WO2011118402A1 - Ion generation device - Google Patents

Ion generation device Download PDF

Info

Publication number
WO2011118402A1
WO2011118402A1 PCT/JP2011/055622 JP2011055622W WO2011118402A1 WO 2011118402 A1 WO2011118402 A1 WO 2011118402A1 JP 2011055622 W JP2011055622 W JP 2011055622W WO 2011118402 A1 WO2011118402 A1 WO 2011118402A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
ion generator
ultraviolet
water
ozone
Prior art date
Application number
PCT/JP2011/055622
Other languages
French (fr)
Japanese (ja)
Inventor
昌治 町
純平 大江
幸康 浅野
洋 須田
泰浩 小村
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2011118402A1 publication Critical patent/WO2011118402A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/20Method-related aspects
    • A61L2209/21Use of chemical compounds for treating air or the like
    • A61L2209/212Use of ozone, e.g. generated by UV radiation or electrical discharge

Definitions

  • the present invention relates to an ion generator that generates ions.
  • an air ion generator that releases positive, negative, or positive / negative ions by applying a high voltage to a discharge electrode is known.
  • an electrostatic atomizer that generates charged fine particle water by supplying water to a discharge electrode and applying a high voltage to the water.
  • the air ion generator and the electrostatic atomizer are collectively referred to as an ion generator.
  • hydroxy radicals OH.
  • functional components such as hydroxy radicals have deodorization, sterilization, inactivation of allergen substances, and the like.
  • ozone is generated when oxygen radicals generated by discharging with an ion generator combine with oxygen molecules in the air. This ozone, when absorbed by a person at a predetermined concentration, affects the respiratory system.
  • an ozone decomposition catalyst is disposed in the direction opposite to the discharge electrode across the counter electrode, Applying airflow to ozone that has diffused through the opening of the counter electrode and securing it in the ozone securing part, and irradiating the ozone securing part with ultraviolet rays eliminates ozone and suppresses the influence on the respiratory system I am doing so.
  • the ion generator is also increasing the concentration of functional components generated during the generation of ions and charged fine particle water, such as hydroxy radicals.
  • the ozone generated in the discharge region passes through the opening of the counter electrode and is diffused outside the discharge region. Since it is ensured by flowing, there is a possibility that some of the diffused ozone is not secured in the securing part and is released into the target space.
  • the amount of ions generated is increased, the amount of hydroxy radicals generated is increased, but the amount of ozone generated is also increased, and the amount of ozone released into the space to be released without being secured in the securing portion is also increased.
  • the present invention has been invented in view of the problems of the above-described conventional example, and provides an ion generator capable of increasing the concentration of a functional component by changing ozone to a functional component such as a hydroxyl radical at a generation portion. It is an issue.
  • the present invention relates to an ion generator comprising a discharge electrode having a discharge portion and a voltage application portion for applying a high voltage to the discharge electrode, and ultraviolet rays are applied to a discharge region where discharge is generated when the high voltage is applied.
  • An ultraviolet irradiation unit for irradiation is provided.
  • the ultraviolet irradiation unit irradiates the discharge unit with ultraviolet rays.
  • water supply means for supplying water to the discharge electrode may be provided, and the voltage application unit may generate charged fine particle water by electrostatic atomization by applying a high voltage to the water supplied to the discharge electrode. preferable.
  • the wavelength of the irradiated ultraviolet light is preferably 310 nm or less.
  • the wavelength of the irradiated ultraviolet light is more preferably 254 nm or less.
  • the ultraviolet irradiation section is an ArF excimer laser.
  • the ultraviolet irradiation unit irradiates both ultraviolet rays having a wavelength of 254 nm and ultraviolet rays having a wavelength of 185 nm as the ultraviolet rays to be irradiated.
  • an ultraviolet preventing means is disposed around the discharge region so as to form an emission opening for emitting the generated ions.
  • an ultraviolet irradiation unit that irradiates ultraviolet rays is provided in a discharge region that is generated when a high voltage is applied, ozone is generated at the same time as ions are generated. Can be generated as hydroxy radicals.
  • a hydroxy radical is produced
  • an electrostatic atomizer 4a that generates charged fine particle water by supplying water to the discharge electrode 2 and applying a high voltage to the water, positive and negative, or positive and negative
  • an air ion generation device 4b that emits any one of the ions.
  • FIGS. 3 and 4 show an example of an air ion generator 4b as the ion generator 4.
  • the electrostatic atomizer 4a electrostatically applies a high voltage to the discharge electrode 2, water supply means 7 for supplying water to the discharge part 1 at the tip of the discharge electrode 2, and water supplied to the discharge electrode 2.
  • a voltage application unit 3 for generating charged fine particle water by atomization is provided.
  • the water supply means 7 for supplying water to the discharge unit 1 supplies the water stored in the water reservoir using capillary action, supplies water by pressurization, or flows down or drops using gravity.
  • water is supplied to the discharge unit 1 by generating water by cooling the moisture in the air by cooling means such as the Peltier unit 7a.
  • FIGS. 1 and 2 an example using a cooling means such as the Peltier unit 7a is shown.
  • FIG. 1 it is the water supply means 7 in the half of one side which divided the inside of the main body case 8 made into the substantially cylindrical shape which has insulation, with the partition in the main body case 8.
  • the Peltier unit 7 a is housed, and the other half of the body case 8 is an electrostatic atomizing chamber 9.
  • thermoelectric elements are sandwiched between the two Peltier circuit boards, and adjacent thermoelectric elements are connected by circuits on both sides. Electrically connected.
  • thermoelectric element When the thermoelectric element is energized through the Peltier input lead wire, the heat is transferred from one Peltier circuit board side to the other Peltier circuit board side.
  • the cooling unit 10 is connected to the outside of the Peltier circuit board on one side. Moreover, the heat radiating part 11 is connected to the outside of the Peltier circuit board on the other side, and in the embodiment, an example of a heat radiating fin is shown as the heat radiating part 11.
  • the rear end portion of the discharge electrode 2 is connected to the cooling unit 10 side of the Peltier unit 7a, and the discharge electrode 2 is inserted into a partition provided in the main body case 8 and protrudes into the electrostatic atomization chamber 9.
  • An annular counter electrode 12 is provided at the front end opening of the cylindrical body case 8.
  • the counter electrode 12 is not an essential requirement, and may be on the far side.
  • a charge removal plate may be opposed.
  • the main body case 8 is provided with an ultraviolet irradiation unit 6 for irradiating the discharge region 5 which discharges when a high voltage is applied to the discharge unit 1 at the tip of the discharge electrode 2.
