WO2011118373A1 - Electrochemical display element - Google Patents

Electrochemical display element Download PDF

Info

Publication number
WO2011118373A1
WO2011118373A1 PCT/JP2011/055212 JP2011055212W WO2011118373A1 WO 2011118373 A1 WO2011118373 A1 WO 2011118373A1 JP 2011055212 W JP2011055212 W JP 2011055212W WO 2011118373 A1 WO2011118373 A1 WO 2011118373A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel electrode
insulating film
display element
pixel
electrode
Prior art date
Application number
PCT/JP2011/055212
Other languages
French (fr)
Japanese (ja)
Inventor
倫生 泉
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011516905A priority Critical patent/JP4780255B1/en
Publication of WO2011118373A1 publication Critical patent/WO2011118373A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers

Definitions

  • the present invention relates to an electrochemical display element that performs display by enclosing an electrolytic solution between a pair of substrates and causing an oxidation-reduction reaction of a deposition material in the electrolytic solution.
  • a self-luminous display element represented by CRT and PDP and a display element that modulates light from a light emitter (backlight) such as an LCD are generally used.
  • the image is bright and easy to see, but it consumes more power.
  • the display element has a memory characteristic that keeps an image once displayed even in a non-powered state, and further, a low driving voltage is desirable.
  • electrochemical display elements such as an electrochromic display element (hereinafter also referred to as ECD) and an electrodeposition display element (hereinafter also referred to as ED) have been actively developed as display elements having such characteristics.
  • ECD and ED display by changing the light absorption state of the reactant alone due to the oxidation-reduction reaction on the electrode. That is, in ECD, display is performed by a reversible change (color change) of the light absorption state of the electrochromic material due to an oxidation-reduction reaction.
  • ED display is performed by using silver deposition on an electrode from an electrolyte containing silver or a compound having silver in a chemical structure, and dissolution of silver in the electrolyte.
  • electrochemical display elements do not require additional members such as polarizing plates and backlights compared to LCDs, and are extremely advantageous in terms of cost reduction and process saving (ease of manufacturing). It has become.
  • each pixel is arranged in a matrix form in the ED, it is provided corresponding to each pixel of the substrate arranged on the non-observation side among the pair of substrates sandwiching the electrolyte (electrolytic solution).
  • a current from a power supply bus is supplied to a pixel electrode to be connected via a driving transistor (for example, TFT).
  • TFT driving transistor
  • Patent Document 1 discloses an example in which a pixel electrode and a metal wiring thereunder are connected via a contact hole.
  • a metal material for example, ITO
  • ITO metal material having the higher ionization tendency than silver or the same silver
  • metal materials having a smaller ionization tendency than silver are platinum and gold, which are very expensive and difficult to use.
  • the pixel electrode is made of a metal material having a greater ionization tendency or equivalent to that of the deposition material, the pixel electrode is etched (dissolved) by the electrolytic solution when the ED is driven.
  • the pixel electrode located in the contact hole is etched, the pixel cannot be driven, resulting in a point defect and display failure.
  • the material for the pixel electrode it is advantageous from the viewpoint of the film formation process to use amorphous ITO, and it can be easily manufactured by a general-purpose device.
  • amorphous ITO was used for the etching of the pixel electrode. It is especially likely to occur.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a deposition material in an electrolytic solution in which a pixel electrode and a lower-layer metal wiring and a driving transistor are separated from each other via an insulating film
  • an electrochemical display element capable of suppressing the occurrence of display defects by suppressing the dissolution of the pixel electrode in the contact hole portion of the insulating film even when the pixel electrode is made of a material having a greater ionization tendency or equivalent.
  • an electrolytic solution is sealed between an observation-side substrate having a common electrode and a non-observation-side substrate having a pixel electrode, and the electrolytic solution according to the potential between the electrodes.
  • An electrochemical display element that performs display by oxidation-reduction reaction of the deposition material therein, the substrate on the non-observation side supplying current from a power supply bus to the pixel electrode through a driving transistor And a first insulating film formed so as to cover the drive transistor and the metal wiring, and the pixel electrode has an ionization tendency equivalent to that of the deposition material or the deposition material.
  • the metal wiring is made of a material having a higher ionization tendency than the first insulating film, and is formed on the first insulating film and through the contact hole provided in the first insulating film.
  • the substrate of the non-viewing side is further characterized by having a second insulating film formed on the pixel electrode so as to cover the contact hole.
  • the pixel electrode is made of a material having a greater ionization tendency or equivalent to the deposition material in the electrolytic solution. Even in the case where the pixel electrode is configured, it is possible to prevent the pixel electrode located in and on the contact hole from being dissolved by the electrolytic solution, and to reduce the occurrence of display defects due to the dissolution of the pixel electrode.
  • (A) is explanatory drawing which shows the pixel in a black display state while showing typically the schematic structure of 1 pixel of the display element of one Embodiment of this invention, (b) is in a white display state. It is explanatory drawing which shows this pixel. It is explanatory drawing which shows the equivalent circuit of the pixel of the said display element. It is sectional drawing which shows the detailed structure of the said pixel. It is sectional drawing which shows the other structure of the said pixel. It is sectional drawing which shows other structure of the said pixel.
  • (A) is sectional drawing which shows the silver precipitation area
  • (b) is the case where the insulating film formed around each pixel functions as a partition part
  • FIGS. 1A and 1B are explanatory diagrams schematically showing a schematic configuration of one pixel of the display element 1 of the present embodiment.
  • FIG. 1A shows a pixel in a black display state
  • FIG. 1B shows a pixel in a white display state.
  • the display element 1 is configured by an electrochemical display element called ED, and is configured by sealing an electrolytic solution 30 between an observation side substrate 10 and a non-observation side substrate 20.
  • an electrolytic solution 30 silver as a deposition material is dissolved, and silver ions 31 are present. The details of the electrolytic solution 30 will be described later.
  • the observation-side substrate 10 has a common substrate 11 made of, for example, a transparent glass substrate.
  • a common electrode 12 (common electrode) common to the pixels 1a is formed on the common substrate 11.
  • the non-observation side substrate 20 has a drive substrate 21 made of, for example, a transparent glass substrate.
  • substrate 21 is arrange
  • pixel electrodes 25 corresponding to the respective pixels 1a are formed.
  • the substrates 10 and 20 are bonded to each other so that the common electrode 12 and the pixel electrode 25 are on the inner side (so as to face each other with the electrolytic solution 30 therebetween).
  • the common electrode 12 is an observation side electrode, it needs to be transparent. For this reason, as the common electrode 12, a transparent electrode such as indium tin oxide (hereinafter referred to as ITO) is usually used.
  • ITO indium tin oxide
  • ITO is desirably crystalline. In the case of using amorphous ITO, it is necessary to anneal and crystallize at a temperature of 300 ° C. or higher. However, since no material that is damaged by heat is formed on the substrate 10 side on the observation side, the amorphous ITO is used. Thus, the common electrode 12 can be formed.
  • the pixel electrode 25 is made of a material having a larger ionization tendency than the deposition material in the electrolytic solution 30.
  • the pixel electrode 25 is often made of amorphous ITO, which is a metal oxide. This is because amorphous ITO can be formed at a low temperature (usually sputtering) at about 200 ° C., so that a transistor (for example, TFT) formed on the non-observation side drive substrate 21 and an insulating film covering the transistor are formed. This is because it does not cause damage. Further, since patterning by a photolithography technique is possible, similarly, the transistor or the like is not damaged.
  • amorphous ITO is advantageous from the viewpoint of the film formation process of the pixel electrode 25, and the pixel electrode 25 can be easily formed by a general-purpose apparatus.
  • the pixel electrode 25 may be made of a material (for example, silver) having the same ionization tendency as the deposition material in the electrolytic solution 30.
  • FIG. 1A when the switch SW1 is closed, a negative voltage Vb equal to or higher than the threshold is applied to the pixel electrode 25 as the common voltage Vcom of the common electrode 12, and electrons are supplied from the common electrode 12 to the electrolyte 30.
  • the common current Icom flows by being injected, and the silver ions 31 are reduced and the silver layer 32 is deposited at the position of the common electrode 12 facing the pixel electrode 25. When viewed from the common electrode 12 side, it looks black.
  • FIG. 1B when the switch SW1 is similarly closed and a positive voltage Vw equal to or higher than the threshold is applied to the pixel electrode 25 as the common voltage Vcom of the common electrode 12, FIG.
  • the silver layer 32 deposited in step 1 is oxidized into silver ions 31 and dispersed in the electrolyte 30.
  • the state in which the silver layer 32 is changed to the silver ion 31 is transparent when viewed from the common electrode 12 side. Therefore, the electrolyte solution 30 is colored white, or a diffusion layer is provided on the pixel electrode 25. Looks white. In this way, it is possible to switch between white and black display.
  • a voltage is applied to the pixel 1a of the display element 1 using the switch SW1, but if two thin film transistors (TFTs) are used per pixel as the switch SW1, each pixel 1a.
  • TFTs thin film transistors
  • each pixel 1a Can be arranged in a matrix, and a so-called active matrix type display element 1 can be configured in which a voltage is applied to each pixel 1a to perform display.
  • FIG. 2 is an explanatory diagram showing an equivalent circuit of the pixel 1 a of the display element 1.
  • the thin film transistor Q1 is a selection transistor (switching transistor) for selecting the pixel 1a to be driven
  • the thin film transistor Q2 is a drive transistor for driving the pixel 1a.
  • the thin film transistor Q1 is driven by the signal of the gate bus Gm and applies the signal of the source bus Sn when turned on to the gate electrode of the thin film transistor Q2.
  • the thin film transistor Q2 has a potential difference between the common potential Vcom and the drive potential Vdd by the power supply bus VDD when the gate potential is raised by the thin film transistor Q1, that is, the voltage Vb described with reference to FIGS. Vw is applied between the common electrode 12 and the pixel electrode 25 to pass a current through the electrolytic solution 30.
  • silver as a deposition material in the electrolytic solution 30 causes an oxidation-reduction reaction, and thereby the pixel 1a may be blackened or whitened. it can.
  • the display element 1 as the ED is a current-driven display element, a relatively large current instantaneously flows through each pixel 1a during driving.
  • the power supply bus VDD needs to be thick.
  • the power supply bus VDD cannot be unnecessarily thickened in the width direction due to the balance with the pixel size, it is general that the power supply bus VDD is formed thicker.
  • FIG. 3 is a cross-sectional view showing a detailed configuration of the pixel 1a.
  • a scanning bus Gm and gate electrodes of the thin film transistors Q1 and Q2 are formed on the drive substrate 21 .
  • the gate electrode of the thin film transistor Q1 is connected to the scanning bus Gm.
  • a gate insulating film 22 is formed on the drive substrate 21 so as to cover the scanning bus Gm and each gate electrode.
  • the semiconductors of the thin film transistors Q1 and Q2 are formed by patterning, and the source bus Sn, the power supply bus VDD, the source / drain electrodes of the thin film transistors Q1 and Q2, and the metal wiring 23 are formed.
  • One electrode of the source / drain electrodes of the thin film transistor Q1 is connected to the source bus Sn, and the other electrode is connected to the gate electrode of the thin film transistor Q2 through a contact hole 22a provided in the gate insulating film 22. Yes.
  • One electrode of the source / drain electrodes of the thin film transistor Q2 is connected to the power supply bus VDD, and the other electrode is connected to the metal wiring 23.
  • the other electrode may be formed integrally with the metal wiring 23.
  • an interlayer insulating film 24 (first insulating film) is formed so as to cover the semiconductors of the thin film transistors Q1 and Q2, the source bus Sn, the power supply bus VDD, the source / drain electrodes of the thin film transistors Q1 and Q2, and the metal wiring 23.
  • a pixel electrode 25 (first pixel electrode) is formed on the interlayer insulating film 24. The pixel electrode 25 is connected to the metal wiring 23 through a contact hole 24 a provided in the interlayer insulating film 24. Therefore, when the thin film transistor Q2 is turned on, the current from the power supply bus VDD is supplied to the pixel electrode 25 via the thin film transistor Q2 and the metal wiring 23.
  • An insulating film 26 (second insulating film) is formed on the pixel electrode 25 so as to cover the contact hole 24a (with a size larger than the contact hole 24a).
  • a porous metal oxide electrode 27 (second pixel electrode) is patterned on the interlayer insulating film 24 for each pixel 1 a so as to cover the pixel electrode 25 and the insulating film 26.
  • the porous metal oxide electrode 27 is electrically connected to the pixel electrode 25 in the non-formation region 25 a of the insulating film 26. Details (materials and formation method) of the insulating film 26 and the porous metal oxide electrode 27 will be described later.
  • the insulating film 26 is formed so as to cover the contact hole 24a. Therefore, even in the case where the pixel electrode 25 is made of amorphous ITO having a smaller ionization tendency than silver, the contact hole 24a and the contact hole are also formed. It can suppress that the pixel electrode 25 located on 24a melt
  • the porous metal oxide electrode 27 that is electrically connected to the pixel electrode 25 in the non-formation region 25a is provided as the second pixel electrode so as to cover the pixel electrode 25 and the insulating film 26, A region that does not contribute to display due to the provision of the insulating film 26 is covered with the porous metal oxide electrode 27 to contribute to display.
  • the pixel electrode 25, the thin film transistors Q1 and Q2, and the metal wiring 23 are separated from each other through the interlayer insulating film 24, an insulating film is formed on the pixel electrode 25 even though a high aperture ratio is achieved. By providing 26, it is possible to avoid a decrease in the aperture ratio.
  • the porous metal oxide electrode 27 is also formed in the non-formation region of the pixel electrode 25 on the insulating film 24, the aperture ratio of the pixel 1a can be further increased.
  • the porous metal oxide electrode 27 is provided so as to cover the entire insulating film 26, but the porous metal oxide electrode 27 does not necessarily need to cover the entire insulating film 26. You may cover only a part of. In short, the porous metal oxide electrode 27 may be electrically connected to the pixel electrode 25 somewhere. Thus, even if the porous oxide electrode 27 covers a part of the insulating film 26, the porous metal oxide electrode 27 is formed so as to extend to the non-formation region of the pixel electrode 25 on the insulating film 24.
  • the porous metal oxide electrode 27 may be formed larger than the non-formation region 25a of the pixel electrode 25, or may be formed so as to cover the non-formation region 25a.
  • the porous metal oxide electrode 27 has an area that can compensate for the decrease in the aperture ratio due to the provision of the insulating film 26. Alternatively, it may be secured in a region where the pixel electrode 25 is not formed. That is, the porous metal oxide electrode 27 may be formed so as to cover a region where the pixel electrode 25 is not formed on the interlayer insulating film 24.
  • the entire electrode Increasing the thickness of the wire also has the advantage that the resistance value of electricity decreases and electricity flows easily.
  • the advantage of providing an electrode made of a porous metal oxide as the second pixel electrode will be described later.
  • the same metal material (amorphous ITO) as the pixel electrode 25 is used. It is also possible to form the electrode made of as the second pixel electrode. Even in the latter case, the effect of avoiding a decrease in the aperture ratio due to the insulating film 26 or increasing the aperture ratio remains unchanged.
  • FIG. 4 is a cross-sectional view showing another configuration of the pixel 1a.
  • the insulating film 26 described above may be provided on the peripheral edge of each pixel 1 a so as to surround each pixel 1 a corresponding to each pixel electrode 25. That is, the insulating film 26 may be a bank provided so as to separate adjacent pixels 1a and 1a.
  • the porous metal oxide electrode 27 of each pixel 1 a may be formed over the entire region surrounded by the insulating film 26 and may be partitioned by the insulating film 26. In this configuration, in each pixel 1a, the porous metal oxide electrode 27 does not cover a part of the insulating film 26, but the area is larger than the pixel electrode 25, so that the aperture ratio is improved.
  • FIG. 5 is a cross-sectional view showing still another configuration of the pixel 1a.
  • the above-described insulating film 26 is formed at substantially the same height as the gap between the substrates 10 and 20, and a partition wall portion 26a that suppresses movement of silver ions in the electrolytic solution 30 to adjacent pixels. You may also serve.
  • the pixels 1a 1 performing black display is affected by the potential state of the adjacent pixels 1a 2, the silver ion of the pixels 1a 1 It moves in the direction of the adjacent pixel 1a 2 that should not be moved, and black is displayed. That is, the silver layer 32 to be formed on the pixel 1a 1 that performs black display extends to the adjacent pixel 1a 2 to display black. This phenomenon is also called bleeding, and causes a reduction in the definition of the display image.
  • the insulating film 26 functions as a partition wall 26a
  • the movement to 2 can be suppressed by the insulating film 26 (partition wall 26a).
  • the silver layer 32 to be formed on the pixel 1a 1 can be prevented from spreading to the adjacent pixel 1a 2 , and deterioration of display quality due to bleeding can be avoided.
  • the insulating film 26 also serves as the partition wall portion 26a, it is not necessary to separately form a partition wall portion for suppressing the bleeding, and the configuration of the display element 1 can be simplified.
  • the insulating film 26 may be formed so as to completely fill the gap between the substrates 10 and 20. In this case, since the distance between the electrodes of each pixel 1a can be kept constant, display unevenness in the entire display area including all the pixels 1a can be eliminated.
  • the electrolytic solution 30 contains silver or a compound containing silver in the chemical structure, and silver ions are present in the electrolytic solution 30.
  • silver or a compound containing silver in the chemical structure is a general term for compounds such as silver oxide, silver sulfide, metallic silver, silver colloidal particles, silver halide, silver complex compounds, and silver ions.
  • any state state species such as a solid state, a solubilized state in a liquid, or a gas state, and a charged state species such as neutral, anionic, and cationic are not particularly limited.
  • the concentration of silver ions contained in the electrolytic solution 30 is preferably 0.2 mol / kg ⁇ [Ag] ⁇ 2.0 mol / kg.
  • the concentration of silver ions contained in the electrolytic solution 30 is preferably 0.2 mol / kg ⁇ [Ag] ⁇ 2.0 mol / kg.
  • the silver ion concentration is less than 0.2 mol / kg, the driving speed is delayed due to a dilute silver solution.
  • the silver ion concentration is greater than 2 mol / kg, the solubility deteriorates and precipitates during low-temperature storage. Tends to occur, which is disadvantageous.
  • the electrolyte solution 30 preferably has a viscosity at 25 ° C. of 0.1 mPa ⁇ s or more and less than 100 mPa ⁇ s, and the amount of the polymer binder with respect to the solvent is preferably less than 10% by weight.
  • the electrolytic solution 30 may be configured by selecting an organic solvent, an ionic liquid, a redox active substance, a supporting electrolyte, a complexing agent, a white scattering material, a polymer binder, and the like as necessary.
  • the insulating film 26 As the material of the insulating film 26, a material having good insulating properties and not deteriorating the semiconductor material of the switching elements (thin film transistors Q1 and Q2) at the time of film formation can be used.
  • the insulating film 26 inorganic oxides such as silicon oxide, inorganic nitrides such as silicon nitride, or polyimide, polyamide, polyester, polyacrylate, photo radical polymerization type, photo cation polymerization type photo curable resin, An organic compound such as a copolymer containing an acrylonitrile component, polyvinylphenol, polyvinyl alcohol, a novolac resin, cyanoethyl pullulan, or parylene is applicable. Further, the insulating film 26 may be formed by superposing a plurality of layers of an organic material and an inorganic material.
  • a method of forming the insulating film 26 for example, there are a method of patterning in a predetermined shape after coating the entire surface, and a method of patterning and forming directly in a predetermined shape.
  • the coating method of the film forming material is not limited to the above-described spin coating, and may be spray coating, slit coating, dipping coating, or the like. On the other hand, in the case of the latter method, it is possible to apply coating methods, such as an inkjet method, a dispenser method, and screen printing.
  • porous metal oxide electrode 27 As the main component of the fine particles constituting the electrode having a porous structure, metals such as Cu, Al, Ag and Pd, metal oxides such as ITO, SnO 2 , TiO 2 and ZnO, carbon nanotubes, glassy carbon, Examples of the carbon electrode include diamond-like carbon and nitrogen-containing carbon. From the viewpoint of durability of the pixel electrode 25, the porous metal oxide electrode 27 is particularly preferably a metal oxide such as ITO, SnO 2 and ZnO. Is preferably selected from.
  • the “porous structure” has a structure in which ionic species contained in the electrolytic solution can move inside a so-called nanoporous structure in which an infinite number of nanometer-sized pores exist in the electrode.
  • the average particle diameter of the fine particles constituting the porous metal oxide electrode 27 is preferably about 5 nm to 30 nm.
  • the fine particles those having an arbitrary shape such as an indeterminate shape, a needle shape, a spherical shape and the like can be used.
  • porous metal oxide electrode 27 having such a porous structure
  • silver as a deposition material is supported in the porous metal oxide electrode 27, and current from the power supply bus VDD is supplied to the pixel in this portion. Since it is supplied via the electrode 25, the oxidation-reduction reaction speed (driving speed) at the time of current supply can be increased.
  • the porous metal oxide electrode 27 As a method of forming the porous metal oxide electrode 27, there are a method of patterning into a predetermined shape after coating the entire surface, and a method of directly patterning and forming in a predetermined shape, as in the case of the insulating film 26. In the case of the former method, it is desirable to apply a porous metal oxide and then perform patterning by a photolithography technique, which is particularly effective for manufacturing the display element 1 shown in FIG. As a method for applying the metal oxide, spin coating, spray coating, slit coating, dipping coating, or the like can be used.
  • the metal oxide is a content dispersed in a solvent such as alcohol.
  • the porous metal oxide can be satisfactorily patterned for each pixel.
  • the solvent is evaporated by drying by heating, and a porous metal oxide electrode is formed.
  • the heating temperature (150 to 200 ° C.) required to generate the porous material is lower than the heating temperature (300 to 400 ° C.) required to crystallize the ITO.
  • the porous metal oxide electrode 27 can be formed on the pixel electrode 25 without causing much damage to the transistor formed in this step and the insulating film covering the transistor.
  • a method of applying a liquid using a bank is widely known, and particularly, it is often used as a method of coating a light emitting material of an organic EL display or a method of coating a liquid crystal color filter.
  • Examples of the display element 1 of the present embodiment will be described as Examples 1 to 3.
  • Comparative Example 1 is also shown.
  • Example 1 the display element 1 of FIG. 3 was produced by the following procedure.
  • a glass substrate was used as the common substrate 11. Then, on the common substrate 11, a crystalline ITO that is a transparent conductive film is formed to a thickness of 150 nm by a sputtering method, and a common electrode 12 (common to each pixel 1a) is formed on the entire surface.
  • An observation-side substrate 10 was produced.
  • Step 1 Formation of base
  • a glass substrate is used as the driving substrate 21, and a TFT array having two TFTs (thin film transistors Q 1 and Q 2) per pixel is formed on the driving substrate 21 in a two-dimensional matrix form so as to cover the TFT array.
  • An interlayer insulating layer 24 was formed, and a thin pixel electrode 25 was formed on the interlayer insulating film 24 using amorphous ITO corresponding to each pixel 1a.
  • the pixel electrode 25 is connected to the metal wiring 23 and the thin film transistor Q2 through a contact hole 24a provided in the interlayer insulating film 24.
  • the substrate formed up to the pixel electrode 25 on the drive substrate 21 is referred to as the base of the substrate 20 here.
  • the process up to the production of the base that is, the formation of the pixel electrode 25 can be performed by a known technique.
  • Step 2 Formation of second insulating film
  • an insulating film 26 as a second insulating film was formed on the base pixel electrode 25 formed in Step 1 so as to cover the contact hole 24a.
  • a coating type photosensitive acrylic resin JSR, model number: PC403
  • the thickness of the resin was 0.5 ⁇ m.
  • exposure was performed with an irradiation light amount of 200 mJ / cm 2 , and then development and baking were performed.
  • the development was performed for 1 minute with a predetermined developer TMAH (tetramethylammonium hydroxide) 0.238 wt% aqueous solution. Firing was performed at 220 ° C. for 1 hour.
  • TMAH tetramethylammonium hydroxide
  • Step 3 Application of porous metal oxide electrode material
  • porous ITO was applied to cover the pixel electrode 25 and the insulating film 26 on the pixel electrode 25 to form a porous ITO film having an average film thickness of 0.5 ⁇ m.
  • a spray application apparatus STS600 manufactured by YIDY MECATOR SOLUTIONS Co., Ltd.
  • the coating conditions at this time are as follows.
  • Nozzle model number of spray gun Atmax nozzle AM25 (manufactured by Atmax Co., Ltd.) ⁇ Atomization air: Nitrogen gas (N 2 ) ⁇ Flow rate of atomizing air: 8L / min -Coating liquid (ITO ink) Model number: X806CN27S (manufactured by Sumitomo Metal Mining Co., Ltd.) ⁇ Coating liquid flow rate: 7mL / min ⁇ Nozzle discharge speed: 300mm / sec ⁇ Nozzle-drive substrate distance: 60mm
  • Step 4 Patterning of porous metal oxide electrode
  • the porous ITO film formed in step 3 was patterned by an existing photolithography technique and divided into a plurality of porous metal oxide electrodes 27. At this time, the plurality of porous metal oxide electrodes 27 were formed so that the pixel pitch was 200 ⁇ m and the size per pixel was 150 ⁇ m ⁇ 150 ⁇ m. Details of patterning are as follows.
  • a resist material (model number: OFPR800LB) manufactured by Tokyo Ohka Kogyo Co., Ltd. was applied at a spin coating condition of 1000 rpm, and then dried at 80 ° C. for 5 minutes on a hot plate. Then, using a photomask of a predetermined size, pattern exposure was performed with an exposure amount of 120 mJ / cm 2 , and then development was performed with a predetermined developer (TMAH (tetramethylammonium hydroxide) 2.38 wt% aqueous solution) for 120 seconds. Thereafter, etching was performed for 200 seconds using an etching ferric salt solution manufactured by Hayashi Pure Chemical Industries. The resist material was peeled off by using a NaOH 2 wt% aqueous solution, followed by drying in an oven at 80 ° C. for 1 hour after peeling.
  • TMAH tetramethylammonium hydroxide
  • thermosetting olefin-based sealant was applied to the peripheral edge of the substrate 20 on which the porous metal oxide electrode 27 was formed, using a dispenser, except for the inlet for the electrolytic solution 30. Then, by arranging a 30 ⁇ m bead spacer in the sealant, the gap between the substrates 10 and 20 was set to be 30 ⁇ m.
  • Example 2 In Example 2, the display element 1 of FIG. 4 was produced.
  • the second embodiment is the same as the first embodiment except that a part of the process of ⁇ production of the non-observation side substrate> described in the first embodiment is changed as follows.
  • Step 2 Formation of second insulating film
  • An insulating film 26 as a second insulating film was formed so as to surround the pixel 1a corresponding to the base pixel electrode 25 formed in step 1 and to cover the contact hole 24a. More specifically, a coating-type photosensitive acrylic resin (JSR, model number: PC403) was formed on the base at a spin coat of 700 rpm. The thickness of the resin was 2.0 ⁇ m. Subsequently, using a predetermined photomask, exposure was performed with an irradiation light amount of 200 mJ / cm 2 , and then development and baking were performed. Development was performed for 2 minutes with a 0.238 wt% aqueous solution of a predetermined developer TMAH (tetramethylammonium hydroxide). Firing was performed at 220 ° C. for 1 hour.
  • TMAH tetramethylammonium hydroxide
  • the degree of non-affinity (ease of repelling) of the liquid material (porous ITO to be applied next) with respect to the surface of the insulating film 26 depends on the insulating film 26 on the substrate. Surface of at least one of the surface of the insulating film 26 and the non-forming region of the insulating film 26 so as to be higher than the non-forming region (including the surface of the non-forming region 25a on the pixel electrode 25 and the surface of the interlayer insulating film 24). It is preferable to perform the treatment.
  • the surface of the insulating film 26 and the non-formed region is surface-treated so that the liquid material is repelled on the surface of the insulating film 26 than on the non-formed region of the insulating film 26 on the substrate. Is desirable. Even if a large amount of liquid material is ejected compared to the thickness of the thin film layer (porous metal oxide electrode 27) to form the porous metal oxide electrode 27 next by such surface treatment, the liquid material The liquid material can be filled only in a predetermined region of each pixel 1a, that is, a region where the insulating film 26 is not formed. That is, the insulating film 26 can function as a bank.
  • a gas containing fluorine or a fluorine compound is used as an introduction gas, and the plasma irradiation is performed in a reduced pressure atmosphere or an atmospheric pressure atmosphere containing a fluorine compound and oxygen or an atmospheric pressure.
  • Plasma treatment is mentioned.
  • the gas containing fluorine or a fluorine compound include CF 4 , SF 6 , and CHF 3 .
  • CF 4 plasma treatment pressure: 5 Pa, output: 5 W, CF 4 flow rate: 7 sccm, time: 1 minute
  • the contact angle between the insulating film 26 and the liquid material (porous ITO material) is about The angle was 60 °.
  • the contact angle refers to an angle ⁇ (°) between the surface S and the surface L at the contact point between the solid surface S and the liquid surface L as shown in FIG.
  • the contact angle of the liquid material (porous ITO material) with respect to the surface of the insulating film 26 is set to 50 ° or more, and the contact angle with respect to the non-formation region of the insulating film 26 is set to 20 °. The following is preferable.
  • Step 3 Application of porous metal oxide electrode material
  • Porous ITO which is a liquid material, is dropped into the region surrounded by the insulating film 26 formed in step 2 by an inkjet method.
  • the ejection amount in the ink jet method is set to an amount such that a desired thickness is obtained when the volume is reduced by the heat treatment after the application of porous ITO.
  • the size (height and width) of the insulating film 26 is defined with respect to the size of the droplet of the liquid material to be discharged, whereby the thin film layer (porous metal oxide electrode 27). Even when a large amount of liquid material is ejected compared to the thickness of the liquid material, the liquid material does not overflow over the insulating film 26, and the liquid material is filled in a predetermined region. In the case where the liquid material is a material containing a solvent, the volume of the liquid material is reduced by removing the solvent component by performing heat treatment and / or pressure reduction treatment after filling the liquid material, and the insulating film 26 is not formed. A thin film layer is formed in the region. At this time, the surface of the non-formation region of the insulating film 26, that is, the substrate surface is surface-treated so as to exhibit affinity (lyophilicity) as described above, and thus the thin film layer is suitably adhered.
  • the ink jet method may be either a piezo jet method or a method of discharging by the generation of bubbles due to heat, but the piezo jet method is preferred because there is no change in the quality of the fluid due to heating.
  • a porous ITO with a film thickness of 1.2 ⁇ m was formed using an inkjet apparatus having a piezo head KM512M manufactured by Konica Minolta IJ Co., Ltd.
  • Example 2 the insulating film 26 becomes a bank, and the porous metal oxide electrode 27 is separated by the insulating film 26 simultaneously with the formation of the porous metal oxide electrode 27. Therefore, [Step 4: [Pattern Formation of Porous Metal Oxide Electrode] is unnecessary.
  • Example 3 In Example 3, the display element 1 of FIG. 5 was produced. Note that Example 3 is the same as Example 2 except that a part of the process of ⁇ production of the non-observation side substrate> described in Example 2 is changed as follows.
  • Step 2 Formation of second insulating film
  • An insulating film 26 as a second insulating film was formed so as to surround the pixel 1a corresponding to the base pixel electrode 25 formed in step 1 and to cover the contact hole 24a.
  • a negative photosensitive photoresist material SU-8 3050 (manufactured by Kayaku Microchem Co., Ltd.) is spin-coated at a rotation speed of 1000 rpm, and prebaked on a hot plate at 100 ° C. for 30 minutes. Went.
  • Comparative Example 1 In Comparative Example 1, a part of the process of ⁇ Manufacturing the Non-observation Side Substrate> described in Example 1, that is, [Step 2: Formation of the second insulating film] is omitted, and a display element is manufactured These are the same as in Example 1.
  • the drive count black display count
  • the display image is captured for each area by the scanner, and the captured image is converted into digital data, and the number of pixels whose contrast is less than 10 is counted. did.
  • the image data (luminance data) of the captured image is 8 bits from “0” (black) to “255” (white).
  • the image data of the white display pixel is “240”
  • the image data “50” of the black display pixel is compared with the image data “240” of the white display pixel.
  • the pixels having the image data “51” or more are pixels that do not satisfy the contrast 10 (pixels in which black does not appear), the number of such pixels is counted.
  • Pixel defect occurrence rate (%) ⁇ (number of defective pixels in one area) / (number of inspection pixels in one area) ⁇ ⁇ 100
  • FIG. 9 shows the pixel defect occurrence rate (average value) for each driving frequency of the display elements of Examples 1 to 3 and Comparative Example 1.
  • the pixel defect occurrence rate was 1% or less even when the number of driving times reached 100,000.
  • the pixel defect occurrence rate increased as the number of times increased to 1000 times, 10,000 times, and 100,000 times, and the pixel defect occurrence rate was 90% or more when driven 100,000 times.
  • the electrochemical display element described in the above embodiment can also be expressed as follows, and has the following effects.
  • an electrolytic solution is sealed between an observation side substrate having a common electrode and a non-observation side substrate having a pixel electrode, and the electrolysis is performed according to the potential between the electrodes.
  • An electrochemical display element that performs display by oxidation-reduction of a deposition material in a liquid, wherein the non-observation side substrate supplies a current from a power supply bus to the pixel electrode through a driving transistor.
  • a first insulating film formed so as to cover the drive transistor and the metal wiring, and the pixel electrode has an ionization tendency equal to or equal to the deposition material.
  • the metal is made of a material having a higher ionization tendency than the material, is formed on the first insulating film, and is formed on the metal through a contact hole provided in the first insulating film. Is connected to the line, the substrate of the non-viewing side is further is configured to have a second insulating film formed on the pixel electrode so as to cover the contact hole.
  • the current from the power supply bus is supplied to the pixel electrode (first pixel electrode) via the drive transistor and the metal wiring. Therefore, a current corresponding to the potential between the common electrode on the observation side and the pixel electrode on the non-observation side flows through the electrolytic solution, and on the electrode side serving as the negative electrode, a deposition material (for example, silver) in the electrolytic solution by a reduction reaction The deposition material is dissolved by the oxidation reaction on the electrode side that becomes the positive electrode. By such deposition / dissolution of the deposition material, black / white display and switching thereof can be performed.
  • a deposition material for example, silver
  • the driving transistor and the metal wiring are covered with a first insulating film, and the pixel electrode is connected to the metal wiring through a contact hole provided in the first insulating film.
  • the pixel electrode, the drive transistor, and the metal wiring are in separate layers via the first insulating film.
  • the pixel electrode is made of a material having a higher ionization tendency or equivalent to the deposition material in the electrolytic solution. Even in the case where the pixel electrode is configured, it is possible to prevent the pixel electrode located in and on the contact hole from being dissolved by the electrolytic solution, and to reduce the occurrence of display defects due to the dissolution of the pixel electrode.
  • the second electrode is electrically connected to the first pixel electrode in a region where the second insulating film is not formed.
  • a second pixel electrode formed so as to cover at least a part of the first pixel electrode.
  • the reduction in the aperture ratio of the pixel corresponding to the first pixel electrode is at least reduced or reduced by providing the second pixel electrode. Can be prevented, and the aperture ratio can be increased.
  • the second pixel electrode may be formed to have a larger area than a region where the second insulating film is not formed in the first pixel electrode.
  • the first pixel electrode may be formed so as to cover the entire region where the second insulating film is not formed.
  • the second pixel electrode may be formed so as to extend to a non-formation region of the first pixel electrode on the first insulating film (so as to cover a part of the non-formation region). Alternatively, it may be formed so as to cover (all of) the non-formation region of the first pixel electrode on the first insulating film.
  • the second pixel electrode may be formed to have a larger area than the first pixel electrode.
  • the aperture ratio of the pixel corresponding to the first pixel electrode is reduced by providing the second insulating film on the first pixel electrode.
  • the aperture ratio can be increased.
  • the electrochemical display element of the present embodiment has a plurality of pixels and a plurality of the pixel electrodes corresponding to the plurality of pixels as first pixel electrodes, and the second insulating film includes It may be provided so as to surround each pixel corresponding to the first pixel electrode.
  • the electrochemical display element is formed in a region partitioned by the second insulating film so as to be electrically connected to the first pixel electrode in a region where the second insulating film is not formed.
  • a pixel electrode may be further included.
  • the manufacturing process can be simplified.
  • the edge of the second pixel electrode is in contact with the second insulating film and the edge (corner) of the second pixel electrode does not appear, it is possible to avoid the edge from being deteriorated by the electrolytic solution. And durability can be improved.
  • the second insulating film may also serve as a partition wall portion that suppresses movement of ions in the electrolytic solution to adjacent pixels.
  • the ions in the electrolytic solution can be prevented from moving to adjacent pixels by the second insulating film (partition wall portion), and deterioration of display quality due to bleeding can be avoided. Further, by forming the second insulating film, it is not necessary to separately form the partition wall portion, so that the structure of the display device can be simplified.
  • the second pixel electrode is formed by applying and drying a liquid material, and the non-affinity of the liquid material with respect to the surface of the second insulating film. And at least one of the surface of the second insulating film and the non-formed region is surface-treated so as to be higher than the non-formed region of the second insulating film on the non-observation side substrate. Also good.
  • the liquid material passes over the second insulating film and is adjacent.
  • the liquid material can be filled only in a predetermined region of each pixel, that is, a region where the second insulating film is not formed.
  • the contact angle of the liquid material with respect to the surface of the second insulating film is 50 ° or more and the contact angle of the liquid material with respect to the non-formation region is 20 ° or less, the effect of the surface treatment described above can be obtained. You can definitely get it.
  • the second pixel electrode may be formed to have a larger area than the first pixel electrode.
  • the second pixel electrode is formed, a high aperture ratio can be reliably realized.
  • the second pixel electrode may be made of a porous metal oxide.
  • the deposition material is supported in the porous metal oxide, and the current from the power supply bus is supplied to this portion via the first pixel electrode, the oxidation-reduction reaction rate (drive speed) at the time of current supply is increased. be able to.
  • the present invention can be used for an electrochemical display element such as an ED constituting various display devices such as an electronic book.
  • Display element electrochemical display element 1a pixel 10 substrate 12 common electrode (common electrode) 20 Substrate 23 Metal wiring 24 Interlayer insulating film (first insulating film) 24a contact hole 25 pixel electrode (first pixel electrode) 25a Non-formation region 26 Insulating film (second insulating film) 26a Partition part 27 Porous metal oxide electrode (second pixel electrode) 30 Electrolyte Q2 Thin film transistor (drive transistor) VDD power bus

