the width W of the wall 104 ′ is less than the lower limit, the area of the bonding surface between the wall 104 ′, the semiconductor wafer 101 ′ and the transparent substrate 102 ′ becomes too small, and the resulting semiconductor wafer is obtained. In some cases, the reliability of the bonded body 1000 may be reduced. On the other hand, if the width W of the wall portion 104 ′ exceeds the upper limit value, it becomes difficult for the solid suspended matter S to get over the wall portion 104 ′ or the number of semiconductor devices 100 obtained from one semiconductor wafer bonded body 1000. It will decrease. The width W of the wall portion 104 ′ refers to the average width of the wall portion 104 ′.
 また、壁部104’の高さHは、上記<2>および<3>の関係式を満たすものであればよいが、5~250μmであるのが好ましく、10~200μmであるのがより好ましい。これにより、浮遊物が壁部104’を乗り越え易くなるとともに、スペーサ104に必要な強度を確保することができる。 The height H of the wall portion 104 ′ may be any as long as it satisfies the above relational expressions <2> and <3>, but is preferably 5 to 250 μm, and more preferably 10 to 200 μm. . This makes it easier for the suspended matter to get over the wall portion 104 ′ and to ensure the strength required for the spacer 104.
 これに対し、壁部104’の高さHが前記下限値未満であると、得られる半導体装置100において、スペーサ104が必要な大きさの空隙部105を形成することができない。一方、壁部104’の高さHが前記上限値を超えると、固形状の浮遊物Sが壁部104’を乗り越え難くなる。 On the other hand, if the height H of the wall portion 104 ′ is less than the lower limit value, the gap portion 105 having a size required for the spacer 104 cannot be formed in the obtained semiconductor device 100. On the other hand, when the height H of the wall portion 104 ′ exceeds the upper limit value, it becomes difficult for the solid suspended matter S to get over the wall portion 104 ′.
 また、壁部104’の幅Wと高さHとの比W/Hは、上記<1>~<3>の関係式を満たすものであればよいが、0.22~480であるのが好ましく、0.52~180であるのがより好ましい。これにより、浮遊物Sが簡単かつ確実に壁部104’を乗り越えることができ、その結果、スペーサ形成層12の現像処理に要する時間の長時間化を防止しつつ、上記問題を解決することができる。 Further, the ratio W / H between the width W and the height H of the wall portion 104 ′ may satisfy the relational expressions <1> to <3>, but is 0.22 to 480. Preferably, it is 0.52 to 180. As a result, the suspended matter S can easily and reliably get over the wall portion 104 ′, and as a result, the above problem can be solved while preventing the time required for the development processing of the spacer forming layer 12 from being prolonged. it can.
 また、現像液Lとしては、スペーサ形成層12の構成材料等に応じて決定され、特に限定されず、各種現像液を用いることができるが、現像液Lの比重をAとし、壁部104’を構成する樹脂組成物の比重をBとしたとき、
 0.5≦A/B≦2
 なる関係式を満たすのが好ましい。特に、0.60≦A/B≦1.5なる関係式を満たすのがより好ましく、0.65≦A/B≦1.2なる関係式を満たすのがさらに好ましい。これにより、固形状の浮遊物を現像液の流れによって効率的に除去することができる。
The developer L is determined according to the constituent material of the spacer forming layer 12 and the like, and is not particularly limited. Various developers can be used, but the specific gravity of the developer L is A, and the wall portion 104 ′. When the specific gravity of the resin composition constituting
0.5 ≦ A / B ≦ 2
It is preferable to satisfy the following relational expression. In particular, it is more preferable to satisfy the relational expression of 0.60 ≦ A / B ≦ 1.5, and it is even more preferable to satisfy the relational expression of 0.65 ≦ A / B ≦ 1.2. Thereby, the solid suspended matter can be efficiently removed by the flow of the developer.
 これに対し、A/Bが前記下限値未満であると、固形状の浮遊物Sが壁部104’等に付着しやすくなる傾向を示す。一方、A/Bが前記上限値を超えると、後述する洗浄工程後においても、現像液Lが半導体ウエハー101’上等に残存する恐れがある。また、スペーサ形成層12の現像に適した現像液Lの選定が難しかったり、必要な特性を有するスペーサ104を得ることが難しかったりする。 On the other hand, when A / B is less than the lower limit value, the solid suspended matter S tends to adhere to the wall 104 'or the like. On the other hand, if A / B exceeds the upper limit, the developer L may remain on the semiconductor wafer 101 'or the like even after a cleaning step described later. In addition, it is difficult to select a developer L suitable for developing the spacer forming layer 12, or it is difficult to obtain the spacer 104 having necessary characteristics.
 また、スペーサ形成層12が前述したようなアルカリ可溶性樹脂を含んで構成されている場合、現像液としてアルカリ液を用いることができる。 Further, when the spacer forming layer 12 is configured to contain the alkali-soluble resin as described above, an alkali solution can be used as the developer.
 用いるアルカリ液のpHは、9.5以上であるのが好ましく、11.0~14.0程度であるのがより好ましい。これにより、スペーサ形成層12の効率のよい除去が可能となる。 The pH of the alkaline solution used is preferably 9.5 or more, more preferably about 11.0 to 14.0. Thereby, the spacer forming layer 12 can be efficiently removed.
 このようなアルカリ液としては、例えば、NaOH、KOHのようなアルカリ金属水酸化物の水溶液、Mg(OH)のようなアルカリ土類金属水酸化物の水溶液、テトラメチルアンモニウムハイドロオキサイドの水溶液、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)等のアミド系有機溶媒等が挙げられ、これらを単独または混合して用いることができる。 Examples of such an alkaline solution include an aqueous solution of an alkali metal hydroxide such as NaOH and KOH, an aqueous solution of an alkaline earth metal hydroxide such as Mg (OH) 2 , an aqueous solution of tetramethylammonium hydroxide, Examples thereof include amide organic solvents such as N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMA), and these can be used alone or in combination.
 A2-4
 次に、図5(b)に示すように、壁部104’と、壁部104’が形成された半導体ウエハー101’を洗浄液を用いて洗浄する(洗浄工程)。
A2-4
Next, as shown in FIG. 5B, the wall 104 ′ and the semiconductor wafer 101 ′ on which the wall 104 ′ is formed are cleaned using a cleaning liquid (cleaning process).
 このように、現像(工程A2-3)後、かつ、後述する接合工程(工程《A3》)前に、洗浄工程を行うと、現像後に固形状の浮遊物Sが残存していても、当該浮遊物Sを洗浄液の流れによって効率的に除去することができる。 As described above, after the development (step A2-3) and before the joining step (step << A3 >>) described later, even if the solid suspended matter S remains after the development, The suspended matter S can be efficiently removed by the flow of the cleaning liquid.
