WO2011118168A1 - Wireless receiver and wireless receiving method - Google Patents

Wireless receiver and wireless receiving method Download PDF

Info

Publication number
WO2011118168A1
WO2011118168A1 PCT/JP2011/001592 JP2011001592W WO2011118168A1 WO 2011118168 A1 WO2011118168 A1 WO 2011118168A1 JP 2011001592 W JP2011001592 W JP 2011001592W WO 2011118168 A1 WO2011118168 A1 WO 2011118168A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
signal
constellation
node
relay
Prior art date
Application number
PCT/JP2011/001592
Other languages
French (fr)
Japanese (ja)
Inventor
中尾正悟
今村大地
榎貴志
Kenichi MIYOSHI (三好憲一)
Original Assignee
パナソニック株式会社
市川窓花
市川笑愛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 市川窓花, 市川笑愛 filed Critical パナソニック株式会社
Publication of WO2011118168A1 publication Critical patent/WO2011118168A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/345Modifications of the signal space to allow the transmission of additional information
    • H04L27/3455Modifications of the signal space to allow the transmission of additional information in order to facilitate carrier recovery at the receiver end, e.g. by transmitting a pilot or by using additional signal points to allow the detection of rotations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates to a wireless reception device and a wireless reception method.
  • relay function relay function
  • a radio communication mobile station apparatus hereinafter simply referred to as a mobile station
  • a mobile station having a relay function wireless communication relay station apparatus; hereinafter simply referred to as a relay station
  • a base station wireless communication base station apparatus
  • the relay station transmits in accordance with the channel information of the signal transmitted directly from the transmission side to the reception side and the channel information of the signal transmitted from the transmission side to the reception side via the relay station.
  • a conventional technique for correcting the phase and amplitude (amplification factor) of the signal from the side and relaying the corrected signal (relay signal) has been proposed (for example, see Patent Document 1).
  • the reception side can receive a signal obtained by combining the signal directly transmitted from the transmission side and the relay signal relayed from the relay station on the propagation path without causing deterioration in communication quality.
  • the relay station is connected from the transmission side according to the channel information of the signal transmitted directly from the transmission side to the reception side and the channel information of the signal transmitted from the transmission side to the reception side via the relay station. Correct the phase and amplitude of the transmitted signal.
  • the relay station relays only the phase information of the transmission signal from the transmission side to the reception side, a symbol determination error tends to occur in the signal received on the reception side, and the error rate (BER: Bit Error) Rate) characteristics may be deteriorated.
  • BER Bit Error
  • a generation node that is a transmission side device
  • a relay node that is a relay station
  • a destination node destination node
  • the generation node shown in FIG. 1 modulates a transmission signal (data) using a constellation on the IQ plane shown in FIG. 2A (here, 8PASK (8 Amplitude Shift Keying), sometimes called 8QAM).
  • 8PASK 8 Amplitude Shift Keying
  • FIG. 2A the amplitude (that is, the origin and signal on the IQ plane) of the signal point (hereinafter referred to as the inner signal point) located on the inner circle (ring) among the signal points (constellation point) constituting the constellation.
  • the distance of the point) is 'a'
  • the amplitude of the signal point hereinafter referred to as the outer signal point located on the outer circle (ring) is '2a'.
  • FIG. 2A the amplitude of the signal point (hereinafter referred to as the outer signal point) located on the outer circle (ring) is '2a'. Also, as shown in FIG.
  • the upper 2 bits are phase information (that is, bits whose values fluctuate due to changes in phase; hereinafter referred to as phase bits).
  • phase bits bits whose values fluctuate due to changes in phase
  • amplitude bit a bit whose value fluctuates due to a change in amplitude
  • the relay node shown in FIG. 1 modulates the transmission signal transmitted from the originating node, and relays the modulated signal (relay signal) to the destination node.
  • the relay node relays only the phase bits of the transmission signal transmitted from the originating node using the constellation on the IQ plane shown in FIG. 2B.
  • the phase bit (upper 2 bits) is “00” regardless of whether the transmission signal from the occurrence node is “000” or “001” shown in FIG. 2A.
  • Relay only The same applies to the second to fourth quadrants shown in FIG. 2C.
  • the amplitude “b” of the signal point is the channel information of the signal directly transmitted from the transmission side to the reception side, and the signal transmitted from the transmission side to the reception side via the relay station, as in the above-described prior art. It is set according to the channel information.
  • the amplitude of each signal point (signal point amplitude) in the constellation of the signal received at the destination node shown in FIG. 1 is the signal point amplitude ('a') in the constellation shown in FIG. 2A, as shown in FIG. 2C.
  • '2a') are added to the signal point amplitude ('b') in the constellation shown in FIG. 2B.
  • the amplitude of the inner signal point is ‘a + b’
  • the amplitude of the outer signal point is ‘2a + b’.
  • the destination node uses the pilot signals shown in FIG. 2C (PL in and PL out (pilot signals from the originating node) shown in FIG. 2A, PL in (pilot signal from the relay node) shown in FIG. 2B) Specify the judgment axis.
  • the amplitude bit determination axis is between two signal points in each quadrant (that is, on the circle between the inner circle and the outer circle shown in FIG. 2C). (Not shown)) and the phase bit determination axis is on the IQ axis. Then, the destination node performs symbol determination of the received signal using the specified symbol determination axis.
  • FIG. 2A (constellation used by the occurrence node) is compared with FIG. 2C (constellation used by the destination node).
  • the difference 'a') between the radius of the outer circle and the radius of the inner circle is the same.
  • the symbol determination accuracy for the amplitude bit is , Uniform between the inner and outer signal points.
  • the error rate characteristics of the amplitude bits are averaged at all signal points, and a signal with good error rate characteristics is obtained. That is, it can be said that the constellation shown in FIG. 2A is a constellation with excellent error rate characteristics.
  • the amplitude of the inner signal point in each quadrant of the constellation shown in FIG. 2C (that is, the radius “a + b” of the inner circle) and the distance between the outer and inner signal points (two signals) Amplitude difference between points, ie, the difference 'a' between the radius of the outer circle and the radius of the inner circle.
  • the distance between two outer and inner signal points (amplitude difference 'a') is smaller than the amplitude ('a + b') of the inner signal point. That is, in the constellation shown in FIG.
  • the distance (amplitude difference 'a' between the outer and inner signal points with respect to the amplitude ('a + b') of the inner signal point (ie, the symbol determination axis for the amplitude bit). 2 is relatively narrow compared to the constellation shown in FIG. 2A.
  • the accuracy of symbol determination with respect to amplitude bits deteriorates, so that a symbol determination error with respect to amplitude bits tends to occur. That is, in the constellation shown in FIG. 2C, the error rate characteristic of the phase bit is comparable to the constellation shown in FIG. 2A, but the error rate characteristic of the amplitude bit is deteriorated compared to the constellation shown in FIG. 2A. End up.
  • the relay node relays only the phase bit (phase information) of the transmission signal from the originating node to the destination node, the symbol determination accuracy for the amplitude bit in the constellation of the signal received at the destination node is high. to degrade. For this reason, the destination node has a problem that the error rate characteristic of the received signal deteriorates.
  • An object of the present invention is to receive a signal with a constellation having excellent error rate characteristics at the destination node even when the relay node relays only the phase bits (phase information) of the transmission signal from the originating node to the destination node.
  • a wireless reception device and a wireless reception method.
  • the wireless reception device In a communication system including a wireless transmission device, a wireless reception device, and a wireless relay device that relays communication between the wireless transmission device and the wireless reception device, the wireless reception device according to the first aspect of the present invention, Determining means for determining an amplitude of a signal point in the first constellation used by the wireless transmission device based on a pilot signal transmitted from the wireless relay device, the amplitude and phase being used; A transmission signal modulated by the wireless transmission device using the first constellation, and a relay signal in which only phase information of the transmission signal is modulated by the wireless relay device using a second constellation; And a demodulating means for demodulating the synthesized signal, wherein the first constellation has a first amplitude signal point and the first constellation.
  • a constellation having a second amplitude signal point larger than a width wherein the second constellation is a constellation having only a third amplitude signal point, and the determining means Using the detected third amplitude, the total value of the first amplitude and the third amplitude is the same as half of the total value of the second amplitude and the third amplitude.
  • the structure which determines the said 1st amplitude and the said 2nd amplitude is taken.
  • a radio reception method includes a radio transmission device, a radio reception device, and a radio relay device that relays communication between the radio transmission device and the radio reception device.
  • the determining step comprises the steps of: Using the third amplitude detected from the pilot signal, the total value of the first amplitude and the third amplitude is half the total value of the second amplitude and the third amplitude. The first amplitude and the second amplitude are determined so as to be the same.
  • the destination node even when the relay node relays only the phase bit (phase information) of the transmission signal from the originating node to the destination node, the destination node receives the signal with a constellation having excellent error rate characteristics. be able to.
  • the figure which shows the communication system provided with the origin node, the relay node, and the destination node Diagram showing the constellation used by the originating node Diagram showing constellation used by relay node Diagram showing the constellation of the signal received at the destination node The figure which shows the communication system which concerns on embodiment of this invention
  • the block diagram which shows the structure of the occurrence node which concerns on embodiment of this invention The block diagram which shows the structure of the relay node which concerns on embodiment of this invention
  • the block diagram which shows the structure of the destination node which concerns on embodiment of this invention The figure which shows the constellation which the occurrence node which concerns on embodiment of this invention uses The figure which shows the constellation which the relay node which concerns on embodiment of this invention uses The figure which shows the constellation of the signal received at the destination node which concerns on embodiment of this invention
  • the figure which shows the amplitude of each signal transmitted from the occurrence node which concerns on embodiment of this invention The figure which shows the amplitude of each signal transmitted from the relay node which concerns on embodiment of this invention
  • the occurrence node 100 radio transmission apparatus.
  • the relay node 200 radio relay apparatus.
  • the above-described mobile station having the relay function the above-described mobile station having the relay function
  • a communication system having a destination node 300 wireless receiving apparatus, for example, the other mobile station described above
  • the occurrence node 100 shown in FIG. 3 transmits data addressed to the destination node 300.
  • the occurrence node 100 modulates the data addressed to the destination node 300 by a modulation method using amplitude and phase (for example, 8PASK described above). That is, the modulation system constellation used by the occurrence node 100 includes a first amplitude signal point (for example, an inner signal point shown in FIG. 2A) and a second amplitude signal point (a signal point having a second amplitude larger than the first amplitude). For example, a constellation having outer signal points shown in FIG. 2A.
  • the transmission signal modulated by the occurrence node 100 using the constellation has an amplitude bit (amplitude information, that is, a bit whose value fluctuates due to a change in the amplitude of each symbol) and a phase bit (phase information. , A bit whose value varies according to a change in the phase of each symbol).
  • amplitude information that is, a bit whose value fluctuates due to a change in the amplitude of each symbol
  • phase bit phase information. , A bit whose value varies according to a change in the phase of each symbol.
  • the occurrence node 100 is based on the amplitudes of the signal points in the constellation (the first amplitude and the second amplitude) indicated in the mapping instruction information transmitted from the destination node 300.
  • the constellation used for modulating the data addressed to the destination node 300 is determined.
  • Relay node 200 shown in FIG. 3 modulates only the phase bits (phase information) of the data addressed to destination node 300 transmitted from source node 100, and transmits the modulated transmission data (relay signal) to destination node 300.
  • Relay That is, the modulation system constellation used by the relay node 200 is a constellation having only a certain amplitude signal point.
  • the destination node 300 shown in FIG. 3 receives a signal obtained by combining the transmission signal transmitted from the occurrence node 100 and the relay signal relayed from the relay node 200 on the propagation path. Then, the destination node 300 obtains data addressed to the destination node 300 by demodulating the received signal. Further, the destination node 300 determines the amplitude of the signal point (the first amplitude and the second amplitude) in the modulation scheme (constellation) used by the originating node 100 based on the pilot signal transmitted from the relay node 200. To do. Then, the destination node 300 transmits mapping instruction information indicating the determined amplitude to the occurrence node 100.
  • FIG. 4 shows the configuration of the occurrence node 100 according to the present embodiment.
  • the reception RF unit 102 receives a signal from the destination node 300 via the antenna 101.
  • the reception RF unit 102 performs reception processing such as down-conversion and A / D conversion on the received signal, and outputs the signal after reception processing to the CQI extraction unit 103 and the mapping instruction information extraction unit 105.
  • this signal includes channel quality information (here, CQI (Channel QualitydicIndicator)) generated at the destination node 300 and mapping instruction information.
  • CQI Channel QualitydicIndicator
  • the CQI extraction unit 103 extracts the CQI generated by the destination node 300 from the signal input from the reception RF unit 102. Then, CQI extraction section 103 outputs the extracted CQI to MCS (Modulation & channel? Coding & Scheme) determination section 104.
  • MCS Modulation & channel? Coding & Scheme
  • the MCS determination unit 104 determines the coding rate and modulation scheme of data addressed to the destination node 300 based on the CQI input from the CQI extraction unit 103. Then, MCS determination section 104 outputs MCS information including the determined coding rate and modulation scheme to encoding section 109 and modulation section 110. The originating node 100 notifies the destination node 300 of the MCS information determined by the MCS determining unit 104 (not shown).
  • the mapping instruction information extraction unit 105 extracts mapping instruction information from the signal input from the reception RF unit 102. Then, the mapping instruction information extraction unit 105 outputs the extracted mapping instruction information to the mapping determination unit 106.
  • the mapping determination unit 106 determines a signal point (mapping position) where data is arranged for the destination node 300 on the IQ plane based on the mapping instruction information input from the mapping instruction information extraction unit 105.
  • the mapping instruction information indicates the amplitude of the signal point (the first amplitude and the second amplitude) in the constellation used when modulating the data addressed to the destination node 300.
  • the mapping determination unit 106 determines the amplitude of the signal point in the constellation used when modulating the data addressed to the destination node 300 as the first amplitude and the second amplitude. Set to the amplitude of.
  • the mapping determination unit 106 outputs mapping position information indicating the mapping position of the signal point in the determined constellation to the inner PL generation unit 107, the outer PL generation unit 108, and the modulation unit 110.
  • the inner PL generation unit 107 has a pilot signal (hereinafter referred to as an inner signal) having the same amplitude (power) as the amplitude of the inner signal point (the first amplitude) indicated in the mapping position information input from the mapping determination unit 106. This is referred to as a pilot signal (for example, PL in ) shown in FIG. Then, inner PL generation section 107 outputs the generated inner pilot signal to modulation section 110.
  • a pilot signal for example, PL in
  • the outer PL generation unit 108 has a pilot signal (hereinafter referred to as an outer side) having the same amplitude (power) as the amplitude of the outer signal point (the second amplitude) indicated in the mapping position information input from the mapping determination unit 106. This is referred to as a pilot signal, for example, PL out shown in FIG. Then, outer PL generation section 108 outputs the generated outer pilot signal to modulation section 110.
  • a pilot signal hereinafter referred to as an outer side
  • a pilot signal for example, PL out shown in FIG.
  • the encoding unit 109 performs error correction encoding processing on the data addressed to the destination node 300 based on the encoding rate indicated in the MCS information input from the MCS determination unit 104, and modulates the encoded signal to the modulation unit To 110.
  • Modulation section 110 receives an inner pilot signal input from inner PL generation section 107 based on the modulation scheme indicated in the MCS information input from MCS determination section 104 and the mapping position information input from mapping determination section 106.
  • the outer pilot signal input from the outer PL generation unit 108 and the data addressed to the destination node 300 input from the encoding unit 109 are modulated. That is, the modulation unit 110 modulates the data addressed to the destination node 300 with a constellation that uses the amplitude and phase indicated in the mapping position information. Modulation section 110 then outputs the modulated signal to transmission RF section 111.
  • the transmission RF unit 111 performs transmission processing such as D / A conversion, amplification, and up-conversion on the signal input from the modulation unit 110, and transmits the signal after transmission processing from the antenna 101.
  • FIG. 5 shows the configuration of relay node 200 according to the present embodiment.
  • the reception RF unit 202 receives the signal transmitted from the occurrence node 100 (FIG. 4) via the antenna 201.
  • the reception RF unit 202 performs reception processing such as down-conversion and A / D conversion on the received signal, and outputs the signal after reception processing to the demodulation unit 203.
  • the signal transmitted from the source node 100 includes data addressed to the destination node 300, pilot signals (inner pilot signal and outer pilot signal) addressed to the destination node 300, and a signal for measuring reception quality (not shown). included.
  • Demodulation section 203 demodulates the signal input from reception RF section 202 and outputs the demodulated signal (bit string) to reception quality measurement section 204, data signal extraction section 206 and pilot signal extraction section 208.