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A substrate (20) on the non-observation side of a display element (1) is provided with a metal wiring (23) for supplying the current from a power bus (VDD) to a pixel electrode (25) via a thin-film transistor (Q2), and an inter-layer insulating film (24) which is formed so as to cover the thin-film transistor (Q2) and the metal wiring (23). The pixel electrode (25) is configured from a material having the same ionization tendencies as the deposition material within an electrolyte solution (30) or a higher ionization tendency than said deposition material, and is formed on the inter-layer insulating film (24). Moreover, the pixel electrode (25) is connected to the metal wiring (23) via a contact hole (24a). The substrate (20) is also provided with an insulating film (26) which is formed on the pixel electrode (25) so as to cover the contact hole (24a).

Description

電気化学表示素子Electrochemical display element
 本発明は、一対の基板間に電解液を封入し、電解液中のデポジション材料を酸化還元反応させることにより、表示を行う電気化学表示素子に関するものである。 The present invention relates to an electrochemical display element that performs display by enclosing an electrolytic solution between a pair of substrates and causing an oxidation-reduction reaction of a deposition material in the electrolytic solution.
 近年、視認性に優れ、低消費電力な表示素子が求められている。現在、CRTやPDPに代表される自発光型の表示素子や、LCDのように発光体(バックライト)からの光を変調する表示素子が一般に用いられているが、これらの表示素子では、表示画像は明るくて見やすいが、その分、消費電力が大きい。 In recent years, display devices having excellent visibility and low power consumption have been demanded. At present, a self-luminous display element represented by CRT and PDP and a display element that modulates light from a light emitter (backlight) such as an LCD are generally used. The image is bright and easy to see, but it consumes more power.
 低消費電力という観点からは、表示素子は、一旦表示した画像を無電力状態でも保持し続けるメモリー特性を有することが望ましく、さらには駆動電圧が低いことが望まれる。このような特性を備える表示素子として、近年、エレクトロクロミック表示素子(以下、ECDとも称する)やエレクトロデポジション表示素子(以下、EDとも称する)といった電気化学表示素子の開発が盛んに行われている。ECDおよびEDは、ともに、電極上での酸化還元反応による反応物質単独での光吸収状態の変化により表示を行うものである。つまり、ECDでは、酸化還元反応によるエレクトロクロミック材料の光吸収状態の可逆変化(色の変化)により表示を行っている。一方、EDでは、例えば、銀または銀を化学構造中に有する化合物を含む電解質から電極上への銀の析出と、電解質への銀の溶解とを利用して表示を行っている。これらの電気化学表示素子は、LCDに比べて、偏光板やバックライトなどの追加部材が不要であり、低コスト化、省プロセス化(製造のしやすさ)の点で非常に有利なものとなっている。 From the viewpoint of low power consumption, it is desirable that the display element has a memory characteristic that keeps an image once displayed even in a non-powered state, and further, a low driving voltage is desirable. In recent years, electrochemical display elements such as an electrochromic display element (hereinafter also referred to as ECD) and an electrodeposition display element (hereinafter also referred to as ED) have been actively developed as display elements having such characteristics. . Both ECD and ED display by changing the light absorption state of the reactant alone due to the oxidation-reduction reaction on the electrode. That is, in ECD, display is performed by a reversible change (color change) of the light absorption state of the electrochromic material due to an oxidation-reduction reaction. On the other hand, in the ED, for example, display is performed by using silver deposition on an electrode from an electrolyte containing silver or a compound having silver in a chemical structure, and dissolution of silver in the electrolyte. These electrochemical display elements do not require additional members such as polarizing plates and backlights compared to LCDs, and are extremely advantageous in terms of cost reduction and process saving (ease of manufacturing). It has become.
 ところで、EDにおいて、各画素をマトリクス状に配置して表示を行う構成では、電解質(電解液)を挟持する一対の基板のうち、非観察側に配置される基板の各画素に対応して設けられる画素電極に、電源バスからの電流が駆動トランジスタ(例えばTFT)を介して供給される。この構成において、高開口率を実現するためには、画素電極と駆動トランジスタとを別レイヤーとすることが必要である。例えば、駆動トランジスタおよびこの駆動トランジスタと接続される金属配線を絶縁膜で覆うとともに、その絶縁膜上に画素電極を設け、絶縁膜に設けられるコンタクトホールを介して画素電極と金属配線とを接続することにより、画素電極を大きく形成して高開口率を実現することができる。このように、画素電極とその下層の金属配線とをコンタクトホールを介して接続する例としては、例えば特許文献1に開示されている。 By the way, in the configuration in which each pixel is arranged in a matrix form in the ED, it is provided corresponding to each pixel of the substrate arranged on the non-observation side among the pair of substrates sandwiching the electrolyte (electrolytic solution). A current from a power supply bus is supplied to a pixel electrode to be connected via a driving transistor (for example, TFT). In this configuration, in order to realize a high aperture ratio, it is necessary to separate the pixel electrode and the driving transistor from each other. For example, a driving transistor and a metal wiring connected to the driving transistor are covered with an insulating film, a pixel electrode is provided on the insulating film, and the pixel electrode and the metal wiring are connected through a contact hole provided in the insulating film. Thus, a large pixel electrode can be formed and a high aperture ratio can be realized. As described above, for example, Patent Document 1 discloses an example in which a pixel electrode and a metal wiring thereunder are connected via a contact hole.
特開2007-11225号公報(段落〔0022〕、図5参照)JP 2007-11225 A (refer to paragraph [0022], FIG. 5)
 EDにおいては、電解液中のデポジション材料として例えば銀を用いた場合、画素電極の構成材料としては、一般に、銀よりもイオン化傾向が大きい金属材料(例えばITO)または同じ銀が用いられる。これは、銀よりもイオン化傾向の小さい金属材料は、白金と金しかなく、非常に高価で使用し難いためである。 In ED, when, for example, silver is used as a deposition material in the electrolytic solution, a metal material (for example, ITO) having the higher ionization tendency than silver or the same silver is generally used as a constituent material of the pixel electrode. This is because metal materials having a smaller ionization tendency than silver are platinum and gold, which are very expensive and difficult to use.
 ところが、デポジション材料よりもイオン化傾向が大きいまたは同等の金属材料で画素電極を構成した場合、EDの駆動時に電解液によって画素電極がエッチングされる(溶解する)。特に、コンタクトホールに位置する画素電極がエッチングされると、その画素の駆動が不可能になり、点欠陥となって表示不良が生じる。画素電極の材料としては、アモルファスITOを用いるのが、成膜プロセスの観点から有利であり、汎用装置で容易に作製することができるが、このような画素電極のエッチングは、アモルファスITOを用いたときに特に生じやすくなる。 However, when the pixel electrode is made of a metal material having a greater ionization tendency or equivalent to that of the deposition material, the pixel electrode is etched (dissolved) by the electrolytic solution when the ED is driven. In particular, when the pixel electrode located in the contact hole is etched, the pixel cannot be driven, resulting in a point defect and display failure. As the material for the pixel electrode, it is advantageous from the viewpoint of the film formation process to use amorphous ITO, and it can be easily manufactured by a general-purpose device. However, for the etching of the pixel electrode, amorphous ITO was used. It is especially likely to occur.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、画素電極と下層の金属配線および駆動トランジスタとを絶縁膜を介して別レイヤーとし、電解液中のデポジション材料よりもイオン化傾向の大きいまたは同等の材料で画素電極を構成した場合でも、上記絶縁膜のコンタクトホール部分の画素電極の溶解を抑えて、表示不良が生じるのを低減できる電気化学表示素子を提供することにある。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a deposition material in an electrolytic solution in which a pixel electrode and a lower-layer metal wiring and a driving transistor are separated from each other via an insulating film There is provided an electrochemical display element capable of suppressing the occurrence of display defects by suppressing the dissolution of the pixel electrode in the contact hole portion of the insulating film even when the pixel electrode is made of a material having a greater ionization tendency or equivalent. There is.
 本発明の電気化学表示素子は、共通電極を有する観察側の基板と、画素電極を有する非観察側の基板との間に電解液を封入し、前記各電極間の電位に応じて前記電解液中のデポジション材料を酸化還元反応させることにより、表示を行う電気化学表示素子であって、前記非観察側の基板は、電源バスからの電流を駆動トランジスタを介して前記画素電極に供給するための金属配線と、前記駆動トランジスタおよび前記金属配線を覆うように形成される第1の絶縁膜とを有しており、前記画素電極は、前記デポジション材料とイオン化傾向が同等または前記デポジション材料よりもイオン化傾向の大きい材料で構成され、前記第1の絶縁膜上に形成されているとともに、前記第1の絶縁膜に設けられるコンタクトホールを介して前記金属配線と接続されており、前記非観察側の基板は、さらに、前記コンタクトホールを覆うように前記画素電極上に形成される第2の絶縁膜を有していることを特徴としている。 In the electrochemical display element of the present invention, an electrolytic solution is sealed between an observation-side substrate having a common electrode and a non-observation-side substrate having a pixel electrode, and the electrolytic solution according to the potential between the electrodes. An electrochemical display element that performs display by oxidation-reduction reaction of the deposition material therein, the substrate on the non-observation side supplying current from a power supply bus to the pixel electrode through a driving transistor And a first insulating film formed so as to cover the drive transistor and the metal wiring, and the pixel electrode has an ionization tendency equivalent to that of the deposition material or the deposition material. The metal wiring is made of a material having a higher ionization tendency than the first insulating film, and is formed on the first insulating film and through the contact hole provided in the first insulating film. Are connected, the substrate of the non-viewing side is further characterized by having a second insulating film formed on the pixel electrode so as to cover the contact hole.
 本発明によれば、画素電極上には、コンタクトホールを覆うように第2の絶縁膜が形成されているので、電解液中のデポジション材料よりもイオン化傾向が大きいまたは同等の材料で画素電極が構成されている場合でも、コンタクトホール内およびコンタクトホール上に位置する画素電極が電解液によって溶解するのを抑えることができ、画素電極の溶解による表示不良の発生を低減することができる。 According to the present invention, since the second insulating film is formed on the pixel electrode so as to cover the contact hole, the pixel electrode is made of a material having a greater ionization tendency or equivalent to the deposition material in the electrolytic solution. Even in the case where the pixel electrode is configured, it is possible to prevent the pixel electrode located in and on the contact hole from being dissolved by the electrolytic solution, and to reduce the occurrence of display defects due to the dissolution of the pixel electrode.
(a)は、本発明の実施の一形態の表示素子の1画素の概略の構成を模式的に示すとともに、黒表示状態での画素を示す説明図であり、(b)は白表示状態での画素を示す説明図である。(A) is explanatory drawing which shows the pixel in a black display state while showing typically the schematic structure of 1 pixel of the display element of one Embodiment of this invention, (b) is in a white display state. It is explanatory drawing which shows this pixel. 上記表示素子の画素の等価回路を示す説明図である。It is explanatory drawing which shows the equivalent circuit of the pixel of the said display element. 上記画素の詳細な構成を示す断面図である。It is sectional drawing which shows the detailed structure of the said pixel. 上記画素の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the said pixel. 上記画素のさらに他の構成を示す断面図である。It is sectional drawing which shows other structure of the said pixel. (a)は、各画素の周囲に隔壁部が存在しない場合の銀の析出領域を示す断面図であり、(b)は、各画素の周囲に形成される絶縁膜が隔壁部として機能する場合の銀の析出領域を示す断面図である。(A) is sectional drawing which shows the silver precipitation area | region when a partition part does not exist around each pixel, (b) is the case where the insulating film formed around each pixel functions as a partition part It is sectional drawing which shows the precipitation area | region of silver. 2つの表面の接触角を示す説明図である。It is explanatory drawing which shows the contact angle of two surfaces. 各実施例および比較例の表示素子の有効画素エリアを示す説明図である。It is explanatory drawing which shows the effective pixel area of the display element of each Example and a comparative example. 各実施例および比較例の表示素子の駆動回数ごとの画素欠陥発生率を示す説明図である。It is explanatory drawing which shows the pixel defect occurrence rate for every driving frequency of the display element of each Example and a comparative example.
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。 An embodiment of the present invention will be described below with reference to the drawings.
 〔表示素子の基本構成〕
 図1(a)(b)は、本実施形態の表示素子1の1画素の概略の構成を模式的に示す説明図である。ただし、図1(a)は黒表示状態での画素を示し、図1(b)は白表示状態での画素を示している。表示素子1は、EDと呼ばれる電気化学表示素子で構成されており、観察側の基板10と非観察側の基板20との間に電解液30を封入して構成されている。電解液30には、デポジション材料としての銀が溶解しており、銀イオン31が存在している。なお、電解液30の詳細については後述する。
[Basic structure of display element]
FIGS. 1A and 1B are explanatory diagrams schematically showing a schematic configuration of one pixel of the display element 1 of the present embodiment. However, FIG. 1A shows a pixel in a black display state, and FIG. 1B shows a pixel in a white display state. The display element 1 is configured by an electrochemical display element called ED, and is configured by sealing an electrolytic solution 30 between an observation side substrate 10 and a non-observation side substrate 20. In the electrolytic solution 30, silver as a deposition material is dissolved, and silver ions 31 are present. The details of the electrolytic solution 30 will be described later.
 観察側の基板10は、例えば透明なガラス基板で構成されるコモン基板11を有している。そして、コモン基板11上には、各画素1aに共通のコモン電極12(共通電極)が形成されている。一方、非観察側の基板20は、例えば透明なガラス基板で構成される駆動基板21を有している。なお、駆動基板21は非観察側に配置されるため、透明でなくてもよい。この駆動基板21上には、各画素1aに対応する画素電極25が形成されている。各基板10・20は、コモン電極12および画素電極25が内側となるように(電解液30を介して対向するように)貼り合わされている。 The observation-side substrate 10 has a common substrate 11 made of, for example, a transparent glass substrate. A common electrode 12 (common electrode) common to the pixels 1a is formed on the common substrate 11. On the other hand, the non-observation side substrate 20 has a drive substrate 21 made of, for example, a transparent glass substrate. In addition, since the drive board | substrate 21 is arrange | positioned at the non-observation side, it does not need to be transparent. On the driving substrate 21, pixel electrodes 25 corresponding to the respective pixels 1a are formed. The substrates 10 and 20 are bonded to each other so that the common electrode 12 and the pixel electrode 25 are on the inner side (so as to face each other with the electrolytic solution 30 therebetween).
 コモン電極12は、観察側の電極であるため、透明であることが必要である。このため、コモン電極12としては、通常、酸化インジウムスズ(以下、ITOと言う)などの透明電極が用いられる。ここで、ITOは、電解液30によるエッチング耐性を高めるため、結晶性のものが望ましい。アモルファスのITOを用いる場合は、300℃以上の温度でアニールして結晶化させる必要があるが、観察側の基板10側には、熱によるダメージを受ける材料が形成されていないので、アモルファスITOを用いてコモン電極12を形成することが可能である。 Since the common electrode 12 is an observation side electrode, it needs to be transparent. For this reason, as the common electrode 12, a transparent electrode such as indium tin oxide (hereinafter referred to as ITO) is usually used. Here, in order to increase the etching resistance by the electrolytic solution 30, ITO is desirably crystalline. In the case of using amorphous ITO, it is necessary to anneal and crystallize at a temperature of 300 ° C. or higher. However, since no material that is damaged by heat is formed on the substrate 10 side on the observation side, the amorphous ITO is used. Thus, the common electrode 12 can be formed.
 一方、画素電極25は、電解液30中のデポジション材料よりもイオン化傾向が大きい材料で構成されている。例えば、デポジション材料として銀を用いた場合、画素電極25としては、金属酸化物であるアモルファス状のITOを用いる場合が多い。なぜなら、アモルファスITOの場合は、約200℃程度で低温成膜(通常はスパッタ)することができるので、非観察側の駆動基板21上に形成されるトランジスタ(例えばTFT)やそれを覆う絶縁膜にダメージを与えることがないからである。また、フォトリソグラフィ技術によるパターニングが可能であるため、同様に、上記トランジスタ等にダメージを与えることがない。このように、アモルファスITOは、画素電極25の成膜プロセスの観点から有利であり、汎用装置で画素電極25を容易に形成することができる。なお、画素電極25は、電解液30中のデポジション材料とイオン化傾向が同等の材料(例えば銀)で構成されていてもよい。 On the other hand, the pixel electrode 25 is made of a material having a larger ionization tendency than the deposition material in the electrolytic solution 30. For example, when silver is used as the deposition material, the pixel electrode 25 is often made of amorphous ITO, which is a metal oxide. This is because amorphous ITO can be formed at a low temperature (usually sputtering) at about 200 ° C., so that a transistor (for example, TFT) formed on the non-observation side drive substrate 21 and an insulating film covering the transistor are formed. This is because it does not cause damage. Further, since patterning by a photolithography technique is possible, similarly, the transistor or the like is not damaged. Thus, amorphous ITO is advantageous from the viewpoint of the film formation process of the pixel electrode 25, and the pixel electrode 25 can be easily formed by a general-purpose apparatus. The pixel electrode 25 may be made of a material (for example, silver) having the same ionization tendency as the deposition material in the electrolytic solution 30.
 次に、表示素子1の表示原理について説明する。