  • the ultraviolet irradiation unit 6 for example, a mercury lamp, an ultraviolet irradiation LED, an ArF excimer laser, or the like can be used.
  • the main body case 8 is covered with ultraviolet ray preventing means 14 for preventing ultraviolet rays from coming out.
  • the ultraviolet ray preventing means 14 is constituted by an ultraviolet ray cut sheet, and is arranged around the discharge region so as to form a discharge opening for discharging generated ions.
  • the ion generating device 4 is provided with a discharge opening 15 for discharging the charged fine particle water into the discharge space facing the central hole of the counter electrode 12.
  • the ultraviolet prevention means 14 is arranged around the discharge region so as to form only the emission opening, and the heat radiating portion 11 is disposed on the heat radiation side of the Peltier unit 7 a via a part of the ultraviolet prevention means 14. Is arranged. As shown in the example of FIG. 1, if the heat radiating unit 11 functions as the ultraviolet ray preventing unit 14, the ultraviolet ray preventing unit 14 does not need to have a portion provided between the heat radiating side of the Peltier unit 7 a and the heat radiating unit 11. .
  • the Peltier unit 7a is energized to cool the cooling unit 10, and the cooling unit 10 is cooled to cool the discharge electrode 2, thereby condensing moisture in the air and discharging electrode.
  • Water condensation water
  • the discharge part 1 is supplied to the discharge part 1 at the front end of 2.
  • a conical swell tailor cone
  • the tailor cone is formed, electric charges are concentrated on the tip of the tailor cone and the electric field strength in this portion is increased, and the tailor cone is further grown.
  • the water at the tip of the tailor cone has a large energy (repulsive force of the charge that has become dense). receive.
  • the water at the tip of the tailor cone receives a large amount of energy, a large amount of charged nanometer-sized charged fine particle water that is negatively charged by repeating splitting and scattering (Rayleigh splitting) exceeding the surface tension is generated.
  • the nanometer-sized charged fine particle water generated by electrostatic atomization of the water supplied to the discharge unit 1 contains radicals such as hydroxy radicals. Further, as already described, ozone is generated simultaneously with the generation of nanometer-sized charged fine particle water during discharge.
  • the discharge region 5 is irradiated with ultraviolet rays by the ultraviolet irradiation unit 6.
  • irradiating the discharge region 5 with ultraviolet rays it is preferable to irradiate the discharge portion 1 at the tip of the discharge electrode 2 with ultraviolet rays.
  • the energization of the Peltier unit 7a, the application of a high voltage to the discharge electrode 2, and the irradiation of ultraviolet rays by the ultraviolet irradiation unit 6 are controlled by the control unit.
  • the decomposition of ozone by irradiation with ultraviolet rays can be expressed by the following chemical formula 1.
  • (Chemical formula 1) O 3 + h ⁇ ( ⁇ ⁇ 310 nm) ⁇ [O] + O 2 [O] + H 2 O ⁇ 2HO ⁇
  • the wavelength of the irradiated ultraviolet light is smaller than or equal to 310 nm, ozone is generated at the same time when the charged fine particle water is generated, but the discharge region 5 in the electrostatic atomizing chamber 9 is irradiated with the ultraviolet light. Therefore, before the generated ozone diffuses out of the discharge region 5, it can be concentrated and decomposed simultaneously with the generation in the ozone generation region. Therefore, the decomposition effect of ozone is improved, it is possible to suppress the release of ozone into the space to be released, reduce the ozone odor, and suppress the adverse effects of ozone on the human body.
  • ozone is decomposed by ultraviolet rays as shown in the above chemical formula 1 to generate hydroxy radicals.
  • hydroxy radicals generated by decomposing ozone are added to increase the amount of the active ingredient produced. Therefore, effects such as deodorization, sterilization, and inactivation of allergen substances in the release target space are further improved.
  • the ultraviolet ray to be irradiated is an ultraviolet ray having a wavelength of 254 nm or less.
  • the wavelength of ultraviolet rays to be irradiated is 310 nm or less, or desirably 254 nm or less.
  • the wavelength of ultraviolet rays is of course 10 nm or more.
  • the discharge region 5 may be irradiated with both ultraviolet light having a wavelength of 254 nm and ultraviolet light having a wavelength of 185 nm.
  • UV light with a wavelength of 185 nm generates ozone when it acts on air (oxygen). For this reason, as described above, not only ozone generated by discharge but also ozone generated by irradiating ultraviolet rays having a wavelength of 185 nm to air (oxygen) is added, and the amount of ozone generated as a whole increases.
  • ozone radicals by decomposing ozone having an increased generation amount by irradiation with ultraviolet rays having a wavelength of 254 nm as described above, a larger amount of hydroxy radicals can be generated.
  • the discharge region 5 it is preferable to simultaneously irradiate the discharge region 5 with both ultraviolet light having a wavelength of 254 nm and ultraviolet light having a wavelength of 185 nm, but alternately irradiating ultraviolet light having a wavelength of 185 nm and ultraviolet light having a wavelength of 254 nm alternately in a short time. You may make it do.
  • water molecules are required to decompose ozone by ultraviolet irradiation to generate hydroxy radicals.
  • the electrostatic atomizer 4a when the discharge region 5 is irradiated with ultraviolet rays, charged fine particle water is generated in the discharge region 5, so that the amount of moisture contained in the air in the discharge region is large, and the generation source Since the Taylor cone formed in a certain discharge part 1 is water, ultraviolet rays are applied to ozone in the presence of water, and the effect of generating hydroxy radicals is improved.
  • the portion of the discharge portion 1 where the Taylor cone is formed is directly irradiated with ultraviolet rays, so that water exists. Hydroxyl radicals can be generated reliably by irradiating ozone generated in the environment with ultraviolet rays.
  • the wavelength of the ArF excimer laser is preferably 193 nm.
  • a water vapor supply means 13 for supplying water vapor to the discharge region 5 is provided.
  • a conventionally known water vapor generation technique such as heating water with a heater to generate water vapor can be employed.
  • the ion generator 4 is described as an example of the electrostatic atomizer 4a.
  • FIGS. 3 and 4 show an example of the ion generator 4 being an air ion generator 4b.
  • water molecules necessary for decomposing ozone by ultraviolet irradiation to generate hydroxy radicals are obtained from the air, but as shown in FIG.
  • oxygen atoms decomposed from ozone by ultraviolet rays can combine with water molecules in water vapor to generate a large amount of hydroxyl radicals in an environment where a large amount of water molecules exist.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

Disclosed is an ion generation device (4) comprising a discharge electrode (2) with a discharge part (1), and a voltage application part (3) which applies high voltage to the discharge electrode (2). In this device, the discharge area (5) which emits discharge in accordance with the application of high voltage is equipped with an ultraviolet ray irradiation part (6) which irradiates same with ultraviolet rays. Thus, ozone is changed in the generation part into a functional ingredient such as a hydroxy radical, and the concentration of functional ingredient can be increased.