  • the reception quality measurement unit 204 extracts a reception quality measurement signal from the signal input from the demodulation unit 203, and measures the reception quality of the signal transmitted from the occurrence node 100 based on the extracted signal. Reception quality measuring section 204 then outputs reception quality information indicating the measurement result to relay method determining section 205.
  • the relay method determination unit 205 determines the relay method of the data addressed to the destination node 300 and the pilot signal addressed to the destination node 300 based on the reception quality information input from the reception quality measurement unit 204.
  • relay scheme determining section 205 determines a modulation scheme that uses a constellation having signal points with a certain amplitude as the relay scheme. That is, the relay method determining unit 205 determines to relay only the phase information of the data addressed to the destination node 300 transmitted from the originating node 100 and the pilot signal addressed to the destination node 300.
  • Relay scheme determining section 205 then outputs the determined relay scheme to relay data signal generating section 207 and pilot signal generating section 209.
  • the data signal extraction unit 206 extracts data addressed to the destination node 300 from the signal input from the demodulation unit 203. Then, the data signal extraction unit 206 outputs the data addressed to the destination node 300 to the relay data signal generation unit 207.
  • the relay data signal generation unit 207 converts the data addressed to the destination node 300 input from the data signal extraction unit 206 into a signal format for the relay destination destination node 300 based on the relay method input from the relay method determination unit 205. Processing to form is performed. For example, the relay method determining unit 205 determines a relay method for relaying only the phase information in the data addressed to the destination node 300 transmitted from the originating node 100. In this case, the relay data signal generation unit 207 generates a relay data signal including only phase bits (phase information) among data addressed to the destination node 300. Relay data signal generation section 207 then outputs the generated relay data signal (phase bit) to modulation section 210.
  • the pilot signal extraction unit 208 extracts a pilot signal addressed to the destination node 300 from the signal input from the demodulation unit 203. Pilot signal extraction section 208 then outputs the extracted pilot signal addressed to destination node 300 to pilot signal generation section 209.
  • pilot signal generation unit 209 Based on the relay method input from relay method determination unit 205, pilot signal generation unit 209 converts the pilot signal addressed to destination node 300 input from pilot signal extraction unit 208 to the signal format for destination node 300 as the relay destination. The process which forms is performed. For example, a relay system that relays only phase information among data addressed to the destination node 300 transmitted from the source node 100 in the relay system determination unit 205 (that is, a modulation system based on a constellation having only a signal point of a certain amplitude). It is determined. In this case, pilot signal generation section 209 adjusts the amplitude of the pilot signal (both the inner pilot signal and the outer pilot signal) addressed to destination node 300 to the certain amplitude. Relay data signal generation section 207 then outputs the generated pilot signal to modulation section 210.
  • the modulation unit 210 Based on the relay method input from the relay method determination unit 205, the modulation unit 210 receives data addressed to the destination node 300 including only the relay data signal (that is, phase bits (phase information)) input from the relay data signal generation unit 207. ) And the pilot signal input from the pilot signal generation unit 209 is modulated. Modulation section 210 then outputs the modulated signal to transmission RF section 211.
  • the transmission RF unit 211 performs transmission processing such as D / A conversion, amplification, and up-conversion on the signal input from the modulation unit 210, and transmits the signal after transmission processing from the antenna 201 to the destination node.
  • the reception RF unit 302 transmits a signal obtained by combining the signal transmitted from the occurrence node 100 and the signal transmitted from the relay node 200 (relay signal) on the propagation path to the antenna 301. Receive via. Then, the reception RF unit 302 performs reception processing such as down-conversion and A / D conversion on the received signal, and sends the signal after reception processing to the outer PL extraction unit 303, the inner PL extraction unit 304, and the demodulation unit 306. Output.
  • Outer PL extraction section 303 extracts an outer pilot signal (for example, PL out shown in FIG. 2A) transmitted from occurrence node 100 from the signal input from reception RF section 302, and estimates the extracted outer pilot signal. Output to 305.
  • an outer pilot signal for example, PL out shown in FIG. 2A
  • the inner PL extraction unit 304 from the signal input from the reception RF unit 302, the inner pilot signal transmitted from the occurrence node 100 (for example, PL in shown in FIG. 2A) or the pilot signal transmitted from the relay node 200. (For example, PL in shown in FIG. 2B) is extracted. Then, the inner PL extraction unit 304 outputs the inner pilot signal from the occurrence node 100 to the estimation unit 305, and outputs the pilot signal from the relay node 200 to the estimation unit 305 and the detection unit 309.
  • the estimation unit 305 receives the outer pilot signal from the occurrence node 100 input from the outer PL extraction unit 303, and the inner pilot signal from the occurrence node 100 and the relay node 200 input from the inner PL extraction unit 304. Using the pilot signal, the state of the propagation path (channel) between the originating node 100 and the destination node 300 and the state of the propagation path (channel) between the relay node 200 and the destination node 300 are estimated. Then, estimation section 305 outputs a channel estimation value that is an estimation result to demodulation section 306 and CQI generation section 308.
  • the MCS information notified from the occurrence node 100 is input to the demodulation unit 306 from a receiving unit (not shown).
  • Demodulation section 306 demodulates the signal input from reception RF section 302 based on the channel estimation value and MCS information input from estimation section 305. Specifically, the demodulation unit 306 identifies a symbol determination axis of a signal input from the reception RF unit 302 based on the channel estimation value, and is input from the reception RF unit 302 using the specified determination axis. Signal symbol determination.
  • Demodulation section 306 outputs the demodulated signal (bit string) to decoding section 307.
  • the decoding unit 307 performs error correction decoding processing on the signal input from the demodulation unit 306 and outputs the decoding result as received data.
  • the CQI generating unit 308 generates a CQI indicating the state of the propagation path (channel) between the originating node 100 and the destination node 300 based on the channel estimation value input from the estimating unit 305. Then, CQI generation section 308 outputs the generated CQI to modulation section 311.
  • the detection unit 309 detects the amplitude of the pilot signal from the relay node 200 input from the inner PL extraction unit 304, that is, the amplitude of each signal point constituting the constellation used by the relay node 200. Then, the detection unit 309 outputs the detected amplitude to the determination unit 310.
  • the determination unit 310 receives a signal in the constellation (constellation using amplitude and phase) used by the occurrence node 100 based on the amplitude of each signal point included in the constellation used by the relay node 200, which is input from the detection unit 309. Determine the amplitude of the points.
  • the constellation used by the occurrence node 100 is a constellation having a first amplitude signal point and a second amplitude signal point larger than the first amplitude.
  • the constellation used by the relay node 200 is It is a constellation having only signal points of a certain amplitude (here, the third amplitude).
  • the determination unit 310 uses the third amplitude detected from the pilot signal from the relay node 200, for example, the total value of the first amplitude and the third amplitude becomes the second amplitude and the third amplitude.
  • the first amplitude and the second amplitude are determined so as to be equal to half of the total value of the amplitudes. Then, the determination unit 310 outputs mapping instruction information indicating the determined first amplitude and second amplitude to the modulation unit 311.
  • Modulation section 311 modulates the CQI input from CQI generation section 308 and the mapping instruction information input from determination section 310, and outputs the modulated signal to transmission RF section 312.
  • the transmission RF unit 312 performs transmission processing such as D / A conversion, amplification, and up-conversion on the signal input from the modulation unit 311, and transmits the signal after transmission processing from the antenna 301 to the occurrence node 100.
  • the occurrence node 100 (FIG. 4) shown in FIG. 3 uses an 8PASK constellation shown in FIG. 7A as an example of a constellation using amplitude and phase. Further, in the constellation shown in FIG. 7A, among the 3 bits constituting one symbol, the upper 2 bits are phase bits (phase information, bits whose values fluctuate due to changes in phase), and the lower 1 bits are amplitude bits ( Amplitude information (bits whose values vary with changes in amplitude).
  • the amplitude (the first amplitude) of the inner signal point (the signal point where the amplitude bit “0” is arranged) is set to “d”, and the outer signal point ( Let the amplitude (the second amplitude) of the signal point at which the amplitude bit “1” is arranged be “c + d”.
  • the amplitudes “d” and “c + d” of signal points in the constellation shown in FIG. 7A are determined based on mapping instruction information transmitted from the destination node 300 (described later).
  • the relay node 200 shown in FIG. 3 uses the constellation shown in FIG. 7B.
  • the amplitude of the signal point in the constellation shown in FIG. 7B is ‘b’.
  • relay node 200 generates pilot signal PL in having the same amplitude as the amplitude 'b' of the constellation signal point shown in FIG. 7B.
  • the detection unit 309 of the destination node 300 detects the amplitude “b” of the pilot signal PL in transmitted from the relay node 200, which is input from the inner PL extraction unit 304.
  • the determination unit 310 uses the third amplitude 'b' detected from the pilot signal PL in transmitted from the relay node 200, which is detected by the detection unit 309, and is illustrated in FIG.
  • the amplitude of the signal point in the constellation (first amplitude 'd' and second amplitude 'c + d') is determined.
  • the determination unit 310 generates mapping instruction information indicating the determined amplitudes “d” and “c + d”.
  • the mapping determination unit 106 of the originating node 100 based on the mapping instruction information transmitted from the destination node 300, has a signal point with an amplitude “d” (inner signal point) and an amplitude “c + d”. Determine the constellation consisting of 'signal points (outer signal points).
  • modulation section 110 (FIG. 4) of generation node 100 modulates the transmission signal (data addressed to destination node 300 and pilot signal) using the constellation shown in FIG. 7A.
  • the inner PL generation unit 107 of the occurrence node 100 generates an inner pilot signal PL in having the same amplitude as the amplitude 'd' of the signal point inside the constellation shown in FIG. 7A.
  • the outer PL generation unit 108 generates an outer pilot signal PL out having the same amplitude as the amplitude 'c + d' of the signal point outside the constellation shown in FIG. 7A.
  • a symbol (symbol “110” having an amplitude bit of “0”) arranged at a signal point inside the constellation shown in FIG. 7A. , '010', '100', '000') and the amplitude of the pilot signal PL in become 'd'.
  • the amplitude and pilot signal of symbols (symbols “101”, “101”, “011”, and “111” whose amplitude bits are “1”) arranged at signal points outside the constellation shown in FIG. 7A
  • the amplitude of PL out is 'c + d'.
  • the relay data signal generation unit 207 (FIG. 5) of the relay node 200 performs phase bits (upper 2 bits of 3 bits constituting each symbol in FIG. 7A) of the data addressed to the destination node 300 transmitted from the originating node 100. ) Is extracted to generate a relay data signal. Further, the pilot signal generation unit 209 makes the pilot signal PL in , the amplitude of the pilot signal PL in , PL out transmitted from the generation node 100 the same as the amplitude “b” of the signal point in the constellation shown in FIG. 7B. in is generated.
  • modulation section 210 modulates data (only phase bits) and pilot signals addressed to destination node 300 using the constellation shown in FIG. 7B. That is, as shown in FIG. 8B, the amplitude of each symbol transmitted from the relay node 200 and the amplitude of the pilot signal PL in are all “b”.
  • the amplitude of the signal point (signal point amplitude) in the constellation of the signal received by the destination node 300 is As shown in 7C, the signal point amplitude ('b') in the constellation shown in FIG. 7B is added to the signal point amplitudes ('d' and 'c + d') in the constellation shown in FIG. 7A. That is, among the signal points constituting the constellation shown in FIG. 8C, the amplitude of the inner signal point is ‘b + d’ and the amplitude of the outer signal point is ‘b + c + d’.
  • the amplitude of the inner signal point in each quadrant of the constellation of the signal received at the destination node 300 (that is, the radius of the inner circle 'b + d') and the outer and inner two
  • the distance between the signal points (the amplitude difference between the two signal points, that is, the difference 'c' between the radius of the outer circle and the radius of the inner circle) is the same.
  • the symbol determination accuracy for the amplitude bit is the inner signal.
  • Uniform between the point and the outer signal point that is, in the constellation of the signal received at the destination node 300 (FIG. 7C), the error rate characteristics of the amplitude bits are averaged at all signal points, and the destination node 300 can obtain a signal with good error rate characteristics. .
  • the destination node 300 can receive data addressed to the destination node 300 using a constellation (FIG. 7C) with excellent error rate characteristics, as in the constellation shown in FIG. 2A.
  • the destination node 300 has an inner signal in each quadrant of the constellation of the signal received by the destination node 300 (the signal directly transmitted from the transmission side and the relay signal relayed from the relay station).
  • the constellation used by the occurrence node 100 so that the amplitude of the signal point ('b + d' shown in FIG. 7C) and the distance between the outer and inner two signal points ('c' shown in FIG. 7C) are the same.
  • the destination node 300 predicts in advance that the transmission signal directly transmitted from the occurrence node 100 and the relay signal transmitted from the relay node 200 are combined on the propagation path, and is transmitted from the occurrence node 100. Determine the constellation of the transmitted signal.
  • the occurrence node 100 can modulate data destined for the destination node 300 using a constellation that takes into account that signals relayed by the relay node 200 are combined on the propagation path.
  • the destination node 300 can receive data addressed to the destination node 300 with a constellation having excellent error rate characteristics.
  • the destination node even when the relay node relays only the phase bit (phase information) of the transmission signal from the originating node to the destination node, the destination node has a constellation with excellent error rate characteristics. A signal can be received.
  • a relay node for example, a mobile station having a relay function
  • a phase bit (phase information) in a signal transmitted from a source node (wireless transmission device) is transmitted to a destination node (wireless).
  • the relay node can reduce the power consumption required for the relay process as compared with the case where all signals transmitted from the occurrence node are relayed. Therefore, when performing the relay process for signals addressed to other mobile stations.
  • the decrease in the charging capacity of the battery can be minimized.
  • the system capacity of the entire communication system can be increased by performing relay transmission of signals of other mobile stations while transmitting / receiving signals of the mobile station (relay node) itself having a relay function. That is, according to the present embodiment, it is possible to increase the system capacity by reducing the power consumption required for the relay process in the mobile station having the relay function.
  • the modulation method used by the occurrence node is not limited to 8 PASK, and may be any modulation method corresponding to a constellation composed of a plurality of signal points having different amplitudes.
  • 4QAM in which the number of bits constituting one symbol is 2 bits, the upper 1 bit is an amplitude bit, and the lower 1 bit is a phase bit may be used as a modulation method used by the generation node.
  • 4PASK in which the number of bits constituting one symbol is 2 bits, the lower 1 bit is an amplitude bit, and the upper 1 bit is a phase bit may be used as a modulation method used by the generation node.
  • the relay node relays only the phase bit (phase information) in the signal (data destined for the destination node) transmitted from the originating node.
  • the relay node depending on the reception quality of the signal transmitted from the originating node, all the signals (data destined for the destination node) transmitted from the originating node (amplitude bits (amplitude information) and phase bits (phase information)). Relay of only one of the amplitude bit and the phase bit, or cancellation of relay of data addressed to the destination node may be selected. In this way, the relay node can reduce the power consumption required for the relay process by adaptively controlling the relay process based on the reception quality of the signal transmitted from the occurrence node.
  • the relay node when the relay node relays only the phase bit of the signal (data destined for the destination node) transmitted from the originating node, it is possible to prevent the reception error rate characteristic from being deteriorated in the destination node as in the above embodiment. it can.
  • the destination node transmits mapping instruction information indicating the amplitude of signal points (for example, “d” and “c + d” shown in FIG. 7A) to the occurrence node in the constellation used by the occurrence node.
  • the mapping instruction information is not limited to the amplitude of the signal point in the constellation used by the occurrence node. That is, the destination node transmits information on distortion of the constellation of the transmission signal transmitted from the generation node, which is generated when the transmission signal from the generation node and the relay signal from the relay node are combined on the propagation path. Please feed back.
  • the mapping instruction information may be the difference (cd) between the distance (amplitude difference) ‘c’ between the outer and inner signal points in FIG.
  • the amplitude of the signal point in the constellation used by the occurrence node is the first amplitude e and the second amplitude f (where e ⁇ f).
  • a constellation to be used at the time of modulating data addressed to the destination node 300 may be determined.
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention can be applied to a mobile communication system or the like.
  • DESCRIPTION OF SYMBOLS 100 Originating node 200 Relay node 300 Destination node 101,201,301 Antenna 102,202,302 Reception RF part 103 CQI extraction part 104 MCS determination part 105 Mapping instruction information extraction part 106 Mapping determination part 107 Inner PL generation part 108 Outer PL generation part 108 Unit 109 encoding unit 110, 210, 311 modulation unit 1111, 211, 312 transmission RF unit 203, 306 demodulation unit 204 reception quality measurement unit 205 relay scheme determination unit 206 data signal extraction unit 207 relay data signal generation unit 208 pilot signal extraction Unit 209 pilot signal generation unit 303 outer PL extraction unit 304 inner PL extraction unit 305 estimation unit 307 decoding unit 308 CQI generation unit 309 detection unit 310 determination unit