 図1(a)において、スイッチSW1が閉じられると、コモン電極12のコモン電圧Vcomとして、画素電極25に対して閾値以上の負の電圧Vbが印加され、コモン電極12から電解液30に電子が注入されてコモン電流Icomが流れ、コモン電極12の画素電極25に対向する位置に、銀イオン31が還元されて銀の層32が析出する。これをコモン電極12側から見ると、黒く見える。
Next, the display principle of the display element 1 will be described.
In FIG. 1A, when the switch SW1 is closed, a negative voltage Vb equal to or higher than the threshold is applied to the pixel electrode 25 as the common voltage Vcom of the common electrode 12, and electrons are supplied from the common electrode 12 to the electrolyte 30. The common current Icom flows by being injected, and the silver ions 31 are reduced and the silver layer 32 is deposited at the position of the common electrode 12 facing the pixel electrode 25. When viewed from the common electrode 12 side, it looks black.
 一方、図1(b)において、同様にスイッチSW1が閉じられ、コモン電極12のコモン電圧Vcomとして、画素電極25に対して閾値以上の正の電圧Vwが印加されると、図1(a)で析出した銀の層32が酸化されて銀イオン31となり、電解液30の内部に分散される。銀の層32が銀イオン31に変化した状態は、コモン電極12側から見ると透明であるため、電解液30を白く着色しておく、あるいは画素電極25の上に拡散層を設ける等により、白く見える。このようにして白と黒の表示を切り替えることができる。 On the other hand, in FIG. 1B, when the switch SW1 is similarly closed and a positive voltage Vw equal to or higher than the threshold is applied to the pixel electrode 25 as the common voltage Vcom of the common electrode 12, FIG. The silver layer 32 deposited in step 1 is oxidized into silver ions 31 and dispersed in the electrolyte 30. The state in which the silver layer 32 is changed to the silver ion 31 is transparent when viewed from the common electrode 12 side. Therefore, the electrolyte solution 30 is colored white, or a diffusion layer is provided on the pixel electrode 25. Looks white. In this way, it is possible to switch between white and black display.
 図1(a)(b)では、スイッチSW1を用いて表示素子1の画素1aに電圧を印加しているが、スイッチSW1として1画素当たり2個の薄膜トランジスタ(TFT)を用いれば、各画素1aをマトリクス状に配置して、各画素1aごとに電圧を印加して表示を行う、いわゆるアクティブマトリクス方式の表示素子1を構成することができる。 In FIGS. 1A and 1B, a voltage is applied to the pixel 1a of the display element 1 using the switch SW1, but if two thin film transistors (TFTs) are used per pixel as the switch SW1, each pixel 1a. Can be arranged in a matrix, and a so-called active matrix type display element 1 can be configured in which a voltage is applied to each pixel 1a to perform display.
 〔画素の詳細な構成〕
 次に、表示素子1の1画素の詳細な構成について説明する。
 図2は、表示素子1の画素1aの等価回路を示す説明図である。画素1aには、2個の薄膜トランジスタQ1・Q2が形成されている。薄膜トランジスタQ1は、駆動する画素1aを選択するための選択トランジスタ(スイッチングトランジスタ)であり、薄膜トランジスタQ2は、画素1aを駆動する駆動トランジスタである。
[Detailed pixel configuration]
Next, a detailed configuration of one pixel of the display element 1 will be described.
FIG. 2 is an explanatory diagram showing an equivalent circuit of the pixel 1 a of the display element 1. In the pixel 1a, two thin film transistors Q1 and Q2 are formed. The thin film transistor Q1 is a selection transistor (switching transistor) for selecting the pixel 1a to be driven, and the thin film transistor Q2 is a drive transistor for driving the pixel 1a.
 薄膜トランジスタQ1は、ゲートバスGmの信号により駆動され、オンされたときのソースバスSnの信号を薄膜トランジスタQ2のゲート電極に印加する。薄膜トランジスタQ2は、薄膜トランジスタQ1によってゲート電位が高電位にされたときに、コモン電位Vcomと電源バスVDDによる駆動電位Vddとの差の電位、すなわち図1(a)(b)で説明した電圧VbまたはVwを、コモン電極12と画素電極25との間に印加して、電解液30に電流を流す。コモン電極12と画素電極25との間の電位に応じて、電解液30中のデポジション材料である銀が酸化還元反応を起こし、これによって、画素1aを黒化させたり白化させたりすることができる。 The thin film transistor Q1 is driven by the signal of the gate bus Gm and applies the signal of the source bus Sn when turned on to the gate electrode of the thin film transistor Q2. The thin film transistor Q2 has a potential difference between the common potential Vcom and the drive potential Vdd by the power supply bus VDD when the gate potential is raised by the thin film transistor Q1, that is, the voltage Vb described with reference to FIGS. Vw is applied between the common electrode 12 and the pixel electrode 25 to pass a current through the electrolytic solution 30. Depending on the potential between the common electrode 12 and the pixel electrode 25, silver as a deposition material in the electrolytic solution 30 causes an oxidation-reduction reaction, and thereby the pixel 1a may be blackened or whitened. it can.
 このように、EDとしての表示素子1は、電流駆動型の表示素子であるので、各画素1aには駆動時に瞬間的に比較的大きな電流が流れる。この際の電圧降下を防止するために、電源バスVDDは太くする必要がある。ただ、画素サイズとの兼ね合いから、電源バスVDDはむやみに幅方向に太くすることはできないので、電源バスVDDを厚く形成することで対応するのが一般的である。 Thus, since the display element 1 as the ED is a current-driven display element, a relatively large current instantaneously flows through each pixel 1a during driving. In order to prevent a voltage drop at this time, the power supply bus VDD needs to be thick. However, since the power supply bus VDD cannot be unnecessarily thickened in the width direction due to the balance with the pixel size, it is general that the power supply bus VDD is formed thicker.
 次に、画素1aにおける非観察側の基板20の構成について、さらに詳しく説明する。図3は、画素1aの詳細な構成を示す断面図である。駆動基板21上には、走査バスGmと、薄膜トランジスタQ1・Q2のゲート電極とが形成されている。薄膜トランジスタQ1のゲート電極は、走査バスGmと接続されている。そして、走査バスGmおよび各ゲート電極を覆うように、ゲート絶縁膜22が駆動基板21上に形成されている。 Next, the configuration of the non-observation side substrate 20 in the pixel 1a will be described in more detail. FIG. 3 is a cross-sectional view showing a detailed configuration of the pixel 1a. On the drive substrate 21, a scanning bus Gm and gate electrodes of the thin film transistors Q1 and Q2 are formed. The gate electrode of the thin film transistor Q1 is connected to the scanning bus Gm. A gate insulating film 22 is formed on the drive substrate 21 so as to cover the scanning bus Gm and each gate electrode.
 ゲート絶縁膜22上には、薄膜トランジスタQ1・Q2の半導体がパターニング形成されているとともに、ソースバスSn、電源バスVDD、薄膜トランジスタQ1・Q2のソース/ドレイン電極および金属配線23が形成されている。薄膜トランジスタQ1のソース/ドレイン電極の一方の電極は、ソースバスSnと接続されており、他方の電極は、ゲート絶縁膜22に設けられるコンタクトホール22aを介して、薄膜トランジスタQ2のゲート電極と接続されている。また、薄膜トランジスタQ2のソース/ドレイン電極の一方の電極は、電源バスVDDと接続されており、他方の電極は、金属配線23と接続されている。なお、上記他方の電極は、金属配線23と一体形成されていてもよい。 On the gate insulating film 22, the semiconductors of the thin film transistors Q1 and Q2 are formed by patterning, and the source bus Sn, the power supply bus VDD, the source / drain electrodes of the thin film transistors Q1 and Q2, and the metal wiring 23 are formed. One electrode of the source / drain electrodes of the thin film transistor Q1 is connected to the source bus Sn, and the other electrode is connected to the gate electrode of the thin film transistor Q2 through a contact hole 22a provided in the gate insulating film 22. Yes. One electrode of the source / drain electrodes of the thin film transistor Q2 is connected to the power supply bus VDD, and the other electrode is connected to the metal wiring 23. The other electrode may be formed integrally with the metal wiring 23.
 そして、薄膜トランジスタQ1・Q2の半導体、ソースバスSn、電源バスVDD、薄膜トランジスタQ1・Q2のソース/ドレイン電極および金属配線23を覆うように、層間絶縁膜24(第1の絶縁膜)が形成されており、この層間絶縁膜24上に画素電極25(第1の画素電極)が形成されている。画素電極25は、層間絶縁膜24に設けられるコンタクトホール24aを介して、金属配線23と接続されている。したがって、薄膜トランジスタQ2がオンされたときには、電源バスVDDからの電流が薄膜トランジスタQ2および金属配線23を介して画素電極25に供給されることになる。 Then, an interlayer insulating film 24 (first insulating film) is formed so as to cover the semiconductors of the thin film transistors Q1 and Q2, the source bus Sn, the power supply bus VDD, the source / drain electrodes of the thin film transistors Q1 and Q2, and the metal wiring 23. A pixel electrode 25 (first pixel electrode) is formed on the interlayer insulating film 24. The pixel electrode 25 is connected to the metal wiring 23 through a contact hole 24 a provided in the interlayer insulating film 24. Therefore, when the thin film transistor Q2 is turned on, the current from the power supply bus VDD is supplied to the pixel electrode 25 via the thin film transistor Q2 and the metal wiring 23.
 画素電極25上には、コンタクトホール24aを覆うように(コンタクトホール24aよりも大きいサイズで)、絶縁膜26(第2の絶縁膜)が形成されている。そして、これらの画素電極25および絶縁膜26を覆うように、多孔質金属酸化物電極27(第2の画素電極)が画素1aごとに層間絶縁膜24上にパターニング形成されている。多孔質金属酸化物電極27は、画素電極25と絶縁膜26の非形成領域25aで導通している。なお、絶縁膜26および多孔質金属酸化物電極27の詳細(材料、形成方法)については後述する。 An insulating film 26 (second insulating film) is formed on the pixel electrode 25 so as to cover the contact hole 24a (with a size larger than the contact hole 24a). A porous metal oxide electrode 27 (second pixel electrode) is patterned on the interlayer insulating film 24 for each pixel 1 a so as to cover the pixel electrode 25 and the insulating film 26. The porous metal oxide electrode 27 is electrically connected to the pixel electrode 25 in the non-formation region 25 a of the insulating film 26. Details (materials and formation method) of the insulating film 26 and the porous metal oxide electrode 27 will be described later.
 上記のように、コンタクトホール24aを覆うように絶縁膜26が形成されているので、画素電極25が銀よりもイオン化傾向の小さいアモルファスITOで構成されている場合でも、コンタクトホール24a内およびコンタクトホール24a上に位置する画素電極25が電解液30によって溶解するのを抑えることができる。したがって、コンタクトホール24aの画素電極25の溶解により、電源バスVDDからの電流が画素1aに供給されなくなって欠陥画素となり、表示不良が生じるのを低減することができる。 As described above, the insulating film 26 is formed so as to cover the contact hole 24a. Therefore, even in the case where the pixel electrode 25 is made of amorphous ITO having a smaller ionization tendency than silver, the contact hole 24a and the contact hole are also formed. It can suppress that the pixel electrode 25 located on 24a melt | dissolves with the electrolyte solution 30. FIG. Accordingly, the dissolution of the pixel electrode 25 in the contact hole 24a prevents the current from the power supply bus VDD from being supplied to the pixel 1a, resulting in a defective pixel, which can reduce display defects.
 さらに、画素電極25と非形成領域25aで導通する多孔質金属酸化物電極27が、第2の画素電極として、画素電極25および絶縁膜26を覆うように設けられているので、画素電極25上に絶縁膜26が設けられることによって表示に寄与しなくなる領域を、多孔質金属酸化物電極27で覆うことによって表示に寄与させることができる。このことにより、画素電極25と薄膜トランジスタQ1・Q2および金属配線23とを層間絶縁膜24を介して別レイヤーとして、高開口率の実現を図っているにもかかわらず、画素電極25上に絶縁膜26を設けることによって開口率が低下するのを回避することができる。 Further, since the porous metal oxide electrode 27 that is electrically connected to the pixel electrode 25 in the non-formation region 25a is provided as the second pixel electrode so as to cover the pixel electrode 25 and the insulating film 26, A region that does not contribute to display due to the provision of the insulating film 26 is covered with the porous metal oxide electrode 27 to contribute to display. As a result, although the pixel electrode 25, the thin film transistors Q1 and Q2, and the metal wiring 23 are separated from each other through the interlayer insulating film 24, an insulating film is formed on the pixel electrode 25 even though a high aperture ratio is achieved. By providing 26, it is possible to avoid a decrease in the aperture ratio.
 また、図3のように、多孔質金属酸化物電極27を、絶縁膜24上の画素電極25の非形成領域にも形成すれば、画素1aの開口率をさらに広げることができる。なお、図3では、多孔質金属酸化物電極27が絶縁膜26全体を覆うように設けられているが、多孔質金属酸化物電極27は必ずしも絶縁膜26全体を覆う必要はなく、絶縁膜26の一部のみを覆っていてもよい。要は、多孔質金属酸化物電極27は、どこかで画素電極25と導通していればよい。このように多孔質酸化物電極27が絶縁膜26の一部を覆う構成であっても、多孔質金属酸化物電極27を、絶縁膜24上の画素電極25の非形成領域まで延びるように形成したり(上記非形成領域の一部を覆うように形成したり)、上記非形成領域を全て覆うように形成することで、開口率の低下をより軽減し、あるいは防止することができる。また、多孔質金属酸化物電極27を、画素電極25の非形成領域25aよりも大きく形成したり、該非形成領域25aを全て覆うように形成してもよい。 Further, as shown in FIG. 3, if the porous metal oxide electrode 27 is also formed in the non-formation region of the pixel electrode 25 on the insulating film 24, the aperture ratio of the pixel 1a can be further increased. In FIG. 3, the porous metal oxide electrode 27 is provided so as to cover the entire insulating film 26, but the porous metal oxide electrode 27 does not necessarily need to cover the entire insulating film 26. You may cover only a part of. In short, the porous metal oxide electrode 27 may be electrically connected to the pixel electrode 25 somewhere. Thus, even if the porous oxide electrode 27 covers a part of the insulating film 26, the porous metal oxide electrode 27 is formed so as to extend to the non-formation region of the pixel electrode 25 on the insulating film 24. (Or forming so as to cover a part of the non-formed region), or forming the cover so as to cover all the non-formed region, the decrease in the aperture ratio can be further reduced or prevented. Further, the porous metal oxide electrode 27 may be formed larger than the non-formation region 25a of the pixel electrode 25, or may be formed so as to cover the non-formation region 25a.
 また、開口率を維持または拡大するためには、多孔質金属酸化物電極27が、絶縁膜26を設けたことによる開口率の低下を補うだけの面積を有していればよく、この面積は、画素電極25が形成されていない領域で確保されてもよい。つまり、多孔質金属酸化物電極27は、層間絶縁膜24上の画素電極25の非形成領域を覆うように形成されていてもよい。 In order to maintain or increase the aperture ratio, it is sufficient that the porous metal oxide electrode 27 has an area that can compensate for the decrease in the aperture ratio due to the provision of the insulating film 26. Alternatively, it may be secured in a region where the pixel electrode 25 is not formed. That is, the porous metal oxide electrode 27 may be formed so as to cover a region where the pixel electrode 25 is not formed on the interlayer insulating film 24.
 以上のように、画素電極25(第1の画素電極)上に多孔質金属酸化物電極27(第2の画素電極)を設けることにより、開口率が維持、拡大される以外にも、電極全体の厚みが増大することによって電気の抵抗値が下がり、電気が流れやすくなるという利点も生まれる。 As described above, by providing the porous metal oxide electrode 27 (second pixel electrode) on the pixel electrode 25 (first pixel electrode), in addition to maintaining and expanding the aperture ratio, the entire electrode Increasing the thickness of the wire also has the advantage that the resistance value of electricity decreases and electricity flows easily.
 なお、第2の画素電極として、多孔質金属酸化物からなる電極を設けることの利点については後述するが、多孔質金属酸化物電極27の代わりに、画素電極25と同じ金属材料(アモルファスITO)からなる電極を第2の画素電極として形成することも可能である。後者の場合でも、絶縁膜26による開口率の低下を回避する、または開口率を広げることができるという効果に変わりはない。 The advantage of providing an electrode made of a porous metal oxide as the second pixel electrode will be described later. Instead of the porous metal oxide electrode 27, the same metal material (amorphous ITO) as the pixel electrode 25 is used. It is also possible to form the electrode made of as the second pixel electrode. Even in the latter case, the effect of avoiding a decrease in the aperture ratio due to the insulating film 26 or increasing the aperture ratio remains unchanged.
 〔画素の他の構成〕
 図4は、画素1aの他の構成を示す断面図である。同図に示すように、上記した絶縁膜26は、各画素電極25に対応する各画素1aを囲むように、各画素1aの周縁部に設けられていてもよい。つまり、絶縁膜26は、隣接する画素1a・1aを区切るように設けられるバンクであってもよい。そして、各画素1aの多孔質金属酸化物電極27は、絶縁膜26で囲まれる領域全体に形成され、絶縁膜26で区切られていてもよい。この構成では、各画素1aにおいて、多孔質金属酸化物電極27は、絶縁膜26の一部を覆わないが、画素電極25よりも面積が大きくなることによって、開口率が向上する。
[Other pixel configurations]
FIG. 4 is a cross-sectional view showing another configuration of the pixel 1a. As shown in the drawing, the insulating film 26 described above may be provided on the peripheral edge of each pixel 1 a so as to surround each pixel 1 a corresponding to each pixel electrode 25. That is, the insulating film 26 may be a bank provided so as to separate adjacent pixels 1a and 1a. The porous metal oxide electrode 27 of each pixel 1 a may be formed over the entire region surrounded by the insulating film 26 and may be partitioned by the insulating film 26. In this configuration, in each pixel 1a, the porous metal oxide electrode 27 does not cover a part of the insulating film 26, but the area is larger than the pixel electrode 25, so that the aperture ratio is improved.
 また、図3の構成とは異なり、多孔質金属酸化物電極27の形成後、多孔質金属酸化物電極27を各画素1aごとにパターニングする必要がないので、製造工程を簡素化できる。また、図3のように多孔質金属酸化物電極27を画素1aごとにパターニング形成する場合には、エッジ(角部)などの先鋭部27aが多孔質金属酸化物電極27に現れるが、図4の構成では、多孔質金属酸化物電極27の端部は絶縁膜26と接触するので、多孔質金属酸化物電極27に上記の先鋭部が現れず、その先鋭部が電解液30で劣化するという事態を回避して耐久性を向上させることができる。 Further, unlike the configuration of FIG. 3, it is not necessary to pattern the porous metal oxide electrode 27 for each pixel 1a after the formation of the porous metal oxide electrode 27, so that the manufacturing process can be simplified. In addition, when the porous metal oxide electrode 27 is formed by patterning for each pixel 1a as shown in FIG. 3, sharp edges 27a such as edges (corner portions) appear on the porous metal oxide electrode 27. FIG. In this configuration, since the end of the porous metal oxide electrode 27 is in contact with the insulating film 26, the sharpened portion does not appear in the porous metal oxide electrode 27, and the sharpened portion is deteriorated by the electrolytic solution 30. The situation can be avoided and the durability can be improved.