 この洗浄方法(洗浄液の付与方法)は、特に限定されず、例えば、液盛り法、ディッピング法、シャワー洗浄法などの公知の方法を用いることができる。 This cleaning method (a method for applying a cleaning liquid) is not particularly limited, and for example, a known method such as a liquid filling method, a dipping method, or a shower cleaning method can be used.
 中でも、かかる洗浄方法としては、シャワー洗浄法を用いるのが好ましい。特に、前述した工程A2-3の現像方法と同様(図7参照)、本工程における洗浄は、スペーサ形成層12(壁部104’)が形成された半導体ウエハー101’をその板面に垂直でかつ中心付近を通る軸線まわりに回転させながら、壁部104’と半導体ウエハー101’とに洗浄液を付与することにより行うのが好ましい。 Above all, it is preferable to use a shower cleaning method as the cleaning method. In particular, as in the developing method in step A2-3 described above (see FIG. 7), the cleaning in this step is performed so that the semiconductor wafer 101 ′ on which the spacer forming layer 12 (wall portion 104 ′) is formed is perpendicular to the plate surface. In addition, it is preferable to apply the cleaning liquid to the wall 104 ′ and the semiconductor wafer 101 ′ while rotating around an axis passing through the vicinity of the center.
 この場合、かかる洗浄は、半導体ウエハー101’の壁部104’が設けられた面側を上方に向けた状態で行われるが、半導体ウエハー101’の回転によって生じる遠心力により固体状の浮遊物Sが壁部104’を乗り越えて除去される。 In this case, such cleaning is performed with the surface side of the semiconductor wafer 101 ′ on which the wall 104 ′ is provided facing upward. However, the solid suspended matter S is caused by the centrifugal force generated by the rotation of the semiconductor wafer 101 ′. Is removed over the wall 104 '.
 また、洗浄液としては、特に限定されず、各種洗浄液を用いることができるが、壁部104’を構成する樹脂組成物の比重をBとし、洗浄液の比重をCとしたとき、
 0.5≦C/B≦2
 なる関係式を満たすのが好ましい。特に、0.60≦C/B≦1.5なる関係式を満たすのがより好ましく、0.65≦C/B≦1.2なる関係式を満たすのがさらに好ましい。これにより、固形状の浮遊物Sを洗浄液の流れによって効率的に除去することができる。
The cleaning liquid is not particularly limited, and various cleaning liquids can be used. When the specific gravity of the resin composition constituting the wall 104 ′ is B and the specific gravity of the cleaning liquid is C,
0.5 ≦ C / B ≦ 2
It is preferable to satisfy the following relational expression. In particular, it is more preferable to satisfy the relational expression of 0.60 ≦ C / B ≦ 1.5, and it is even more preferable to satisfy the relational expression of 0.65 ≦ C / B ≦ 1.2. Thereby, the solid suspended matter S can be efficiently removed by the flow of the cleaning liquid.
 これに対し、C/Bが前記下限値未満であると、固形状の浮遊物Sが壁部104’等に付着しやすくなる傾向を示す。一方、C/Bが前記上限値を超えると、洗浄液の選定が難しかったり、必要な特性を有するスペーサ104を得ることが難しかったりする。 On the other hand, when C / B is less than the lower limit value, the solid suspended matter S tends to adhere to the wall 104 'or the like. On the other hand, when C / B exceeds the upper limit value, it is difficult to select a cleaning liquid or to obtain the spacer 104 having necessary characteristics.
 A2-5
 次に、図5(c)に示すように、前述した工程A2-4で用いた洗浄液を除去する(乾燥工程)。
A2-5
Next, as shown in FIG. 5C, the cleaning liquid used in step A2-4 described above is removed (drying step).
 このように、洗浄(工程A2-4)後、かつ、接合工程(工程《A3》)前に、洗浄工程を行うと、最終的に得られる半導体ウエハー接合体1000に洗浄液が残存して悪影響を及ぼすのを防止することができる。また、半導体ウエハー接合体1000の製造において、その品質を高めつつ、生産効率を向上させることができる。 As described above, if the cleaning step is performed after the cleaning (step A2-4) and before the bonding step (step << A3 >>), the cleaning liquid remains in the finally obtained semiconductor wafer bonded body 1000, and the adverse effect is caused. Can be prevented. Further, in the manufacture of the semiconductor wafer bonded body 1000, the production efficiency can be improved while improving the quality.
 かかる乾燥工程は、前述した工程A2-3の現像方法での半導体ウエハー101’の回転と同様(図7参照)、壁部104’が形成された半導体ウエハー101’をその板面に垂直でかつ中心付近を通る軸線まわりに回転させることにより行うのが好ましい。これにより、前述した洗浄工程後に固形状の浮遊物Sが残存していても、洗浄液除去時に、半導体ウエハー101’の回転によって生じる遠心力により固体状の浮遊物Sが壁部104’を乗り越えて除去される。 This drying step is the same as the rotation of the semiconductor wafer 101 ′ in the development method of the above-described step A2-3 (see FIG. 7), and the semiconductor wafer 101 ′ on which the wall 104 ′ is formed is perpendicular to the plate surface and It is preferably performed by rotating around an axis passing through the vicinity of the center. As a result, even if the solid suspended matter S remains after the cleaning step described above, the solid suspended matter S gets over the wall 104 ′ by the centrifugal force generated by the rotation of the semiconductor wafer 101 ′ when the cleaning liquid is removed. Removed.
 《A3》スペーサ12Aの半導体ウエハー101’とは反対側の面に透明基板102’を接合する工程
 次に、図6(a)に示すように、形成されたスペーサ12Aの上面と透明基板102’とを接合する(接合工程)。これにより、半導体ウエハー101’と透明基板102’とがスペーサ12Aを介して接合された半導体ウエハー接合体1000(本発明の半導体ウエハー接合体)が得られる。
<< A3 >> Step of Bonding Transparent Substrate 102 ′ to Surface of Spacer 12A Opposite to Semiconductor Wafer 101 ′ Next, as shown in FIG. 6A, the upper surface of the formed spacer 12A and transparent substrate 102 ′ Are joined (joining step). Thereby, the semiconductor wafer bonded body 1000 (semiconductor wafer bonded body of the present invention) in which the semiconductor wafer 101 ′ and the transparent substrate 102 ′ are bonded via the spacer 12A is obtained.
 スペーサ12Aと透明基板102’との接合は、例えば、形成されたスペーサ12Aの上面と透明基板102’とを貼り合わせた後、熱圧着することにより行うことができる。 The bonding between the spacer 12A and the transparent substrate 102 'can be performed, for example, by bonding the upper surface of the formed spacer 12A and the transparent substrate 102' and then thermocompression bonding.