Abstract

Disclosed is a wireless receiver which enables a destination node to receive a constellation signal with outstanding error rate characteristics, even if a relay node relays only the phase bit (phase information) of a transmission signal sent from a source node to the destination node. In the wireless receiver, a demodulation unit (306) demodulates a signal composed of a transmission signal that has been modulated by a source node using a first constellation, and a relay signal in which only the phase information of the aforementioned transmission signal has been modulated by a relay node using a second constellation. The first constellation has a signal point with a first amplitude and a signal point with a second amplitude which is larger than the first amplitude, and the second constellation has only a signal point with a third amplitude. In addition, a determination unit (310) determines the first amplitude and the second amplitude using the third amplitude detected from a pilot signal from the relay node, in such a manner that the total value of the first amplitude and the third amplitude is the same as half of the total value of the second amplitude and the third amplitude.

Description

無線受信装置及び無線受信方法Radio receiving apparatus and radio receiving method
 本発明は、無線受信装置及び無線受信方法に関する。 The present invention relates to a wireless reception device and a wireless reception method.
 近年、無線通信移動局装置(以下、単に移動局という)が、他の移動局宛ての信号を中継する中継機能(リピータ機能)を有する通信システムが検討されている。 Recently, a communication system having a relay function (repeater function) in which a radio communication mobile station apparatus (hereinafter simply referred to as a mobile station) relays a signal addressed to another mobile station has been studied.
 この通信システムでは、例えば、中継機能を有する移動局(無線通信中継局装置。以下、単に中継局という)が無線通信基地局装置(以下、単に基地局という)から送信された、他の移動局宛ての信号を中継する。これにより、基地局と直接通信することが困難な移動局でも、中継局を介して基地局と通信することが可能となり、システムキャパシティが増大する。 In this communication system, for example, another mobile station in which a mobile station having a relay function (wireless communication relay station apparatus; hereinafter simply referred to as a relay station) is transmitted from a wireless communication base station apparatus (hereinafter simply referred to as a base station). Relay the addressed signal. As a result, even a mobile station that is difficult to directly communicate with the base station can communicate with the base station via the relay station, and the system capacity increases.
 さらに、通信システムにおいて、中継局が、送信側から受信側に直接送信される信号のチャネル情報、及び、送信側から中継局を介して受信側に送信される信号のチャネル情報に応じて、送信側からの信号の位相及び振幅(増幅率)を補正して、補正後の信号(中継信号)を中継する従来技術が提案されている(例えば、特許文献1参照)。これにより、受信側では、送信側から直接送信される信号と中継局から中継される中継信号とが伝搬路上で合成された信号を、通信品質の劣化が生じることなく受信することができる。 Further, in the communication system, the relay station transmits in accordance with the channel information of the signal transmitted directly from the transmission side to the reception side and the channel information of the signal transmitted from the transmission side to the reception side via the relay station. A conventional technique for correcting the phase and amplitude (amplification factor) of the signal from the side and relaying the corrected signal (relay signal) has been proposed (for example, see Patent Document 1). As a result, the reception side can receive a signal obtained by combining the signal directly transmitted from the transmission side and the relay signal relayed from the relay station on the propagation path without causing deterioration in communication quality.
特開2005-229524号公報JP 2005-229524 A
 上記従来技術では、送信側から受信側に直接送信される信号のチャネル情報、及び、送信側から中継局を介して受信側に送信される信号のチャネル情報に応じて、中継局が送信側から送信される信号の位相及び振幅を補正する。しかしながら、中継局が送信側からの送信信号のうち位相情報のみを受信側に中継する場合には、受信側で受信した信号において、シンボルの判定誤りが生じやすくなり、誤り率(BER:Bit Error Rate)特性が劣化してしまう場合が生じる。 In the above-described prior art, the relay station is connected from the transmission side according to the channel information of the signal transmitted directly from the transmission side to the reception side and the channel information of the signal transmitted from the transmission side to the reception side via the relay station. Correct the phase and amplitude of the transmitted signal. However, when the relay station relays only the phase information of the transmission signal from the transmission side to the reception side, a symbol determination error tends to occur in the signal received on the reception side, and the error rate (BER: Bit Error) Rate) characteristics may be deteriorated.
 以下、具体的に説明する。以下の説明では、図1に示すように、送信側の装置である生起ノード(source node)と、中継局である中継ノード(relay node)と、受信側の装置である宛先ノード(destination node)とを有する通信システムについて説明する。 The details will be described below. In the following description, as shown in FIG. 1, a generation node (source node) that is a transmission side device, a relay node (relay node) that is a relay station, and a destination node (destination node) that is a reception side device. Will be described.
 図1に示す生起ノードは、図2Aに示すIQ平面上のコンスタレーション(ここでは、8PASK(8 Phase Amplitude Shift Keying)。8QAMと呼ばれることもある)を用いて送信信号(データ)を変調する。図2Aにおいて、コンスタレーションを構成する信号点(constellation point)のうち、内側の円(リング)上に位置する信号点(以下、内側の信号点という)の振幅(つまり、IQ平面における原点と信号点の距離)は‘a’であり、外側の円(リング)上に位置する信号点(以下、外側の信号点という)の振幅は‘2a’である。また、図2Aに示すように、各信号点に配置されるシンボルを構成する3ビットのうち、上位2ビットが位相情報(つまり、位相の変化によって値が変動するビット。以下、位相ビットという)を表し、下位1ビットが振幅情報(つまり、振幅の変化によって値が変動するビット。以下、振幅ビットという)を表す。 The generation node shown in FIG. 1 modulates a transmission signal (data) using a constellation on the IQ plane shown in FIG. 2A (here, 8PASK (8 Amplitude Shift Keying), sometimes called 8QAM). In FIG. 2A, the amplitude (that is, the origin and signal on the IQ plane) of the signal point (hereinafter referred to as the inner signal point) located on the inner circle (ring) among the signal points (constellation point) constituting the constellation. The distance of the point) is 'a', and the amplitude of the signal point (hereinafter referred to as the outer signal point) located on the outer circle (ring) is '2a'. Also, as shown in FIG. 2A, among the 3 bits constituting the symbols arranged at each signal point, the upper 2 bits are phase information (that is, bits whose values fluctuate due to changes in phase; hereinafter referred to as phase bits). The lower 1 bit represents amplitude information (that is, a bit whose value fluctuates due to a change in amplitude, hereinafter referred to as amplitude bit).
 また、図1に示す中継ノードは、生起ノードから送信される送信信号を変調して、変調後の信号(中継信号)を宛先ノードに中継する。ここで、図2Bに示すように、中継ノードは、図2Bに示すIQ平面上のコンスタレーションを用いて生起ノードから送信される送信信号の位相ビットのみを中継する。例えば、図2Bに示すIQ平面の第1象限では、生起ノードからの送信信号が図2Aに示す‘000’及び‘001’のいずれの場合でも、位相ビット(上位2ビット)である‘00’のみを中継する。図2Cに示す第2~第4象限についても同様である。また、図2Bに示すコンスタレーションを構成する信号点の振幅は‘b’である。例えば、信号点の振幅‘b’は、上記従来技術のように、送信側から受信側に直接送信される信号のチャネル情報、及び、送信側から中継局を介して受信側に送信される信号のチャネル情報に応じて設定される。 Further, the relay node shown in FIG. 1 modulates the transmission signal transmitted from the originating node, and relays the modulated signal (relay signal) to the destination node. Here, as shown in FIG. 2B, the relay node relays only the phase bits of the transmission signal transmitted from the originating node using the constellation on the IQ plane shown in FIG. 2B. For example, in the first quadrant of the IQ plane shown in FIG. 2B, the phase bit (upper 2 bits) is “00” regardless of whether the transmission signal from the occurrence node is “000” or “001” shown in FIG. 2A. Relay only. The same applies to the second to fourth quadrants shown in FIG. 2C. Further, the amplitude of the signal point constituting the constellation shown in FIG. 2B is ‘b’. For example, the amplitude “b” of the signal point is the channel information of the signal directly transmitted from the transmission side to the reception side, and the signal transmitted from the transmission side to the reception side via the relay station, as in the above-described prior art. It is set according to the channel information.
 よって、図1に示す宛先ノードで受信される信号のコンスタレーションにおける各信号点の振幅(信号点振幅)は、図2Cに示すように、図2Aに示すコンスタレーションにおける信号点振幅(‘a’及び‘2a’)に、図2Bに示すコンスタレーションにおける信号点振幅(‘b’)が加算された結果になる。具体的には、図2Cに示すコンスタレーションを構成する信号点のうち、内側の信号点の振幅は‘a+b’となり、外側の信号点の振幅は‘2a+b’となる。 Therefore, the amplitude of each signal point (signal point amplitude) in the constellation of the signal received at the destination node shown in FIG. 1 is the signal point amplitude ('a') in the constellation shown in FIG. 2A, as shown in FIG. 2C. And '2a') are added to the signal point amplitude ('b') in the constellation shown in FIG. 2B. Specifically, among the signal points constituting the constellation shown in FIG. 2C, the amplitude of the inner signal point is ‘a + b’, and the amplitude of the outer signal point is ‘2a + b’.
 宛先ノードは、図2Cに示すパイロット信号(図2Aに示すPLin及びPLout(生起ノードからのパイロット信号)、図2Bに示すPLin(中継ノードからのパイロット信号))を用いて、シンボルの判定軸を特定する。図2Cでは、各シンボルを構成する複数のビットのうち、振幅ビットの判定軸は各象限内の2つの信号点間(つまり、図2Cに示す内側の円と外側の円の中間となる円上(図示せず))に存在し、位相ビットの判定軸はIQ軸上に存在する。そして、宛先ノードは、特定したシンボルの判定軸を用いて、受信信号のシンボル判定を行う。 The destination node uses the pilot signals shown in FIG. 2C (PL in and PL out (pilot signals from the originating node) shown in FIG. 2A, PL in (pilot signal from the relay node) shown in FIG. 2B) Specify the judgment axis. In FIG. 2C, among the plurality of bits constituting each symbol, the amplitude bit determination axis is between two signal points in each quadrant (that is, on the circle between the inner circle and the outer circle shown in FIG. 2C). (Not shown)) and the phase bit determination axis is on the IQ axis. Then, the destination node performs symbol determination of the received signal using the specified symbol determination axis.
 ここで、図2A(生起ノードが用いるコンスタレーション)と図2C(宛先ノードが用いるコンスタレーション)とを比較する。図2Aに示すコンスタレーションの各象限における内側の信号点の振幅(内側の円の半径‘a’)と、外側及び内側の2つの信号点間の距離(2つの信号点間の振幅差。つまり、外側の円の半径と内側の円の半径との差‘a’)とは同一である。図2Aに示すように、コンスタレーションの各象限における内側の信号点の振幅と、外側及び内側の2つの信号点間の距離(振幅差)とが同一の場合、振幅ビットに対するシンボルの判定精度は、内側の信号点と外側の信号点との間で均一となる。つまり、この場合には、全ての信号点において振幅ビットの誤り率特性が平均化され、誤り率特性が良好な信号が得られる。つまり、図2Aに示すコンスタレーションは、誤り率特性に優れたコンスタレーションであるといえる。 Here, FIG. 2A (constellation used by the occurrence node) is compared with FIG. 2C (constellation used by the destination node). The amplitude of the inner signal point (inner circle radius 'a') in each quadrant of the constellation shown in FIG. 2A and the distance between the outer and inner two signal points (the amplitude difference between the two signal points. The difference 'a') between the radius of the outer circle and the radius of the inner circle is the same. As shown in FIG. 2A, when the amplitude of the inner signal point in each quadrant of the constellation is the same as the distance (amplitude difference) between the outer and inner signal points, the symbol determination accuracy for the amplitude bit is , Uniform between the inner and outer signal points. In other words, in this case, the error rate characteristics of the amplitude bits are averaged at all signal points, and a signal with good error rate characteristics is obtained. That is, it can be said that the constellation shown in FIG. 2A is a constellation with excellent error rate characteristics.
 これに対して、図2Cに示すコンスタレーションの各象限における内側の信号点の振幅(つまり、内側の円の半径‘a+b’)と、外側及び内側の2つの信号点間の距離(2つの信号点間の振幅差。つまり、外側の円の半径と内側の円の半径との差‘a’)とは異なる。具体的には、外側及び内側の2つの信号点間の距離(振幅差‘a’)の方が、内側の信号点の振幅(‘a+b’)よりも小さくなる。つまり、図2Cに示すコンスタレーションでは、内側の信号点の振幅(‘a+b’)に対する、外側及び内側の2つの信号点間の距離(振幅差‘a’。つまり、振幅ビットに対するシンボルの判定軸が存在する部分)が、図2Aに示すコンスタレーションと比較して相対的に狭くなる。 In contrast, the amplitude of the inner signal point in each quadrant of the constellation shown in FIG. 2C (that is, the radius “a + b” of the inner circle) and the distance between the outer and inner signal points (two signals) Amplitude difference between points, ie, the difference 'a' between the radius of the outer circle and the radius of the inner circle. Specifically, the distance between two outer and inner signal points (amplitude difference 'a') is smaller than the amplitude ('a + b') of the inner signal point. That is, in the constellation shown in FIG. 2C, the distance (amplitude difference 'a' between the outer and inner signal points with respect to the amplitude ('a + b') of the inner signal point (ie, the symbol determination axis for the amplitude bit). 2 is relatively narrow compared to the constellation shown in FIG. 2A.
 よって、図2Aと比較すると、図2Cに示すコンスタレーションでは、振幅ビットに対するシンボルの判定精度が劣化するので、振幅ビットに対するシンボルの判定誤りが生じやすくなってしまう。すなわち、図2Cに示すコンスタレーションでは、位相ビットの誤り率特性は、図2Aに示すコンスタレーションと同程度であるものの、振幅ビットの誤り率特性は、図2Aに示すコンスタレーションよりも劣化してしまう。 Therefore, as compared with FIG. 2A, in the constellation shown in FIG. 2C, the accuracy of symbol determination with respect to amplitude bits deteriorates, so that a symbol determination error with respect to amplitude bits tends to occur. That is, in the constellation shown in FIG. 2C, the error rate characteristic of the phase bit is comparable to the constellation shown in FIG. 2A, but the error rate characteristic of the amplitude bit is deteriorated compared to the constellation shown in FIG. 2A. End up.
 このように、中継ノードが生起ノードからの送信信号のうち位相ビット(位相情報)のみを宛先ノードに中継する場合には、宛先ノードで受信した信号のコンスタレーションにおける振幅ビットに対するシンボルの判定精度が劣化する。このため、宛先ノードでは、受信した信号の誤り率特性が劣化してしまうという課題が発生する。 Thus, when the relay node relays only the phase bit (phase information) of the transmission signal from the originating node to the destination node, the symbol determination accuracy for the amplitude bit in the constellation of the signal received at the destination node is high. to degrade. For this reason, the destination node has a problem that the error rate characteristic of the received signal deteriorates.
 本発明の目的は、中継ノードが生起ノードからの送信信号のうち位相ビット(位相情報)のみを宛先ノードに中継する場合でも、宛先ノードで、誤り率特性に優れたコンスタレーションで信号を受信することができる無線受信装置及び無線受信方法を提供する。 An object of the present invention is to receive a signal with a constellation having excellent error rate characteristics at the destination node even when the relay node relays only the phase bits (phase information) of the transmission signal from the originating node to the destination node. Provided are a wireless reception device and a wireless reception method.
 本発明の第1の態様に係る無線受信装置は、無線送信装置、無線受信装置、及び、前記無線送信装置と前記無線受信装置との通信の中継を行う無線中継装置を備える通信システムにおいて、前記無線中継装置から送信されるパイロット信号に基づいて、前記無線送信装置が用いる第1のコンスタレーションであって、振幅及び位相を用いる前記第1のコンスタレーションにおける信号点の振幅を決定する決定手段と、前記無線送信装置で前記第1のコンスタレーションを用いて変調された送信信号と、前記無線中継装置で第2のコンスタレーションを用いて前記送信信号のうち位相情報のみが変調された中継信号と、が合成された信号を復調する復調手段と、を具備し、前記第1のコンスタレーションは第1の振幅の信号点及び前記第1の振幅よりも大きい第2の振幅の信号点を有するコンスタレーションであり、前記第2のコンスタレーションは第3の振幅の信号点のみを有するコンスタレーションであって、前記決定手段は、前記パイロット信号から検出される前記第3の振幅を用いて、前記第1の振幅と前記第3の振幅の合計値が、前記第2の振幅と前記第3の振幅の合計値の半分の値と同一になるように、前記第1の振幅及び前記第2の振幅を決定する構成を採る。 In a communication system including a wireless transmission device, a wireless reception device, and a wireless relay device that relays communication between the wireless transmission device and the wireless reception device, the wireless reception device according to the first aspect of the present invention, Determining means for determining an amplitude of a signal point in the first constellation used by the wireless transmission device based on a pilot signal transmitted from the wireless relay device, the amplitude and phase being used; A transmission signal modulated by the wireless transmission device using the first constellation, and a relay signal in which only phase information of the transmission signal is modulated by the wireless relay device using a second constellation; And a demodulating means for demodulating the synthesized signal, wherein the first constellation has a first amplitude signal point and the first constellation. A constellation having a second amplitude signal point larger than a width, wherein the second constellation is a constellation having only a third amplitude signal point, and the determining means Using the detected third amplitude, the total value of the first amplitude and the third amplitude is the same as half of the total value of the second amplitude and the third amplitude. Thus, the structure which determines the said 1st amplitude and the said 2nd amplitude is taken.
 本発明の第2の態様に係る無線受信方法は、無線送信装置、無線受信装置、及び、前記無線送信装置と前記無線受信装置との通信の中継を行う無線中継装置を備える通信システムにおいて、前記無線中継装置から送信されるパイロット信号に基づいて、前記無線送信装置が用いる第1のコンスタレーションであって、振幅及び位相を用いる前記第1のコンスタレーションにおける信号点の振幅を決定する決定ステップと、前記無線送信装置で前記第1のコンスタレーションを用いて変調された送信信号と、前記無線中継装置で第2のコンスタレーションを用いて前記送信信号のうち位相情報のみが変調された中継信号と、が合成された信号を復調する復調ステップと、を具備し、前記第1のコンスタレーションは第1の振幅の信号点及び前記第1の振幅よりも大きい第2の振幅の信号点を有するコンスタレーションであり、前記第2のコンスタレーションは第3の振幅の信号点のみを有するコンスタレーションであって、前記決定ステップは、前記パイロット信号から検出される前記第3の振幅を用いて、前記第1の振幅と前記第3の振幅の合計値が、前記第2の振幅と前記第3の振幅の合計値の半分の値と同一になるように、前記第1の振幅及び前記第2の振幅を決定するようにした。 A radio reception method according to a second aspect of the present invention includes a radio transmission device, a radio reception device, and a radio relay device that relays communication between the radio transmission device and the radio reception device. A determination step for determining an amplitude of a signal point in the first constellation used by the wireless transmission device based on a pilot signal transmitted from the wireless relay device, using the amplitude and the phase; A transmission signal modulated by the wireless transmission device using the first constellation, and a relay signal in which only phase information of the transmission signal is modulated by the wireless relay device using a second constellation; And a demodulating step of demodulating the synthesized signal, wherein the first constellation comprises a first amplitude constellation point and a previous amplitude signal point. A constellation having signal points with a second amplitude greater than the first amplitude, and the second constellation is a constellation having only signal points with a third amplitude, and the determining step comprises the steps of: Using the third amplitude detected from the pilot signal, the total value of the first amplitude and the third amplitude is half the total value of the second amplitude and the third amplitude. The first amplitude and the second amplitude are determined so as to be the same.