 また、図5は、画素1aのさらに他の構成を示す断面図である。同図に示すように、上記した絶縁膜26は、基板10・20間のギャップとほぼ同じ高さに形成されて、電解液30中の銀イオンの隣接画素への移動を抑制する隔壁部26aを兼ねていてもよい。 FIG. 5 is a cross-sectional view showing still another configuration of the pixel 1a. As shown in the figure, the above-described insulating film 26 is formed at substantially the same height as the gap between the substrates 10 and 20, and a partition wall portion 26a that suppresses movement of silver ions in the electrolytic solution 30 to adjacent pixels. You may also serve.
 図6(a)に示すように、各画素1aの周囲に隔壁部が存在しない場合、黒表示を行う画素1a1がその隣接画素1a2の電位状態に影響され、画素1a1の銀イオンが本来移動すべきでない隣接画素1a2の方向に移動して黒表示となる。つまり、黒表示を行う画素1a1に形成されるべき銀の層32が隣接画素1a2にも広がって形成されて黒表示となる。この現象は、滲みとも呼ばれ、表示画像の精細度を落とす原因となるものである。 As shown in FIG. 6 (a), ambient when the partition wall is not present in the pixels 1a, the pixels 1a 1 performing black display is affected by the potential state of the adjacent pixels 1a 2, the silver ion of the pixels 1a 1 It moves in the direction of the adjacent pixel 1a 2 that should not be moved, and black is displayed. That is, the silver layer 32 to be formed on the pixel 1a 1 that performs black display extends to the adjacent pixel 1a 2 to display black. This phenomenon is also called bleeding, and causes a reduction in the definition of the display image.
 これに対して、図6(b)に示すように、絶縁膜26が隔壁部26aとして機能する場合、電解液30に溶解している銀イオンが、黒表示を行う画素1a1から隣接画素1a2に移動するのを絶縁膜26(隔壁部26a)で抑えることができる。これにより、画素1a1に形成されるべき銀の層32が隣接画素1a2に広がるのを回避することができ、滲みによる表示品位の低下を回避することができる。また、絶縁膜26が隔壁部26aを兼ねるので、上記滲みを抑えるための隔壁部を別途形成する必要がなく、表示素子1の構成を簡素化することができる。 In contrast, as shown in FIG. 6 (b), when the insulating film 26 functions as a partition wall 26a, the silver ions dissolved in the electrolytic solution 30, adjacent pixels 1a from pixels 1a 1 performing black display The movement to 2 can be suppressed by the insulating film 26 (partition wall 26a). As a result, the silver layer 32 to be formed on the pixel 1a 1 can be prevented from spreading to the adjacent pixel 1a 2 , and deterioration of display quality due to bleeding can be avoided. Further, since the insulating film 26 also serves as the partition wall portion 26a, it is not necessary to separately form a partition wall portion for suppressing the bleeding, and the configuration of the display element 1 can be simplified.
 なお、絶縁膜26は、基板10・20間のギャップを完全に埋めるように形成されてもよい。この場合は、各画素1aの電極間距離を一定に保つことができるので、全ての画素1aを含む表示エリア全体での表示ムラを無くすことができる。 The insulating film 26 may be formed so as to completely fill the gap between the substrates 10 and 20. In this case, since the distance between the electrodes of each pixel 1a can be kept constant, display unevenness in the entire display area including all the pixels 1a can be eliminated.
 〔電解液〕
 次に、上述した電解液30の詳細について説明する。
 電解液30は、銀または銀を化学構造中に含む化合物を含んでおり、電解液30に銀イオンが存在している。ここで、銀または銀を化学構造中に含む化合物とは、例えば、酸化銀、硫化銀、金属銀、銀コロイド粒子、ハロゲン化銀、銀錯体化合物、銀イオン等の化合物の総称である。このとき、固体状態や液体への可溶化状態や気体状態等の相の状態種、中性、アニオン性、カチオン性等の荷電状態種は、特に問わない。
[Electrolyte]
Next, the detail of the electrolyte solution 30 mentioned above is demonstrated.
The electrolytic solution 30 contains silver or a compound containing silver in the chemical structure, and silver ions are present in the electrolytic solution 30. Here, silver or a compound containing silver in the chemical structure is a general term for compounds such as silver oxide, silver sulfide, metallic silver, silver colloidal particles, silver halide, silver complex compounds, and silver ions. At this time, any state state species such as a solid state, a solubilized state in a liquid, or a gas state, and a charged state species such as neutral, anionic, and cationic are not particularly limited.
 電解液30に含まれる銀イオン濃度は、0.2モル/kg≦[Ag]≦2.0モル/kgが好ましい。銀イオン濃度が0.2モル/kgよりも少ないと、希薄な銀溶液となって駆動速度が遅延し、逆に、2モル/kgよりも大きいと、溶解性が劣化し、低温保存時に析出が起きやすくなる傾向にあり、不利である。 The concentration of silver ions contained in the electrolytic solution 30 is preferably 0.2 mol / kg ≦ [Ag] ≦ 2.0 mol / kg. When the silver ion concentration is less than 0.2 mol / kg, the driving speed is delayed due to a dilute silver solution. Conversely, when the silver ion concentration is greater than 2 mol / kg, the solubility deteriorates and precipitates during low-temperature storage. Tends to occur, which is disadvantageous.
 また、電解液30は、25℃における粘度が、0.1mPa・s以上100mPa・s未満であることが好ましく、溶媒に対する高分子バインダーの量が、重量比で10%未満であることが好ましい。さらに、電解液30は、有機溶媒、イオン性液体、酸化還元活性物質、支持電解質、錯化剤、白色散乱物、高分子バインダー等を必要に応じて選択して構成されてもよい。 In addition, the electrolyte solution 30 preferably has a viscosity at 25 ° C. of 0.1 mPa · s or more and less than 100 mPa · s, and the amount of the polymer binder with respect to the solvent is preferably less than 10% by weight. Furthermore, the electrolytic solution 30 may be configured by selecting an organic solvent, an ionic liquid, a redox active substance, a supporting electrolyte, a complexing agent, a white scattering material, a polymer binder, and the like as necessary.
 〔第2の絶縁膜〕
 次に、第2の絶縁膜としての絶縁膜26の詳細について説明する。
 絶縁膜26の材料としては、良好な絶縁性を有し、成膜時に、スイッチング素子(薄膜トランジスタQ1・Q2)の半導体材料を劣化させないものが適用可能である。例えば、絶縁膜26として、酸化ケイ素等の無機酸化物や、窒化ケイ素等の無機窒化物、あるいは、ポリイミド、ポリアミド、ポリエステル、ポリアクリレート、光ラジカル重合系、光カチオン重合系の光硬化性樹脂、アクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリビニルアルコール、ノボラック樹脂、シアノエチルプルラン、パリレン等の有機化合物が適用可能である。さらには、有機材料と無機材料の複数層の重ね合わせで絶縁膜26を構成してもよい。
[Second insulating film]
Next, details of the insulating film 26 as the second insulating film will be described.
As the material of the insulating film 26, a material having good insulating properties and not deteriorating the semiconductor material of the switching elements (thin film transistors Q1 and Q2) at the time of film formation can be used. For example, as the insulating film 26, inorganic oxides such as silicon oxide, inorganic nitrides such as silicon nitride, or polyimide, polyamide, polyester, polyacrylate, photo radical polymerization type, photo cation polymerization type photo curable resin, An organic compound such as a copolymer containing an acrylonitrile component, polyvinylphenol, polyvinyl alcohol, a novolac resin, cyanoethyl pullulan, or parylene is applicable. Further, the insulating film 26 may be formed by superposing a plurality of layers of an organic material and an inorganic material.
 絶縁膜26の形成方法としては、例えば、全面塗布後、所定形状にパターニングする方法と、ダイレクトに所定形状でパターニング形成する方法とがある。前者の方法の場合、上記光硬化性樹脂を用いてスピンコート成膜し、パターン露光、現像の各工程を経て、コンタクトホール24aの形状よりも少し大きめにパターンを残すのが望ましい。なお、絶縁膜26の形成パターンが大きすぎると、多孔質金属酸化物電極27と画素電極25との接触面積が小さくなって導通時の抵抗が大きくなり、逆に小さすぎると、コンタクトホール24aの保護機能が失われる。なお、成膜材料の塗布方法は、上記のスピンコートに限定されるわけではなく、スプレーコート、スリットコート、ディッピングコート等でもよい。一方、後者の方法の場合、インクジェット法、ディスペンサ法、スクリーン印刷、などの塗布方法を適用することが可能である。 As a method of forming the insulating film 26, for example, there are a method of patterning in a predetermined shape after coating the entire surface, and a method of patterning and forming directly in a predetermined shape. In the case of the former method, it is desirable to form a spin coat film using the above-mentioned photocurable resin, leave the pattern slightly larger than the shape of the contact hole 24a through the steps of pattern exposure and development. If the formation pattern of the insulating film 26 is too large, the contact area between the porous metal oxide electrode 27 and the pixel electrode 25 is reduced and the resistance during conduction is increased. Conversely, if the formation pattern is too small, the contact hole 24 a The protection function is lost. Note that the coating method of the film forming material is not limited to the above-described spin coating, and may be spray coating, slit coating, dipping coating, or the like. On the other hand, in the case of the latter method, it is possible to apply coating methods, such as an inkjet method, a dispenser method, and screen printing.
 〔多孔質金属酸化物電極〕
 次に、多孔質金属酸化物電極27の詳細について説明する。
 一般に、多孔質構造の電極を構成する微粒子の主成分としては、Cu、Al、Ag、Pd等の金属や、ITO、SnO2、TiO2、ZnO等の金属酸化物、カーボンナノチューブ、グラッシーカーボン、ダイヤモンドライクカーボン、窒素含有カーボン等の炭素電極等があげられるが、画素電極25の耐久性の面から、多孔質金属酸化物電極27としては、特に、ITO、SnO2およびZnO等の金属酸化物から選択されることが好ましい。
[Porous metal oxide electrode]
Next, details of the porous metal oxide electrode 27 will be described.
In general, as the main component of the fine particles constituting the electrode having a porous structure, metals such as Cu, Al, Ag and Pd, metal oxides such as ITO, SnO 2 , TiO 2 and ZnO, carbon nanotubes, glassy carbon, Examples of the carbon electrode include diamond-like carbon and nitrogen-containing carbon. From the viewpoint of durability of the pixel electrode 25, the porous metal oxide electrode 27 is particularly preferably a metal oxide such as ITO, SnO 2 and ZnO. Is preferably selected from.
 ここで、「多孔質構造」とは、電極中にナノメートルサイズの孔が無数に存在する、いわゆるナノ多孔質構造の内部を、電解液中に含まれるイオン種が移動可能な構造を有することを言う。そのため、多孔質金属酸化物電極27を構成する微粒子の平均粒子径は、5nmから30nm程度が好ましい。上記微粒子としては、不定形、針状、球形等、任意の形状のものを用いることができる。 Here, the “porous structure” has a structure in which ionic species contained in the electrolytic solution can move inside a so-called nanoporous structure in which an infinite number of nanometer-sized pores exist in the electrode. Say. Therefore, the average particle diameter of the fine particles constituting the porous metal oxide electrode 27 is preferably about 5 nm to 30 nm. As the fine particles, those having an arbitrary shape such as an indeterminate shape, a needle shape, a spherical shape and the like can be used.
 このような多孔質構造を有する多孔質金属酸化物電極27を設けることにより、多孔質金属酸化物電極27中にデポジション材料である銀が担持され、この部分に電源バスVDDからの電流が画素電極25を介して供給されるので、電流供給時の酸化還元反応速度(駆動速度)を速めることができる。 By providing the porous metal oxide electrode 27 having such a porous structure, silver as a deposition material is supported in the porous metal oxide electrode 27, and current from the power supply bus VDD is supplied to the pixel in this portion. Since it is supplied via the electrode 25, the oxidation-reduction reaction speed (driving speed) at the time of current supply can be increased.
 多孔質金属酸化物電極27の形成方法としては、絶縁膜26の場合と同様に、全面塗布後、所定形状にパターニングする方法と、ダイレクトに所定形状でパターニング形成する方法とがある。前者の方法の場合、多孔質状の金属酸化物を塗布した後、フォトリソグラフィ技術にてパターニングすることが望ましく、特に図3で示した表示素子1の作製に有効である。なお、金属酸化物の塗布方法としては、スピンコート、スプレーコート、スリットコート、ディッピングコート等を用いることができる。金属酸化物は、アルコールなどの溶媒に分散している含有物である。 As a method of forming the porous metal oxide electrode 27, there are a method of patterning into a predetermined shape after coating the entire surface, and a method of directly patterning and forming in a predetermined shape, as in the case of the insulating film 26. In the case of the former method, it is desirable to apply a porous metal oxide and then perform patterning by a photolithography technique, which is particularly effective for manufacturing the display element 1 shown in FIG. As a method for applying the metal oxide, spin coating, spray coating, slit coating, dipping coating, or the like can be used. The metal oxide is a content dispersed in a solvent such as alcohol.
 一方、後者の方法としては、インクジェット法、ディスペンサ法など、基板20に非接触で材料を飛翔させる方式が望ましく、特に、図4および図5で示した表示素子1の作製に有効である。つまり、バンクとなる絶縁膜26をセパレーターとして利用し、絶縁膜26に撥液処理を施すことで、多孔質状の金属酸化物を各画素ごとに良好にパターニングすることが可能となる。 On the other hand, as the latter method, a method in which a material is allowed to fly in a non-contact manner such as an ink jet method or a dispenser method is desirable, and is particularly effective for manufacturing the display element 1 shown in FIGS. In other words, by using the insulating film 26 serving as a bank as a separator and subjecting the insulating film 26 to a liquid repellent treatment, the porous metal oxide can be satisfactorily patterned for each pixel.
 いずれの方法においても、塗布後は加熱により乾燥させることで溶媒が蒸発し、多孔質の金属酸化物電極が形成される。多孔質を生成するために必要な加熱温度(150~200℃)は、ITOを結晶化させるために必要な加熱温度(300~400℃)よりも低温であるため、非観察側の駆動基板上に形成されるトランジスタやそれを覆う絶縁膜にそれほどダメージを与えることなく、画素電極25上に多孔質金属酸化物電極27を形成することができる。 In any method, after coating, the solvent is evaporated by drying by heating, and a porous metal oxide electrode is formed. The heating temperature (150 to 200 ° C.) required to generate the porous material is lower than the heating temperature (300 to 400 ° C.) required to crystallize the ITO. The porous metal oxide electrode 27 can be formed on the pixel electrode 25 without causing much damage to the transistor formed in this step and the insulating film covering the transistor.
 なお、バンクを利用して液を塗布する方法は広く公知であり、特に有機ELディスプレイの発光材料の塗り分けや、液晶カラーフィルターの塗り分け方法によく用いられている。 Note that a method of applying a liquid using a bank is widely known, and particularly, it is often used as a method of coating a light emitting material of an organic EL display or a method of coating a liquid crystal color filter.
 〔実施例〕
 次に、本実施形態の表示素子1の実施例について、実施例1~3として説明する。また、実施例1~3との比較のため、比較例1も併せて示す。
〔Example〕
Next, examples of the display element 1 of the present embodiment will be described as Examples 1 to 3. For comparison with Examples 1 to 3, Comparative Example 1 is also shown.
 (実施例1)
 実施例1では、図3の表示素子1を以下の手順で作製した。
Example 1
In Example 1, the display element 1 of FIG. 3 was produced by the following procedure.
 <電解液の作製>
 ジメチルスルホキシド(以下、DMSOと言う)2.5g中に、ヨウ化ナトリウム90mg、ヨウ化銀75mgを加えて完全に溶解させた後に、平均分子量約15000のポリビニルピロリドン150mgを加えて、120℃に加熱しながら1時間攪拌し、溶液化した。この溶液に、さらに平均分子量が約10万のポリエチレングリコール(以下、PEGと言う)と、酸化チタンの粉末とを加えて混合し、ゲル状の白色の電解液30を作製した。このとき、PEGは電解液30の5wt%とし、酸化チタンの粉末は電解液30の30wt%とした。
<Preparation of electrolyte>
In 2.5 g of dimethyl sulfoxide (hereinafter referred to as DMSO), 90 mg of sodium iodide and 75 mg of silver iodide were added and completely dissolved. The solution was stirred for 1 hour to form a solution. To this solution, polyethylene glycol having an average molecular weight of about 100,000 (hereinafter referred to as PEG) and titanium oxide powder were added and mixed to prepare a gel-like white electrolytic solution 30. At this time, PEG was 5 wt% of the electrolytic solution 30, and the titanium oxide powder was 30 wt% of the electrolytic solution 30.
 <観察側の基板の作製>
 コモン基板11としてガラス基板を用いた。そして、コモン基板11上に、透明導電膜である結晶性ITOをスパッタ法にて150nmの膜厚となるように成膜し、全面に(各画素1aに共通の)コモン電極12を形成し、観察側の基板10を作製した。
<Preparation of the substrate on the observation side>
A glass substrate was used as the common substrate 11. Then, on the common substrate 11, a crystalline ITO that is a transparent conductive film is formed to a thickness of 150 nm by a sputtering method, and a common electrode 12 (common to each pixel 1a) is formed on the entire surface. An observation-side substrate 10 was produced.
 <非観察側の基板の作製>
 [工程1:ベースの形成]
 駆動基板21としてガラス基板を用い、この駆動基板21上に、2次元マトリクス状に、1画素当たり2個のTFT(薄膜トランジスタQ1・Q2)を有するTFTアレイを形成し、そのTFTアレイを覆うように層間絶縁層24を形成し、さらに層間絶縁膜24上に、アモルファスITOを用いて薄い画素電極25を各画素1aに対応して形成した。このとき、画素電極25は、層間絶縁膜24に設けられるコンタクトホール24aを介して、金属配線23および薄膜トランジスタQ2と接続される。駆動基板21上に画素電極25まで形成したものを、ここでは、基板20のベースと呼ぶことにする。
<Preparation of non-observation side substrate>
[Step 1: Formation of base]
A glass substrate is used as the driving substrate 21, and a TFT array having two TFTs (thin film transistors Q 1 and Q 2) per pixel is formed on the driving substrate 21 in a two-dimensional matrix form so as to cover the TFT array. An interlayer insulating layer 24 was formed, and a thin pixel electrode 25 was formed on the interlayer insulating film 24 using amorphous ITO corresponding to each pixel 1a. At this time, the pixel electrode 25 is connected to the metal wiring 23 and the thin film transistor Q2 through a contact hole 24a provided in the interlayer insulating film 24. The substrate formed up to the pixel electrode 25 on the drive substrate 21 is referred to as the base of the substrate 20 here.
 なお、ベースの作製まで、すなわち画素電極25の形成までは、周知の技術により行うことができる。例えば、表示素子1と同じ電流駆動型素子であるECDや、有機EL表示素子等で広く公知となっている技術により、画素電極25までの形成が可能である。 It should be noted that the process up to the production of the base, that is, the formation of the pixel electrode 25 can be performed by a known technique. For example, it is possible to form up to the pixel electrode 25 by a technique widely known for ECD, which is the same current drive type element as the display element 1, an organic EL display element, and the like.
 [工程2:第2の絶縁膜の形成]
 次に、工程1で形成されたベースの画素電極25上に、コンタクトホール24aを覆うように第2の絶縁膜としての絶縁膜26を形成した。より詳しくは、ベース上に塗布型感光性アクリル樹脂(JSR社、型番:PC403)をスピンコート3000rpmで成膜した。なお、上記樹脂の厚みは0.5μmとした。続いて、所定のフォトマスクを用い、照射光量200mJ/cm2で露光を行い、その後、現像、焼成を行った。なお、現像は、所定の現像液TMAH(テトラメチルアンモニウムヒドロキシド)0.238wt%水溶液で1分間行った。焼成は、220℃で1時間行った。
[Step 2: Formation of second insulating film]