 熱圧着は、80~180℃の温度範囲内で行うのが好ましい。これにより、熱圧着時における加圧力を抑えつつ、スペーサ12Aと透明基板102’とを熱圧着により接合することができる。そのため、形成されるスペーサ104は、不本意な変形が抑えられ、寸法精度の優れたものとなる。 The thermocompression bonding is preferably performed within a temperature range of 80 to 180 ° C. Thereby, the spacer 12A and the transparent substrate 102 'can be joined by thermocompression while suppressing the applied pressure during thermocompression. Therefore, the formed spacer 104 is suppressed from unintentional deformation and has excellent dimensional accuracy.
 《A4》半導体ウエハー101’の下面に所定の加工または処理を施す工程
 A4-1
 次に、図6(b)に示すように、半導体ウエハー101’の透明基板102とは反対側の面(下面)111を研削する(バックグラインド工程)。
<< A4 >> Step of performing predetermined processing or processing on the lower surface of the semiconductor wafer 101 ′ A4-1
Next, as shown in FIG. 6B, the surface (lower surface) 111 opposite to the transparent substrate 102 of the semiconductor wafer 101 ′ is ground (back grinding process).
 この半導体ウエハー101’の面111の研削は、例えば、研削装置(グラインダー)を用いて行うことができる。 The grinding of the surface 111 of the semiconductor wafer 101 ′ can be performed using, for example, a grinding device (grinder).
 かかる面111の研削により、半導体ウエハー101’の厚さは、半導体装置100が適用される電子機器によっても異なるが、通常、100~600μm程度に設定され、より小型の電子機器に適用する場合には、50μm程度に設定される。 By grinding the surface 111, the thickness of the semiconductor wafer 101 ′ varies depending on the electronic device to which the semiconductor device 100 is applied, but is usually set to about 100 to 600 μm and is applied to a smaller electronic device. Is set to about 50 μm.
 A4-2
 次に、図6(c)に示すように、半導体ウエハー101’の面111上に、半田バンプ106を形成する。
A4-2
Next, as shown in FIG. 6C, solder bumps 106 are formed on the surface 111 of the semiconductor wafer 101 ′.
 その際、図示しないが、半田バンプ106の形成の他に、半導体ウエハー101’の面111に配線も形成する。 At this time, although not shown, in addition to the formation of the solder bumps 106, wiring is also formed on the surface 111 of the semiconductor wafer 101 '.
 [B]半導体ウエハー接合体1000を個片化する工程
 次に、半導体ウエハー接合体1000を個片化することにより、複数の半導体装置100を得る(ダイシング工程)。
[B] Step of Dividing Semiconductor Wafer Bonded Body 1000 Next, by dividing the semiconductor wafer bonded body 1000 into individual pieces, a plurality of semiconductor devices 100 are obtained (dicing step).
 その際、半導体ウエハー101’に形成された個別回路毎、すなわち、各空隙部105毎に、半導体ウエハー接合体1000を個片化する。 At that time, the semiconductor wafer bonded body 1000 is separated into pieces for each individual circuit formed on the semiconductor wafer 101 ′, that is, for each gap portion 105.
 ここで、壁部104’は、前述したように複数の空隙部105がそれぞれ四角形状をなすとともに行列状に配置されるように形成されている。したがって、半導体ウエハー接合体1000を格子状に切断(ダイシング)して個片化することで、簡単かつ効率的に、複数の半導体装置100を得ることができる。 Here, as described above, the wall 104 'is formed such that the plurality of gaps 105 form a square shape and are arranged in a matrix. Therefore, by cutting (dicing) the semiconductor wafer bonded body 1000 into a lattice shape and dividing it into pieces, a plurality of semiconductor devices 100 can be obtained simply and efficiently.
 より具体的には、半導体ウエハー接合体1000の個片化は、例えば、まず、図6(d)に示すように、半導体ウエハー101’側からダイシングソーによりスペーサ104の格子に沿って切込み21を入れた後、透明基板102’側からもダイシングソーにより切込み21に対応して切り込みを入れることにより行われる。 More specifically, as shown in FIG. 6D, for example, as shown in FIG. 6 (d), the semiconductor wafer bonded body 1000 is divided into notches 21 along the lattice of the spacer 104 by a dicing saw from the semiconductor wafer 101 ′ side. After the insertion, it is performed by making a cut corresponding to the cut 21 using a dicing saw from the transparent substrate 102 ′ side.
 以上のような工程を経ることにより、半導体装置100を製造することができる。
 このように、半導体ウエハー接合体1000を個片化して、一括して複数の半導体装置100を得ることにより、半導体装置100を大量生産することができ、生産性の効率化を図ることができる。
Through the steps as described above, the semiconductor device 100 can be manufactured.
In this way, by separating the semiconductor wafer bonded body 1000 into individual pieces and obtaining a plurality of semiconductor devices 100 in a lump, the semiconductor devices 100 can be mass-produced and productivity can be improved.
 特に、半導体ウエハー接合体1000の製造においては、前述したように、壁部104’の幅Wおよび高さHが上記<1>~<3>の関係式をそれぞれ満たすことにより、優れた信頼性を有する半導体ウエハー接合体1000を得ることができる。 In particular, in the manufacture of the semiconductor wafer bonded body 1000, as described above, since the width W and the height H of the wall portion 104 ′ satisfy the above relational expressions <1> to <3>, excellent reliability is achieved. A semiconductor wafer bonded body 1000 having the following can be obtained.
 したがって、このような半導体ウエハー接合体1000を個片化することで得られた半導体装置100も、優れた信頼性を有する。 Therefore, the semiconductor device 100 obtained by separating the semiconductor wafer bonded body 1000 into individual pieces also has excellent reliability.
 また、前述したような半導体ウエハー接合体1000の製造方法を用いることで、高い歩留まりで、優れた信頼性を有する半導体ウエハー接合体1000および半導体装置100を製造することができる。 Further, by using the method for manufacturing the semiconductor wafer bonded body 1000 as described above, the semiconductor wafer bonded body 1000 and the semiconductor device 100 having excellent reliability can be manufactured with a high yield.
 このようにして得られた半導体装置100は、例えば、配線がパターンニングされた基板上に搭載され、この基板上の配線と、ベース基板101の下面に形成された配線とが半田バンプ106を介して電気的に接続される。 The semiconductor device 100 thus obtained is mounted on, for example, a substrate on which wiring is patterned, and the wiring on the substrate and the wiring formed on the lower surface of the base substrate 101 are connected via the solder bumps 106. Are electrically connected.