 本発明によれば、中継ノードが生起ノードからの送信信号のうち位相ビット(位相情報)のみを宛先ノードに中継する場合でも、宛先ノードで、誤り率特性に優れたコンスタレーションで信号を受信することができる。 According to the present invention, even when the relay node relays only the phase bit (phase information) of the transmission signal from the originating node to the destination node, the destination node receives the signal with a constellation having excellent error rate characteristics. be able to.
生起ノード、中継ノード及び宛先ノードを備える通信システムを示す図The figure which shows the communication system provided with the origin node, the relay node, and the destination node 生起ノードが用いるコンスタレーションを示す図Diagram showing the constellation used by the originating node 中継ノードが用いるコンスタレーションを示す図Diagram showing constellation used by relay node 宛先ノードで受信される信号のコンスタレーションを示す図Diagram showing the constellation of the signal received at the destination node 本発明の実施の形態に係る通信システムを示す図The figure which shows the communication system which concerns on embodiment of this invention 本発明の実施の形態に係る生起ノードの構成を示すブロック図The block diagram which shows the structure of the occurrence node which concerns on embodiment of this invention 本発明の実施の形態に係る中継ノードの構成を示すブロック図The block diagram which shows the structure of the relay node which concerns on embodiment of this invention 本発明の実施の形態に係る宛先ノードの構成を示すブロック図The block diagram which shows the structure of the destination node which concerns on embodiment of this invention 本発明の実施の形態に係る生起ノードが用いるコンスタレーションを示す図The figure which shows the constellation which the occurrence node which concerns on embodiment of this invention uses 本発明の実施の形態に係る中継ノードが用いるコンスタレーションを示す図The figure which shows the constellation which the relay node which concerns on embodiment of this invention uses 本発明の実施の形態に係る宛先ノードで受信される信号のコンスタレーションを示す図The figure which shows the constellation of the signal received at the destination node which concerns on embodiment of this invention 本発明の実施の形態に係る生起ノードから送信される各信号の振幅を示す図The figure which shows the amplitude of each signal transmitted from the occurrence node which concerns on embodiment of this invention 本発明の実施の形態に係る中継ノードから送信される各信号の振幅を示す図The figure which shows the amplitude of each signal transmitted from the relay node which concerns on embodiment of this invention 本発明の実施の形態に係る宛先ノードで受信される各信号の振幅を示す図The figure which shows the amplitude of each signal received by the destination node which concerns on embodiment of this invention
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 以下の説明では、図3に示すように、生起ノード100(無線送信装置。例えば、上述した基地局)と、中継ノード200(無線中継装置。例えば、上述した中継機能を有する移動局)と、宛先ノード300(無線受信装置。例えば、上述した他の移動局)と、を有する通信システムについて説明する。 In the following description, as shown in FIG. 3, the occurrence node 100 (radio transmission apparatus. For example, the above-described base station), the relay node 200 (radio relay apparatus. For example, the above-described mobile station having the relay function), A communication system having a destination node 300 (wireless receiving apparatus, for example, the other mobile station described above) will be described.
 図3に示す生起ノード100は、宛先ノード300宛てデータを送信する。このとき、生起ノード100は、振幅及び位相を用いる変調方式(例えば、上述した8PASK)で、宛先ノード300宛てデータを変調する。すなわち、生起ノード100が用いる変調方式のコンスタレーションは、第1の振幅の信号点(例えば、図2Aに示す内側の信号点)と、第1の振幅よりも大きい第2の振幅の信号点(例えば、図2Aに示す外側の信号点)を有するコンスタレーションである。よって、生起ノード100で上記コンスタレーションを用いて変調された送信信号は、振幅ビット(振幅情報。つまり、各シンボルの振幅の変化によって値が変動するビット)、及び、位相ビット(位相情報。つまり、各シンボルの位相の変化によって値が変動するビット)により表される。また、生起ノード100は、図3に示すように、宛先ノード300から送信されるマッピング指示情報に示される、コンスタレーション内の信号点の振幅(上記第1の振幅及び第2の振幅)に基づいて、宛先ノード300宛てデータの変調に用いるコンスタレーションを決定する。 The occurrence node 100 shown in FIG. 3 transmits data addressed to the destination node 300. At this time, the occurrence node 100 modulates the data addressed to the destination node 300 by a modulation method using amplitude and phase (for example, 8PASK described above). That is, the modulation system constellation used by the occurrence node 100 includes a first amplitude signal point (for example, an inner signal point shown in FIG. 2A) and a second amplitude signal point (a signal point having a second amplitude larger than the first amplitude). For example, a constellation having outer signal points shown in FIG. 2A. Therefore, the transmission signal modulated by the occurrence node 100 using the constellation has an amplitude bit (amplitude information, that is, a bit whose value fluctuates due to a change in the amplitude of each symbol) and a phase bit (phase information. , A bit whose value varies according to a change in the phase of each symbol). Further, as illustrated in FIG. 3, the occurrence node 100 is based on the amplitudes of the signal points in the constellation (the first amplitude and the second amplitude) indicated in the mapping instruction information transmitted from the destination node 300. Thus, the constellation used for modulating the data addressed to the destination node 300 is determined.
 図3に示す中継ノード200は、生起ノード100から送信された、宛先ノード300宛てデータのうち位相ビット(位相情報)のみを変調して、変調後の送信データ(中継信号)を宛先ノード300へ中継する。すなわち、中継ノード200が用いる変調方式のコンスタレーションは、或る振幅の信号点のみを有するコンスタレーションである。 Relay node 200 shown in FIG. 3 modulates only the phase bits (phase information) of the data addressed to destination node 300 transmitted from source node 100, and transmits the modulated transmission data (relay signal) to destination node 300. Relay. That is, the modulation system constellation used by the relay node 200 is a constellation having only a certain amplitude signal point.
 図3に示す宛先ノード300は、生起ノード100から送信される送信信号と中継ノード200から中継される中継信号とが伝搬路上で合成された信号を受信する。そして、宛先ノード300は、受信信号を復調することにより、宛先ノード300宛てデータを得る。また、宛先ノード300は、中継ノード200から送信されるパイロット信号に基づいて、生起ノード100が用いる変調方式(コンスタレーション)における信号点の振幅(上記第1の振幅及び第2の振幅)を決定する。そして、宛先ノード300は、決定した振幅を示すマッピング指示情報を生起ノード100へ送信する。 The destination node 300 shown in FIG. 3 receives a signal obtained by combining the transmission signal transmitted from the occurrence node 100 and the relay signal relayed from the relay node 200 on the propagation path. Then, the destination node 300 obtains data addressed to the destination node 300 by demodulating the received signal. Further, the destination node 300 determines the amplitude of the signal point (the first amplitude and the second amplitude) in the modulation scheme (constellation) used by the originating node 100 based on the pilot signal transmitted from the relay node 200. To do. Then, the destination node 300 transmits mapping instruction information indicating the determined amplitude to the occurrence node 100.
 次に、本実施の形態に係る生起ノード100の構成を図4に示す。 Next, FIG. 4 shows the configuration of the occurrence node 100 according to the present embodiment.
 図4に示す生起ノード100において、受信RF部102は、宛先ノード300からの信号をアンテナ101を介して受信する。そして、受信RF部102は、受信した信号に対しダウンコンバート、A/D変換等の受信処理を行い、受信処理後の信号をCQI抽出部103及びマッピング指示情報抽出部105に出力する。なお、この信号には、宛先ノード300で生成されたチャネル品質情報(ここでは、CQI(Channel Quality Indicator))及びマッピング指示情報が含まれる。 4, the reception RF unit 102 receives a signal from the destination node 300 via the antenna 101. The reception RF unit 102 performs reception processing such as down-conversion and A / D conversion on the received signal, and outputs the signal after reception processing to the CQI extraction unit 103 and the mapping instruction information extraction unit 105. Note that this signal includes channel quality information (here, CQI (Channel QualitydicIndicator)) generated at the destination node 300 and mapping instruction information.
 CQI抽出部103は、受信RF部102から入力される信号から、宛先ノード300で生成されたCQIを抽出する。そして、CQI抽出部103は、抽出したCQIをMCS(Modulation and channel Coding Scheme)決定部104に出力する。 The CQI extraction unit 103 extracts the CQI generated by the destination node 300 from the signal input from the reception RF unit 102. Then, CQI extraction section 103 outputs the extracted CQI to MCS (Modulation & channel? Coding & Scheme) determination section 104.
 MCS決定部104は、CQI抽出部103から入力されるCQIに基づいて、宛先ノード300宛てデータの符号化率及び変調方式を決定する。そして、MCS決定部104は、決定した符号化率及び変調方式を含むMCS情報を、符号化部109及び変調部110に出力する。なお、生起ノード100は、MCS決定部104で決定されたMCS情報を宛先ノード300に通知する(図示せず)。 The MCS determination unit 104 determines the coding rate and modulation scheme of data addressed to the destination node 300 based on the CQI input from the CQI extraction unit 103. Then, MCS determination section 104 outputs MCS information including the determined coding rate and modulation scheme to encoding section 109 and modulation section 110. The originating node 100 notifies the destination node 300 of the MCS information determined by the MCS determining unit 104 (not shown).
 マッピング指示情報抽出部105は、受信RF部102から入力される信号から、マッピング指示情報を抽出する。そして、マッピング指示情報抽出部105は、抽出したマッピング指示情報をマッピング決定部106に出力する。 The mapping instruction information extraction unit 105 extracts mapping instruction information from the signal input from the reception RF unit 102. Then, the mapping instruction information extraction unit 105 outputs the extracted mapping instruction information to the mapping determination unit 106.
 マッピング決定部106は、マッピング指示情報抽出部105から入力されるマッピング指示情報に基づいて、IQ平面上で宛先ノード300宛てデータが配置される信号点(マッピング位置)を決定する。具体的には、マッピング指示情報には、宛先ノード300宛てデータの変調時に用いるコンスタレーションにおける信号点の振幅(上記第1の振幅及び第2の振幅)が示される。マッピング決定部106は、例えば、第1の振幅及び第2の振幅がマッピング指示情報に示される場合、宛先ノード300宛てデータの変調時に用いるコンスタレーションにおける信号点の振幅を第1の振幅及び第2の振幅に設定する。そして、マッピング決定部106は、決定したコンスタレーションにおける信号点のマッピング位置を示すマッピング位置情報を、内側PL生成部107、外側PL生成部108及び変調部110に出力する。 The mapping determination unit 106 determines a signal point (mapping position) where data is arranged for the destination node 300 on the IQ plane based on the mapping instruction information input from the mapping instruction information extraction unit 105. Specifically, the mapping instruction information indicates the amplitude of the signal point (the first amplitude and the second amplitude) in the constellation used when modulating the data addressed to the destination node 300. For example, when the first amplitude and the second amplitude are indicated in the mapping instruction information, the mapping determination unit 106 determines the amplitude of the signal point in the constellation used when modulating the data addressed to the destination node 300 as the first amplitude and the second amplitude. Set to the amplitude of. Then, the mapping determination unit 106 outputs mapping position information indicating the mapping position of the signal point in the determined constellation to the inner PL generation unit 107, the outer PL generation unit 108, and the modulation unit 110.
 内側PL生成部107は、マッピング決定部106から入力されるマッピング位置情報に示される、内側の信号点の振幅(上記第1の振幅)と同一の振幅(電力)を有するパイロット信号(以下、内側パイロット信号という。例えば、図2Aに示すPLin)を生成する。そして、内側PL生成部107は、生成した内側パイロット信号を変調部110に出力する。 The inner PL generation unit 107 has a pilot signal (hereinafter referred to as an inner signal) having the same amplitude (power) as the amplitude of the inner signal point (the first amplitude) indicated in the mapping position information input from the mapping determination unit 106. This is referred to as a pilot signal (for example, PL in ) shown in FIG. Then, inner PL generation section 107 outputs the generated inner pilot signal to modulation section 110.
 外側PL生成部108は、マッピング決定部106から入力されるマッピング位置情報に示される、外側の信号点の振幅(上記第2の振幅)と同一の振幅(電力)を有するパイロット信号(以下、外側パイロット信号という。例えば、図2Aに示すPLout)を生成する。そして、外側PL生成部108は、生成した外側パイロット信号を変調部110に出力する。 The outer PL generation unit 108 has a pilot signal (hereinafter referred to as an outer side) having the same amplitude (power) as the amplitude of the outer signal point (the second amplitude) indicated in the mapping position information input from the mapping determination unit 106. This is referred to as a pilot signal, for example, PL out shown in FIG. Then, outer PL generation section 108 outputs the generated outer pilot signal to modulation section 110.
 符号化部109は、MCS決定部104から入力されるMCS情報に示される符号化率に基づいて、宛先ノード300宛てデータに対して誤り訂正符号化処理を行い、符号化後の信号を変調部110に出力する。 The encoding unit 109 performs error correction encoding processing on the data addressed to the destination node 300 based on the encoding rate indicated in the MCS information input from the MCS determination unit 104, and modulates the encoded signal to the modulation unit To 110.
 変調部110は、MCS決定部104から入力されるMCS情報に示される変調方式、及び、マッピング決定部106から入力されるマッピング位置情報に基づいて、内側PL生成部107から入力される内側パイロット信号、外側PL生成部108から入力される外側パイロット信号、及び、符号化部109から入力される宛先ノード300宛てデータを変調する。すなわち、変調部110は、宛先ノード300宛てデータを、マッピング位置情報に示される振幅、及び、位相を用いるコンスタレーションで変調する。そして、変調部110は、変調後の信号を送信RF部111に出力する。 Modulation section 110 receives an inner pilot signal input from inner PL generation section 107 based on the modulation scheme indicated in the MCS information input from MCS determination section 104 and the mapping position information input from mapping determination section 106. The outer pilot signal input from the outer PL generation unit 108 and the data addressed to the destination node 300 input from the encoding unit 109 are modulated. That is, the modulation unit 110 modulates the data addressed to the destination node 300 with a constellation that uses the amplitude and phase indicated in the mapping position information. Modulation section 110 then outputs the modulated signal to transmission RF section 111.
 送信RF部111は、変調部110から入力される信号に対して、D/A変換、増幅およびアップコンバート等の送信処理を行い、送信処理後の信号をアンテナ101から送信する。 The transmission RF unit 111 performs transmission processing such as D / A conversion, amplification, and up-conversion on the signal input from the modulation unit 110, and transmits the signal after transmission processing from the antenna 101.
 次に、本実施の形態に係る中継ノード200の構成を図5に示す。 Next, FIG. 5 shows the configuration of relay node 200 according to the present embodiment.
 図5に示す中継ノード200において、受信RF部202は、生起ノード100(図4)から送信された信号をアンテナ201を介して受信する。そして、受信RF部202は、受信した信号に対しダウンコンバート、A/D変換等の受信処理を行い、受信処理後の信号を復調部203に出力する。なお、生起ノード100から送信された信号には、宛先ノード300宛てデータ、宛先ノード300宛てのパイロット信号(内側パイロット信号および外側パイロット信号)、及び、受信品質測定用の信号(図示せず)が含まれる。 In the relay node 200 shown in FIG. 5, the reception RF unit 202 receives the signal transmitted from the occurrence node 100 (FIG. 4) via the antenna 201. The reception RF unit 202 performs reception processing such as down-conversion and A / D conversion on the received signal, and outputs the signal after reception processing to the demodulation unit 203. The signal transmitted from the source node 100 includes data addressed to the destination node 300, pilot signals (inner pilot signal and outer pilot signal) addressed to the destination node 300, and a signal for measuring reception quality (not shown). included.
 復調部203は、受信RF部202から入力される信号を復調し、復調後の信号(ビット列)を、受信品質測定部204、データ信号抽出部206及びパイロット信号抽出部208に出力する。 Demodulation section 203 demodulates the signal input from reception RF section 202 and outputs the demodulated signal (bit string) to reception quality measurement section 204, data signal extraction section 206 and pilot signal extraction section 208.
 受信品質測定部204は、復調部203から入力される信号から受信品質測定用の信号を抽出し、抽出した信号に基づいて、生起ノード100から送信された信号の受信品質を測定する。そして、受信品質測定部204は、測定結果を示す受信品質情報を中継方式決定部205に出力する。 The reception quality measurement unit 204 extracts a reception quality measurement signal from the signal input from the demodulation unit 203, and measures the reception quality of the signal transmitted from the occurrence node 100 based on the extracted signal. Reception quality measuring section 204 then outputs reception quality information indicating the measurement result to relay method determining section 205.
 中継方式決定部205は、受信品質測定部204から入力される受信品質情報に基づいて、宛先ノード300宛てデータ及び宛先ノード300宛てのパイロット信号の中継方式を決定する。ここでは、中継方式決定部205は、中継方式として、或る振幅の信号点を有するコンスタレーションを用いる変調方式を決定する。すなわち、中継方式決定部205は、生起ノード100から送信された宛先ノード300宛てデータ及び宛先ノード300宛てのパイロット信号のうち位相情報のみを中継することを決定する。そして、中継方式決定部205は、決定した中継方式を中継データ信号生成部207及びパイロット信号生成部209に出力する。 The relay method determination unit 205 determines the relay method of the data addressed to the destination node 300 and the pilot signal addressed to the destination node 300 based on the reception quality information input from the reception quality measurement unit 204. Here, relay scheme determining section 205 determines a modulation scheme that uses a constellation having signal points with a certain amplitude as the relay scheme. That is, the relay method determining unit 205 determines to relay only the phase information of the data addressed to the destination node 300 transmitted from the originating node 100 and the pilot signal addressed to the destination node 300. Relay scheme determining section 205 then outputs the determined relay scheme to relay data signal generating section 207 and pilot signal generating section 209.