Next, an insulating film 26 as a second insulating film was formed on the base pixel electrode 25 formed in Step 1 so as to cover the contact hole 24a. More specifically, a coating type photosensitive acrylic resin (JSR, model number: PC403) was formed on the base at a spin coat of 3000 rpm. The thickness of the resin was 0.5 μm. Subsequently, using a predetermined photomask, exposure was performed with an irradiation light amount of 200 mJ / cm 2 , and then development and baking were performed. The development was performed for 1 minute with a predetermined developer TMAH (tetramethylammonium hydroxide) 0.238 wt% aqueous solution. Firing was performed at 220 ° C. for 1 hour.
 [工程3:多孔質金属酸化物電極材料の塗布]
 次に、画素電極25および画素電極25上の絶縁膜26を覆うように、多孔質ITOを塗布し、平均膜厚0.5μmの多孔質ITO膜を形成した。塗布には、スプレー塗布装置(株式会社ワイディー・メカトロソリューションズ社製のSTS600)を用いた。このときの塗布の条件は、以下の通りである。
・スプレーガンのノズル型番:アトマックスノズルAM25(株式会社アトマックス社製)
・霧化エア:窒素ガス(N2
・霧化エアの流量:8L/min
・塗布液(ITOインク)型番:X806CN27S(住友金属鉱山株式会社製)
・塗布液流量:7mL/min
・ノズル吐出速度:300mm/秒
・ノズル-駆動基板間距離:60mm
[Step 3: Application of porous metal oxide electrode material]
Next, porous ITO was applied to cover the pixel electrode 25 and the insulating film 26 on the pixel electrode 25 to form a porous ITO film having an average film thickness of 0.5 μm. For the application, a spray application apparatus (STS600 manufactured by YIDY MECATOR SOLUTIONS Co., Ltd.) was used. The coating conditions at this time are as follows.
・ Nozzle model number of spray gun: Atmax nozzle AM25 (manufactured by Atmax Co., Ltd.)
・ Atomization air: Nitrogen gas (N 2 )
・ Flow rate of atomizing air: 8L / min
-Coating liquid (ITO ink) Model number: X806CN27S (manufactured by Sumitomo Metal Mining Co., Ltd.)
・ Coating liquid flow rate: 7mL / min
・ Nozzle discharge speed: 300mm / sec ・ Nozzle-drive substrate distance: 60mm
 [工程4:多孔質金属酸化物電極のパターニング形成]
 工程3で形成された多孔質ITO膜を、既存のフォトリソグラフィ技術によりパターニングし、複数の多孔質金属酸化物電極27に分割した。このとき、画素ピッチが200μmで、1画素あたりのサイズが150μm×150μmとなるように、複数の多孔質金属酸化物電極27を形成した。なお、パターニングについての詳細は、以下の通りである。
[Step 4: Patterning of porous metal oxide electrode]
The porous ITO film formed in step 3 was patterned by an existing photolithography technique and divided into a plurality of porous metal oxide electrodes 27. At this time, the plurality of porous metal oxide electrodes 27 were formed so that the pixel pitch was 200 μm and the size per pixel was 150 μm × 150 μm. Details of patterning are as follows.
 東京応化工業社製のレジスト材(型番:OFPR800LB)を、スピンコート条件1000rpmで塗布した後、ホットプレート上で80℃で5分間乾燥させた。そして、所定サイズのフォトマスクを用い、露光量120mJ/cm2でパターン露光した後、所定の現像液(TMAH(テトラメチルアンモニウムヒドロキシド)2.38wt%水溶液)で120秒現像を行った。その後、林純薬工業社製のエッチング第二塩鉄液を用い、200秒間エッチングを行った。レジスト材の剥離は、NaOH2wt%水溶液を用い、剥離後、80℃オーブンで1時間の乾燥を行った。 A resist material (model number: OFPR800LB) manufactured by Tokyo Ohka Kogyo Co., Ltd. was applied at a spin coating condition of 1000 rpm, and then dried at 80 ° C. for 5 minutes on a hot plate. Then, using a photomask of a predetermined size, pattern exposure was performed with an exposure amount of 120 mJ / cm 2 , and then development was performed with a predetermined developer (TMAH (tetramethylammonium hydroxide) 2.38 wt% aqueous solution) for 120 seconds. Thereafter, etching was performed for 200 seconds using an etching ferric salt solution manufactured by Hayashi Pure Chemical Industries. The resist material was peeled off by using a NaOH 2 wt% aqueous solution, followed by drying in an oven at 80 ° C. for 1 hour after peeling.
 <シール剤の塗布>
 次に、多孔質金属酸化物電極27が形成された基板20の周縁部に、電解液30の注入口を除いて、ディスペンサを用いて、熱硬化型のオレフィン系シール剤を塗布した。そして、シール剤中に30μmのビーズスペーサを配置することで、基板10・20間のギャップが30μmとなるように設定した。
<Application of sealant>
Next, a thermosetting olefin-based sealant was applied to the peripheral edge of the substrate 20 on which the porous metal oxide electrode 27 was formed, using a dispenser, except for the inlet for the electrolytic solution 30. Then, by arranging a 30 μm bead spacer in the sealant, the gap between the substrates 10 and 20 was set to be 30 μm.
 <基板の貼り合わせ>
 基板10・20を上記のシール剤を介して貼り合わせた後、加熱押圧してシール剤を硬化させ、内部が空の空セルを作製した。続いて、液晶パネルの製造等で用いられる真空注入法を用いて、空セルの内部に電解液30を注入し、電解液30の注入口を、紫外線硬化型接着剤にて封止し、実施例1の表示素子1を得た。
<Board bonding>
After the substrates 10 and 20 were bonded to each other through the above-described sealing agent, the sealing agent was cured by heating and pressing to produce an empty cell with an empty interior. Subsequently, the electrolytic solution 30 is injected into the empty cell using a vacuum injection method used in the manufacture of a liquid crystal panel, and the injection port of the electrolytic solution 30 is sealed with an ultraviolet curable adhesive. The display element 1 of Example 1 was obtained.
 (実施例2)
 実施例2では、図4の表示素子1を作製した。なお、実施例2では、実施例1で説明した<非観察側の基板の作製>の工程の一部を以下のように変更した以外は、実施例1と同様である。
(Example 2)
In Example 2, the display element 1 of FIG. 4 was produced. The second embodiment is the same as the first embodiment except that a part of the process of <production of the non-observation side substrate> described in the first embodiment is changed as follows.
 <非観察側の基板の作製>
 [工程2:第2の絶縁膜の形成]
 工程1で形成されたベースの画素電極25に対応する画素1aを囲むように、かつ、コンタクトホール24aを覆うように、第2の絶縁膜としての絶縁膜26を形成した。より詳しくは、ベース上に、塗布型感光性アクリル樹脂(JSR社、型番:PC403)をスピンコート700rpmで成膜した。なお、上記樹脂の厚みは2.0μmとした。続いて、所定のフォトマスクを用い、照射光量200mJ/cm2で露光を行い、その後、現像、焼成を行った。現像は、所定の現像液TMAH(テトラメチルアンモニウムヒドロキシド)0.238wt%水溶液で2分間行った。焼成は、220℃で1時間行った。
<Preparation of non-observation side substrate>
[Step 2: Formation of second insulating film]
An insulating film 26 as a second insulating film was formed so as to surround the pixel 1a corresponding to the base pixel electrode 25 formed in step 1 and to cover the contact hole 24a. More specifically, a coating-type photosensitive acrylic resin (JSR, model number: PC403) was formed on the base at a spin coat of 700 rpm. The thickness of the resin was 2.0 μm. Subsequently, using a predetermined photomask, exposure was performed with an irradiation light amount of 200 mJ / cm 2 , and then development and baking were performed. Development was performed for 2 minutes with a 0.238 wt% aqueous solution of a predetermined developer TMAH (tetramethylammonium hydroxide). Firing was performed at 220 ° C. for 1 hour.
 なお、実施例2および後述する実施例3においては、絶縁膜26の表面に対する液体材料(次に塗布する多孔質ITO)の非親和性の程度(はじきやすさ)が、基板上の絶縁膜26の非形成領域(画素電極25上の非形成領域25aおよび層間絶縁膜24の表面を含む)に比べて高くなるように、絶縁膜26の表面および絶縁膜26の非形成領域の少なくとも一方に表面処理を施しておくことが好ましい。つまり、基板上の絶縁膜26の非形成領域よりも絶縁膜26の表面のほうが、液体材料がはじくように、絶縁膜26の表面および上記非形成領域の少なくとも一方に表面処理がされていることが望ましい。このような表面処理により、次に多孔質金属酸化物電極27を形成すべく、薄膜層(多孔質金属酸化物電極27)の厚みに比べて多量の液体材料を吐出しても、その液体材料が絶縁膜26を乗り越えて隣りの画素1aに溢れ出ることがなく、各画素1aの所定の領域、すなわち、絶縁膜26の非形成領域にのみ液体材料を充填することができる。つまり、絶縁膜26をバンクとして機能させることができる。 In Example 2 and Example 3 to be described later, the degree of non-affinity (ease of repelling) of the liquid material (porous ITO to be applied next) with respect to the surface of the insulating film 26 depends on the insulating film 26 on the substrate. Surface of at least one of the surface of the insulating film 26 and the non-forming region of the insulating film 26 so as to be higher than the non-forming region (including the surface of the non-forming region 25a on the pixel electrode 25 and the surface of the interlayer insulating film 24). It is preferable to perform the treatment. That is, at least one of the surface of the insulating film 26 and the non-formed region is surface-treated so that the liquid material is repelled on the surface of the insulating film 26 than on the non-formed region of the insulating film 26 on the substrate. Is desirable. Even if a large amount of liquid material is ejected compared to the thickness of the thin film layer (porous metal oxide electrode 27) to form the porous metal oxide electrode 27 next by such surface treatment, the liquid material The liquid material can be filled only in a predetermined region of each pixel 1a, that is, a region where the insulating film 26 is not formed. That is, the insulating film 26 can function as a bank.
 ここで、上記した表面処理としては、例えば導入ガスにフッ素またはフッ素化合物を含むガスを使用し、フッ素化合物および酸素を含む減圧雰囲気下あるいは大気圧雰囲気下でプラズマ照射をする減圧プラズマ処理や大気圧プラズマ処理が挙げられる。フッ素またはフッ素化合物を含むガスとしては、CF4、SF6、CHF3等が挙げられる。実施例2では、CF4プラズマ処理(圧力:5Pa、出力:5W、CF4流量:7sccm、時間:1分間)を行い、絶縁膜26と液体材料(多孔質ITO材料)との接触角を約60°とした。 Here, as the above-described surface treatment, for example, a gas containing fluorine or a fluorine compound is used as an introduction gas, and the plasma irradiation is performed in a reduced pressure atmosphere or an atmospheric pressure atmosphere containing a fluorine compound and oxygen or an atmospheric pressure. Plasma treatment is mentioned. Examples of the gas containing fluorine or a fluorine compound include CF 4 , SF 6 , and CHF 3 . In Example 2, CF 4 plasma treatment (pressure: 5 Pa, output: 5 W, CF 4 flow rate: 7 sccm, time: 1 minute) is performed, and the contact angle between the insulating film 26 and the liquid material (porous ITO material) is about The angle was 60 °.
 なお、上記の接触角とは、図7に示すように、固体の表面Sと液体の表面Lとの接点における、表面Sと表面Lとのなす角度α(°)を指す。接触角αが大きいほど、液体は固体に対して非親和性が高くなり、はじくことになる。上述した表面処理による効果を確実に得るためには、液体材料(多孔質ITO材料)の絶縁膜26の表面に対する接触角を50°以上とし、絶縁膜26の非形成領域に対する接触角を20°以下とすることが好ましい。 The contact angle refers to an angle α (°) between the surface S and the surface L at the contact point between the solid surface S and the liquid surface L as shown in FIG. The larger the contact angle α, the higher the non-affinity of the liquid with respect to the solid. In order to surely obtain the effect of the surface treatment described above, the contact angle of the liquid material (porous ITO material) with respect to the surface of the insulating film 26 is set to 50 ° or more, and the contact angle with respect to the non-formation region of the insulating film 26 is set to 20 °. The following is preferable.
 [工程3:多孔質金属酸化物電極材料の塗布]
 工程2で形成した絶縁膜26で囲まれた領域内に、インクジェット法にて液体材料である多孔質ITOを滴下する。インクジェット法における吐出量は、多孔質ITOの塗布後の加熱処理により体積が減少したときに所望の厚みになるような量とする。なお、乾燥後に多孔質ITOを再度吐出して重ね合わせ処理を行うことにより、所望の厚みになるようにしてもよい。
[Step 3: Application of porous metal oxide electrode material]
Porous ITO, which is a liquid material, is dropped into the region surrounded by the insulating film 26 formed in step 2 by an inkjet method. The ejection amount in the ink jet method is set to an amount such that a desired thickness is obtained when the volume is reduced by the heat treatment after the application of porous ITO. In addition, you may make it become desired thickness by discharging porous ITO again after drying, and performing an overlay process.
 実施例2においては、吐出される液体材料の液滴の大きさに対して、絶縁膜26の大きさ(高さ、幅)を規定することにより、薄膜層(多孔質金属酸化物電極27)の厚さに比べて多量の液体材料を吐出しても、液体材料が絶縁膜26を乗り越えて溢れ出ることなく、所定の領域に液体材料が充填される。液体材料が溶媒を含む材料の場合は、液体材料を充填した後、加熱処理および/または減圧処理を行い、溶媒成分を除去することにより、液体材料の体積が減少し、絶縁膜26の非形成領域に薄膜層が形成される。このとき、絶縁膜26の非形成領域の表面、すなわち基板表面は、前述のように親和性(親液性)を示すように表面処理されているので、薄膜層が好適に密着する。 In the second embodiment, the size (height and width) of the insulating film 26 is defined with respect to the size of the droplet of the liquid material to be discharged, whereby the thin film layer (porous metal oxide electrode 27). Even when a large amount of liquid material is ejected compared to the thickness of the liquid material, the liquid material does not overflow over the insulating film 26, and the liquid material is filled in a predetermined region. In the case where the liquid material is a material containing a solvent, the volume of the liquid material is reduced by removing the solvent component by performing heat treatment and / or pressure reduction treatment after filling the liquid material, and the insulating film 26 is not formed. A thin film layer is formed in the region. At this time, the surface of the non-formation region of the insulating film 26, that is, the substrate surface is surface-treated so as to exhibit affinity (lyophilicity) as described above, and thus the thin film layer is suitably adhered.
 なお、インクジェット方式としては、ピエゾジェット方式や、熱による気泡発生により吐出する方式のいずれであってもよいが、加熱による流動体の変質がない点で、ピエゾジェット方式が好ましい。実施例2では、コニカミノルタIJ株式会社製ピエゾヘッドKM512Mを有するインクジェット装置を用い、膜厚1.2μmの多孔質ITOを形成し、多孔質金属酸化物電極27とした。 The ink jet method may be either a piezo jet method or a method of discharging by the generation of bubbles due to heat, but the piezo jet method is preferred because there is no change in the quality of the fluid due to heating. In Example 2, a porous ITO with a film thickness of 1.2 μm was formed using an inkjet apparatus having a piezo head KM512M manufactured by Konica Minolta IJ Co., Ltd.
 なお、実施例2では、絶縁膜26がバンクとなり、多孔質金属酸化物電極27の形成と同時に、多孔質金属酸化物電極27が絶縁膜26で区切られるので、実施例1の[工程4:多孔質金属酸化物電極のパターニング形成]は不要となる。 In Example 2, the insulating film 26 becomes a bank, and the porous metal oxide electrode 27 is separated by the insulating film 26 simultaneously with the formation of the porous metal oxide electrode 27. Therefore, [Step 4: [Pattern Formation of Porous Metal Oxide Electrode] is unnecessary.
 (実施例3)
 実施例3では、図5の表示素子1を作製した。なお、実施例3では、実施例2で説明した<非観察側の基板の作製>の工程の一部を以下のように変更した以外は、実施例2と同様である。
(Example 3)
In Example 3, the display element 1 of FIG. 5 was produced. Note that Example 3 is the same as Example 2 except that a part of the process of <production of the non-observation side substrate> described in Example 2 is changed as follows.
 <非観察側の基板の作製>
 [工程2:第2の絶縁膜の形成]
 工程1で形成されたベースの画素電極25に対応する画素1aを囲むように、かつ、コンタクトホール24aを覆うように、第2の絶縁膜としての絶縁膜26を形成した。より詳しくは、ベース上に、ネガ型感光性フォトレジスト材料であるSU-8 3050(化薬マイクロケム社製)を回転数1000rpmでスピンコートし、100℃のホットプレート上にて30分間プリベーク処理を行った。
<Preparation of non-observation side substrate>
[Step 2: Formation of second insulating film]
An insulating film 26 as a second insulating film was formed so as to surround the pixel 1a corresponding to the base pixel electrode 25 formed in step 1 and to cover the contact hole 24a. More specifically, a negative photosensitive photoresist material SU-8 3050 (manufactured by Kayaku Microchem Co., Ltd.) is spin-coated at a rotation speed of 1000 rpm, and prebaked on a hot plate at 100 ° C. for 30 minutes. Went.
 プリベーク後、平行光露光機にて、隔壁形状パターンが形成されたフォトマスクを介して、照射光量400mJ/cm2で紫外線を照射し、続いて100℃のホットプレート上で10分間熱処理を行った。熱処理後、プロピレングリコールモノメチルエーテルアセテート(PGMEA)液を用いて現像処理を行い、紫外線の照射されていないフォトレジスト材料を除去し、イソプロピルアルコール(IPA)液にてリンス処理を行った後、液を乾燥させることにより、高さ25μmの隔壁構造(絶縁膜26、隔壁部26a)を得ることができた。隔壁構造の幅は、フォトマスクパターンにより、15μmとした。 After pre-baking, ultraviolet rays were irradiated with a collimated light exposure machine through a photomask having a partition pattern and an irradiation light amount of 400 mJ / cm 2 , followed by heat treatment on a hot plate at 100 ° C. for 10 minutes. . After the heat treatment, development processing is performed using propylene glycol monomethyl ether acetate (PGMEA) solution, the photoresist material not irradiated with ultraviolet rays is removed, rinse treatment is performed with isopropyl alcohol (IPA) solution, By drying, a partition structure (insulating film 26, partition part 26a) having a height of 25 μm could be obtained. The width of the partition wall structure was set to 15 μm by a photomask pattern.
 (比較例1)
 比較例1は、実施例1で説明した<非観察側の基板の作製>の工程の一部、すなわち、[工程2:第2の絶縁膜の形成]を省略して表示素子を作製した以外は、実施例1と同様である。
(Comparative Example 1)
In Comparative Example 1, a part of the process of <Manufacturing the Non-observation Side Substrate> described in Example 1, that is, [Step 2: Formation of the second insulating film] is omitted, and a display element is manufactured These are the same as in Example 1.
 〔駆動検査〕
 次に、実施例1~3および比較例1の各表示素子を用いて、駆動検査を実施した。検査の手順は、以下の通りである。
[Drive inspection]
Next, a driving test was performed using the display elements of Examples 1 to 3 and Comparative Example 1. The inspection procedure is as follows.
 なお、実施例1~3および比較例1では、各表示素子の画素ピッチを0.2mmとし、図8に示すように、有効画素エリアRを70mm×50mmとした。したがって、有効画素エリアRの画素数は、(70/0.2)×(50/0.2)=350×250=87500個となる。また、ここでは、有効画素エリアRを8分割して、以下の検査を行った。したがって、1エリアあたりの検査画素数は、87500/8≒10000個である。 In Examples 1 to 3 and Comparative Example 1, the pixel pitch of each display element was 0.2 mm, and the effective pixel area R was 70 mm × 50 mm as shown in FIG. Therefore, the number of pixels in the effective pixel area R is (70 / 0.2) × (50 / 0.2) = 350 × 250 = 87500. Further, here, the effective pixel area R is divided into eight and the following inspection is performed. Therefore, the number of inspection pixels per area is 87500 / 8≈10000.