 また、半導体装置100は、前述したように基板上に搭載された状態で、例えば、携帯電話、デジタルカメラ、ビデオカメラ、小型カメラ等の電子機器に広く適用することができる。 Further, the semiconductor device 100 can be widely applied to electronic devices such as a mobile phone, a digital camera, a video camera, and a small camera, for example, while being mounted on a substrate as described above.
 以上、本発明について、好適な実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。 As mentioned above, although this invention was demonstrated based on suitable embodiment, this invention is not limited to these.
 例えば、本発明の半導体ウエハー接合体の製造方法では、任意の目的の工程が1または2以上追加されてもよい。例えば、ラミネート工程と露光工程との間に、スペーサ形成層に対して加熱処理を施すラミネート後加熱工程(PLB工程)を設けてもよい。 For example, in the method of manufacturing a semiconductor wafer bonded body according to the present invention, one or two or more arbitrary steps may be added. For example, you may provide the post-lamination heating process (PLB process) which heat-processes with respect to a spacer formation layer between a lamination process and an exposure process.
 また、前述した実施形態では、露光を1回行う場合について説明したが、これに限定されず、例えば、露光を複数回行ってもよい。 In the above-described embodiment, the case where the exposure is performed once has been described. However, the present invention is not limited to this. For example, the exposure may be performed a plurality of times.
 また、本発明の半導体ウエハー接合体および半導体装置の各部の構成は、同様の機能を発揮する任意の構成のものに置換することができ、また、任意の構成を付加することもできる。 Further, the configuration of each part of the semiconductor wafer bonded body and the semiconductor device of the present invention can be replaced with any configuration that exhibits the same function, and any configuration can be added.
 また、前述した実施形態では、シート状の支持基材上から半導体ウエハー101’の一方の面側に転写してスペーサ形成層を形成したが、スペーサ形成層の形成方法としては、これに限定されず、例えば、各種塗布法を用いて硬化性の樹脂組成物(樹脂ワニス)を直接半導体ウエハー101’の一方の面側に形成してもよい。 In the above-described embodiment, the spacer forming layer is formed by transferring from the sheet-like support substrate to one surface side of the semiconductor wafer 101 ′. However, the method for forming the spacer forming layer is not limited thereto. Instead, for example, a curable resin composition (resin varnish) may be directly formed on one surface side of the semiconductor wafer 101 ′ using various coating methods.
 また、本実施形態では、スペーサ形成層12の樹脂組成物として、露光部分が現像液により除去されるネガ型の樹脂組成物を用いた場合を例に説明したが、未露光部分が現像液により除去されるポジ型の樹脂組成物を用いてもよいのは言うまでもない。 In the present embodiment, the case where a negative resin composition in which an exposed portion is removed by a developer is used as the resin composition of the spacer forming layer 12 is described as an example. However, an unexposed portion is formed by a developer. Needless to say, the positive-type resin composition to be removed may be used.
 以下、本発明の具体的な実施例を説明する。なお、本発明はこれに限定されるものではない。 Hereinafter, specific examples of the present invention will be described. Note that the present invention is not limited to this.
 [1]半導体ウエハー接合体の製造
 (実施例1)
 1.アルカリ可溶性樹脂((メタ)アクリル変性ビスAノボラック樹脂)の合成
 ノボラック型ビスフェノールA樹脂(フェノライトLF-4871、大日本インキ化学(株)製)の固形分60%MEK(メチルエチルケトン)溶液500gを、2Lフラスコ中に投入し、これに触媒としてトリブチルアミン1.5g、および重合禁止剤としてハイドロキノン0.15gを添加し、100℃に加温した。その中へ、グリシジルメタクリレート180.9gを30分間で滴下し、100℃で5時間攪拌反応させることにより、固形分74%のメタクリロイル変性ノボラック型ビスフェノールA樹脂MPN001(メタクリロイル変性率50%)を得た。
[1] Manufacture of semiconductor wafer assembly (Example 1)
1. Synthesis of alkali-soluble resin ((meth) acrylic modified bis A novolak resin) 500 g of a 60% solid MEK (methyl ethyl ketone) solution of a novolak type bisphenol A resin (Phenolite LF-4871, manufactured by Dainippon Ink and Chemicals, Inc.) Into a 2 L flask, 1.5 g of tributylamine as a catalyst and 0.15 g of hydroquinone as a polymerization inhibitor were added and heated to 100 ° C. The glycidyl methacrylate 180.9g was dripped in it in 30 minutes, and the methacryloyl modified novolak-type bisphenol A resin MPN001 (methacryloyl modification rate 50%) with a solid content of 74% was obtained by stirring reaction at 100 ° C. for 5 hours. .
 2.スペーサ形成層を構成する樹脂組成物の樹脂ワニスの調製
 光重合性樹脂として、トリメチロールプロパントリメタクリレート(共栄社化学(株)製、ライトエステルTMP)15重量%、エポキシビニルエステル樹脂(共栄社化学(株)製、エポキシエステル3002M)5重量%、熱硬化性樹脂であるエポキシ樹脂として、ビスフェノールAノボラック型エポキシ樹脂(大日本インキ化学工業(株)製、エピクロンN-865)5重量%、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製、YL6810)10重量%、シリコーンエポキシ樹脂(東レ・ダウコーニング・シリコーン(株)製、BY16-115)5重量%、フェノールノボラック樹脂(住友ベークライト(株)、PR53647)3重量%、アルカリ可溶性樹脂として上記MPN001を固形分として55重量%、光重合開始剤(チバ・スペシャリティ・ケミカルズ(株)製、イルガキュア651)2重量%を秤量し、ディスパーザーを用い、回転数3000rpmで1時間攪拌し、樹脂ワニスを調製した。
2. Preparation of resin varnish of resin composition constituting spacer forming layer As photopolymerizable resin, 15% by weight of trimethylolpropane trimethacrylate (manufactured by Kyoeisha Chemical Co., Ltd., Light Ester TMP), epoxy vinyl ester resin (Kyoeisha Chemical Co., Ltd.) ), Epoxy ester 3002M) 5% by weight, epoxy resin which is a thermosetting resin, 5% by weight of bisphenol A novolac type epoxy resin (manufactured by Dainippon Ink & Chemicals, Inc., Epicron N-865), bisphenol A type 10% by weight of epoxy resin (Japan Epoxy Resin Co., Ltd., YL6810), 5% by weight of silicone epoxy resin (Toray Dow Corning Silicone Co., Ltd., BY16-115), phenol novolac resin (Sumitomo Bakelite Co., Ltd.) PR53647) 3% by weight, alkali acceptable As a soluble resin, 55 wt% of the above MPN001 as a solid content and 2 wt% of a photopolymerization initiator (Ciba Specialty Chemicals Co., Ltd., Irgacure 651) are weighed and stirred for 1 hour at a rotation speed of 3000 rpm using a disperser. A resin varnish was prepared.