 データ信号抽出部206は、復調部203から入力される信号から、宛先ノード300宛てデータを抽出する。そして、データ信号抽出部206は、抽出した宛先ノード300宛てデータを中継データ信号生成部207に出力する。 The data signal extraction unit 206 extracts data addressed to the destination node 300 from the signal input from the demodulation unit 203. Then, the data signal extraction unit 206 outputs the data addressed to the destination node 300 to the relay data signal generation unit 207.
 中継データ信号生成部207は、中継方式決定部205から入力される中継方式に基づいて、データ信号抽出部206から入力される宛先ノード300宛てデータを、中継先の宛先ノード300向けの信号フォーマットに形成する処理等を施す。例えば、中継方式決定部205において生起ノード100から送信された宛先ノード300宛てデータのうち位相情報のみを中継する中継方式が決定される。この場合、中継データ信号生成部207は、宛先ノード300宛てデータのうち位相ビット(位相情報)のみを含む中継データ信号を生成する。そして、中継データ信号生成部207は、生成した中継データ信号(位相ビット)を変調部210に出力する。 The relay data signal generation unit 207 converts the data addressed to the destination node 300 input from the data signal extraction unit 206 into a signal format for the relay destination destination node 300 based on the relay method input from the relay method determination unit 205. Processing to form is performed. For example, the relay method determining unit 205 determines a relay method for relaying only the phase information in the data addressed to the destination node 300 transmitted from the originating node 100. In this case, the relay data signal generation unit 207 generates a relay data signal including only phase bits (phase information) among data addressed to the destination node 300. Relay data signal generation section 207 then outputs the generated relay data signal (phase bit) to modulation section 210.
 パイロット信号抽出部208は、復調部203から入力される信号から、宛先ノード300宛てのパイロット信号を抽出する。そして、パイロット信号抽出部208は、抽出した宛先ノード300宛てのパイロット信号をパイロット信号生成部209に出力する。 The pilot signal extraction unit 208 extracts a pilot signal addressed to the destination node 300 from the signal input from the demodulation unit 203. Pilot signal extraction section 208 then outputs the extracted pilot signal addressed to destination node 300 to pilot signal generation section 209.
 パイロット信号生成部209は、中継方式決定部205から入力される中継方式に基づいて、パイロット信号抽出部208から入力される宛先ノード300宛てのパイロット信号を、中継先の宛先ノード300向けの信号フォーマットに形成する処理等を施す。例えば、中継方式決定部205において生起ノード100から送信された宛先ノード300宛てデータのうち位相情報のみを中継する中継方式(つまり、或る振幅の信号点のみを有するコンスタレーションに基づく変調方式)が決定される。この場合、パイロット信号生成部209は、宛先ノード300宛てのパイロット信号(内側パイロット信号及び外側パイロット信号の双方)の振幅を上記或る振幅に調整する。そして、中継データ信号生成部207は、生成したパイロット信号を変調部210に出力する。 Based on the relay method input from relay method determination unit 205, pilot signal generation unit 209 converts the pilot signal addressed to destination node 300 input from pilot signal extraction unit 208 to the signal format for destination node 300 as the relay destination. The process which forms is performed. For example, a relay system that relays only phase information among data addressed to the destination node 300 transmitted from the source node 100 in the relay system determination unit 205 (that is, a modulation system based on a constellation having only a signal point of a certain amplitude). It is determined. In this case, pilot signal generation section 209 adjusts the amplitude of the pilot signal (both the inner pilot signal and the outer pilot signal) addressed to destination node 300 to the certain amplitude. Relay data signal generation section 207 then outputs the generated pilot signal to modulation section 210.
 変調部210は、中継方式決定部205から入力される中継方式に基づいて、中継データ信号生成部207から入力される中継データ信号(つまり、位相ビット(位相情報)のみを含む宛先ノード300宛てデータ)、及び、パイロット信号生成部209から入力されるパイロット信号を変調する。そして、変調部210は、変調後の信号を送信RF部211に出力する。 Based on the relay method input from the relay method determination unit 205, the modulation unit 210 receives data addressed to the destination node 300 including only the relay data signal (that is, phase bits (phase information)) input from the relay data signal generation unit 207. ) And the pilot signal input from the pilot signal generation unit 209 is modulated. Modulation section 210 then outputs the modulated signal to transmission RF section 211.
 送信RF部211は、変調部210から入力される信号に対して、D/A変換、増幅およびアップコンバート等の送信処理を行い、送信処理後の信号をアンテナ201から宛先ノードへ送信する。 The transmission RF unit 211 performs transmission processing such as D / A conversion, amplification, and up-conversion on the signal input from the modulation unit 210, and transmits the signal after transmission processing from the antenna 201 to the destination node.
 次に、本実施の形態に係る宛先ノード300の構成を図6に示す。 Next, the configuration of the destination node 300 according to the present embodiment is shown in FIG.
 図6に示す宛先ノード300において、受信RF部302は、生起ノード100から送信された信号と中継ノード200から送信された信号(中継信号)とが伝搬路上で合成された信号を、アンテナ301を介して受信する。そして、受信RF部302は、受信した信号に対しダウンコンバート、A/D変換等の受信処理を行い、受信処理後の信号を、外側PL抽出部303、内側PL抽出部304及び復調部306に出力する。 In the destination node 300 illustrated in FIG. 6, the reception RF unit 302 transmits a signal obtained by combining the signal transmitted from the occurrence node 100 and the signal transmitted from the relay node 200 (relay signal) on the propagation path to the antenna 301. Receive via. Then, the reception RF unit 302 performs reception processing such as down-conversion and A / D conversion on the received signal, and sends the signal after reception processing to the outer PL extraction unit 303, the inner PL extraction unit 304, and the demodulation unit 306. Output.
 外側PL抽出部303は、受信RF部302から入力される信号から、生起ノード100から送信された外側パイロット信号(例えば、図2Aに示すPLout)を抽出し、抽出した外側パイロット信号を推定部305に出力する。 Outer PL extraction section 303 extracts an outer pilot signal (for example, PL out shown in FIG. 2A) transmitted from occurrence node 100 from the signal input from reception RF section 302, and estimates the extracted outer pilot signal. Output to 305.
 内側PL抽出部304は、受信RF部302から入力される信号から、生起ノード100から送信された内側パイロット信号(例えば、図2Aに示すPLin)、又は、中継ノード200から送信されたパイロット信号(例えば、図2Bに示すPLin)を抽出する。そして、内側PL抽出部304は、生起ノード100からの内側パイロット信号を推定部305に出力し、中継ノード200からのパイロット信号を推定部305及び検出部309に出力する。 The inner PL extraction unit 304, from the signal input from the reception RF unit 302, the inner pilot signal transmitted from the occurrence node 100 (for example, PL in shown in FIG. 2A) or the pilot signal transmitted from the relay node 200. (For example, PL in shown in FIG. 2B) is extracted. Then, the inner PL extraction unit 304 outputs the inner pilot signal from the occurrence node 100 to the estimation unit 305, and outputs the pilot signal from the relay node 200 to the estimation unit 305 and the detection unit 309.
 推定部305は、外側PL抽出部303から入力される、生起ノード100からの外側パイロット信号、及び、内側PL抽出部304から入力される、生起ノード100からの内側パイロット信号及び中継ノード200からのパイロット信号を用いて、生起ノード100と宛先ノード300との間の伝搬路(チャネル)の状況、及び、中継ノード200と宛先ノード300との間の伝搬路(チャネル)の状況を推定する。そして、推定部305は、推定結果であるチャネル推定値を復調部306及びCQI生成部308に出力する。 The estimation unit 305 receives the outer pilot signal from the occurrence node 100 input from the outer PL extraction unit 303, and the inner pilot signal from the occurrence node 100 and the relay node 200 input from the inner PL extraction unit 304. Using the pilot signal, the state of the propagation path (channel) between the originating node 100 and the destination node 300 and the state of the propagation path (channel) between the relay node 200 and the destination node 300 are estimated. Then, estimation section 305 outputs a channel estimation value that is an estimation result to demodulation section 306 and CQI generation section 308.
 復調部306には、生起ノード100から通知されたMCS情報が、図示しない受信部から入力される(図示せず)。復調部306は、推定部305から入力されるチャネル推定値及びMCS情報に基づいて、受信RF部302から入力される信号を復調する。具体的には、復調部306は、チャネル推定値に基づいて、受信RF部302から入力される信号のシンボルの判定軸を特定し、特定した判定軸を用いて、受信RF部302から入力される信号のシンボル判定を行う。そして、復調部306は、復調後の信号(ビット列)を復号部307に出力する。 The MCS information notified from the occurrence node 100 is input to the demodulation unit 306 from a receiving unit (not shown). Demodulation section 306 demodulates the signal input from reception RF section 302 based on the channel estimation value and MCS information input from estimation section 305. Specifically, the demodulation unit 306 identifies a symbol determination axis of a signal input from the reception RF unit 302 based on the channel estimation value, and is input from the reception RF unit 302 using the specified determination axis. Signal symbol determination. Demodulation section 306 outputs the demodulated signal (bit string) to decoding section 307.
 復号部307は、復調部306から入力される信号に対して誤り訂正復号処理を行い、復号結果を受信データとして出力する。 The decoding unit 307 performs error correction decoding processing on the signal input from the demodulation unit 306 and outputs the decoding result as received data.
 一方、CQI生成部308は、推定部305から入力されるチャネル推定値に基づいて、生起ノード100と宛先ノード300との間の伝搬路(チャネル)の状況を示すCQIを生成する。そして、CQI生成部308は、生成したCQIを変調部311に出力する。 On the other hand, the CQI generating unit 308 generates a CQI indicating the state of the propagation path (channel) between the originating node 100 and the destination node 300 based on the channel estimation value input from the estimating unit 305. Then, CQI generation section 308 outputs the generated CQI to modulation section 311.
 検出部309は、内側PL抽出部304から入力される、中継ノード200からのパイロット信号の振幅、つまり、中継ノード200が用いるコンスタレーションを構成する各信号点の振幅を検出する。そして、検出部309は、検出した振幅を決定部310に出力する。 The detection unit 309 detects the amplitude of the pilot signal from the relay node 200 input from the inner PL extraction unit 304, that is, the amplitude of each signal point constituting the constellation used by the relay node 200. Then, the detection unit 309 outputs the detected amplitude to the determination unit 310.
 決定部310は、検出部309から入力される、中継ノード200が用いるコンスタレーションを構成する各信号点の振幅に基づいて、生起ノード100が用いるコンスタレーション(振幅及び位相を用いるコンスタレーション)における信号点の振幅を決定する。上述したように、生起ノード100が用いるコンスタレーションは第1の振幅の信号点及び第1の振幅よりも大きい第2の振幅の信号点を有するコンスタレーションであり、中継ノード200が用いるコンスタレーションは或る振幅(ここでは第3の振幅とする)の信号点のみを有するコンスタレーションである。そこで、決定部310は、中継ノード200からのパイロット信号から検出される第3の振幅を用いて、例えば、第1の振幅と第3の振幅の合計値が、第2の振幅と第3の振幅の合計値の半分の値と同一になるように、第1の振幅及び第2の振幅を決定する。そして、決定部310は、決定した第1の振幅及び第2の振幅を示すマッピング指示情報を変調部311に出力する。 The determination unit 310 receives a signal in the constellation (constellation using amplitude and phase) used by the occurrence node 100 based on the amplitude of each signal point included in the constellation used by the relay node 200, which is input from the detection unit 309. Determine the amplitude of the points. As described above, the constellation used by the occurrence node 100 is a constellation having a first amplitude signal point and a second amplitude signal point larger than the first amplitude. The constellation used by the relay node 200 is It is a constellation having only signal points of a certain amplitude (here, the third amplitude). Therefore, the determination unit 310 uses the third amplitude detected from the pilot signal from the relay node 200, for example, the total value of the first amplitude and the third amplitude becomes the second amplitude and the third amplitude. The first amplitude and the second amplitude are determined so as to be equal to half of the total value of the amplitudes. Then, the determination unit 310 outputs mapping instruction information indicating the determined first amplitude and second amplitude to the modulation unit 311.
 変調部311は、CQI生成部308から入力されるCQI及び決定部310から入力されるマッピング指示情報を変調し、変調後の信号を送信RF部312に出力する。 Modulation section 311 modulates the CQI input from CQI generation section 308 and the mapping instruction information input from determination section 310, and outputs the modulated signal to transmission RF section 312.
 送信RF部312は、変調部311から入力される信号に対して、D/A変換、増幅およびアップコンバート等の送信処理を行い、送信処理後の信号をアンテナ301から生起ノード100へ送信する。 The transmission RF unit 312 performs transmission processing such as D / A conversion, amplification, and up-conversion on the signal input from the modulation unit 311, and transmits the signal after transmission processing from the antenna 301 to the occurrence node 100.
 次に、本実施の形態に係る通信システムの動作について詳細に説明する。 Next, the operation of the communication system according to the present embodiment will be described in detail.
 以下の説明では、図3に示す生起ノード100(図4)は、振幅及び位相を用いるコンスタレーションの一例として、図7Aに示す8PASKのコンスタレーションを用いる。また、図7Aに示すコンスタレーションでは、1シンボルを構成する3ビットのうち、上位2ビットは位相ビット(位相情報。位相の変化によって値が変動するビット)であり、下位1ビットは振幅ビット(振幅情報。振幅の変化によって値が変動するビット)である。 In the following description, the occurrence node 100 (FIG. 4) shown in FIG. 3 uses an 8PASK constellation shown in FIG. 7A as an example of a constellation using amplitude and phase. Further, in the constellation shown in FIG. 7A, among the 3 bits constituting one symbol, the upper 2 bits are phase bits (phase information, bits whose values fluctuate due to changes in phase), and the lower 1 bits are amplitude bits ( Amplitude information (bits whose values vary with changes in amplitude).
 つまり、図7Aに示すように、1シンボルを構成する3ビットのうち、下位1ビット(振幅ビット)が‘1’の場合、外側の円(リング)上に信号が配置され、下位1ビット(振幅ビット)が‘0’の場合、内側の円(リング)上に信号が配置される。また、図7Aに示すように、1シンボルを構成する3ビットのうち、上位2ビット(位相ビット)が‘00’、‘10’、‘11’、‘01’の場合に、IQ平面の第1象限~第4象限に信号がそれぞれ配置される。 That is, as shown in FIG. 7A, when the lower 1 bit (amplitude bit) of the 3 bits constituting one symbol is “1”, the signal is arranged on the outer circle (ring) and the lower 1 bit ( When the (amplitude bit) is '0', the signal is arranged on the inner circle (ring). Further, as shown in FIG. 7A, when the upper 2 bits (phase bits) of 3 bits constituting one symbol are “00”, “10”, “11”, “01”, Signals are arranged in the first quadrant to the fourth quadrant.
 また、ここでは、図7Aに示すコンスタレーションにおいて、内側の信号点(振幅ビット‘0’が配置される信号点)の振幅(上記第1の振幅)を‘d’とし、外側の信号点(振幅ビット‘1’が配置される信号点)の振幅(上記第2の振幅)を‘c+d’とする。ただし、図7Aに示すコンスタレーションにおける信号点の振幅‘d’及び‘c+d’は、宛先ノード300から送信されるマッピング指示情報に基づいて決定される(後述する)。 Here, in the constellation shown in FIG. 7A, the amplitude (the first amplitude) of the inner signal point (the signal point where the amplitude bit “0” is arranged) is set to “d”, and the outer signal point ( Let the amplitude (the second amplitude) of the signal point at which the amplitude bit “1” is arranged be “c + d”. However, the amplitudes “d” and “c + d” of signal points in the constellation shown in FIG. 7A are determined based on mapping instruction information transmitted from the destination node 300 (described later).
 一方、図3に示す中継ノード200(図5)は、図7Bに示すコンスタレーションを用いる。ここでは、図7Bに示すコンスタレーションにおける信号点の振幅(上記第3の振幅)を‘b’とする。 Meanwhile, the relay node 200 (FIG. 5) shown in FIG. 3 uses the constellation shown in FIG. 7B. Here, the amplitude of the signal point in the constellation shown in FIG. 7B (the third amplitude) is ‘b’.
 また、中継ノード200は、図7Bに示すコンスタレーションの信号点の振幅‘b’と同一の振幅を有するパイロット信号PLinを生成する。 Further, relay node 200 generates pilot signal PL in having the same amplitude as the amplitude 'b' of the constellation signal point shown in FIG. 7B.
 そこで、まず、宛先ノード300(図6)の検出部309は、内側PL抽出部304から入力される、中継ノード200から送信されたパイロット信号PLinの振幅‘b’を検出する。 Therefore, first, the detection unit 309 of the destination node 300 (FIG. 6) detects the amplitude “b” of the pilot signal PL in transmitted from the relay node 200, which is input from the inner PL extraction unit 304.
 そして、決定部310は、検出部309で検出された、中継ノード200から送信されたパイロット信号PLinから検出される第3の振幅‘b’を用いて、生起ノード100が用いる図7Aに示すコンスタレーションにおける信号点の振幅(第1の振幅‘d’及び第2の振幅‘c+d’)を決定する。例えば、決定部310は、第1の振幅‘d’と第3の振幅‘b’の合計値(=b+d)が、第2の振幅‘c+d’と第3の振幅‘b’の合計値(=b+c+d)の半分の値と同一になるように、振幅(‘d’及び‘c+d’)を決定する。換言すると、決定部310は、第3の振幅‘b’と第1の振幅‘d’の合計値(=b+d)と、第2の振幅‘c+d’と第1の振幅‘d’との差(=(c+d)-d=c)と、が同一になるように(すなわち、b+d=cとなるように)、振幅(‘d’及び‘c+d’)を決定する。 Then, the determination unit 310 uses the third amplitude 'b' detected from the pilot signal PL in transmitted from the relay node 200, which is detected by the detection unit 309, and is illustrated in FIG. The amplitude of the signal point in the constellation (first amplitude 'd' and second amplitude 'c + d') is determined. For example, the determination unit 310 determines that the total value of the first amplitude 'd' and the third amplitude 'b' (= b + d) is the total value of the second amplitude 'c + d' and the third amplitude 'b' ( The amplitudes ('d' and 'c + d') are determined so as to be equal to half the value of = b + c + d). In other words, the determination unit 310 determines the difference between the total value (= b + d) of the third amplitude 'b' and the first amplitude 'd' and the second amplitude 'c + d' and the first amplitude 'd'. The amplitudes ('d' and 'c + d') are determined so that (= (c + d) -d = c) is the same (ie, b + d = c).
 そして、決定部310は、決定した振幅‘d’及び‘c+d’を示すマッピング指示情報を生成する。 Then, the determination unit 310 generates mapping instruction information indicating the determined amplitudes “d” and “c + d”.
 次いで、生起ノード100のマッピング決定部106は、宛先ノード300から送信されるマッピング指示情報に基づいて、図7Aに示すように、振幅‘d’の信号点(内側の信号点)及び振幅‘c+d’の信号点(外側の信号点)で構成されるコンスタレーションを決定する。 Next, as shown in FIG. 7A, the mapping determination unit 106 of the originating node 100, based on the mapping instruction information transmitted from the destination node 300, has a signal point with an amplitude “d” (inner signal point) and an amplitude “c + d”. Determine the constellation consisting of 'signal points (outer signal points).