 まず、各エリアの画素全体に対して、電圧の印加、無印加を繰り返し、白/黒の表示を交互に繰り返し行った。なお、電圧印加による黒表示は、コントラストが10となるように行った。なお、コントラスト10とは、白と黒との視感反射率(Y値)比が10:1であることを示す。 First, voltage application and non-application were repeated for all pixels in each area, and white / black display was alternately repeated. Note that black display by voltage application was performed so that the contrast was 10. Note that the contrast 10 indicates that the luminous reflectance (Y value) ratio between white and black is 10: 1.
 次に、駆動回数(黒の表示回数)が1000回に達したところで、各エリアごとに表示画像をスキャナで取り込むとともに、取り込み画像をデジタルデータに変換し、コントラストが10に満たない画素数をカウントした。 Next, when the drive count (black display count) reaches 1000, the display image is captured for each area by the scanner, and the captured image is converted into digital data, and the number of pixels whose contrast is less than 10 is counted. did.
 例えば、取り込み画像の画像データ(輝度データ)が、8ビットで“0”(黒)~“255”(白)であるとする。そして、電圧無印加時の白表示状態において、白表示の画素の画像データが“240”であり、白表示の画素の画像データ“240”に対して、黒表示の画素の画像データ“50”が、コントラスト10に対応しているものとする。この場合に、画像データ“51”以上の画素がコントラスト10に満たない画素(黒が出ていない画素)となるので、このような画素の数をカウントする。 For example, assume that the image data (luminance data) of the captured image is 8 bits from “0” (black) to “255” (white). In the white display state when no voltage is applied, the image data of the white display pixel is “240”, and the image data “50” of the black display pixel is compared with the image data “240” of the white display pixel. Corresponds to a contrast of 10. In this case, since the pixels having the image data “51” or more are pixels that do not satisfy the contrast 10 (pixels in which black does not appear), the number of such pixels is counted.
 次に、各エリアごとに画素欠陥発生率を計算する。この画素欠陥発生率(%)は、以下の式によって表わされる。
 画素欠陥発生率(%)={(1エリアの欠陥画素数)/(1エリアの検査
             画素数)}×100
Next, the pixel defect occurrence rate is calculated for each area. This pixel defect occurrence rate (%) is expressed by the following equation.
Pixel defect occurrence rate (%) = {(number of defective pixels in one area) / (number of inspection pixels in one area)} × 100
 そして、最後に、画素欠陥発生率の全エリアの平均値を算出する。このような処理を、駆動回数が1万回、10万回に達するごとに行った。 Finally, the average value of the pixel defect occurrence rate for all areas is calculated. Such a process was performed every time the number of driving times reached 10,000 times and 100,000 times.
 図9は、実施例1~3、比較例1の各表示素子の駆動回数ごとの画素欠陥発生率(平均値)を示している。同図に示すように、実施例1~3の表示素子では、駆動回数が10万回に達しても、画素欠陥発生率が1%以下であったが、比較例1の表示素子では、駆動回数が1000回、1万回、10万回と増大するにつれて画素欠陥発生率が上昇し、10万回駆動時には画素欠陥発生率90%以上を示した。 FIG. 9 shows the pixel defect occurrence rate (average value) for each driving frequency of the display elements of Examples 1 to 3 and Comparative Example 1. As shown in the figure, in the display elements of Examples 1 to 3, the pixel defect occurrence rate was 1% or less even when the number of driving times reached 100,000. The pixel defect occurrence rate increased as the number of times increased to 1000 times, 10,000 times, and 100,000 times, and the pixel defect occurrence rate was 90% or more when driven 100,000 times.
 確認のため、比較例1の表示素子を分解し、コンタクトホール部分を観察したところ、画素電極であるITOが消失しており、画素電極とコンタクトホールを介して接続されていた金属配線との導通が取れなくなっていることが明らかとなった。したがって、実施例1~3のように、コンタクトホールを覆うように絶縁膜を形成する構成は、コンタクトホール部分の画素電極の保護を図る上で非常に有効であると言える。 For confirmation, the display element of Comparative Example 1 was disassembled and the contact hole portion was observed. As a result, ITO as the pixel electrode disappeared, and conduction with the metal wiring connected to the pixel electrode through the contact hole was confirmed. It became clear that it was impossible to remove. Therefore, it can be said that the structure in which the insulating film is formed so as to cover the contact hole as in Examples 1 to 3 is very effective in protecting the pixel electrode in the contact hole portion.
 以上の実施形態で説明した電気化学表示素子は、以下のように表現することもでき、これによって以下の作用効果を奏する。 The electrochemical display element described in the above embodiment can also be expressed as follows, and has the following effects.
 本実施形態の電気化学表示素子は、共通電極を有する観察側の基板と、画素電極を有する非観察側の基板との間に電解液を封入し、前記各電極間の電位に応じて前記電解液中のデポジション材料を酸化還元反応させることにより、表示を行う電気化学表示素子であって、前記非観察側の基板は、電源バスからの電流を駆動トランジスタを介して前記画素電極に供給するための金属配線と、前記駆動トランジスタおよび前記金属配線を覆うように形成される第1の絶縁膜とを有しており、前記画素電極は、前記デポジション材料とイオン化傾向が同等または前記デポジション材料よりもイオン化傾向の大きい材料で構成され、前記第1の絶縁膜上に形成されているとともに、前記第1の絶縁膜に設けられるコンタクトホールを介して前記金属配線と接続されており、前記非観察側の基板は、さらに、前記コンタクトホールを覆うように前記画素電極上に形成される第2の絶縁膜を有している構成である。 In the electrochemical display element of the present embodiment, an electrolytic solution is sealed between an observation side substrate having a common electrode and a non-observation side substrate having a pixel electrode, and the electrolysis is performed according to the potential between the electrodes. An electrochemical display element that performs display by oxidation-reduction of a deposition material in a liquid, wherein the non-observation side substrate supplies a current from a power supply bus to the pixel electrode through a driving transistor. And a first insulating film formed so as to cover the drive transistor and the metal wiring, and the pixel electrode has an ionization tendency equal to or equal to the deposition material. The metal is made of a material having a higher ionization tendency than the material, is formed on the first insulating film, and is formed on the metal through a contact hole provided in the first insulating film. Is connected to the line, the substrate of the non-viewing side is further is configured to have a second insulating film formed on the pixel electrode so as to cover the contact hole.
 上記の構成によれば、非観察側の基板では、電源バスからの電流が駆動トランジスタおよび金属配線を介して画素電極(第1の画素電極)に供給される。したがって、観察側の共通電極と非観察側の画素電極との間の電位に応じた電流が電解液に流れ、負極となる電極側では、還元反応により電解液中のデポジション材料(例えば銀)が析出し、正極となる電極側では、酸化反応により、デポジション材料が溶解する。このようなデポジション材料の析出/溶解により、黒/白の表示およびその切り替えを行うことができる。 According to the above configuration, on the non-observation side substrate, the current from the power supply bus is supplied to the pixel electrode (first pixel electrode) via the drive transistor and the metal wiring. Therefore, a current corresponding to the potential between the common electrode on the observation side and the pixel electrode on the non-observation side flows through the electrolytic solution, and on the electrode side serving as the negative electrode, a deposition material (for example, silver) in the electrolytic solution by a reduction reaction The deposition material is dissolved by the oxidation reaction on the electrode side that becomes the positive electrode. By such deposition / dissolution of the deposition material, black / white display and switching thereof can be performed.
 上記の駆動トランジスタおよび金属配線は、第1の絶縁膜で覆われており、画素電極は、第1の絶縁膜に設けられたコンタクトホールを介して上記金属配線と接続されている。このように、画素電極と駆動トランジスタおよび金属配線とは、第1の絶縁膜を介して別レイヤーとなっている。 The driving transistor and the metal wiring are covered with a first insulating film, and the pixel electrode is connected to the metal wiring through a contact hole provided in the first insulating film. Thus, the pixel electrode, the drive transistor, and the metal wiring are in separate layers via the first insulating film.
 このような構成において、画素電極上には、コンタクトホールを覆うように第2の絶縁膜が形成されているので、電解液中のデポジション材料よりもイオン化傾向が大きいまたは同等の材料で画素電極が構成されている場合でも、コンタクトホール内およびコンタクトホール上に位置する画素電極が電解液によって溶解するのを抑えることができ、画素電極の溶解による表示不良の発生を低減することができる。 In such a configuration, since the second insulating film is formed on the pixel electrode so as to cover the contact hole, the pixel electrode is made of a material having a higher ionization tendency or equivalent to the deposition material in the electrolytic solution. Even in the case where the pixel electrode is configured, it is possible to prevent the pixel electrode located in and on the contact hole from being dissolved by the electrolytic solution, and to reduce the occurrence of display defects due to the dissolution of the pixel electrode.
 本実施形態の電気化学表示素子において、前記画素電極を第1の画素電極とすると、前記第2の絶縁膜の非形成領域で前記第1の画素電極と導通し、かつ前記第2の絶縁膜の少なくとも一部を覆うように形成される第2の画素電極をさらに有していてもよい。 In the electrochemical display element of the present embodiment, when the pixel electrode is a first pixel electrode, the second electrode is electrically connected to the first pixel electrode in a region where the second insulating film is not formed. There may be further provided a second pixel electrode formed so as to cover at least a part of the first pixel electrode.
 この場合、第1の画素電極上に第2の絶縁膜を設けることによって、第1の画素電極に対応する画素の開口率が低下することを、第2の画素電極を設けることによって少なくとも軽減または防止し、さらには開口率を拡大することができる。 In this case, by providing the second insulating film over the first pixel electrode, the reduction in the aperture ratio of the pixel corresponding to the first pixel electrode is at least reduced or reduced by providing the second pixel electrode. Can be prevented, and the aperture ratio can be increased.
 本実施形態の電気化学表示素子において、前記第2の画素電極は、前記第1の画素電極の、前記第2の絶縁膜の非形成領域よりも面積が大きくなるように形成されていてもよいし、前記第1の画素電極の、前記第2の絶縁膜の非形成領域を全て覆うように形成されていてもよい。また、前記第2の画素電極は、前記第1の絶縁膜上の前記第1の画素電極の非形成領域まで延びるように(前記非形成領域の一部を覆うように)形成されていてもよいし、前記第1の絶縁膜上の前記第1の画素電極の非形成領域(の全て)を覆うように形成されていてもよい。さらに、前記第2の画素電極は、前記第1の画素電極よりも面積が大きくなるように形成されていてもよい。 In the electrochemical display element of the present embodiment, the second pixel electrode may be formed to have a larger area than a region where the second insulating film is not formed in the first pixel electrode. In addition, the first pixel electrode may be formed so as to cover the entire region where the second insulating film is not formed. The second pixel electrode may be formed so as to extend to a non-formation region of the first pixel electrode on the first insulating film (so as to cover a part of the non-formation region). Alternatively, it may be formed so as to cover (all of) the non-formation region of the first pixel electrode on the first insulating film. Furthermore, the second pixel electrode may be formed to have a larger area than the first pixel electrode.
 このように第2の画素電極が形成されていることにより、第1の画素電極上に第2の絶縁膜を設けることによって、第1の画素電極に対応する画素の開口率が低下することを、第2の画素電極を設けることによって少なくとも軽減または防止し、さらには開口率を拡大することができる。 By forming the second pixel electrode in this manner, the aperture ratio of the pixel corresponding to the first pixel electrode is reduced by providing the second insulating film on the first pixel electrode. By providing the second pixel electrode, at least it can be reduced or prevented, and the aperture ratio can be increased.
 本実施形態の電気化学表示素子は、複数の画素を有するとともに、前記複数の画素に対応して前記画素電極を第1の画素電極として複数有しており、前記第2の絶縁膜は、各第1の画素電極に対応する各画素を囲むように設けられていてもよい。そして、該電気化学表示素子は、前記第2の絶縁膜で区切られた領域に、前記第2の絶縁膜の非形成領域で前記第1の画素電極と導通するように形成される第2の画素電極をさらに有していてもよい。 The electrochemical display element of the present embodiment has a plurality of pixels and a plurality of the pixel electrodes corresponding to the plurality of pixels as first pixel electrodes, and the second insulating film includes It may be provided so as to surround each pixel corresponding to the first pixel electrode. The electrochemical display element is formed in a region partitioned by the second insulating film so as to be electrically connected to the first pixel electrode in a region where the second insulating film is not formed. A pixel electrode may be further included.
 この構成では、第2の画素電極の形成後、第2の画素電極を各画素ごとにパターニングすることが不要となり、製造工程を簡素化できる。また、第2の画素電極の端部は第2の絶縁膜と接触し、第2の画素電極のエッジ(角部)が現れないので、そのエッジが電解液で劣化するのを回避することができ、耐久性を向上させることができる。 In this configuration, after the second pixel electrode is formed, it is not necessary to pattern the second pixel electrode for each pixel, and the manufacturing process can be simplified. In addition, since the edge of the second pixel electrode is in contact with the second insulating film and the edge (corner) of the second pixel electrode does not appear, it is possible to avoid the edge from being deteriorated by the electrolytic solution. And durability can be improved.
 本実施形態の電気化学表示素子において、前記第2の絶縁膜は、前記電解液中のイオンの隣接画素への移動を抑制する隔壁部を兼ねていてもよい。 In the electrochemical display device of this embodiment, the second insulating film may also serve as a partition wall portion that suppresses movement of ions in the electrolytic solution to adjacent pixels.
 この構成では、電解液中のイオンが隣接画素に移動するのを第2の絶縁膜(隔壁部)で抑えることができ、滲みによる表示品位の低下を回避することができる。また、第2の絶縁膜を形成することで、隔壁部を別途形成しなくても済むので、表示装置の構成を簡素化することもできる。 In this configuration, the ions in the electrolytic solution can be prevented from moving to adjacent pixels by the second insulating film (partition wall portion), and deterioration of display quality due to bleeding can be avoided. Further, by forming the second insulating film, it is not necessary to separately form the partition wall portion, so that the structure of the display device can be simplified.
 本実施形態の電気化学表示素子において、前記第2の画素電極は、液体材料を塗布して乾燥させることによって形成されており、前記第2の絶縁膜の表面に対する前記液体材料の非親和性が、前記非観察側の基板上における前記第2の絶縁膜の非形成領域に比べて高くなるように、前記第2の絶縁膜の表面および前記非形成領域の少なくとも一方に表面処理がされていてもよい。 In the electrochemical display element of the present embodiment, the second pixel electrode is formed by applying and drying a liquid material, and the non-affinity of the liquid material with respect to the surface of the second insulating film. And at least one of the surface of the second insulating film and the non-formed region is surface-treated so as to be higher than the non-formed region of the second insulating film on the non-observation side substrate. Also good.
 このような表面処理により、第2の画素電極を形成すべく、第2の画素電極の厚みに比べて多量の液体材料を吐出しても、その液体材料が第2の絶縁膜を乗り越えて隣りの画素に溢れ出ることがなく、各画素の所定の領域、すなわち、第2の絶縁膜の非形成領域にのみ液体材料を充填することができる。 Even if a larger amount of liquid material is ejected than the thickness of the second pixel electrode to form the second pixel electrode by such surface treatment, the liquid material passes over the second insulating film and is adjacent. The liquid material can be filled only in a predetermined region of each pixel, that is, a region where the second insulating film is not formed.
 特に、前記液体材料の前記第2の絶縁膜の表面に対する接触角が50°以上であり、前記液体材料の前記非形成領域に対する接触角が20°以下であれば、上述した表面処理による効果を確実に得ることができる。 In particular, if the contact angle of the liquid material with respect to the surface of the second insulating film is 50 ° or more and the contact angle of the liquid material with respect to the non-formation region is 20 ° or less, the effect of the surface treatment described above can be obtained. You can definitely get it.
 本実施形態の電気化学表示素子の各画素において、前記第2の画素電極は、前記第1の画素電極よりも面積が大きくなるように形成されていてもよい。 In each pixel of the electrochemical display element of the present embodiment, the second pixel electrode may be formed to have a larger area than the first pixel electrode.
 このように第2の画素電極が形成されていることにより、高開口率を確実に実現することができる。 As described above, since the second pixel electrode is formed, a high aperture ratio can be reliably realized.
 本実施形態の電気化学表示素子において、前記第2の画素電極は、多孔質金属酸化物で構成されていてもよい。 In the electrochemical display element of this embodiment, the second pixel electrode may be made of a porous metal oxide.
 多孔質金属酸化物中にデポジション材料が担持され、この部分に電源バスからの電流が第1の画素電極を介して供給されるので、電流供給時の酸化還元反応速度(駆動速度)を速めることができる。 Since the deposition material is supported in the porous metal oxide, and the current from the power supply bus is supplied to this portion via the first pixel electrode, the oxidation-reduction reaction rate (drive speed) at the time of current supply is increased. be able to.
 本発明は、例えば電子書籍をはじめとする各種の表示装置を構成するEDのような電気化学表示素子に利用可能である。 The present invention can be used for an electrochemical display element such as an ED constituting various display devices such as an electronic book.
   1   表示素子(電気化学表示素子)
   1a  画素
  10   基板
  12   コモン電極(共通電極)
  20   基板
  23   金属配線
  24   層間絶縁膜(第1の絶縁膜)
  24a  コンタクトホール
  25   画素電極(第1の画素電極)
  25a  非形成領域
  26   絶縁膜(第2の絶縁膜)
  26a  隔壁部
  27   多孔質金属酸化物電極(第2の画素電極)
  30   電解液
  Q2   薄膜トランジスタ(駆動トランジスタ)
 VDD   電源バス
1 Display element (electrochemical display element)
1a pixel 10 substrate 12 common electrode (common electrode)
20 Substrate 23 Metal wiring 24 Interlayer insulating film (first insulating film)
24a contact hole 25 pixel electrode (first pixel electrode)
25a Non-formation region 26 Insulating film (second insulating film)
26a Partition part 27 Porous metal oxide electrode (second pixel electrode)
30 Electrolyte Q2 Thin film transistor (drive transistor)
VDD power bus