Description

イオン発生装置Ion generator
 本発明は、イオンを発生するイオン発生装置に関する。 The present invention relates to an ion generator that generates ions.
 従来から、放電電極に高電圧を印加することで、正及び負、又は正負のいずれか一方のイオンを放出する空気イオン発生装置が知られている。また、放電電極に水を供給し、当該水に高電圧を印加することで、帯電微粒子水を生成する静電霧化装置も知られている。以下、空気イオン発生装置、静電霧化装置をまとめてイオン発生装置と称する。 2. Description of the Related Art Conventionally, an air ion generator that releases positive, negative, or positive / negative ions by applying a high voltage to a discharge electrode is known. There is also known an electrostatic atomizer that generates charged fine particle water by supplying water to a discharge electrode and applying a high voltage to the water. Hereinafter, the air ion generator and the electrostatic atomizer are collectively referred to as an ion generator.
 これらのイオン発生装置では、空気中で高電圧を印加しており、放電に伴って酸素分子から酸素ラジカルが発生し、水と反応することからヒドロキシラジカル(OH・)等の機能成分が生成される。このヒドロキシラジカル等の機能成分は、脱臭、除菌、アレルゲン物質の不活性化等があることが知られている。 In these ion generators, a high voltage is applied in the air, oxygen radicals are generated from oxygen molecules with the discharge, and react with water to generate functional components such as hydroxy radicals (OH.). The It is known that functional components such as hydroxy radicals have deodorization, sterilization, inactivation of allergen substances, and the like.
 ところで、イオン発生装置で放電して発生した酸素ラジカルが空気中の酸素分子と結合するとオゾンが発生する。このオゾンは、所定濃度で人が吸収すると、呼吸器系に影響を与える。 By the way, ozone is generated when oxygen radicals generated by discharging with an ion generator combine with oxygen molecules in the air. This ozone, when absorbed by a person at a predetermined concentration, affects the respiratory system.
 そこで、例えば、日本国特許出願公開番号2008-183480(以下「文献」1という)に示される従来例にあっては、対向電極を挟んで放電電極と反対側方向にオゾン分解触媒を配置し、対向電極の開口を通過して拡散しているオゾンに気流を当ててオゾン確保部で確保し、オゾン確保部に紫外線を照射することで、オゾンを消滅させ、呼吸器系への影響を抑制するようにしている。 Therefore, for example, in the conventional example shown in Japanese Patent Application Publication No. 2008-183480 (hereinafter referred to as “Document 1”), an ozone decomposition catalyst is disposed in the direction opposite to the discharge electrode across the counter electrode, Applying airflow to ozone that has diffused through the opening of the counter electrode and securing it in the ozone securing part, and irradiating the ozone securing part with ultraviolet rays eliminates ozone and suppresses the influence on the respiratory system I am doing so.
 ところで、最近では、インフルエンザ等への社会的関心から、空気清浄への期待が高まっている。それに伴い、上記イオン発生装置もイオンや帯電微粒子水の生成時に発生する機能成分、例えば、ヒドロキシラジカルの高濃度化が図られている。 By the way, recently, expectations for air purification have increased due to social concerns about influenza. Accordingly, the ion generator is also increasing the concentration of functional components generated during the generation of ions and charged fine particle water, such as hydroxy radicals.
 しかしながら、上記文献1に示された従来例は、放電領域で発生したオゾンが、対向電極の開口を通過して放電領域外に拡散している状態で、気流を当て、オゾンのみを確保部に流して確保するようにしているので、拡散したオゾンのうち確保部に確保されず、放出対象空間に放出されてしまうものが存在するおそれがある。 However, in the conventional example shown in Document 1, the ozone generated in the discharge region passes through the opening of the counter electrode and is diffused outside the discharge region. Since it is ensured by flowing, there is a possibility that some of the diffused ozone is not secured in the securing part and is released into the target space.
 また、イオンの発生量を多くするとヒドロキシラジカルの発生量が多くなるが、オゾンの発生量も増し、確保部に確保されずに放出対象空間に放出されるオゾンの量も増えることになる。 Also, when the amount of ions generated is increased, the amount of hydroxy radicals generated is increased, but the amount of ozone generated is also increased, and the amount of ozone released into the space to be released without being secured in the securing portion is also increased.
 このように、文献1においては、オゾンの抑制ができるものの、確保部に紫外線を当ててオゾンを消滅させているため、ヒドロキシラジカルの高濃度化という観点では、必ずしも最適ではないと考えられる。 Thus, in Reference 1, although ozone can be suppressed, ozone is extinguished by applying ultraviolet rays to the securing portion, so it is not necessarily optimal from the viewpoint of increasing the concentration of hydroxy radicals.
 本発明は上記の従来例の問題点に鑑みて発明したものであって、オゾンを発生部分でヒドロキシラジカルなどの機能成分に変え、機能成分の高濃度化が図れるイオン発生装置を提供することを課題としている。 The present invention has been invented in view of the problems of the above-described conventional example, and provides an ion generator capable of increasing the concentration of a functional component by changing ozone to a functional component such as a hydroxyl radical at a generation portion. It is an issue.
 本発明は、放電部を有する放電電極と、この放電電極に高電圧を印加する電圧印加部とを備えたイオン発生装置において、前記高電圧の印加に伴って放電が発生する放電領域に紫外線を照射する紫外線照射部を設けることを特徴とする。 The present invention relates to an ion generator comprising a discharge electrode having a discharge portion and a voltage application portion for applying a high voltage to the discharge electrode, and ultraviolet rays are applied to a discharge region where discharge is generated when the high voltage is applied. An ultraviolet irradiation unit for irradiation is provided.
 前記紫外線照射部が前記放電部に紫外線を照射することが好ましい。 It is preferable that the ultraviolet irradiation unit irradiates the discharge unit with ultraviolet rays.
 また、前記放電電極に水を供給する水供給手段を備え、前記電圧印加部は、前記放電電極に供給された水に高電圧を印加して静電霧化により帯電微粒子水を生成することが好ましい。 In addition, water supply means for supplying water to the discharge electrode may be provided, and the voltage application unit may generate charged fine particle water by electrostatic atomization by applying a high voltage to the water supplied to the discharge electrode. preferable.
 また、前記放電領域に水蒸気を供給する水蒸気供給手段を備えることも好ましい。 It is also preferable to provide a water vapor supply means for supplying water vapor to the discharge area.
 また、前記照射される紫外線の波長は310nm以下であることが好ましい。 The wavelength of the irradiated ultraviolet light is preferably 310 nm or less.
 ここで、前記照射される紫外線の波長は254nm以下であることがより好ましい。 Here, the wavelength of the irradiated ultraviolet light is more preferably 254 nm or less.
 また、前記紫外線照射部がArFエキシマーレーザであることが好ましい。 Further, it is preferable that the ultraviolet irradiation section is an ArF excimer laser.
 また、前記紫外線照射部は、前記照射される紫外線として、254nmの波長の紫外線と、185nmの波長の紫外線の両方を照射することが好ましい。 Further, it is preferable that the ultraviolet irradiation unit irradiates both ultraviolet rays having a wavelength of 254 nm and ultraviolet rays having a wavelength of 185 nm as the ultraviolet rays to be irradiated.
 また、前記放電領域の周囲に、発生したイオンを放出する放出用開口を形成するように紫外線防止手段を配置することが好ましい。 Further, it is preferable that an ultraviolet preventing means is disposed around the discharge region so as to form an emission opening for emitting the generated ions.