 3.スペーサ形成用フィルムの製造
 まず、支持基材として、厚さ50μmのポリエステルフィルム(三菱樹脂社製、「MRX50」を用意した。
3. Manufacture of Spacer Forming Film First, a 50 μm thick polyester film (“MRX50” manufactured by Mitsubishi Plastics, Inc.) was prepared as a supporting base material.
 次に、支持基材上に、上記で調整した樹脂ワニスをコンマコーター(廉井精機社製、「型番MFG No.194001 type3-293」)で塗布することにより、樹脂ワニスで構成される塗膜を形成した。その後、形成した塗膜を80℃、20分乾燥してスペーサ形成層を形成することによりスペーサ形成用フィルムを得た。得られたスペーサ形成用フィルムは、スペーサ形成層の平均厚さが50μmであった。また、スペーサ形成層を構成する樹脂組成物(乾燥後)の比重は、1.2であった。 Next, the resin varnish prepared as described above is applied onto the supporting base material with a comma coater (manufactured by Yurai Seiki Co., Ltd., “Model No. MFG No. 194001 type 3-293”) to form a coating film composed of the resin varnish. Formed. Then, the film for spacer formation was obtained by drying the formed coating film at 80 degreeC for 20 minutes, and forming a spacer formation layer. In the obtained spacer forming film, the average thickness of the spacer forming layer was 50 μm. Moreover, the specific gravity of the resin composition (after drying) constituting the spacer forming layer was 1.2.
 4.接合体の製造
 まず、ほぼ円形状をなす直径8インチの半導体ウエハー(Siウエハー、直径20.3cm、厚さ725μm)を用意した。
4). Manufacture of bonded body First, a semiconductor wafer (Si wafer, diameter 20.3 cm, thickness 725 μm) having an approximately circular shape and 8 inches in diameter was prepared.
 次に、半導体ウエハーに、ロールラミネーターを用いて、ロール温度60℃、ロール速度0.3m/分、シリンジ圧2.0kgf/cmの条件で、上記で製造したスペーサ形成用フィルムをラミネートして、スペーサ形成用フィルム付き半導体ウエハーを得た。 Next, using the roll laminator, the spacer forming film manufactured above was laminated on the semiconductor wafer under the conditions of a roll temperature of 60 ° C., a roll speed of 0.3 m / min, and a syringe pressure of 2.0 kgf / cm 2. A semiconductor wafer with a spacer forming film was obtained.
 次に、形成すべきスペーサの平面視の形状と同じ形状をした光透過部を有するマスクを用意し、スペーサ形成用フィルムと対向するようにマスクを設置した。この際、マスクと支持基材との間の距離を、0mmとした。 Next, a mask having a light transmission part having the same shape as that of the spacer to be formed in plan view was prepared, and the mask was placed so as to face the spacer forming film. At this time, the distance between the mask and the supporting substrate was set to 0 mm.
 次に、マスクを介して、スペーサ形成用フィルム付き半導体ウエハーに、スペーサ形成用フィルム側から、紫外線(波長365nm、積算光量700mJ/cm)を照射することにより、スペーサ形成層を格子状に選択的に露光した後、支持基材を取り剥がした。なお、スペーサ形成層に対する露光では、平面視でスペーサ形成層の50%に対し、格子状に露光される露光部の幅が600μmとなるように露光した。 Next, the spacer forming layer is selected in a lattice pattern by irradiating the semiconductor wafer with the spacer forming film through the mask with ultraviolet rays (wavelength 365 nm, integrated light quantity 700 mJ / cm 2 ) from the spacer forming film side. After the exposure, the supporting substrate was removed. In the exposure of the spacer forming layer, 50% of the spacer forming layer was seen in plan view so that the width of the exposed portion exposed in a grid pattern was 600 μm.
 次に、現像液(アルカリ液)として、2.38w%テトラメチルアンモニウムハイドロオキサイド(TMAH)水溶液を用いて、露光後のスペーサ形成層の現像をして、幅600μm、高さ50μmの壁部(凸条)を有するスペーサを半導体ウエハー上に形成した。かかる現像は、図7に示すように、半導体ウエハーを回転させながら、90秒間、現像液をスペーサ形成層に向けて現像液圧(噴射圧)0.2MPaで噴射することにより行った。また、現像液の比重は、1.0であった。 Next, a 2.38 w% tetramethylammonium hydroxide (TMAH) aqueous solution is used as a developing solution (alkaline solution) to develop the spacer formation layer after exposure, and a wall portion having a width of 600 μm and a height of 50 μm ( A spacer having ridges was formed on the semiconductor wafer. As shown in FIG. 7, the development was performed by spraying the developer toward the spacer forming layer at a developer pressure (spray pressure) of 0.2 MPa for 90 seconds while rotating the semiconductor wafer. Further, the specific gravity of the developer was 1.0.
 そして、洗浄液として純水を用いて、スペーサ(壁部)を洗浄し、その後、乾燥した。かかる洗浄は、図7に示すように、半導体ウエハーを回転させながら、90秒間、洗浄液を壁部(スペーサ)および半導体ウエハーに向けて洗浄液圧(噴射圧)0.2MPaで噴射することにより行った。また、洗浄液の比重は、1.0であった。また、乾燥は、洗浄液の噴射を停止した状態で、図7に示すように半導体ウエハーを90秒間回転させることにより行った。 Then, the spacer (wall part) was washed with pure water as a washing liquid, and then dried. As shown in FIG. 7, the cleaning was performed by spraying the cleaning liquid toward the wall (spacer) and the semiconductor wafer at a cleaning liquid pressure (spray pressure) of 0.2 MPa for 90 seconds while rotating the semiconductor wafer. . Moreover, the specific gravity of the cleaning liquid was 1.0. Also, the drying was performed by rotating the semiconductor wafer for 90 seconds as shown in FIG.
 次に、透明基板(石英ガラス基板、直径20.3cm、厚さ725μm)を用意し、このものをスペーサが形成された半導体ウエハーに、サブストレート・ボンダ(ズース・マイクロテック社製、「SB8e」)を用いて圧着することにより、スペーサを介して半導体ウエハーと透明基板とが接合された半導体ウエハー接合体を製造した。 Next, a transparent substrate (quartz glass substrate, diameter: 20.3 cm, thickness: 725 μm) is prepared, and the substrate is bonded to a semiconductor wafer on which a spacer is formed, a substrate bonder (manufactured by SUSS MICROTECH, “SB8e”). ) Was used to produce a bonded semiconductor wafer in which the semiconductor wafer and the transparent substrate were bonded via a spacer.
(実施例2)
 スペーサ形成層を構成する樹脂組成物の樹脂ワニスの調製を以下のようにした以外は、実施例1と同様にして半導体ウエハー接合体を製造した。
(Example 2)
A bonded semiconductor wafer was produced in the same manner as in Example 1, except that the resin varnish of the resin composition constituting the spacer forming layer was prepared as follows.
 光重合性樹脂として、トリメチロールプロパントリメタクリレート(共栄社化学(株)製、ライトエステルTMP)11重量%、エポキシビニルエステル樹脂(共栄社化学(株)製、エポキシエステル3002M)4重量%、熱硬化性樹脂であるエポキシ樹脂として、ビスフェノールAノボラック型エポキシ樹脂(大日本インキ化学工業(株)製、エピクロンN-865)4重量%、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製、YL6810)8重量%、シリコーンエポキシ樹脂(東レ・ダウコーニング・シリコーン(株)製、BY16-115)4重量%、フェノールノボラック樹脂(住友ベークライト(株)、PR53647)2重量%、アルカリ可溶性樹脂として上記MPN001を固形分として42重量%、光重合開始剤(チバ・スペシャリティ・ケミカルズ(株)製、イルガキュア651)2重量%、充填材としてシリカ((株)アドマッテクス製、アドマファインSE5101)23.0重量%を秤量し、ディスパーザーを用い、回転数3000rpmで1時間攪拌し、樹脂ワニスを調製した。 As photopolymerizable resin, trimethylolpropane trimethacrylate (manufactured by Kyoeisha Chemical Co., Ltd., light ester TMP) 11% by weight, epoxy vinyl ester resin (manufactured by Kyoeisha Chemical Co., Ltd., epoxy ester 3002M) 4% by weight, thermosetting As an epoxy resin, which is a resin, 4% by weight of bisphenol A novolak type epoxy resin (Dainippon Ink and Chemicals, Epicron N-865), bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YL6810) 8 4% by weight, silicone epoxy resin (Toray Dow Corning Silicone Co., Ltd., BY16-115) 4% by weight, phenol novolac resin (Sumitomo Bakelite Co., Ltd., PR53647) 2% by weight, MPN001 as an alkali-soluble resin is solid 42 weight per minute , 2% by weight of a photopolymerization initiator (Ciba Specialty Chemicals Co., Ltd., Irgacure 651), and 23.0% by weight of silica (Admatechs Co., Ltd., Admafine SE5101) as a filler were weighed, and a disperser was used. A resin varnish was prepared by stirring at 3000 rpm for 1 hour.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(比較例)
 壁部の幅および高さを表1に示すように変更した以外は、前述した実施例1と同様にして半導体ウエハー接合体を製造した。
(Comparative example)
A bonded semiconductor wafer was produced in the same manner as in Example 1 except that the width and height of the wall were changed as shown in Table 1.
[2]評価
 各実施例および比較例の半導体ウエハー接合体のスペーサおよび空隙部を実体顕微鏡(×500倍)で観察し、残渣の有無を以下の評価基準に従い評価した。
[2] Evaluation The spacers and voids of the bonded semiconductor wafers of each Example and Comparative Example were observed with a stereoscopic microscope (× 500 times), and the presence or absence of residues was evaluated according to the following evaluation criteria.
 ◎:残渣が全く確認されず、実用上全く問題ない。
 ○:残渣が若干確認できるが、実用上問題ないレベルである。
 △:残渣が比較的多く観察され、実用レベルではない。
 ×:残渣が多数確認され、実用レベルではない。
(Double-circle): A residue is not confirmed at all and there is no problem practically.
◯: Residue can be confirmed slightly, but at a level that does not cause any practical problems.
Δ: A relatively large amount of residue is observed, which is not at a practical level.
X: Many residues are confirmed and it is not a practical use level.
 これらの結果を表1に示した。
 表1から明らかなように、本発明にかかる実施例の半導体ウエハー接合体では、残渣が全く確認されなかった。また、本発明にかかる実施例の半導体ウエハー接合体をダイシングにより個片化して複数の半導体装置を得たところ、かかる複数の半導体装置は、そのほとんどにおいて、長期に亘り所望の特性を発揮することができ、優れた信頼性を有するものであった。
These results are shown in Table 1.
As is apparent from Table 1, no residue was confirmed in the semiconductor wafer bonded body of the example according to the present invention. Further, when a plurality of semiconductor devices are obtained by dicing the semiconductor wafer assembly of the example according to the present invention by dicing, most of the plurality of semiconductor devices exhibit desired characteristics over a long period of time. And had excellent reliability.
 これに対し、比較例の半導体ウエハー接合体では、残渣が多数確認された。また、比較例の半導体ウエハー接合体をダイシングにより個片化して複数の半導体装置を得たところ、かかる複数の半導体装置は、その多くにおいて、所望の特性を発揮することができず、実施例にかかる半導体装置に比し信頼性に劣るものであった。 On the other hand, in the semiconductor wafer assembly of the comparative example, many residues were confirmed. In addition, when a plurality of semiconductor devices were obtained by dicing the semiconductor wafer assembly of the comparative example by dicing, such a plurality of semiconductor devices could not exhibit desired characteristics in many of them, and in the examples Compared to such a semiconductor device, the reliability was inferior.
 本発明によれば、露光処理されたスペーサ形成層を現像処理する時に、固形状の浮遊物が発生しても、その浮遊物が壁部を乗り越えやすい。したがって、当該浮遊物を現像液の流れによって効率的に除去することができる。そのため、得られる半導体ウエハー接合体に当該浮遊物が残渣として残存するのを防止することができる。その結果、得られる半導体ウエハー接合体は、優れた信頼性を有する。 According to the present invention, when developing the exposed spacer forming layer, even if a solid floating material is generated, the floating material easily gets over the wall. Therefore, the suspended matter can be efficiently removed by the flow of the developing solution. Therefore, it is possible to prevent the floating substance from remaining as a residue in the obtained semiconductor wafer bonded body. As a result, the obtained semiconductor wafer bonded body has excellent reliability.
 また、このような半導体ウエハー接合体を個片化することで得られた半導体装置も、優れた信頼性を有する。 Also, a semiconductor device obtained by separating such a semiconductor wafer bonded body has excellent reliability.
 また、本発明の半導体ウエハー接合体の製造方法を用いることで、高い歩留まりで、優れた信頼性を有する半導体ウエハー接合体および半導体装置を製造することができる。
 このようなことから、本発明は、産業上の利用可能性を有する。
Further, by using the method for manufacturing a semiconductor wafer bonded body of the present invention, a semiconductor wafer bonded body and a semiconductor device having excellent reliability can be manufactured with a high yield.
For this reason, the present invention has industrial applicability.

Claims (14)

  1.  半導体ウエハーと、該半導体ウエハーの一方の面側に対向配置された透明基板と、前記半導体ウエハーと前記透明基板との間に複数の空隙部を画成するように設けられた壁部を有するスペーサとを備える半導体ウエハー接合体を製造する方法であって、
     前記半導体ウエハーおよび前記透明基板のうちの一方に、感光性を有する樹脂組成物で構成されたスペーサ形成層を形成する工程と、
     前記スペーサ形成層に露光光を選択的に照射することにより露光し、現像液を用いて現像することにより、前記壁部を残存させる工程と、
     前記壁部に前記半導体ウエハーおよび前記透明基板のうちの他方を接合する工程とを有し、
     前記壁部の幅をW[μm]とし、前記壁部の高さをH[μm]としたとき、
     下記<1>~<3>の関係式をそれぞれ満たすことを特徴とする半導体ウエハー接合体の製造方法。
     15≦W≦3000   ・・・<1>
     3≦H≦300     ・・・<2>
     0.10≦W/H≦900・・・<3>
    A spacer having a semiconductor wafer, a transparent substrate opposed to one side of the semiconductor wafer, and a wall provided so as to define a plurality of gaps between the semiconductor wafer and the transparent substrate A method for manufacturing a semiconductor wafer assembly comprising:
    Forming a spacer forming layer composed of a photosensitive resin composition on one of the semiconductor wafer and the transparent substrate;
    Exposing the spacer forming layer by selectively irradiating exposure light, and developing with a developer to leave the wall portion; and
    Bonding the other of the semiconductor wafer and the transparent substrate to the wall,
    When the width of the wall portion is W [μm] and the height of the wall portion is H [μm],
    A method for producing a bonded semiconductor wafer, wherein the following relational expressions <1> to <3> are satisfied:
    15 ≦ W ≦ 3000 ... <1>
    3 ≦ H ≦ 300 (2)
    0.10 <= W / H <= 900 ... <3>
  2.  前記現像液の比重をAとし、前記樹脂組成物の比重をBとしたとき、
     0.5≦A/B≦2
     なる関係式を満たす請求項1に記載の半導体ウエハー接合体の製造方法。
    When the specific gravity of the developer is A and the specific gravity of the resin composition is B,
    0.5 ≦ A / B ≦ 2
    The method for producing a bonded semiconductor wafer according to claim 1, wherein the following relational expression is satisfied.
  3.  前記壁部は、平面視にて、前記複数の空隙部がそれぞれ四角形状をなすとともに行列状に配置されるように形成されている請求項1または2に記載の半導体ウエハー接合体の製造方法。 3. The method of manufacturing a semiconductor wafer bonded body according to claim 1, wherein the wall portion is formed so that the plurality of gap portions are each formed in a square shape and arranged in a matrix shape in a plan view.
  4.  前記現像は、前記スペーサ形成層が形成された前記半導体ウエハーまたは前記透明基板をその板面に垂直でかつ中心付近を通る軸線まわりに回転させながら、前記現像液を前記スペーサ形成層に付与することにより行う請求項1ないし3のいずれかに記載の半導体ウエハー接合体の製造方法。 In the development, the developer is applied to the spacer forming layer while rotating the semiconductor wafer or the transparent substrate on which the spacer forming layer is formed around an axis perpendicular to the plate surface and passing through the vicinity of the center. 4. The method for producing a bonded semiconductor wafer according to claim 1, wherein
  5.  前記現像は、前記半導体ウエハーまたは前記透明基板の前記スペーサ形成層が設けられた面側を上方に向けた状態で行う請求項4に記載の半導体ウエハー接合体の製造方法。 5. The method for producing a semiconductor wafer bonded body according to claim 4, wherein the development is performed in a state in which a surface side of the semiconductor wafer or the transparent substrate on which the spacer forming layer is provided faces upward.
  6.  前記現像後、かつ、前記壁部に前記半導体ウエハーおよび前記透明基板のうちの他方を接合する工程前に、前記壁部と、当該壁部が形成された前記半導体ウエハーまたは前記透明基板とを洗浄液を用いて洗浄する請求項1ないし5のいずれかに記載の半導体ウエハー接合体の製造方法。 After the development and before the step of bonding the other of the semiconductor wafer and the transparent substrate to the wall portion, the wall portion and the semiconductor wafer or the transparent substrate on which the wall portion is formed are washed with liquid. The method for producing a bonded semiconductor wafer according to claim 1, wherein the cleaning is performed using
  7.  前記樹脂組成物の比重をBとし、前記洗浄液の比重をCとしたとき、
     0.5≦C/B≦2
     なる関係式を満たす請求項6に記載の半導体ウエハー接合体の製造方法。
    When the specific gravity of the resin composition is B and the specific gravity of the cleaning liquid is C,
    0.5 ≦ C / B ≦ 2
    The manufacturing method of the semiconductor wafer bonded body according to claim 6 satisfying the following relational expression.
  8.  前記洗浄は、前記壁部が形成された前記半導体ウエハーまたは前記透明基板をその板面に垂直でかつ中心付近を通る軸線まわりに回転させながら、前記壁部と、当該壁部が形成された前記半導体ウエハーまたは前記透明基板とに前記洗浄液を付与することにより行う請求項6または7に記載の半導体ウエハー接合体の製造方法。 The cleaning is performed by rotating the semiconductor wafer or the transparent substrate on which the wall portion is formed around an axis line perpendicular to the plate surface and passing through the vicinity of the center, and the wall portion and the wall portion are formed. The manufacturing method of the semiconductor wafer bonded body of Claim 6 or 7 performed by providing the said washing | cleaning liquid to a semiconductor wafer or the said transparent substrate.
  9.  前記洗浄は、前記半導体ウエハーまたは前記透明基板の前記壁部が設けられた面側を上方に向けた状態で行う請求項8に記載の半導体ウエハー接合体の製造方法。 9. The method of manufacturing a semiconductor wafer bonded body according to claim 8, wherein the cleaning is performed in a state in which a surface side of the semiconductor wafer or the transparent substrate on which the wall portion is provided faces upward.
  10.  前記洗浄後、かつ、前記壁部に前記半導体ウエハーおよび前記透明基板のうちの他方を接合する工程の前に、前記洗浄液を除去する工程を有する請求項6ないし9のいずれかに記載の半導体ウエハー接合体の製造方法。 The semiconductor wafer according to claim 6, further comprising a step of removing the cleaning liquid after the cleaning and before the step of bonding the other of the semiconductor wafer and the transparent substrate to the wall portion. Manufacturing method of joined body.
  11.  前記洗浄液を除去する工程は、前記壁部が形成された前記半導体ウエハーまたは前記透明基板をその板面に垂直でかつ中心付近を通る軸線まわりに回転させることにより行う請求項10に記載の半導体ウエハー接合体の製造方法。 The semiconductor wafer according to claim 10, wherein the step of removing the cleaning liquid is performed by rotating the semiconductor wafer or the transparent substrate on which the wall portion is formed around an axis that is perpendicular to the plate surface and passes near the center. Manufacturing method of joined body.
  12.  請求項1ないし11のいずれかに記載の方法により製造されたことを特徴とする半導体ウエハー接合体。 A semiconductor wafer bonded body manufactured by the method according to claim 1.
  13.  半導体ウエハーと、該半導体ウエハーの一方の面側に対向配置された透明基板と、前記半導体ウエハーと前記透明基板との間に複数の空隙部を画成するように設けられた壁部を備えるスペーサとを有する半導体ウエハー接合体であって、
     前記壁部の幅をW[μm]とし、前記各壁部の高さをH[μm]としたとき、
     下記<1>~<3>の関係式をそれぞれ満たすことを特徴とする半導体ウエハー接合体。
     15≦W≦3000   ・・・<1>
     3≦H≦300     ・・・<2>
     0.10≦W/H≦900・・・<3>
    A spacer comprising a semiconductor wafer, a transparent substrate opposed to one surface of the semiconductor wafer, and a wall provided so as to define a plurality of gaps between the semiconductor wafer and the transparent substrate A semiconductor wafer assembly comprising:
    When the width of the wall portion is W [μm] and the height of each wall portion is H [μm],
    A bonded semiconductor wafer, which satisfies the following relational expressions <1> to <3>.
    15 ≦ W ≦ 3000 ... <1>
    3 ≦ H ≦ 300 (2)
    0.10 <= W / H <= 900 ... <3>
  14.  請求項12または13に記載の半導体ウエハー接合体を個片化することにより得られたことを特徴とする半導体装置。 14. A semiconductor device obtained by separating the semiconductor wafer assembly according to claim 12 or 13 into individual pieces.
PCT/JP2011/056877 2010-03-26 2011-03-23 Method for manufacturing a semiconductor wafer assembly, semiconductor wafer assembly, and semiconductor device WO2011118600A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800133493A CN102792440A (en) 2010-03-26 2011-03-23 Method for manufacturing a semiconductor wafer assembly, semiconductor wafer assembly, and semiconductor device
KR1020127026118A KR20130018260A (en) 2010-03-26 2011-03-23 Method for manufacturing a semiconductor wafer assembly, semiconductor wafer assembly, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-073433 2010-03-26
JP2010073433A JP2011205035A (en) 2010-03-26 2010-03-26 Method of manufacturing semiconductor wafer assembly, semiconductor wafer assembly, and semiconductor device

Publications (1)

Publication Number Publication Date
WO2011118600A1 true WO2011118600A1 (en) 2011-09-29

Family

ID=44673151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056877 WO2011118600A1 (en) 2010-03-26 2011-03-23 Method for manufacturing a semiconductor wafer assembly, semiconductor wafer assembly, and semiconductor device

Country Status (5)

Country Link
JP (1) JP2011205035A (en)
KR (1) KR20130018260A (en)
CN (1) CN102792440A (en)
TW (1) TW201207896A (en)
WO (1) WO2011118600A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6899293B2 (en) * 2017-09-13 2021-07-07 株式会社ディスコ Manufacturing method of laminated wafer
JP2019062239A (en) * 2019-01-09 2019-04-18 株式会社ニコン Imaging unit and imaging apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197455A (en) * 2004-01-07 2005-07-21 Nec Electronics Corp Developing method in process of manufacturing semiconductor device and developing device executing this
JP2006060084A (en) * 2004-08-20 2006-03-02 Tokyo Electron Ltd Developer and developing method
JP2006270058A (en) * 2005-03-24 2006-10-05 Taiwan Semiconductor Manufacturing Co Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197455A (en) * 2004-01-07 2005-07-21 Nec Electronics Corp Developing method in process of manufacturing semiconductor device and developing device executing this
JP2006060084A (en) * 2004-08-20 2006-03-02 Tokyo Electron Ltd Developer and developing method
JP2006270058A (en) * 2005-03-24 2006-10-05 Taiwan Semiconductor Manufacturing Co Ltd Semiconductor device

Also Published As

Publication number Publication date
KR20130018260A (en) 2013-02-20
CN102792440A (en) 2012-11-21
TW201207896A (en) 2012-02-16
JP2011205035A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP4959627B2 (en) Resin composition, resin spacer film and semiconductor device
WO2010113759A1 (en) Film for resin spacer, light-receiving device and method for manufacturing same, and mems device and method for manufacturing same
WO2011046181A1 (en) Resin composition, semiconductor wafer-bonded body, and semiconductor device
JPWO2010119647A1 (en) Photosensitive resin composition, adhesive film, and light receiving device
JP5338663B2 (en) Manufacturing method of electronic device
EP2273314B1 (en) Photosensitive resin composition, film for photosensitive resin spacer, and semiconductor device
WO2010095593A1 (en) Semiconductor wafer assembly, method for producing semiconductor wafer assembly, and semiconductor device
CN102197339B (en) Photosensitive resin composition, photosensitive adhesive film, and light-receiving device
WO2011034025A1 (en) Film for forming spacer, method for manufacturing semiconductor wafer bonded body, semiconductor wafer bonded body, and semiconductor device
JP5136239B2 (en) Photosensitive resin composition, adhesive film, and light receiving device
WO2011118600A1 (en) Method for manufacturing a semiconductor wafer assembly, semiconductor wafer assembly, and semiconductor device
WO2010095592A1 (en) Method for producing semiconductor wafer assembly, semiconductor wafer assembly, and semiconductor device
US20110101484A1 (en) Light-receiving device and method of manufacturing the same
JP2011084658A (en) Resin composition, semiconductor wafer assembly and semiconductor device
JP2011066167A (en) Film for forming spacer, method for manufacturing semiconductor wafer bonded body, semiconductor wafer bonded body, and semiconductor device
JP2010192628A (en) Semiconductor wafer junction, method for manufacturing semiconductor device, and semiconductor device
JP2011066166A (en) Film for forming spacer, method for manufacturing semiconductor wafer bonded body, semiconductor wafer bonded body, and semiconductor device
WO2011030797A1 (en) Method for producing semiconductor wafer assembly, semiconductor wafer assembly, and semiconductor device
US20110316127A1 (en) Spacer formation film, semiconductor wafer and semiconductor device
JP2011086779A (en) Resin composition, semiconductor wafer bonded body, and semiconductor device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013349.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127026118

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11759405

Country of ref document: EP

Kind code of ref document: A1