Claims (13)

  1.  共通電極を有する観察側の基板と、画素電極を有する非観察側の基板との間に電解液を封入し、前記各電極間の電位に応じて前記電解液中のデポジション材料を酸化還元反応させることにより、表示を行う電気化学表示素子であって、
     前記非観察側の基板は、
     電源バスからの電流を駆動トランジスタを介して前記画素電極に供給するための金属配線と、
     前記駆動トランジスタおよび前記金属配線を覆うように形成される第1の絶縁膜とを有しており、
     前記画素電極は、前記デポジション材料とイオン化傾向が同等または前記デポジション材料よりもイオン化傾向の大きい材料で構成され、前記第1の絶縁膜上に形成されているとともに、前記第1の絶縁膜に設けられるコンタクトホールを介して前記金属配線と接続されており、
     前記非観察側の基板は、さらに、
     前記コンタクトホールを覆うように前記画素電極上に形成される第2の絶縁膜を有していることを特徴とする電気化学表示素子。
    An electrolytic solution is sealed between an observation-side substrate having a common electrode and a non-observation-side substrate having a pixel electrode, and the deposition material in the electrolytic solution is subjected to an oxidation-reduction reaction according to the potential between the electrodes. An electrochemical display element that performs display,
    The non-observation side substrate is:
    Metal wiring for supplying current from the power supply bus to the pixel electrode via the driving transistor;
    A first insulating film formed to cover the drive transistor and the metal wiring,
    The pixel electrode is made of a material having an ionization tendency that is equal to or greater than that of the deposition material, and is formed on the first insulating film, and the first insulating film Is connected to the metal wiring through a contact hole provided in the
    The non-observation side substrate further includes:
    An electrochemical display element comprising a second insulating film formed on the pixel electrode so as to cover the contact hole.
  2.  前記画素電極を第1の画素電極とすると、
     前記第2の絶縁膜の非形成領域で前記第1の画素電極と導通し、かつ前記第2の絶縁膜の少なくとも一部を覆うように形成される第2の画素電極をさらに有していることを特徴とする請求項1に記載の電気化学表示素子。
    When the pixel electrode is a first pixel electrode,
    The semiconductor device further includes a second pixel electrode formed so as to be electrically connected to the first pixel electrode in a region where the second insulating film is not formed and to cover at least a part of the second insulating film. The electrochemical display element according to claim 1.
  3.  前記第2の画素電極は、前記第1の画素電極の、前記第2の絶縁膜の非形成領域よりも面積が大きくなるように形成されていることを特徴とする請求項2に記載の電気化学表示素子。 3. The electricity according to claim 2, wherein the second pixel electrode is formed to have a larger area than a region where the second insulating film is not formed in the first pixel electrode. Chemical display element.
  4.  前記第2の画素電極は、前記第1の画素電極の、前記第2の絶縁膜の非形成領域を全て覆うように形成されていることを特徴とする請求項2に記載の電気化学表示素子。 3. The electrochemical display element according to claim 2, wherein the second pixel electrode is formed so as to cover all the non-formation region of the second insulating film of the first pixel electrode. .
  5.  前記第2の画素電極は、前記第1の絶縁膜上の前記第1の画素電極の非形成領域まで延びるように形成されていることを特徴とする請求項2に記載の電気化学表示素子。 3. The electrochemical display element according to claim 2, wherein the second pixel electrode is formed so as to extend to a non-formation region of the first pixel electrode on the first insulating film.
  6.  前記第2の画素電極は、前記第1の絶縁膜上の前記第1の画素電極の非形成領域を覆うように形成されていることを特徴とする請求項2に記載の電気化学表示素子。 The electrochemical display element according to claim 2, wherein the second pixel electrode is formed so as to cover a non-formation region of the first pixel electrode on the first insulating film.
  7.  前記第2の画素電極は、前記第1の画素電極よりも面積が大きくなるように形成されていることを特徴とする請求項2に記載の電気化学表示素子。 The electrochemical display element according to claim 2, wherein the second pixel electrode is formed so as to have an area larger than that of the first pixel electrode.
  8.  該電気化学表示素子は、複数の画素を有するとともに、前記複数の画素に対応して前記画素電極を第1の画素電極として複数有しており、
     前記第2の絶縁膜は、各第1の画素電極に対応する各画素を囲むように設けられており、
     該電気化学表示素子は、前記第2の絶縁膜で区切られた領域に、前記第2の絶縁膜の非形成領域で前記第1の画素電極と導通するように形成される第2の画素電極をさらに有していることを特徴とする請求項1に記載の電気化学表示素子。
    The electrochemical display element has a plurality of pixels, and a plurality of the pixel electrodes corresponding to the plurality of pixels as first pixel electrodes,
    The second insulating film is provided so as to surround each pixel corresponding to each first pixel electrode,
    The electrochemical display element includes a second pixel electrode formed in a region partitioned by the second insulating film so as to be electrically connected to the first pixel electrode in a region where the second insulating film is not formed. The electrochemical display element according to claim 1, further comprising:
  9.  前記第2の絶縁膜は、前記電解液中のイオンの隣接画素への移動を抑制する隔壁部を兼ねていることを特徴とする請求項8に記載の電気化学表示素子。 The electrochemical display element according to claim 8, wherein the second insulating film also serves as a partition wall portion that suppresses movement of ions in the electrolytic solution to adjacent pixels.
  10.  前記第2の画素電極は、液体材料を塗布して乾燥させることによって形成されており、
     前記第2の絶縁膜の表面に対する前記液体材料の非親和性が、前記非観察側の基板上における前記第2の絶縁膜の非形成領域に比べて高くなるように、前記第2の絶縁膜の表面および前記非形成領域の少なくとも一方に表面処理がされていることを特徴とする請求項8に記載の電気化学表示素子。
    The second pixel electrode is formed by applying a liquid material and drying it,
    The second insulating film so that the non-affinity of the liquid material with respect to the surface of the second insulating film is higher than that of the non-observation side substrate on which the second insulating film is not formed. The electrochemical display element according to claim 8, wherein a surface treatment is performed on at least one of the surface and the non-formed region.
  11.  前記液体材料の前記第2の絶縁膜の表面に対する接触角が50°以上であり、
     前記液体材料の前記非形成領域に対する接触角が20°以下であることを特徴とする請求項10に記載の電気化学表示素子。
    A contact angle of the liquid material with respect to a surface of the second insulating film is 50 ° or more;
    The electrochemical display element according to claim 10, wherein a contact angle of the liquid material with respect to the non-formation region is 20 ° or less.
  12.  各画素において、前記第2の画素電極は、前記第1の画素電極よりも面積が大きくなるように形成されていることを特徴とする請求項8に記載の電気化学表示素子。 9. The electrochemical display element according to claim 8, wherein in each pixel, the second pixel electrode is formed to have a larger area than the first pixel electrode.
  13.  前記第2の画素電極は、多孔質金属酸化物で構成されていることを特徴とする請求項1から12のいずれかに記載の電気化学表示素子。 13. The electrochemical display element according to claim 1, wherein the second pixel electrode is made of a porous metal oxide.
PCT/JP2011/055212 2010-03-24 2011-03-07 Electrochemical display element WO2011118373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011516905A JP4780255B1 (en) 2010-03-24 2011-03-07 Electrochemical display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010067410 2010-03-24
JP2010-067410 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011118373A1 true WO2011118373A1 (en) 2011-09-29

Family

ID=44672938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055212 WO2011118373A1 (en) 2010-03-24 2011-03-07 Electrochemical display element

Country Status (2)

Country Link
JP (1) JP4780255B1 (en)
WO (1) WO2011118373A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163289A1 (en) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 Electrochromic element and electrochromic device
JP2018077499A (en) * 2013-04-01 2018-05-17 パイオニア株式会社 Optical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055660A (en) * 2003-08-04 2005-03-03 Seiko Epson Corp Electrooptical device, method for manufacturing the same, and electronic equipment
JP2005092183A (en) * 2003-08-11 2005-04-07 Ricoh Co Ltd Display element
JP2005251529A (en) * 2004-03-03 2005-09-15 Seiko Epson Corp Manufacturing method of laminated organic electroluminescent element and display device
WO2007032117A1 (en) * 2005-09-14 2007-03-22 Konica Minolta Holdings, Inc. Method of driving display

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751112B2 (en) * 2005-07-04 2011-08-17 株式会社 日立ディスプレイズ Display device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055660A (en) * 2003-08-04 2005-03-03 Seiko Epson Corp Electrooptical device, method for manufacturing the same, and electronic equipment
JP2005092183A (en) * 2003-08-11 2005-04-07 Ricoh Co Ltd Display element
JP2005251529A (en) * 2004-03-03 2005-09-15 Seiko Epson Corp Manufacturing method of laminated organic electroluminescent element and display device
WO2007032117A1 (en) * 2005-09-14 2007-03-22 Konica Minolta Holdings, Inc. Method of driving display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018077499A (en) * 2013-04-01 2018-05-17 パイオニア株式会社 Optical device
WO2017163289A1 (en) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 Electrochromic element and electrochromic device
JPWO2017163289A1 (en) * 2016-03-25 2018-10-25 パナソニックIpマネジメント株式会社 Electrochromic device and electrochromic device

Also Published As

Publication number Publication date
JPWO2011118373A1 (en) 2013-07-04
JP4780255B1 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
KR102009357B1 (en) Organic electro-luminescent device and method of fabricating the same
US9105876B2 (en) Method for fabricating organic light emitting diode display device having improved effective emitting area
US7990060B2 (en) Organic light emitting display device and method of manufacturing the same
US7923919B2 (en) Organic electroluminescent panel and production method thereof, and color filter substrate and production method thereof
US7691685B2 (en) Method for manufacturing semiconductor device
US7965034B2 (en) Organic electroluminescence display device comprising a contact electrode with elasticity and fabricating method thereof
KR102015846B1 (en) Organic electro-luminescent device
CN110571257B (en) Display substrate, preparation method thereof and display device
JP2007258492A (en) Circuit board, method of manufacturing same, electro-optical device, and electronic equipment
JP2005244204A (en) Electronic device, semiconductor device and its manufacturing method
KR101172467B1 (en) Display device
US20110074749A1 (en) Thin film transistor array substrate, light-emitting panel and manufacturing method thereof as well as electronic device
JP5386547B2 (en) Method for manufacturing semiconductor device
US7164228B2 (en) Display panel and electronic apparatus with the same
JP2004063359A (en) Electroluminescence display and its manufacturing method
KR102015847B1 (en) Organic electro-luminescent device
TWI444744B (en) Method for manufacturing electrophoretic display device
JP5055849B2 (en) Display device and organic thin film transistor manufacturing method
KR20150067974A (en) Organic electro luminescent device and method of fabricating the same
JP4780255B1 (en) Electrochemical display element
JP5316701B2 (en) Electrochemical display element
KR102044137B1 (en) Organic electro luminescent device and method of fabricating the same
KR20150044451A (en) Organic electro-luminescent device and method of fabricating the same
WO2005012995A1 (en) Electrochromic display
TWI354173B (en) Active matrix substrate, manufacturing method ther

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011516905

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759181

Country of ref document: EP

Kind code of ref document: A1