 本発明は、高電圧の印加に伴って発生する放電領域に紫外線を照射する紫外線照射部を設けるので、イオンの発生の際に同時にオゾンが発生するが、このオゾンを発生部分で紫外線により分解してヒドロキシラジカルとして生成できる。これにより、イオン発生の際に生成するヒドロキシラジカル等の機能成分に加え、オゾンの分解によりヒドロキシラジカルが生成し、機能成分の濃度を高くできる。 In the present invention, since an ultraviolet irradiation unit that irradiates ultraviolet rays is provided in a discharge region that is generated when a high voltage is applied, ozone is generated at the same time as ions are generated. Can be generated as hydroxy radicals. Thereby, in addition to functional components, such as a hydroxyl radical produced | generated at the time of ion generation, a hydroxy radical is produced | generated by decomposition | disassembly of ozone, and the density | concentration of a functional component can be made high.
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
本発明の一実施形態の概略構成図である。 同上の他の実施形態の概略構成図である。 同上の更に他の実施形態の概略構成図である。 同上の更に他の実施形態の概略構成図である。
Preferred embodiments of the invention are described in further detail. Other features and advantages of the present invention will be better understood with reference to the following detailed description and accompanying drawings.
It is a schematic block diagram of one Embodiment of this invention. It is a schematic block diagram of other embodiment same as the above. It is a schematic block diagram of other embodiment same as the above. It is a schematic block diagram of other embodiment same as the above.
 本発明のイオン発生装置4としては、放電電極2に水を供給し、当該水に高電圧を印加することで、帯電微粒子水を生成する静電霧化装置4aと、正及び負、又は正負のいずれか一方のイオンを放出する空気イオン発生装置4bがある。 As the ion generator 4 of the present invention, an electrostatic atomizer 4a that generates charged fine particle water by supplying water to the discharge electrode 2 and applying a high voltage to the water, positive and negative, or positive and negative There is an air ion generation device 4b that emits any one of the ions.
 図1、図2には、イオン発生装置4として静電霧化装置4aの例を示し、図3、図4にはイオン発生装置4として空気イオン発生装置4bの例を示している。 1 and 2 show an example of an electrostatic atomizer 4a as the ion generator 4, and FIGS. 3 and 4 show an example of an air ion generator 4b as the ion generator 4.
 まず、図1、図2に基づいて静電霧化装置4aを例として説明する。 First, the electrostatic atomizer 4a will be described as an example with reference to FIGS.
 静電霧化装置4aは、放電電極2と、放電電極2の先端の放電部1に水を供給する水供給手段7と、放電電極2に供給された水に高電圧を印加して静電霧化により帯電微粒子水を生成するための電圧印加部3を備えている。 The electrostatic atomizer 4a electrostatically applies a high voltage to the discharge electrode 2, water supply means 7 for supplying water to the discharge part 1 at the tip of the discharge electrode 2, and water supplied to the discharge electrode 2. A voltage application unit 3 for generating charged fine particle water by atomization is provided.
 放電部1に水を供給する水供給手段7は、水溜め部に溜めた水を毛細管現象を利用して供給したり、加圧により水を供給したり、重力を利用して流下又は滴下することで水を供給したり、あるいは、ペルチェユニット7aのような冷却手段により空気中の水分を冷却して結露水を生成することで放電部1に水を供給する。 The water supply means 7 for supplying water to the discharge unit 1 supplies the water stored in the water reservoir using capillary action, supplies water by pressurization, or flows down or drops using gravity. Thus, water is supplied to the discharge unit 1 by generating water by cooling the moisture in the air by cooling means such as the Peltier unit 7a.
 図1、図2に示す実施形態では、ペルチェユニット7aのような冷却手段を用いた例を示している。 In the embodiment shown in FIGS. 1 and 2, an example using a cooling means such as the Peltier unit 7a is shown.
 また、図1、図2に示す実施形態では、絶縁性を有する略筒状をした本体ケース8の内部を仕切りで仕切り、本体ケース8内の仕切りで仕切った片側半分に水供給手段7であるペルチェユニット7aを内装し、本体ケース8内の他の片側半分が静電霧化室9となっている。 Moreover, in embodiment shown in FIG. 1, FIG. 2, it is the water supply means 7 in the half of one side which divided the inside of the main body case 8 made into the substantially cylindrical shape which has insulation, with the partition in the main body case 8. The Peltier unit 7 a is housed, and the other half of the body case 8 is an electrostatic atomizing chamber 9.
 ペルチェユニット7aは、一対のペルチェ回路板を、互いの回路が向き合うように対向させ、多数列設してある熱電素子を両ペルチェ回路板間で挟持すると共に隣接する熱電素子同士を両側の回路で電気的に接続している。そして、ペルチェ入力リード線を介して熱電素子に通電すると、一方のペルチェ回路板側から他方のペルチェ回路板側に向けて熱が移動するように構成している。 In the Peltier unit 7a, a pair of Peltier circuit boards are opposed to each other so that their circuits face each other, and many rows of thermoelectric elements are sandwiched between the two Peltier circuit boards, and adjacent thermoelectric elements are connected by circuits on both sides. Electrically connected. When the thermoelectric element is energized through the Peltier input lead wire, the heat is transferred from one Peltier circuit board side to the other Peltier circuit board side.
 一方の側のペルチェ回路板の外側には冷却部10を接続している。また、他方の側のペルチェ回路板の外側には放熱部11を接続しており、実施形態では放熱部11として放熱フィンの例を示している。 The cooling unit 10 is connected to the outside of the Peltier circuit board on one side. Moreover, the heat radiating part 11 is connected to the outside of the Peltier circuit board on the other side, and in the embodiment, an example of a heat radiating fin is shown as the heat radiating part 11.
 ペルチェユニット7aの冷却部10側に放電電極2の後端部を接続し、放電電極2を本体ケース8内の仕切りに設けた孔を嵌通して静電霧化室9内に突出している。 The rear end portion of the discharge electrode 2 is connected to the cooling unit 10 side of the Peltier unit 7a, and the discharge electrode 2 is inserted into a partition provided in the main body case 8 and protrudes into the electrostatic atomization chamber 9.
 筒状をした本体ケース8の先端開口部に環状をした対向電極12を設けている。 An annular counter electrode 12 is provided at the front end opening of the cylindrical body case 8.
 なお、対向電極12は必須の要件ではなく、遠方上としてもよく、また、静電霧化装置4aが格納されるハウジングの他、帯電除去板を対向としてもよい。 Note that the counter electrode 12 is not an essential requirement, and may be on the far side. In addition to the housing in which the electrostatic atomizer 4a is stored, a charge removal plate may be opposed.
 本体ケース8には放電電極2の先端部の放電部1に高電圧を印加した際に放電を行う放電領域5に紫外線を照射するための紫外線照射部6を設けている。 The main body case 8 is provided with an ultraviolet irradiation unit 6 for irradiating the discharge region 5 which discharges when a high voltage is applied to the discharge unit 1 at the tip of the discharge electrode 2.
 紫外線照射部6としては、例えば、水銀ランプ、紫外線照射LED、ArFエキシマーレーザ等を用いることができる。 As the ultraviolet irradiation unit 6, for example, a mercury lamp, an ultraviolet irradiation LED, an ArF excimer laser, or the like can be used.