 そして、生起ノード100の変調部110(図4)は、図7Aに示すコンスタレーションを用いて、送信信号(宛先ノード300宛てデータ、及び、パイロット信号)を変調する。また、生起ノード100の内側PL生成部107は、図7Aに示すコンスタレーションの内側の信号点の振幅‘d’と同一の振幅を有する内側パイロット信号PLinを生成する。同様に、外側PL生成部108は、図7Aに示すコンスタレーションの外側の信号点の振幅‘c+d’と同一の振幅を有する外側パイロット信号PLoutを生成する。 Then, modulation section 110 (FIG. 4) of generation node 100 modulates the transmission signal (data addressed to destination node 300 and pilot signal) using the constellation shown in FIG. 7A. Further, the inner PL generation unit 107 of the occurrence node 100 generates an inner pilot signal PL in having the same amplitude as the amplitude 'd' of the signal point inside the constellation shown in FIG. 7A. Similarly, the outer PL generation unit 108 generates an outer pilot signal PL out having the same amplitude as the amplitude 'c + d' of the signal point outside the constellation shown in FIG. 7A.
 よって、図8Aに示すように、生起ノード100から送信される信号のうち、図7Aに示すコンスタレーションの内側の信号点に配置される、シンボル(振幅ビットが‘0’であるシンボル‘110’、‘010’、‘100’、‘000’)の振幅及びパイロット信号PLinの振幅は‘d’となる。一方、図7Aに示すコンスタレーションの外側の信号点に配置される、シンボル(振幅ビットが‘1’であるシンボル‘101’、‘101’、‘011’、‘111’)の振幅及びパイロット信号PLoutの振幅は‘c+d’となる。 Therefore, as shown in FIG. 8A, among the signals transmitted from the occurrence node 100, a symbol (symbol “110” having an amplitude bit of “0”) arranged at a signal point inside the constellation shown in FIG. 7A. , '010', '100', '000') and the amplitude of the pilot signal PL in become 'd'. On the other hand, the amplitude and pilot signal of symbols (symbols “101”, “101”, “011”, and “111” whose amplitude bits are “1”) arranged at signal points outside the constellation shown in FIG. 7A The amplitude of PL out is 'c + d'.
 一方、中継ノード200の中継データ信号生成部207(図5)は、生起ノード100から送信された宛先ノード300宛てデータのうち位相ビット(図7Aでは各シンボルを構成する3ビットのうち上位2ビット)のみを抽出することで、中継データ信号を生成する。また、パイロット信号生成部209は、生起ノード100から送信されたパイロット信号PLin、PLoutの振幅を図7Bに示すコンスタレーションにおける信号点の振幅‘b’と同一にすることで、パイロット信号PLinを生成する。 On the other hand, the relay data signal generation unit 207 (FIG. 5) of the relay node 200 performs phase bits (upper 2 bits of 3 bits constituting each symbol in FIG. 7A) of the data addressed to the destination node 300 transmitted from the originating node 100. ) Is extracted to generate a relay data signal. Further, the pilot signal generation unit 209 makes the pilot signal PL in , the amplitude of the pilot signal PL in , PL out transmitted from the generation node 100 the same as the amplitude “b” of the signal point in the constellation shown in FIG. 7B. in is generated.
 そして、変調部210は、図7Bに示すコンスタレーションを用いて、宛先ノード300宛てデータ(位相ビットのみ)及びパイロット信号を変調する。つまり、図8Bに示すように、中継ノード200から送信される各シンボルの振幅及びパイロット信号PLinの振幅は全て‘b’となる。 Then, modulation section 210 modulates data (only phase bits) and pilot signals addressed to destination node 300 using the constellation shown in FIG. 7B. That is, as shown in FIG. 8B, the amplitude of each symbol transmitted from the relay node 200 and the amplitude of the pilot signal PL in are all “b”.
 よって、宛先ノード300が受信する信号(送信側から直接送信される信号と中継局から中継される中継信号とが合成された信号)のコンスタレーションにおける信号点の振幅(信号点振幅)は、図7Cに示すように、図7Aに示すコンスタレーションにおける信号点振幅(‘d’及び‘c+d’)に、図7Bに示すコンスタレーションにおける信号点振幅(‘b’)が加算された結果になる。つまり、図8Cに示すコンスタレーションを構成する信号点のうち、内側の信号点の振幅は‘b+d’となり外側の信号点の振幅は‘b+c+d’となる。 Therefore, the amplitude of the signal point (signal point amplitude) in the constellation of the signal received by the destination node 300 (the signal obtained by combining the signal directly transmitted from the transmission side and the relay signal relayed from the relay station) is As shown in 7C, the signal point amplitude ('b') in the constellation shown in FIG. 7B is added to the signal point amplitudes ('d' and 'c + d') in the constellation shown in FIG. 7A. That is, among the signal points constituting the constellation shown in FIG. 8C, the amplitude of the inner signal point is ‘b + d’ and the amplitude of the outer signal point is ‘b + c + d’.
 ここで、宛先ノード300の決定部310は、振幅‘b’と振幅‘d’の合計値(=b+d)が、振幅‘c+d’と振幅‘b’の合計値の半分の値と同一になるように、生起ノード100が用いるコンスタレーションの振幅(‘d’及び‘c+d’)を決定している。よって、図7Cに示すコンスタレーションでは、振幅‘b’と振幅‘d’の合計値(b+d)と、振幅‘c’とが同一(つまり、b+d=c)になる。つまり、図7Cに示すように、宛先ノード300で受信される信号のコンスタレーションの各象限における内側の信号点の振幅(つまり、内側の円の半径‘b+d’)と、外側及び内側の2つの信号点間の距離(2つの信号点間の振幅差。つまり、外側の円の半径と内側の円の半径との差‘c’)とは同一になる。 Here, in the determination unit 310 of the destination node 300, the total value (= b + d) of the amplitude 'b' and the amplitude 'd' is the same as half the total value of the amplitude 'c + d' and the amplitude 'b'. As described above, the amplitude ('d' and 'c + d') of the constellation used by the occurrence node 100 is determined. Therefore, in the constellation shown in FIG. 7C, the sum (b + d) of the amplitude ‘b’ and the amplitude ‘d’ and the amplitude ‘c’ are the same (that is, b + d = c). That is, as shown in FIG. 7C, the amplitude of the inner signal point in each quadrant of the constellation of the signal received at the destination node 300 (that is, the radius of the inner circle 'b + d') and the outer and inner two The distance between the signal points (the amplitude difference between the two signal points, that is, the difference 'c' between the radius of the outer circle and the radius of the inner circle) is the same.
 上述したように、コンスタレーションの各象限における内側の信号点の振幅と、外側及び内側の2つの信号点間の距離(振幅差)とが同一の場合、振幅ビットに対するシンボル判定精度は内側の信号点と外側の信号点との間で均一となる。つまり、宛先ノード300で受信される信号のコンスタレーション(図7C)では、全ての信号点において振幅ビットの誤り率特性が平均化され、宛先ノード300では、誤り率特性が良好な信号が得られる。つまり、宛先ノード300では、図2Aに示すコンスタレーションと同様、誤り率特性に優れたコンスタレーション(図7C)で宛先ノード300宛てデータを受信することが可能となる。 As described above, when the amplitude of the inner signal point in each quadrant of the constellation is the same as the distance (amplitude difference) between the two outer and inner signal points, the symbol determination accuracy for the amplitude bit is the inner signal. Uniform between the point and the outer signal point. That is, in the constellation of the signal received at the destination node 300 (FIG. 7C), the error rate characteristics of the amplitude bits are averaged at all signal points, and the destination node 300 can obtain a signal with good error rate characteristics. . In other words, the destination node 300 can receive data addressed to the destination node 300 using a constellation (FIG. 7C) with excellent error rate characteristics, as in the constellation shown in FIG. 2A.
 このように、宛先ノード300は、宛先ノード300が受信する信号(送信側から直接送信される信号と中継局から中継される中継信号とが合成された信号)のコンスタレーションの各象限における内側の信号点の振幅(図7Cに示す‘b+d’)と、外側及び内側の2つの信号点間の距離(図7Cに示す‘c’)とが同一になるように、生起ノード100が用いるコンスタレーションにおける信号点の振幅(‘d’及び‘c+d’)を決定する。 In this way, the destination node 300 has an inner signal in each quadrant of the constellation of the signal received by the destination node 300 (the signal directly transmitted from the transmission side and the relay signal relayed from the relay station). The constellation used by the occurrence node 100 so that the amplitude of the signal point ('b + d' shown in FIG. 7C) and the distance between the outer and inner two signal points ('c' shown in FIG. 7C) are the same. Determine the amplitude of the signal points at ('d' and 'c + d').
 つまり、宛先ノード300は、生起ノード100から直接送信される送信信号と、中継ノード200から送信される中継信号とが伝搬路上で合成されることを予め予測して、生起ノード100から送信される送信信号のコンスタレーションを決定する。これにより、生起ノード100は、中継ノード200で中継される信号が伝搬路上で合成されることが考慮されたコンスタレーションを用いて、宛先ノード300宛てデータを変調することが可能となる。 That is, the destination node 300 predicts in advance that the transmission signal directly transmitted from the occurrence node 100 and the relay signal transmitted from the relay node 200 are combined on the propagation path, and is transmitted from the occurrence node 100. Determine the constellation of the transmitted signal. As a result, the occurrence node 100 can modulate data destined for the destination node 300 using a constellation that takes into account that signals relayed by the relay node 200 are combined on the propagation path.
 これにより、宛先ノード300で受信される信号(合成後の信号)のコンスタレーションでは、振幅ビットの誤り率特性が平均化され、誤り率特性の良好な信号が得られる。すなわち、宛先ノード300は、図7Cに示すように、優れた誤り率特性のコンスタレーションで、宛先ノード300宛てデータを受信することが可能となる。 Thereby, in the constellation of the signal received by the destination node 300 (the signal after synthesis), the error rate characteristics of the amplitude bits are averaged, and a signal with good error rate characteristics is obtained. That is, as shown in FIG. 7C, the destination node 300 can receive data addressed to the destination node 300 with a constellation having excellent error rate characteristics.
 よって、本実施の形態によれば、中継ノードが生起ノードからの送信信号のうち位相ビット(位相情報)のみを宛先ノードに中継する場合でも、宛先ノードで、誤り率特性に優れたコンスタレーションで信号を受信することができる。 Therefore, according to the present embodiment, even when the relay node relays only the phase bit (phase information) of the transmission signal from the originating node to the destination node, the destination node has a constellation with excellent error rate characteristics. A signal can be received.
 また、本実施の形態によれば、中継ノード(例えば、中継機能を有する移動局)では、生起ノード(無線送信装置)から送信される信号のうち位相ビット(位相情報)のみを宛先ノード(無線受信装置)に中継する。よって、中継ノードでは、生起ノードから送信される信号を全て中継する場合と比較して、中継処理に要する消費電力を減少させることができるので、他の移動局宛ての信号に対する中継処理を行う際のバッテリの充電容量の減少を少なく抑えることができる。これにより、中継機能を有する移動局(中継ノード)自身の信号の送受信を行いつつ、他の移動局の信号の中継送信を行うことで、通信システム全体におけるシステムキャパシティを増加させることができる。つまり、本実施の形態によれば、中継機能を有する移動局における中継処理に要する消費電力を減少させて、システムキャパシティを増加させることができる。 Further, according to the present embodiment, in a relay node (for example, a mobile station having a relay function), only a phase bit (phase information) in a signal transmitted from a source node (wireless transmission device) is transmitted to a destination node (wireless). Relay to the receiving device. Therefore, the relay node can reduce the power consumption required for the relay process as compared with the case where all signals transmitted from the occurrence node are relayed. Therefore, when performing the relay process for signals addressed to other mobile stations. The decrease in the charging capacity of the battery can be minimized. Thus, the system capacity of the entire communication system can be increased by performing relay transmission of signals of other mobile stations while transmitting / receiving signals of the mobile station (relay node) itself having a relay function. That is, according to the present embodiment, it is possible to increase the system capacity by reducing the power consumption required for the relay process in the mobile station having the relay function.
 なお、上記実施の形態では、一例として、生起ノードが変調方式として8PASKを用いる場合について説明した。しかし、生起ノードが用いる変調方式は、8PASKに限らず、振幅の大きさが異なる複数の信号点で構成されるコンスタレーションに対応する変調方式であればよい。例えば、生起ノードが用いる変調方式として、1シンボルを構成するビット数が2ビットであり、上位1ビットが振幅ビットとなり、下位1ビットが位相ビットとなる4QAMを用いてもよい。又は、生起ノードが用いる変調方式として、1シンボルを構成するビット数が2ビットであり、下位1ビットが振幅ビットとなり、上位1ビットが位相ビットとなる4PASKを用いてもよい。 In the above embodiment, as an example, the case where the originating node uses 8 PASK as the modulation method has been described. However, the modulation method used by the occurrence node is not limited to 8 PASK, and may be any modulation method corresponding to a constellation composed of a plurality of signal points having different amplitudes. For example, 4QAM in which the number of bits constituting one symbol is 2 bits, the upper 1 bit is an amplitude bit, and the lower 1 bit is a phase bit may be used as a modulation method used by the generation node. Alternatively, 4PASK in which the number of bits constituting one symbol is 2 bits, the lower 1 bit is an amplitude bit, and the upper 1 bit is a phase bit may be used as a modulation method used by the generation node.
 また、上記実施の形態では、中継ノードが、生起ノードから送信された信号(宛先ノード宛てデータ)のうち位相ビット(位相情報)のみを中継する場合について説明した。しかし、中継ノードは、生起ノードから送信された信号の受信品質に応じて、生起ノードから送信された信号(宛先ノード宛てデータ)の全て(振幅ビット(振幅情報)及び位相ビット(位相情報))の中継、振幅ビット又は位相ビットのいずれか一方のみの中継、又は、宛先ノード宛てデータの中継の中止を選択してもよい。このように、中継ノードは、生起ノードから送信された信号の受信品質に基づいて、中継処理を適応的に制御することで、中継処理に要する消費電力を低減することができる。このとき、中継ノードが生起ノードから送信された信号(宛先ノード宛てデータ)の位相ビットのみを中継する場合には、上記実施の形態と同様、宛先ノードにおける受信誤り率特性の劣化を防ぐことができる。 In the above embodiment, a case has been described where the relay node relays only the phase bit (phase information) in the signal (data destined for the destination node) transmitted from the originating node. However, the relay node, depending on the reception quality of the signal transmitted from the originating node, all the signals (data destined for the destination node) transmitted from the originating node (amplitude bits (amplitude information) and phase bits (phase information)). Relay of only one of the amplitude bit and the phase bit, or cancellation of relay of data addressed to the destination node may be selected. In this way, the relay node can reduce the power consumption required for the relay process by adaptively controlling the relay process based on the reception quality of the signal transmitted from the occurrence node. In this case, when the relay node relays only the phase bit of the signal (data destined for the destination node) transmitted from the originating node, it is possible to prevent the reception error rate characteristic from being deteriorated in the destination node as in the above embodiment. it can.
 また、上記実施の形態では、宛先ノードが、生起ノードが用いるコンスタレーションにおける信号点の振幅(例えば、図7Aに示す‘d’及び‘c+d’)を示すマッピング指示情報を生起ノードに送信する場合について説明した。しかし、マッピング指示情報としては、生起ノードが用いるコンスタレーションにおける信号点の振幅に限らない。すなわち、宛先ノードは、生起ノードからの送信信号と中継ノードからの中継信号とが伝搬路上で合成されることにより生じる、生起ノードから送信される送信信号のコンスタレーションの歪みに関する情報を、生起ノードへフィードバックすればよい。例えば、図7Aにおける外側及び内側の2つの信号点間の距離(振幅差)‘c’と内側の信号点の振幅‘d’との差(c-d)をマッピング指示情報としてもよい。すなわち、中継ノードから送信されるパイロット信号の振幅‘b(=c-d)’をマッピング指示情報としてもよい。ここで、生起ノードが用いるコンスタレーションにおける信号点の振幅を第1の振幅e及び第2の振幅f(ただし、e<f)とする。この場合、生起ノードは、マッピング指示情報(‘c-d’又は‘b’)に基づいて、f-e=‘c-d’(又はe+‘b’=f)の関係を満たす第1の振幅e及び第2の振幅fを決定することにより、宛先ノード300宛てデータの変調時に用いるコンスタレーションを決定すればよい。 In the above embodiment, the destination node transmits mapping instruction information indicating the amplitude of signal points (for example, “d” and “c + d” shown in FIG. 7A) to the occurrence node in the constellation used by the occurrence node. Explained. However, the mapping instruction information is not limited to the amplitude of the signal point in the constellation used by the occurrence node. That is, the destination node transmits information on distortion of the constellation of the transmission signal transmitted from the generation node, which is generated when the transmission signal from the generation node and the relay signal from the relay node are combined on the propagation path. Please feed back. For example, the mapping instruction information may be the difference (cd) between the distance (amplitude difference) ‘c’ between the outer and inner signal points in FIG. 7A and the amplitude ‘d’ of the inner signal point. That is, the amplitude ‘b (= cd)’ of the pilot signal transmitted from the relay node may be used as the mapping instruction information. Here, it is assumed that the amplitude of the signal point in the constellation used by the occurrence node is the first amplitude e and the second amplitude f (where e <f). In this case, the occurrence node is based on the mapping instruction information ('cd' or 'b'), and the first node that satisfies the relationship of fe = 'cd' (or e + 'b' = f) is satisfied. By determining the amplitude e and the second amplitude f, a constellation to be used at the time of modulating data addressed to the destination node 300 may be determined.
 また、上記実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアでも実現することも可能である。 Further, although cases have been described with the above embodiment as examples where the present invention is configured by hardware, the present invention can also be realized by software in cooperation with hardware.
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Further, each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied.
 2010年3月25日出願の特願2010-070455の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the description, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2010-070455 filed on Mar. 25, 2010 is incorporated herein by reference.
 本発明は、移動体通信システム等に適用することができる。 The present invention can be applied to a mobile communication system or the like.
 100 生起ノード
 200 中継ノード
 300 宛先ノード
 101,201,301 アンテナ
 102,202,302 受信RF部
 103 CQI抽出部
 104 MCS決定部
 105 マッピング指示情報抽出部
 106 マッピング決定部
 107 内側PL生成部
 108 外側PL生成部
 109 符号化部
 110,210,311 変調部
 111,211,312 送信RF部
 203,306 復調部
 204 受信品質測定部
 205 中継方式決定部
 206 データ信号抽出部
 207 中継データ信号生成部
 208 パイロット信号抽出部
 209 パイロット信号生成部
 303 外側PL抽出部
 304 内側PL抽出部
 305 推定部
 307 復号部
 308 CQI生成部
 309 検出部
 310 決定部
DESCRIPTION OF SYMBOLS 100 Originating node 200 Relay node 300 Destination node 101,201,301 Antenna 102,202,302 Reception RF part 103 CQI extraction part 104 MCS determination part 105 Mapping instruction information extraction part 106 Mapping determination part 107 Inner PL generation part 108 Outer PL generation part 108 Unit 109 encoding unit 110, 210, 311 modulation unit 1111, 211, 312 transmission RF unit 203, 306 demodulation unit 204 reception quality measurement unit 205 relay scheme determination unit 206 data signal extraction unit 207 relay data signal generation unit 208 pilot signal extraction Unit 209 pilot signal generation unit 303 outer PL extraction unit 304 inner PL extraction unit 305 estimation unit 307 decoding unit 308 CQI generation unit 309 detection unit 310 determination unit

Claims (3)

  1.  無線送信装置、無線受信装置、及び、前記無線送信装置と前記無線受信装置との通信の中継を行う無線中継装置を備える通信システムにおいて、
     前記無線中継装置から送信されるパイロット信号に基づいて、前記無線送信装置が用いる第1のコンスタレーションであって、振幅及び位相を用いる前記第1のコンスタレーションにおける信号点の振幅を決定する決定手段と、
     前記無線送信装置で前記第1のコンスタレーションを用いて変調された送信信号と、前記無線中継装置で第2のコンスタレーションを用いて前記送信信号のうち位相情報のみが変調された中継信号と、が合成された信号を復調する復調手段と、を具備し、
     前記第1のコンスタレーションは第1の振幅の信号点及び前記第1の振幅よりも大きい第2の振幅の信号点を有するコンスタレーションであり、前記第2のコンスタレーションは第3の振幅の信号点のみを有するコンスタレーションであって、
     前記決定手段は、前記パイロット信号から検出される前記第3の振幅を用いて、前記第1の振幅と前記第3の振幅の合計値が、前記第2の振幅と前記第3の振幅の合計値の半分の値と同一になるように、前記第1の振幅及び前記第2の振幅を決定する、
     無線受信装置。
    In a communication system including a wireless transmission device, a wireless reception device, and a wireless relay device that relays communication between the wireless transmission device and the wireless reception device,
    Determination means for determining an amplitude of a signal point in the first constellation using the amplitude and phase based on a pilot signal transmitted from the wireless relay device. When,
    A transmission signal modulated by the wireless transmission device using the first constellation, and a relay signal in which only phase information of the transmission signal is modulated by the wireless relay device using a second constellation; Demodulating means for demodulating the combined signal,
    The first constellation is a constellation having a first amplitude signal point and a second amplitude signal point larger than the first amplitude, and the second constellation is a third amplitude signal. A constellation having only points,
    The determination means uses the third amplitude detected from the pilot signal, and the total value of the first amplitude and the third amplitude is the sum of the second amplitude and the third amplitude. Determining the first amplitude and the second amplitude to be equal to half of the value;
    Wireless receiver.
  2.  前記決定手段は、前記第3の振幅を用いて、前記第3の振幅と前記第1の振幅の合計値と、前記第2の振幅と前記第1の振幅との差と、が同一になるように、前記第1の振幅及び前記第2の振幅を決定する、
     請求項1記載の無線受信装置。
    The determination means uses the third amplitude to make the total value of the third amplitude and the first amplitude and the difference between the second amplitude and the first amplitude the same. Determining the first amplitude and the second amplitude as follows:
    The wireless receiver according to claim 1.
  3.  無線送信装置、無線受信装置、及び、前記無線送信装置と前記無線受信装置との通信の中継を行う無線中継装置を備える通信システムにおいて、
     前記無線中継装置から送信されるパイロット信号に基づいて、前記無線送信装置が用いる第1のコンスタレーションであって、振幅及び位相を用いる前記第1のコンスタレーションにおける信号点の振幅を決定する決定ステップと、
     前記無線送信装置で前記第1のコンスタレーションを用いて変調された送信信号と、前記無線中継装置で第2のコンスタレーションを用いて前記送信信号のうち位相情報のみが変調された中継信号と、が合成された信号を復調する復調ステップと、を具備し、
     前記第1のコンスタレーションは第1の振幅の信号点及び前記第1の振幅よりも大きい第2の振幅の信号点を有するコンスタレーションであり、前記第2のコンスタレーションは第3の振幅の信号点のみを有するコンスタレーションであって、
     前記決定ステップは、前記パイロット信号から検出される前記第3の振幅を用いて、前記第1の振幅と前記第3の振幅の合計値が、前記第2の振幅と前記第3の振幅の合計値の半分の値と同一になるように、前記第1の振幅及び前記第2の振幅を決定する、
     無線受信方法。
    In a communication system including a wireless transmission device, a wireless reception device, and a wireless relay device that relays communication between the wireless transmission device and the wireless reception device,
    A determination step of determining an amplitude of a signal point in the first constellation using the amplitude and the phase, which is a first constellation used by the wireless transmission device, based on a pilot signal transmitted from the wireless relay device When,
    A transmission signal modulated by the wireless transmission device using the first constellation, and a relay signal in which only phase information of the transmission signal is modulated by the wireless relay device using a second constellation; And a demodulation step for demodulating the combined signal,
    The first constellation is a constellation having a first amplitude signal point and a second amplitude signal point larger than the first amplitude, and the second constellation is a third amplitude signal. A constellation having only points,
    The determining step uses the third amplitude detected from the pilot signal, and the total value of the first amplitude and the third amplitude is the sum of the second amplitude and the third amplitude. Determining the first amplitude and the second amplitude to be equal to half of the value;
    Wireless reception method.
PCT/JP2011/001592 2010-03-25 2011-03-17 Wireless receiver and wireless receiving method WO2011118168A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-070455 2010-03-25
JP2010070455 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118168A1 true WO2011118168A1 (en) 2011-09-29

Family

ID=44672747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001592 WO2011118168A1 (en) 2010-03-25 2011-03-17 Wireless receiver and wireless receiving method

Country Status (1)

Country Link
WO (1) WO2011118168A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106766A1 (en) * 2005-03-31 2006-10-12 Matsushita Electric Industrial Co., Ltd. Wireless communication apparatus and wireless communication method
WO2006106692A1 (en) * 2005-03-30 2006-10-12 Matsushita Electric Industrial Co., Ltd. Wireless communication apparatus and wireless communication method
JP2009147609A (en) * 2007-12-13 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Radio communication method, wireless communication system, and repeating station
JP2010098380A (en) * 2008-10-14 2010-04-30 Nippon Telegr & Teleph Corp <Ntt> Radio relay system, radio relay method, relay station, and transmitting/receiving station
JP2010103589A (en) * 2008-10-21 2010-05-06 Sharp Corp Wireless communication system, relay apparatus, wireless communication method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106692A1 (en) * 2005-03-30 2006-10-12 Matsushita Electric Industrial Co., Ltd. Wireless communication apparatus and wireless communication method
WO2006106766A1 (en) * 2005-03-31 2006-10-12 Matsushita Electric Industrial Co., Ltd. Wireless communication apparatus and wireless communication method
JP2009147609A (en) * 2007-12-13 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Radio communication method, wireless communication system, and repeating station
JP2010098380A (en) * 2008-10-14 2010-04-30 Nippon Telegr & Teleph Corp <Ntt> Radio relay system, radio relay method, relay station, and transmitting/receiving station
JP2010103589A (en) * 2008-10-21 2010-05-06 Sharp Corp Wireless communication system, relay apparatus, wireless communication method, and program

Similar Documents

Publication Publication Date Title
JP5579747B2 (en) Radio relay apparatus and radio relay method
US20080298505A1 (en) Hierarchical 8psk performance
US10148309B2 (en) Radio communication apparatus, and radio communication method
US20100278153A1 (en) Wireless communication appparatus, wireless communication method and wireless communication system
US9025503B2 (en) Multi-domain network coding
JP5532055B2 (en) Wireless communication apparatus, wireless communication system, and wireless communication method
WO2011118168A1 (en) Wireless receiver and wireless receiving method
JP5333608B2 (en) Compound condition judging unit, transmission device, compound condition judging method
JP2010130439A (en) Radio relay system
EP4195516A1 (en) Electronic device, communication method, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11758979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP