WO2011118545A1 - Optical communication system - Google Patents

Optical communication system Download PDF

Info

Publication number
WO2011118545A1
WO2011118545A1 PCT/JP2011/056691 JP2011056691W WO2011118545A1 WO 2011118545 A1 WO2011118545 A1 WO 2011118545A1 JP 2011056691 W JP2011056691 W JP 2011056691W WO 2011118545 A1 WO2011118545 A1 WO 2011118545A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission path
optical
communication system
quality
optical communication
Prior art date
Application number
PCT/JP2011/056691
Other languages
French (fr)
Japanese (ja)
Inventor
竹下 仁士
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2011118545A1 publication Critical patent/WO2011118545A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0289Optical multiplex section protection
    • H04J14/029Dedicated protection at the optical multiplex section (1+1)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0279WDM point-to-point architectures

Definitions

  • the present invention relates to an optical communication system for transmitting data from a transmitter to a receiver by an optical signal.
  • An optical communication system which transmits data from a transmitter to a receiver by an optical signal.
  • the optical communication system described in Patent Document 1 as one of such optical communication systems has a plurality of transmission paths from the transmitting device to the receiving device.
  • the optical communication system sets the first transmission path as an operation transmission path, and transmits data from the transmitter to the receiver via the set operation transmission path.
  • the optical communication system detects whether or not a failure has occurred in the first transmission path based on the data received by the receiving device. Specifically, the optical communication system detects that a failure has occurred in the first transmission path when the number of error corrections in forward error correction (FEC) processing becomes larger than a predetermined threshold. .
  • FEC forward error correction
  • the optical communication system When the optical communication system detects that a failure has occurred in the first transmission path, the optical communication system changes (switches) the operation transmission path from the first transmission path to the second transmission path. Thus, the optical communication system can accurately transmit data using the second transmission path even when a failure occurs in the first transmission path.
  • the above optical communication system has the following problems. That is, accurate data (that is, the same data as data transmitted from the transmitting apparatus) in a period from when it is detected that a failure occurs in the first transmission path to when switching of the operation transmission path is completed. Can not be received by the receiving device. As a result, there is a problem that communication quality is degraded. In particular, as the amount of data transmitted per unit time increases, the amount of data received by the receiving device in the above period increases. Therefore, the larger the amount of data transmitted per unit time, the more noticeable the above problem. (Object of the Invention)
  • An object of the present invention is an optical communication system capable of solving the above-mentioned problem “when communication quality is lowered when changing an operation transmission path due to occurrence of a failure”. Intended to be provided.
  • An optical communication system is an optical communication system for transmitting an optical signal from a transmitter to a receiver via an operation transmission path which is any of a plurality of transmission paths, Fluctuation quality for acquiring a first fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the optical signal received by the receiving apparatus through the operation transmission line Value acquisition means, Failure occurrence detection means for detecting occurrence of a failure in the operation transmission path at a future time based on the first variation quality value, and outputting a failure occurrence warning signal; It includes data transmission means for changing the operation transmission path to another transmission path when the failure occurrence alarm signal is input.
  • the optical communication method of the present invention is applied to an optical communication system for transmitting an optical signal from a transmitter to a receiver via an operation transmission path which is any of a plurality of transmission paths, Acquiring a first fluctuation quality value, which is a time fluctuation component caused by polarization mode dispersion, among values representing the quality of the optical signal received by the receiving apparatus through the operation transmission line; Based on the first variation quality value, it is detected that a failure occurs in the operation transmission path at a future time, and a failure occurrence warning signal is output, When the failure occurrence alarm signal is input, the operation transmission path is changed to another transmission path.
  • a first fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion
  • the fault detection apparatus receives a light signal and obtains a fluctuation quality value that acquires a fluctuation quality value that is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the light signal.
  • the present invention is configured as described above, so that it is possible to prevent the communication quality from being lowered when changing the operation transmission path in accordance with the occurrence of a failure.
  • FIG. 1 It is a figure showing schematic structure of the optical communication system concerning 1st Embodiment of this invention. It is the graph which showed an example of the time change of the fluctuation quality value. It is the graph which showed the time change of the value which smooth
  • the optical communication system according to each embodiment of the present invention has a plurality of transmission paths for transmitting data by an optical signal.
  • the plurality of transmission paths include a first transmission path and a second transmission path from the transmitter to the receiver.
  • the optical communication system sets a first transmission path or a second transmission path as an operation transmission path, and transmits data from the transmitter to the receiver via the operation transmission path.
  • the optical communication system has a fluctuation quality that is a value that well reflects the time fluctuation component caused by polarization mode dispersion among the values representing the quality of the optical signal that has passed through the first transmission path set as the operation transmission path. Get the value.
  • the variable quality value will be further described later.
  • the optical communication system detects that a failure occurs in the first transmission path at a future time based on the acquired variable quality value (ie, predicts the occurrence of the failure). When it is detected that a failure occurs in the first transmission path, the optical communication system changes the operation transmission path from the first transmission path to the second transmission path before the failure actually occurs. . This can prevent the receiving device from receiving erroneous data (that is, data different from the data transmitted from the transmitting device).
  • the receiving apparatus takes a period from the actual occurrence of the failure until the change of the operation transmission path is completed.
  • the amount of data received increases. Therefore, the further effect is exhibited by this embodiment.
  • the period that is, the time during which the communication service is disconnected (blocked)
  • retransmission control of data accompanying the loss of data to be transmitted is suppressed, and the communication service can be further speeded up. can do.
  • the optical communication system is determined as if the failure does not occur although the failure is actually occurring. It can be operated.
  • the reliability of the optical communication system can be improved.
  • physical phenomena such as wavelength dispersion, polarization dispersion, optical S / N (Signal-to-Noise), and nonlinear distortion are factors that cause the quality of the optical signal to fluctuate. Conceivable.
  • PMD polarization mode dispersion
  • the reason for this is that the fluctuation in quality caused by PMD is irregular and is a high speed phenomenon, so it is difficult to suppress the fluctuation in quality by performing compensation or the like.
  • other factors are relatively regular and slow phenomena, it is possible to suppress the fluctuation of quality by performing compensation or the like.
  • the fluctuation of the quality of the optical signal is dominated by the part caused by PMD. That is, it is particularly important to monitor quality variations due to PMD.
  • PMD the part caused by PMD.
  • the failure often occurs because the quality of the optical signal is rapidly degraded during a very short time (ie, instantaneously).
  • monitoring of only the time-varying component caused by PMD among the values representing the quality of the optical signal is more likely to cause a failure than monitoring the entire value representing the quality of the optical signal.
  • the inventor has found that it is easy to detect in advance.
  • the optical communication system acquires, among the values representing the quality of the optical signal, a fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion, and based on the fluctuation quality value, at a future time, Detect when a failure occurs.
  • the variable quality value will be further described.
  • BER bit error rate
  • FEC forward error correction
  • the number of error corrections in BER or FEC processing does not necessarily reflect only the fluctuation quality due to PMD.
  • the optical communication system detects the SOP (State of Polarization) vector locus length or the degree of polarization that strongly correlates with the fluctuation quality due to PMD, and based on the detected value, the fluctuation quality due to PMD We will acquire the fluctuation quality value as a value that reflects well.
  • the SOP vector locus length is the length of the locus drawn by the Stokes vector on the Poincare sphere in the wavelength band of the optical signal.
  • the degree of polarization is also called DOP (Degree of Polarization).
  • the fluctuation quality value is not limited to the above as long as it is a value that well reflects the fluctuation of quality caused by PMD, and even a value well reflecting the fluctuation of quality caused by PMD. Anything will do.
  • the occurrence of a failure can be predicted with high accuracy by using the variable quality value having such a feature.
  • the optical signal representing the data ie, the modulated optical signal (modulated light)
  • the optical signal representing the data Is required.
  • modulated light continuous wave (CW: continuous wave) light, or amplified spontaneous emission (ASE: amplified spontaneous emission)
  • CW continuous wave
  • ASE amplified spontaneous emission
  • the following advantages can be obtained by using CW light or ASE light: There is. That is, the value representing the quality of the optical signal can be obtained more easily than in the case of using modulated light. Therefore, by using a simple light source, it is possible to obtain a value representing the quality of the light signal. As a result, equipment and operation costs can be reduced to predict the occurrence of a failure in the backup transmission path. Also, in an optical communication system, a hot standby method is often used in which power for transmitting data is supplied in advance via a spare transmission path.
  • the hot standby method has a problem that the operation cost and the power consumption amount are large as compared with the cold standby method in which the supply of power for transmitting data is stopped via the spare transmission path.
  • the optical communication system according to the present invention predicts the occurrence of a failure and changes the operation transmission path before the failure actually occurs. Therefore, it is possible to secure a relatively long time from when it is detected that a failure will occur in the future, to when the failure actually occurs.
  • the optical communication system 1000 includes a plurality of (three in this example) node devices (communication devices) 1001, 1002, and 1003.
  • the node device 1001 is also referred to as a transmitting device.
  • the node device 1002 is also referred to as a receiving device.
  • the node device 1001 and the node device 1002 constitute data transmission means.
  • the node device 1001 is connected to the node device 1002 via an optical fiber 1004. Further, the node device 1001 is connected to the node device 1003 via the optical fiber 1005. In addition, the node device 1003 is connected to the node device 1002 via the optical fiber 1006.
  • the transmission path of the optical signal that reaches the node device 1002 from the node device 1001 via the optical fiber 1004 is also referred to as a first transmission path.
  • the transmission path of the optical signal that reaches the node device 1002 from the node device 1001 via the optical fiber 1005, the node device 1003, and the optical fiber 1006 is also referred to as a second transmission path.
  • the optical communication system 1000 has a plurality of transmission paths consisting of the first transmission path and the second transmission path.
  • the node device 1001 is configured to be able to output an optical signal representing data to each of the optical fiber 1004 and the optical fiber 1005.
  • the node device 1001 receives an output control signal from the node device 1002, and outputs an optical signal to any one of the optical fiber 1004 and the optical fiber 1005 according to the output control signal.
  • the output control signal indicates that the first transmission path or the second transmission path is to be set as an operation transmission path.
  • the node device 1003 receives an optical signal from the node device 1001 via the optical fiber 1005, and outputs (transfers) the received optical signal to the optical fiber 1006.
  • the node device 1002 is an optical signal transmitted by the node device 1001, and receives an optical signal transmitted via the first transmission path or the second transmission path.
  • the optical communication system 1000 includes a plurality of (three in this example) optical amplifiers (optical amplifiers) 1007, 1008, and 1009, and a polarizer 1015.
  • the optical amplifier 1007 is disposed in the optical fiber 1004.
  • the optical amplifier 1007 amplifies the optical signal transmitted by the node device 1001.
  • the optical amplifier 1008 is disposed in the optical fiber 1005.
  • the optical amplifier 1008 amplifies the optical signal transmitted by the node device 1001.
  • the optical amplifier 1009 is disposed in the optical fiber 1006.
  • the optical amplifier 1009 amplifies the optical signal transmitted by the node device 1003.
  • the polarizer 1015 sets the polarization state of the optical signal amplified by the optical amplifier 1008 to a preset state, and outputs the polarization state to the optical fiber 1005.
  • the optical signal transmitted by the node device 1001 is received by the node device 1002 after the quality is changed due to various factors while being transmitted via the transmission path.
  • the optical communication system 1000 includes a plurality of (two in this example) optical splitters 1010 and 1011 and a plurality of (two in this example) optical signal quality monitors (fault detection devices) 1012 and 1013, Equipped with The optical signal quality monitor 1013 constitutes fluctuation quality value acquisition means and failure occurrence detection means.
  • the optical splitter 1010 is disposed at the end of the optical fiber 1006 on the node device 1002 side.
  • the optical splitter 1010 splits the optical signal transmitted by the optical fiber 1006 and monitors the branched optical signal (that is, the optical signal received by the receiver 1002 via the second transmission path) as an optical signal quality monitor Output to 1012 Similarly, the optical splitter 1011 is disposed at the end of the optical fiber 1004 on the node device 1002 side.
  • the optical splitter 1011 branches the optical signal transmitted by the optical fiber 1004, and monitors the branched optical signal (that is, the optical signal received by the receiver 1002 via the first transmission path) as an optical signal quality monitor Output to 1013
  • the optical signal quality monitor 1012 is a fluctuation quality value that is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the input optical signal (that is, the optical signal passed through the second transmission path). Get (the second variation quality value).
  • the optical signal quality monitor 1012 measures (detects) the SOP vector locus length, and acquires the measured value itself or a value obtained by performing a predetermined operation on the value as a fluctuation quality value.
  • the optical signal quality monitor 1012 may detect the degree of polarization and acquire the detected value itself or a value obtained by performing a predetermined operation on the value as the fluctuation quality value. Specifically, the optical signal quality monitor 1012 stores information representing the relationship between the SOP vector locus length and the fluctuation quality value based on the experimentally measured values. Then, the optical signal quality monitor 1012 obtains the fluctuation quality value from the measured SOP vector locus length and the stored information. The optical signal quality monitor 1012 may acquire, based on the SOP vector locus length or the degree of polarization (DOP), a temporal fluctuation component caused by PMD among values representing the quality of the optical signal. This method is disclosed, for example, in Japanese Patent Laid-Open No. 2009-260875.
  • DOP degree of polarization
  • the optical signal quality monitor 1012 outputs a failure occurrence warning signal to the node device 1002 when the acquired fluctuation quality value satisfies a predetermined detection condition.
  • the failure occurrence warning signal indicates that a failure has been detected at a future time.
  • the optical signal quality monitor 1013 has the same configuration as the optical signal quality monitor 1012.
  • the optical signal quality monitor 1013 is a fluctuation quality value that is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the input optical signal (that is, the optical signal passed through the first transmission path). Get (the first variation quality value).
  • the optical signal quality monitor 1013 outputs a failure occurrence warning signal to the node device 1002 when the acquired fluctuation quality value satisfies the above detection condition.
  • the node device 1002 When receiving the failure occurrence warning signal, the node device 1002 changes the transmission path set as the operation transmission path. That is, when the node device 1002 receives the failure occurrence warning signal from the optical signal quality monitor 1013 when the first transmission path is set as the operation transmission path, the node device 1002 transmits the operation transmission path from the first transmission path to the second transmission path. Change to the transmission path of Specifically, the node device 1002 transmits, to the node device 1001, an output control signal indicating that the second transmission path is to be set as an operation transmission path.
  • FIG. 2 is a graph showing an example of a time change of fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among values representing the quality of an optical signal.
  • occurrence of a fault corresponds to, for example, the fact that the number of error corrections in the FEC process becomes larger than a preset threshold.
  • the quality deterioration threshold Qth is a threshold of a fluctuation quality value at which a failure actually occurs.
  • the fluctuation quality value may drop sharply during a relatively short time (during the period between time t1 and time t2) and fall below the quality deterioration threshold Qth.
  • the fluctuation quality value vibrates and decreases during the time t1 and the time t2, and the amplitude of the vibration is increased and finally falls below the quality deterioration threshold Qth after t2.
  • each of the optical signal quality monitors 1012 and 1013 detects that a failure will occur in the future in the transmission path to be detected in the following case, within the judgment period set in advance. That is, the ratio of the total of time when the fluctuation quality value becomes smaller than the preset quality threshold to the determination period becomes equal to or more than the preset threshold (ratio threshold), and the fluctuation quality value at that time If the time rate of change is a negative value.
  • ratio threshold ratio of the total of times when the fluctuation quality value becomes smaller than the preset quality threshold to the determination period is equal to or greater than the preset threshold (percentage threshold). It means that.
  • each of the optical signal quality monitors 1012 and 1013 starts measuring the time by the timer when the acquired fluctuation quality value falls below the PMD-induced quality fluctuation threshold Qpmd (quality threshold). That is, it is the time when the acquired fluctuation quality value becomes smaller than the PMD-induced quality fluctuation threshold Qpmd.
  • the PMD-induced quality fluctuation threshold Qpmd is set to a value larger than the quality deterioration threshold Qth.
  • Each of the optical signal quality monitors 1012 and 1013 starts the measurement of the time by the timer, and in the period (determination period) until the time measured by the timer exceeds the time threshold T set in advance, Do. That is, the sum of time in which the acquired fluctuation quality value becomes smaller than the PMD-induced quality fluctuation threshold Qpmd (that is, falls below the PMD-induced quality fluctuation threshold Qpmd) is measured. In the example shown in FIG. 2, this sum is T1 + T2 + T3 + T4 + T5 + T6.
  • each of the optical signal quality monitors 1012 and 1013 calculates the time change rate (that is, time differential value) Q ′ of the fluctuation quality value.
  • the fluctuation quality value acquired includes a measurement error and / or a minute fluctuation component due to noise light. For this reason, there is a possibility that the time change rate of the fluctuation quality value can not be calculated with high accuracy.
  • each of the optical signal quality monitors 1012 and 1013 acquires the time change rate of the value obtained by smoothing the acquired fluctuation quality value as the time change rate of the fluctuation quality value.
  • FIG. 3 is a graph showing the time change of the value obtained by smoothing the fluctuation quality value shown in FIG.
  • each of the optical signal quality monitors 1012 and 1013 smoothes the obtained fluctuation quality value by using a low pass filter.
  • Each of the optical signal quality monitors 1012 and 1013 may be configured to use a Savitzky-Golay filter. As a result, it is possible to reduce the influence of measurement errors and / or minute fluctuation components due to noise light on the time rate of change of fluctuation quality values.
  • Each of the optical signal quality monitors 1012 and 1013 detects that a failure will occur in the future in the transmission path to be detected in the following case. That is, the calculated value R is equal to or greater than a preset ratio threshold Rth, and the calculated time change rate Q ′ of the fluctuation quality value is a negative value.
  • the condition that the value R is equal to or greater than the ratio threshold Rth and the time rate of change Q ′ of the fluctuation quality value is a negative value is also referred to as a detection condition.
  • the transmission path to be detected is the second transmission path for the optical signal quality monitor 1012 and the first transmission path for the optical signal quality monitor 1013.
  • Each of the optical signal quality monitors 1012 and 1013 outputs a failure occurrence warning signal to the node device 1002 when it is detected that a failure will occur at a future time point in the transmission path to be detected.
  • the values representing the quality of the optical signal the effect in the case of predicting the occurrence of a fault by using a fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion, in BER or FEC processing Description will be made in comparison with the case where the number of error corrections is used.
  • BER is used as a value representing the quality of the optical signal
  • a value corresponding to the PMD-induced quality fluctuation threshold Qpmd shown in FIG. 2 will be described as a quality fluctuation threshold Qber.
  • the PMD-induced quality fluctuation threshold Qpmd is substantially a threshold for ⁇ Q (t), while the quality fluctuation threshold Qber is substantially Threshold for Q (t).
  • the fluctuation range of ⁇ Q (t) can be estimated relatively accurately from the PMD characteristics in the transmission path. Therefore, it is relatively easy to set the value of the PMD-induced quality fluctuation threshold Qpmd properly.
  • Each of the optical signal quality monitors 1012 and 1013 indicates that the state in which the time change rate of the acquired fluctuation quality value is a negative value continues for a predetermined time (time threshold) or more.
  • time threshold time threshold
  • it may be configured as follows. That is, it is configured to detect that a fault occurs in the transmission path to be detected. This also makes it possible to detect that a failure occurs at a time before the time when the variation quality value actually falls below the quality deterioration threshold Qth. (Operation) Next, the operation of the optical communication system 1000 will be described.
  • the optical communication system 1000 sets the first transmission path as an operation transmission path. Accordingly, the node device 1001 outputs an optical signal representing data to the optical fiber 1004. That is, the node device 1001 transmits an optical signal to the node device 1002 via the first transmission path. Thereby, the node device 1002 receives the optical signal, and restores the data transmitted by the node device 1001 based on the received optical signal. Thus, data is transmitted from the node device 1001 to the node device 1002.
  • the optical signal quality monitor 1013 also receives the optical signal output by the optical splitter 1011. Then, the optical signal quality monitor 1013 obtains a first fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the input optical signal.
  • the optical signal quality monitor 1013 determines whether the acquired first variation quality value satisfies the detection condition. Now, it is assumed that the light signal quality monitor 1013 determines that the acquired first variation quality value satisfies the detection condition at time t3 in FIG. In this case, the optical signal quality monitor 1013 transmits a failure occurrence warning signal to the node device 1002. When receiving the failure occurrence warning signal, the node device 1002 transmits an output control signal to the node device 1001. Thereby, the node device 1001 receives the output control signal. Then, the node device 1001 changes (switches) the output destination of the optical signal from the optical fiber 1004 to the optical fiber 1005.
  • the node device 1001 changes the operation transmission path from the first transmission path to the second transmission path.
  • the optical signal transmitted by the node device 1001 subsequently reaches the node device 1002 via the second transmission path.
  • the optical communication system 1000 is at a time before the time when a failure actually occurs in the first transmission path. Can change the operation transmission path. This is the case, for example, when the number of error corrections in the error correction process becomes larger than a predetermined threshold.
  • the optical communication system according to the first modification differs from the optical communication system according to the first embodiment in that the supply of power related to the spare transmission path is stopped until occurrence of an abnormality is detected. ing. Therefore, the following description will be focused on such differences.
  • the node device 1001 includes a plurality of (two in this example) optical transmitters 4001 and 4002.
  • the optical transmitter 4001 outputs (sends) an optical signal to the optical fiber 1004.
  • the optical transmitter 4002 outputs (sends) an optical signal to the optical fiber 1005.
  • the node device 1002 includes a plurality of (in this example, two) optical receivers 4003 and 4004.
  • the optical receiver 4003 receives (inputs) an optical signal that has passed through the optical fiber 1004.
  • the optical receiver 4004 receives (inputs) an optical signal that has passed through the optical fiber 1006.
  • the node device 1003 includes an optical switch 4005.
  • the optical switch 4005 outputs the input optical signal without termination.
  • the optical switch 4005 is configured to be able to change (switch) the output destination of the input optical signal.
  • FIG. 4 only the path connecting the optical fiber 1005 and the optical fiber 1006 is shown to simplify the description.
  • the 1 + 1 protection method which is a hot standby method, is used as a switching method of a transmission path when a failure occurs. The reason is that it is difficult to perform processing based on a complicated control protocol in the optical communication system, and it takes a relatively long time for the node device to operate stably.
  • the 1 + 1 protection scheme it is necessary to always prepare a backup transmission path equivalent to the operation transmission path.
  • the same optical signal as the optical signal transmitted via the operation transmission path is used as the spare transmission path. It must also be transmitted via As a result, the facility cost for providing a dedicated spare transmission path for one operation transmission path, and the operation cost for always operating the spare transmission path in addition to the operation transmission path are required.
  • the optical communication system 1000 stops the supply of power for transmitting data via the second transmission path in the following case. That is, it is in a period until the first transmission path is set as the operation transmission path and it is detected that a failure occurs in the first transmission path. Specifically, the optical communication system 1000 stops (shuts off) the supply of power to the optical transmitter 4002, the optical amplifier 1008, the optical switch 4005, the optical amplifier 1009, and the optical receiver 4004. Furthermore, when the node apparatus 1002 receives a failure occurrence warning signal from the optical signal quality monitor 1013, the optical communication system 1000 starts supplying power for transmitting data via the second transmission path.
  • the optical communication system 1000 starts supplying power to the optical transmitter 4002, the optical amplifier 1008, the optical switch 4005, the optical amplifier 1009, and the optical receiver 4004. Then, the node device 1002 transmits an output control signal to the node device 1001 after a standby time set in advance has elapsed since the point in time when the failure occurrence warning signal was received from the optical signal quality monitor 1013.
  • the optical communication system 1000 according to the first modification power is provided to transmit data via the second transmission path even while the first transmission path is set as the operation transmission path. There are the following effects compared to the case where That is, the amount of power consumed by the optical communication system 1000 can be reduced.
  • FIG. 4 is a block diagram showing the configuration of each of the node devices 1001, 1002 and 1003 in FIG. 1 in more detail.
  • the node device 1001 includes a plurality of (two in this example) optical transmitters 4001 and 4002.
  • the optical transmitter 4001 outputs (sends) an optical signal to the optical fiber 1004.
  • the optical transmitter 4002 outputs (sends) an optical signal to the optical fiber 1005.
  • the node device 1002 includes a plurality of (in this example, two) optical receivers 4003 and 4004.
  • the optical receiver 4003 receives (inputs) an optical signal that has passed through the optical fiber 1004.
  • the optical receiver 4004 receives (inputs) an optical signal that has passed through the optical fiber 1006.
  • the node device 1003 includes an optical switch 4005.
  • the optical switch 4005 outputs the input optical signal without termination.
  • the optical switch 4005 is configured to be able to change (switch) the output destination of the input optical signal. In FIG. 4, only the path connecting the optical fiber 1005 and the optical fiber 1006 is shown to simplify the description.
  • the optical communication system 1000 according to the second modification stops supply of power for transmitting data to the node device 1001 (transmitting device) via the second transmission path in the following case.
  • the optical communication system 1000 stops (shuts off) the supply of power to the optical transmitter 4002.
  • the optical signal quality monitor 1012 receives the second fluctuation quality value from the noise light received by the optical receiver 4004 included in the node device 1002 and output from the optical amplifiers 1008 and 1009 arranged in the second transmission path. get.
  • the node device 1002 is a receiving device. According to this, even while the first transmission path is set as the operation transmission path, the power for transmitting data via the second transmission path is compared with the case where the power is supplied to the transmitting apparatus. The following effects can be obtained.
  • the amount of power consumed by the optical communication system 1000 can be reduced. That is, even while the first transmission path is set as the operation transmission path, the amount of power consumed by the optical communication system 1000 can be reduced compared to the case where power is supplied to the optical transmitter 4002 .
  • the node device 1002 transmits the output control signal to the node device 1001 when the failure occurrence warning signal is received from the optical signal quality monitor 1013 and the failure occurrence warning signal is not received from the light signal quality monitor 1012. Do. That is, the node device 1002 can detect the occurrence of a failure in the first transmission path and can not output the output control signal to the node when the occurrence of the failure in the second transmission path is not detected. Send to the device 1001.
  • the optical communication system 1000 According to the optical communication system 1000 according to the second modification, it is possible to avoid the occurrence of a failure in the second transmission path immediately after changing the operation transmission path. As a result, the optical communication system 1000 can reliably transmit data from the node device 1001 (transmission device) to the node device 1002 (reception device). That is, the reliability of the optical communication system 1000 can be improved.
  • Second Embodiment an optical communication system according to a second embodiment of the present invention will be described.
  • the optical communication system according to the second embodiment is different from the optical communication system according to the first embodiment in that wavelength division multiplexing communication is performed in which a plurality of optical signals of different wavelengths are superimposed on an optical fiber. . Therefore, the following description will be focused on such differences. As shown in FIG.
  • the optical communication system 5000 includes node devices 5001, 2502, 5003 respectively corresponding to the node devices 1001, 1002, 1003 in FIG. 1.
  • the optical communication system 5000 also includes optical fibers 5004, 5005, 5006 corresponding to the optical fibers 1004, 1005, 1006 in FIG.
  • the optical communication system 5000 further includes optical amplifiers 5007, 5008, and 5009 respectively corresponding to the optical amplifiers 1007, 1008, and 1009 in FIG.
  • the optical communication system 5000 further includes optical splitters 5010 and 5011 corresponding to the optical splitters 1010 and 1011 of FIG.
  • the optical communication system 5000 further includes optical signal quality monitors 5012 and 5013 respectively corresponding to the optical signal quality monitors 1012 and 1013 of FIG.
  • the optical communication system 5000 includes wavelength multiplexers 5017 and 5018 and wavelength separators 5019 and 5020.
  • the node device 5001 includes a plurality of (eight in this example) optical transmitters 5031 to 5038. Each of the optical transmitters 5031 to 5034 outputs an optical signal to the wavelength multiplexer 5018.
  • the respective optical transmitters 5031 to 5034 output (transmit) optical signals having different wavelengths (in this example, ⁇ 1, ⁇ 2, ⁇ 3 or ⁇ 4).
  • the wavelength multiplexer 5018 superimposes the input optical signal and outputs the optical signal to the optical amplifier 5008.
  • each of the optical transmitters 5035 to 5038 outputs an optical signal to the wavelength multiplexer 5017.
  • the respective optical transmitters 5035 to 5038 output (transmit) optical signals having different wavelengths (in this example, ⁇ 1, ⁇ 2, ⁇ 3, or ⁇ 4).
  • the wavelength multiplexer 5017 superimposes the input optical signal and outputs the optical signal to the optical amplifier 5007.
  • the node device 5002 includes a plurality of (eight in this example) optical receivers 5021 to 5028.
  • the wavelength separator 5019 receives an optical signal (output from the optical amplifier 5007) transmitted via the first transmission path.
  • the wavelength separator 5019 separates the input optical signal into optical signals for each wavelength, and outputs the separated optical signals to the optical receivers 5025 to 5028.
  • the respective optical receivers 5025 to 5028 input (receive) optical signals having different wavelengths (in this example, ⁇ 1, ⁇ 2, ⁇ 3 or ⁇ 4).
  • the wavelength separator 5020 receives the optical signal (output from the optical amplifier 5009) transmitted via the second transmission path.
  • the wavelength separator 5020 separates the input optical signal into optical signals for each wavelength, and outputs the separated optical signals to the optical receivers 5021 to 5024.
  • the respective optical receivers 5021 to 5024 input (receive) optical signals having different wavelengths (in this example, ⁇ 1, ⁇ 2, ⁇ 3 or ⁇ 4).
  • the optical communication system 5000 transmits data from the node device 5001 to the node device 5002 by wavelength division multiplex communication (WDM; Wavelength Division Multiplex).
  • WDM wavelength division multiplex communication
  • the optical signal quality monitor 5013 is a fluctuation quality value that is a time fluctuation component caused by polarization mode dispersion among the values representing the quality of the optical signal that has passed through the first transmission path. Get (the first variation quality value).
  • the optical signal quality monitor 5013 measures (detects) the SOP vector trajectory length, and acquires the variation quality value based on the measured value.
  • FIG. 6 is a graph showing an example of the relationship between the SOP vector locus length and the variation quality value. By the way, it has been experimentally found that this relationship hardly changes due to factors other than PMD.
  • the optical signal quality monitor 5013 obtains the variation quality value based on the relationship between the SOP vector trajectory length and the variation quality value and the measured SOP vector trajectory length based on the measurement values obtained in advance by experiment. Do. Thereby, the variable quality value can be obtained with high accuracy.
  • the optical signal quality monitor 5013 can measure the SOP vector locus length without separating the input optical signal for each wavelength. Therefore, the optical signal quality monitor 5013 can acquire the fluctuation quality value for each wavelength based on the SOP vector locus length measured for each wavelength. That is, the optical signal quality monitor 5013 can acquire the fluctuation quality value as in the case where the input optical signal is an optical signal having only a single wavelength.
  • An optical communication system 7000 according to the third embodiment is a system that includes a transmitter and a receiver, and transmits data from the transmitter to the receiver by an optical signal.
  • the optical communication system 7000 has a plurality of transmission paths from the transmitter to the receiver. Further, the optical communication system 7000 sets a first transmission path, which is one of the plurality of transmission paths, as an operation transmission path. Furthermore, the optical communication system 7000 includes a data transmission unit (data transmission unit) 7001 that transmits the data from the transmission apparatus to the reception apparatus via the set operation transmission path. Furthermore, the optical communication system 7000 is a fluctuation quality value for acquiring a first fluctuation quality value among values representing the quality of the optical signal received by the receiving apparatus via the first transmission path. An acquisition unit (means) 7002 is provided. The first variation quality value is a time variation component due to polarization mode dispersion.
  • the optical communication system 7000 detects a failure occurrence in the first transmission path at a future time based on the acquired first fluctuation quality value (a failure occurrence detection unit (a failure). Occurrence detection means) 7003 is provided.
  • the data transmission unit 7001 performs the following operation when it is detected that a failure occurs in the first transmission path. That is, the data transmission unit 7001 is configured to change the operation transmission path from the first transmission path to a second transmission path different from the first transmission path among the plurality of transmission paths. Be done. According to this, in the optical communication system 7000, at the time before the time when the failure actually occurs in the first transmission path (for example, the number of error corrections in the error correction processing becomes larger than the predetermined threshold) , You can change the operation transmission path.
  • An optical communication system is a system that includes a transmitter and a receiver, and transmits data from the transmitter to the receiver by an optical signal. Furthermore, the optical communication system has a plurality of transmission paths from the transmitter to the receiver. Further, the optical communication system sets a first transmission path, which is one of the plurality of transmission paths, as an operation transmission path.
  • the optical communication system further includes data transmission means for transmitting the data from the transmitting device to the receiving device via the set operation transmission path. Furthermore, this optical communication system is characterized by a first fluctuation quality which is a time fluctuation component due to polarization mode dispersion among values representing the quality of the optical signal received by the receiving apparatus via the first transmission path. It has a variable quality value acquisition means for acquiring a value. The optical communication system further includes failure occurrence detection means for detecting occurrence of a failure in the first transmission path at a future time based on the acquired first variation quality value. Further, the data transmission means is configured to select the operation transmission path from the first transmission path to the first one of the plurality of transmission paths when it is detected that a failure occurs in the first transmission path.
  • An optical communication method includes a transmitter and a receiver, and is applied to an optical communication system that transmits data from the transmitter to the receiver by an optical signal.
  • a first transmission path which is one of a plurality of transmission paths from the transmission apparatus to the reception apparatus, is set as an operation transmission path, and the transmission is performed via the set operation transmission path.
  • the data is transmitted from the device to the receiving device.
  • the first variation of the value representing the quality of the optical signal received by the receiver via the first transmission path is a time-varying component caused by polarization mode dispersion. Get variable quality value.
  • the optical communication method detects occurrence of a failure in the first transmission path at a future time based on the acquired first fluctuation quality value. Furthermore, in the optical communication method, when it is detected that a failure occurs in the first transmission path, the first transmission path among the plurality of transmission paths is transmitted from the first transmission path to the operation transmission path. Change to a second transmission path different from the path.
  • the fault detection apparatus receives a light signal and obtains a fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the light signal. Means for acquiring variable quality value.
  • the fault detection apparatus further includes fault occurrence detection means for detecting occurrence of a fault in the transmission path through which the optical signal is transmitted at a future time based on the acquired fluctuation quality value.
  • fault detection method an optical signal is input, and among values representing the quality of the optical signal, a fluctuation quality value that is a time fluctuation component caused by polarization mode dispersion is acquired. Furthermore, the fault detection method detects that a fault occurs in a transmission path through which the optical signal is transmitted at a future time based on the acquired variable quality value.
  • a program according to another aspect of the present invention is a program for detecting a fluctuation quality value, which is a time fluctuation component caused by polarization mode dispersion, out of the values representing the quality of the optical signal, It has a variable quality value acquisition means to acquire. Further, the program realizes failure occurrence detection means for detecting occurrence of a failure in the transmission path through which the optical signal is transmitted at a future time based on the acquired fluctuation quality value.
  • each function of the optical communication system is realized by hardware such as a circuit.
  • each device constituting the optical communication system may include a processing device and a storage device storing a program (software).
  • the optical communication system may be configured to realize each function by the processing device executing the program.
  • the program may be stored in a computer readable recording medium.
  • the recording medium is a portable medium such as a flexible disk, an optical disk, a magneto-optical disk, and a semiconductor memory.
  • any combination of the above-described embodiment and modification may be adopted.
  • An optical communication system for transmitting an optical signal from a transmitter to a receiver via an operation transmission path which is any of a plurality of transmission paths, Fluctuation quality value acquiring means for acquiring fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the optical signal received by the receiving apparatus through the operation transmission line
  • Failure occurrence detection means for detecting occurrence of a failure in the operation transmission path at a future time based on the first variation quality value, and outputting a failure occurrence warning signal
  • An optical communication system comprising data transmission means for changing the operation transmission path to another transmission path when the failure occurrence alarm signal is input.
  • the optical communication system according to appendix 1 wherein The variation quality value acquisition means is based on the value of the SOP (State of Polarization) vector locus length which is the length of the locus drawn by the Stokes vector on the Poincare sphere in the wavelength band of the optical signal or the degree of polarization.
  • An optical communication system for acquiring the first variable quality value (Supplementary Note 3) The optical communication system according to Appendix 1 or 2.
  • the failure occurrence detection means is configured such that a ratio of a total time in which the acquired first variation quality value becomes smaller than a preset quality threshold within a determination period set in advance is relative to the determination period.
  • system The optical communication system according to Appendix 1 or 2.
  • the failure occurrence detection means when the state in which the time change rate of the acquired first variation quality value is a negative value continues over a time threshold set in advance, the first transmission path Optical communication system that detects that a failure occurs.
  • the optical communication system according to claim 1, wherein the failure occurrence detection unit acquires a time change rate of a value obtained by smoothing the acquired first change quality value as a time change rate of the first change quality value.
  • the failure occurrence detection unit acquires a time change rate of a value obtained by smoothing the acquired first change quality value as a time change rate of the first change quality value.
  • the optical communication system according to any one of supplementary notes 1 to 5, wherein
  • the fluctuation quality value acquiring means is a time fluctuation due to polarization mode dispersion among values representing the quality of the optical signal received by the receiving apparatus via a predetermined transmission path other than the operation transmission path.
  • Get the second variation quality value that is the component
  • the failure occurrence detection means detects occurrence of a failure in the predetermined transmission path based on the acquired second fluctuation quality value.
  • the data transmission means detects the occurrence of a failure in the operation transmission path, and does not detect the occurrence of a failure in the predetermined transmission path.
  • Optical communication system to change to a predetermined transmission path.
  • Appendix 9 It is applied to an optical communication system for transmitting an optical signal from a transmitter to a receiver via an operation transmission path which is any of a plurality of transmission paths, Acquiring, among the values representing the quality of the optical signal received by the receiving apparatus via the operation transmission line, a fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion; Based on the first variation quality value, it is detected that a failure occurs in the operation transmission path at a future time, and a failure occurrence warning signal is output, An optical communication method, wherein the operation transmission path is changed to another transmission path when the failure occurrence warning signal is input. (Supplementary Note 10) It is the optical communication method according to appendix 9.
  • the first variation quality value is determined based on the SOP (State of Polarization) vector locus length, which is the length of the locus drawn by the Stokes vector on the Poincare sphere in the wavelength band of the optical signal, or the degree of polarization.
  • Optical communication method to acquire (Supplementary Note 11) The optical communication method according to Supplementary Note 9 or 10. The ratio of the total of the times when the acquired first variation quality value becomes smaller than the preset quality threshold within the preset judgment period to the decision period is the preset threshold value This is the optical communication method for detecting occurrence of a failure in the operation transmission path when the above is true and the time change rate of the acquired first variable quality value is a negative value.
  • a second fluctuation quality which is a time-varying component due to polarization mode dispersion, among values representing the quality of the optical signal received by the receiving apparatus via a predetermined transmission path other than the operation transmission path Get the value, Based on the acquired second fluctuation quality value, it is detected that a failure occurs in the predetermined transmission path, When it is detected that a failure occurs in the operation transmission path, and it is not detected that a failure occurs in the predetermined transmission path, the operation transmission path is changed to the predetermined transmission path.
  • the optical communication method is any one of Appendixes 9 to 13, A second fluctuation quality, which is a time-varying component due to polarization mode dispersion, among values representing the quality of the optical signal received by the receiving apparatus via a predetermined transmission path other than the operation transmission path Get the value, Based on the acquired second fluctuation quality value, it is detected that a failure occurs in the predetermined transmission path, When it is detected that a failure occurs in the operation transmission path, and it is not detected that a failure occurs in the predetermined transmission path,
  • the optical communication method according to appendix 15, wherein The transmission device is configured to stop supplying power for transmitting data via the predetermined transmission path until occurrence of a failure in the operation transmission path is detected;
  • Fluctuation quality value acquiring means for acquiring a fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among the values representing the quality of the optical signal while being inputted with an optical signal, Failure occurrence detection means for detecting occurrence of a failure in a transmission path through which the optical signal is transmitted at a future time based on the acquired fluctuation quality value; Fault detection device provided with (Appendix 18) The fault detection apparatus according to appendix 17, wherein The variation quality value acquisition means is based on the value of the SOP (State of Polarization) vector locus length which is the length of the locus drawn by the Stokes vector on the Poincare sphere in the wavelength band of the optical signal or the degree of polarization.
  • SOP State of Polarization
  • a fault detection device for acquiring the first variable quality value (Appendix 19) The fault detection device according to Supplementary Note 17 or 18.
  • the failure occurrence detection means is configured such that a ratio of a total time in which the acquired first variation quality value becomes smaller than a preset quality threshold within a determination period set in advance is relative to the determination period. Failure detection that detects occurrence of a failure in the operation transmission path if the ratio is equal to or higher than a preset ratio threshold and the time change rate of the acquired first fluctuation quality value is a negative value apparatus.
  • Supplementary Note 20 The fault detection device according to Supplementary Note 17 or 18.
  • the failure occurrence detection means when the state in which the time change rate of the acquired first variation quality value is a negative value continues over a time threshold set in advance, the first transmission path Failure detection device that detects that a failure occurs in (Supplementary Note 21)
  • An optical signal is input, and among the values representing the quality of the optical signal, a fluctuation quality value that is a time fluctuation component caused by polarization mode dispersion is acquired, Based on the acquired fluctuation quality value, it is detected in the future that a failure will occur in a transmission path through which the optical signal is transmitted, Failure detection method (Supplementary Note 22)
  • the fault detection method according to appendix 21 The first variation quality value is determined based on the SOP (State of Polarization) vector locus length, which is the length of the locus drawn by the Stokes vector on the Poincare sphere in the wavelength band of the optical signal, or the degree of polarization.
  • SOP State of Polarization
  • Failure detection method to detect Fluctuation quality value acquisition means for acquiring a fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the optical signal, in the fault detection apparatus to which the optical signal is inputted; Failure occurrence detection means for detecting occurrence of a failure in a transmission path through which the optical signal is transmitted at a future time based on the acquired fluctuation quality value; Fault detection program to realize the (Appendix 26) It is a program described in Appendix 25 and The variation quality value acquisition means is based on the value of the SOP (State of Polarization) vector locus length which is the length of the locus drawn by the Stokes vector on the Poincare sphere in the wavelength band of the optical signal or the degree of polarization.
  • SOP State of Polarization
  • An obstacle detection program for acquiring the first fluctuation quality value (Appendix 27) 26.
  • the failure occurrence detection means is configured such that a ratio of a total time in which the acquired first variation quality value becomes smaller than a preset quality threshold within a determination period set in advance is relative to the determination period. Failure detection that detects occurrence of a failure in the operation transmission path if the ratio is equal to or higher than a preset ratio threshold and the time change rate of the acquired first fluctuation quality value is a negative value program.
  • Appendix 28 26.
  • the failure occurrence detection means when the state in which the time change rate of the acquired first variation quality value is a negative value continues over a time threshold set in advance, the first transmission path Failure detection program that detects that a failure occurs in
  • the present invention is applicable to an optical communication system or the like that transmits data by means of an optical signal from a transmitter to a receiver, and has industrial applicability.

Abstract

Provided is an optical communication system whereby, when the working transmission path is to be changed to another transmission path because of occurrence of a trouble, the degradation of communication quality can be avoided. An optical communication system, which is operative to transmit an optical signal from a transmitter apparatus to a receiver apparatus via a working transmission path that is one of a plurality of transmission paths, comprises: a variable quality value acquiring means for acquiring, out of values representative of the quality of the optical signal received by the receiver apparatus via the working transmission path, a first variable quality value that is a time-variable component caused by a polarized-wave mode spread; a trouble occurrence detecting means for detecting, based on the first variable quality value, that a trouble will occur on the working transmission path at a time point in the future and for outputting a trouble occurrence warning signal; and a data transmitting means operative to change the working transmission path to another transmission path when having received the trouble occurrence warning signal.

Description

光通信システムOptical communication system
 本発明は、送信装置から受信装置へ光信号によりデータを伝送する光通信システムに関する。 The present invention relates to an optical communication system for transmitting data from a transmitter to a receiver by an optical signal.
 送信装置から受信装置へ光信号によりデータを伝送する光通信システムが知られている。この種の光通信システムの一つとして特許文献1に記載の光通信システムは、送信装置から受信装置への伝送経路を複数有する。
 この光通信システムは、第1の伝送経路を運用伝送経路として設定し、設定された運用伝送経路を経由して送信装置から受信装置へデータを伝送する。更に、光通信システムは、受信装置により受信されたデータに基づいて、第1の伝送経路において障害が発生したか否かを検出する。
 具体的には、光通信システムは、前方誤り訂正(FEC;Forward Error Correction)処理における誤り訂正数が所定の閾値よりも大きくなった場合に、第1の伝送経路において障害が発生したと検出する。そして、光通信システムは、第1の伝送経路において障害が発生したと検出した場合、運用伝送経路を第1の伝送経路から第2の伝送経路へ変更する(切り替える)。
 これにより、上記光通信システムは、第1の伝送経路において障害が発生した場合であっても、第2の伝送経路を用いてデータを正確に伝送することができる。
An optical communication system is known which transmits data from a transmitter to a receiver by an optical signal. The optical communication system described in Patent Document 1 as one of such optical communication systems has a plurality of transmission paths from the transmitting device to the receiving device.
The optical communication system sets the first transmission path as an operation transmission path, and transmits data from the transmitter to the receiver via the set operation transmission path. Furthermore, the optical communication system detects whether or not a failure has occurred in the first transmission path based on the data received by the receiving device.
Specifically, the optical communication system detects that a failure has occurred in the first transmission path when the number of error corrections in forward error correction (FEC) processing becomes larger than a predetermined threshold. . When the optical communication system detects that a failure has occurred in the first transmission path, the optical communication system changes (switches) the operation transmission path from the first transmission path to the second transmission path.
Thus, the optical communication system can accurately transmit data using the second transmission path even when a failure occurs in the first transmission path.
特開2005−260820号公報JP, 2005-260820, A 特開2006−352680号公報Unexamined-Japanese-Patent No. 2006-352680
 しかしながら、上記光通信システムにおいては、次のような問題がある。即ち第1の伝送経路において障害が発生したと検出された時点から、運用伝送経路の切り替えが完了するまでの期間においては、正確なデータ(即ち、送信装置から送信されたデータと同一のデータ)を受信装置が受信できない。その結果、通信品質が低下するという問題があった。
 特に、単位時間あたりに伝送されるデータ量が大きくなるほど、上記期間において受信装置が受信するデータ量が多くなる。従って、単位時間あたりに伝送されるデータ量が大きくなるほど、上記の問題は顕著に現れる。
(発明の目的)
 本発明の目的は、上述した課題である「障害の発生に伴って運用伝送経路を変更する際に、通信品質が低下してしまう場合が生じること」を解決することが可能な光通信システムを提供することを目的とする。
However, the above optical communication system has the following problems. That is, accurate data (that is, the same data as data transmitted from the transmitting apparatus) in a period from when it is detected that a failure occurs in the first transmission path to when switching of the operation transmission path is completed. Can not be received by the receiving device. As a result, there is a problem that communication quality is degraded.
In particular, as the amount of data transmitted per unit time increases, the amount of data received by the receiving device in the above period increases. Therefore, the larger the amount of data transmitted per unit time, the more noticeable the above problem.
(Object of the Invention)
An object of the present invention is an optical communication system capable of solving the above-mentioned problem “when communication quality is lowered when changing an operation transmission path due to occurrence of a failure”. Intended to be provided.
 本発明の光通信システムは、複数の伝送経路のいずれかである運用伝送経路を経由して送信装置から受信装置へ光信号を伝送する光通信システムであって、
 前記運用伝送線路を介して、前記受信装置により受信される前記光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である第1の変動品質値を取得する変動品質値取得手段と、
 前記第1の変動品質値に基づいて、将来の時点において、前記運用伝送経路にて障害が発生することを検知し、障害発生警告信号を出力する障害発生検知手段と、
 前記障害発生警告信号が入力された場合に、前記運用伝送経路を、他の伝送経路へ、変更するデータ伝送手段を含む。
 本発明の光通信方法は、複数の伝送経路のいずれかである運用伝送経路を経由して送信装置から受信装置へ光信号を伝送する光通信システムに適用され、
 前記運用伝送線路を介して、前記受信装置により受信される前記光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である第1の変動品質値を取得し、
 前記第1の変動品質値に基づいて、将来の時点において、前記運用伝送経路にて障害が発生することを検知し、障害発生警告信号を出力し、
 前記障害発生警告信号が入力された場合に、前記運用伝送経路を、他の伝送経路へ、変更する。
 本発明の障害検知装置は、光信号が入力されるとともに、当該光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値を取得する変動品質値取得手段と、
 前記取得された変動品質値に基づいて、将来の時点において、前記光信号が伝送される伝送経路にて障害が発生することを検知する障害発生検知手段と、
 を備える。
An optical communication system according to the present invention is an optical communication system for transmitting an optical signal from a transmitter to a receiver via an operation transmission path which is any of a plurality of transmission paths,
Fluctuation quality for acquiring a first fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the optical signal received by the receiving apparatus through the operation transmission line Value acquisition means,
Failure occurrence detection means for detecting occurrence of a failure in the operation transmission path at a future time based on the first variation quality value, and outputting a failure occurrence warning signal;
It includes data transmission means for changing the operation transmission path to another transmission path when the failure occurrence alarm signal is input.
The optical communication method of the present invention is applied to an optical communication system for transmitting an optical signal from a transmitter to a receiver via an operation transmission path which is any of a plurality of transmission paths,
Acquiring a first fluctuation quality value, which is a time fluctuation component caused by polarization mode dispersion, among values representing the quality of the optical signal received by the receiving apparatus through the operation transmission line;
Based on the first variation quality value, it is detected that a failure occurs in the operation transmission path at a future time, and a failure occurrence warning signal is output,
When the failure occurrence alarm signal is input, the operation transmission path is changed to another transmission path.
The fault detection apparatus according to the present invention receives a light signal and obtains a fluctuation quality value that acquires a fluctuation quality value that is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the light signal. Means,
Failure occurrence detection means for detecting occurrence of a failure in a transmission path through which the optical signal is transmitted at a future time based on the acquired fluctuation quality value;
Equipped with
 本発明は、以上のように構成されることにより、障害の発生に伴って運用伝送経路を変更する際に、通信品質が低下することを防止することができる。 The present invention is configured as described above, so that it is possible to prevent the communication quality from being lowered when changing the operation transmission path in accordance with the occurrence of a failure.
本発明の第1実施形態に係る光通信システムの概略構成を表す図である。It is a figure showing schematic structure of the optical communication system concerning 1st Embodiment of this invention. 変動品質値の時間変化の一例を示したグラフである。It is the graph which showed an example of the time change of the fluctuation quality value. 図2に示した変動品質値を平滑化した値の時間変化を示したグラフである。It is the graph which showed the time change of the value which smooth | blunted the fluctuation | variation quality value shown in FIG. 図1に示した各ノード装置の構成をより詳細に示したブロック図である。It is the block diagram which showed the structure of each node apparatus shown in FIG. 1 in more detail. 本発明の第2実施形態に係る光通信システムの概略構成を表す図である。It is a figure showing schematic structure of the optical communication system which concerns on 2nd Embodiment of this invention. SOPベクトル軌跡長と、変動品質値と、の関係の一例を表したグラフである。It is a graph showing an example of the relation between SOP vector locus length and change quality value. 本発明の第3実施形態に係る光通信システムの機能を表すブロック図である。It is a block diagram showing the function of the optical communication system which concerns on 3rd Embodiment of this invention.
 以下、本発明に係る、光通信システム、光通信方法、障害検知装置、障害検知方法、及び、プログラム、の各実施形態について図1~図7を参照しながら説明する。
(実施形態の概要)
 本発明の各実施形態に係る光通信システムは、光信号によりデータを伝送するための伝送経路を複数有する。複数の伝送経路は、送信装置から受信装置への、第1の伝送経路及び第2の伝送経路を含む。光通信システムは、第1の伝送経路、又は、第2の伝送経路を運用伝送経路として設定し、運用伝送経路を経由して送信装置から受信装置へデータを伝送する。
 光通信システムは、運用伝送経路として設定された第1の伝送経路を経由した光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分を良く反映する値である変動品質値を取得する。なお、変動品質値については更に後述する。光通信システムは、取得された変動品質値に基づいて、将来の時点において、第1の伝送経路にて障害が発生することを検知する(即ち、障害の発生を予測する)。
 光通信システムは、第1の伝送経路にて障害が発生することが検知された場合、実際に障害が発生する前に、運用伝送経路を第1の伝送経路から第2の伝送経路へ変更する。これにより、受信装置が誤ったデータ(即ち、送信装置から送信されたデータと異なるデータ)を受信することを回避することができる。
 ところで、単位時間あたりに伝送されるデータ量が大きくなる(即ち、通信サービスが大容量化する)ほど、実際に障害が発生してから運用伝送経路の変更が完了するまでの期間において受信装置が受信するデータ量が多くなる。従って、本実施形態によって、より一層の効果が奏される。
 換言すると、上記期間(即ち、通信サービスが切断(遮断)される時間)が短縮されることにより、伝送されるデータの損失に伴うデータの再送制御が抑制されるため、通信サービスをより高速化することができる。また、上記期間が存在しない(期間の長さがゼロである)場合には、実際には障害が発生しているにも関わらず、あたかも障害が発生していないかのように光通信システムを作動させることができる。即ち、光通信システムの信頼性を向上させることができる。
 また、光信号によりデータを伝送する場合、光信号の品質が変動する要因としては、波長分散、偏波分散、光S/N(Signal−to−Noise)、及び、非線形歪み等の物理現象が考えられる。このうち、特に重要な要因は、偏波モード分散(PMD;Polarization Mode Dispersion)である。
 この理由は、PMDに起因する品質の変動が不規則であり、且つ、高速な現象であるため、補償等を行うことにより品質の変動を抑制することが困難であるためである。一方、他の要因は、相対的に規則的であり、且つ、低速な現象であるため、補償等を行うことにより品質の変動を抑制することができる。従って、光信号の品質の変動は、PMDに起因する部分が支配的である。即ち、PMDに起因する品質の変動を監視することは特に重要である。
 ところで、PMDに起因して障害が発生する場合、極めて短い時間の間に(即ち、瞬間的に)、光信号の品質が急激に低下することにより、障害が発生することが多い。このような場合、光信号の品質を表す値のうちの、PMDに起因する時間変動成分のみを監視した方が、光信号の品質を表す値の全体を監視する場合よりも、障害の発生を事前に検知しやすいことを発明者は発見した。
 従って、光通信システムは、光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値を取得し、当該変動品質値に基づいて、将来の時点において、障害が発生することを検知する。
 変動品質値について更に説明する。信号の品質を監視するためには、符号誤り率(BER;Bit Error Rate)、又は、前方誤り訂正(FEC;Forward Error Correction)処理における誤り訂正数が利用されることが多い。
 しかしながら、BER、又は、FEC処理における誤り訂正数は、必ずしもPMDに起因した変動品質だけを反映している訳ではない。そこで、光通信システムは、PMDに起因した変動品質と相関が強いSOP(State of Polarization)ベクトル軌跡長、又は、偏光度を検出し、検出された値を基に、PMDに起因した変動品質を良く反映している値としての変動品質値を取得することとする。SOPベクトル軌跡長は、光信号の波長帯域内におけるポアンカレ球上にてストークスベクトルが描く軌跡の長さである。また、偏光度は、DOP(Degree of Polarization)とも呼ばれる。しかし、変動品質値としては、PMDに起因した品質の変動を良く反映している値であれば上記に限られるものではなく、PMDに起因した品質の変動を良く反映している値でさえあれば何でも良い。この様な特徴を有する変動品質値を用いることにより、高い精度にて障害の発生を予測することができる。
 また、FEC処理における誤り訂正数、又は、符号誤り率に基づいて、光信号の品質を表す値を取得する場合には、データを表す光信号(即ち、変調された光信号(変調光))が必要となる。一方、SOPベクトル軌跡長、又は偏光度に基づいて光信号の品質を表す値を取得する場合には、変調光、連続波(CW:Continuous Wave)光、又は増幅自然放出(ASE:Amplified Spontaneous Emission)光を用いることができる。
 従って、例えば、運用伝送経路として設定されていない伝送経路(予備伝送経路)における光信号の品質を表す値を取得する場合には、CW光、又は、ASE光を用いることにより次のような利点がある。即ち、変調光を用いる場合よりも容易に光信号の品質を表す値を取得することができる。従って、簡易な光源を用いることにより、光信号の品質を表す値を取得することができる。この結果、予備伝送経路における障害の発生を予測するための、設備・運用コストを低減することができる。
 また、光通信システムにおいては、予備伝送経路を経由させてデータを伝送するための電力を予め供給しておくホットスタンバイ方式が用いられることが多い。複雑な制御プロトコルを扱うことが困難であるという理由、及び、送信装置(光伝送装置)が安定して動作するために要する時間が比較的長いという理由のためである。しかし、ホットスタンバイ方式は、予備伝送経路を経由させてデータを伝送するための電力の供給を停止するコールドスタンバイ方式に比べて、運用コスト、及び、消費電力量が大きいという問題がある。
 ところで、本発明に係る光通信システムは、障害の発生を予測し、実際に障害が発生する前に、運用伝送経路を変更する。従って、将来の時点にて障害が発生することが検知された時点から、実際に障害が発生するまでには、比較的長い時間を確保することができる。従って、予備伝送経路を経由させてデータを伝送するための電力を予め供給していなくても、実際に障害が発生する時点までに、予備伝送経路を経由させたデータの伝送の準備を完了することができる。
 そこで、本発明の実施形態の1つに係る光通信システムは、運用伝送経路にて障害が発生することが検知されるまでの間、予備伝送経路を経由させてデータを伝送するための電力の供給を停止する。これにより、運用コスト、又は、消費電力量を低減することができる。
 このように、本発明の実施形態に係る光通信システムによれば、光通信システムの高信頼化、通信サービスの高速化、光通信システムの設備・運用コストの低減、及び、低消費電力化を実現することが可能となる。
(第1の実施形態)
(構成)
 図1に示したように、第1実施形態に係る光通信システム1000は、複数(本例では、3つ)のノード装置(通信装置)1001,1002,1003を含む。本例では、ノード装置1001は、送信装置とも呼ばれる。また、ノード装置1002は、受信装置とも呼ばれる。また、ノード装置1001及びノード装置1002は、データ伝送手段を構成している。
 ノード装置1001は、光ファイバ1004を介して、ノード装置1002と接続されている。更に、ノード装置1001は、光ファイバ1005を介して、ノード装置1003と接続されている。加えて、ノード装置1003は、光ファイバ1006を介して、ノード装置1002と接続されている。
 ノード装置1001から、光ファイバ1004を経由して、ノード装置1002へ到達する光信号の伝送経路は、第1の伝送経路とも呼ばれる。ノード装置1001から、光ファイバ1005、ノード装置1003、及び、光ファイバ1006を経由して、ノード装置1002へ到達する光信号の伝送経路は、第2の伝送経路とも呼ばれる。このように、光通信システム1000は、第1の伝送経路及び第2の伝送経路からなる複数の伝送経路を有する。
 ノード装置1001は、データを表す光信号を、光ファイバ1004及び光ファイバ1005のそれぞれへ出力可能に構成されている。ノード装置1001は、ノード装置1002から出力制御信号を受信し、当該出力制御信号に従って、光ファイバ1004及び光ファイバ1005のいずれか一方へ、光信号を出力する。出力制御信号は、第1の伝送経路、又は、第2の伝送経路を運用伝送経路として設定する旨を表す。
 ノード装置1003は、ノード装置1001からの光ファイバ1005を経由した光信号を受信し、当該受信した光信号を光ファイバ1006へ出力(転送)する。
 ノード装置1002は、ノード装置1001により送信された光信号であって、第1の伝送経路、又は、第2の伝送経路を経由した光信号を受信する。
 また、光通信システム1000は、複数(本例では、3つ)の光アンプ(光増幅器)1007,1008,1009と、偏光子1015と、を備える。
 光アンプ1007は、光ファイバ1004に配設されている。光アンプ1007は、ノード装置1001により送信された光信号を増幅する。
 光アンプ1008は、光ファイバ1005に配設されている。光アンプ1008は、ノード装置1001により送信された光信号を増幅する。
 光アンプ1009は、光ファイバ1006に配設されている。光アンプ1009は、ノード装置1003により送信された光信号を増幅する。
 偏光子1015は、光アンプ1008によって増幅された光信号の偏光状態を予め設定された状態に設定して光ファイバ1005へ出力する。
 なお、ノード装置1001により送信された光信号は、伝送経路を経由して伝送される間に、種々の要因によって品質が変動した後に、ノード装置1002により受信される。
 更に、光通信システム1000は、複数(本例では、2つ)の光分岐器1010,1011と、複数(本例では、2つ)の光信号品質モニタ(障害検知装置)1012,1013と、を備える。光信号品質モニタ1013は、変動品質値取得手段、及び、障害発生検知手段を構成している。
 光分岐器1010は、光ファイバ1006のノード装置1002側の端部に配設されている。光分岐器1010は、光ファイバ1006が伝送する光信号を分岐し、当該分岐した光信号(即ち、第2の伝送経路を経由した、受信装置1002により受信される光信号)を光信号品質モニタ1012へ出力する。
 同様に、光分岐器1011は、光ファイバ1004のノード装置1002側の端部に配設されている。光分岐器1011は、光ファイバ1004が伝送する光信号を分岐し、当該分岐した光信号(即ち、第1の伝送経路を経由した、受信装置1002により受信される光信号)を光信号品質モニタ1013へ出力する。
 光信号品質モニタ1012は、入力された光信号(即ち、第2の伝送経路を経由した光信号)の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値(第2の変動品質値)を取得する。本例では、光信号品質モニタ1012は、SOPベクトル軌跡長を測定(検出)し、測定された値そのもの、又はその値に所定の演算を施して得られる値を変動品質値として取得する。なお、光信号品質モニタ1012は、偏光度を検出し、検出された値そのもの、又はその値に所定の演算を施して得られる値を変動品質値として取得してもよい。
 具体的には、光信号品質モニタ1012は、予め行われた実験による測定値に基づく、SOPベクトル軌跡長と、変動品質値と、の関係を表す情報を記憶している。そして、光信号品質モニタ1012は、測定されたSOPベクトル軌跡長と、記憶している情報と、から変動品質値を取得する。
 なお、光信号品質モニタ1012は、SOPベクトル軌跡長、又は、偏光度(DOP)に基づいて、光信号の品質を表す値のうちの、PMDに起因した時間変動成分を取得してもよい。この方法は例えば、特開2009−260875号公報等に開示されている。
 光信号品質モニタ1012は、取得された変動品質値が、予め定められた検知条件を満足する場合、ノード装置1002へ、障害発生警告信号を出力する。障害発生警告信号は、将来の時点において、障害が発生することが検知された旨を表す。
 光信号品質モニタ1013は、光信号品質モニタ1012と同様の構成を有する。光信号品質モニタ1013は、入力された光信号(即ち、第1の伝送経路を経由した光信号)の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値(第1の変動品質値)を取得する。光信号品質モニタ1013は、取得された変動品質値が上記検知条件を満足する場合、ノード装置1002へ、障害発生警告信号を出力する。
 ノード装置1002は、障害発生警告信号を受信した場合、運用伝送経路として設定されている伝送経路を変更する。
 即ちノード装置1002は、第1の伝送経路が運用伝送経路として設定されている場合に、光信号品質モニタ1013から障害発生警告信号を受信した場合、運用伝送経路を第1の伝送経路から第2の伝送経路へ変更する。具体的には、ノード装置1002は、第2の伝送経路を運用伝送経路として設定する旨を表す出力制御信号をノード装置1001へ送信する。
 また、ノード装置1002は、第2の伝送経路が運用伝送経路として設定されている場合に、光信号品質モニタ1012から障害発生警告信号を受信した場合、運用伝送経路を第2の伝送経路から第1の伝送経路へ変更する。具体的には、ノード装置1002は、第1の伝送経路を運用伝送経路として設定する旨を表す出力制御信号をノード装置1001へ送信する。
 次に、光信号品質モニタ1012,1013について、より詳細に説明する。
 図2は、光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値の時間変化の一例を示したグラフである。本例では、時刻t2以降において、変動品質値が品質劣化閾値Qthを下回ることにより、実際に障害が発生する場合を想定している。なお、実際に障害が発生することは、例えば、FEC処理における誤り訂正数が予め設定された閾値よりも大きくなることに対応している。また、品質劣化閾値Qthとは、実際に障害が発生する変動品質値の閾値のことである。
 ところで、上述したように、光信号の品質が変動する要因は、PMDが支配的である。また、PMDは、光信号の品質を、不規則、且つ、高速に変動させる。このため、図2に示したように、通常時(即ち、時刻t1よりも前の時点)においては、変動品質値が品質劣化閾値Qthよりも十分に大きい値を有するにも関わらず、次のような問題を生ずる場合がある。即ち変動品質値は比較的短い時間の間(時刻t1と時刻t2との間の期間中)に急激に低下して品質劣化閾値Qthを下回ることがあるという問題がある。
 図2に示した例では、変動品質値は、時刻t1と時刻t2の期間において、振動しながら減少し、振動の振幅を増大させてt2以降にてついには品質劣化閾値Qthを下回る。
 そこで、各光信号品質モニタ1012,1013は、予め設定された判定期間内に、次のような場合、検知対象となる伝送経路にて、将来の時点において障害が発生することを検知する。即ち、変動品質値が、予め設定された品質閾値よりも小さくなった時間の総和の当該判定期間に対する割合が、予め設定された閾値(割合閾値)以上となり、且つ、その時点の変動品質値の時間変化率が負の値である場合、である。なお、「その時点」とは変動品質値が、予め設定された品質閾値よりも小さくなった時間の総和の当該判定期間に対する割合が、予め設定された閾値(割合閾値)以上となった時点のことをいう。
 これにより、変動品質値が品質劣化閾値Qthを実際に下回る時点よりも前の時点にて、障害が発生することを検知することができる。
 具体的には、各光信号品質モニタ1012,1013は、取得された変動品質値が、PMD起因品質変動閾値Qpmd(品質閾値)を下回った時点にて、タイマによる時間の計測を開始する。即ち取得された変動品質値が、PMD起因品質変動閾値Qpmdよりも小さくなった時点である。ここで、PMD起因品質変動閾値Qpmdは、品質劣化閾値Qthよりも大きい値に設定される。
 各光信号品質モニタ1012,1013は、タイマによる時間の計測を開始してから、タイマにより計測される時間が予め設定された時間閾値Tを超えるまでの期間(判定期間)において、以下のことを行う。即ち取得された変動品質値が、PMD起因品質変動閾値Qpmdよりも小さくなった(即ち、PMD起因品質変動閾値Qpmdを下回った)時間の総和を計測する。
 図2に示した例においては、この総和は、T1+T2+T3+T4+T5+T6である。更に、各光信号品質モニタ1012,1013は、計測された総和を、時間閾値T(即ち、判定期間の長さ)により除した値R=(T1+T2+T3+T4+T5+T6)/Tを算出する。即ち、値Rは、上記総和の上記判定期間に対する割合である。
 一方、各光信号品質モニタ1012,1013は、変動品質値の時間変化率(即ち、時間微分値)Q’を算出する。ところで、取得される変動品質値は、測定誤差、及び/又は、雑音光に起因する微小な変動成分を含む。このため、変動品質値の時間変化率を高い精度にて算出できない虞がある。
 そこで、各光信号品質モニタ1012,1013は、取得された変動品質値を平滑化した値の時間変化率を、変動品質値の時間変化率として取得する。ここで、図3は、図2に示した変動品質値を平滑化した値の時間変化を示したグラフである。
 本例では、各光信号品質モニタ1012,1013は、取得された変動品質値を、ローパスフィルタを用いることにより平滑化する。なお、各光信号品質モニタ1012,1013は、Savitzky−Golayフィルタを用いるように構成されていてもよい。
 これにより、測定誤差、及び/又は、雑音光に起因する微小な変動成分が、変動品質値の時間変化率に及ぼす影響を低減することができる。この結果、変動品質値の時間変化率を高い精度にて取得することができる。
 各光信号品質モニタ1012,1013は、次の場合に、検知対象となる伝送経路にて、将来の時点において障害が発生することを検知する。即ち上記算出された値Rが、予め設定された割合閾値Rth以上となり、且つ、上記算出された変動品質値の時間変化率Q’が負の値である場合である。値Rが割合閾値Rth以上となり、且つ、変動品質値の時間変化率Q’が負の値である、という条件は、検知条件とも呼ばれる。また、検知対象となる伝送経路は、光信号品質モニタ1012に対しては第2の伝送経路であり、光信号品質モニタ1013に対しては第1の伝送経路である。
 各光信号品質モニタ1012,1013は、検知対象となる伝送経路にて、将来の時点において障害が発生することを検知した場合、ノード装置1002へ、障害発生警告信号を出力する。
 ここで、光信号の品質を表す値の内の、偏波モード分散に起因する時間変動成分である変動品質値を用いて、障害の発生を予測する場合の効果を、BER、又はFEC処理における誤り訂正数を用いた場合と比較して説明する。
 光信号の品質を表す値としてBERを用いた場合において、図2に示したPMD起因品質変動閾値Qpmdに相当する値を、品質変動閾値Qberとおいて説明する。
 PMD起因品質変動閾値Qpmdと、品質変動閾値Qberと、の相違点は、次の通りである。即ちPMD起因品質変動閾値Qpmdが品質を表す値の内の、時間変動成分のみに基づく値であるのに対し、品質変動閾値Qberが時間変動成分だけでなく、通常は殆ど変化しない固定的な成分にも基づく値である点である。
 即ち、光信号の品質を表す値をQ(t)とおくと、Q(t)は、時間変動成分であるΔQ(t)と、通常時において殆ど変化しない成分Q0と、の和であると考えることができる。即ち、Q(t)=ΔQ(t)+Q0である。
 ところで、光信号の品質が変動する要因として、PMDが支配的である場合、PMD起因品質変動閾値Qpmdは、実質的にΔQ(t)に対する閾値であり、一方、品質変動閾値Qberは、実質的にQ(t)に対する閾値である。
 また、伝送経路におけるPMD特性から、ΔQ(t)の変動幅を比較的正確に推測することができる。従って、PMD起因品質変動閾値Qpmdの値を適切に設定することは、比較的容易である。
 しかしながら、Q0が、伝送経路、及び、ノード装置等の種々の特性に依存して変化するため、Q(t)の変動幅を正確に推測することは困難である。このため、品質変動閾値Qberの値を適切に設定することは、困難である。
 従って、光信号の品質を表す値のうちの、PMDに起因した時間変動成分だけを抽出可能なSOPベクトル軌跡長、又は、偏光度(DOP)を用いることが効果的である。
 なお、各光信号品質モニタ1012,1013は、取得された変動品質値の時間変化率が負の値である状態が、予め設定された時間(時間閾値)以上に亘って継続した場合、将来の時点において、次のように構成されていてもよい。即ち、検知対象となる伝送経路にて障害が発生することを検知するような構成である。これによっても、変動品質値が品質劣化閾値Qthを実際に下回る時点よりも前の時点にて、障害が発生することを検知することができる。
(動作)
 次に、光通信システム1000の作動について説明する。
 先ず、光通信システム1000は、第1の伝送経路を運用伝送経路として設定する。従って、ノード装置1001は、データを表す光信号を光ファイバ1004へ出力する。即ち、ノード装置1001は、光信号を、第1の伝送経路を経由させてノード装置1002へ送信する。これにより、ノード装置1002は、光信号を受信し、受信した光信号に基づいて、ノード装置1001が送信したデータを復元する。
 このようにして、ノード装置1001からノード装置1002へデータが伝送される。
 また、光信号品質モニタ1013は、光分岐器1011により出力された光信号を入力する。そして、光信号品質モニタ1013は、入力された光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である第1の変動品質値を取得する。
 光信号品質モニタ1013は、取得された第1の変動品質値が、検知条件を満足するか否かを判定する。いま、図2の時刻t3にて、取得された第1の変動品質値が、検知条件を満足すると光信号品質モニタ1013が判定した場合を想定する。
 この場合、光信号品質モニタ1013は、障害発生警告信号をノード装置1002へ送信する。ノード装置1002は、障害発生警告信号を受信すると、出力制御信号をノード装置1001へ送信する。
 これにより、ノード装置1001は、出力制御信号を受信する。そして、ノード装置1001は、光信号の出力先を、光ファイバ1004から光ファイバ1005へ変更する(切り替える)。即ち、ノード装置1001は、運用伝送経路を第1の伝送経路から第2の伝送経路へ変更する。
 これにより、以降において、ノード装置1001が送信した光信号は、第2の伝送経路を経由してノード装置1002へ到達する。
 以上、説明したように、本発明の第1実施形態に係る光通信システム1000によれば、光通信システム1000は、第1の伝送経路にて実際に障害が発生する時点よりも前の時点にて、運用伝送経路を変更することができる。これは例えば、誤り訂正処理における誤り訂正数が所定の閾値よりも大きくなる場合である。この結果、ノード装置1002(受信装置)が誤ったデータ(即ち、ノード装置1001(送信装置)から送信されたデータと異なるデータ)を受信することを回避することができる。
 即ち、光通信システム1000によれば、障害の発生に伴って運用伝送経路を変更する際に、通信品質が低下することを防止することができる。
(第1実施形態の第1変形例)
 次に、第1実施形態の第1変形例について説明する。第1変形例に係る光通信システムは、第1実施形態に係る光通信システムに対して、異常の発生が検知されるまでの間、予備伝送経路に係る電力の供給を停止する点において相違している。従って、以下、かかる相違点を中心として説明する。
 図4は、図1における各ノード装置1001,1002,1003の構成をより詳細に示したブロック図である。
 ノード装置1001は、複数(本例では、2つ)の光送信機4001,4002を備える。光送信機4001は、光ファイバ1004へ光信号を出力(送出)する。光送信機4002は、光ファイバ1005へ光信号を出力(送出)する。
 ノード装置1002は、複数(本例では、2つ)の光受信機4003,4004を備える。光受信機4003は、光ファイバ1004を経由した光信号を受信(入力)する。光受信機4004は、光ファイバ1006を経由した光信号を受信(入力)する。
 ノード装置1003は、光スイッチ4005を備える。光スイッチ4005は、入力された光信号を終端することなく出力する。光スイッチ4005は、入力された光信号の出力先を変更(切替)可能に構成される。図4においては、説明を簡単にするために、光ファイバ1005と光ファイバ1006とを接続する経路のみが示されている。
 ところで、一般に、光通信システムにおいては、障害が発生した場合における伝送経路の切り替え方式として、ホットスタンバイ方式である1+1プロテクション方式が用いられる。この理由は、光通信システムにおいては複雑な制御プロトコルに基づく処理を行うことが困難であるため、及び、ノード装置が安定して作動するまでに比較的長い時間を要するため、である。
 ところで、1+1プロテクション方式を用いる場合、運用伝送経路と同等の予備伝送経路を常時準備しておく必要がある。従って、通常時においても、予備伝送経路を経由させてデータを伝送するための電力の供給を行うとともに、運用伝送経路を経由して伝送される光信号と同等の光信号を、予備伝送経路をも経由させて伝送させておかなければならない。
 その結果、一つの運用伝送経路に対して専用の予備伝送経路を設けるための設備コスト、並びに、運用伝送経路に加えて予備伝送経路も常時稼働させる運用コストが必要となる。ところで、障害の発生を事前に検知することにより、実際に障害が発生するまでの猶与時間を、比較的長く確保することができれば、予備伝送経路を常時稼働させておく必要がなくなる。
 なぜならば、実際に障害が発生するよりも前の時点にて、障害が発生することを検知し、運用伝送経路を変更するための準備(例えば、予備伝送経路に係る電力の供給)を開始することができるからである。
 そこで、第1変形例に係る光通信システム1000は、次の場合に第2の伝送経路を経由させてデータを伝送するための電力の供給を停止する。即ち運用伝送経路として第1の伝送経路が設定され、且つ、第1の伝送経路にて障害が発生することが検知されるまでの間である。具体的には、光通信システム1000は、光送信機4002、光アンプ1008、光スイッチ4005、光アンプ1009、及び、光受信機4004への電力の供給を停止(遮断)する。
 更に、光通信システム1000は、ノード装置1002が光信号品質モニタ1013から障害発生警告信号を受信した時、第2の伝送経路を経由させてデータを伝送するための電力の供給を開始する。具体的には、光通信システム1000は、光送信機4002、光アンプ1008、光スイッチ4005、光アンプ1009、及び、光受信機4004への電力の供給を開始する。
 そして、ノード装置1002は、光信号品質モニタ1013から障害発生警告信号を受信した時点から、予め設定された待機時間が経過した後、ノード装置1001へ出力制御信号を送信する。
 この第1変形例に係る光通信システム1000によれば、運用伝送経路として第1の伝送経路が設定されている間も、第2の伝送経路を経由させてデータを伝送するための電力を供給している場合と比較して、次の様な効果がある。即ち光通信システム1000が消費する電力量を低減することができる。
(第1実施形態の第2変形例)
 次に、第1実施形態の第2変形例について説明する。第2変形例に係る光通信システムは、第1実施形態に係る光通信システムに対して、光増幅器が出力する雑音光に基づいて、予備伝送経路にて障害が発生することを検知する点において相違している。従って、以下、かかる相違点を中心として説明する。
 図4は、図1における各ノード装置1001,1002,1003の構成をより詳細に示したブロック図である。
 ノード装置1001は、複数(本例では、2つ)の光送信機4001,4002を備える。光送信機4001は、光ファイバ1004へ光信号を出力(送出)する。光送信機4002は、光ファイバ1005へ光信号を出力(送出)する。
 ノード装置1002は、複数(本例では、2つ)の光受信機4003,4004を備える。光受信機4003は、光ファイバ1004を経由した光信号を受信(入力)する。光受信機4004は、光ファイバ1006を経由した光信号を受信(入力)する。
 ノード装置1003は、光スイッチ4005を備える。光スイッチ4005は、入力された光信号を終端することなく出力する。光スイッチ4005は、入力された光信号の出力先を変更(切替)可能に構成される。図4においては、説明を簡単にするために、光ファイバ1005と光ファイバ1006とを接続する経路のみが示されている。
 第2変形例に係る光通信システム1000は、次のような場合に第2の伝送経路を経由させてデータを伝送するための電力のノード装置1001(送信装置)への供給を停止する。即ち運用伝送経路として第1の伝送経路が設定され、且つ、第1の伝送経路にて障害が発生することが検知されるまでの間である。具体的には、光通信システム1000は、光送信機4002への電力の供給を停止(遮断)する。
 光信号品質モニタ1012は、ノード装置1002が備える光受信機4004により受信され、且つ、第2の伝送経路に配置された光増幅器1008,1009が出力する雑音光から、第2の変動品質値を取得する。なおノード装置1002は受信装置である。
 これによれば、運用伝送経路として第1の伝送経路が設定されている間も、第2の伝送経路を経由させてデータを伝送するための電力を送信装置へ供給している場合と比較して、次の様な効果が得られる。即ち光通信システム1000が消費する電力量を低減することができる。
 つまり運用伝送経路として第1の伝送経路が設定されている間も、光送信機4002へ電力を供給している場合と比較して、光通信システム1000が消費する電力量を低減することができる。
 そして、ノード装置1002は、光信号品質モニタ1013から障害発生警告信号を受信し、且つ、光信号品質モニタ1012から障害発生警告信号を受信していない場合に、出力制御信号をノード装置1001へ送信する。
つまり、ノード装置1002は、第1の伝送経路にて障害が発生することが検知され、且つ、第2の伝送経路にて障害が発生することが検知されていない場合に、出力制御信号をノード装置1001へ送信する。
 この第2変形例に係る光通信システム1000によれば、運用伝送経路を変更した直後に、第2の伝送経路にて障害が発生することを回避することができる。この結果、光通信システム1000は、ノード装置1001(送信装置)からノード装置1002(受信装置)へ確実にデータを伝送することができる。即ち、光通信システム1000の信頼性を向上させることができる。
(第2の実施形態)
 次に、本発明の第2実施形態に係る光通信システムについて説明する。第2実施形態に係る光通信システムは、上記第1実施形態に係る光通信システムに対して、光ファイバに波長の異なる複数の光信号を重畳させる波長分割多重通信を行う点において相違している。従って、以下、かかる相違点を中心として説明する。
 図5に示したように、第2実施形態に係る光通信システム5000は、図1のノード装置1001,1002,1003にそれぞれ対応するノード装置5001,5002,5003を有する。また、光通信システム5000は、図1の光ファイバ1004,1005,1006にそれぞれ対応する光ファイバ5004,5005,5006を有する。また、光通信システム5000は、図1の光アンプ1007,1008,1009にそれぞれ対応する光アンプ5007,5008,5009を有する。更に光通信システム5000は図1の光分岐器1010,1011にそれぞれ対応する光分岐器5010,5011を有する。更に光通信システム5000は図1の光信号品質モニタ1012,1013にそれぞれ対応する光信号品質モニタ5012,5013と、図1の偏光子1015に対応する偏光子5015と、を備える。
 更に、光通信システム5000は、波長多重器5017,5018と、波長分離器5019,5020と、を備える。
 ノード装置5001は、複数(本例では、8つ)の光送信機5031~5038を備える。
 各光送信機5031~5034は、波長多重器5018へ光信号を出力する。各光送信機5031~5034は、互いに異なる波長(本例では、λ1、λ2、λ3、又は、λ4)を有する光信号を出力(送信)する。波長多重器5018は、入力された光信号を重畳させて光アンプ5008へ出力する。
 同様に、各光送信機5035~5038は、波長多重器5017へ光信号を出力する。各光送信機5035~5038は、互いに異なる波長(本例では、λ1、λ2、λ3、又は、λ4)を有する光信号を出力(送信)する。波長多重器5017は、入力された光信号を重畳させて光アンプ5007へ出力する。
 ノード装置5002は、複数(本例では、8つ)の光受信機5021~5028を備える。
 波長分離器5019は、第1の伝送経路を経由して伝送された(光アンプ5007から出力された)光信号が入力される。波長分離器5019は、入力された光信号を波長毎の光信号に分離し、分離された各光信号を各光受信機5025~5028へ出力する。各光受信機5025~5028は、互いに異なる波長(本例では、λ1、λ2、λ3、又は、λ4)を有する光信号を入力(受信)する。
 波長分離器5020は、第2の伝送経路を経由して伝送された(光アンプ5009から出力された)光信号が入力される。波長分離器5020は、入力された光信号を波長毎の光信号に分離し、分離された各光信号を各光受信機5021~5024へ出力する。各光受信機5021~5024は、互いに異なる波長(本例では、λ1、λ2、λ3、又は、λ4)を有する光信号を入力(受信)する。
 このような構成により、光通信システム5000は、ノード装置5001からノード装置5002へ、波長分割多重通信(WDM;Wavelength Division Multiplex)によりデータを伝送する。
 光信号品質モニタ5013は、光信号品質モニタ1013と同様に、第1の伝送経路を経由した光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値(第1の変動品質値)を取得する。本例では、光信号品質モニタ5013は、SOPベクトル軌跡長を測定(検出)し、測定された値に基づいて変動品質値を取得する。
 図6は、SOPベクトル軌跡長と、変動品質値と、の関係の一例を表したグラフである。ところで、この関係は、PMD以外の他の要因によってほとんど変化しないことが実験により判明している。従って、光信号品質モニタ5013は、予め行われた実験による測定値に基づく、SOPベクトル軌跡長と変動品質値との関係と、測定されたSOPベクトル軌跡長と、に基づいて変動品質値を取得する。これにより、高い精度にて変動品質値を取得することができる。
 ところで、光信号品質モニタ5013は、入力された光信号を波長毎に分離することなく、SOPベクトル軌跡長を測定することができる。従って、光信号品質モニタ5013は、波長毎に測定されたSOPベクトル軌跡長に基づいて、波長毎に変動品質値を取得することができる。即ち、光信号品質モニタ5013は、入力された光信号が単一の波長のみを有する光信号である場合と同様に、変動品質値を取得することができる。
 このように、SOPベクトル軌跡長に基づいて変動品質値を取得する場合、光信号の波長毎に異なる装置を設ける必要がない。従って、光通信システム5000が波長分割多重通信を行うように構成されている場合であっても、光通信システム5000を製造するためのコストが過大となることを回避することができる。
 以上、説明したように、本発明の第2実施形態に係る光通信システム5000によれば、第1実施形態に係る光通信システム1000と同様の作用及び効果を奏することができる。
(第3の実施形態)
 次に、本発明の第3実施形態に係る光通信システムについて図7を参照しながら説明する。
 第3実施形態に係る光通信システム7000は、送信装置及び受信装置を含むとともに、当該送信装置から当該受信装置へ光信号によりデータを伝送するシステムである。
 更に、この光通信システム7000は、上記送信装置から上記受信装置への伝送経路を複数有する。更に、この光通信システム7000は、上記複数の伝送経路のうちの1つである第1の伝送経路を運用伝送経路として設定する。更に、この光通信システム7000は、当該設定された運用伝送経路を経由して上記送信装置から上記受信装置へ上記データを伝送するデータ伝送部(データ伝送手段)7001を有する。
 更に、この光通信システム7000は、上記第1の伝送経路を経由した、上記受信装置により受信される上記光信号の品質を表す値のうちの、第1の変動品質値を取得する変動品質値取得部(手段)7002を有する。
第1の変動品質値は偏波モード分散に起因する時間変動成分である。
 更に、この光通信システム7000は、上記取得された第1の変動品質値に基づいて、将来の時点において、上記第1の伝送経路にて障害が発生することを検知する障害発生検知部(障害発生検知手段)7003を有する。
 上記データ伝送部7001は、上記第1の伝送経路にて障害が発生することが検知された場合に、以下の動作を行う。即ち上記データ伝送部7001は、上記運用伝送経路を、上記第1の伝送経路から、上記複数の伝送経路のうちの当該第1の伝送経路と異なる第2の伝送経路へ、変更するように構成される。
 これによれば、光通信システム7000は、第1の伝送経路にて実際に障害が発生する(例えば誤り訂正処理における誤り訂正数が所定の閾値よりも大きくなる)時点よりも前の時点にて、運用伝送経路を変更する事ができる。この結果、受信装置が誤ったデータ(即ち、送信装置から送信されたデータと異なるデータ)を受信することを回避することができる。
 即ち、上記光通信システム7000によれば、障害の発生に伴って運用伝送経路を変更する際に、通信品質が低下することを防止することができる。
(第4の実施形態)
 本発明の他の形態の光通信システムは、送信装置及び受信装置を含むとともに、当該送信装置から当該受信装置へ光信号によりデータを伝送するシステムである。
 更に、この光通信システムは、上記送信装置から上記受信装置への伝送経路を複数有する。
 更に、この光通信システムは、上記複数の伝送経路のうちの1つである第1の伝送経路を運用伝送経路として設定する。
 更にこの光通信システムは、当該設定された運用伝送経路を経由して上記送信装置から上記受信装置へ上記データを伝送するデータ伝送手段を有する。
 更にこの光通信システムは上記第1の伝送経路を経由した上記受信装置により受信される上記光信号の品質を表す値のうちの偏波モード分散に起因する時間変動成分である第1の変動品質値を取得する変動品質値取得手段を有する。
 更にこの光通信システムは上記取得された第1の変動品質値に基づいて、将来の時点において、上記第1の伝送経路にて障害が発生することを検知する障害発生検知手段を備える。
 更に上記データ伝送手段は、上記第1の伝送経路にて障害が発生することが検知された場合に上記運用伝送経路を上記第1の伝送経路から上記複数の伝送経路のうちの当該第1の伝送経路と異なる第2の伝送経路へ変更する。
(第5の実施形態)
 本発明の他の形態である光通信方法は、送信装置及び受信装置を含むとともに、当該送信装置から当該受信装置へ光信号によりデータを伝送する光通信システムに適用される。
 この光通信方法は上記送信装置から上記受信装置への複数の伝送経路のうちの1つである第1の伝送経路を運用伝送経路として設定し当該設定された運用伝送経路を経由して上記送信装置から上記受信装置へ上記データを伝送する。
 更にこの光通信方法は上記第1の伝送経路を経由した、上記受信装置により受信される上記光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である第1の変動品質値を取得する。
 更にこの光通信方法は上記取得された第1の変動品質値に基づいて、将来の時点において、上記第1の伝送経路にて障害が発生することを検知する。
 更にこの光通信方法は上記第1の伝送経路にて障害が発生することが検知された場合に上記運用伝送経路を上記第1の伝送経路から上記複数の伝送経路のうちの当該第1の伝送経路と異なる第2の伝送経路へ変更する。
(第6の実施形態)
 本発明の他の形態である障害検知装置は、光信号が入力されるとともに、当該光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値を取得する変動品質値取得手段を有する。
 更にこの障害検知装置は、上記取得された変動品質値に基づいて、将来の時点において、上記光信号が伝送される伝送経路にて障害が発生することを検知する障害発生検知手段を備える。
(第7の実施形態)
 本発明の他の形態である障害検知方法は、光信号が入力され、当該光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値を取得する。
 更にこの障害検知方法は、上記取得された変動品質値に基づいて、将来の時点において、上記光信号が伝送される伝送経路にて障害が発生することを検知する。
(第8の実施形態)
 本発明の他の形態であるプログラムは、光信号が入力される障害検知装置に、上記光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値を取得する変動品質値取得手段を有する。
 更にこのプログラムは、上記取得された変動品質値に基づいて、将来の時点において、上記光信号が伝送される伝送経路にて障害が発生することを検知する障害発生検知手段を実現させる。
 以上、上記実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成及び詳細に、本願発明の範囲内において当業者が理解し得る様々な変更をすることができる。
 なお、上記各実施形態において光通信システムの各機能は、回路等のハードウェアにより実現されていた。ところで、光通信システムは、光通信システムを構成する各装置が、処理装置と、プログラム(ソフトウェア)を記憶する記憶装置と、を備えてもよい。更に光通信システムは、処理装置がそのプログラムを実行することにより、各機能を実現するように構成されていてもよい。この場合、プログラムは、コンピュータが読み取り可能な記録媒体に記憶されていてもよい。例えば、記録媒体は、フレキシブルディスク、光ディスク、光磁気ディスク、及び、半導体メモリ等の可搬性を有する媒体である。
 また、上記実施形態の他の変形例として、上述した実施形態及び変形例の任意の組み合わせが採用されてもよい。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2010年3月24日に出願された日本出願特願2010−067248を基礎とする優先権を主張し、その開示の全てをここに取り込む。
<付記>
 上記実施形態の一部又は全部は、以下の付記のように記載され得るが、以下には限られない。
(付記1)
 複数の伝送経路のいずれかである運用伝送経路を経由して送信装置から受信装置へ光信号を伝送する光通信システムであって、
 前記運用伝送線路を介して、前記受信装置により受信される前記光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値を取得する変動品質値取得手段と、
 前記第1の変動品質値に基づいて、将来の時点において、前記運用伝送経路にて障害が発生することを検知し、障害発生警告信号を出力する障害発生検知手段と、
 前記障害発生警告信号が入力された場合に、前記運用伝送経路を、他の伝送経路へ、変更するデータ伝送手段を含む光通信システム。
(付記2)
 付記1に記載の光通信システムであって、
 前記変動品質値取得手段は、前記光信号の波長帯域内におけるポアンカレ球上にてストークスベクトルが描く軌跡の長さであるSOP(State of Polarization)ベクトル軌跡長、又は、偏光度の値に基づいて前記第1の変動品質値を取得する光通信システム。
(付記3)
 付記1又は付記2に記載の光通信システムであって、
 前記障害発生検知手段は、予め設定された判定期間内に、前記取得された第1の変動品質値が、予め設定された品質閾値よりも小さくなった時間の総和の、当該判定期間に対する割合が、予め設定された割合閾値以上となり、且つ、前記取得された第1の変動品質値の時間変化率が負の値である場合、前記運用伝送経路にて障害が発生することを検知する光通信システム。
(付記4)
 付記1又は付記2に記載の光通信システムであって、
 前記障害発生検知手段は、前記取得された第1の変動品質値の時間変化率が負の値である状態が、予め設定された時間閾値以上に亘って継続した場合、前記第1の伝送経路にて障害が発生することを検知する光通信システム。
(付記5)
 付記3又は付記4に記載の光通信システムであって、
 前記障害発生検知手段は、前記取得された第1の変動品質値を平滑化した値の時間変化率を、前記第1の変動品質値の時間変化率として取得する光通信システム。
(付記6)
 付記1乃至付記5のいずれか一項に記載の光通信システムであって、
 前記運用伝送経路にて障害が発生することが検知されるまでの間、他の伝送経路を経由させてデータを伝送するための電力の供給を停止するとともに、前記運用伝送経路にて障害が発生することが検知された時、当該電力の供給を開始する光通信システム。
(付記7)
 付記1乃至付記5のいずれか一項に記載の光通信システムであって、
 前記変動品質値取得手段は、前記運用伝送経路以外の所定の伝送経路を経由した、前記受信装置により受信される前記光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である第2の変動品質値を取得し、
 前記障害発生検知手段は、前記取得された第2の変動品質値に基づいて、前記所定の伝送経路にて障害が発生することを検知し、
 前記データ伝送手段は、前記運用伝送経路にて障害が発生することが検知され、且つ、前記所定の伝送経路にて障害が発生することが検知されていない場合に、前記運用伝送経路を、前記所定の伝送経路へ変更する光通信システム。
(付記8)
 付記7に記載の光通信システムであって、
 前記運用伝送経路にて障害が発生することが検知されるまでの間、前記所定の伝送経路を経由させてデータを伝送するための電力の前記送信装置への供給を停止し、
 前記変動品質値取得手段は、前記受信装置により受信され、且つ、前記所定の伝送経路に配置された光増幅器が出力する雑音光に基づいて、前記第2の変動品質値を取得する光通信システム。
(付記9)
 複数の伝送経路のいずれかである運用伝送経路を経由して送信装置から受信装置へ光信号を伝送する光通信システムに適用され、
 前記運用伝送線路を介して、前記受信装置により受信される前記光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値を取得し、
 前記第1の変動品質値に基づいて、将来の時点において、前記運用伝送経路にて障害が発生することを検知し、障害発生警告信号を出力し、
 前記障害発生警告信号が入力された場合に、前記運用伝送経路を、他の伝送経路へ、変更する、光通信方法。
(付記10)
 付記9に記載の光通信方法であって、
 前記光信号の波長帯域内におけるポアンカレ球上にてストークスベクトルが描く軌跡の長さであるSOP(State of Polarization)ベクトル軌跡長、又は、偏光度の値に基づいて前記第1の変動品質値を取得する、光通信方法。
(付記11)
 付記9又は付記10に記載の光通信方法であって、
 予め設定された判定期間内に、前記取得された第1の変動品質値が、予め設定された品質閾値よりも小さくなった時間の総和の、当該判定期間に対する割合が、予め設定された割合閾値以上となり、且つ、前記取得された第1の変動品質値の時間変化率が負の値である場合、前記運用伝送経路にて障害が発生することを検知する、光通信方法。
(付記12)
 付記9又は付記10に記載の光通信方法であって、
 前記取得された第1の変動品質値の時間変化率が負の値である状態が、予め設定された時間閾値以上に亘って継続した場合、前記第1の伝送経路にて障害が発生することを検知する、光通信方法。
(付記13)
 付記11又は付記12に記載の光通信方法であって、
 前記取得された第1の変動品質値を平滑化した値の時間変化率を、前記第1の変動品質値の時間変化率として取得する、光通信方法。
(付記14)
 付記9乃至付記13のいずれか一項に記載の光通信方法であって、
 前記運用伝送経路にて障害が発生することが検知されるまでの間、他の伝送経路を経由させてデータを伝送するための電力の供給を停止するとともに、前記運用伝送経路にて障害が発生することが検知された時、当該電力の供給を開始する、光通信方法。
(付記15)
 付記9乃至付記13のいずれか一項に記載の光通信方法であって、
 前記運用伝送経路以外の所定の伝送経路を経由した、前記受信装置により受信される前記光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である第2の変動品質値を取得し、
 前記取得された第2の変動品質値に基づいて、前記所定の伝送経路にて障害が発生することを検知し、
 前記運用伝送経路にて障害が発生することが検知され、且つ、前記所定の伝送経路にて障害が発生することが検知されていない場合に、前記運用伝送経路を、前記所定の伝送経路へ変更する、光通信方法。
(付記16)
 付記15に記載の光通信方法であって、
 前記運用伝送経路にて障害が発生することが検知されるまでの間、前記所定の伝送経路を経由させてデータを伝送するための電力の前記送信装置への供給を停止するように構成され、
 前記変動品質値取得手段は、前記受信装置により受信され、且つ、前記所定の伝送経路に配置された光増幅器が出力する雑音光に基づいて、前記第2の変動品質値を取得する、光通信方法。
(付記17)
 光信号が入力されるとともに、当該光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値を取得する変動品質値取得手段と、
 前記取得された変動品質値に基づいて、将来の時点において、前記光信号が伝送される伝送経路にて障害が発生することを検知する障害発生検知手段と、
 を備える障害検知装置
(付記18)
 付記17に記載の障害検知装置であって、
 前記変動品質値取得手段は、前記光信号の波長帯域内におけるポアンカレ球上にてストークスベクトルが描く軌跡の長さであるSOP(State of Polarization)ベクトル軌跡長、又は、偏光度の値に基づいて前記第1の変動品質値を取得する障害検知装置。
(付記19)
 付記17又は付記18に記載の障害検知装置であって、
 前記障害発生検知手段は、予め設定された判定期間内に、前記取得された第1の変動品質値が、予め設定された品質閾値よりも小さくなった時間の総和の、当該判定期間に対する割合が、予め設定された割合閾値以上となり、且つ、前記取得された第1の変動品質値の時間変化率が負の値である場合、前記運用伝送経路にて障害が発生することを検知する障害検知装置。
(付記20)
 付記17又は付記18に記載の障害検知装置であって、
 前記障害発生検知手段は、前記取得された第1の変動品質値の時間変化率が負の値である状態が、予め設定された時間閾値以上に亘って継続した場合、前記第1の伝送経路にて障害が発生することを検知する、障害検知装置。
(付記21)
 光信号が入力され、当該光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値を取得し、
 前記取得された変動品質値に基づいて、将来の時点において、前記光信号が伝送される伝送経路にて障害が発生することを検知する、
障害検知方法
(付記22)
 付記21に記載の障害検知方法であって、
 前記光信号の波長帯域内におけるポアンカレ球上にてストークスベクトルが描く軌跡の長さであるSOP(State of Polarization)ベクトル軌跡長、又は、偏光度の値に基づいて前記第1の変動品質値を取得する、障害検知方法。
(付記23)
 付記21又は付記22に記載の障害検知方法であって、
 予め設定された判定期間内に、前記取得された第1の変動品質値が、予め設定された品質閾値よりも小さくなった時間の総和の、当該判定期間に対する割合が、予め設定された割合閾値以上となり、且つ、前記取得された第1の変動品質値の時間変化率が負の値である場合、前記運用伝送経路にて障害が発生することを検知する障害検知方法。
(付記24)
 付記21又は付記22に記載の障害検知方法であって、
 前記取得された第1の変動品質値の時間変化率が負の値である状態が、予め設定された時間閾値以上に亘って継続した場合、前記第1の伝送経路にて障害が発生することを検知する、障害検知方法。
(付記25)
 光信号が入力される障害検知装置に、当該光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値を取得する変動品質値取得手段と、
 前記取得された変動品質値に基づいて、将来の時点において、前記光信号が伝送される伝送経路にて障害が発生することを検知する障害発生検知手段と、
 を実現させるための障害検知プログラム。
(付記26)
 付記25に記載のプログラムであって、
 前記変動品質値取得手段は、前記光信号の波長帯域内におけるポアンカレ球上にてストークスベクトルが描く軌跡の長さであるSOP(State of Polarization)ベクトル軌跡長、又は、偏光度の値に基づいて前記第1の変動品質値を取得する障害検知プログラム。
(付記27)
 付記25又は付記26に記載の障害検知プログラムであって、
 前記障害発生検知手段は、予め設定された判定期間内に、前記取得された第1の変動品質値が、予め設定された品質閾値よりも小さくなった時間の総和の、当該判定期間に対する割合が、予め設定された割合閾値以上となり、且つ、前記取得された第1の変動品質値の時間変化率が負の値である場合、前記運用伝送経路にて障害が発生することを検知する障害検知プログラム。
(付記28)
 付記25又は付記26に記載の障害検知プログラムであって、
 前記障害発生検知手段は、前記取得された第1の変動品質値の時間変化率が負の値である状態が、予め設定された時間閾値以上に亘って継続した場合、前記第1の伝送経路にて障害が発生することを検知する、障害検知プログラム。
Hereinafter, embodiments of an optical communication system, an optical communication method, a failure detection apparatus, a failure detection method, and a program according to the present invention will be described with reference to FIGS. 1 to 7.
(Summary of the embodiment)
The optical communication system according to each embodiment of the present invention has a plurality of transmission paths for transmitting data by an optical signal. The plurality of transmission paths include a first transmission path and a second transmission path from the transmitter to the receiver. The optical communication system sets a first transmission path or a second transmission path as an operation transmission path, and transmits data from the transmitter to the receiver via the operation transmission path.
The optical communication system has a fluctuation quality that is a value that well reflects the time fluctuation component caused by polarization mode dispersion among the values representing the quality of the optical signal that has passed through the first transmission path set as the operation transmission path. Get the value. The variable quality value will be further described later. The optical communication system detects that a failure occurs in the first transmission path at a future time based on the acquired variable quality value (ie, predicts the occurrence of the failure).
When it is detected that a failure occurs in the first transmission path, the optical communication system changes the operation transmission path from the first transmission path to the second transmission path before the failure actually occurs. . This can prevent the receiving device from receiving erroneous data (that is, data different from the data transmitted from the transmitting device).
By the way, as the amount of data to be transmitted per unit time becomes larger (that is, the capacity of the communication service becomes larger), the receiving apparatus takes a period from the actual occurrence of the failure until the change of the operation transmission path is completed. The amount of data received increases. Therefore, the further effect is exhibited by this embodiment.
In other words, by shortening the period (that is, the time during which the communication service is disconnected (blocked)), retransmission control of data accompanying the loss of data to be transmitted is suppressed, and the communication service can be further speeded up. can do. In addition, if the above period does not exist (the period is zero), the optical communication system is determined as if the failure does not occur although the failure is actually occurring. It can be operated. That is, the reliability of the optical communication system can be improved.
In addition, when data is transmitted by an optical signal, physical phenomena such as wavelength dispersion, polarization dispersion, optical S / N (Signal-to-Noise), and nonlinear distortion are factors that cause the quality of the optical signal to fluctuate. Conceivable. Among them, a particularly important factor is polarization mode dispersion (PMD).
The reason for this is that the fluctuation in quality caused by PMD is irregular and is a high speed phenomenon, so it is difficult to suppress the fluctuation in quality by performing compensation or the like. On the other hand, since other factors are relatively regular and slow phenomena, it is possible to suppress the fluctuation of quality by performing compensation or the like. Therefore, the fluctuation of the quality of the optical signal is dominated by the part caused by PMD. That is, it is particularly important to monitor quality variations due to PMD.
By the way, when a failure occurs due to PMD, the failure often occurs because the quality of the optical signal is rapidly degraded during a very short time (ie, instantaneously). In such a case, monitoring of only the time-varying component caused by PMD among the values representing the quality of the optical signal is more likely to cause a failure than monitoring the entire value representing the quality of the optical signal. The inventor has found that it is easy to detect in advance.
Therefore, the optical communication system acquires, among the values representing the quality of the optical signal, a fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion, and based on the fluctuation quality value, at a future time, Detect when a failure occurs.
The variable quality value will be further described. In order to monitor the quality of a signal, a bit error rate (BER) or a number of error corrections in forward error correction (FEC) processing is often used.
However, the number of error corrections in BER or FEC processing does not necessarily reflect only the fluctuation quality due to PMD. Therefore, the optical communication system detects the SOP (State of Polarization) vector locus length or the degree of polarization that strongly correlates with the fluctuation quality due to PMD, and based on the detected value, the fluctuation quality due to PMD We will acquire the fluctuation quality value as a value that reflects well. The SOP vector locus length is the length of the locus drawn by the Stokes vector on the Poincare sphere in the wavelength band of the optical signal. The degree of polarization is also called DOP (Degree of Polarization). However, the fluctuation quality value is not limited to the above as long as it is a value that well reflects the fluctuation of quality caused by PMD, and even a value well reflecting the fluctuation of quality caused by PMD. Anything will do. The occurrence of a failure can be predicted with high accuracy by using the variable quality value having such a feature.
Also, when acquiring a value representing the quality of the optical signal based on the number of error corrections in the FEC processing or the code error rate, the optical signal representing the data (ie, the modulated optical signal (modulated light)) Is required. On the other hand, when obtaining a value representing the quality of the optical signal based on the SOP vector locus length or the degree of polarization, modulated light, continuous wave (CW: continuous wave) light, or amplified spontaneous emission (ASE: amplified spontaneous emission) ) Light can be used.
Therefore, for example, when acquiring a value representing the quality of an optical signal in a transmission path (backup transmission path) not set as an operation transmission path, the following advantages can be obtained by using CW light or ASE light: There is. That is, the value representing the quality of the optical signal can be obtained more easily than in the case of using modulated light. Therefore, by using a simple light source, it is possible to obtain a value representing the quality of the light signal. As a result, equipment and operation costs can be reduced to predict the occurrence of a failure in the backup transmission path.
Also, in an optical communication system, a hot standby method is often used in which power for transmitting data is supplied in advance via a spare transmission path. The reason is that it is difficult to handle complicated control protocols, and because the time taken for the transmission apparatus (optical transmission apparatus) to operate stably is relatively long. However, the hot standby method has a problem that the operation cost and the power consumption amount are large as compared with the cold standby method in which the supply of power for transmitting data is stopped via the spare transmission path.
By the way, the optical communication system according to the present invention predicts the occurrence of a failure and changes the operation transmission path before the failure actually occurs. Therefore, it is possible to secure a relatively long time from when it is detected that a failure will occur in the future, to when the failure actually occurs. Therefore, even if power for transmitting data is not supplied in advance via the spare transmission path, preparation for transmission of data via the spare transmission path is completed by the time a failure actually occurs. be able to.
Therefore, in the optical communication system according to one of the embodiments of the present invention, it is possible to transmit power through the spare transmission path until it is detected that a failure occurs in the operation transmission path. Stop the supply. Thereby, the operation cost or the power consumption can be reduced.
As described above, according to the optical communication system according to the embodiment of the present invention, it is possible to increase the reliability of the optical communication system, speed up the communication service, reduce the facility and operation cost of the optical communication system, and reduce the power consumption. It becomes possible to realize.
First Embodiment
(Constitution)
As shown in FIG. 1, the optical communication system 1000 according to the first embodiment includes a plurality of (three in this example) node devices (communication devices) 1001, 1002, and 1003. In this example, the node device 1001 is also referred to as a transmitting device. The node device 1002 is also referred to as a receiving device. Also, the node device 1001 and the node device 1002 constitute data transmission means.
The node device 1001 is connected to the node device 1002 via an optical fiber 1004. Further, the node device 1001 is connected to the node device 1003 via the optical fiber 1005. In addition, the node device 1003 is connected to the node device 1002 via the optical fiber 1006.
The transmission path of the optical signal that reaches the node device 1002 from the node device 1001 via the optical fiber 1004 is also referred to as a first transmission path. The transmission path of the optical signal that reaches the node device 1002 from the node device 1001 via the optical fiber 1005, the node device 1003, and the optical fiber 1006 is also referred to as a second transmission path. Thus, the optical communication system 1000 has a plurality of transmission paths consisting of the first transmission path and the second transmission path.
The node device 1001 is configured to be able to output an optical signal representing data to each of the optical fiber 1004 and the optical fiber 1005. The node device 1001 receives an output control signal from the node device 1002, and outputs an optical signal to any one of the optical fiber 1004 and the optical fiber 1005 according to the output control signal. The output control signal indicates that the first transmission path or the second transmission path is to be set as an operation transmission path.
The node device 1003 receives an optical signal from the node device 1001 via the optical fiber 1005, and outputs (transfers) the received optical signal to the optical fiber 1006.
The node device 1002 is an optical signal transmitted by the node device 1001, and receives an optical signal transmitted via the first transmission path or the second transmission path.
Also, the optical communication system 1000 includes a plurality of (three in this example) optical amplifiers (optical amplifiers) 1007, 1008, and 1009, and a polarizer 1015.
The optical amplifier 1007 is disposed in the optical fiber 1004. The optical amplifier 1007 amplifies the optical signal transmitted by the node device 1001.
The optical amplifier 1008 is disposed in the optical fiber 1005. The optical amplifier 1008 amplifies the optical signal transmitted by the node device 1001.
The optical amplifier 1009 is disposed in the optical fiber 1006. The optical amplifier 1009 amplifies the optical signal transmitted by the node device 1003.
The polarizer 1015 sets the polarization state of the optical signal amplified by the optical amplifier 1008 to a preset state, and outputs the polarization state to the optical fiber 1005.
The optical signal transmitted by the node device 1001 is received by the node device 1002 after the quality is changed due to various factors while being transmitted via the transmission path.
Furthermore, the optical communication system 1000 includes a plurality of (two in this example) optical splitters 1010 and 1011 and a plurality of (two in this example) optical signal quality monitors (fault detection devices) 1012 and 1013, Equipped with The optical signal quality monitor 1013 constitutes fluctuation quality value acquisition means and failure occurrence detection means.
The optical splitter 1010 is disposed at the end of the optical fiber 1006 on the node device 1002 side. The optical splitter 1010 splits the optical signal transmitted by the optical fiber 1006 and monitors the branched optical signal (that is, the optical signal received by the receiver 1002 via the second transmission path) as an optical signal quality monitor Output to 1012
Similarly, the optical splitter 1011 is disposed at the end of the optical fiber 1004 on the node device 1002 side. The optical splitter 1011 branches the optical signal transmitted by the optical fiber 1004, and monitors the branched optical signal (that is, the optical signal received by the receiver 1002 via the first transmission path) as an optical signal quality monitor Output to 1013
The optical signal quality monitor 1012 is a fluctuation quality value that is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the input optical signal (that is, the optical signal passed through the second transmission path). Get (the second variation quality value). In this example, the optical signal quality monitor 1012 measures (detects) the SOP vector locus length, and acquires the measured value itself or a value obtained by performing a predetermined operation on the value as a fluctuation quality value. The optical signal quality monitor 1012 may detect the degree of polarization and acquire the detected value itself or a value obtained by performing a predetermined operation on the value as the fluctuation quality value.
Specifically, the optical signal quality monitor 1012 stores information representing the relationship between the SOP vector locus length and the fluctuation quality value based on the experimentally measured values. Then, the optical signal quality monitor 1012 obtains the fluctuation quality value from the measured SOP vector locus length and the stored information.
The optical signal quality monitor 1012 may acquire, based on the SOP vector locus length or the degree of polarization (DOP), a temporal fluctuation component caused by PMD among values representing the quality of the optical signal. This method is disclosed, for example, in Japanese Patent Laid-Open No. 2009-260875.
The optical signal quality monitor 1012 outputs a failure occurrence warning signal to the node device 1002 when the acquired fluctuation quality value satisfies a predetermined detection condition. The failure occurrence warning signal indicates that a failure has been detected at a future time.
The optical signal quality monitor 1013 has the same configuration as the optical signal quality monitor 1012. The optical signal quality monitor 1013 is a fluctuation quality value that is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the input optical signal (that is, the optical signal passed through the first transmission path). Get (the first variation quality value). The optical signal quality monitor 1013 outputs a failure occurrence warning signal to the node device 1002 when the acquired fluctuation quality value satisfies the above detection condition.
When receiving the failure occurrence warning signal, the node device 1002 changes the transmission path set as the operation transmission path.
That is, when the node device 1002 receives the failure occurrence warning signal from the optical signal quality monitor 1013 when the first transmission path is set as the operation transmission path, the node device 1002 transmits the operation transmission path from the first transmission path to the second transmission path. Change to the transmission path of Specifically, the node device 1002 transmits, to the node device 1001, an output control signal indicating that the second transmission path is to be set as an operation transmission path.
When the node device 1002 receives the failure occurrence warning signal from the optical signal quality monitor 1012 when the second transmission path is set as the operation transmission path, the node device 1002 transmits the operation transmission path from the second transmission path to the second transmission path. Change to the transmission path of 1. Specifically, the node device 1002 transmits, to the node device 1001, an output control signal indicating that the first transmission path is to be set as an operation transmission path.
Next, the optical signal quality monitors 1012 and 1013 will be described in more detail.
FIG. 2 is a graph showing an example of a time change of fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among values representing the quality of an optical signal. In the present example, it is assumed that a failure actually occurs when the fluctuation quality value falls below the quality deterioration threshold Qth after time t2. Note that occurrence of a fault corresponds to, for example, the fact that the number of error corrections in the FEC process becomes larger than a preset threshold. Also, the quality deterioration threshold Qth is a threshold of a fluctuation quality value at which a failure actually occurs.
By the way, as described above, PMD is dominant in the factor that causes the quality of the optical signal to fluctuate. In addition, PMD fluctuates the quality of the optical signal irregularly and at high speed. For this reason, as shown in FIG. 2, at the normal time (that is, at a time point before time t1), although the fluctuation quality value has a value sufficiently larger than the quality deterioration threshold Qth, May cause such problems. That is, there is a problem that the fluctuation quality value may drop sharply during a relatively short time (during the period between time t1 and time t2) and fall below the quality deterioration threshold Qth.
In the example shown in FIG. 2, the fluctuation quality value vibrates and decreases during the time t1 and the time t2, and the amplitude of the vibration is increased and finally falls below the quality deterioration threshold Qth after t2.
Therefore, each of the optical signal quality monitors 1012 and 1013 detects that a failure will occur in the future in the transmission path to be detected in the following case, within the judgment period set in advance. That is, the ratio of the total of time when the fluctuation quality value becomes smaller than the preset quality threshold to the determination period becomes equal to or more than the preset threshold (ratio threshold), and the fluctuation quality value at that time If the time rate of change is a negative value. Note that “at that point” means that the ratio of the total of times when the fluctuation quality value becomes smaller than the preset quality threshold to the determination period is equal to or greater than the preset threshold (percentage threshold). It means that.
Thereby, it is possible to detect that a failure occurs at a time before the time when the fluctuation quality value actually falls below the quality degradation threshold Qth.
Specifically, each of the optical signal quality monitors 1012 and 1013 starts measuring the time by the timer when the acquired fluctuation quality value falls below the PMD-induced quality fluctuation threshold Qpmd (quality threshold). That is, it is the time when the acquired fluctuation quality value becomes smaller than the PMD-induced quality fluctuation threshold Qpmd. Here, the PMD-induced quality fluctuation threshold Qpmd is set to a value larger than the quality deterioration threshold Qth.
Each of the optical signal quality monitors 1012 and 1013 starts the measurement of the time by the timer, and in the period (determination period) until the time measured by the timer exceeds the time threshold T set in advance, Do. That is, the sum of time in which the acquired fluctuation quality value becomes smaller than the PMD-induced quality fluctuation threshold Qpmd (that is, falls below the PMD-induced quality fluctuation threshold Qpmd) is measured.
In the example shown in FIG. 2, this sum is T1 + T2 + T3 + T4 + T5 + T6. Furthermore, each of the optical signal quality monitors 1012 and 1013 calculates a value R = (T1 + T2 + T3 + T4 + T5 + T6) / T obtained by dividing the measured sum by the time threshold T (that is, the length of the determination period). That is, the value R is a ratio of the total to the determination period.
On the other hand, each of the optical signal quality monitors 1012 and 1013 calculates the time change rate (that is, time differential value) Q ′ of the fluctuation quality value. By the way, the fluctuation quality value acquired includes a measurement error and / or a minute fluctuation component due to noise light. For this reason, there is a possibility that the time change rate of the fluctuation quality value can not be calculated with high accuracy.
Therefore, each of the optical signal quality monitors 1012 and 1013 acquires the time change rate of the value obtained by smoothing the acquired fluctuation quality value as the time change rate of the fluctuation quality value. Here, FIG. 3 is a graph showing the time change of the value obtained by smoothing the fluctuation quality value shown in FIG.
In this example, each of the optical signal quality monitors 1012 and 1013 smoothes the obtained fluctuation quality value by using a low pass filter. Each of the optical signal quality monitors 1012 and 1013 may be configured to use a Savitzky-Golay filter.
As a result, it is possible to reduce the influence of measurement errors and / or minute fluctuation components due to noise light on the time rate of change of fluctuation quality values. As a result, it is possible to obtain the temporal change rate of the fluctuation quality value with high accuracy.
Each of the optical signal quality monitors 1012 and 1013 detects that a failure will occur in the future in the transmission path to be detected in the following case. That is, the calculated value R is equal to or greater than a preset ratio threshold Rth, and the calculated time change rate Q ′ of the fluctuation quality value is a negative value. The condition that the value R is equal to or greater than the ratio threshold Rth and the time rate of change Q ′ of the fluctuation quality value is a negative value is also referred to as a detection condition. The transmission path to be detected is the second transmission path for the optical signal quality monitor 1012 and the first transmission path for the optical signal quality monitor 1013.
Each of the optical signal quality monitors 1012 and 1013 outputs a failure occurrence warning signal to the node device 1002 when it is detected that a failure will occur at a future time point in the transmission path to be detected.
Here, among the values representing the quality of the optical signal, the effect in the case of predicting the occurrence of a fault by using a fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion, in BER or FEC processing Description will be made in comparison with the case where the number of error corrections is used.
When BER is used as a value representing the quality of the optical signal, a value corresponding to the PMD-induced quality fluctuation threshold Qpmd shown in FIG. 2 will be described as a quality fluctuation threshold Qber.
The differences between the PMD-induced quality fluctuation threshold Qpmd and the quality fluctuation threshold Qber are as follows. That is, while the PMD-induced quality variation threshold Qpmd is a value based on only the time variation component among the values representing the quality, the quality variation threshold Qber is not only the time variation component but also a fixed component that hardly changes. Is also a point based on.
That is, assuming that the value representing the quality of the optical signal is Q (t), it is assumed that Q (t) is the sum of time-varying component ΔQ (t) and component Q0 which hardly changes at normal times. I can think of it. That is, Q (t) = ΔQ (t) + Q0.
By the way, when PMD is dominant as a factor that the quality of the optical signal fluctuates, the PMD-induced quality fluctuation threshold Qpmd is substantially a threshold for ΔQ (t), while the quality fluctuation threshold Qber is substantially Threshold for Q (t).
Also, the fluctuation range of ΔQ (t) can be estimated relatively accurately from the PMD characteristics in the transmission path. Therefore, it is relatively easy to set the value of the PMD-induced quality fluctuation threshold Qpmd properly.
However, it is difficult to accurately estimate the fluctuation range of Q (t), since Q0 changes depending on various characteristics such as the transmission path and the node device. For this reason, it is difficult to set the value of the quality variation threshold Qber properly.
Therefore, it is effective to use the SOP vector locus length or the degree of polarization (DOP) which can extract only the time-varying component due to PMD among the values representing the quality of the optical signal.
Each of the optical signal quality monitors 1012 and 1013 indicates that the state in which the time change rate of the acquired fluctuation quality value is a negative value continues for a predetermined time (time threshold) or more. At this point, it may be configured as follows. That is, it is configured to detect that a fault occurs in the transmission path to be detected. This also makes it possible to detect that a failure occurs at a time before the time when the variation quality value actually falls below the quality deterioration threshold Qth.
(Operation)
Next, the operation of the optical communication system 1000 will be described.
First, the optical communication system 1000 sets the first transmission path as an operation transmission path. Accordingly, the node device 1001 outputs an optical signal representing data to the optical fiber 1004. That is, the node device 1001 transmits an optical signal to the node device 1002 via the first transmission path. Thereby, the node device 1002 receives the optical signal, and restores the data transmitted by the node device 1001 based on the received optical signal.
Thus, data is transmitted from the node device 1001 to the node device 1002.
The optical signal quality monitor 1013 also receives the optical signal output by the optical splitter 1011. Then, the optical signal quality monitor 1013 obtains a first fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the input optical signal.
The optical signal quality monitor 1013 determines whether the acquired first variation quality value satisfies the detection condition. Now, it is assumed that the light signal quality monitor 1013 determines that the acquired first variation quality value satisfies the detection condition at time t3 in FIG.
In this case, the optical signal quality monitor 1013 transmits a failure occurrence warning signal to the node device 1002. When receiving the failure occurrence warning signal, the node device 1002 transmits an output control signal to the node device 1001.
Thereby, the node device 1001 receives the output control signal. Then, the node device 1001 changes (switches) the output destination of the optical signal from the optical fiber 1004 to the optical fiber 1005. That is, the node device 1001 changes the operation transmission path from the first transmission path to the second transmission path.
As a result, the optical signal transmitted by the node device 1001 subsequently reaches the node device 1002 via the second transmission path.
As described above, according to the optical communication system 1000 according to the first embodiment of the present invention, the optical communication system 1000 is at a time before the time when a failure actually occurs in the first transmission path. Can change the operation transmission path. This is the case, for example, when the number of error corrections in the error correction process becomes larger than a predetermined threshold. As a result, it is possible to prevent the node device 1002 (receiving device) from receiving erroneous data (that is, data different from the data transmitted from the node device 1001 (transmitting device)).
That is, according to the optical communication system 1000, it is possible to prevent the communication quality from being degraded when changing the operation transmission path in accordance with the occurrence of the failure.
First Modified Example of First Embodiment
Next, a first modified example of the first embodiment will be described. The optical communication system according to the first modification differs from the optical communication system according to the first embodiment in that the supply of power related to the spare transmission path is stopped until occurrence of an abnormality is detected. ing. Therefore, the following description will be focused on such differences.
FIG. 4 is a block diagram showing the configuration of each of the node devices 1001, 1002 and 1003 in FIG. 1 in more detail.
The node device 1001 includes a plurality of (two in this example) optical transmitters 4001 and 4002. The optical transmitter 4001 outputs (sends) an optical signal to the optical fiber 1004. The optical transmitter 4002 outputs (sends) an optical signal to the optical fiber 1005.
The node device 1002 includes a plurality of (in this example, two) optical receivers 4003 and 4004. The optical receiver 4003 receives (inputs) an optical signal that has passed through the optical fiber 1004. The optical receiver 4004 receives (inputs) an optical signal that has passed through the optical fiber 1006.
The node device 1003 includes an optical switch 4005. The optical switch 4005 outputs the input optical signal without termination. The optical switch 4005 is configured to be able to change (switch) the output destination of the input optical signal. In FIG. 4, only the path connecting the optical fiber 1005 and the optical fiber 1006 is shown to simplify the description.
By the way, in general, in the optical communication system, the 1 + 1 protection method, which is a hot standby method, is used as a switching method of a transmission path when a failure occurs. The reason is that it is difficult to perform processing based on a complicated control protocol in the optical communication system, and it takes a relatively long time for the node device to operate stably.
By the way, when using the 1 + 1 protection scheme, it is necessary to always prepare a backup transmission path equivalent to the operation transmission path. Therefore, while supplying power for transmitting data via the spare transmission path even during normal times, the same optical signal as the optical signal transmitted via the operation transmission path is used as the spare transmission path. It must also be transmitted via
As a result, the facility cost for providing a dedicated spare transmission path for one operation transmission path, and the operation cost for always operating the spare transmission path in addition to the operation transmission path are required. By detecting the occurrence of a fault in advance, if it is possible to secure a relatively long application time until the fault actually occurs, it is not necessary to always operate the spare transmission path.
This is because, at a time before the failure actually occurs, the occurrence of the failure is detected, and preparation for changing the operation transmission path (for example, supply of power for the spare transmission path) is started. Because you can do it.
Therefore, the optical communication system 1000 according to the first modification stops the supply of power for transmitting data via the second transmission path in the following case. That is, it is in a period until the first transmission path is set as the operation transmission path and it is detected that a failure occurs in the first transmission path. Specifically, the optical communication system 1000 stops (shuts off) the supply of power to the optical transmitter 4002, the optical amplifier 1008, the optical switch 4005, the optical amplifier 1009, and the optical receiver 4004.
Furthermore, when the node apparatus 1002 receives a failure occurrence warning signal from the optical signal quality monitor 1013, the optical communication system 1000 starts supplying power for transmitting data via the second transmission path. Specifically, the optical communication system 1000 starts supplying power to the optical transmitter 4002, the optical amplifier 1008, the optical switch 4005, the optical amplifier 1009, and the optical receiver 4004.
Then, the node device 1002 transmits an output control signal to the node device 1001 after a standby time set in advance has elapsed since the point in time when the failure occurrence warning signal was received from the optical signal quality monitor 1013.
According to the optical communication system 1000 according to the first modification, power is provided to transmit data via the second transmission path even while the first transmission path is set as the operation transmission path. There are the following effects compared to the case where That is, the amount of power consumed by the optical communication system 1000 can be reduced.
Second Modified Example of First Embodiment
Next, a second modification of the first embodiment will be described. The optical communication system according to the second modification detects a failure in the spare transmission path based on the noise light output from the optical amplifier in the optical communication system according to the first embodiment. It is different. Therefore, the following description will be focused on such differences.
FIG. 4 is a block diagram showing the configuration of each of the node devices 1001, 1002 and 1003 in FIG. 1 in more detail.
The node device 1001 includes a plurality of (two in this example) optical transmitters 4001 and 4002. The optical transmitter 4001 outputs (sends) an optical signal to the optical fiber 1004. The optical transmitter 4002 outputs (sends) an optical signal to the optical fiber 1005.
The node device 1002 includes a plurality of (in this example, two) optical receivers 4003 and 4004. The optical receiver 4003 receives (inputs) an optical signal that has passed through the optical fiber 1004. The optical receiver 4004 receives (inputs) an optical signal that has passed through the optical fiber 1006.
The node device 1003 includes an optical switch 4005. The optical switch 4005 outputs the input optical signal without termination. The optical switch 4005 is configured to be able to change (switch) the output destination of the input optical signal. In FIG. 4, only the path connecting the optical fiber 1005 and the optical fiber 1006 is shown to simplify the description.
The optical communication system 1000 according to the second modification stops supply of power for transmitting data to the node device 1001 (transmitting device) via the second transmission path in the following case. That is, it is in a period until the first transmission path is set as the operation transmission path and it is detected that a failure occurs in the first transmission path. Specifically, the optical communication system 1000 stops (shuts off) the supply of power to the optical transmitter 4002.
The optical signal quality monitor 1012 receives the second fluctuation quality value from the noise light received by the optical receiver 4004 included in the node device 1002 and output from the optical amplifiers 1008 and 1009 arranged in the second transmission path. get. The node device 1002 is a receiving device.
According to this, even while the first transmission path is set as the operation transmission path, the power for transmitting data via the second transmission path is compared with the case where the power is supplied to the transmitting apparatus. The following effects can be obtained. That is, the amount of power consumed by the optical communication system 1000 can be reduced.
That is, even while the first transmission path is set as the operation transmission path, the amount of power consumed by the optical communication system 1000 can be reduced compared to the case where power is supplied to the optical transmitter 4002 .
Then, the node device 1002 transmits the output control signal to the node device 1001 when the failure occurrence warning signal is received from the optical signal quality monitor 1013 and the failure occurrence warning signal is not received from the light signal quality monitor 1012. Do.
That is, the node device 1002 can detect the occurrence of a failure in the first transmission path and can not output the output control signal to the node when the occurrence of the failure in the second transmission path is not detected. Send to the device 1001.
According to the optical communication system 1000 according to the second modification, it is possible to avoid the occurrence of a failure in the second transmission path immediately after changing the operation transmission path. As a result, the optical communication system 1000 can reliably transmit data from the node device 1001 (transmission device) to the node device 1002 (reception device). That is, the reliability of the optical communication system 1000 can be improved.
Second Embodiment
Next, an optical communication system according to a second embodiment of the present invention will be described. The optical communication system according to the second embodiment is different from the optical communication system according to the first embodiment in that wavelength division multiplexing communication is performed in which a plurality of optical signals of different wavelengths are superimposed on an optical fiber. . Therefore, the following description will be focused on such differences.
As shown in FIG. 5, the optical communication system 5000 according to the second embodiment includes node devices 5001, 2502, 5003 respectively corresponding to the node devices 1001, 1002, 1003 in FIG. 1. The optical communication system 5000 also includes optical fibers 5004, 5005, 5006 corresponding to the optical fibers 1004, 1005, 1006 in FIG. The optical communication system 5000 further includes optical amplifiers 5007, 5008, and 5009 respectively corresponding to the optical amplifiers 1007, 1008, and 1009 in FIG. The optical communication system 5000 further includes optical splitters 5010 and 5011 corresponding to the optical splitters 1010 and 1011 of FIG. The optical communication system 5000 further includes optical signal quality monitors 5012 and 5013 respectively corresponding to the optical signal quality monitors 1012 and 1013 of FIG. 1 and a polarizer 5015 corresponding to the polarizer 1015 of FIG.
Furthermore, the optical communication system 5000 includes wavelength multiplexers 5017 and 5018 and wavelength separators 5019 and 5020.
The node device 5001 includes a plurality of (eight in this example) optical transmitters 5031 to 5038.
Each of the optical transmitters 5031 to 5034 outputs an optical signal to the wavelength multiplexer 5018. The respective optical transmitters 5031 to 5034 output (transmit) optical signals having different wavelengths (in this example, λ 1, λ 2, λ 3 or λ 4). The wavelength multiplexer 5018 superimposes the input optical signal and outputs the optical signal to the optical amplifier 5008.
Similarly, each of the optical transmitters 5035 to 5038 outputs an optical signal to the wavelength multiplexer 5017. The respective optical transmitters 5035 to 5038 output (transmit) optical signals having different wavelengths (in this example, λ1, λ2, λ3, or λ4). The wavelength multiplexer 5017 superimposes the input optical signal and outputs the optical signal to the optical amplifier 5007.
The node device 5002 includes a plurality of (eight in this example) optical receivers 5021 to 5028.
The wavelength separator 5019 receives an optical signal (output from the optical amplifier 5007) transmitted via the first transmission path. The wavelength separator 5019 separates the input optical signal into optical signals for each wavelength, and outputs the separated optical signals to the optical receivers 5025 to 5028. The respective optical receivers 5025 to 5028 input (receive) optical signals having different wavelengths (in this example, λ 1, λ 2, λ 3 or λ 4).
The wavelength separator 5020 receives the optical signal (output from the optical amplifier 5009) transmitted via the second transmission path. The wavelength separator 5020 separates the input optical signal into optical signals for each wavelength, and outputs the separated optical signals to the optical receivers 5021 to 5024. The respective optical receivers 5021 to 5024 input (receive) optical signals having different wavelengths (in this example, λ 1, λ 2, λ 3 or λ 4).
With such a configuration, the optical communication system 5000 transmits data from the node device 5001 to the node device 5002 by wavelength division multiplex communication (WDM; Wavelength Division Multiplex).
The optical signal quality monitor 5013, like the optical signal quality monitor 1013, is a fluctuation quality value that is a time fluctuation component caused by polarization mode dispersion among the values representing the quality of the optical signal that has passed through the first transmission path. Get (the first variation quality value). In the present example, the optical signal quality monitor 5013 measures (detects) the SOP vector trajectory length, and acquires the variation quality value based on the measured value.
FIG. 6 is a graph showing an example of the relationship between the SOP vector locus length and the variation quality value. By the way, it has been experimentally found that this relationship hardly changes due to factors other than PMD. Therefore, the optical signal quality monitor 5013 obtains the variation quality value based on the relationship between the SOP vector trajectory length and the variation quality value and the measured SOP vector trajectory length based on the measurement values obtained in advance by experiment. Do. Thereby, the variable quality value can be obtained with high accuracy.
By the way, the optical signal quality monitor 5013 can measure the SOP vector locus length without separating the input optical signal for each wavelength. Therefore, the optical signal quality monitor 5013 can acquire the fluctuation quality value for each wavelength based on the SOP vector locus length measured for each wavelength. That is, the optical signal quality monitor 5013 can acquire the fluctuation quality value as in the case where the input optical signal is an optical signal having only a single wavelength.
As described above, when acquiring the variation quality value based on the SOP vector locus length, it is not necessary to provide different devices for each wavelength of the optical signal. Therefore, even when the optical communication system 5000 is configured to perform wavelength division multiplexing communication, it is possible to prevent the cost for manufacturing the optical communication system 5000 from becoming excessive.
As described above, according to the optical communication system 5000 according to the second embodiment of the present invention, the same operation and effect as the optical communication system 1000 according to the first embodiment can be achieved.
Third Embodiment
Next, an optical communication system according to a third embodiment of the present invention will be described with reference to FIG.
An optical communication system 7000 according to the third embodiment is a system that includes a transmitter and a receiver, and transmits data from the transmitter to the receiver by an optical signal.
Furthermore, the optical communication system 7000 has a plurality of transmission paths from the transmitter to the receiver. Further, the optical communication system 7000 sets a first transmission path, which is one of the plurality of transmission paths, as an operation transmission path. Furthermore, the optical communication system 7000 includes a data transmission unit (data transmission unit) 7001 that transmits the data from the transmission apparatus to the reception apparatus via the set operation transmission path.
Furthermore, the optical communication system 7000 is a fluctuation quality value for acquiring a first fluctuation quality value among values representing the quality of the optical signal received by the receiving apparatus via the first transmission path. An acquisition unit (means) 7002 is provided.
The first variation quality value is a time variation component due to polarization mode dispersion.
Furthermore, the optical communication system 7000 detects a failure occurrence in the first transmission path at a future time based on the acquired first fluctuation quality value (a failure occurrence detection unit (a failure). Occurrence detection means) 7003 is provided.
The data transmission unit 7001 performs the following operation when it is detected that a failure occurs in the first transmission path. That is, the data transmission unit 7001 is configured to change the operation transmission path from the first transmission path to a second transmission path different from the first transmission path among the plurality of transmission paths. Be done.
According to this, in the optical communication system 7000, at the time before the time when the failure actually occurs in the first transmission path (for example, the number of error corrections in the error correction processing becomes larger than the predetermined threshold) , You can change the operation transmission path. As a result, it is possible to prevent the receiving device from receiving erroneous data (that is, data different from the data transmitted from the transmitting device).
That is, according to the optical communication system 7000, when the operation transmission path is changed in response to the occurrence of a failure, it is possible to prevent the communication quality from being degraded.
Fourth Embodiment
An optical communication system according to another aspect of the present invention is a system that includes a transmitter and a receiver, and transmits data from the transmitter to the receiver by an optical signal.
Furthermore, the optical communication system has a plurality of transmission paths from the transmitter to the receiver.
Further, the optical communication system sets a first transmission path, which is one of the plurality of transmission paths, as an operation transmission path.
The optical communication system further includes data transmission means for transmitting the data from the transmitting device to the receiving device via the set operation transmission path.
Furthermore, this optical communication system is characterized by a first fluctuation quality which is a time fluctuation component due to polarization mode dispersion among values representing the quality of the optical signal received by the receiving apparatus via the first transmission path. It has a variable quality value acquisition means for acquiring a value.
The optical communication system further includes failure occurrence detection means for detecting occurrence of a failure in the first transmission path at a future time based on the acquired first variation quality value.
Further, the data transmission means is configured to select the operation transmission path from the first transmission path to the first one of the plurality of transmission paths when it is detected that a failure occurs in the first transmission path. Change to a second transmission path different from the transmission path.