 本体ケース8は紫外線が外部に出るのを防止するための紫外線防止手段14で覆っている。この紫外線防止手段14は紫外線カットシートで構成しており、発生したイオンを放出する放出用開口を形成するように、放電領域の周囲に配置される。これにより、対向電極12の中央孔に対向した、帯電微粒子水を放出用空間に放出するための放出用開口15がイオン発生装置4に設けられる。図1の例では、紫外線防止手段14は、放出用開口のみを形成するように放電領域の周囲に配置され、放熱部11が、紫外線防止手段14の一部を介してペルチェユニット7aの放熱側に配置されている。この図1の例に示すように放熱部11が紫外線防止手段14として機能すれば、紫外線防止手段14は、ペルチェユニット7aの放熱側と放熱部11との間に設けられる部分を持つ必要はない。 The main body case 8 is covered with ultraviolet ray preventing means 14 for preventing ultraviolet rays from coming out. The ultraviolet ray preventing means 14 is constituted by an ultraviolet ray cut sheet, and is arranged around the discharge region so as to form a discharge opening for discharging generated ions. As a result, the ion generating device 4 is provided with a discharge opening 15 for discharging the charged fine particle water into the discharge space facing the central hole of the counter electrode 12. In the example of FIG. 1, the ultraviolet prevention means 14 is arranged around the discharge region so as to form only the emission opening, and the heat radiating portion 11 is disposed on the heat radiation side of the Peltier unit 7 a via a part of the ultraviolet prevention means 14. Is arranged. As shown in the example of FIG. 1, if the heat radiating unit 11 functions as the ultraviolet ray preventing unit 14, the ultraviolet ray preventing unit 14 does not need to have a portion provided between the heat radiating side of the Peltier unit 7 a and the heat radiating unit 11. .
 静電霧化装置4aを運転すると、ペルチェユニット7aに通電されて冷却部10が冷却され、冷却部10が冷却されることで放電電極2が冷却され、空気中の水分を結露して放電電極2の先端部の放電部1に水(結露水)を供給する。このように放電部1に水が供給された状態で上記放電部1に供給された水に高電圧を印加することで、該高電圧により放電部1に供給された水の水面が局所的に錐状に盛り上がり(テーラーコーン)が形成される。テーラーコーンが形成されると、該テーラーコーンの先端に電荷が集中してこの部分における電界強度が大きくなって、更にテーラーコーンを成長させる。このようにテーラーコーンが成長し該テーラーコーンの先端に電荷が集中して電荷の密度が高密度となると、テーラーコーンの先端部分の水が大きなエネルギー(高密度となった電荷の反発力)を受ける。このように、テーラーコーンの先端部分の水が大きなエネルギーを受けると、表面張力を超えて分裂・飛散(レイリー分裂)を繰り返してマイナスに帯電したナノメータサイズの帯電微粒子水が大量に生成する。 When the electrostatic atomizer 4a is operated, the Peltier unit 7a is energized to cool the cooling unit 10, and the cooling unit 10 is cooled to cool the discharge electrode 2, thereby condensing moisture in the air and discharging electrode. Water (condensation water) is supplied to the discharge part 1 at the front end of 2. By applying a high voltage to the water supplied to the discharge unit 1 in a state where water is supplied to the discharge unit 1 in this way, the water level of the water supplied to the discharge unit 1 by the high voltage is locally increased. A conical swell (tailor cone) is formed. When the tailor cone is formed, electric charges are concentrated on the tip of the tailor cone and the electric field strength in this portion is increased, and the tailor cone is further grown. When the tailor cone grows like this and the charge concentrates on the tip of the tailor cone and the density of the charge becomes high, the water at the tip of the tailor cone has a large energy (repulsive force of the charge that has become dense). receive. In this way, when the water at the tip of the tailor cone receives a large amount of energy, a large amount of charged nanometer-sized charged fine particle water that is negatively charged by repeating splitting and scattering (Rayleigh splitting) exceeding the surface tension is generated.
 このように、放電部1に供給された水を静電霧化することで生成されるナノメータサイズの帯電微粒子水にはヒドロキシラジカルのようなラジカルが含まれる。また、既に述べたように、放電の際に、ナノメータサイズの帯電微粒子水の生成と同時にオゾンが発生する。 Thus, the nanometer-sized charged fine particle water generated by electrostatic atomization of the water supplied to the discharge unit 1 contains radicals such as hydroxy radicals. Further, as already described, ozone is generated simultaneously with the generation of nanometer-sized charged fine particle water during discharge.
 上記放電部1の先端に供給された水がレイリー分裂で静電霧化して帯電微粒子水と共にオゾンを発生する際、放電領域5に紫外線照射部6により紫外線を照射する。 When the water supplied to the tip of the discharge unit 1 is electrostatically atomized by Rayleigh splitting to generate ozone together with the charged fine particle water, the discharge region 5 is irradiated with ultraviolet rays by the ultraviolet irradiation unit 6.
 放電領域5への紫外線照射に当たって、放電電極2の先端部の放電部1に紫外線照射を照射するのが好ましい。 In irradiating the discharge region 5 with ultraviolet rays, it is preferable to irradiate the discharge portion 1 at the tip of the discharge electrode 2 with ultraviolet rays.
 上記ペルチェユニット7aへの通電、放電電極2への高電圧の印加、紫外線照射部6による紫外線の照射は、制御部により制御する。 The energization of the Peltier unit 7a, the application of a high voltage to the discharge electrode 2, and the irradiation of ultraviolet rays by the ultraviolet irradiation unit 6 are controlled by the control unit.
 放電領域5に紫外線を照射すると、静電霧化により帯電微粒子水と共に発生したオゾンが分解してヒドロキシラジカルを発生する。 When the discharge region 5 is irradiated with ultraviolet rays, ozone generated together with the charged fine particle water by electrostatic atomization is decomposed to generate hydroxy radicals.
 この紫外線の照射によるオゾンの分解は下記の化1により表せる。
(化1)
   O3+hμ(λ<310nm)→[O]+O2
   [O]+H2O→2HO・
 このように、照射する紫外線の波長が310nmより小さいか、或いは等しければ、帯電微粒子水の発生の際に、同時にオゾンが発生するが、静電霧化室9内の放電領域5に紫外線を照射するので、発生したオゾンが放電領域5を出て拡散する前に、オゾンの発生領域において発生と同時に集中して分解できる。したがって、オゾンの分解効果が向上し、オゾンが放出対象空間に放出されるのを抑制し、オゾン臭の低減、オゾンによる人体への悪影響を抑制することが可能となる。
The decomposition of ozone by irradiation with ultraviolet rays can be expressed by the following chemical formula 1.
(Chemical formula 1)
O 3 + hμ (λ <310 nm) → [O] + O 2
[O] + H 2 O → 2HO ·
In this way, if the wavelength of the irradiated ultraviolet light is smaller than or equal to 310 nm, ozone is generated at the same time when the charged fine particle water is generated, but the discharge region 5 in the electrostatic atomizing chamber 9 is irradiated with the ultraviolet light. Therefore, before the generated ozone diffuses out of the discharge region 5, it can be concentrated and decomposed simultaneously with the generation in the ozone generation region. Therefore, the decomposition effect of ozone is improved, it is possible to suppress the release of ozone into the space to be released, reduce the ozone odor, and suppress the adverse effects of ozone on the human body.
 また、オゾンの発生源でオゾンの発生と同時に、紫外線により上記化1に示すようにオゾンを分解して、ヒドロキシラジカルを生成するので、帯電微粒子水の発生の際に生成されるヒドロキシラジカル等の有効成分に加え、オゾンを分解することで生成されるヒドロキシラジカルが加えられ、生成する有効成分の量を多くできる。したがって、放出対象空間における脱臭、除菌、アレルゲン物質の不活性化等の効果がより向上する。 Simultaneously with the generation of ozone at the ozone generation source, ozone is decomposed by ultraviolet rays as shown in the above chemical formula 1 to generate hydroxy radicals. In addition to the active ingredient, hydroxy radicals generated by decomposing ozone are added to increase the amount of the active ingredient produced. Therefore, effects such as deodorization, sterilization, and inactivation of allergen substances in the release target space are further improved.
 望ましくは、照射する紫外線としては254nm以下の波長の紫外線を照射するものであり、特に、254nmの波長の紫外線を照射させると、オゾンを分解してヒドロキシラジカルを最も効果的に生成できる。このように、これらの例では、照射する紫外線の波長が310nm以下であるか、望ましくは254nm以下である。ここで、紫外線の波長はもちろん10nm以上である。 Desirably, the ultraviolet ray to be irradiated is an ultraviolet ray having a wavelength of 254 nm or less. In particular, when an ultraviolet ray having a wavelength of 254 nm is irradiated, ozone can be decomposed to generate hydroxy radicals most effectively. Thus, in these examples, the wavelength of ultraviolet rays to be irradiated is 310 nm or less, or desirably 254 nm or less. Here, the wavelength of ultraviolet rays is of course 10 nm or more.
 ここで、254nmの波長の紫外線と、185nmの波長の紫外線の両方を放電領域5に照射するようにしてもよい。 Here, the discharge region 5 may be irradiated with both ultraviolet light having a wavelength of 254 nm and ultraviolet light having a wavelength of 185 nm.
 185nmの波長の紫外線は、空気(酸素)に作用するとオゾンを発生させる。このため、上記のように、放電により発生するオゾンだけでなく、更に空気(酸素)に185nmの波長の紫外線を照射することにより発生するオゾンが加えられ、全体として発生するオゾン量が増える。 UV light with a wavelength of 185 nm generates ozone when it acts on air (oxygen). For this reason, as described above, not only ozone generated by discharge but also ozone generated by irradiating ultraviolet rays having a wavelength of 185 nm to air (oxygen) is added, and the amount of ozone generated as a whole increases.
 そして、このように発生量が増大したオゾンを、上記のように254nmの波長の紫外線の照射で分解してヒドロキシラジカルを生成することで、より多量のヒドロキシラジカルを生成することができる。 And, by generating ozone radicals by decomposing ozone having an increased generation amount by irradiation with ultraviolet rays having a wavelength of 254 nm as described above, a larger amount of hydroxy radicals can be generated.
 この場合、254nmの波長の紫外線と、185nmの波長の紫外線の両方を放電領域5に同時に照射するのが好ましいが、185nmの波長の紫外線の照射と254nmの波長の紫外線を短時間で交互に照射するようにしてもよい。 In this case, it is preferable to simultaneously irradiate the discharge region 5 with both ultraviolet light having a wavelength of 254 nm and ultraviolet light having a wavelength of 185 nm, but alternately irradiating ultraviolet light having a wavelength of 185 nm and ultraviolet light having a wavelength of 254 nm alternately in a short time. You may make it do.
 上記化1において明らかなように、紫外線照射によりオゾンを分解してヒドロキシラジカルを生成するには水分子(H2O)が必要となる。しかし、静電霧化装置4aにおいては、放電領域5に紫外線を照射すると、放電領域5で帯電微粒子水が発生するので放電領域における空気中に含まれる水分の量が多く、また、発生源である放電部1に形成されるテイラーコーンが水であるから、水の存在下でオゾンに紫外線を当てることになり、ヒドロキシラジカルの生成効果が向上する。 As is clear from Chemical Formula 1 above, water molecules (H 2 O) are required to decompose ozone by ultraviolet irradiation to generate hydroxy radicals. However, in the electrostatic atomizer 4a, when the discharge region 5 is irradiated with ultraviolet rays, charged fine particle water is generated in the discharge region 5, so that the amount of moisture contained in the air in the discharge region is large, and the generation source Since the Taylor cone formed in a certain discharge part 1 is water, ultraviolet rays are applied to ozone in the presence of water, and the effect of generating hydroxy radicals is improved.
 特に、放電領域5への紫外線照射に当たって、放電電極2の先端部の放電部1に紫外線照射をすると、放電部1のテイラーコーンが形成される部分に直接紫外線照射されるので、水の存在する環境下で発生したオゾンに紫外線を照射して確実にヒドロキシラジカルを発生できる。 In particular, when the discharge region 1 is irradiated with ultraviolet rays when the discharge region 5 is irradiated with ultraviolet rays, the portion of the discharge portion 1 where the Taylor cone is formed is directly irradiated with ultraviolet rays, so that water exists. Hydroxyl radicals can be generated reliably by irradiating ozone generated in the environment with ultraviolet rays.
 なお、ArFエキシマーレーザを用いて紫外線を照射すると、高いエネルギーを与えることができて、より効率的にオゾンを分解してヒドロキシラジカルを生成できる。ArFエキシマーレーザの波長は193nmのものを用いるのが好ましい。 In addition, when an ultraviolet ray is irradiated using an ArF excimer laser, high energy can be given, and ozone can be decomposed more efficiently to generate a hydroxy radical. The wavelength of the ArF excimer laser is preferably 193 nm.
 図2には、放電領域5に水蒸気を供給する水蒸気供給手段13を備えている。水蒸気供給手段13としては、水をヒータで加熱することで水蒸気を発生させる等従来から公知の水蒸気の発生技術が採用できる。 In FIG. 2, a water vapor supply means 13 for supplying water vapor to the discharge region 5 is provided. As the water vapor supply means 13, a conventionally known water vapor generation technique such as heating water with a heater to generate water vapor can be employed.
 このように、放電領域5に水蒸気を供給すると、更に多量の水分子が存在する環境下で、紫外線照射によりオゾンを分解するので、紫外線によりオゾンから分解された酸素原子が水蒸気中の水分子と結合する確率が上昇し、よりいっそうヒドロキシラジカルを多量に生成できる。 In this way, when water vapor is supplied to the discharge region 5, ozone is decomposed by ultraviolet irradiation in an environment where a larger amount of water molecules exist, so that oxygen atoms decomposed from ozone by ultraviolet light are combined with water molecules in the water vapor. The probability of bonding increases, and a larger amount of hydroxy radicals can be generated.
 上記実施形態では、イオン発生装置4として静電霧化装置4aの例で説明したが、図3、図4はイオン発生装置4が空気イオン発生装置4bの例を示している。 In the above embodiment, the ion generator 4 is described as an example of the electrostatic atomizer 4a. However, FIGS. 3 and 4 show an example of the ion generator 4 being an air ion generator 4b.
 本実施形態においては、空気イオン発生装置4bの放電電極2に高電圧を印加することで、負又は正のイオンを発生させるか、印加する電圧の正負を交互に切り替えることで、負イオンと正イオンを交互に発生させる。このようなイオン発生の際に同時にオゾンが発生するが、放電領域5に直接紫外線を照射するので、発生したオゾンが拡散する前に、オゾンの発生源において発生と同時に分解してヒドロキシラジカルを生成する。したがって、放電によりイオン発生の際に生成されるヒドロキシラジカル等の有効成分に加え、オゾンを分解することで生成されるヒドロキシラジカルが加えられ、生成する有効成分の量を多くできる。 In this embodiment, by applying a high voltage to the discharge electrode 2 of the air ion generator 4b, negative or positive ions are generated, or by switching the applied voltage between positive and negative alternately, Ions are generated alternately. Ozone is generated at the same time as such ions are generated, but since the discharge region 5 is directly irradiated with ultraviolet rays, before the generated ozone diffuses, it decomposes at the generation source of ozone to generate hydroxy radicals. To do. Therefore, in addition to an active ingredient such as a hydroxy radical generated when ions are generated by discharge, a hydroxy radical generated by decomposing ozone is added to increase the amount of the active ingredient generated.
 空気イオン発生装置4bにおいては、紫外線照射によりオゾンを分解してヒドロキシラジカルを生成する際に必要な水分子は空気中から得られるが、図4のように、放電領域5に水蒸気を供給する水蒸気供給手段13を備えていると、多量の水分子が存在する環境下で、紫外線によりオゾンから分解された酸素原子が水蒸気中の水分子と結合してヒドロキシラジカルを多量に生成できる。 In the air ion generator 4b, water molecules necessary for decomposing ozone by ultraviolet irradiation to generate hydroxy radicals are obtained from the air, but as shown in FIG. When the supply means 13 is provided, oxygen atoms decomposed from ozone by ultraviolet rays can combine with water molecules in water vapor to generate a large amount of hydroxyl radicals in an environment where a large amount of water molecules exist.
 本発明を幾つかの好ましい実施形態について記述したが、この発明の本来の精神および範囲、即ち請求の範囲を逸脱することなく、当業者によって様々な修正および変形が可能である。 While the invention has been described in terms of several preferred embodiments, various modifications and variations can be made by those skilled in the art without departing from the true spirit and scope of the invention, ie, the claims.

Claims (9)

  1.  放電部を有する放電電極と、この放電電極に高電圧を印加する電圧印加部とを備えたイオン発生装置において、前記高電圧の印加に伴って放電が発生する放電領域に紫外線を照射する紫外線照射部を設けることを特徴とするイオン発生装置。 In an ion generator comprising a discharge electrode having a discharge portion and a voltage application portion for applying a high voltage to the discharge electrode, ultraviolet irradiation for irradiating ultraviolet rays to a discharge region where discharge is generated when the high voltage is applied An ion generator characterized by providing a portion.
  2.  前記紫外線照射部は、前記放電部に紫外線を照射することを特徴とする請求項1記載のイオン発生装置。 The ion generator according to claim 1, wherein the ultraviolet irradiation unit irradiates the discharge unit with ultraviolet rays.
  3.  前記放電電極に水を供給する水供給手段を備え、前記電圧印加部は、前記放電電極に供給された水に高電圧を印加して静電霧化により帯電微粒子水を生成する請求項1又は請求項2記載のイオン発生装置。 The water supply means which supplies water to the said discharge electrode, The said voltage application part applies a high voltage to the water supplied to the said discharge electrode, and produces | generates charged fine particle water by electrostatic atomization. The ion generator according to claim 2.
  4.  前記放電領域に水蒸気を供給する水蒸気供給手段を備えることを特徴とする請求項1乃至請求項3のいずれか一項に記載のイオン発生装置。 The ion generator according to any one of claims 1 to 3, further comprising water vapor supply means for supplying water vapor to the discharge region.
  5.  前記照射される紫外線の波長は310nm以下であることを特徴とする請求項1乃至請求項4のいずれか一項に記載のイオン発生装置。 The ion generator according to any one of claims 1 to 4, wherein a wavelength of the irradiated ultraviolet ray is 310 nm or less.
  6.  前記照射される紫外線の波長は254nm以下であることを特徴とする請求項1乃至請求項4のいずれか一項に記載のイオン発生装置。 The ion generator according to any one of claims 1 to 4, wherein a wavelength of the irradiated ultraviolet ray is 254 nm or less.
  7.  前記紫外線照射部がArFエキシマーレーザであることを特徴とする請求項1乃至請求項4のいずれか一項に記載のイオン発生装置。 The ion generator according to any one of claims 1 to 4, wherein the ultraviolet irradiation unit is an ArF excimer laser.
  8.  前記紫外線照射部は、前記照射される紫外線として、254nmの波長の紫外線と、185nmの波長の紫外線の両方を照射することを特徴とする請求項6記載のイオン発生装置。 The ion generator according to claim 6, wherein the ultraviolet irradiation unit irradiates both ultraviolet rays having a wavelength of 254 nm and ultraviolet rays having a wavelength of 185 nm as the ultraviolet rays to be irradiated.
  9.  前記放電領域の周囲に、発生したイオンを放出する放出用開口を形成するように紫外線防止手段を配置することを特徴とする請求項1乃至請求項8のいずれか一項に記載のイオン発生装置。 9. The ion generator according to claim 1, wherein an ultraviolet preventing means is disposed around the discharge region so as to form an emission opening for emitting the generated ions. .
PCT/JP2011/055622 2010-03-26 2011-03-10 Ion generation device WO2011118402A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010073584A JP2011204644A (en) 2010-03-26 2010-03-26 Ion generation device
JP2010-073584 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118402A1 true WO2011118402A1 (en) 2011-09-29

Family

ID=44672963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055622 WO2011118402A1 (en) 2010-03-26 2011-03-10 Ion generation device

Country Status (2)

Country Link
JP (1) JP2011204644A (en)
WO (1) WO2011118402A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587717A (en) * 2012-03-07 2012-07-18 陈震 Method of preventing rust water for lightning rod on chimney and device
WO2023279154A1 (en) * 2021-07-06 2023-01-12 ClariqAir Pty Ltd Method and apparatus for the generation of hydroxyl radicals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176639A (en) * 1999-12-20 2001-06-29 Ricoh Co Ltd Corona discharge device and image forming device
JP2001257096A (en) * 2000-03-10 2001-09-21 Techno Ryowa Ltd Jet outlet for electrostatic countermeasure
JP2006288453A (en) * 2005-04-06 2006-10-26 Sanyo Electric Co Ltd Air treatment device
JP2008183480A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Electrostatic atomizer
JP2009211889A (en) * 2008-03-03 2009-09-17 Techno Ryowa Ltd Dust-free ionizer system using low-energy electron beam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176639A (en) * 1999-12-20 2001-06-29 Ricoh Co Ltd Corona discharge device and image forming device
JP2001257096A (en) * 2000-03-10 2001-09-21 Techno Ryowa Ltd Jet outlet for electrostatic countermeasure
JP2006288453A (en) * 2005-04-06 2006-10-26 Sanyo Electric Co Ltd Air treatment device
JP2008183480A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Electrostatic atomizer
JP2009211889A (en) * 2008-03-03 2009-09-17 Techno Ryowa Ltd Dust-free ionizer system using low-energy electron beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587717A (en) * 2012-03-07 2012-07-18 陈震 Method of preventing rust water for lightning rod on chimney and device
WO2023279154A1 (en) * 2021-07-06 2023-01-12 ClariqAir Pty Ltd Method and apparatus for the generation of hydroxyl radicals

Also Published As

Publication number Publication date
JP2011204644A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP2007529876A5 (en)
TW201113093A (en) Discharge apparatus and electrostatic atomization apparatus therewith
JP5308188B2 (en) Air conditioner
JP2006296962A (en) Deodorizing device
JP4915958B2 (en) Air purifier
WO2011118402A1 (en) Ion generation device
JP2010194439A (en) Dehumidifier
JP2009274069A (en) Electrostatic atomizing device
JP2005079094A (en) Three wave length lamp with negative ion generating function and air cleaning function
WO2016190118A1 (en) Device for imparting negative charge and discharging atomized liquid
JP5513787B2 (en) Discharge device
WO2011125523A1 (en) Electrostatic atomization device
WO2009081911A1 (en) Ion discharge device
JP2019064842A (en) Ozone generation apparatus and excimer lamp lighting method
KR20150022286A (en) Shoes Sterilization Apparatus
JP5167167B2 (en) lighting equipment
WO2013038894A1 (en) Ion generation device
JP2010196959A (en) Humidifier
JP2011169574A (en) Electrostatic atomizer
JP2009123564A (en) Ion generator, electrostatic atomizer, and air-conditioner using them
KR101600076B1 (en) Plasma anion air purification
JP2010194058A (en) Air cleaner
JP4098111B2 (en) Chemical volatilizer
JP2006101912A (en) Active species releasing device and air treatment device
JP2011229571A (en) System for generating oh radical and inner-surface-configuring member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759209

Country of ref document: EP

Kind code of ref document: A1