Fifth Embodiment
An optical communication method according to another aspect of the present invention includes a transmitter and a receiver, and is applied to an optical communication system that transmits data from the transmitter to the receiver by an optical signal.
In this optical communication method, a first transmission path, which is one of a plurality of transmission paths from the transmission apparatus to the reception apparatus, is set as an operation transmission path, and the transmission is performed via the set operation transmission path. The data is transmitted from the device to the receiving device.
Furthermore, in the optical communication method, the first variation of the value representing the quality of the optical signal received by the receiver via the first transmission path is a time-varying component caused by polarization mode dispersion. Get variable quality value.
Further, the optical communication method detects occurrence of a failure in the first transmission path at a future time based on the acquired first fluctuation quality value.
Furthermore, in the optical communication method, when it is detected that a failure occurs in the first transmission path, the first transmission path among the plurality of transmission paths is transmitted from the first transmission path to the operation transmission path. Change to a second transmission path different from the path.
Sixth Embodiment
The fault detection apparatus according to another embodiment of the present invention receives a light signal and obtains a fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the light signal. Means for acquiring variable quality value.
The fault detection apparatus further includes fault occurrence detection means for detecting occurrence of a fault in the transmission path through which the optical signal is transmitted at a future time based on the acquired fluctuation quality value.
Seventh Embodiment
In a fault detection method according to another aspect of the present invention, an optical signal is input, and among values representing the quality of the optical signal, a fluctuation quality value that is a time fluctuation component caused by polarization mode dispersion is acquired.
Furthermore, the fault detection method detects that a fault occurs in a transmission path through which the optical signal is transmitted at a future time based on the acquired variable quality value.
Eighth Embodiment
A program according to another aspect of the present invention is a program for detecting a fluctuation quality value, which is a time fluctuation component caused by polarization mode dispersion, out of the values representing the quality of the optical signal, It has a variable quality value acquisition means to acquire.
Further, the program realizes failure occurrence detection means for detecting occurrence of a failure in the transmission path through which the optical signal is transmitted at a future time based on the acquired fluctuation quality value.
As mentioned above, although this invention was demonstrated with reference to the said embodiment, this invention is not limited to embodiment mentioned above. Various modifications that can be understood by those skilled in the art within the scope of the present invention can be made to the configuration and details of the present invention.
In the above embodiments, each function of the optical communication system is realized by hardware such as a circuit. By the way, in the optical communication system, each device constituting the optical communication system may include a processing device and a storage device storing a program (software). Furthermore, the optical communication system may be configured to realize each function by the processing device executing the program. In this case, the program may be stored in a computer readable recording medium. For example, the recording medium is a portable medium such as a flexible disk, an optical disk, a magneto-optical disk, and a semiconductor memory.
Further, as another modification of the above-described embodiment, any combination of the above-described embodiment and modification may be adopted.
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. The configurations and details of the present invention can be modified in various ways that can be understood by those skilled in the art within the scope of the present invention.
This application claims priority based on Japanese Patent Application No. 2010-067248, filed March 24, 2010, the entire disclosure of which is incorporated herein.
<Supplementary Note>
Although a part or all of the above-mentioned embodiment may be described like the following supplementary notes, it is not restricted to the following.
(Supplementary Note 1)
An optical communication system for transmitting an optical signal from a transmitter to a receiver via an operation transmission path which is any of a plurality of transmission paths,
Fluctuation quality value acquiring means for acquiring fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the optical signal received by the receiving apparatus through the operation transmission line When,
Failure occurrence detection means for detecting occurrence of a failure in the operation transmission path at a future time based on the first variation quality value, and outputting a failure occurrence warning signal;
An optical communication system comprising data transmission means for changing the operation transmission path to another transmission path when the failure occurrence alarm signal is input.
(Supplementary Note 2)
The optical communication system according to appendix 1, wherein
The variation quality value acquisition means is based on the value of the SOP (State of Polarization) vector locus length which is the length of the locus drawn by the Stokes vector on the Poincare sphere in the wavelength band of the optical signal or the degree of polarization. An optical communication system for acquiring the first variable quality value.
(Supplementary Note 3)
The optical communication system according to Appendix 1 or 2.
The failure occurrence detection means is configured such that a ratio of a total time in which the acquired first variation quality value becomes smaller than a preset quality threshold within a determination period set in advance is relative to the determination period. An optical communication that detects occurrence of a fault in the operation transmission path when the ratio is equal to or greater than a preset percentage threshold and the time change rate of the acquired first variation quality value is a negative value. system.
(Supplementary Note 4)
The optical communication system according to Appendix 1 or 2.
The failure occurrence detection means, when the state in which the time change rate of the acquired first variation quality value is a negative value continues over a time threshold set in advance, the first transmission path Optical communication system that detects that a failure occurs.
(Supplementary Note 5)
The optical communication system according to Appendix 3 or 4.
The optical communication system according to claim 1, wherein the failure occurrence detection unit acquires a time change rate of a value obtained by smoothing the acquired first change quality value as a time change rate of the first change quality value.
(Supplementary Note 6)
The optical communication system according to any one of supplementary notes 1 to 5, wherein
Until the occurrence of a failure in the operation transmission path is detected, the supply of power for transmitting data via another transmission path is stopped, and a failure occurs in the operation transmission path. An optical communication system that starts supply of the power when it is detected.
(Appendix 7)
The optical communication system according to any one of supplementary notes 1 to 5, wherein
The fluctuation quality value acquiring means is a time fluctuation due to polarization mode dispersion among values representing the quality of the optical signal received by the receiving apparatus via a predetermined transmission path other than the operation transmission path. Get the second variation quality value that is the component,
The failure occurrence detection means detects occurrence of a failure in the predetermined transmission path based on the acquired second fluctuation quality value.
The data transmission means detects the occurrence of a failure in the operation transmission path, and does not detect the occurrence of a failure in the predetermined transmission path. Optical communication system to change to a predetermined transmission path.
(Supplementary Note 8)
The optical communication system according to appendix 7, wherein
The supply of power for transmitting data via the predetermined transmission path is stopped until the occurrence of a failure in the operation transmission path is detected,
The optical communication system according to claim 1, wherein the fluctuation quality value acquiring unit acquires the second fluctuation quality value based on noise light received by the receiving apparatus and output from an optical amplifier disposed in the predetermined transmission path. .
(Appendix 9)
It is applied to an optical communication system for transmitting an optical signal from a transmitter to a receiver via an operation transmission path which is any of a plurality of transmission paths,
Acquiring, among the values representing the quality of the optical signal received by the receiving apparatus via the operation transmission line, a fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion;
Based on the first variation quality value, it is detected that a failure occurs in the operation transmission path at a future time, and a failure occurrence warning signal is output,
An optical communication method, wherein the operation transmission path is changed to another transmission path when the failure occurrence warning signal is input.
(Supplementary Note 10)
It is the optical communication method according to appendix 9.
The first variation quality value is determined based on the SOP (State of Polarization) vector locus length, which is the length of the locus drawn by the Stokes vector on the Poincare sphere in the wavelength band of the optical signal, or the degree of polarization. Optical communication method to acquire.
(Supplementary Note 11)
The optical communication method according to Supplementary Note 9 or 10.
The ratio of the total of the times when the acquired first variation quality value becomes smaller than the preset quality threshold within the preset judgment period to the decision period is the preset threshold value This is the optical communication method for detecting occurrence of a failure in the operation transmission path when the above is true and the time change rate of the acquired first variable quality value is a negative value.
(Supplementary Note 12)
The optical communication method according to Supplementary Note 9 or 10.
When a state in which the temporal change rate of the acquired first fluctuation quality value is a negative value continues over a preset time threshold or more, a fault occurs in the first transmission path. Optical communication method to detect
(Supplementary Note 13)
The optical communication method according to Supplementary Note 11 or 12.
The optical communication method, wherein a time change rate of a value obtained by smoothing the acquired first change quality value is obtained as a time change rate of the first change quality value.
(Supplementary Note 14)
The optical communication method according to any one of Appendixes 9 to 13,
Until the occurrence of a failure in the operation transmission path is detected, the supply of power for transmitting data via another transmission path is stopped, and a failure occurs in the operation transmission path. An optical communication method, which starts the supply of the power when it is detected.
(Supplementary Note 15)
The optical communication method according to any one of Appendixes 9 to 13,
A second fluctuation quality, which is a time-varying component due to polarization mode dispersion, among values representing the quality of the optical signal received by the receiving apparatus via a predetermined transmission path other than the operation transmission path Get the value,
Based on the acquired second fluctuation quality value, it is detected that a failure occurs in the predetermined transmission path,
When it is detected that a failure occurs in the operation transmission path, and it is not detected that a failure occurs in the predetermined transmission path, the operation transmission path is changed to the predetermined transmission path. The optical communication method.
(Supplementary Note 16)
The optical communication method according to appendix 15, wherein
The transmission device is configured to stop supplying power for transmitting data via the predetermined transmission path until occurrence of a failure in the operation transmission path is detected;
The optical communication according to claim 1, wherein the fluctuation quality value acquiring unit acquires the second fluctuation quality value based on noise light received by the receiving apparatus and output from an optical amplifier disposed in the predetermined transmission path. Method.
(Supplementary Note 17)
Fluctuation quality value acquiring means for acquiring a fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among the values representing the quality of the optical signal while being inputted with an optical signal,
Failure occurrence detection means for detecting occurrence of a failure in a transmission path through which the optical signal is transmitted at a future time based on the acquired fluctuation quality value;
Fault detection device provided with
(Appendix 18)
The fault detection apparatus according to appendix 17, wherein
The variation quality value acquisition means is based on the value of the SOP (State of Polarization) vector locus length which is the length of the locus drawn by the Stokes vector on the Poincare sphere in the wavelength band of the optical signal or the degree of polarization. A fault detection device for acquiring the first variable quality value;
(Appendix 19)
The fault detection device according to Supplementary Note 17 or 18.
The failure occurrence detection means is configured such that a ratio of a total time in which the acquired first variation quality value becomes smaller than a preset quality threshold within a determination period set in advance is relative to the determination period. Failure detection that detects occurrence of a failure in the operation transmission path if the ratio is equal to or higher than a preset ratio threshold and the time change rate of the acquired first fluctuation quality value is a negative value apparatus.
(Supplementary Note 20)
The fault detection device according to Supplementary Note 17 or 18.
The failure occurrence detection means, when the state in which the time change rate of the acquired first variation quality value is a negative value continues over a time threshold set in advance, the first transmission path Failure detection device that detects that a failure occurs in
(Supplementary Note 21)
An optical signal is input, and among the values representing the quality of the optical signal, a fluctuation quality value that is a time fluctuation component caused by polarization mode dispersion is acquired,
Based on the acquired fluctuation quality value, it is detected in the future that a failure will occur in a transmission path through which the optical signal is transmitted,
Failure detection method
(Supplementary Note 22)
The fault detection method according to appendix 21
The first variation quality value is determined based on the SOP (State of Polarization) vector locus length, which is the length of the locus drawn by the Stokes vector on the Poincare sphere in the wavelength band of the optical signal, or the degree of polarization. Failure detection method to acquire.
(Supplementary Note 23)
The fault detection method according to Supplementary Note 21 or 22.
The ratio of the total of the times when the acquired first variation quality value becomes smaller than the preset quality threshold within the preset judgment period to the decision period is the preset threshold value This is the failure detection method for detecting that a failure occurs in the operation transmission path when the time change rate of the acquired first variation quality value is negative, as described above.
(Supplementary Note 24)
The fault detection method according to Supplementary Note 21 or 22.
When a state in which the temporal change rate of the acquired first fluctuation quality value is a negative value continues over a preset time threshold or more, a fault occurs in the first transmission path. Failure detection method to detect
(Appendix 25)
Fluctuation quality value acquisition means for acquiring a fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the optical signal, in the fault detection apparatus to which the optical signal is inputted;
Failure occurrence detection means for detecting occurrence of a failure in a transmission path through which the optical signal is transmitted at a future time based on the acquired fluctuation quality value;
Fault detection program to realize the
(Appendix 26)
It is a program described in Appendix 25 and
The variation quality value acquisition means is based on the value of the SOP (State of Polarization) vector locus length which is the length of the locus drawn by the Stokes vector on the Poincare sphere in the wavelength band of the optical signal or the degree of polarization. An obstacle detection program for acquiring the first fluctuation quality value.
(Appendix 27)
26. The failure detection program according to Supplementary Note 25 or 26.
The failure occurrence detection means is configured such that a ratio of a total time in which the acquired first variation quality value becomes smaller than a preset quality threshold within a determination period set in advance is relative to the determination period. Failure detection that detects occurrence of a failure in the operation transmission path if the ratio is equal to or higher than a preset ratio threshold and the time change rate of the acquired first fluctuation quality value is a negative value program.
(Appendix 28)
26. The failure detection program according to Supplementary Note 25 or 26.
The failure occurrence detection means, when the state in which the time change rate of the acquired first variation quality value is a negative value continues over a time threshold set in advance, the first transmission path Failure detection program that detects that a failure occurs in
 本発明は、送信装置から受信装置へ光信号によりデータを伝送する光通信システム等に適用可能であり、産業上の利用可能性を有する。 The present invention is applicable to an optical communication system or the like that transmits data by means of an optical signal from a transmitter to a receiver, and has industrial applicability.
1000 光通信システム
1001,1002,1003 ノード装置
1004,1005,1006 光ファイバ
1007,1008,1009 光アンプ
1010,1011 光分岐器
1012,1013 光信号品質モニタ
1015 偏光子
4001,4002 光送信機
4003,4004 光受信機
4005 光スイッチ
5000 光通信システム
5001,5002,5003 ノード装置
5004,5005,5006 光ファイバ
5007,5008,5009 光アンプ
5010,5011 光分岐器
5012,5013 光信号品質モニタ
5015 偏光子
5017,5018 波長多重器
5019,5020 波長分離器
5021~5028 光受信機
5031~5038 光送信機
7000 光通信システム
7001 データ伝送部
7002 変動品質値取得部
7003 障害発生検知部
1000 Optical communication systems 1001, 1002, 1003 Node devices 1004, 1005, 1006 Optical fibers 1007, 1008, 1009 Optical amplifiers 1010, 1011 Optical splitters 1012, 1013 Optical signal quality monitor 1015 Polarizers 4001, 4002 Optical transmitters 4003, 4004 Optical receiver 4005 Optical switch 5000 Optical communication system 5001, 5002, 5003, Node device 5004, 5005, 5006 Optical fiber 5007, 5008, 5009 Optical amplifier 5010, 5011 Optical splitter 5012, 5013 Optical signal quality monitor 5015 Polarizer 5017, 5018 Wavelength multiplexer 5019, 5020 Wavelength separator 5021 to 5028 Optical receiver 5031 to 5038 Optical transmitter 7000 Optical communication system 7001 Data transmission unit 7002 Fluctuation quality Acquisition unit 7003 failure detection unit

Claims (10)

  1.  複数の伝送経路のいずれかである運用伝送経路を経由して送信装置から受信装置へ光信号を伝送する光通信システムであって、
     前記運用伝送線路を介して、前記受信装置により受信される前記光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である第1の変動品質値を取得する変動品質値取得手段と、
     前記第1の変動品質値に基づいて、将来の時点において、前記運用伝送経路にて障害が発生することを検知し、障害発生警告信号を出力する障害発生検知手段と、
     前記障害発生警告信号が入力された場合に、前記運用伝送経路を、他の伝送経路へ、変更するデータ伝送手段を含む光通信システム。
    An optical communication system for transmitting an optical signal from a transmitter to a receiver via an operation transmission path which is any of a plurality of transmission paths,
    Fluctuation quality for acquiring a first fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among values representing the quality of the optical signal received by the receiving apparatus through the operation transmission line Value acquisition means,
    Failure occurrence detection means for detecting occurrence of a failure in the operation transmission path at a future time based on the first variation quality value, and outputting a failure occurrence warning signal;
    An optical communication system comprising data transmission means for changing the operation transmission path to another transmission path when the failure occurrence alarm signal is input.
  2.  請求項1に記載の光通信システムであって、
     前記変動品質値取得手段は、前記光信号の波長帯域内におけるポアンカレ球上にてストークスベクトルが描く軌跡の長さであるSOP[State of Polarization]ベクトル軌跡長、又は、偏光度の値に基づいて前記第1の変動品質値を取得する光通信システム。
    The optical communication system according to claim 1,
    The variation quality value acquiring means is based on the value of the SOP (State of Polarization) vector locus length or the degree of polarization, which is the length of the locus drawn by the Stokes vector on the Poincare sphere in the wavelength band of the optical signal. An optical communication system for acquiring the first variable quality value.
  3.  請求項1又は請求項2に記載の光通信システムであって、
     前記障害発生検知手段は、予め設定された判定期間内に、前記取得された第1の変動品質値が、予め設定された品質閾値よりも小さくなった時間の総和の、当該判定期間に対する割合が、予め設定された割合閾値以上となり、且つ、前記取得された第1の変動品質値の時間変化率が負の値である場合、前記運用伝送経路にて障害が発生することを検知する光通信システム。
    The optical communication system according to claim 1 or 2,
    The failure occurrence detection means is configured such that a ratio of a total time in which the acquired first variation quality value becomes smaller than a preset quality threshold within a determination period set in advance is relative to the determination period. An optical communication that detects occurrence of a fault in the operation transmission path when the ratio is equal to or greater than a preset percentage threshold and the time change rate of the acquired first variation quality value is a negative value. system.
  4.  請求項1又は請求項2に記載の光通信システムであって、
     前記障害発生検知手段は、前記取得された第1の変動品質値の時間変化率が負の値である状態が、予め設定された時間閾値以上に亘って継続した場合、前記第1の伝送経路にて障害が発生することを検知する光通信システム。
    The optical communication system according to claim 1 or 2,
    The failure occurrence detection means, when the state in which the time change rate of the acquired first variation quality value is a negative value continues over a time threshold set in advance, the first transmission path Optical communication system that detects that a failure occurs.
  5.  請求項3又は請求項4に記載の光通信システムであって、
     前記障害発生検知手段は、前記取得された第1の変動品質値を平滑化した値の時間変化率を、前記第1の変動品質値の時間変化率として取得する光通信システム。
    An optical communication system according to claim 3 or claim 4, wherein
    The optical communication system according to claim 1, wherein the failure occurrence detection unit acquires a time change rate of a value obtained by smoothing the acquired first change quality value as a time change rate of the first change quality value.
  6.  請求項1乃至請求項5のいずれか一項に記載の光通信システムであって、
     前記運用伝送経路にて障害が発生することが検知されるまでの間、他の伝送経路を経由させてデータを伝送するための電力の供給を停止するとともに、前記運用伝送経路にて障害が発生することが検知された時、当該電力の供給を開始する光通信システム。
    The optical communication system according to any one of claims 1 to 5, wherein
    Until the occurrence of a failure in the operation transmission path is detected, the supply of power for transmitting data via another transmission path is stopped, and a failure occurs in the operation transmission path. An optical communication system that starts supply of the power when it is detected.
  7.  請求項1乃至請求項5のいずれか一項に記載の光通信システムであって、
     前記変動品質値取得手段は、前記運用伝送経路以外の所定の伝送経路を経由した、前記受信装置により受信される前記光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である第2の変動品質値を取得し、
     前記障害発生検知手段は、前記取得された第2の変動品質値に基づいて、前記所定の伝送経路にて障害が発生することを検知し、
     前記データ伝送手段は、前記運用伝送経路にて障害が発生することが検知され、且つ、前記所定の伝送経路にて障害が発生することが検知されていない場合に、前記運用伝送経路を、前記所定の伝送経路へ変更する光通信システム。
    The optical communication system according to any one of claims 1 to 5, wherein
    The fluctuation quality value acquiring means is a time fluctuation due to polarization mode dispersion among values representing the quality of the optical signal received by the receiving apparatus via a predetermined transmission path other than the operation transmission path. Get the second variation quality value that is the component,
    The failure occurrence detection means detects occurrence of a failure in the predetermined transmission path based on the acquired second fluctuation quality value.
    The data transmission means detects the occurrence of a failure in the operation transmission path, and does not detect the occurrence of a failure in the predetermined transmission path. Optical communication system to change to a predetermined transmission path.
  8.  請求項7に記載の光通信システムであって、
     前記運用伝送経路にて障害が発生することが検知されるまでの間、前記所定の伝送経路を経由させてデータを伝送するための電力の前記送信装置への供給を停止し、
     前記変動品質値取得手段は、前記受信装置により受信され、且つ、前記所定の伝送経路に配置された光増幅器が出力する雑音光に基づいて、前記第2の変動品質値を取得する光通信システム。
    The optical communication system according to claim 7, wherein
    The supply of power for transmitting data via the predetermined transmission path is stopped until the occurrence of a failure in the operation transmission path is detected,
    The optical communication system according to claim 1, wherein the fluctuation quality value acquiring unit acquires the second fluctuation quality value based on noise light received by the receiving apparatus and output from an optical amplifier disposed in the predetermined transmission path. .
  9.  複数の伝送経路のいずれかである運用伝送経路を経由して送信装置から受信装置へ光信号を伝送する光通信システムに適用され、
     前記運用伝送線路を介して、前記受信装置により受信される前記光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である第1の変動品質値を取得し、
     前記第1の変動品質値に基づいて、将来の時点において、前記運用伝送経路にて障害が発生することを検知し、障害発生警告信号を出力し、
     前記障害発生警告信号が入力された場合に、前記運用伝送経路を、他の伝送経路へ、変更する、光通信方法。
    It is applied to an optical communication system for transmitting an optical signal from a transmitter to a receiver via an operation transmission path which is any of a plurality of transmission paths,
    Acquiring a first fluctuation quality value, which is a time fluctuation component caused by polarization mode dispersion, among values representing the quality of the optical signal received by the receiving apparatus through the operation transmission line;
    Based on the first variation quality value, it is detected that a failure occurs in the operation transmission path at a future time, and a failure occurrence warning signal is output,
    An optical communication method, wherein the operation transmission path is changed to another transmission path when the failure occurrence warning signal is input.
  10.  光信号が入力されるとともに、当該光信号の品質を表す値のうちの、偏波モード分散に起因する時間変動成分である変動品質値を取得する変動品質値取得手段と、
     前記取得された変動品質値に基づいて、将来の時点において、前記光信号が伝送される伝送経路にて障害が発生することを検知する障害発生検知手段と、
     を備える障害検知装置。
    Fluctuation quality value acquiring means for acquiring a fluctuation quality value which is a time fluctuation component caused by polarization mode dispersion among the values representing the quality of the optical signal while being inputted with an optical signal,
    Failure occurrence detection means for detecting occurrence of a failure in a transmission path through which the optical signal is transmitted at a future time based on the acquired fluctuation quality value;
    Fault detection device comprising:
PCT/JP2011/056691 2010-03-24 2011-03-15 Optical communication system WO2011118545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-067248 2010-03-24
JP2010067248A JP2013141048A (en) 2010-03-24 2010-03-24 Optical communication system, optical communication method, fault detection device, fault detection method, and program

Publications (1)

Publication Number Publication Date
WO2011118545A1 true WO2011118545A1 (en) 2011-09-29

Family

ID=44673098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056691 WO2011118545A1 (en) 2010-03-24 2011-03-15 Optical communication system

Country Status (2)

Country Link
JP (1) JP2013141048A (en)
WO (1) WO2011118545A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116582176A (en) * 2023-07-13 2023-08-11 天津瑞利通科技有限公司 Optical fiber automatic wiring method, optical fiber automatic wiring device, electronic equipment and readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6922375B2 (en) 2017-04-20 2021-08-18 住友電気工業株式会社 In-vehicle communication system, in-vehicle device, communication control method and communication control program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188035A (en) * 1988-01-21 1989-07-27 Nec Corp Line changeover device
JPH11168410A (en) * 1997-12-03 1999-06-22 Kdd Transmission line switching controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188035A (en) * 1988-01-21 1989-07-27 Nec Corp Line changeover device
JPH11168410A (en) * 1997-12-03 1999-06-22 Kdd Transmission line switching controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116582176A (en) * 2023-07-13 2023-08-11 天津瑞利通科技有限公司 Optical fiber automatic wiring method, optical fiber automatic wiring device, electronic equipment and readable storage medium
CN116582176B (en) * 2023-07-13 2023-09-26 天津瑞利通科技有限公司 Optical fiber automatic wiring method, optical fiber automatic wiring device, electronic equipment and readable storage medium

Also Published As

Publication number Publication date
JP2013141048A (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5648416B2 (en) Method and system for protection switching
US7899331B2 (en) WDM optical transmission system and optical amplifying apparatus
US9690049B2 (en) Optical line protection with digital dispersion compensation module
US8619246B2 (en) Optical node apparatus, method for checking connection in node apparatus and program thereof
US8638673B2 (en) Communication path monitoring method and transmission apparatus
US20120230681A1 (en) Optical transmission apparatus and optical attenuation amount control method
US20120248287A1 (en) Optical amplification apparatus, method for controlling same, optical receiver station, and optical transmission system
JP2008005340A (en) Communication apparatus, line diagnostic method, program, and recording medium
US20180006717A1 (en) Network controller, optical transmission system, and method for determining failure
JP4351189B2 (en) Optical transmission line monitoring method, optical transmission line monitoring program, and optical transmission line monitoring apparatus
JP5093111B2 (en) Optical transmission system and optical transmission control method
WO2011118545A1 (en) Optical communication system
JP2007150471A (en) Optical transmission apparatus and system, and its control method and program
US8989574B2 (en) Method and device for monitoring WDM signal light
US8559815B2 (en) Optical transmission apparatus and fault detection method
US20070230953A1 (en) Optical communication device
JP2012124686A (en) Wavelength multiplex transmission device and wavelength multiplex transmission system
US7269349B2 (en) Method of and device for performing bi-directional transmission using a single-wire
JP4545756B2 (en) Optical wavelength add / drop device and failure recovery method
JP5863184B2 (en) Optical transmission system
EP3761526B1 (en) Optical performance monitoring apparatus and method
JP2012015736A (en) Failure detection device, optical transmission device, and failure detection method
JP2011124923A (en) Device and method for detecting signal light
JP3541881B2 (en) Wavelength multiplexing optical transmission device and wavelength multiplexing optical transmission method
JP6406818B2 (en) Optical transmission system and optical transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP