WO2011117452A1 - Truncated phytases of bifidobacteria and uses thereof - Google Patents

Truncated phytases of bifidobacteria and uses thereof Download PDF

Info

Publication number
WO2011117452A1
WO2011117452A1 PCT/ES2011/070198 ES2011070198W WO2011117452A1 WO 2011117452 A1 WO2011117452 A1 WO 2011117452A1 ES 2011070198 W ES2011070198 W ES 2011070198W WO 2011117452 A1 WO2011117452 A1 WO 2011117452A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
cell
polynucleotide
phytase
Prior art date
Application number
PCT/ES2011/070198
Other languages
Spanish (es)
French (fr)
Inventor
Claudia Monika Haros
Vicente MONEDERO GARCÍA
María Jesús YEBRA YEBRA
Juan Antonio Tamayo Ramos
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2011117452A1 publication Critical patent/WO2011117452A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/168Steroids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/189Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P9/00Preparation of organic compounds containing a metal or atom other than H, N, C, O, S or halogen

Definitions

  • the present invention falls within the field of biotechnology and food, in particular, the present invention relates to truncated phytases of soluble and easily purifiable Bifidobacteria, which can be applied to all foods comprising plant products that have high content of phytates, such as cereals and legumes, both for human consumption and for animal consumption.
  • Products based on cereals, oilseeds and legumes may contain antinutritive substances such as phytic acid (myo-inositol hexakisphosphate, lnsP6 or lns (1, 2,3,4,5,6) P6) and their salts (phytates) , the largest form of phosphorus storage in seeds and pollen (Fretzdorff and Brümmer, 1992. Cereal Chem, 69: 266-270).
  • phytic acid myo-inositol hexakisphosphate, lnsP6 or lns (1, 2,3,4,5,6) P6
  • salts phytates
  • Phytate is found as a poly-anion in a wide pH range and therefore has a high affinity for positively charged food components, such as minerals, trace elements and proteins (Cheryan, 1980. Crit. Rev Food Sci Nutr , 13: 297-335).
  • the biggest concern about the presence of phytates in the human and animal diet is the negative effect on mineral absorption. These substances are capable of forming insoluble complexes with metals at the pH of the gastrointestinal tract, which results in a decrease in the bioavailability of minerals (Erdman, 1979. J Am OH Chem Soc, 56: 736-741; Zemel and Shelef, 1982. J Food Sci, 47: 535-537).
  • phytate phosphorus is not available for monogastric animals, that is, non-ruminant animals, since they do not have the digestive enzyme phytase, which is necessary to separate the phosphorus from the phytate molecule.
  • ruminant animals can assimilate phytate phosphorus since they have microorganisms in the rumen that produce phytase.
  • the phytase enzyme has the ability to break bonds in which the phosphorus is bound to the phytate molecule and thus produces its release.
  • Aspergillus niger is the microorganism that produces the most active extracellular phytase.
  • the use of commercial phytases could improve the bioaccessibility of minerals in cereal or leguminous products by eliminating phytate, which is a common practice in animal feed. Aspergillus and Trichoderma fungal cultures are normally used for their production.
  • commercial phytases are not used for human consumption, since they are not considered food grade.
  • many commercial phytases are not specific for phytate.
  • the present invention relates to an isolated polynucleotide consisting of a nucleotide sequence encoding an amino acid sequence of Bifidobacterium that has at least 55% identity with respect to the amino acid sequence SEQ ID NO: 1, where said amino acid sequence lacks the sequence coding for the transmembrane helix, located at the carboxy-terminal end of the original sequence, and said amino acid sequence is a protein whose majority activity is phytase.
  • Said polynucleotide is preferably derived from the Bifidobacterium pseudocatenulatum (hereinafter B. pseudocatenulatum) ATCC27919 or Bifidobacterium longum subsp. infantis (B. longum subsp.
  • the amino acid sequence for which the polynucleotide encodes can have a sequence encoding a peptide attached to its amino-terminal end. signal.
  • the present invention also relates to the polynucleotide expression product, the isolated aminoacidic sequence encoded by said polynucleotide, the vector or the cell comprising the polynucleotide or the cell population comprising said cell.
  • the present invention relates to the use of the polynucleotide or to any of the products described to reduce the phytate content of a food or to produce m / o-innositol triphosphate (InsPs), or to various methods for the production of the polynucleotide.
  • the present invention provides an isolated polynucleotide encoding a protein with phytase activity from bacteria of the genus Bifidobacterium. Said protein is truncated and as a consequence it can be purified more efficiently than the original protein from which it originates since it lacks a sequence encoding a transmembrane helix, located at the carboxy-terminal end of the original sequence.
  • the truncated protein has a series of relevant technical advantages over the state of the art, among them we can highlight:
  • the polynucleotide encoding the truncated protein is more easily translated into a homologous or heterologous system as a soluble protein. That is, for a given time, when using a particular expression system, more protein with phytase activity will be obtained if a polynucleotide that codes for the truncated protein is expressed that does express a polynucleotide that codes for the original protein (complete ).
  • nucleotide sequence is a sequence rich in nucleotides G and C, it is adequately expressed in E. coli, which allows it to be obtained in a directed and controlled manner with vectors optimized for this heterologous expression system.
  • no gene coding for a phytase enzyme has been described in Bifidobacterium strains.
  • the inventors of the present invention carried out the search for proteins that had different phosphatase domains in Bifidobacterium pseudocatenulatum ATCC27919 and Bifidobacterium iongum subsp. infantis ATCC15697, obtaining a multitude of hypothetical proteins.
  • the protein comes from microorganisms considered GRAS / QPS (Generally Regarded as Safe / Qualified Presumption of Safety) and commonly used as probiotics in food preparations. This can facilitate its inclusion in foods in which the hydrolysis of phytates and the formation of new phosphate isomers of m / o-inositol can be an advantage at a nutritional and health level.
  • GRAS / QPS Generally Regarded as Safe / Qualified Presumption of Safety
  • an enzyme is provided with phytase activity highly specific for phytate including the tools necessary for purification, eliminating part of the amino acid sequence of said phytate. protein. Said truncation does not imply changes in the tertiary structure of the protein so that its activity is preserved.
  • one aspect of the present invention relates to an isolated polynucleotide consisting of a nucleotide sequence encoding an amino acid sequence of Bifidobacterium that has at least 55% identity with respect to the amino acid sequence SEQ ID NO: 1, throughout its length, where said amino acid sequence is a protein whose majority activity is phytase.
  • the amino acid sequence lacks a sequence encoding the transmembrane helix, located at the carboxy-terminal end of the original sequence.
  • the isolated polynucleotide consists of a nucleotide sequence encoding a Bifidobacterium amino acid sequence having at least 56%, 57%, 58%, 59%, 60%, 61%, 63%, 65%, 67%, 69 %, 71%, 73%, 75%, 77%, 79%, 81%, 83%, 85%, 87%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity with respect to the amino acid sequence SEQ ID NO: 1, in its entire length.
  • Another aspect of the present invention relates to an isolated polynucleotide consisting of a nucleotide sequence encoding an amino acid sequence of Bifidobacterium that has at least 55% identity with respect to the amino acid sequence SEQ ID NO: 3, in its entirety. length, where said amino acid sequence is a protein whose majority activity is phytase.
  • the amino acid sequence lacks a sequence encoding the transmembrane helix, located at the carboxy-terminal end of the original sequence.
  • the isolated polynucleotide consists of a nucleotide sequence that encodes an amino acid sequence of Bifidobacterium having at least 56%, 57%, 58%, 59%, 60%, 61%, 63%, 65%, 67%, 69 %, 71%, 73%, 75%, 77%, 79%, 81%, 82%, 83%, 85%, 87%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity with respect to the amino acid sequence SEQ ID NO: 3, in its entire length.
  • the amino acid sequence may be encoded by any nucleotide sequence that results in any of the amino acid sequences of the invention by means of transcription of the nucleotide sequence to a messenger RNA and its subsequent translation into the amino acid sequence. Because the genetic code is degenerated, the same amino acid can be encoded by different codons (triplets), therefore, the same amino acid sequence can be encoded by different nucleotide sequences.
  • original sequence refers to the amino acid sequence of the protein, without truncating, that is, the sequence comprising the peptide encoding the transmembrane helix, as well as the corresponding signal peptide.
  • the amino acid sequence encoded by the polynucleotide of the invention may have variants. These variants refer to limited variations in the amino acid sequence, which allow the maintenance of protein functionality. This means that the reference sequence and the variant sequence are similar as a whole, and identical in many regions. These variations are generated by substitutions, deletions or additions.
  • substitutions include, but are not limited to, substitutions between glutamic acid (Glu) and aspartic acid (Asp), between Lysine (Lys) and Arginine (Arg), between asparagine (Asn) and glutamine (Gln), between serine (Ser) and threonine (Thr), and among the amino acids that make up the group alanine (Ala), leucine (Leu), valine (Val) and isoleucine (He).
  • the variations can be variations existing in nature such as allelic variations, or artificially generated as for example by mutagenesis or direct synthesis. These variations do not cause essential changes in the essential characteristics or properties of the protein.
  • the protein may additionally include secretory sequences, sequences that allow its purification as histidine tails, prosequences or sequences that increase its stability during protein production.
  • the genus Bifidobacterium is composed of Gram-positive, anaerobic, saprophytic bacteria of the intestinal flora that reside in the colon, aiding in digestion. Some bifidobacteria are used as probiotics.
  • the nucleotide sequence encoding phytase is isolated from at least one strain selected from the list of species comprising, but not limited to, B. adolescentis, B. angulatum, B. animalis, B. asteroids, B bifidum, B. boum, B.
  • nucleotide sequence encoding phytase is isolated from at least one strain of the species B. pseudocatenulatum (preferably from strain ATCC27919) or B. longum subsp. infantis (preferably of strain ATCC15697).
  • SEQ ID NO: 1 corresponds to the truncated amino acid sequence of the B. pseudocatenulatum ATCC27919 phytase protein. Said sequence lacks both the amino acid sequence encoding the signal peptide of the amino-terminal end and the sequence encoding the transmembrane helix of the carboxy-terminal end.
  • Table 1 shows the percentages of identity between different amino acid sequences of Bifidobacteria phytases, in addition to the genus Clavibacter and Rhodococcus.
  • the percentage of bifidobacteria protein identity acquires values from 59% to 83%. The sequence more different from the rest of Bifidobacteria seems to be that of B.
  • pseudocatenulatum ATCC27919 since it shows the lowest percentages of identity with regarding the amino acid sequences of the other strains of the genus Bifidobacterium. The lowest percentage of identity is shown by the sequences of B. pseudocatenulatum ATCC27919 and B. longum subsp. infantis ATCC15697 with each other, however, as demonstrated in the present invention, the two sequences show major phytase activity and the two proteins are more soluble than the respective un-truncated protein (see examples section).
  • strains of B. pseudocatenulatum ATCC27919 and B. longum subsp. infantis ATCC15697 have been deposited in other crop collections in addition to the American Type Culture Collection (ATCC).
  • ATCC American Type Culture Collection
  • the strain of B. pseudocatenulatum ATCC27919 has also been deposited in microorganism deposit authorities with the numbers CECT5776; strain B1279; AS 1,22277; BCRC (formerly CCRC) 15476; CCUG 34989; CIP 104168; DSM 20438; HAMBI 562; JCM 1200; LMG 10505; CUETM 89-16; CCTM 3069; Scardovi B1279.
  • infantis ATCC15697 has also been deposited with microorganism deposit authorities under CECT numbers 4551; CCRC 14602; CCTM La 3067; CCUG 18368; CCUG 30512; CIP 64.67; CUETM 89-19; DSM 20088; JCM 1222; LMG 881 1; LMG 10499; NCFB 2205; NCTC 1 1817; Reuter S12.
  • B. longum subsp. infantis ATCC15697 (YP__002321769), B. pseudocatenulatum ATCC27919 (ZP__03743199), B. dentium ATCC 27678 (EDT45330), B. longum DJO10A (YP_001955145.1), Clavibacter michiganensis subsp. michiganensis NCPPB 382 (YP_001221200.1), Rhodococcus erythropolis PR4 (YP_002763531 .1)
  • the percent identity of the amino acid sequence refers to the number of identical amino acids at the equivalent amino acid positions of the total length of the sequence of the present invention that is compared, that is, throughout its length.
  • the "transmembrane helix” or membrane helix refers to the amino acid sequence that constitutes one or more apolar segments that are embedded in the lipid bilayer of the cell membrane. These apolar segments are constituted by one or several a helices, which is the main reason for secondary structure of the protein.
  • Said sequence is characterized in that it lacks a sequence coding for the transmembrane helix, located at the carboxy-terminal end of the original truncated sequence.
  • the peptide encoding the transmembrane helix has the function of fixing the original phytase protein to the cell membrane, causing its insolubility and therefore the difficulty of being purified.
  • said protein despite being truncated, retains its phytase enzyme activity and its high specificity for phytate.
  • the enzyme also has phosphatase activity, however, this activity is minority.
  • the phytase and phosphatase activity of enzymes can be determined by measuring their specificity for certain substrates (see table 6).
  • the "major phytase activity" of the enzyme of the present invention any technique known in the state of the art can be used and said activity would be major provided that the phytase activity is greater than the phosphatase activity.
  • the phytase activity can be determined by measuring the specificity of the enzyme by phytate with respect to the specificity of the same enzyme by the p-nitrophenyl phosphate (pNPP) substrate. Therefore, according to the results shown in Table 6, the "major phytase activity” of said enzyme refers to the relationship between phytase activity / phosphatase activity being greater than 50, 60, 70, 80, 90 or 100.
  • the ratio between phytase activity / phosphatase activity is equal to or greater than 90 and more preferably the ratio between phytase activity / phosphatase activity is equal to or greater than 100.
  • the phytase activity is defined Uf ⁇ t / mg protein and phosphatase activity defined Uf 0 t / mg protein.
  • 1/2 inorganic phosphorus pine trees released per hour at 50 Q C and pH: 6.0;
  • the activity of the phytase protein is identified with three numbers; EC 3.1 .3.8, EC.3.1 .3.26 and EC.3.1 .3.72. These numbers have been assigned by the Enzyme Commission number according to the chemical reactions they catalyze (IUBMB Enzyme Nomenclature, CAS Registry Number 9001-42-7).
  • the enzyme with EC activity 3.1.3.8 is called, but not limited to, phytase, phytate 3- phosphatase, m / o-inositol-hexaphosphate 3-phosphohydrolase or 3-phytase.
  • the enzyme with activity EC.3.1 .3.26 is called, but not limited to, phytase, phytate 6-phosphatase, m / o-inositol-hexaphosphate 6-phosphohydrolase or 6-phytase.
  • the enzyme with activity EC.3.1 .3.72 is called, but not limited to, phytase or 5-phytase.
  • protein or "enzyme” can be used as equivalent to the term “amino acid sequence” considering that the protein is the folded amino acid sequence, that is, with tertiary structure.
  • amino acid sequence is synonymous with the term “polypeptide sequence.”
  • a preferred embodiment of the invention relates to the isolated polynucleotide consisting of a nucleotide sequence encoding an amino acid sequence of Bifidobacterium having at least 55% identity with respect to the amino acid sequence SEQ ID NO: 1 throughout its length, wherein said amino acid sequence also has a sequence encoding a signal peptide attached to its amino-terminal end.
  • the signal peptide is derived from a sequence that has its origin in the original sequence from which the isolated polynucleotide of the invention originates.
  • the signal peptide has an amino acid sequence that leads to the protein that contains it at a certain location in the cell.
  • the proteins when they are still in the cytoplasm (pre-protein) are endowed with a sequence, called a signal peptide, at the N-terminal end.
  • the signal peptide of the pre-protein enters through the Sec channel of the cytoplasmic cell membrane), whereby the signal peptide appears on the outer side of the membrane.
  • the peptide is cleaved from the pre-protein sequence through the action of a peptidase, which results in the release of mature protein abroad.
  • the mature protein may in turn be anchored to the cytoplasmic membrane, as is the case with the original or native protein of the present invention.
  • the amino acid sequence of the present invention can have a sequence encoding a signal peptide attached to its amino-terminal end and thus the protein is released outside the cell, thereby facilitating the purification of the protein already that lysis of host cells would not be necessary for their release.
  • Another preferred embodiment relates to the isolated polynucleotide, where the amino acid sequence is SEQ ID NO: 1, of B. pseudocatenulatum ATCC27919.
  • Said amino acid sequence lacks the sequence coding for the transmembrane helix, delimited by amino acid 613 and 639, including both, of the original sequence SEQ ID NO: 2, and furthermore, said amino acid sequence is a protein whose majority activity is phytase.
  • the sequence SEQ ID NO: 2 is the complete ⁇ non-truncated) amino acid sequence of the B. pseudocatenulatum ATCC27919 phytase enzyme (access N 9 ZP_03743199).
  • a more preferred embodiment of the invention relates to the isolated polynucleotide, wherein said amino acid sequence has the signal peptide sequence SEQ ID NO: 5 attached to its amino-terminal end.
  • This sequence SEQ ID NO: 5 is delimited by amino acid 1 and 52, including both, of the original sequence SEQ ID NO: 2.
  • Another preferred embodiment relates to the isolated polynucleotide, where the amino acid sequence is SEQ ID NO: 3, of B. longum subsp. infantis ATCC15697. Said amino acid sequence lacks the sequence coding for the transmembrane helix, delimited by amino acid 600 and 623, including both, of the original sequence SEQ ID NO: 4, and furthermore, said amino acid sequence is a protein whose majority activity is phytase.
  • a more preferred embodiment of the invention relates to the isolated polynucleotide, wherein said amino acid sequence has the signal peptide sequence SEQ ID NO: 6 attached to its amino terminus. This sequence SEQ ID NO: 6 is delimited by amino acid 1 and 32, including both, of the original sequence SEQ ID NO: 4.
  • SEQ ID NO: 3 corresponds to the truncated amino acid sequence of the phytase protein of B. longum subsp. infantis ATCC15697. Said sequence lacks both the amino acid sequence encoding the signal peptide of the amino-terminal end and the sequence encoding the transmembrane helix of the carboxy-terminal end.
  • SEQ ID NO: 4 is the (not truncated or original) complete amino acid sequence of the phytase enzyme B. pseudocatenulatum ATCC27919 (N s access YPJD02321769.1).
  • polynucleotide of the invention or “polynucleotide of the present invention” may be used.
  • aspects of the present invention are: The expression product of the polynucleotide of the invention; the isolated amino acid sequence encoded by the polynucleotide of the invention; the encapsulated anterior expression product or the encapsulated anterior amino acid sequence; or the vector comprising the polynucleotide of the invention.
  • polynucleotide expression product refers to any product resulting from the expression of the nucleotide sequence.
  • a product resulting from the expression of the sequence is understood, for example, the RNA that is obtained from the transcription of the sequence, the processed RNA, the protein resulting from the translation of the RNA in any of its processing states or subsequent modifications of the nucleotide sequence inside the cell provided that the resulting sequence has its origin in the original sequence transferred or does not lose the functional characteristic that characterizes it, that is, the majority phytase activity.
  • vector refers to a DNA fragment that has the ability to replicate in a given host and, as the term implies, can serve as a vehicle to multiply another DNA fragment that has been fused to it (insert).
  • Insert refers to a DNA fragment that is fused to the vector;
  • the vector may comprise the polynucleotide of the invention.
  • the vectors can be plasmids, cosmids, bacteriophages or viral vectors, without excluding other types of vectors that correspond to the definition made of vector.
  • the vector is a plasmid.
  • An example of a plasmid is that of the pQE series, as shown in the examples of the present invention.
  • encapsulated refers to the fact that the expression product of the polynucleotide or amino acid sequence encoded by the polynucleotide of the invention (enzyme), is coated with materials of different nature to obtain micrometric sized particles.
  • the product resulting from encapsulation is called microparticle, microcapsule or microsphere, without excluding other terms used in the state of the art.
  • the industrial application of the encapsulated product is, for example, but not limited, to achieve a sustained or controlled release of the expression product or enzyme, to protect the expression product or the enzyme to protect them from pH, temperature, temperature. enzymatic degradation or other physical factors that could subtract activity in said enzyme.
  • the coating materials for carrying out said microencapsulation are selected from the list comprising: fat (for example but not limited to, wax or stearyl alcohol), at least one protein (for example but not limited to, gelatin or albumin), at least a polymer (natural; for example but not limited to, alginate, dextran or chitosan / semi-synthetic; for example but not limited to cellulose / synthetic derivative; for example but not limited to, acrylic or aliphatic polyester derivative), or any combination thereof.
  • fat for example but not limited to, wax or stearyl alcohol
  • at least one protein for example but not limited to, gelatin or albumin
  • at least a polymer naturally; for example but not limited to, alginate, dextran or chitosan / semi-synthetic; for example but not limited to cellulose / synthetic derivative; for example but not limited to, acrylic or aliphatic polyester derivative, or any combination thereof.
  • mycroencapsular The methods for mycroencapsular are known to a person skilled in the art. For example, but not limited to, it can be microcapsulated by: solvent extraction / evaporation, coacervation / phase separation, atomization (Spay driying), ionic gelation or interfacial polymerization. Others Methods can be found in Gabrie MH Meesters (2010) (Chapter 9, Encapsulation of Enzymes and Peptides, In: Encapsulation Technologies for Active Food Ingredients and Food Processing. Pages 253-268). Another aspect of the present invention is an isolated cell comprising:
  • the vector comprising the polynucleotide of the invention.
  • the term "cell" as understood in the present invention refers to a prokaryotic or eukaryotic cell.
  • a more preferred embodiment of the present invention relates to the cell described in the preceding paragraph, wherein said cell is prokaryotic.
  • the prokaryotic cell is of a different species of B. pseudocatenulatum and B. longum subsp. infantis
  • the different species of prokaryotic cell can be E. coli.
  • the inventors demonstrate that, although the nucleotide sequence is rich in nucleotides G and C, it is effectively expressed in E. coli, which is an unexpected result.
  • the cell transformed with a vector comprising the polynucleotide of the invention can incorporate the sequence into any of the cell's DNA; nuclear, mitochondrial and / or chloroplast, or remain as part of a vector that has its own machinery for self-replication.
  • the selection of the cell that has incorporated any of the sequences of the invention is carried out by any method known in the state of the art, for example, but not limited, by auxotrophies or through the expression of any selection marker .
  • Said cell population may be formed by any cell of the present invention, by cells of a single strain or cell line, by combination of cells of the strain of B. pseudocatenulatum ATCC27919 and B. longum subsp. infantis ATCC 1 5697 or by combination of any of them with other cells of different strains of the same species or cell line of the genus Bifidobacterium or of another genus. That is, the isolated cell population can be a co-culture of cells of at least one strain ATCC27919 or ATCC15697 with cells of any other strain.
  • a further aspect of the present invention relates to the use of the polynucleotide of the invention, of the expression product of the polynucleotide of the invention (or said encapsulated expression product), of the isolated amino acid sequence encoded by the polynucleotide of the invention (or said encapsulated amino acid sequence), of the vector comprising the polynucleotide of the invention, of the cell of the invention or of the cell population of the invention, to reduce the content of m / o-innositol hexaphosphate (InsPe) of a food.
  • the food is essentially vegetable.
  • the plant food comprises any part of the seed of said plant, in any processing state.
  • the seed can come from any vegetable such as, but not limited to, a legume plant, a grass plant or pseudocereals (for example, but not limited to amaranth, quinoa).
  • the seeds come from at least one legume plant.
  • the seeds come from at least one grass plant.
  • the food It is intended for feeding monogastric animals.
  • the food is a feed.
  • M / o-inositol hexaphosphate (lnsP 6 ) is phytic acid.
  • the m / o-inositol hexaphosphate, m / o-inositol hexaphosphate, m / o-inositol hexakisphosphate or hexaphosphoinositol can be abbreviated as ⁇ nsPe or ⁇ PQ.
  • the salt of phytic acid is phytate. In the present invention, the term "phytate" can be used to refer to ⁇ nsPe or any of its salts.
  • Phytate phosphorus is generally not available for monogastric animals, that is, non-ruminants, since they do not have the digestive enzyme phytase, which is necessary to separate the phosphorus from the phytate molecule.
  • ruminant animals can assimilate phytate phosphorus because they have intestinal microorganisms that produce phytase.
  • the term "essentially vegetable” as understood in the present invention refers to the fact that the plant food has food compounds whose origin is not vegetable but more than 50% of the food compounds that make up said food have plant origin.
  • the grass plant from which the seeds are used is a plant of the Pooideae subfamily, said plant is selected from the list that comprises an Aveneae Tribe plant, preferably, but not limited to, of the Avena genus, more preferably the Avena sativa species ( oats); of the Triticeae Tribe, preferably, but not limited to, of the genus Hordeum (more preferably the species Hordeum vulgare [barley]), Dry (more preferably the species Sécale cereale [rye]) or Triticum (more preferably the species Triticum aestivum); of the Oryzeae Tribe, preferably, but not limited to, of the genus Oryza, more preferably the species Oryza sativa (rice); or of the Andropogoneae Tribe, preferably, but not limited to, of the genus Shorgum or of the genus Zea, more preferably the species Zea mays (corn).
  • the grass plant from which the seeds are used is a plant of the Faboideae, Caesalpinioideae or Mimosoideae subfamily.
  • the Faboideae subfamily plant is selected from the genus from the list comprising Pisum, Phaseolus, Vicia, Cicer, Medicago or Glycine.
  • a further aspect of the present invention relates to the use of the polynucleotide of the invention, of the expression product of the polynucleotide of the invention (or said encapsulated expression product), of the isolated amino acid sequence encoded by the polynucleotide of the invention (or said encapsulated amino acid sequence), of the vector comprising the polynucleotide of the invention, of the cell of the invention or of the cell population of the invention, to produce m / o-Inositol triphosphate (lnsP 3 ).
  • the m / oinositol triphosphate, myo-Inositol triphosphate or triphosphoinositol can be abbreviated as InsPe or IP 3 .
  • LnsP 3 has an important application in health since m / ' o-inositol triphosphates are involved in numerous biological functions in the body, such as in the detoxification of heavy metals (ES 2054628).
  • Another aspect of the present invention relates to the method for the production of the polynucleotide of the invention, which comprises:
  • the PCR technique of step (a) of the method is selected from the state of the art PCR techniques known to the person skilled in the art.
  • the amplification of the nucleotide sequence fragment is carried out by using at least two primers where one of them will bind to the template strand (direct primer) and the other to the complementary strand (reverse primer), in a position that allow to obtain, through successive amplifications with a thermo-resistant RNA / DNA polymerase enzyme, the fragment encoding the phytase of the present invention, as indicated in step (a).
  • the expression vector contains the sequences necessary for the replication and expression of the nucleotide sequence encoding the phytase of the present invention in the host cell of step (b) of the method.
  • Said host cell can be a prokaryotic cell, for example, but not limited to at least one Escher ⁇ chia cell. coli
  • a preferred embodiment of the present invention relates to the method, where the amplification of step (a) is carried out by the direct primer SEO ID NO: 7 and the reverse primer SEQ ID NO: 8, and the template is DNA is chromosomal of B. pseudocatenulatum ATCC27919.
  • Another preferred embodiment of the present invention relates to the method where the amplification of step (a) is carried out by means of the direct primer SEQ ID NO: 9 and the reverse primer SEQ ID NO: 10, and the template is DNA is chromosomal of B longum subsp. infantis ATCC15697.
  • Another aspect of the present invention relates to the method for reducing the phytate content of a food, which comprises:
  • step (b) incubate the mixture obtained in step (a) at a pH between 3.5 and 7.5.
  • step (b) The incubation conditions of the mixture, according to step (b), are selected according to the results shown in Figures 1 A and B.
  • a further aspect of the present invention relates to the method of producing lnsP3, which comprises: to. contacting a composition comprising phytic acid or at least one phytate salt with the isolated aminoacidic sequence encoded by the polynucleotide of the invention, with the cell of the invention, or with the cell population comprising said cell of the invention,
  • step (b) incubate the mixture obtained in step (a) at a pH between 3.5 and 7.5.
  • step (b) of the method to reduce the phytate content of a food or to produce lnsP 3 is carried out at a pH that is selected from a range between 3.5 and 7.5 preferably the pH is select from a range between 3.75 and 7.25; between 4 and 7; between 4.25 and 7.75; between 4.5 and 7; between 4.75 and 6.75; or between 5.5 and 6.5.
  • the temperature at which the processes are carried out will depend on the type of food that is intended to be treated as well as the type of material with which the enzyme is microencapsulated.
  • the method can be carried out at very different temperatures such as at about 4 S C, about 60 e C or at a temperature that is selected between 24 Q C and 60 9 C, preferably between 27 2 C and 57 S C, between 30 S C and 55 Q C or between 35 e C and 50 9 C.
  • the time will depend on the rest of the parameters or even on the food to be treated.
  • the phytate salt of step (a) is selected from the list comprising, but not limited to, sodium salt, potassium salt, calcium salt, magnesium salt or calcium-magnesium salt.
  • a preferred embodiment of the present invention relates to the method for reducing the phytate content of a food or to the method for producing lnsP3, where the incubation of step (b) is carried out at a pH between 5.5 and 6, 5.
  • Another preferred embodiment of the present invention relates to the method for reducing the phytate content of a food or to the method for producing lnsP3, where the composition of step (a) further comprises calcium or at least one calcium salt, in the case of use the amynoacid sequence SEQ ID NO: 3 of B. longum subsp. infantis, the cell of the invention that comprises it, or the cell population comprising said cell.
  • the calcium salt is selected from the list comprising, but not limited to, calcium carbonate, calcium phosphate, calcium gluconate, calcium chloride, calcium pidolate, calcium lactogluconate or calcium docusate.
  • the calcium salt is calcium chloride.
  • the use of calcium chloride increases activity of the truncated enzyme from the phytase sequence of B. longum subsp. 24% inf.
  • FIG. 1 Shows the effect of pH and temperature on the phytase activity of truncated phytases of B. pseudocatenulatum and B.longum Subsp. infantis produced and purified from E. coli.
  • the activity represented refers to the relative activity taking as " ! 00% the maximum activity of each of the enzymes
  • FIG. 2 It shows the kinetics of phytate hydrolysis and the generation of m / o-inositol phosphates of lower phosphorylation by truncated phytases of B. pseudocatenulatum and B. longum Subsp. infantis produced and purified from E. coli.
  • FIG. 3 It shows the protein profile obtained by ion exchange chromatography (axis of the abscissa time in minutes; axis of the ordinates in mAU, mini-units of absorbance at 280 nm).
  • FIG. 4 It shows the protein profile of the crude extract obtained by ion exchange chromatography under the conditions shown below (axis of the abcisses time in minutes; axis of the ordinates in mAU, mini-units of absorbance at 280 nm):
  • FIG. 5 It shows the protein profile obtained by ion exchange chromatography under the conditions shown below (axis of the abcissa time in minutes; axis of the ordinates in mAU, mini-units of absorbance at 280 nm):
  • FIG. 6 Shows the protein profile obtained by ion exchange chromatography-FPLC under the conditions shown below. (axis of the abscissa time in minutes; axis of the ordinates in mAU, minimum absorbance at 280 nm):
  • FIG. 7 It shows the protein profile obtained by ion-exchange chromatography-FPLC under the conditions shown below (axis of the abyss time in minutes; axis of the ordinates in mAU, minimum absorbance at 280 nm):
  • FIG. 8 Shows SDS-PAGE geies with the expression of the phytases of B. pseudocatenulatum and B. longum Subsp. inf antis in E. coli. Full: Full length phytase
  • Truncated phytase that lacks the C-terminal fragment
  • FIG. 9 Shows SDS-PAGE gels with the expression of the phytase of B. longum subsp. infantis in E. coli using different concentrations of inducer (IPTG) Complete: Full length phytase
  • Truncated Phytase that lacks the C-terminal fragment
  • Soluble Soluble fraction. Insoluble: Insoluble fraction.
  • EXAMPLE 1 Purification and characterization of the biochemical properties of the phytase of the selected strains B. longum Subsp. ⁇ nfantis and B. pseudocatenulatum as enzyme producers.
  • strains of bifidobacteria used in this study were provided by the ATCC: R pseudocatenulatum ATCC27919 (Scardovi et al., 1979. International Journal Systematic Bacteriology, 29: 291-31 1) and B. longum subsp. infantis ATCC15697 (Reuter, 1971. International Journal Systematic Bacteriology, 21: 273-275), which were originally isolated from the human intestine.
  • the result obtained indicated that the phytase activity was found in the cell fractions of the cell wall and membrane, since no activity was found in the supernatant free of cell debris.
  • the membrane fraction was resuspended in 20 mM Tris-HCI buffer at pH 6.15 in the presence of 1% Triton X100, in order to release and solubilize the enzyme.
  • phytase activity did not recover in the supernatant after treatment.
  • the experiment was repeated again from the beginning, the new membrane fraction being resuspended in 20 mM Tris-HCI buffer at pH 6.15 in the presence of 15% glycerol, but again the phytase activity did not recover in the supernatant with the new treatment. .
  • EXAMPLE 2 Cloning of the sequences SEQ ID NO: 1 and SEQ ID NO: 3 and purification of said phytases, from B. longum subsp. infantis ATCC15697 and B. pseudocatenulatum ATCC 27919. 2.1. Purification of phytases encoded by SEQ ID NO: 1 and SEQ IDNO: 3.
  • the majority phytase activity was located in the membrane.
  • the genes BLONJD263 and BIFPSEUDO_03792 that encoded hypothetical proteins (YP_002321769 and ZP__03743199) with an acidic histidine-phosphatase domain were identified.
  • the presence of a secretion signal peptide (amino acids 1 to 32 in YPJ302321769 and amino acids 1 to 52 in ZP__03743199) was predicted.
  • Example 2.3 After several analyzes, it was determined that these sequences could be favoring the anchoring of the protein to the cell membrane (as it had been determined empirically for the phytase activity present in Bifidobacterium cells) thus preventing its release and as a consequence its correct purification (example 2.3). Therefore, the primers mentioned in Example 2.2 were designed to achieve proteins lacking said peptide that was probably the cause of their adhesion to the cell membrane. In Example 2.3 it is shown that the elimination of this peptide favors the solubility and therefore the purification of the proteins from E. coli. The expression of these proteins and their subsequent characterization led to the conclusion of that genes BLON_0263 and BIFPSEUDO_03792 encode the phytases of B. longum subsp. ⁇ nfantis and B. pseudocatenulatum, respectively (example 3).
  • the PCR products were analyzed by agarose electrophoresis and isolated by the GFX PCR and Gel Band Purification Kit (GE healthcare).
  • the fragments were digested with the enzymes Bglll and Hindlll (restriction sites added in the underlined oligonucleotides) and cloned into the vector pQE80 (Qiagen) digested with BamHI and Hindlll, giving rise to plasmids pQEPHYI (B. longum subsp. ATCC15697 ) and pQEPHY2 (B. pseudocatenulatum ATCC27919).
  • the phytase enzymes are expressed in the form of an amino-terminal fusion with a tail of six histidines (6XHis) to facilitate their purification.
  • the construction excluded the secretion signal peptides (amino-terminal) and a sequence that was estimated to belong to the carboxy-terminal transmembrane helix present in the two proteins.
  • Both plasmids were transformed into the Escherichia strain co // M15.
  • the transformed E. coli M15 cells were grown in 500 mL of LB with 100 Mg / ml ampicillin at 37 9 C under agitation to an optical density at 600 nm of 0.6.
  • Phytase enzyme expression was induced by adding IPTG up to 0.1 mM and continuing incubation for 3-4 hours. The cells were collected by centrifugation, washed with 100 mM Tris-HCI buffer pH 7.4 and resuspended in 5 ml of the same buffer with 1 mg / ml lysozyme, 0.5 mM PMSF and 0.5 mM DTT incubating 30 minutes at 37 S C.
  • the fractions containing the phytases were dialyzed against 100 mM Tris-HC1 buffer pH 7.4, 1 mM EDTA, 10% glycerol and 50mM NaCL and purified by FPLC (Aktapurifier, GE Healthcare) in an ion exchange column (ResourceQ), eluting by a linear gradient of NaCI from 0 to 1 M in 20 mM Tris-HCI buffer pH 6.0. Phytase fractions were collected and various aliquots were stored at -80 S C.
  • FIG. 8 shows SDS-PAGE gels with the expression of the phytases of B. pseudocatenulatum and B. tongum Subsp. inf antis in E. coli.
  • the fraction of insoluble and soluble proteins of clones that overexpress complete phytase or with the deletion of a putative transmembrane helix at the carboxy-terminal end is shown.
  • phytases are expressed very effectively in E. coli, although almost all of the protein is insoluble (inclusion bodies or associated with membrane fragments). However, deletion of the carboxy-terminal fragment results in phytases that show a percentage of soluble protein (indicated by black arrows).
  • FIG. 8 shows an induction experiment in E. coli using 1 mM IPTG (plasmid pQE80) at 37 e C. Subsequent tests with lower concentration of IPTG resulted in an increase in the soluble protein portion.
  • FIG. 9 shows the induction of the expression and solubility of the phytase of B. longum subsp. infantis with different concentrations of IPTG in E. coli. It is noted that while the original (complete) phytase is totally insoluble, the truncated phytase can be obtained in soluble form (indicated by the black arrow). The fact that phytases are expressed in large quantities in E. coli would facilitate various strategies aimed at either obtaining a higher percentage of soluble protein or developing denaturation (solubilization) and protein purification protocols followed by a renaturation.
  • EXAMPLE 3 Determination of phytase activity and optimal reaction conditions. 3.1. Determination of phytase activity.
  • Phytase activity was determined by the method described by Haros et al. (2005. FEMS Microbiology Letters, 247: 231-239). The reaction consisted of 250 ⁇ of 0.1 M sodium acetate at pH 5.5, containing 1, 2 mM potassium phytate, and 50 ⁇ . of each of the eluted extracts of the chromatographic column. After incubation for 15 minutes at 50 S C, the reaction was stopped by adding 50 - trichloroacetic acid 20% (Sigma-Aldrich Chemie GmbH, Steinhein, Germany), allowed to stand 10 minutes at 0 and C and centrifuged at 13,000 rpm for 5 minutes at 4 Q C (Centrifuge 54 5R, Eppendorf AG, Hamburg, Germany).
  • the phosphorus released was determined by spectrophotometric determination of the yellow complex formed when the ortho phosphate reacts with the ammonium molybonatenadate in an acid medium, according to the method described by Tanner and Barnett (1986. J Assoc Off Anal Chem , 69: 777-785) adapted to micro scale in microplate reader (Spectromax 190, Molecular Devices, Sunnyvale, CA, USA) according to Haros et al (2001. Eur Food Res Technol, 213: 317-322).
  • 100 - molybdanadate reagent (Fluka Chemie) was added GmbH, Burchs, Switzerland) diluted (1/5). After standing 10 minutes at 30 -O the absorbance was measured at 400 nm. The samples were analyzed in duplicate.
  • the effect of temperature was determined in a range from 27 9 C to 80 S C using the standard method of phytase activity determination at pH 5.5 in acetic buffer / acetate.
  • the effect of pH on phytase activity was studied in a pH range between 3.0 to 8.0 incubating at an optimal reaction temperature (50 e C) according to the standard method.
  • the buffers were used at a 100 mM concentration and were the following: citrate / NaOH, pH 3.0; acetic / acetate pH 3.6-5.5; bis / tris pH 6.0-7.3; tris / HCI, pH 8.0.
  • the activity of purified phytase from B. pseudocatenulatum had an optimum pH between 5.5 and 6.5 ⁇ FIG. 1 A), the optimum reaction temperature being 50-55 s C (FIG. 1 B).
  • the phytase of B, longum subsp. infantis showed maximum activity at the same pH (5.5) and temperature 50 ° C (FIG. 1A and B, respectively).
  • the enzymes were also active in a wide pH range between 4.5 and 7.5 for the B. pseudocatenulatum phytase and between 4.5 and 6.5 for the B. longum subsp phytase. infantis, keeping 50% or more of its optimal activity (FIG. 1 A).
  • the relative activity of the purified enzymes against different phosphate esters at 1.2 mM was analyzed. It was determined by measuring the phosphorus released after incubation under optimal reaction conditions according to the methodology described above. Enzymatic activities were expressed relative to that obtained using dipotassium phytate as a substrate.
  • the different substrates studied were: phosphoenolpyruvate, fructose-6-phosphate, glucose-6-phosphate, deoxyAMP, glucose-1-phosphate, glyceraldehyde-3P, ATP, ADP, AP, fructose 1, 6- bisphosphate, paranitrophenylphosphate (pNPP).
  • Enzymes isolated from bifidobacteria were shown to have a high specificity for phytate, while activity against a wide variety of monophosphorylated substrates is less than 7% (relative to phytate) and in most cases the activity is nil (Table 6 ). High specificity is one of the desired characteristics of a commercial phytase.
  • the possible activating or inhibiting effect on phytase activity was determined by the addition of different chemicals in the reaction mixture.
  • the possible activating or inhibiting substances of the enzymatic activity studied were: calcium chloride (CaC1 ⁇ 2), cobalt chloride (CoCfe), manganese chloride ⁇ MnCI 2 ), iodoacetic acid (IAA), potassium fluoride (KF), beta- mercaptoethanol, ethylenediaminetetraacetic acid (EDTA) and sulfonyl phenyl methyl fluoride (PMSF).
  • the phytase activity was determined according to a standard reaction test in the presence of 5 mM of the chemical substances mentioned above and expressed relative to the activity obtained in the absence of the possible inhibitor or activator compounds.
  • PMSF is usually an enzyme inhibitor, in this study it inhibited to a greater extent the enzyme of B. longum Subsp. infantis, while the phytase of B, pseudocatenulatum presented a slight inhibition.
  • Chelating agents such as EDTA can also exert their inhibitory action on activity by sequestering metals from the active site of the enzyme, which could be the case with bifidobacteria phytases.
  • the enzyme was incubated in 0.1 M sodium acetate solution at pH 5.5, at 50 9 C for 3 hours in the presence of potassium phytate as a substrate (lnsP 6 ) - different time intervals were extracted aliquots of 250 ⁇ to study the kinetics of degradation of ⁇ nsPe and the generation of m / o-inositol phosphates with a lower degree of phosphorylation.
  • the enzymatic reaction was stopped by term shock for 5 minutes at 100 e C.
  • the separation and quantification of m / o-inositol phosphates was carried out by reverse phase high performance liquid chromatography.
  • the mobile phase consisted of methanol: 0.05M formic acid (51: 49), containing 1.5% (v / v) tetrabutylammonium hydroxide (Sigma-Aldrich, St Louis, MO, USA), adjusted to pH 4, 3 with 9M sulfuric acid (Sigma, St Louis, MO).
  • the chromatographic analysis was carried out with an HP1050 liquid chromatograph (Hewlett Packard, Waldbronn, Germany), equipped with an HP 1047A refractive index detector (Hewlett Packard, Waldbronn, Germany).
  • the samples (50 / iL) were injected into the chromatograph for the separation and quantification of m / o-inositol phosphates using a Tracer Excel 120 ODS-B column (5 ⁇ x 15cm x 0.4cm; Teknokroma, Barcelona, Spain).
  • the chromatographic conditions were: flow 1 mL mobile phase / min and column temperature 35 Q C.
  • a phytic acid hydrolyzate in 50% aqueous solution was used (w / v ) (Sigma, St Louis, MO).
  • 5mM potassium phytate (Sigma, St Louis, MO) was used.
  • the samples were analyzed in duplicate.
  • FIG. 2A and B show the kinetics of disappearance of phytates or m / o-inositol hexakisphosphate (lnsP 6 ) and the generation of m / o-inositol phosphates with a lower degree of phosphorylation with reaction time. It is observed that the disappearance of ⁇ nsP & occurred immediately in the first half hour of reaction with the generation and immediate disappearance of m / o-inositol pentakisphosphate (IP 5 or ⁇ nsP5).

Abstract

The invention relates to an isolated polynucleotide consisting of a nucleotide sequence coding for an amino acid sequence of Bifidobacterium having at least 55% identity with amino acid sequence SEQ ID NO: 1, in which said amino acid sequence lacks a sequence coding for the transmembrane helix, located at the carboxy-terminal end of the original sequence, and in which said amino acid sequence is a protein of which the main activity is phytase. Preferably, the polynucleotide originates from strains of Bifidobacterium pseudocatenulatum (B. pseudocatenulatum) ATCC27919 or Bifidobacterium longum subsp. infantis (B. longum subsp. infantis) ATCC15697. The invention also relates to the use of the polynucleotide, or to any of the products described in the invention, in order to reduce the phytate content of a food or to produce myo-inositol triphosphate (ΙnsΡ3).

Description

Fitasas truncadas de Bifidobacterias v sus usos  Truncated phytases of Bifidobacteria and their uses
La presente invención se encuadra dentro del campo de la biotecnología y de la alimentación, en concreto, la presente invención se refiere a fitasas truncadas de Bifidobacterias, solubles y fácilmente purificables, que pueden aplicarse a todos los alimentos que comprendan productos vegetales que posean alto contenido de fítatos, como por ejemplo, que comprendan cereales y legumbres, tanto para consumo humano como para consumo animal. ESTADO DE LA TÉCNICA ANTERIOR The present invention falls within the field of biotechnology and food, in particular, the present invention relates to truncated phytases of soluble and easily purifiable Bifidobacteria, which can be applied to all foods comprising plant products that have high content of phytates, such as cereals and legumes, both for human consumption and for animal consumption. STATE OF THE PREVIOUS TECHNIQUE
Los productos a base de cereales, oleaginosas y legumbres pueden contener sustancias antinutritivas tales como el ácido fítico (hexakisfosfato de mio- inositol, lnsP6 o lns(1 ,2,3,4,5,6)P6) y sus sales (fitatos), la mayor forma de almacenamiento de fósforo en semillas y polen (Fretzdorff y Brümmer, 1992. Cereal Chem, 69: 266-270). Products based on cereals, oilseeds and legumes may contain antinutritive substances such as phytic acid (myo-inositol hexakisphosphate, lnsP6 or lns (1, 2,3,4,5,6) P6) and their salts (phytates) , the largest form of phosphorus storage in seeds and pollen (Fretzdorff and Brümmer, 1992. Cereal Chem, 69: 266-270).
El fítato se encuentra como poli-anión en un amplío intervalo de pH y por consiguiente posee una alta afinidad por componentes de los alimentos con cargas positivas, tales como los minerales, elementos traza y proteínas (Cheryan, 1980. Crit. Rev Food Sci Nutr, 13: 297-335). La mayor preocupación sobre la presencia de fítatos en la dieta humana y animal es el efecto negativo sobre la absorción de minerales. Estas sustancias son capaces de formar complejos insolubles con metales al pH del tracto gastrointestinal lo que produce la disminución de la bíodisponibílidad de minerales (Erdman, 1979. J Am OH Chem Soc, 56: 736-741 ; Zemel y Shelef, 1982. J Food Sci, 47: 535- 537). Muchas investigaciones han demostrado que una dieta rica en fítatos causa deficiencia en zinc, calcio, hierro, magnesio, manganeso y cobre, particularmente en dietas desequilibradas, en poblaciones de riesgo y en alimentación animal {Sandberg et al., 1982. J Nut, 48: 185-189; Weaver et al., 1991 . J Nut, 121 : 1769-1775; Sandberg et al., 1999. Am J Clin Nut, 70: 240- 246). Estudios in vitro e in vivo indicaron que una desfosforilación parcial del ? ácido fítico o fitatos disminuye el efecto negativo en la absorción de minerales (Sandberg et al., 1989. J Food Sci, 54: 159-161 ; Larsson y Sandberg, 1991 . J Cereal Sci, 14: 141 -149). Los alimentos contienen mezclas de diferentes fosfatos de m/o-ínositol con diferentes formas isoméricas, las cuales pueden interactuar con otros componentes de los alimentos y en ciertas condiciones el tetrafosfato (lnsP4) o el trifosfato de m/o-inositol (InsPa) podrían disminuir o incrementar la absorción de minerales (Shen et al., 1998. J Nutr Biochem, 9: 298-301 ; Sandberg et al., 1999. Am J Clin Nutr, 70: 240-246). La hidrólisis completa o avanzada del lnsP6 en productos alimenticios a base de cereales y leguminosas disminuye el efecto negativo en la absorción de minerales y se generan productos de hidrólisis intermedios que poseen actividad biológica específica en el organismo humano, lo que podría afectar positivamente la salud. Se ha demostrado que algunos isómeros de lnsP3 e lnsP4 tienen efectos farmacológicos importantes como antí-inflamatorío, en prevención de complicaciones diabéticas, implicados en el crecimiento y diferenciación celular, o la regulación del calcio intracelular (Shears, 1998, Biochim Biophys Acta, 1436: 49-67; Shí et al., 2006. Subcell Biochem, 39: 265- 292). Phytate is found as a poly-anion in a wide pH range and therefore has a high affinity for positively charged food components, such as minerals, trace elements and proteins (Cheryan, 1980. Crit. Rev Food Sci Nutr , 13: 297-335). The biggest concern about the presence of phytates in the human and animal diet is the negative effect on mineral absorption. These substances are capable of forming insoluble complexes with metals at the pH of the gastrointestinal tract, which results in a decrease in the bioavailability of minerals (Erdman, 1979. J Am OH Chem Soc, 56: 736-741; Zemel and Shelef, 1982. J Food Sci, 47: 535-537). Many studies have shown that a diet rich in phytates causes deficiency in zinc, calcium, iron, magnesium, manganese and copper, particularly in unbalanced diets, at risk populations and in animal feed {Sandberg et al., 1982. J Nut, 48 : 185-189; Weaver et al., 1991. J Nut, 121: 1769-1775; Sandberg et al., 1999. Am J Clin Nut, 70: 240-246). In vitro and in vivo studies indicated that a partial dephosphorylation of the ? Phytic acid or phytates decreases the negative effect on mineral absorption (Sandberg et al., 1989. J Food Sci, 54: 159-161; Larsson and Sandberg, 1991. J Cereal Sci, 14: 141-149). Foods contain mixtures of different m / o-inositol phosphates with different isomeric forms, which can interact with other food components and under certain conditions tetraphosphate (lnsP 4 ) or m / o-inositol triphosphate (InsPa) could decrease or increase mineral absorption (Shen et al., 1998. J Nutr Biochem, 9: 298-301; Sandberg et al., 1999. Am J Clin Nutr, 70: 240-246). Complete or advanced hydrolysis of lnsP 6 in food products based on cereals and legumes decreases the negative effect on mineral absorption and intermediate hydrolysis products that have specific biological activity in the human body are generated, which could positively affect health . It has been shown that some isomers of lnsP3 and lnsP 4 have important pharmacological effects such as anti-inflammatory, in the prevention of diabetic complications, involved in cell growth and differentiation, or the regulation of intracellular calcium (Shears, 1998, Biochim Biophys Acta, 1436 : 49-67; Shí et al., 2006. Subcell Biochem, 39: 265-292).
Generalmente el fósforo en forma de fitato no está disponible para los animales monogástrícos, es decir, anímales no rumiantes, ya que no disponen de la enzima digestiva fitasa, que es necesaria para separar el fósforo de la molécula de fitato. Sin embargo los animales rumiantes pueden asimilar el fósforo del fitato ya que disponen de microorganismos en el rumen que producen fitasa. La enzima fitasa tiene la capacidad de romper enlaces en los que el fósforo está unido a la molécula de fitato y de este modo produce la liberación del mismo. Generally, phytate phosphorus is not available for monogastric animals, that is, non-ruminant animals, since they do not have the digestive enzyme phytase, which is necessary to separate the phosphorus from the phytate molecule. However, ruminant animals can assimilate phytate phosphorus since they have microorganisms in the rumen that produce phytase. The phytase enzyme has the ability to break bonds in which the phosphorus is bound to the phytate molecule and thus produces its release.
Actualmente no existen fitasas para consumo humano. Están disponibles fitasas comerciales para ser administradas en la elaboración de piensos de animales monogástrícos. Los productos que actualmente se comercializan son: Natuphos (BASF), Ronozyme P (Novozymes a/S), Phzyme (Danisco A/S, Diversa), Finase (AB Enzymes), Allzyme (Alltech). Currently there are no phytases for human consumption. Commercial phytases are available to be administered in the production of monogastric animal feed. The products currently marketed are: Natuphos (BASF), Ronozyme P (Novozymes a / S), Phzyme (Danisco A / S, Diversa), Finase (AB Enzymes), Allzyme (Alltech).
Aspergillus niger es el microorganismo que produce la fitasa extracelular más activa. En la actualidad existen fitasas comerciales disponibles obtenidas por fermentación de Aspergillus genéticamente modificado (Natuphos, Novo y Finase) y por extracción del medio de cultivo de Aspergillus no modificado genéticamente (Allzyme). El uso de fitasas comerciales podría mejorar la bioaccesibilidad de los minerales de los productos a base de cereales o leguminosas mediante la eliminación del fitato, lo cual es una práctica común en alimentación animal. Normalmente para su producción se emplean cultivos de hongos de Aspergillus y Trichoderma. Sin embargo, hasta el momento, las fitasas comerciales no son utilizadas para consumo humano, ya que no son consideradas de grado alimentario. Además, muchas fitasas comerciales no son específicas de fitato. Aspergillus niger is the microorganism that produces the most active extracellular phytase. There are currently commercial phytases available obtained by fermentation of genetically modified Aspergillus (Natuphos, Novo and Finase) and by extraction of the non-genetically modified Aspergillus culture medium (Allzyme). The use of commercial phytases could improve the bioaccessibility of minerals in cereal or leguminous products by eliminating phytate, which is a common practice in animal feed. Aspergillus and Trichoderma fungal cultures are normally used for their production. However, so far, commercial phytases are not used for human consumption, since they are not considered food grade. In addition, many commercial phytases are not specific for phytate.
Por tanto, se identifica un problema en el estado de la técnica que consiste en la necesidad de proveer fitasas procedentes de microorganismos GRAS/QPS {Generally Regarded as Safe/Qualified Presumption oí Safety). Este problema queda parcialmente resuelto tal como indican algunas publicaciones que se refieren al uso de bifidobacterias para la degradación de fitato (Palacios et al., 2008. Eur. Food Res. Technol., 226: 825-831 ; Palacios et al. 2008. Food Microbiol, 25: 169-176, Sanz Penella et al., 2009. J Agrie Food Chem, 57: 0239-10244). Como consecuencia, queda pendiente la solución completa al problema planteado, de forma eficaz, es decir, mediante el aislamiento de secuencias que codifiquen para fitasas y donde estas fitasas presenten una solubilidad aceptable que facilite su purificación. Therefore, a problem in the state of the art is identified, which consists in the need to provide phytases from GRAS / QPS microorganisms (Generally Regarded as Safe / Qualified Presumption or Safety). This problem is partially resolved as indicated by some publications that refer to the use of bifidobacteria for phytate degradation (Palacios et al., 2008. Eur. Food Res. Technol., 226: 825-831; Palacios et al. 2008. Food Microbiol, 25: 169-176, Sanz Penella et al., 2009. J Agrie Food Chem, 57: 0239-10244). As a consequence, the complete solution to the problem is pending, in an effective way, that is, by isolating sequences that code for phytases and where these phytases have an acceptable solubility that facilitates their purification.
Esta tarea supondría aportar al estado de la técnica una herramienta de gran utilidad en la disponibilidad de fósforo procedente de la molécula de fitato así como el aumento de la biodisponibilídad de minerales. Para ello es necesario tener en cuenta que cambios en un sólo aminoácido en una proteína pueden provocar alteraciones en el plegamiento de la misma que ocasionen la pérdida de actividad fitasa, por tanto, la consecución de dicha herramienta tecnológica podría no ser obvia. Hasta la fecha no se ha descrito ningún gen codificante de un enzima fitasa en cepas de Bifidobacterium y los genomas secuenciados de Bifidobacterium no portan genes que codifiquen ninguna proteína con homología a fitasas conocidas. La búsqueda de proteínas que presenten distintos dominios fosfatasa en Bifidobacterium pseudocatenulatum ATCC27919 y Bifidobacterium longum subsp. infantis ATCC15697 da como resultado multitud de proteínas hipotéticas. Dos de estos genes (BLONJ3263 y BIFPSEUDO03792) codificaban proteínas con un dominio histidín fosfatasa ácida. Estas dos proteínas hubieran quedado en principio excluidas del análisis, ya que las características de los extractos de fitasas impuros descritos para Bifidobacterium en bibliografía indicaron que el pH óptimo de reacción se encontraba cercano al pH neutro, la reacción tendía a la acumulación de lnsP3 y el extracto era más específico de f ¡tatos que p-nítrofenilfosfato {Haros et al., 2005. FEMS Microbiol Lett, 247: 231 -239; Haros et al., 2007. Int J Food Microbiol, 1 17: 76-84; Haros et al, 2009. Int J Food Microbiol, 135: 7-14). This task would entail contributing to the state of the art a very useful tool in the availability of phosphorus from the phytate molecule as well as the increase in the bioavailability of minerals. For this it is necessary to take into account that changes in a single amino acid in a protein can cause alterations in the folding of the same that cause the loss of phytase activity, therefore, the achievement of said technological tool may not be obvious. To date, no gene coding for a phytase enzyme has been described in Bifidobacterium strains and the sequenced genomes of Bifidobacterium do not carry genes that encode any protein with homology to known phytases. The search for proteins that have different phosphatase domains in Bifidobacterium pseudocatenulatum ATCC27919 and Bifidobacterium longum subsp. infantis ATCC15697 results in a multitude of hypothetical proteins. Two of these genes (BLONJ3263 and BIFPSEUDO 03792) encoded proteins with an acid histidine phosphatase domain. These two proteins would have been excluded in principle from the analysis, since the characteristics of the impure phytase extracts described for Bifidobacterium in the literature indicated that the optimal reaction pH was close to the neutral pH, the reaction tended to the accumulation of lnsP3 and the extract was more specific for fats than p-nitrophenyl phosphate {Haros et al., 2005. FEMS Microbiol Lett, 247: 231-239; Haros et al., 2007. Int J Food Microbiol, 1 17: 76-84; Haros et al, 2009. Int J Food Microbiol, 135: 7-14).
EXPLICACIÓN DE LA INVENCIÓN EXPLANATION OF THE INVENTION
La presente invención se refiere a un polinucleótido aislado que consiste en una secuencia nucleotídica que codifica para una secuencia aminoacídica de Bifidobacterium que tiene al menos un 55% de identidad con respecto a la secuencia aminoacídica SEQ ID NO: 1 , donde dicha secuencia aminoacídica carece de la secuencia que codifica para la hélice transmembrana, situada en el extremo carboxi-terminal de la secuencia original, y dicha secuencia aminoacídica es una proteína cuya actividad mayoritaria es fitasa. Dicho polinucleótido procede preferiblemente de las cepas Bifidobacterium pseudocatenulatum (en adelante B. pseudocatenulatum) ATCC27919 o de Bifidobacterium longum subsp. infantis (B. longum subsp. infantis) ATCC15697. La secuencia aminoacídica para la que codifica el polinucleótido puede tener unida a su extremo amino-terminal una secuencia que codifica para un péptido señal. Asimismo, la presente invención también se refiere al producto de expresión del polinucleótido, a la secuencia amínoacídíca aislada codificada por dicho polinucleótido, al vector o a la célula que comprende el polinucleótido o a la población celular que comprende dicha célula. Además, la presente invención se refiere al uso del polinucleótido o a cualquiera de los productos descritos para reducir el contenido de fitatos de un alimento o para producir m/o-ínositol trifosfato (InsPs), o a diversos métodos para la producción del polinucleótido. La presente invención provee un polinucleótido aislado que codifica para una proteína con actividad fitasa procedente de bacterias del género Bifidobacterium. Dicha proteína está truncada y como consecuencia puede purificarse de forma más eficaz que la proteína original de la que procede ya que carece de una secuencia que codifica para una hélice transmembrana, situada en el extremo carboxi-terminal de la secuencia original. La proteína truncada presenta una serie de ventajas técnicas relevantes respecto al estado de la técnica, entre ellas podemos destacar: The present invention relates to an isolated polynucleotide consisting of a nucleotide sequence encoding an amino acid sequence of Bifidobacterium that has at least 55% identity with respect to the amino acid sequence SEQ ID NO: 1, where said amino acid sequence lacks the sequence coding for the transmembrane helix, located at the carboxy-terminal end of the original sequence, and said amino acid sequence is a protein whose majority activity is phytase. Said polynucleotide is preferably derived from the Bifidobacterium pseudocatenulatum (hereinafter B. pseudocatenulatum) ATCC27919 or Bifidobacterium longum subsp. infantis (B. longum subsp. infantis) ATCC15697. The amino acid sequence for which the polynucleotide encodes can have a sequence encoding a peptide attached to its amino-terminal end. signal. Likewise, the present invention also relates to the polynucleotide expression product, the isolated aminoacidic sequence encoded by said polynucleotide, the vector or the cell comprising the polynucleotide or the cell population comprising said cell. Furthermore, the present invention relates to the use of the polynucleotide or to any of the products described to reduce the phytate content of a food or to produce m / o-innositol triphosphate (InsPs), or to various methods for the production of the polynucleotide. The present invention provides an isolated polynucleotide encoding a protein with phytase activity from bacteria of the genus Bifidobacterium. Said protein is truncated and as a consequence it can be purified more efficiently than the original protein from which it originates since it lacks a sequence encoding a transmembrane helix, located at the carboxy-terminal end of the original sequence. The truncated protein has a series of relevant technical advantages over the state of the art, among them we can highlight:
- Presenta mayor solubilidad que la proteína original sin modificar. - It has greater solubility than the original unmodified protein.
- Dicha proteína truncada sigue presentando alta especificidad por el fitato a pesar de haber eliminado un fragmento de la misma. El resto de fitasas comerciales no presentan tanta especificidad. - Said truncated protein continues to have high specificity for phytate despite having removed a fragment of it. The rest of commercial phytases do not present as much specificity.
- El polinucleótido que codifica para la proteína truncada se traduce con mayor facilidad en un sistema homólogo o heterólogo como una proteína soluble. Es decir, para un tiempo dado, al emplear un sistema de expresión determinado, se obtendrá más cantidad de proteína con actividad fitasa si se expresa un polinucleótido que codifica para la proteína truncada que sí se expresa un polinucleótido que codifica para la proteína original (completa).  - The polynucleotide encoding the truncated protein is more easily translated into a homologous or heterologous system as a soluble protein. That is, for a given time, when using a particular expression system, more protein with phytase activity will be obtained if a polynucleotide that codes for the truncated protein is expressed that does express a polynucleotide that codes for the original protein (complete ).
- A pesar de que la secuencia nucleotídica es una secuencia rica en nucleótidos G y C, se expresa adecuadamente en E. coli, lo cual permite su obtención de forma dirigida y controlada con vectores optimizados para este sistema de expresión heterólogo. Tal como se ha descrito en el apartado anterior, hasta la fecha no se ha descrito ningún gen codificante de un enzima fitasa en cepas de Bifidobacterium. Los inventores de la presente invención llevaron a cabo la búsqueda de proteínas que presentasen distintos dominios fosfatasa en Bifidobacterium pseudocatenulatum ATCC27919 y Bifidobacterium iongum subsp. infantis ATCC15697, obteniendo multitud de proteínas hipotéticas. Se seleccionaron dos de los genes que codificaban para dichas proteínas {BLON_0263 y BIFPSEUDO_03792) y sus proteínas se caracterizaron por tener un dominio histidín fosfatasa ácida. Debido a que en el estado de la técnica se había sugerido que el pH óptimo de los extractos de fitasas impuros descritos para Bifidobacterium se encontraba cercano al pH neutro, las proteínas seleccionadas por los inventores podrían haber quedado excluidas por el experto en la materia para solucionar el problema técnico de la invención. Sin embargo, los resultados obtenidos por los inventores, mostrados en el apartado correspondiente, muestran que mediante la selección de dichas enzimas (por la presencia en la secuencia amínoacídíca de dominios putativos de anclaje a la superficie celular y su localización celular) y gracias al truncamiento de las mismas, se obtuvieron las proteínas en forma soluble con actividad fitasa procedentes de Bifidobacterium pseudocatenulatum ATCC27919 y Bifidobacterium Iongum subsp. infantis ATCC15697. - Although the nucleotide sequence is a sequence rich in nucleotides G and C, it is adequately expressed in E. coli, which allows it to be obtained in a directed and controlled manner with vectors optimized for this heterologous expression system. As described in the previous section, to date no gene coding for a phytase enzyme has been described in Bifidobacterium strains. The inventors of the present invention carried out the search for proteins that had different phosphatase domains in Bifidobacterium pseudocatenulatum ATCC27919 and Bifidobacterium iongum subsp. infantis ATCC15697, obtaining a multitude of hypothetical proteins. Two of the genes coding for said proteins were selected {BLON_0263 and BIFPSEUDO_03792) and their proteins were characterized by having a histidine acid phosphatase domain. Because in the prior art it had been suggested that the optimum pH of the impure phytase extracts described for Bifidobacterium was close to the neutral pH, the proteins selected by the inventors could have been excluded by the person skilled in the art to solve The technical problem of the invention. However, the results obtained by the inventors, shown in the corresponding section, show that through the selection of said enzymes (due to the presence in the amino-acidic sequence of putative domains anchoring to the cell surface and their cellular location) and thanks to truncation of these, the proteins were obtained in soluble form with phytase activity from Bifidobacterium pseudocatenulatum ATCC27919 and Bifidobacterium Iongum subsp. infantis ATCC15697.
Por otra parte, la proteína procede de microorganismos considerados GRAS/QPS (Generally Regarded as Safe/Qualified Presumption of Safety) y utilizados comúnmente como probióticos en preparados alimenticios. Esto puede facilitar su inclusión en alimentos en los que la hidrólisis de fitatos y la formación de nuevos isómeros de fosfatos de m/o-inositol pueda suponer una ventaja a nivel nutrícional y de salud. On the other hand, the protein comes from microorganisms considered GRAS / QPS (Generally Regarded as Safe / Qualified Presumption of Safety) and commonly used as probiotics in food preparations. This can facilitate its inclusion in foods in which the hydrolysis of phytates and the formation of new phosphate isomers of m / o-inositol can be an advantage at a nutritional and health level.
Por tanto, en la presente invención se provee una enzima con actividad fitasa altamente específica para el fitato incluyendo las herramientas necesarias para su purificación, eliminando parte de la secuencia aminoacídica de dicha proteína. Dicho truncamiento no supone cambios en la estructura terciaria de la proteína de modo que se conserva la actividad de ia misma. Therefore, in the present invention an enzyme is provided with phytase activity highly specific for phytate including the tools necessary for purification, eliminating part of the amino acid sequence of said phytate. protein. Said truncation does not imply changes in the tertiary structure of the protein so that its activity is preserved.
Así pues, un aspecto de la presente invención se refiere a un polinucleótido aislado que consiste en una secuencia nucleotídica que codifica para una secuencia aminoacídica de Bifidobacterium que tiene al menos un 55% de identidad con respecto a la secuencia aminoacídica SEQ ID NO: 1 , en toda su longitud, donde dicha secuencia aminoacídica es una proteína cuya actividad mayoritaria es fitasa. La secuencia aminoacídica carece de una secuencia que codifica para la hélice transmembrana, situada en el extremo carboxi-terminal de la secuencia original. Preferiblemente el polinucleótido aislado consiste en una secuencia nucleotídica que codifica para una secuencia aminoacídica de Bifidobacterium que tiene al menos un 56%, 57%, 58%, 59%, 60%, 61 %, 63%, 65%, 67%, 69%, 71 %, 73%, 75%, 77%, 79%, 81 %, 83%, 85%, 87%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98% o 99% de identidad con respecto a la secuencia aminoacídica SEQ ID NO: 1 , en toda su longitud. Thus, one aspect of the present invention relates to an isolated polynucleotide consisting of a nucleotide sequence encoding an amino acid sequence of Bifidobacterium that has at least 55% identity with respect to the amino acid sequence SEQ ID NO: 1, throughout its length, where said amino acid sequence is a protein whose majority activity is phytase. The amino acid sequence lacks a sequence encoding the transmembrane helix, located at the carboxy-terminal end of the original sequence. Preferably the isolated polynucleotide consists of a nucleotide sequence encoding a Bifidobacterium amino acid sequence having at least 56%, 57%, 58%, 59%, 60%, 61%, 63%, 65%, 67%, 69 %, 71%, 73%, 75%, 77%, 79%, 81%, 83%, 85%, 87%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity with respect to the amino acid sequence SEQ ID NO: 1, in its entire length.
Otro aspecto de la presente invención se refiere a un polinucleótido aislado que consiste en una secuencia nucleotídica que codifica para una secuencia aminoacídica de Bifidobacterium que tiene al menos un 55% de identidad con respecto a la secuencia aminoacídica SEQ ID NO: 3, en toda su longitud, donde dicha secuencia aminoacídica es una proteína cuya actividad mayoritaria es fitasa. La secuencia aminoacídica carece de una secuencia que codifica para la hélice transmembrana, situada en el extremo carboxi-terminal de la secuencia original. Preferiblemente el polinucleótido aislado consiste en una secuencia nucleotídica que codifica para una secuencia aminoacídica de Bifidobacterium que tiene al menos un 56%, 57%, 58%, 59%, 60%, 61 %, 63%, 65%, 67%, 69%, 71 %, 73%, 75%, 77%, 79%, 81 %, 82%, 83%, 85%, 87%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98% o 99% de identidad con respecto a la secuencia aminoacídica SEQ ID NO: 3, en toda su longitud. La secuencia de aminoácidos puede estar codificada por cualquier secuencia nucleotídica que de lugar a cualquiera de las secuencias de aminoácidos de la invención por medio de la transcripción de la secuencia nucleotídica a un ARN mensajero y su posterior traducción a la secuencia de aminoácidos. Debido a que el código genético es degenerado, un mismo aminoácido puede ser codificado por diferentes codones (tripletes), por ello, la misma secuencia de aminoácidos puede ser codificada por distintas secuencias de nucleótidos. Another aspect of the present invention relates to an isolated polynucleotide consisting of a nucleotide sequence encoding an amino acid sequence of Bifidobacterium that has at least 55% identity with respect to the amino acid sequence SEQ ID NO: 3, in its entirety. length, where said amino acid sequence is a protein whose majority activity is phytase. The amino acid sequence lacks a sequence encoding the transmembrane helix, located at the carboxy-terminal end of the original sequence. Preferably the isolated polynucleotide consists of a nucleotide sequence that encodes an amino acid sequence of Bifidobacterium having at least 56%, 57%, 58%, 59%, 60%, 61%, 63%, 65%, 67%, 69 %, 71%, 73%, 75%, 77%, 79%, 81%, 82%, 83%, 85%, 87%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity with respect to the amino acid sequence SEQ ID NO: 3, in its entire length. The amino acid sequence may be encoded by any nucleotide sequence that results in any of the amino acid sequences of the invention by means of transcription of the nucleotide sequence to a messenger RNA and its subsequent translation into the amino acid sequence. Because the genetic code is degenerated, the same amino acid can be encoded by different codons (triplets), therefore, the same amino acid sequence can be encoded by different nucleotide sequences.
El término secuencia original se refiere a la secuencia amínoacídíca de la proteína, sin truncar, es decir, la secuencia que comprende el péptido que codifica para la hélice transmembrana, así como el péptido señal correspondiente. The term "original sequence" refers to the amino acid sequence of the protein, without truncating, that is, the sequence comprising the peptide encoding the transmembrane helix, as well as the corresponding signal peptide.
La secuencia aminoacídica codificada por el polinucleótido de la invención puede presentar variantes. Estas variantes se refieren a variaciones limitadas en la secuencia aminoacídica, que permiten el mantenimiento de la funcionalidad de la proteína. Esto quiere decir que la secuencia de referencia y la secuencia de la variante son similares en conjunto, e idénticas en muchas regiones. Estas variaciones se generan por sustituciones, deleciones o adiciones. Dichas sustituciones incluyen, aunque sin limitarse, sustituciones entre ácido glutámico (Glu) y ácido aspártico (Asp), entre Lisina (Lys) y Arginina (Arg), entre asparagína (Asn) y glutamina (Gln), entre serína (Ser) y treonina (Thr), y entre los aminoácidos que componen el grupo alanina (Ala), leucina (Leu), valina (Val) e isoleucina (He). Las variaciones pueden ser variaciones existentes en la naturaleza como por ejemplo variaciones alélicas, o generadas artificialmente como por ejemplo mediante mutagénesis o síntesis directa. Estas variaciones no provocan modificaciones esenciales en las características o propiedades esenciales de la proteína. La proteína adicionalmente puede incluir secuencias secretoras, secuencias que permitan su purificación como colas de histídínas, prosecuencías o secuencias que aumenten su estabilidad durante la producción de la proteína. El género Bifidobacterium está integrado por bacterias Gram-positivas, anaeróbicas, saprofitas de la flora intestinal que residen en el colon, ayudando en la digestión. Algunas bifidobacterias son usadas como probióticos. En la presente invención, la secuencia nucleotídica que codifica para la fitasa se aisla de al menos una cepa seleccionada de la lista de especies que comprende, pero sin limitarse, B. adolescentis, B. angulatum, B. animalis, B. asteroides, B. bifidum, B. boum, B. breve, B. catenulatum, B. choerinum, B. coryneforme, B. cuniculi, B. denticolens, B. dentium, B. gallicum, B. gallinarum, B. globosum, B, indicum, B. infantis, B. inopinatum, B. lactis, B. magnum, B. merycicum, B. minimum, B. pseudolongum, B. pullorum, B. ruminantium, B. saeculare, B. subtile, B. suis, B. thermacidophilum, B. thermophilum. B. pseudocatenulatum o B. longum. Preferiblemente la secuencia nucleotídica que codifica para la fitasa se aisla de al menos una cepa de la especie B. pseudocatenulatum (preferiblemente de la cepa ATCC27919) o B. longum subsp. infantis (preferiblemente de la cepa ATCC15697). The amino acid sequence encoded by the polynucleotide of the invention may have variants. These variants refer to limited variations in the amino acid sequence, which allow the maintenance of protein functionality. This means that the reference sequence and the variant sequence are similar as a whole, and identical in many regions. These variations are generated by substitutions, deletions or additions. Such substitutions include, but are not limited to, substitutions between glutamic acid (Glu) and aspartic acid (Asp), between Lysine (Lys) and Arginine (Arg), between asparagine (Asn) and glutamine (Gln), between serine (Ser) and threonine (Thr), and among the amino acids that make up the group alanine (Ala), leucine (Leu), valine (Val) and isoleucine (He). The variations can be variations existing in nature such as allelic variations, or artificially generated as for example by mutagenesis or direct synthesis. These variations do not cause essential changes in the essential characteristics or properties of the protein. The protein may additionally include secretory sequences, sequences that allow its purification as histidine tails, prosequences or sequences that increase its stability during protein production. The genus Bifidobacterium is composed of Gram-positive, anaerobic, saprophytic bacteria of the intestinal flora that reside in the colon, aiding in digestion. Some bifidobacteria are used as probiotics. In the present invention, the nucleotide sequence encoding phytase is isolated from at least one strain selected from the list of species comprising, but not limited to, B. adolescentis, B. angulatum, B. animalis, B. asteroids, B bifidum, B. boum, B. breve, B. catenulatum, B. choerinum, B. coryneforme, B. cuniculi, B. denticolens, B. dentium, B. gallicum, B. gallinarum, B. balloonsum, B, indicum , B. infantis, B. inopinatum, B. lactis, B. magnum, B. merycicum, B. minimum, B. pseudolongum, B. pullorum, B. ruminantium, B. saeculare, B. subtile, B. suis, B Thermacidophilum, B. thermophilum. B. pseudocatenulatum or B. longum. Preferably the nucleotide sequence encoding phytase is isolated from at least one strain of the species B. pseudocatenulatum (preferably from strain ATCC27919) or B. longum subsp. infantis (preferably of strain ATCC15697).
SEQ ID NO: 1 corresponde con la secuencia aminoacídica truncada de la proteína fitasa de B. pseudocatenulatum ATCC27919. Dicha secuencia carece tanto de la secuencia aminoacídica que codifica para el péptido señal del extremo amino-terminal como de la secuencia que codifica para la hélice transmembrana del extremo carboxi-terminal. SEQ ID NO: 1 corresponds to the truncated amino acid sequence of the B. pseudocatenulatum ATCC27919 phytase protein. Said sequence lacks both the amino acid sequence encoding the signal peptide of the amino-terminal end and the sequence encoding the transmembrane helix of the carboxy-terminal end.
En la Tabla 1 se ofrecen los porcentajes de identidad entre diferentes secuencias aminoacídicas de fitasas de Bifidobacterias, además del género Clavibacter y Rhodococcus. La expresión "porcentaje (%) de identidad" entre dos secuencias de aminoácidos, tal como se entiende en la presente invención, se refiere al número de posiciones aminoacídicas sobre la longitud total de la secuencia que se compara, donde todos los aminoácidos en esa posición son idénticos. Como puede observarse, el porcentaje de identidad de las proteínas de las bifidobacterias adquiere valores desde el 59% al 83%. La secuencia más diferente al resto de Bifidobacterias parece ser la de B. pseudocatenulatum ATCC27919 ya que muestra los porcentajes de identidad más bajos con respecto a las secuencias aminoacídicas del resto de cepas del género Bifidobacterium. El porcentaje de identidad más bajo es el que muestran las secuencias de B. pseudocatenulatum ATCC27919 y B. longum subsp. infantis ATCC15697 entre sí, sin embargo, tal como se demuestra en la presente invención, las dos secuencias muestran actividad fitasa mayoritaría y las dos proteínas se encuentran más solubles que la respectiva proteína no truncada (ver el apartado de ejemplos). Table 1 shows the percentages of identity between different amino acid sequences of Bifidobacteria phytases, in addition to the genus Clavibacter and Rhodococcus. The expression "percentage (%) of identity" between two amino acid sequences, as understood in the present invention, refers to the number of amino acid positions over the total length of the sequence being compared, where all amino acids in that position They are identical. As can be seen, the percentage of bifidobacteria protein identity acquires values from 59% to 83%. The sequence more different from the rest of Bifidobacteria seems to be that of B. pseudocatenulatum ATCC27919 since it shows the lowest percentages of identity with regarding the amino acid sequences of the other strains of the genus Bifidobacterium. The lowest percentage of identity is shown by the sequences of B. pseudocatenulatum ATCC27919 and B. longum subsp. infantis ATCC15697 with each other, however, as demonstrated in the present invention, the two sequences show major phytase activity and the two proteins are more soluble than the respective un-truncated protein (see examples section).
Las cepas de B. pseudocatenulatum ATCC27919 y B. longum subsp. infantis ATCC15697 han sido depositadas en otras colecciones de cultivos además de la American Type Culture Collection (ATCC). Así pues, la cepa de B. pseudocatenulatum ATCC27919 también se ha depositado en autoridades de depósito de microorganismos con los números CECT5776; cepa B1279; AS 1 .2277; BCRC (antiguamente CCRC) 15476; CCUG 34989; CIP 104168; DSM 20438; HAMBI 562; JCM 1200; LMG 10505; CUETM 89-16; CCTM 3069; Scardovi B1279. Por otra parte, la cepa de B. longum subsp. infantis ATCC15697 también se ha depositado en autoridades de depósito de microorganismos con los números CECT 4551 ; CCRC 14602; CCTM La 3067; CCUG 18368; CCUG 30512; CIP 64.67; CUETM 89-19; DSM 20088; JCM 1222; LMG 881 1 ; LMG 10499; NCFB 2205; NCTC 1 1817; Reuter S12. The strains of B. pseudocatenulatum ATCC27919 and B. longum subsp. infantis ATCC15697 have been deposited in other crop collections in addition to the American Type Culture Collection (ATCC). Thus, the strain of B. pseudocatenulatum ATCC27919 has also been deposited in microorganism deposit authorities with the numbers CECT5776; strain B1279; AS 1,22277; BCRC (formerly CCRC) 15476; CCUG 34989; CIP 104168; DSM 20438; HAMBI 562; JCM 1200; LMG 10505; CUETM 89-16; CCTM 3069; Scardovi B1279. On the other hand, the strain of B. longum subsp. infantis ATCC15697 has also been deposited with microorganism deposit authorities under CECT numbers 4551; CCRC 14602; CCTM La 3067; CCUG 18368; CCUG 30512; CIP 64.67; CUETM 89-19; DSM 20088; JCM 1222; LMG 881 1; LMG 10499; NCFB 2205; NCTC 1 1817; Reuter S12.
De esta forma el porcentaje de al menos un 55% de identidad con respecto a la secuencia amioacídíca SEQ ID NO: 1 está justificado, ya que microorganismos de otros géneros tienen una secuencia con identidades que van desde el 36% al 41 % de identidad con respecto a la secuencia amíoacídica SEQ ID NO: 1 , porcentaje muy alejado con respecto a los obtenidos entre cepas de bifidobacterias. Los porcentajes de identidad se han obtenido mediante el programa ClustalW (http://www.ebi.ac.uk/Tools/clustalw2) del Instituto Europeo de Bioinformática del Laboratorio Europeo de Biología Molecular. (EMBL-EBI) que permite realizar un alineamiento de dichas secuencias y asigna dichos porcentajes de forma automática. Tabla 1 . Porcentaje de identidad entre varias secuencias aminoacídicas de fitasas de Bifidobacterías y de los géneros Clavibacter y Rhodococcus. Los números de acceso de las secuencias citadas en esta tabla son: In this way, the percentage of at least 55% identity with respect to the amioacid sequence SEQ ID NO: 1 is justified, since microorganisms of other genera have a sequence with identities ranging from 36% to 41% identity with with respect to the amioacid sequence SEQ ID NO: 1, a percentage far away from those obtained between strains of bifidobacteria. Identity percentages have been obtained through the ClustalW program (http://www.ebi.ac.uk/Tools/clustalw2) of the European Bioinformatics Institute of the European Molecular Biology Laboratory. (EMBL-EBI) that allows an alignment of these sequences and assigns these percentages automatically. Table 1 . Percentage of identity between several amino acid sequences of Bifidobacteria phytases and of the genera Clavibacter and Rhodococcus. The access numbers of the sequences cited in this table are:
B. longum subsp. infantis ATCC15697 (YP__002321769), B. pseudocatenulatum ATCC27919 (ZP__03743199), B. dentium ATCC 27678 (EDT45330), B. longum DJO10A (YP_001955145.1 ), Clavibacter michiganensis subsp. michiganensis NCPPB 382 (YP_001221200.1 ), Rhodococcus erythropolis PR4 (YP_002763531 .1 ) B. longum subsp. infantis ATCC15697 (YP__002321769), B. pseudocatenulatum ATCC27919 (ZP__03743199), B. dentium ATCC 27678 (EDT45330), B. longum DJO10A (YP_001955145.1), Clavibacter michiganensis subsp. michiganensis NCPPB 382 (YP_001221200.1), Rhodococcus erythropolis PR4 (YP_002763531 .1)
Figure imgf000013_0001
Figure imgf000013_0001
El porcentaje de identidad de la secuencia aminoacídica se refiere al número de aminoácidos idénticos en las posiciones aminoacídicas equivalentes de la longitud total de la secuencia de la presente invención que se compara, es decir, en toda su longitud. La "hélice transmembrana" o hélice de membrana se refiere a la secuencia aminoacídica que constituye uno o varios segmentos apolares que se encuentran embebidos en la bicapa lipídica de la membrana celular. Estos segmentos apolares están constituidos por una o varias hélices a, que constituye el principal motivo de estructura secundaría de la proteína. The percent identity of the amino acid sequence refers to the number of identical amino acids at the equivalent amino acid positions of the total length of the sequence of the present invention that is compared, that is, throughout its length. The "transmembrane helix" or membrane helix refers to the amino acid sequence that constitutes one or more apolar segments that are embedded in the lipid bilayer of the cell membrane. These apolar segments are constituted by one or several a helices, which is the main reason for secondary structure of the protein.
Dicha secuencia se caracteriza porque carece de una secuencia que codifica para la hélice transmembrana, situada en el extremo carboxi-terminal de la secuencia original sin truncar. El péptido que codifica para la hélice transmembrana tiene la función de fijar la proteína fitasa original a la membrana celular, provocando su insolubilidad y por tanto la dificultad de ser purificada. Además, dicha proteína, a pesar de estar truncada, conserva su actividad enzimática fitasa y su alta especificidad por el fitato. La enzima también presenta actividad fosfatasa, sin embargo, esta actividad es minoritaria. La actividad fitasa y fosfatasa de las enzimas se puede determinar por medio de la medida de la especificidad de las mismas por determinados sustratos (ver tabla 6). Para determinar la "actividad mayoritaría fitasa" de la enzima de la presente invención se puede usar cualquier técnica conocida en el estado de la técnica y dicha actividad sería mayorítaria siempre que la actividad fitasa sea mayor que la actividad fosfatasa. Preferiblemente la actividad fitasa puede determinarse mediante la medida de la especificidad de la enzima por el fitato respecto de la especificidad de la misma enzima por el sustrato p-nitrofenilfosfato (pNPP). Por tanto, de acuerdo con los resultados mostrados en la tabla 6, la "actividad mayorítaria fitasa" de dicha enzima se refiere a que la relación entre actividad fitasa/actividad fosfatasa es mayor de 50, 60, 70, 80, 90 ó 100. Preferiblemente la relación entre actividad fitasa/actividad fosfatasa es igual o mayor de 90 y más preferiblemente la relación entre actividad fitasa/actividad fosfatasa es igual o mayor de 100. Said sequence is characterized in that it lacks a sequence coding for the transmembrane helix, located at the carboxy-terminal end of the original truncated sequence. The peptide encoding the transmembrane helix has the function of fixing the original phytase protein to the cell membrane, causing its insolubility and therefore the difficulty of being purified. In addition, said protein, despite being truncated, retains its phytase enzyme activity and its high specificity for phytate. The enzyme also has phosphatase activity, however, this activity is minority. The phytase and phosphatase activity of enzymes can be determined by measuring their specificity for certain substrates (see table 6). To determine the "major phytase activity" of the enzyme of the present invention any technique known in the state of the art can be used and said activity would be major provided that the phytase activity is greater than the phosphatase activity. Preferably the phytase activity can be determined by measuring the specificity of the enzyme by phytate with respect to the specificity of the same enzyme by the p-nitrophenyl phosphate (pNPP) substrate. Therefore, according to the results shown in Table 6, the "major phytase activity" of said enzyme refers to the relationship between phytase activity / phosphatase activity being greater than 50, 60, 70, 80, 90 or 100. Preferably the ratio between phytase activity / phosphatase activity is equal to or greater than 90 and more preferably the ratio between phytase activity / phosphatase activity is equal to or greater than 100.
En este caso la actividad fitasa se define en Uf¡t/mg de proteína y la actividad fosfatasa se define en Uf0t/mg de proteína. l½: pinoles de fósforo inorgánico liberados por hora a 50QC y pH: 6,0; In this case the phytase activity is defined Uf¡ t / mg protein and phosphatase activity defined Uf 0 t / mg protein. 1/2: inorganic phosphorus pine trees released per hour at 50 Q C and pH: 6.0;
empleando como sustrato fitato de potasio. using potassium phytate as substrate.
Ufe*: prnoles p-nítrofenol liberados por hora a 509C y pH: 6,0; empleando como sustrato p-nitrofenilfosfato. Ufe *: p-nitrophenol prnoles released per hour at 50 9 C and pH: 6.0; using p-nitrophenyl phosphate as substrate.
La actividad de la proteína fitasa es identificada con tres números; EC 3.1 .3.8, EC.3.1 .3.26 y EC.3.1 .3.72. Dichos números han sido asignados por la Enzyme Commission number de acuerdo a las reacciones químicas que catalizan (IUBMB Enzyme Nomenclature, CAS Registry Number 9001-42-7). La enzima con actividad EC 3.1.3.8 se denomina, pero sin limitarse, fitasa, fitato 3- fosfatasa, m/o-inositol-hexafosfato 3-fosfohidrolasa ó 3-fitasa. La enzima con actividad EC.3.1 .3.26 se denomina, pero sin limitarse, fitasa, fitato 6-fosfatasa, m/o-inositol-hexafosfato 6-fosfohidrolasa ó 6-fitasa. La enzima con actividad EC.3.1 .3.72 se denomina, pero sin limitarse, fitasa o 5-fitasa. The activity of the phytase protein is identified with three numbers; EC 3.1 .3.8, EC.3.1 .3.26 and EC.3.1 .3.72. These numbers have been assigned by the Enzyme Commission number according to the chemical reactions they catalyze (IUBMB Enzyme Nomenclature, CAS Registry Number 9001-42-7). The enzyme with EC activity 3.1.3.8 is called, but not limited to, phytase, phytate 3- phosphatase, m / o-inositol-hexaphosphate 3-phosphohydrolase or 3-phytase. The enzyme with activity EC.3.1 .3.26 is called, but not limited to, phytase, phytate 6-phosphatase, m / o-inositol-hexaphosphate 6-phosphohydrolase or 6-phytase. The enzyme with activity EC.3.1 .3.72 is called, but not limited to, phytase or 5-phytase.
En la presente invención, el término "proteína" o "enzima" se puede usar como equivalente al término "secuencia aminoacídica" teniendo en consideración que la proteína es ia secuencia aminoacídica plegada, es decir, con estructura terciaria. A su vez, el término "secuencia aminoacídica" es sinónimo del término "secuencia poiipeptídica". In the present invention, the term "protein" or "enzyme" can be used as equivalent to the term "amino acid sequence" considering that the protein is the folded amino acid sequence, that is, with tertiary structure. In turn, the term "amino acid sequence" is synonymous with the term "polypeptide sequence."
En este punto cabe argumentar que actualmente no existen métodos fiables capaces de predecir la estructura terciaria de una proteína a partir de su secuencia aminoacídica. Se dispone de métodos capaces de predecir aspectos más sencillos de su estructura, a partir de los cuales se puede derivar cierta información sobre su posible función. La estructura terciaria de una proteína parece estar determinada fundamentalmente por la especificidad de su secuencia aminoacídica. Sin embargo, la falta de precisión en la determinación de los parámetros básicos de los que se derivaría la estructura terciaria hace que los métodos de predicción más fiables sean aquellos basados en el conocimiento, combinación de métodos estadísticos y empíricos. A pesar de esto, no es posible predecir de forma fiable la estructura terciaria de la proteína fitasa de la presente invención y con ello su actividad enzimática, a partir de secuencia aminoacídica. Por ello, la eliminación de un fragmento de la proteína podría dar lugar a una proteína cuya actividad enzimática se vería disminuida respecto de la proteína original (nativa). Sin embargo, la secuencia aminoacídica aislada, truncada respecto de la secuencia aminoacídica original, no presenta la pérdida de actividad fitasa, derivándose de ello la no obviedad de dicha secuencia truncada. Una realización preferida de la invención se refiere al polinucleótido aislado que consiste en una secuencia nucleotídíca que codifica para una secuencia aminoacídica de Bifidobacterium que tiene al menos un 55% de identidad con respecto a la secuencia aminoacídica SEQ ID NO: 1 en toda su longitud, donde además dicha secuencia aminoacídica tiene unida a su extremo amino-terminal una secuencia que codifica para un péptido señal. Preferiblemente el péptido señal procede de una secuencia que tiene su origen en la secuencia original de la que procede el polinucleótido aislado de la invención. At this point it can be argued that there are currently no reliable methods capable of predicting the tertiary structure of a protein from its amino acid sequence. Methods capable of predicting simpler aspects of its structure are available, from which certain information about its possible function can be derived. The tertiary structure of a protein seems to be determined primarily by the specificity of its amino acid sequence. However, the lack of precision in determining the basic parameters from which the tertiary structure would be derived makes the most reliable prediction methods based on knowledge, a combination of statistical and empirical methods. In spite of this, it is not possible to reliably predict the tertiary structure of the phytase protein of the present invention and thereby its enzymatic activity, from amino acid sequence. Therefore, the removal of a fragment of the protein could result in a protein whose enzymatic activity would be diminished with respect to the original (native) protein. However, the isolated amino acid sequence, truncated with respect to the original amino acid sequence, does not show the loss of phytase activity, resulting in the non-obviousness of said truncated sequence. A preferred embodiment of the invention relates to the isolated polynucleotide consisting of a nucleotide sequence encoding an amino acid sequence of Bifidobacterium having at least 55% identity with respect to the amino acid sequence SEQ ID NO: 1 throughout its length, wherein said amino acid sequence also has a sequence encoding a signal peptide attached to its amino-terminal end. Preferably the signal peptide is derived from a sequence that has its origin in the original sequence from which the isolated polynucleotide of the invention originates.
El péptido señal tiene una secuencia de aminoácidos que conduce a la proteína que la contiene a una determinada localización en la célula. De acuerdo con el sistema Sec de transporte, las proteínas, cuando todavía están en el citoplasma (pre-proteína) están dotadas de una secuencia, llamada péptido señal, en el extremo N-terminal. El péptido señal de la pre-proteína entra a través del canal Sec de la membrana celular citoplasmática), con lo que el péptido señal aparece por el lado exterior de la membrana. De esta forma, el péptido es escindido de la secuencia de la pre-proteína por medio de la acción de una peptidasa, lo que produce la liberación al exterior de proteína madura. La proteína madura puede estar anclada a su vez a la membrana citoplasmática, como es el caso de la proteína original o nativa de la presente invención. Por tanto, la secuencia aminoacídica de la presente invención puede tener unida a su extremo amino-terminal una secuencia que codifica para un péptído señal y de esta forma la proteína es liberada al exterior de la célula, facilitando con ello la purificación de la proteína ya que no sería necesaria la lisis de las células hospedadoras para su liberación. The signal peptide has an amino acid sequence that leads to the protein that contains it at a certain location in the cell. According to the Sec transport system, the proteins, when they are still in the cytoplasm (pre-protein) are endowed with a sequence, called a signal peptide, at the N-terminal end. The signal peptide of the pre-protein enters through the Sec channel of the cytoplasmic cell membrane), whereby the signal peptide appears on the outer side of the membrane. In this way, the peptide is cleaved from the pre-protein sequence through the action of a peptidase, which results in the release of mature protein abroad. The mature protein may in turn be anchored to the cytoplasmic membrane, as is the case with the original or native protein of the present invention. Therefore, the amino acid sequence of the present invention can have a sequence encoding a signal peptide attached to its amino-terminal end and thus the protein is released outside the cell, thereby facilitating the purification of the protein already that lysis of host cells would not be necessary for their release.
Otra realización preferida se refiere al polinucleótido aislado, donde la secuencia aminoacídica es SEQ ID NO: 1 , de B. pseudocatenulatum ATCC27919. Dicha secuencia aminoacídica carece de la secuencia que codifica para la hélice transmembrana, delimitada por el aminoácido 613 y 639, incluidos ambos, de la secuencia original SEQ ID NO: 2, y además, dicha secuencia aminoacídica es una proteína cuya actividad mayoritaria es fitasa. La secuencia SEQ ID NO: 2 es la secuencia aminoacídica completa {no truncada) de la enzima fitasa de B. pseudocatenulatum ATCC27919 (N9 de acceso ZP_03743199). Una realización más preferida de la invención se refiere al polinucleótido aislado, donde dicha secuencia aminoacídica tiene unida a su extremo amino-terminal la secuencia del péptido señal SEQ ID NO: 5. Esta secuencia SEQ ID NO: 5 está delimitada por el aminoácido 1 y el 52, incluidos ambos, de la secuencia original SEQ ID NO: 2. Another preferred embodiment relates to the isolated polynucleotide, where the amino acid sequence is SEQ ID NO: 1, of B. pseudocatenulatum ATCC27919. Said amino acid sequence lacks the sequence coding for the transmembrane helix, delimited by amino acid 613 and 639, including both, of the original sequence SEQ ID NO: 2, and furthermore, said amino acid sequence is a protein whose majority activity is phytase. The sequence SEQ ID NO: 2 is the complete {non-truncated) amino acid sequence of the B. pseudocatenulatum ATCC27919 phytase enzyme (access N 9 ZP_03743199). A more preferred embodiment of the invention relates to the isolated polynucleotide, wherein said amino acid sequence has the signal peptide sequence SEQ ID NO: 5 attached to its amino-terminal end. This sequence SEQ ID NO: 5 is delimited by amino acid 1 and 52, including both, of the original sequence SEQ ID NO: 2.
Otra realización preferida se refiere al polinucleótido aislado, donde la secuencia aminoacídica es SEQ ID NO: 3, de B. longum subsp. infantis ATCC15697. Dicha secuencia aminoacídica carece de la secuencia que codifica para la hélice transmembrana, delimitada por el aminoácido 600 y 623, incluidos ambos, de la secuencia original SEQ ID NO: 4, y además, dicha secuencia aminoacídica es una proteína cuya actividad mayoritaria es fitasa. Una realización más preferida de la invención se refiere al polinucleótido aislado, donde dicha secuencia aminoacídica tiene unida a su extremo amino- terminal la secuencia del péptido señal SEQ ID NO: 6. Esta secuencia SEQ ID NO: 6 está delimitada por el aminoácido 1 y el 32, incluidos ambos, de la secuencia original SEQ ID NO: 4. SEQ ID NO: 3 corresponde a la secuencia aminoacídica truncada de la proteína fitasa de B. longum subsp. infantis ATCC15697. Dicha secuencia carece tanto de la secuencia aminoacídica que codifica para el péptido señal del extremo amino-terminal como de la secuencia que codifica para la hélice transmembrana del extremo carboxi-terminal. La secuencia SEQ ID NO: 4 es la secuencia aminoacídica completa (no truncada u original) de la enzima fitasa de B. pseudocatenulatum ATCC27919 (Ns de acceso YPJD02321769.1 ). Another preferred embodiment relates to the isolated polynucleotide, where the amino acid sequence is SEQ ID NO: 3, of B. longum subsp. infantis ATCC15697. Said amino acid sequence lacks the sequence coding for the transmembrane helix, delimited by amino acid 600 and 623, including both, of the original sequence SEQ ID NO: 4, and furthermore, said amino acid sequence is a protein whose majority activity is phytase. A more preferred embodiment of the invention relates to the isolated polynucleotide, wherein said amino acid sequence has the signal peptide sequence SEQ ID NO: 6 attached to its amino terminus. This sequence SEQ ID NO: 6 is delimited by amino acid 1 and 32, including both, of the original sequence SEQ ID NO: 4. SEQ ID NO: 3 corresponds to the truncated amino acid sequence of the phytase protein of B. longum subsp. infantis ATCC15697. Said sequence lacks both the amino acid sequence encoding the signal peptide of the amino-terminal end and the sequence encoding the transmembrane helix of the carboxy-terminal end. SEQ ID NO: 4 is the (not truncated or original) complete amino acid sequence of the phytase enzyme B. pseudocatenulatum ATCC27919 (N s access YPJD02321769.1).
En adelante, para hacer referencia a cualquier polinucleótido descrito en el aspecto anterior o en sus realizaciones preferidas se puede usar el término "polinucleótido de la invención" o "polinucleótido de la presente invención". Hereinafter, to refer to any polynucleotide described in the above aspect or in its preferred embodiments, the term "polynucleotide of the invention" or "polynucleotide of the present invention" may be used.
Otros aspectos de la presente invención son: El producto de expresión del polinucleótido de la invención; la secuencia aminoacídica aislada codificada por el polinucleótido de la invención; el producto de expresión anterior encapsulado o la secuencia aminoacídica anterior encapsulada; o el vector que comprende el polinucleótido de la invención. Other aspects of the present invention are: The expression product of the polynucleotide of the invention; the isolated amino acid sequence encoded by the polynucleotide of the invention; the encapsulated anterior expression product or the encapsulated anterior amino acid sequence; or the vector comprising the polynucleotide of the invention.
El término "producto de la expresión del polinucleótido" tal como se entiende en la presente invención hace referencia a cualquier producto resultante de la expresión de la secuencia de nucleótidos. Así pues, como producto resultante de la expresión de la secuencia se entiende, por ejemplo, el ARN que se obtiene de la transcripción de la secuencia, el ARN procesado, la proteína resultante de la traducción del ARN en cualquiera de sus estados de procesamiento o posteriores modificaciones de la secuencia nucleotídica en el interior de la célula siempre que la secuencia resultante tenga su origen en la secuencia original transferida o no pierda la característica funcional que la caracteriza, es decir, la actividad fitasa mayoritaria. El término "vector" se refiere a un fragmento de ADN que tiene la capacidad de replicarse en un determinado huésped y, como el término lo indica, puede servir de vehículo para multiplicar otro fragmento de ADN que haya sido fusionado al mismo (inserto). Inserto se refiere a un fragmento de ADN que se fusiona al vector; en el caso de la presente invención, el vector puede comprender el polinucleótido de la invención. Los vectores pueden ser plásmidos, cósmidos, bacteriófagos o vectores virales, sin excluir otro tipo de vectores que se correspondan con la definición realizada de vector. Preferiblemente el vector es un plásmido. Un ejemplo de plásmido es el de la serie pQE, tal como se muestra en los ejemplos de la presente invención. The term "polynucleotide expression product" as understood in the present invention refers to any product resulting from the expression of the nucleotide sequence. Thus, as a product resulting from the expression of the sequence is understood, for example, the RNA that is obtained from the transcription of the sequence, the processed RNA, the protein resulting from the translation of the RNA in any of its processing states or subsequent modifications of the nucleotide sequence inside the cell provided that the resulting sequence has its origin in the original sequence transferred or does not lose the functional characteristic that characterizes it, that is, the majority phytase activity. The term "vector" refers to a DNA fragment that has the ability to replicate in a given host and, as the term implies, can serve as a vehicle to multiply another DNA fragment that has been fused to it (insert). Insert refers to a DNA fragment that is fused to the vector; In the case of the present invention, the vector may comprise the polynucleotide of the invention. The vectors can be plasmids, cosmids, bacteriophages or viral vectors, without excluding other types of vectors that correspond to the definition made of vector. Preferably the vector is a plasmid. An example of a plasmid is that of the pQE series, as shown in the examples of the present invention.
El término "encapsulado/a" se refiere a que el producto de expresión del polinucleótido o secuencia aminoacídica codificada por el polinucleótido de la invención (enzima), están recubiertos con materiales de distinta naturaleza para obtener partículas de tamaño micrométrico. El producto resultante del encapsulado se denomina micropartícula, microcápsula ó microesfera, sin excluir otros términos usados en el estado de la técnica. La aplicación industrial del producto encapsulado es, por ejemplo, pero sin limitarse, conseguir una liberación sostenida o controlada del producto de expresión o de la enzima, conseguir proteger el producto de expresión o de la enzima protegerlos del pH, de la temperatura, de la degradación enzimática o de otros factores físicos que pudieran restar actividad en dicha enzima. The term "encapsulated" refers to the fact that the expression product of the polynucleotide or amino acid sequence encoded by the polynucleotide of the invention (enzyme), is coated with materials of different nature to obtain micrometric sized particles. The product resulting from encapsulation is called microparticle, microcapsule or microsphere, without excluding other terms used in the state of the art. The industrial application of the encapsulated product is, for example, but not limited, to achieve a sustained or controlled release of the expression product or enzyme, to protect the expression product or the enzyme to protect them from pH, temperature, temperature. enzymatic degradation or other physical factors that could subtract activity in said enzyme.
Los materiales de recubrimiento para llevar a cabo dicho microencapsulado se seleccionan de la lista que comprende: grasa (por ejemplo pero sin limitarse, cera ó alcohol estearílico), al menos una proteína (por ejemplo pero sin limitarse, gelatina o albúmina), al menos un polímero (natural; por ejemplo pero sin limitarse, alginato, dextrano o quitosano / semísintético; por ejemplo pero sin limitarse, derivado de celulosa / sintético; por ejemplo pero sin limitarse, derivado acrílíco o poliéster alifático), o cualquiera de sus combinaciones. The coating materials for carrying out said microencapsulation are selected from the list comprising: fat (for example but not limited to, wax or stearyl alcohol), at least one protein (for example but not limited to, gelatin or albumin), at least a polymer (natural; for example but not limited to, alginate, dextran or chitosan / semi-synthetic; for example but not limited to cellulose / synthetic derivative; for example but not limited to, acrylic or aliphatic polyester derivative), or any combination thereof.
Los métodos para mícroencapsular son conocidos por un experto en la materia. Por ejemplo, pero sin limitarse, se puede mícroencapsular mediante: extracción/evaporación del solvente, coacervación/separación de fases, atomización (Spay driying), gelificación iónica o polimerización interfacial. Otros métodos pueden encontrarse en Gabrie M.H. Meesters (2010) (Capítulo 9, Encapsulation of Enzymes and Peptides, En: Encapsulation Technologies for Active Food Ingredients and Food Processing. Páginas 253-268). Otro aspecto más de la presente invención es una célula aislada que comprende: The methods for mycroencapsular are known to a person skilled in the art. For example, but not limited to, it can be microcapsulated by: solvent extraction / evaporation, coacervation / phase separation, atomization (Spay driying), ionic gelation or interfacial polymerization. Others Methods can be found in Gabrie MH Meesters (2010) (Chapter 9, Encapsulation of Enzymes and Peptides, In: Encapsulation Technologies for Active Food Ingredients and Food Processing. Pages 253-268). Another aspect of the present invention is an isolated cell comprising:
- El polinucleótído de la invención,  - The polynucleotide of the invention,
- el producto de expresión del polinucleótído de la invención,  - the expression product of the polynucleotide of the invention,
- la secuencia aminoacídica aislada codificada por el polinucleótído de la invención,  - the isolated amino acid sequence encoded by the polynucleotide of the invention,
- el producto de expresión anterior encapsulado o la secuencia aminoacídica anterior encapsulada, o  - the encapsulated anterior expression product or the encapsulated anterior amino acid sequence, or
- el vector que comprende el polinucleótído de la invención. El término "célula" tal como se entiende en la presente invención hace referencia a una célula procariótica o eucaríótica. Una realización más preferida de la presente invención se refiere a la célula descrita en el párrafo anterior, donde dicha célula es procariota. Según una realización más preferida la célula procariota es de una especie diferente de B. pseudocatenulatum y B. longum subsp. infantis. La especie diferente de célula procariota puede ser E. coli. Los inventores demuestran que, a pesar de que la secuencia nucleotídica es rica en nucleótidos G y C, se expresa eficazmente en E. coli, lo cual es un resultado no esperado. La célula transformada con un vector que comprende el polinucleótído de la invención, puede incorporar la secuencia en alguno de los ADN de la célula; nuclear, mitocondrial y/o cloroplástico, o permanecer como parte de un vector que posee su propia maquinaria para autoreplicarse. La selección de la célula que ha incorporado cualquiera de las secuencias de la invención se lleva a cabo por medio de cualquier método conocido en el estado de la técnica, por ejemplo, pero sin limitarse, mediante auxotrofías o medíante la expresión de cualquier marcador de selección. En adelante, para hacer referencia a cualquier célula descrita en los párrafos anteriores se puede usar el término "célula de la invención" o "célula de la presente invención". Otro aspecto de la presente invención se refiere a la población celular que comprende la célula de la invención. Dicha población celular puede estar formada por cualquier célula de la presente invención, por células de una sola cepa o línea celular, por combinación de células de la cepa de B. pseudocatenulatum ATCC27919 y B. longum subsp. infantis ATCC 1 5697 o por combinación de cualquiera de ellas con otras células de cepas diferentes de la misma especie o línea celular del género Bifidobacterium o de otro género. Es decir, la población celular aislada puede ser un cocultivo de células de al menos una cepa ATCC27919 o ATCC15697 con células de cualquier otra cepa. - the vector comprising the polynucleotide of the invention. The term "cell" as understood in the present invention refers to a prokaryotic or eukaryotic cell. A more preferred embodiment of the present invention relates to the cell described in the preceding paragraph, wherein said cell is prokaryotic. According to a more preferred embodiment, the prokaryotic cell is of a different species of B. pseudocatenulatum and B. longum subsp. infantis The different species of prokaryotic cell can be E. coli. The inventors demonstrate that, although the nucleotide sequence is rich in nucleotides G and C, it is effectively expressed in E. coli, which is an unexpected result. The cell transformed with a vector comprising the polynucleotide of the invention can incorporate the sequence into any of the cell's DNA; nuclear, mitochondrial and / or chloroplast, or remain as part of a vector that has its own machinery for self-replication. The selection of the cell that has incorporated any of the sequences of the invention is carried out by any method known in the state of the art, for example, but not limited, by auxotrophies or through the expression of any selection marker . Hereinafter, to refer to any cell described in the preceding paragraphs, the term "cell of the invention" or "cell of the present invention" can be used. Another aspect of the present invention relates to the cell population comprising the cell of the invention. Said cell population may be formed by any cell of the present invention, by cells of a single strain or cell line, by combination of cells of the strain of B. pseudocatenulatum ATCC27919 and B. longum subsp. infantis ATCC 1 5697 or by combination of any of them with other cells of different strains of the same species or cell line of the genus Bifidobacterium or of another genus. That is, the isolated cell population can be a co-culture of cells of at least one strain ATCC27919 or ATCC15697 with cells of any other strain.
Un aspecto más de la presente invención se refiere al uso del polinucleótido de la invención, del producto de expresión del polinucleótido de la invención (o dicho producto de expresión encapsulado), de la secuencia aminoacídíca aislada codificada por el polinucleótido de la invención (o dicha secuencia aminoacídíca encapsulada), del vector que comprende el polinucleótido de la invención, de la célula de la invención o de la población celular de la invención, para reducir el contenido de hexafosfato de m/o-ínositol (InsPe) de un alimento. Según una realización preferida, el alimento es esencialmente vegetal. Según otra realización más preferida, el alimento vegetal comprende cualquier parte de la semilla de dicho vegetal, en cualquier estado de procesamiento. La semilla puede proceder de cualquier vegetal como por ejemplo, pero sin limitarse, de una planta leguminosa, de una planta gramínea o de pseudocereales (por ejemplo, pero sin limitarse, amaranto, quinoa). Según una realización aún más preferida, las semillas proceden de al menos una planta leguminosa. Según otra realización aún más preferida, las semillas proceden de al menos una planta gramínea. Según otra realización preferida, el alimento está destinado a la alimentación de animales monogástricos. Según una realización más preferida el alimento es un pienso. A further aspect of the present invention relates to the use of the polynucleotide of the invention, of the expression product of the polynucleotide of the invention (or said encapsulated expression product), of the isolated amino acid sequence encoded by the polynucleotide of the invention (or said encapsulated amino acid sequence), of the vector comprising the polynucleotide of the invention, of the cell of the invention or of the cell population of the invention, to reduce the content of m / o-innositol hexaphosphate (InsPe) of a food. According to a preferred embodiment, the food is essentially vegetable. According to another more preferred embodiment, the plant food comprises any part of the seed of said plant, in any processing state. The seed can come from any vegetable such as, but not limited to, a legume plant, a grass plant or pseudocereals (for example, but not limited to amaranth, quinoa). According to an even more preferred embodiment, the seeds come from at least one legume plant. According to another even more preferred embodiment, the seeds come from at least one grass plant. According to another preferred embodiment, the food It is intended for feeding monogastric animals. According to a more preferred embodiment the food is a feed.
El hexafosfato de m/o-inosítol (lnsP6) es el ácido fítico. El m/o-inositol hexafosfato, hexafosfato de m/o-inositol, hexakisfosfato de m/o-inositol o hexafosfoinositol se puede abreviar como \nsPe o \ PQ. La sal del ácido fítico es el fitato. En la presente invención se puede usar el término "fitato" para hacer referencia al \nsPe o a cualquiera de sus sales. Generalmente el fósforo en forma de fitato no está disponible para los animales monogástricos, es decir, no rumiantes, ya que no disponen de la enzima digestiva fitasa, que es necesaria para separar el fósforo de la molécula de fitato. Sin embargo los animales rumiantes pueden asimilar el fósforo del fitato ya que disponen de microorganismos intestinales que producen fitasa. El término "esencialmente vegetal" tal como se entiende en la presente invención se refiere a que el alimento vegetal tiene compuestos alimenticios cuyo origen no es vegetal pero más del 50% de los compuestos alimenticios que integran dicho alimento tienen origen vegetal. La planta gramínea de la que se usan las semillas es una planta de la subfamilia Pooideae, dicha planta se selecciona de la lista que comprende una planta de Tribu Aveneae, preferiblemente, pero sin limitarse, del género Avena, más preferiblemente la especie Avena sativa (avena); de la Tribu Tríticeae, preferiblemente, pero sin limitarse, del género Hordeum (más preferiblemente la especie Hordeum vulgare [cebada]), Sécale (más preferiblemente la especie Sécale cereale [centeno]) o Tríticum (más preferiblemente la especie Triticum aestivum); de la Tribu Oryzeae, preferiblemente, pero sin limitarse, del género Oryza, más preferiblemente la especie Oryza sativa (arroz); o de la Tribu Andropogoneae, preferiblemente, pero sin limitarse, del género Shorgum o del género Zea, más preferiblemente la especie Zea mays (maíz). La planta gramínea de la que se usan las semillas es una planta de la subfamilia Faboideae, Caesalpinioideae o Mimosoideae. Preferiblemente la planta de la subfamilia Faboideae se selecciona del género de la lista que comprende Pisum, Phaseolus, Vicia, Cicer, Medicago o Glycine. M / o-inositol hexaphosphate (lnsP 6 ) is phytic acid. The m / o-inositol hexaphosphate, m / o-inositol hexaphosphate, m / o-inositol hexakisphosphate or hexaphosphoinositol can be abbreviated as \ nsPe or \ PQ. The salt of phytic acid is phytate. In the present invention, the term "phytate" can be used to refer to \ nsPe or any of its salts. Phytate phosphorus is generally not available for monogastric animals, that is, non-ruminants, since they do not have the digestive enzyme phytase, which is necessary to separate the phosphorus from the phytate molecule. However, ruminant animals can assimilate phytate phosphorus because they have intestinal microorganisms that produce phytase. The term "essentially vegetable" as understood in the present invention refers to the fact that the plant food has food compounds whose origin is not vegetable but more than 50% of the food compounds that make up said food have plant origin. The grass plant from which the seeds are used is a plant of the Pooideae subfamily, said plant is selected from the list that comprises an Aveneae Tribe plant, preferably, but not limited to, of the Avena genus, more preferably the Avena sativa species ( oats); of the Triticeae Tribe, preferably, but not limited to, of the genus Hordeum (more preferably the species Hordeum vulgare [barley]), Dry (more preferably the species Sécale cereale [rye]) or Triticum (more preferably the species Triticum aestivum); of the Oryzeae Tribe, preferably, but not limited to, of the genus Oryza, more preferably the species Oryza sativa (rice); or of the Andropogoneae Tribe, preferably, but not limited to, of the genus Shorgum or of the genus Zea, more preferably the species Zea mays (corn). The grass plant from which the seeds are used is a plant of the Faboideae, Caesalpinioideae or Mimosoideae subfamily. Preferably the Faboideae subfamily plant is selected from the genus from the list comprising Pisum, Phaseolus, Vicia, Cicer, Medicago or Glycine.
Un aspecto más de la presente invención se refiere al uso del polinucleótido de la invención, del producto de expresión del polinucleótido de la invención (o dicho producto de expresión encapsulado), de la secuencia aminoacídica aislada codificada por el polinucleótido de la invención (o dicha secuencia aminoacídica encapsulada), del vector que comprende el polinucleótido de la invención, de la célula de la invención o de la población celular de la invención, para producir trifosfato de m/o- Inositol (lnsP3). El trifosfato de m/oinositol, mio- Inositol trifosfato o trifosfoinositol se puede abreviar como InsPe o IP3. El lnsP3 tiene una importante aplicación en salud dado que los trifosfatos de m/'o-inositol están implicados en numerosas funciones biológicas en el organismo, como por ejemplo en la desintoxicación de metales pesados (ES 2054628). A further aspect of the present invention relates to the use of the polynucleotide of the invention, of the expression product of the polynucleotide of the invention (or said encapsulated expression product), of the isolated amino acid sequence encoded by the polynucleotide of the invention (or said encapsulated amino acid sequence), of the vector comprising the polynucleotide of the invention, of the cell of the invention or of the cell population of the invention, to produce m / o-Inositol triphosphate (lnsP 3 ). The m / oinositol triphosphate, myo-Inositol triphosphate or triphosphoinositol can be abbreviated as InsPe or IP 3 . LnsP 3 has an important application in health since m / ' o-inositol triphosphates are involved in numerous biological functions in the body, such as in the detoxification of heavy metals (ES 2054628).
Otro aspecto de la presente invención se refiere al método para la producción del polinucleótido de la invención, que comprende: Another aspect of the present invention relates to the method for the production of the polynucleotide of the invention, which comprises:
a. amplificar medíante una técnica de PCR el fragmento de la secuencia nucleotídica que tiene al menos un 55% de identidad con respecto a la secuencia aminoacídica SEQ ID NO: 1 , en toda su longitud, usando como molde un ADN cromosómico de Bifidobacterium, to. amplify by means of a PCR technique the fragment of the nucleotide sequence that has at least 55% identity with respect to the amino acid sequence SEQ ID NO: 1, in its entire length, using as a template a chromosomal DNA of Bifidobacterium,
b. clonar dicho fragmento en un vector de expresión, y b. cloning said fragment into an expression vector, and
c. transformar dicho vector en una célula huésped para su replicación. C. transforming said vector into a host cell for replication.
La técnica de PCR del paso (a) del método se selecciona de las técnicas de PCR del estado de la técnica conocidas por el experto en la materia. La amplificación del fragmento de la secuencia nucleotídica se lleva a cabo mediante el uso de al menos dos cebadores donde uno de ellos se unirá a la hebra molde (cebador directo) y el otro a la hebra complementaria (cebador reverso), en una posición que permita obtener, mediante sucesivas amplificaciones con una enzima ARN/ADN polimerasa termorresistente, el fragmento que codifica para la fitasa de la presente invención, tal como se indica en el paso (a). El vector de expresión contiene las secuencias necesarias para la replicación y expresión de la secuencia nucleotídica que codifica para la fitasa de la presente invención en la célula huésped del paso (b) del método. Dicha célula huésped puede ser una célula procariota, por ejemplo, pero sin limitarse al menos una célula de Escheríchia. coli. The PCR technique of step (a) of the method is selected from the state of the art PCR techniques known to the person skilled in the art. The amplification of the nucleotide sequence fragment is carried out by using at least two primers where one of them will bind to the template strand (direct primer) and the other to the complementary strand (reverse primer), in a position that allow to obtain, through successive amplifications with a thermo-resistant RNA / DNA polymerase enzyme, the fragment encoding the phytase of the present invention, as indicated in step (a). The expression vector contains the sequences necessary for the replication and expression of the nucleotide sequence encoding the phytase of the present invention in the host cell of step (b) of the method. Said host cell can be a prokaryotic cell, for example, but not limited to at least one Escheríchia cell. coli
Una realización preferida de la presente invención se refiere al método, donde la amplificación del paso (a) se lleva cabo mediante el cebador directo SEO ID NO: 7 y el cebador reverso SEQ ID NO: 8, y el molde es ADN es cromosómico de B. pseudocatenulatum ATCC27919. Otra realización preferida de la presente invención se refiere al método donde la amplificación del paso (a) se lleva cabo medíante el cebador directo SEQ ID NO: 9 y el cebador reverso SEQ ID NO: 10, y el molde es ADN es cromosómico de B. longum subsp. infantis ATCC15697. Otro aspecto de la presente invención se refiere al método para reducir el contenido de fitatos de un alimento, que comprende: A preferred embodiment of the present invention relates to the method, where the amplification of step (a) is carried out by the direct primer SEO ID NO: 7 and the reverse primer SEQ ID NO: 8, and the template is DNA is chromosomal of B. pseudocatenulatum ATCC27919. Another preferred embodiment of the present invention relates to the method where the amplification of step (a) is carried out by means of the direct primer SEQ ID NO: 9 and the reverse primer SEQ ID NO: 10, and the template is DNA is chromosomal of B longum subsp. infantis ATCC15697. Another aspect of the present invention relates to the method for reducing the phytate content of a food, which comprises:
a. poner en contacto el alimento con la secuencia aminoacídica aislada codificada por el polínucleótido de la invención (o con dicha secuencia aminoacídica encapsulada), con la célula de la invención, o con la población celular que comprende dicha célula de la invención, e to. contacting the food with the isolated amino acid sequence encoded by the polynucleotide of the invention (or with said encapsulated amino acid sequence), with the cell of the invention, or with the cell population comprising said cell of the invention, and
b. incubar la mezcla obtenida en el paso (a) a un pH de entre 3,5 y 7,5. b. incubate the mixture obtained in step (a) at a pH between 3.5 and 7.5.
Las condiciones de incubación de la mezcla, según el paso (b), se seleccionan de acuerdo con los resultados mostrados en las figuras 1 A y B. The incubation conditions of the mixture, according to step (b), are selected according to the results shown in Figures 1 A and B.
Un aspecto más de la presente invención se refiere al método para producir lnsP3, que comprende: a. poner en contacto una composición que comprende ácido fítico o al menos una sal de fitato con la secuencia amínoacídíca aislada codificada por el polinucleótido de la invención, con la célula de la invención, o con la población celular que comprende dicha célula de la invención, A further aspect of the present invention relates to the method of producing lnsP3, which comprises: to. contacting a composition comprising phytic acid or at least one phytate salt with the isolated aminoacidic sequence encoded by the polynucleotide of the invention, with the cell of the invention, or with the cell population comprising said cell of the invention,
b. incubar la mezcla obtenida en el paso (a) a un pH de entre 3,5 y 7,5. b. incubate the mixture obtained in step (a) at a pH between 3.5 and 7.5.
Es conocido que la adición de fitasas de origen fúngico disminuye el contenido de fitatos en productos de panadería durante la etapa de amasado, fermentación y primera etapa del horneado (Haros et al., 2001 . Eur Food Res Technol., 213: 3 7-322; Haros et al., 2001 . J Agr Food Chem, 49: 5450-5454; Sanz Penella et al., 2008. J Cereal Sci, 48: 71 5-721 ). Durante la etapa de amasado (7 minutos) y reposo de la masa a 24eC (10 minutos) la inclusión de fitasa fúngica en la formulación de pan integral provocó una disminución de entre 17,3% y 51 ,9% del fitato inicial en la harina, dependiendo de la dosis adicionada (Haros et al., 2001 . J Agr Food Chem, 49: 5450-5454). Türk y Sandberg (1992. J Cereal Sci, 15: 281 -294) observaron que la inclusión de ingredientes como leche en la formulación de pan integral podría retrasar significativamente el efecto de la fitasa fúngica comercial para hidrolizar a los fitatos. Pan integral elaborado con masas precocidas adicionadas con fitasa fúngica comercial conservadas en congelación por largos períodos de tiempo (3 meses) disminuyen significativamente el contenido de fitatos durante el proceso de congelación, almacenamiento, descongelación y cocción completa (Rosell et al., 2009. J Cereal Sci, 50: 272-277). Por tanto, la reducción del contenido de fitatos de un alimento o la degradación enzimática de los fitatos en los procesos de elaboración de alimentos depende de numerosos factores tales como el pH, temperatura del proceso, tiempo, contenido de agua, concentración de sales minerales, aditivos y el propio proceso (Türk y Sandberg, 1992. J Cereal Sci, 1 5: 281 -294). Así pues, la incubación mencionada en el paso (b) del método para reducir el contenido de fitatos de un alimento o para producir lnsP3 se lleva a cabo a un pH que se selecciona de un intervalo de entre 3,5 y 7,5, preferiblemente el pH se selecciona de un intervalo de entre 3,75 y 7,25; de entre 4 y 7; de entre 4,25 y 7,75; de entre 4,5 y 7; de entre 4,75 y 6,75; o de entre 5,5 y 6,5. La temperatura a la que se llevan a cabo los procesos dependerá del tipo de alimento que se pretenda tratar así como del tipo de material con el que se microencapsula la enzima. Por tanto el método puede llevarse a cabo a temperturas muy diferentes como por ejemplo aproximadamente a 4 SC, aproximadamente a 60 eC o a una temperatura que se selecciona de entre 24 QC y 60 9C, preferiblemente de entre 27 2C y 57 SC, de entre 30 SC y 55 QC ó de entre 35 eC y 50 9C. El tiempo dependerá del resto de parámetros o incluso de los alimentos que deban tratarse. It is known that the addition of phytases of fungal origin decreases the phytate content in bakery products during the kneading, fermentation and first baking stage (Haros et al., 2001. Eur Food Res Technol., 213: 3 7- 322; Haros et al., 2001. J Agr Food Chem, 49: 5450-5454; Sanz Penella et al., 2008. J Cereal Sci, 48: 71 5-721). During the kneading (7 minutes) and dough rest stage at 24 and C (10 minutes), the inclusion of fungal phytase in the integral bread formulation caused a decrease of between 17.3% and 51.9% of the initial phytate in flour, depending on the dose added (Haros et al., 2001. J Agr Food Chem, 49: 5450-5454). Türk and Sandberg (1992. J Cereal Sci, 15: 281-294) observed that the inclusion of ingredients such as milk in the integral bread formulation could significantly delay the effect of commercial fungal phytase to hydrolyze phytates. Wholemeal bread made with pre-cooked doughs added with commercial fungal phytase preserved in freezing for long periods of time (3 months) significantly decreases the phytate content during the freezing, storage, defrosting and complete cooking process (Rosell et al., 2009. J Cereal Sci, 50: 272-277). Therefore, the reduction of the phytate content of a food or the enzymatic degradation of phytates in food processing processes depends on numerous factors such as pH, process temperature, time, water content, concentration of mineral salts, additives and the process itself (Türk and Sandberg, 1992. J Cereal Sci, 1 5: 281-294). Thus, the incubation mentioned in step (b) of the method to reduce the phytate content of a food or to produce lnsP 3 is carried out at a pH that is selected from a range between 3.5 and 7.5 preferably the pH is select from a range between 3.75 and 7.25; between 4 and 7; between 4.25 and 7.75; between 4.5 and 7; between 4.75 and 6.75; or between 5.5 and 6.5. The temperature at which the processes are carried out will depend on the type of food that is intended to be treated as well as the type of material with which the enzyme is microencapsulated. Therefore the method can be carried out at very different temperatures such as at about 4 S C, about 60 e C or at a temperature that is selected between 24 Q C and 60 9 C, preferably between 27 2 C and 57 S C, between 30 S C and 55 Q C or between 35 e C and 50 9 C. The time will depend on the rest of the parameters or even on the food to be treated.
La sal de fitato del paso (a) se selecciona de la lista que comprende, pero sin limitarse, sal de sodio, sal de potasio, sal de calcio, sal de magnesio o sal cálcico-magnésica. The phytate salt of step (a) is selected from the list comprising, but not limited to, sodium salt, potassium salt, calcium salt, magnesium salt or calcium-magnesium salt.
Una realización preferida de la presente invención se refiere al método para reducir el contenido de fitatos de un alimento o al método para producir lnsP3, donde la incubación del paso (b) se lleva a cabo a un pH de entre 5,5 y 6,5. Otra realización preferida de la presente invención se refiere al método para reducir el contenido de fitatos de un alimento o al método para producir lnsP3, donde la composición del paso (a) además comprende calcio o al menos una sal de calcio, en el caso de emplear la secuencia amínoacídica SEQ ID NO: 3 de B. longum subsp. infantis, la célula de la invención que la comprende, o la población celular que comprende dicha célula. A preferred embodiment of the present invention relates to the method for reducing the phytate content of a food or to the method for producing lnsP3, where the incubation of step (b) is carried out at a pH between 5.5 and 6, 5. Another preferred embodiment of the present invention relates to the method for reducing the phytate content of a food or to the method for producing lnsP3, where the composition of step (a) further comprises calcium or at least one calcium salt, in the case of use the amynoacid sequence SEQ ID NO: 3 of B. longum subsp. infantis, the cell of the invention that comprises it, or the cell population comprising said cell.
La sal de calcio se selecciona de la lista que comprende, pero sin limitarse, carbonato de calcio, fosfato de calcio, gluconato de calcio, cloruro de calcio, pidolato de calcio, lactogluconato de calcio o docusato de calcio. The calcium salt is selected from the list comprising, but not limited to, calcium carbonate, calcium phosphate, calcium gluconate, calcium chloride, calcium pidolate, calcium lactogluconate or calcium docusate.
Según una realización más preferida, la sal de calcio es cloruro de calcio. Tal como se observa en la Tabla 7, el uso de cloruro de calcio aumenta la actividad de la enzima truncada procedente de la secuencia fitasa de B. longum subsp. inf antis en un 24%. According to a more preferred embodiment, the calcium salt is calcium chloride. As seen in Table 7, the use of calcium chloride increases activity of the truncated enzyme from the phytase sequence of B. longum subsp. 24% inf.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following figures and examples are provided by way of illustration, and are not intended to be limiting of the present invention.
DESCRIPCION DE LAS FIGURAS DESCRIPTION OF THE FIGURES
FIG. 1. Muestra el efecto del pH y la temperatura en la actividad fitasa de las fitasas truncadas de B. pseudocatenulatum y B.longum Subsp. infantis producidas y purificadas a partir de E. coli. FIG. 1. Shows the effect of pH and temperature on the phytase activity of truncated phytases of B. pseudocatenulatum and B.longum Subsp. infantis produced and purified from E. coli.
A. Muestra el efecto del pH. A. Shows the effect of pH.
B. Muestra el efecto de la temperatura.  B. Shows the effect of temperature.
La actividad representada se refiere a la actividad relativa tomando como"! 00% la actividad máxima de cada una de las enzimas The activity represented refers to the relative activity taking as " ! 00% the maximum activity of each of the enzymes
FIG. 2. Muestra la cinética de la hidrólisis de fítatos y la generación de fosfatos de m/o-inositol de menor grado de fosforilación por las fitasas truncadas de B. pseudocatenulatum y B. longum Subsp. infantis producidas y purificadas a partir de E. coli. FIG. 2. It shows the kinetics of phytate hydrolysis and the generation of m / o-inositol phosphates of lower phosphorylation by truncated phytases of B. pseudocatenulatum and B. longum Subsp. infantis produced and purified from E. coli.
A. Muestra la cinética de la hidrólisis de fitatos y la generación de fosfatos de m/o-inositol de menor grado de fosforilación por la fitasa purificada de B. pseudocatenulatum. B. Muestra la cinética de la hidrólisis de fitatos y la generación de fosfatos de m/o-ínositol de menor grado de fosforilación por la fitasa purificada de B. tongum Subsp. inf antis. FIG. 3. Muestra el perfil proteico obtenido por cromatografía de intercambio iónico (eje de las abcisas tiempo en minutos; eje de las ordenadas en mAU, miniunidades de absorbancia a 280 nm). A. It shows the kinetics of phytate hydrolysis and the generation of m / o-inositol phosphates of lower phosphorylation by the purified phytase of B. pseudocatenulatum. B. It shows the kinetics of phytate hydrolysis and the generation of m / o-inositol phosphates of lower phosphorylation by the purified phytase of B. tongum Subsp. inf. FIG. 3. It shows the protein profile obtained by ion exchange chromatography (axis of the abscissa time in minutes; axis of the ordinates in mAU, mini-units of absorbance at 280 nm).
Fase móvil tampón Tris-HCI 20 mM a pH 7,2. 20 mM Tris-HCI buffer mobile phase at pH 7.2.
Gradiente de elución 200-300 mM de NaCI a 1 ml_/min. Gradient elution 200-300 mM NaCI at 1 ml_ / min.
Detector UV/Visible UV / Visible Detector
FIG. 4. Muestra el perfil proteico del extracto crudo obtenido por cromatografía de intercambio iónico en las condiciones mostradas a continuación (eje de las abcisas tiempo en minutos; eje de las ordenadas en mAU, miniunidades de absorbancia a 280 nm): FIG. 4. It shows the protein profile of the crude extract obtained by ion exchange chromatography under the conditions shown below (axis of the abcisses time in minutes; axis of the ordinates in mAU, mini-units of absorbance at 280 nm):
Fase móvil tampón Tris-HCI 20 mM a pH 7,2. 20 mM Tris-HCI buffer mobile phase at pH 7.2.
Gradiente de elución 0-250 mM de NaCI a 1 ml_/min. Gradient elution 0-250 mM NaCI at 1 ml_ / min.
Detector UV/Visible UV / Visible Detector
FIG. 5. Muestra el perfil proteico obtenido por cromatografía de intercambio iónico en las condiciones mostradas a continuación (eje de las abcisas tiempo en minutos; eje de las ordenadas en mAU, miniunidades de absorbancia a 280 nm): FIG. 5. It shows the protein profile obtained by ion exchange chromatography under the conditions shown below (axis of the abcissa time in minutes; axis of the ordinates in mAU, mini-units of absorbance at 280 nm):
Fase móvil tampón Tris-HCI 20 mM a pH 7,5 20 mM Tris-HCI buffer mobile phase at pH 7.5
Gradiente de elución 0,1 M de NaCI a 1 mL/min. Gradient elution 0.1 M NaCl at 1 mL / min.
Detector UV/Visible UV / Visible Detector
FIG. 6. Muestra el perfil proteico obtenido por cromatografía de intercambio iónico-FPLC en ias condiciones mostradas a continuación (eje de las abcisas tiempo en minutos; eje de las ordenadas en mAU, míníunidades de absorbancia a 280 nm): FIG. 6. Shows the protein profile obtained by ion exchange chromatography-FPLC under the conditions shown below. (axis of the abscissa time in minutes; axis of the ordinates in mAU, minimum absorbance at 280 nm):
Fase móvil tampón Tris-HCI 25 mM a pH 7,5. Mobile phase buffer Tris-HCI 25 mM at pH 7.5.
Gradiente de elución 0-500 mM de NaCI a 6 mL/mín. Gradient elution 0-500 mM NaCl at 6 mL / min.
Detector UV/Visible UV / Visible Detector
FIG. 7. Muestra el perfil proteico obtenido por cromatografía de intercambio íónico-FPLC en las condiciones mostradas a continuación (eje de las abcisas tiempo en minutos; eje de las ordenadas en mAU, míníunidades de absorbancia a 280 nm): FIG. 7. It shows the protein profile obtained by ion-exchange chromatography-FPLC under the conditions shown below (axis of the abyss time in minutes; axis of the ordinates in mAU, minimum absorbance at 280 nm):
Fase móvil tampón Tris-HCI 25 mM a pH 7,5. Mobile phase buffer Tris-HCI 25 mM at pH 7.5.
Gradiente de elución 0-250 mM de NaCI a 1 ml_/min. Gradient elution 0-250 mM NaCI at 1 ml_ / min.
Detector UV/Visible UV / Visible Detector
FIG. 8. Muestra geies SDS-PAGE con la expresión de ias fitasas de B. pseudocatenulatum y B. longum Subsp. inf antis en E. coli. Completa: Fitasa de longitud completa FIG. 8. Shows SDS-PAGE geies with the expression of the phytases of B. pseudocatenulatum and B. longum Subsp. inf antis in E. coli. Full: Full length phytase
Truncada: fitasa que carece del fragmento C-terminal  Truncated: phytase that lacks the C-terminal fragment
soluble: Fracción soluble, soluble: soluble fraction,
insoluble: Fracción insoluble. insoluble: Insoluble fraction.
Las flechas indican la presencia de fitasa en la fracción soluble  The arrows indicate the presence of phytase in the soluble fraction
FIG. 9. Muestra geles SDS-PAGE con ia expresión de la fitasa de B. longum subsp. infantis en E. coli utilizando diferentes concentraciones de inductor (IPTG) Completa: Fitasa de longitud completa FIG. 9. Shows SDS-PAGE gels with the expression of the phytase of B. longum subsp. infantis in E. coli using different concentrations of inducer (IPTG) Complete: Full length phytase
Truncada: Fitasa que carece del fragmento C-terminal  Truncated: Phytase that lacks the C-terminal fragment
Soluble: Fracción soluble. Insoluble: Fracción insoluble. Soluble: Soluble fraction. Insoluble: Insoluble fraction.
La flecha índica la presencia de fitasa en la fracción soluble EJEMPLOS  The arrow indicates the presence of phytase in the soluble fraction EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores. Los siguientes ejemplos específicos que se proporcionan en este documento de patente sirven para ilustrar la naturaleza de la presente invención. Estos ejemplos se incluyen solamente con fines ilustrativos y no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos no pretenden limitar el campo de aplicación de la misma. The invention will now be illustrated by tests carried out by the inventors. The following specific examples provided in this patent document serve to illustrate the nature of the present invention. These examples are included for illustrative purposes only and should not be construed as limitations on the invention claimed herein. Therefore, the examples described are not intended to limit its scope.
EJEMPLO 1. Purificación y caracterización de ias propiedades bioquímicas de la fitasa de las cepas seleccionadas B. longum Subsp. ínfantis y B. pseudocatenulatum como productoras de la enzima. EXAMPLE 1. Purification and characterization of the biochemical properties of the phytase of the selected strains B. longum Subsp. ínfantis and B. pseudocatenulatum as enzyme producers.
Las cepas de bifidobacterias empleadas en este estudio fueron proporcionadas por la ATCC: R pseudocatenulatum ATCC27919 (Scardovi et al., 1979. International Journal Systematic Bacteriology, 29: 291 -31 1 ) y B. longum subsp. infantis ATCC15697 (Reuter, 1971. International Journal Systematic Bacteriology, 21 : 273- 275), las cuales fueron originalmente aisladas de intestino humano. The strains of bifidobacteria used in this study were provided by the ATCC: R pseudocatenulatum ATCC27919 (Scardovi et al., 1979. International Journal Systematic Bacteriology, 29: 291-31 1) and B. longum subsp. infantis ATCC15697 (Reuter, 1971. International Journal Systematic Bacteriology, 21: 273-275), which were originally isolated from the human intestine.
En un primer ensayo sobre el análisis de la actividad fitasa en B. longum Subsp. infantis y B. pseudocatenulatum se observó que en ambas cepas tal actividad estaba asociada a la célula, de manera que se desechó la idea de utilizar el sobrenadante del medio de cultivo para su purificación. Se desarrolló un método eficiente para la disrupción de las células, con el fin de obtener la enzima en solución para poder comenzar con los pasos de purificación. 1.1. Localización de ia actividad fitasa. In a first trial on the analysis of phytase activity in B. longum Subsp. infantis and B. pseudocatenulatum it was observed that in both strains such activity was associated with the cell, so that the idea of using the culture medium supernatant for purification was rejected. An efficient method for cell disruption was developed, in order to obtain the enzyme in solution in order to begin with the purification steps. 1.1. Location of the phytase activity.
Utilizando dicho método de disrupción de las células se procedió a determinar ia localización de la actividad enzimática en B. longum Subsp. infantis y B. pseudocatenulatum. Además de determinar la actividad fitasa, también se determinó actividad fosfatasa, en el sobrenadante (extracto citoplasmático) y en el pellet (pared celular). Los valores de actividad se presentan en la Tabla 2. En dicha tabla se observa que la actividad fitasa se encuentra tanto en el sobrenadante (compuesto por extracto citoplasmático y membranas) como en el pellet (correspondiente a la pared celular). Sin embargo, la actividad fitasa del sobrenadante fue más específica en ambas especies. Using said method of cell disruption, the location of the enzymatic activity in B. longum Subsp was determined. infantis and B. pseudocatenulatum. In addition to determining phytase activity, phosphatase activity was also determined, in the supernatant (cytoplasmic extract) and in the pellet (cell wall). The activity values are presented in Table 2. In this table it is observed that the phytase activity is found both in the supernatant (composed of cytoplasmic extract and membranes) and in the pellet (corresponding to the cell wall). However, the phytase activity of the supernatant was more specific in both species.
Tabla 2. Localización de la actividad fitasa y fosfatasa en cepas de bif idobacterias3 Table 2. Location of phytase and phosphatase activity in strains of bif idobacteria 3
Localización Actividad Fitasa Actividad FosfatasaLocation Activity Fitasa Activity Fosfatasa
Figure imgf000031_0001
Figure imgf000031_0001
Citoplasma+ Cytoplasm +
B. longum Subsp. infantis membranas 0,224±0,007 0,089±0,025  B. longum Subsp. infantis membranes 0.224 ± 0.007 0.089 ± 0.025
Pared 0,115±0,054 0,241 ±0,129 Wall 0.115 ± 0.054 0.241 ± 0.129
Citoplasma+ Cytoplasm +
B. pseudocatenulatum membranas 0,167±0,076 0,020±0,012  B. pseudocatenulatum membranes 0.167 ± 0.076 0.020 ± 0.012
Pared 0,302±0,237 0,388±0,068 aPromedio±Desviacíón Estándar (n=2) Wall 0.302 ± 0.237 0.388 ± 0.068 a Average ± Standard Deviation (n = 2)
bUf¡t: pinoles Pi /h a 50QC a pH: 6,0 bUf ¡t : pine trees Pi / h at 50 Q C at pH: 6.0
cUfot: pinoles p-nitrofenol/h a 50QC a pH: 6,0 cUfot: p-nitrophenol pineapples / h at 50 Q C at pH: 6.0
1.2. Purificación de las fitasas de B. longum Subsp. infantis y de B. pseudocatenulatum, Se decidió comenzar con la purificación de la fitasa de B. longum Subsp. infantis. Para ello se preparó un litro de cultivo de la cepa de esta especie y se empleó el método de disrupción desarrollado para la preparación del extracto citoplasmático. Para comenzar con la puesta a punto del método de purificación se decidió emplear cromatografía de intercambio iónico {columna TSK gel DEAE-5PW), empleando como fase móvil tampón Tris-HCI 20 mM a pH 7,2, un gradiente de elución desde 200 a 300 mM de NaCI a un flujo de 1 mL/min, recogiéndose 25 fracciones de 1 mL cada una, con detector UV/Vísible, condiciones previamente utilizadas en purificación de fosfatasa ácida de LactobaciHus pentosus (Palacios et al., 2005. J Appl Microbio!, 98: 229-237). El cromatograma resultante se muestra en la FIG. 3. El gradiente empleado no mostró una resolución de picos satisfactoria, dado que no se obtuvo separación de las proteínas del extracto crudo. Se realizó una segunda prueba modificando el gradiente de NaCI desde una concentración de 0 a 250 mM. La separación proteica mejoró sustancialmente, tal como se muestra en la FIG. 4. La línea vertical divide el cromatograma en dos zonas, la zona de la izquierda (hasta el minuto 19) indica las proteínas que no se adhieren a la columna, mientras que la zona de la derecha corresponde a la zona de elución con NaCI, por lo tanto las que se adhieren a la columna. Se midió la actividad fitasa en todas las fracciones recogidas, encontrándose ésta en la fracción correspondiente al primer pico del cromatograma (FIG. 4). La actividad fosfatasa se encontró en las primeras 17 fracciones. En ensayos previos, se confirmó que la actividad fosfatasa no se encuentra en fracciones posteriores. En la Tabla 3 se muestran los datos de actividad fitasa y fosfatasa en las distintas fracciones del cromatograma de la FIG. 4. 1.2. Purification of the phytases of B. longum Subsp. infantis and B. pseudocatenulatum, It was decided to begin with the purification of the phytase from B. longum Subsp. infantis For this purpose, a liter of culture of the strain of this species was prepared and the disruption method developed for the preparation of the cytoplasmic extract was used. To start with the purification method, it was decided to use ion exchange chromatography {column TSK gel DEAE-5PW), using as a mobile phase 20 mM Tris-HCI buffer at pH 7.2, an elution gradient from 200 to 300 mM of NaCI at a flow of 1 mL / min, collecting 25 fractions of 1 mL each, with UV / Visible detector, conditions previously used in purification of acid phosphatase from LactobaciHus pentosus (Palacios et al., 2005. J Appl Microbio !, 98: 229-237). The resulting chromatogram is shown in FIG. 3. The gradient used did not show a satisfactory peak resolution, since no separation of the proteins from the crude extract was obtained. A second test was performed by modifying the NaCI gradient from a concentration of 0 to 250 mM. Protein separation improved substantially, as shown in FIG. 4. The vertical line divides the chromatogram into two zones, the area on the left (until minute 19) indicates the proteins that do not adhere to the column, while the area on the right corresponds to the elution zone with NaCI, therefore those that adhere to the column. Phytase activity was measured in all fractions collected, this being found in the fraction corresponding to the first peak of the chromatogram (FIG. 4). Phosphatase activity was found in the first 17 fractions. In previous trials, it was confirmed that phosphatase activity is not found in subsequent fractions. Table 3 shows the phytase and phosphatase activity data in the different chromatogram fractions of FIG. Four.
Tabla 3. Actividad fitasa y fosfatasa en las fracciones eluídas. Table 3. Phytase and phosphatase activity in the eluted fractions.
Fracción 1 2 3 4 5 6 7 8 9 10Fraction 1 2 3 4 5 6 7 8 9 10
Um/ml 0,007 0,307 0,579 0,161 0,024 0,010 0,000 0,006 0,010 0,000 Ufos/ml 0,00 0,609 1 ,175 0,484 0,220 0,075 0,020 0,000 0,000 0,000 Fracción 11 12 13 14 15 16 17 18 19 20Um / ml 0.007 0.307 0.579 0.161 0.024 0.010 0.000 0.006 0.010 0.000 U f / ml 0.00 0.609 1, 175 0.444 0.220 0.075 0.020 0.000 0.000 0.000 Section 11 12 13 14 15 16 17 18 19 20
Ufit/ml 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 IWml 0,00 0,00 0,00 0,00 0,00 0,00 0,00 n.d. n.d. n.d. U fi t / ml 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 IWml 0.00 0.00 0.00 0.00 0, 00 0.00 0.00 ndndnd
Fracción 21 22 23 24 25 26 27 28 29 30Section 21 22 23 24 25 26 27 28 29 30
Um/mi 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 Ufos ml n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. U m / mi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ufos ml ndndndndndndndndndnd
Fracción 31 32 33 34 35 36 37 38 Fraction 31 32 33 34 35 36 37 38
Ufit mi 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00  Ufit mi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ufos/ml n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. Ufos / ml n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
l½: Mimóles Pi /h a 50QC a pH: 6,0 l½: Mimols Pi / h at 50 Q C at pH: 6.0
Ufot: pinoles p-nitrofenol/h a 50QC a pH: 6,0 Ufot: p-nitrophenol pineapples / h at 50 Q C at pH: 6.0
n.d. no determinado Las fracciones en las que se encontró actividad se reunieron y se volvió a analizar por HPLC acoplado a la columna de filtración en gel (TSKgel G3000 PWXL). Como fase móvil se empleó solución 20 mM Tris-HCI a pH 7,5 conteniendo 0,1 M de NaCI. En el cromatograma se observa que la resolución de los picos mejoró (FIG. 5). n.d. not determined The fractions in which activity was found were pooled and re-analyzed by HPLC coupled to the gel filtration column (TSKgel G3000 PWXL). As a mobile phase, 20 mM Tris-HCI solution was used at pH 7.5 containing 0.1 M NaCl. The chromatogram shows that the resolution of the peaks improved (FIG. 5).
Para progresar en la separación cromatográfica se decidió emplear otra columna de intercambio anióníco (Columna Resource Q), acoplada a FPLC (Fast protein liquid chromatography) (AKTA Purifier, GE Healthcare, Uppsala, Suecia). Para trabajar con esta nueva columna se diseñó un nuevo método de separación siguiendo las instrucciones del fabricante. Se empleó como fase móvil 25 mM Tris- HCI a pH 7,5, con gradiente de NaCI de 0 a 500 mM en 60 mL, a un flujo de 6 mL/min (FIG. 6). Nuevamente se obtuvo un pico que corresponde a la fracción de proteína que no se adhería a la columna (Fracción N92) y posteriormente otro pico que correspondía a la fracción que se adhería a la columna. Se observó que no existía buena resolución de picos, de manera que se decidió cambiar las condiciones operativas. Se empleó la misma fase móvil, reduciendo el gradiente de NaCI a un intervalo entre 0 y 250 mM, a un flujo de 1 mL minuto (FIG. 7). Se midió actividad fitasa y actividad fosfatasa en las distintas fracciones eluídas, observándose un pico de actividad nuevamente en la fracción que no se adhirió a la columna (Tabla 4). To progress in chromatographic separation, it was decided to use another anion exchange column (Resource Q column), coupled to FPLC (Fast protein liquid chromatography) (AKTA Purifier, GE Healthcare, Uppsala, Sweden). To work with this new column, a new separation method was designed following the manufacturer's instructions. 25 mM Tris-HCI at pH 7.5 was used as mobile phase, with NaCI gradient from 0 to 500 mM in 60 mL, at a flow of 6 mL / min (FIG. 6). Again, a peak was obtained that corresponds to the fraction of protein that did not adhere to the column (Fraction N 9 2) and subsequently another peak that corresponded to the fraction that adhered to the column. It was observed that there was no good resolution of peaks, so it was decided to change the operating conditions. The same mobile phase was used, reducing the gradient of NaCI at an interval between 0 and 250 mM, at a flow rate of 1 mL minute (FIG. 7). Phytase activity and phosphatase activity were measured in the different eluted fractions, observing a peak of activity again in the fraction that did not adhere to the column (Table 4).
Tabla 4. Actividad fitasa y fosfatasa de las distintas fracciones eluídas del cromatógrafo. Table 4. Phytase and phosphatase activity of the different eluted fractions of the chromatograph.
Fracción Actividad Fitasa Actividad Fosfatasa Fraction Activity Phytase Activity Phosphatase
Figure imgf000034_0001
Figure imgf000034_0001
6 0,269 0,137 6 0.269 0.137
7 0,589 0,3077 0.589 0.307
8 0,615 0,3218 0.615 0.321
9 0,420 0,1909 0.420 0.190
10 0,072 0,03710 0.072 0.037
1 1 0,009 0,0051 1 0.009 0.005
52 0,004 0,00652 0.004 0.006
53 0,090 0,07053 0.090 0.070
54 0,147 0,09354 0.147 0.093
55 0,004 0,01055 0.004 0.010
56 0,002 0,00856 0.002 0.008
57 0,004 0,00857 0.004 0.008
58 0,002 0,00058 0.002 0.000
59 0,004 0,00059 0.004 0.000
60 0,000 0,00060 0.000 0.000
Ufit: Mmoles Pi /h a 50eC a pH: 6,0 Ufi t : Mmoles Pi / h at 50 e C at pH: 6.0
Ufot: pinoles p-nitrofenol/h a 509C a pH: 6,0 Ufot: p-nitrophenol pine trees / ha 50 9 C at pH: 6.0
Este resultado junto al hecho que la fracción que no se adhería a la columna presentaba un aspecto turbio, llevó a la conclusión de la posibilidad de la existencia de restos de membrana en el sobrenandante y que la actividad fitasa se encontrara en las membranas y no en el extracto citoplasmático. De manera que se decidió ultracentrifugar (100000 g durante 1 hora, rotor 70TI - Beckman) el sobrenadante obtenido tras la disrupción celular, para separar eficientemente dicha turbidez y finalmente comprobar la hipótesis planteada. Una vez que se consiguió separar eficientemente el pelletóe\ sobrenadante se midió actividad fitasa y fosfatasa en las tres fracciones celulares obtenidas: pared, membranas y extracto citoplasmático (Tabla 5). This result together with the fact that the fraction that did not adhere to the column presented a cloudy appearance, led to the conclusion of the possibility of the existence of membrane debris in the supernatant and that the phytase activity was found in the membranes and not in the cytoplasmic extract. So it was decided to ultracentrifuge (100,000 g for 1 hour, 70TI rotor - Beckman) the supernatant obtained after cell disruption, to efficiently separate said turbidity and finally check the hypothesis raised. Once the pelletóe \ supernatant was efficiently separated, phytase and phosphatase activity was measured in the three cell fractions obtained: wall, membranes and cytoplasmic extract (Table 5).
Tabla 5. Actividades en las distintas fracciones. Table 5. Activities in the different fractions.
Fracciones Actividad Fitasa Actividad Fosfatasa Fractions Activity Phytase Activity Phosphatase
U/mL U/mL  U / mL U / mL
Pared 6,58 8,76 Wall 6.58 8.76
Membrana 2,54 0,39 Membrane 2.54 0.39
Citoplasma 0,02 0,23  Cytoplasm 0.02 0.23
Uf¡t: μη-ioles Pí /h a 509C a pH: 6,0 U f¡t : μη-ioles Pí / h at 50 9 C at pH: 6.0
Ufot: pinoles p-nitrofenol/h a 50SC a pH : 6,0 U fot : p-nitrophenol pineapples / h at 50 S C at pH: 6.0
El resultado obtenido indicó que la actividad fitasa se encontraba en las fracciones celulares de pared celular y membrana, ya que no se encontró actividad ninguna en el sobrenadante libre de restos celulares. La fracción de membranas se resuspendió en tampón Tris-HCI 20 mM a pH 6,15 en presencia de 1 % Tritón X100, con el fin de liberar y solubilizar la enzima. Sin embargo, la actividad fitasa no se recuperó en el sobrenadante tras el tratamiento. El experimento se repitió nuevamente desde el principio, resuspendiéndose la nueva fracción de membranas en tampón Tris-HCI 20 mM a pH 6,15 en presencia de 15% de glicerol, pero nuevamente la actividad fitasa no se recuperó en el sobrenadante con el nuevo tratamiento. The result obtained indicated that the phytase activity was found in the cell fractions of the cell wall and membrane, since no activity was found in the supernatant free of cell debris. The membrane fraction was resuspended in 20 mM Tris-HCI buffer at pH 6.15 in the presence of 1% Triton X100, in order to release and solubilize the enzyme. However, phytase activity did not recover in the supernatant after treatment. The experiment was repeated again from the beginning, the new membrane fraction being resuspended in 20 mM Tris-HCI buffer at pH 6.15 in the presence of 15% glycerol, but again the phytase activity did not recover in the supernatant with the new treatment. .
EJEMPLO 2. Clonación de las secuencias SEQ ID NO: 1 y SEQ ID NO: 3 y purificación de dichas fitasas, procedentes de B. longum subsp. infantis ATCC15697 y B. pseudocatenulatum ATCC 27919. 2.1. Purificación de las fitasas codificadas por SEQ ID NO: 1 y SEQ IDNO: 3. EXAMPLE 2. Cloning of the sequences SEQ ID NO: 1 and SEQ ID NO: 3 and purification of said phytases, from B. longum subsp. infantis ATCC15697 and B. pseudocatenulatum ATCC 27919. 2.1. Purification of phytases encoded by SEQ ID NO: 1 and SEQ IDNO: 3.
Tal como se ha mostrado en el ejemplo 1 , la actividad fitasa mayoritaria se encontraba localizada en la membrana. Tras el análisis de las secuencias de los genomas de B. longum subsp. infantis y B. pseudocatenulatum en busca de proteínas con dominios fitasa o fosfatasa se identificaron los genes BLONJD263 y BIFPSEUDO_03792 que codificaban proteínas hipotéticas (YP_002321769 y ZP__03743199) con un dominio histídín-fosfatasa ácida. Se predijo la presencia de un péptido señal de secreción (aminoácidos 1 al 32 en YPJ302321769 y aminoácidos 1 al 52 en ZP__03743199). A pesar de que la actividad fitasa determinada en células de B. longum subsp. infantis y B. pseudocatenulatum mostraba un perfil de actividad semejante a fitasas alcalinas (pH, acumulación de lnsP3 y alta especificidad) se decidió estudiar estas histidín-fosfatasas ácidas putativas ya que en el extremo carboxi-terminal de las proteínas fue identificada una secuencia que parecía cumplir con los requisitos de hídrofobícidad de un péptido de anclaje a membrana. La purificación de dichas fitasas supuso una dificultad en un primer momento debido, tal como fue demostrado por los autores de ia presente invención, a que las proteínas parecían estar asociadas a la membrana celular. En intentos preliminares no se consiguió purificar adecuadamente la proteína. Se evaluó así la posibilidad de identificar fragmentos que pudieran interferir en la recuperación de dichas proteínas. Después de diversos análisis se determinó la posibilidad de que estas secuencias pudieran estar favoreciendo el anclaje de la proteína a la membrana celular (tal y como se había determinado empíricamente para la actividad fitasa presente en las células de Bifidobacteríum) impidiendo de esta manera su liberación y como consecuencia su correcta purificación (ejemplo 2.3). Por tanto los cebadores mencionados en el ejemplo 2.2 se diseñaron para conseguir unas proteínas que careciesen de dicho péptido que probablemente era el causante de su adhesión a la membrana celular. En el ejemplo 2.3 se muestra que la eliminación de este péptido favorece la solubilidad y por tanto la purificación de las proteínas a partir de E. coli. La expresión de estas proteínas y su posterior caracterización llevó a la conclusión de que los genes BLON_0263 y BIFPSEUDO_03792 codifican las fitasas de B. longum subsp. ínfantis y B. pseudocatenulatum, respectivamente (ejemplo 3). As shown in example 1, the majority phytase activity was located in the membrane. After analysis of the sequences of the genomes of B. longum subsp. infantis and B. pseudocatenulatum in search of proteins with phytase or phosphatase domains the genes BLONJD263 and BIFPSEUDO_03792 that encoded hypothetical proteins (YP_002321769 and ZP__03743199) with an acidic histidine-phosphatase domain were identified. The presence of a secretion signal peptide (amino acids 1 to 32 in YPJ302321769 and amino acids 1 to 52 in ZP__03743199) was predicted. Although the phytase activity determined in cells of B. longum subsp. infantis and B. pseudocatenulatum showed an activity profile similar to alkaline phytases (pH, accumulation of lnsP3 and high specificity) it was decided to study these putative acid histidine phosphatases since at the carboxy-terminal end of the proteins a sequence was identified that looked like meet the hydrophobicity requirements of a membrane anchor peptide. The purification of these phytases was a difficulty at first because, as demonstrated by the authors of the present invention, that the proteins appeared to be associated with the cell membrane. In preliminary attempts it was not possible to properly purify the protein. The possibility of identifying fragments that could interfere with the recovery of these proteins was evaluated. After several analyzes, it was determined that these sequences could be favoring the anchoring of the protein to the cell membrane (as it had been determined empirically for the phytase activity present in Bifidobacterium cells) thus preventing its release and as a consequence its correct purification (example 2.3). Therefore, the primers mentioned in Example 2.2 were designed to achieve proteins lacking said peptide that was probably the cause of their adhesion to the cell membrane. In Example 2.3 it is shown that the elimination of this peptide favors the solubility and therefore the purification of the proteins from E. coli. The expression of these proteins and their subsequent characterization led to the conclusion of that genes BLON_0263 and BIFPSEUDO_03792 encode the phytases of B. longum subsp. ínfantis and B. pseudocatenulatum, respectively (example 3).
2.2. Clonación de las secuencias SEQ ID NO: 1 y SEQ ID NO: 3. 2.2. Cloning of the sequences SEQ ID NO: 1 and SEQ ID NO: 3.
Los genes de ambas fitasas fueron amplificados por PCR con los oligonucleótidos: PHY1 5' GCTAGATCTATGGAGGCTGACGGCCGG (SEQ ID NO: 9) y PHY2 5'- GACAAGCTTTCAGACCGAACTTCCGGTACGTGCC (SEQ ID NO: 10) {B. longum subsp. ínfantis ATCC 5697) y PHY4 5'- GCTAGATCTGGGGAAGGAACCGCCCGG (SEQ ID NO: 7) y PHY5 5'- CACAAGCTTTCACGTCACGTTTGAACCGGTTTTG (SEQ ID NO: 8) {B, pseudocatenulatum ATCC27919) y ADN cromosómico de ambas cepas, respectivamente, usando la polímerasa "Expand High Fidelity PCR System" (Roche) bajo las siguientes condiciones: 94SC 5 minutos, seguido de 35 ciclos de desnaturalización a 94eC 1 minuto, hibridación 55QC 1 minuto y extensión a 72QC 2 minutos, seguido de una extensión final a 72eC 12 minutos. The genes of both phytases were amplified by PCR with the oligonucleotides: PHY1 5 'GCTAGATCTATGGAGGCTGACGGCCGG (SEQ ID NO: 9) and PHY2 5'- GACAAGCTTTCAGACCGAACTTCCGGTACGTGCC (SEQ ID NO: 10) {B. longum subsp. ATCC 5697) and PHY4 5'- GCTAGATCTGGGGAAGGAACCGCCCGG (SEQ ID NO: 7) and PHY5 5'- CACAAGCTTTCACGTCACGTTTGAACCGGTTTTG (SEQ ID NO: 8) {B, pseudocatenulatum using both the DNA DNA, both DNA and Expand DNA, respectively DNA chromosome, both DNA and DNA, respectively High Fidelity PCR System "(Roche) under the following conditions: 94 S C 5 minutes, followed by 35 cycles of denaturation at 94 e C 1 minute, hybridization 55 Q C 1 minute and extension at 72 Q C 2 minutes, followed by a final extension at 72 e C 12 minutes.
Los productos de PCR fueron analizados por electroforesís en agarosa y aislados mediante el GFX PCR y Gel Band Purífication Kit (GE healthcare). Los fragmentos se digirieron con los enzimas Bglll y Hindlll (sitios de restricción añadidos en los oligonucleótidos subrayados) y se clonaron en el vector pQE80 (Qiagen) digerido con BamHI e Hindlll, dando lugar a los plásmidos pQEPHYI (B. longum subsp. ínfantis ATCC15697) y pQEPHY2 (B. pseudocatenulatum ATCC27919). En estos plásmidos los enzimas fitasas se expresan en forma de una fusión amino-terminal con una cola de seis histidínas (6XHis) para facilitar su purificación. La construcción excluyó los péptidos señal de secreción (amino-terminal) y una secuencia que se estimó pertenecer a la hélice transmembrana carboxi-terminal presentes en las dos proteínas. Ambos plásmidos se transformaron en la cepa de Escherichia co// M15. Las células de E. coli M15 transformadas se crecieron en 500 mL de LB con ampicilína 100 Mg/ml a 379C en agitación hasta una densidad óptica a 600 nm de 0,6. La expresión de las enzimas fitasa se indujo añadiendo IPTG hasta 0.1 mM y continuando la incubación durante 3-4 horas. Las células se recogieron por centrifugación, se lavaron con tampón Tris-HCI 100 mM pH 7.4 y se resuspendieron en 5 ml del mismo tampón con 1 mg/ml de lisozima, 0.5 mM de PMSF y 0,5 mM de DTT incubándose 30 minutos a 37SC. The PCR products were analyzed by agarose electrophoresis and isolated by the GFX PCR and Gel Band Purification Kit (GE healthcare). The fragments were digested with the enzymes Bglll and Hindlll (restriction sites added in the underlined oligonucleotides) and cloned into the vector pQE80 (Qiagen) digested with BamHI and Hindlll, giving rise to plasmids pQEPHYI (B. longum subsp. ATCC15697 ) and pQEPHY2 (B. pseudocatenulatum ATCC27919). In these plasmids the phytase enzymes are expressed in the form of an amino-terminal fusion with a tail of six histidines (6XHis) to facilitate their purification. The construction excluded the secretion signal peptides (amino-terminal) and a sequence that was estimated to belong to the carboxy-terminal transmembrane helix present in the two proteins. Both plasmids were transformed into the Escherichia strain co // M15. The transformed E. coli M15 cells were grown in 500 mL of LB with 100 Mg / ml ampicillin at 37 9 C under agitation to an optical density at 600 nm of 0.6. Phytase enzyme expression was induced by adding IPTG up to 0.1 mM and continuing incubation for 3-4 hours. The cells were collected by centrifugation, washed with 100 mM Tris-HCI buffer pH 7.4 and resuspended in 5 ml of the same buffer with 1 mg / ml lysozyme, 0.5 mM PMSF and 0.5 mM DTT incubating 30 minutes at 37 S C.
Dichas células se rompieron mediante sonícación (5 pulsos de 20 segundos). Tras centrifugar a 15.000 rpm (rotor SS34, centrífuga Beckman) 30 minutos, los sobrenadantes se filtraron en filtros de 0.45 pm y se aplicaron a columnas de Ni- NTA (Qiagen) de 1 ml. Tras diversos lavados, las proteínas de fusión portando el tag 6X(Hís) se eluyeron en un tampón que contenía 300 mM de imidazol. Tras su análisis por SDS-PAGE, las fracciones conteniendo las fitasas se dializaron frente a tampón Tris-HC1 100 mM pH 7.4, 1 mM EDTA, 10% de glicerol y 50mM de NaCL y se purificaron por FPLC (Áktapurifier, GE Healthcare) en una columna de intercambio iónico (ResourceQ), eluyendo mediante un gradiente lineal de NaCI de 0 a 1 M en tampón Tris-HCI 20 mM pH 6.0. Las fracciones con fitasa se recogieron y diversas alícuotas se conservaron a -80SC. These cells were broken by sonication (5 pulses of 20 seconds). After centrifuging at 15,000 rpm (SS34 rotor, Beckman centrifuge) 30 minutes, the supernatants were filtered on 0.45 pm filters and applied to 1 ml Ni-NTA (Qiagen) columns. After several washes, the fusion proteins carrying the 6X tag (Hís) were eluted in a buffer containing 300 mM imidazole. After analysis by SDS-PAGE, the fractions containing the phytases were dialyzed against 100 mM Tris-HC1 buffer pH 7.4, 1 mM EDTA, 10% glycerol and 50mM NaCL and purified by FPLC (Aktapurifier, GE Healthcare) in an ion exchange column (ResourceQ), eluting by a linear gradient of NaCI from 0 to 1 M in 20 mM Tris-HCI buffer pH 6.0. Phytase fractions were collected and various aliquots were stored at -80 S C.
2.3. Solubilidad de las proteínas truncadas respecto de las proteínas originales (nativas). 2.3. Solubility of truncated proteins with respect to the original (native) proteins.
La FIG. 8 muestra unos geles SDS-PAGE con la expresión de las fitasas de B. pseudocatenulatum y B. tongum Subsp. inf antis en E. coli. Se muestra la fracción de proteínas insolubles y solubles de clones que sobreexpresan la fitasa completa o con la delección de una putativa hélice transmembrana en el extremo carboxi- terminal. Como se observa, las fitasas se expresan muy eficazmente en E. coli, aunque la práctica totalidad de la proteína se encuentra en forma insoluble (cuerpos de inclusión o asociada a fragmentos de membrana). Sin embargo, la delección del fragmento carboxi-terminal da lugar a unas fitasas que muestran un porcentaje de proteína soluble (indicado por flechas negras). Fueron estas proteínas solubles las que se purificaron, caracterizándose su actividad fitasa. Los geles de la FIG. 8 muestran un experimento de inducción en E. coli utilizando 1 mM IPTG (plásmido pQE80) a 37eC. Posteriores ensayos con menor concentración de IPTG dieron lugar a un incremento en la porción de proteína soluble. A modo de ejemplo la FIG.9 muestra la inducción de la expresión y la solubilidad de la fitasa de B. longum subsp. infantis con diferentes concentraciones de IPTG en E. coli. Se observa que mientras la fitasa original (completa) es totalmente insoluble, la fitasa truncada se puede obtener en forma soluble (indicada por la flecha negra). El hecho de que las fitasas se expresen en gran cantidad en E. coli facilitaría diversas estrategias encaminadas, bien a obtener más porcentaje de proteína soluble o a desarrollar protocolos de desnaturalización (solubilización) y purificación de la proteína seguidos de una renaturalización. FIG. 8 shows SDS-PAGE gels with the expression of the phytases of B. pseudocatenulatum and B. tongum Subsp. inf antis in E. coli. The fraction of insoluble and soluble proteins of clones that overexpress complete phytase or with the deletion of a putative transmembrane helix at the carboxy-terminal end is shown. As noted, phytases are expressed very effectively in E. coli, although almost all of the protein is insoluble (inclusion bodies or associated with membrane fragments). However, deletion of the carboxy-terminal fragment results in phytases that show a percentage of soluble protein (indicated by black arrows). It was these soluble proteins that were purified, characterizing their phytase activity. The gels of FIG. 8 show an induction experiment in E. coli using 1 mM IPTG (plasmid pQE80) at 37 e C. Subsequent tests with lower concentration of IPTG resulted in an increase in the soluble protein portion. As an example, FIG. 9 shows the induction of the expression and solubility of the phytase of B. longum subsp. infantis with different concentrations of IPTG in E. coli. It is noted that while the original (complete) phytase is totally insoluble, the truncated phytase can be obtained in soluble form (indicated by the black arrow). The fact that phytases are expressed in large quantities in E. coli would facilitate various strategies aimed at either obtaining a higher percentage of soluble protein or developing denaturation (solubilization) and protein purification protocols followed by a renaturation.
EJEMPLO 3. Determinación de ia actividad fitasa y de ias condiciones óptimas de reacción. 3.1. Determinación de actividad fitasa. EXAMPLE 3. Determination of phytase activity and optimal reaction conditions. 3.1. Determination of phytase activity.
La actividad fitasa se determinó mediante el método descrito por Haros et al. (2005. FEMS Microbiology Letters, 247: 231 -239). La reacción consistió en 250 μί de acetato de sodio 0,1 M a pH 5,5, conteniendo fitato potásico 1 ,2 mM, y 50 ¡Á. de cada uno de los extractos eluídos de la columna cromatográfica. Tras incubar durante 15 minutos a 50 SC, la reacción fue detenida añadiendo 50 - de ácido trícloroacético al 20% (Sigma-Aldrich Chemie GmbH, Steinhein, Alemania), se dejó reposar 10 minutos a 0 eC y se centrifugó a 13.000 rpm durante 5 minutos a 4 QC (Centrifuge 54 5R, Eppendorf AG, Hamburg, Alemania). En el sobrenadante se determinó el fósforo liberado por determinación espectrofotométrica del complejo de color amarillo que se forma cuando el orto-fosfato reacciona con el molibdovanadato de amonio en medio ácido, según el método descrito por Tanner y Barnett (1986. J Assoc Off Anal Chem, 69: 777-785) adaptado a escala micro en lector de microplacas (Spectromax 190, Molecular Devices, Sunnyvale, CA, USA) según Haros et al (2001 . Eur Food Res Technol, 213: 317-322). A 100 μΐ del sobrenadante se añadieron 100 - de reactivo de molibdovanadato (Fluka Chemie GmbH, Burchs, Suiza) diluido (1/5). Tras reposar 10 minutos a 30 -O se midió la absorbancía a 400 nm. Las muestras fueron analizadas por duplicado. Phytase activity was determined by the method described by Haros et al. (2005. FEMS Microbiology Letters, 247: 231-239). The reaction consisted of 250 μί of 0.1 M sodium acetate at pH 5.5, containing 1, 2 mM potassium phytate, and 50 ¡Á. of each of the eluted extracts of the chromatographic column. After incubation for 15 minutes at 50 S C, the reaction was stopped by adding 50 - trichloroacetic acid 20% (Sigma-Aldrich Chemie GmbH, Steinhein, Germany), allowed to stand 10 minutes at 0 and C and centrifuged at 13,000 rpm for 5 minutes at 4 Q C (Centrifuge 54 5R, Eppendorf AG, Hamburg, Germany). In the supernatant the phosphorus released was determined by spectrophotometric determination of the yellow complex formed when the ortho phosphate reacts with the ammonium molybonatenadate in an acid medium, according to the method described by Tanner and Barnett (1986. J Assoc Off Anal Chem , 69: 777-785) adapted to micro scale in microplate reader (Spectromax 190, Molecular Devices, Sunnyvale, CA, USA) according to Haros et al (2001. Eur Food Res Technol, 213: 317-322). At 100 μΐ of the supernatant 100 - molybdanadate reagent (Fluka Chemie) was added GmbH, Burchs, Switzerland) diluted (1/5). After standing 10 minutes at 30 -O the absorbance was measured at 400 nm. The samples were analyzed in duplicate.
3.2. Determinación de ias condiciones óptimas de reacción. 3.2. Determination of the optimal reaction conditions.
• Temperatura y pH óptimos de reacción, estabilidad de ios preparados enzímáticos. • Optimum reaction temperature and pH, stability of enzymatic preparations.
El efecto de la temperatura fue determinada en un intervalo desde 279C hasta 80SC empleando el método estándar de determinación de actividad fitasa a pH 5,5 en tampón acético/acetato. The effect of temperature was determined in a range from 27 9 C to 80 S C using the standard method of phytase activity determination at pH 5.5 in acetic buffer / acetate.
El efecto del pH sobre la actividad fitasa fue estudiado en un intervalo de pH entre 3,0 a 8,0 incubando a temperatura óptima de reacción (50eC) según el método estándar. Los tampones se emplearon a una concentración 100 mM y fueron los siguientes: citrato/NaOH, pH 3,0; acético/acetato pH 3,6-5,5; bis/tris pH 6,0-7,3; tris/HCI, pH 8,0. The effect of pH on phytase activity was studied in a pH range between 3.0 to 8.0 incubating at an optimal reaction temperature (50 e C) according to the standard method. The buffers were used at a 100 mM concentration and were the following: citrate / NaOH, pH 3.0; acetic / acetate pH 3.6-5.5; bis / tris pH 6.0-7.3; tris / HCI, pH 8.0.
La actividad de la fitasa purificada de B. pseudocatenulatum presentó un pH óptimo entre 5.5 y 6.5 {FIG. 1 A), siendo la temperatura óptima de reacción de 50-55sC (FIG. 1 B). La fitasa de B, longum subsp. infantis mostró máxima actividad al mismo pH (5.5) y temperatura 50°C (FIG. 1A y B, respectivamente). Las enzimas también fueron activas en un amplio intervalo de pH entre 4,5 y 7,5 para la fitasa de B. pseudocatenulatum y entre 4,5 y 6,5 para la fitasa de B. longum subsp. infantis, conservando el 50% o más de su actividad óptima (FIG. 1 A). The activity of purified phytase from B. pseudocatenulatum had an optimum pH between 5.5 and 6.5 {FIG. 1 A), the optimum reaction temperature being 50-55 s C (FIG. 1 B). The phytase of B, longum subsp. infantis showed maximum activity at the same pH (5.5) and temperature 50 ° C (FIG. 1A and B, respectively). The enzymes were also active in a wide pH range between 4.5 and 7.5 for the B. pseudocatenulatum phytase and between 4.5 and 6.5 for the B. longum subsp phytase. infantis, keeping 50% or more of its optimal activity (FIG. 1 A).
Ambas enzimas fueron activas en un amplio intervalo de temperaturas siendo superior al 40% de la actividad máxima entre 30 y 55SC (B. longum subsp. infantis) y entre 30 y 60QC (B. pseudocatenulatum). Este intervalo incluye la temperatura fisiológica lo que podría ser importante tanto en alimentación humana como en alimentación animal (FIG. 1 B). - Determinación de ia especificidad de sustrato. Both enzymes were active in a wide range of temperatures, exceeding 40% of the maximum activity between 30 and 55 S C (B. longum subsp. Infantis) and between 30 and 60 Q C (B. pseudocatenulatum). This range includes the physiological temperature which could be important in both human and animal feeding (FIG. 1 B). - Determination of the substrate specificity.
Fue analizada la actividad relativa de las enzimas purificadas frente a distintos ésteres fosfatos a 1 ,2 mM. Se determinó por medida del fósforo liberado al cabo de la incubación en condiciones óptimas de reacción según la metodología descrita anteriormente. Las actividades enzimáticas se expresaron en forma relativa frente a la obtenida empleando fitato dipotásico como sustrato. Los diferentes sustratos estudiados fueron: fosfoenolpiruvato, fructosa-6-fosfato, glucosa-6-fosfato, desoxiAMP, glucosa- 1 -fosfato, gliceraldehído-3P, ATP, ADP, AP, fructosa 1 ,6- bisfosfato, paranitrofenilfosfato (pNPP). The relative activity of the purified enzymes against different phosphate esters at 1.2 mM was analyzed. It was determined by measuring the phosphorus released after incubation under optimal reaction conditions according to the methodology described above. Enzymatic activities were expressed relative to that obtained using dipotassium phytate as a substrate. The different substrates studied were: phosphoenolpyruvate, fructose-6-phosphate, glucose-6-phosphate, deoxyAMP, glucose-1-phosphate, glyceraldehyde-3P, ATP, ADP, AP, fructose 1, 6- bisphosphate, paranitrophenylphosphate (pNPP).
Las enzimas aisladas de bifidobacterias mostraron tener una alta especificidad por el fitato, mientras que la actividad frente a una amplía variedad de sustratos monofosforilados es menor al 7% (relativo al fitato) y en la mayoría de los casos la actividad es nula (Tabla 6). La alta especificidad es una de las características deseadas de una fitasa comercial. Enzymes isolated from bifidobacteria were shown to have a high specificity for phytate, while activity against a wide variety of monophosphorylated substrates is less than 7% (relative to phytate) and in most cases the activity is nil (Table 6 ). High specificity is one of the desired characteristics of a commercial phytase.
Tabla 6. Especificidad de sustrato de las fitasas de bifidobacterias de la presente invención. Table 6. Substrate specificity of the bifidobacteria phytases of the present invention.
Sustrato (1 mM) % actividad Substrate (1 mM)% activity
B. pseudocatenulatum B. longum subsp.  B. pseudocatenulatum B. longum subsp.
infantis  infantis
Fitato 100 100 pNPP 0.9 1  Phytate 100 100 pNPP 0.9 1
Fosfoenolpiruvato 0 0  Phosphoenolpyruvate 0 0
acetil-fosfato 6.7 2.3 acetyl phosphate 6.7 2.3
AMP 0 0.4  AMP 0 0.4
ADP 0 0  ADP 0 0
ATP 0 0  ATP 0 0
gliceraldehido-3P 0 0 glyceraldehyde-3P 0 0
glucosa-1 P 0 0 glucosa-6P 0 0 glucose-1 P 0 0 glucose-6P 0 0
fructosa-1 P 0 0 fructose-1 P 0 0
fructosa- 1 ,6bisP 4.9 1.45 fructose- 1, 6bisP 4.9 1.45
- Determinación del efecto de posibles activadores e inhibidores. - Determination of the effect of possible activators and inhibitors.
El posible efecto activador o inhibidor sobre la actividad fítasa fue determinado por la adición de distintas sustancias químicas en la mezcla de reacción. Los posibles sustancias activadoras o inhibidoras de la actividad enzimática estudiadas fueron: cloruro de calcio (CaC½), cloruro de cobalto (CoCfe), cloruro de manganeso {MnCI2), ácido iodoacétíco (IAA), fluoruro de potasio (KF), beta-mercaptoetanol, etilendiaminotetra-acético (EDTA) y fluoruro de sulfonil-fenil-metilo (PMSF) . The possible activating or inhibiting effect on phytase activity was determined by the addition of different chemicals in the reaction mixture. The possible activating or inhibiting substances of the enzymatic activity studied were: calcium chloride (CaC½), cobalt chloride (CoCfe), manganese chloride {MnCI 2 ), iodoacetic acid (IAA), potassium fluoride (KF), beta- mercaptoethanol, ethylenediaminetetraacetic acid (EDTA) and sulfonyl phenyl methyl fluoride (PMSF).
La actividad fítasa fue determinada según ensayo estándar de reacción en presencia de 5 mM de las sustancias químicas anteriormente mencionadas y expresadas en forma relativa a la actividad obtenida en ausencia de los posibles compuestos inhibidores o activadores. The phytase activity was determined according to a standard reaction test in the presence of 5 mM of the chemical substances mentioned above and expressed relative to the activity obtained in the absence of the possible inhibitor or activator compounds.
El efecto de varios compuestos químicos en la actividad fitasa se muestra en la Tabla 7. La mayoría de los compuestos estudiados, con excepción del ácido yodoacético (IAA), presentaron efectos inhibitorios en la actividad enzimática. El mecanismo de inhibición enzimática del ácido yodoacético es por bloqueo de grupos sulfidrílos, mostrando en este estudio ningún efecto inhibitorio de las fítasas de bif idobacterias en la concentración ensayada. The effect of several chemical compounds on phytase activity is shown in Table 7. Most of the compounds studied, with the exception of iodoacetic acid (IAA), had inhibitory effects on enzyme activity. The mechanism of enzymatic inhibition of iodoacetic acid is by blocking sulfhydryl groups, showing in this study no inhibitory effect of phytases of bif idobacteria at the concentration tested.
El PMSF suele ser un inhibidor de enzimas, en este estudio inhibió en mayor medida la enzima de B. longum Subsp. infantis, mientras que la fítasa de B, pseudocatenulatum presentó una ligera inhibición. PMSF is usually an enzyme inhibitor, in this study it inhibited to a greater extent the enzyme of B. longum Subsp. infantis, while the phytase of B, pseudocatenulatum presented a slight inhibition.
Los metales divalentes actuaron inhibiendo a las fitasa con la excepción del calcio que actuó como activador de la actividad en la enzima de B. infantis. Los agentes quelantes como el EDTA también pueden ejercer su acción inhibidora de la actividad por secuestro de metales del sitio activo de la enzima, lo cual podría lo que ocurre con las fitasas de bifídobacterias. Divalent metals acted by inhibiting phytase with the exception of calcium that acted as an activator of the activity in the B. infantis enzyme. Chelating agents such as EDTA can also exert their inhibitory action on activity by sequestering metals from the active site of the enzyme, which could be the case with bifidobacteria phytases.
Tabla 7. Efecto inhibidor y activador de la actividad fitasa de bifídobacterias. Table 7. Inhibitory and activating effect of the phytase activity of bifidobacteria.
Activador o Inhibitor % Actividad Activator or Inhibitor% Activity
(5 mM)  (5 mM)
B. pseudocatenulatum B. longum subsp, infantis B. pseudocatenulatum B. longum subsp, infantis
- 100 100 - 100 100
CaCfe 72 124  CaCfe 72 124
CoCl2 79.8 84 CoCl 2 79.8 84
MnCI2 71 76 MnCI 2 71 76
EDTA 85.3 69.2  EDTA 85.3 69.2
PMSF 92.1 65.1  PMSF 92.1 65.1
β-mercaptoethanol 61 64.1 β-mercaptoethanol 61 64.1
IAA 100 99.9  IAA 100 99.9
KF 70.3 79.3  KF 70.3 79.3
EJEMPLO 4. Determinación de fosfatos de m/o-inositol por HPLC. EXAMPLE 4. Determination of m / o-inositol phosphates by HPLC.
La purificación y determinación de los fosfatos de m/o-inositol se realizó según la metodología descrita por Türk y Sandberg (1992. J Cereal Sci, 15: 281 -294) y más tarde modificada por Sanz Penella era/. (2008. J Cereal Sci, 48: 715-721 ). The purification and determination of m / o-inositol phosphates was performed according to the methodology described by Türk and Sandberg (1992. J Cereal Sci, 15: 281-294) and later modified by Sanz Penella was /. (2008. J Cereal Sci, 48: 715-721).
La enzima fue incubada en solución de acetato de sodio 0,1 M a pH 5,5, a 509C durante 3 horas en presencia de fitato de potasio como sustrato (lnsP6)- distintos intervalos de tiempo se extrajeron alícuotas de 250 μί para estudiar la cinética de degradación de \nsPe y la generación de fosfatos de m/o-inositol con menor grado de fosforilación. La reacción enzimática fue detenida por shock término durante 5 minutos a 100 eC. La separación y cuantificación de los fosfatos de m/o-inositol se llevó a cabo por cromatografía líquida de alta resolución en fase reversa. La fase móvil consistió en metanol:ácido fórmico 0,05M (51 :49), conteniendo 1 ,5% (v/v) de hidróxido de tetrabutilamonio (Sigma-Aldrich, St Louis, MO, USA), ajustado a pH 4,3 con ácido sulfúrico 9M (Sigma, St Louis, MO). El análisis cromatográfico fue llevado a cabo con un cromatógrafo líquido HP1050 (Hewlett Packard, Waldbronn, Alemania), equipado con un detector de índice de refracción HP 1047A (Hewlett Packard, Waldbronn, Alemania). Las muestras (50/iL) fueron inyectadas en el cromatógrafo para la separación y cuantificación de fosfatos de m/o-inositol mediante una columna Tracer Excel 120 ODS-B (5μτη x 15cm x 0,4cm; Teknokroma, Barcelona, España). Las condiciones cromatográficas fueron: flujo 1 mL fase móvil/mín y temperatura de la columna 35QC. Para la identificación de fosfatos de m/o-inositol se utilizó un hídrolízado de ácido f ítico en solución acuosa al 50% (p/v) (Sigma, St Louis, MO). Como solución estándar se utilizó fitato de potasio 5mM (Sigma, St Louis, MO). Las muestras fueron analizadas por duplicado. The enzyme was incubated in 0.1 M sodium acetate solution at pH 5.5, at 50 9 C for 3 hours in the presence of potassium phytate as a substrate (lnsP 6 ) - different time intervals were extracted aliquots of 250 μί to study the kinetics of degradation of \ nsPe and the generation of m / o-inositol phosphates with a lower degree of phosphorylation. The enzymatic reaction was stopped by term shock for 5 minutes at 100 e C. The separation and quantification of m / o-inositol phosphates was carried out by reverse phase high performance liquid chromatography. The mobile phase consisted of methanol: 0.05M formic acid (51: 49), containing 1.5% (v / v) tetrabutylammonium hydroxide (Sigma-Aldrich, St Louis, MO, USA), adjusted to pH 4, 3 with 9M sulfuric acid (Sigma, St Louis, MO). The chromatographic analysis was carried out with an HP1050 liquid chromatograph (Hewlett Packard, Waldbronn, Germany), equipped with an HP 1047A refractive index detector (Hewlett Packard, Waldbronn, Germany). The samples (50 / iL) were injected into the chromatograph for the separation and quantification of m / o-inositol phosphates using a Tracer Excel 120 ODS-B column (5μτη x 15cm x 0.4cm; Teknokroma, Barcelona, Spain). The chromatographic conditions were: flow 1 mL mobile phase / min and column temperature 35 Q C. For the identification of m / o-inositol phosphates, a phytic acid hydrolyzate in 50% aqueous solution was used (w / v ) (Sigma, St Louis, MO). As a standard solution, 5mM potassium phytate (Sigma, St Louis, MO) was used. The samples were analyzed in duplicate.
En las FIG. 2A y B se muestra la cinética de desaparición de fitatos o hexakisfosfato de m/o-inositol (lnsP6) y la generación de fosfatos de m/o-inositol con menor grado de fosforilación con el tiempo de reacción. Se observa que la desaparición de \nsP& se produjo inmediatamente en la primera media hora de reacción con la generación y desaparición inmediata del pentakisfosfato de m/o- inositol (IP5 o \nsP5). Paralelamente se generó el tetrakisfosfato de m/o-inositol (IP4 o lnsP4) el cual también es sustrato de la enzima y desapareció con el tiempo de reacción, siendo su desaparición más lenta con la fitasa de B. longum subsp. infantis. La hidrólisis de los lnsP6-4 dio lugar a la generación del trifosfato de m/o- inositol (IP3 o InsPs), cuya concentración se incrementó con el tiempo de reacción permaneciendo en concentraciones elevadas después de 3 horas de incubación. Las enzimas de bifidobacterias parecen no actuar sobre el lns 3 y acumularlo tras actuar sobre los fitatos. Esto podría tener una importante implicación en salud dado que los trifosfatos de m/o-inositol están implicados en numerosas funciones biológicas en nuestro organismo, de hecho algunos de ellos encuentran su destino como fármacos. In FIG. 2A and B show the kinetics of disappearance of phytates or m / o-inositol hexakisphosphate (lnsP 6 ) and the generation of m / o-inositol phosphates with a lower degree of phosphorylation with reaction time. It is observed that the disappearance of \ nsP & occurred immediately in the first half hour of reaction with the generation and immediate disappearance of m / o-inositol pentakisphosphate (IP 5 or \ nsP5). At the same time, m / o-inositol tetrakisphosphate (IP 4 or lnsP 4 ) was generated, which is also a substrate for the enzyme and disappeared with the reaction time, its disappearance being slower with the phytase of B. longum subsp. infantis Hydrolysis of LNSP 6-4 resulted in the generation triphosphate m / o- inositol (IP 3 or InsPs), the concentration increased with reaction time remaining in high concentrations after 3 hours incubation. Bifidobacteria enzymes seem not to act on lns 3 and accumulate after acting on phytates. This could have an important health implication since m / o-inositol triphosphates are involved in numerous biological functions in our body, in fact some of them find their destiny as drugs.

Claims

REIVINDICACIONES
Polinucleótido aislado que consiste en una secuencia nucleotídica que codifica para una secuencia aminoacídíca de Bifidobacterium que tiene al menos un 55% de identidad con respecto a la secuencia aminoacídíca SEQ ID NO: 1 , en toda su longitud, donde dicha secuencia aminoacídíca es una proteína cuya actividad mayoritaria es fítasa. Isolated polynucleotide consisting of a nucleotide sequence encoding an amino acid sequence of Bifidobacterium that has at least 55% identity with respect to the amino acid sequence SEQ ID NO: 1, in its entire length, where said amino acid sequence is a protein whose Majority activity is phytase.
Polinucleótido según la reivindicación 1 , donde además dicha secuencia aminoacídíca tiene unida a su extremo amino-terminal una secuencia que codifica para un péptido señal. Polynucleotide according to claim 1, wherein said amino acid sequence also has a sequence encoding a signal peptide at its amino-terminal end.
Polinucleótido según la reivindicación 1 , donde la secuencia aminoacídíca es SEQ ID NO: 1 , de Bifidobacterium pseudocatenulatum ATCC27919 y dicha secuencia aminoacídíca: Polynucleotide according to claim 1, wherein the amino acid sequence is SEQ ID NO: 1, of Bifidobacterium pseudocatenulatum ATCC27919 and said amino acid sequence:
a. carece de la secuencia que codifica para la hélice transmembrana, delimitada por el aminoácido 613 y 639, incluidos ambos, de la secuencia original SEQ ID NO: 2, y  to. it lacks the sequence coding for the transmembrane helix, delimited by amino acid 613 and 639, including both, of the original sequence SEQ ID NO: 2, and
b. dicha secuencia aminoacídíca es una proteína con actividad fitasa.  b. said amino acid sequence is a protein with phytase activity.
Polinucleótido según la reivindicación 3, donde dicha secuencia aminoacídíca tiene unida a su extremo amino-terminal la secuencia del péptido señal SEQ ID NO: 5. Polynucleotide according to claim 3, wherein said amino acid sequence has the signal peptide sequence SEQ ID NO: 5 attached to its amino-terminal end.
Polinucleótido según la reivindicación 1 , donde la secuencia aminoacídíca es SEQ ID NO: 3, de Bifidobacterium longum subsp. infantis ATCC15697 y dicha secuencia aminoacídíca: Polynucleotide according to claim 1, wherein the amino acid sequence is SEQ ID NO: 3, from Bifidobacterium longum subsp. infantis ATCC15697 and said amino acid sequence:
a. carece de la secuencia que codifica para la hélice transmembrana, delimitada por el aminoácido 600 y 623, incluidos ambos, de la secuencia original SEQ ID NO: 4, y b. dicha secuencia aminoacídica es una proteína con actividad fitasa. to. it lacks the sequence coding for the transmembrane helix, delimited by amino acid 600 and 623, including both, of the original sequence SEQ ID NO: 4, and b. said amino acid sequence is a protein with phytase activity.
6. Polinucleótido según la reivindicación 5, donde dicha secuencia aminoacídica tiene unida a su extremo amino-terminal la secuencia del péptido señal SEQ ID NO: 6. 6. A polynucleotide according to claim 5, wherein said amino acid sequence has the signal peptide sequence SEQ ID NO: 6 attached to its amino-terminal end.
7. Producto de expresión del polinucleótido según cualquiera de las reivindicaciones 1 a 6. 7. Expression product of the polynucleotide according to any one of claims 1 to 6.
8. Secuencia aminoacídica aislada codificada por el polinucleótido según cualquiera de las reivindicaciones 1 a 6. 8. Isolated amino acid sequence encoded by the polynucleotide according to any one of claims 1 to 6.
9. Producto de expresión según la reivindicación 7 o secuencia aminoacídica según la reivindicación 8, donde dicho producto de expresión o dicha secuencia aminoacídica están encapsuladas. 9. Expression product according to claim 7 or amino acid sequence according to claim 8, wherein said expression product or said amino acid sequence is encapsulated.
10. Vector que comprende el polinucleótido según cualquiera de las reivindicaciones 1 a 6. 10. Vector comprising the polynucleotide according to any one of claims 1 to 6.
1 1 . Célula que comprende el polinucleótido según cualquiera de las reivindicaciones 1 a 6, el producto de expresión según la reivindicación 7 ó 9, la secuencia aminoacídica según la reivindicación 8 ó 9, o el vector según la reivindicación 10. eleven . Cell comprising the polynucleotide according to any one of claims 1 to 6, the expression product according to claim 7 or 9, the amino acid sequence according to claim 8 or 9, or the vector according to claim 10.
12. Célula según la reivindicación 1 1 , donde dicha célula es procariota. 12. Cell according to claim 1, wherein said cell is prokaryotic.
13. Célula según la reivindicación 12, donde la especie procariota es una especie diferente de Bifidobacterium pseudocatenulatum y Bifidobacterium longum subsp. infantis. 13. Cell according to claim 12, wherein the prokaryotic species is a different species of Bifidobacterium pseudocatenulatum and Bifidobacterium longum subsp. infantis
14. Población celular que comprende la célula según cualquiera de las reivindicaciones 1 1 a 13. 14. Cell population comprising the cell according to any of claims 1 1 to 13.
15. Uso del polinucleótido según cualquiera de las reivindicaciones 1 a 6, del producto de expresión según la reivindicación 7 ó 9, de la secuencia aminoacídica según la reivindicación 8 ó 9, del vector según la reivindicación 10, de la célula según cualquiera de las reivindicaciones 1 1 a 13, o de la población celular según la reivindicación 14, para reducir el contenido de hexafosfato de m/o-inositol (lnsP6) de un alimento. 15. Use of the polynucleotide according to any one of claims 1 to 6, of the expression product according to claim 7 or 9, of the amino acid sequence according to claim 8 or 9, of the vector according to claim 10, of the cell according to any of the claims 1 to 13, or of the cell population according to claim 14, to reduce the content of m / o-inositol hexaphosphate (lnsP 6 ) of a food.
16. Uso según la reivindicación 15, donde el alimento es esencialmente vegetal. 16. Use according to claim 15, wherein the food is essentially vegetable.
17. Uso según la reivindicación 16, donde el alimento vegetal comprende cualquier parte de la semilla de dicho vegetal, en cualquier estado de procesamiento. 17. Use according to claim 16, wherein the plant food comprises any part of the seed of said plant, in any processing state.
18. Uso según la reivindicación 17, donde las semillas proceden de al menos una planta leguminosa. 18. Use according to claim 17, wherein the seeds come from at least one legume plant.
19. Uso según la reivindicación 17, donde las semillas proceden de al menos una planta gramínea. 19. Use according to claim 17, wherein the seeds come from at least one grass plant.
20. Uso según cualquiera de las reivindicaciones 14 a 18, donde el alimento está destinado a la alimentación de animales monogástricos. 20. Use according to any of claims 14 to 18, wherein the feed is intended for feeding monogastric animals.
21 . Uso según la reivindicación 20, donde el alimento es un pienso. twenty-one . Use according to claim 20, wherein the food is a feed.
22. Uso del polinucleótido según cualquiera de las reivindicaciones 1 a 6, del producto de expresión según la reivindicación 7 ó 9, de la secuencia aminoacídica según la reivindicación 8 ó 9, del vector según la reivindicación 10, de la célula según cualquiera de las reivindicaciones 1 1 a 13, o de la población celular según la reivindicación 14, para producir trifosfato de m/o-inosítol (InsPs). 22. Use of the polynucleotide according to any one of claims 1 to 6, of the expression product according to claim 7 or 9, of the amino acid sequence according to claim 8 or 9, of the vector according to claim 10, of the cell according to any of the claims 1 to 13, or of the cell population according to claim 14, to produce m / o-inositol triphosphate (InsPs).
23. Método para la producción del polinucleótido según cualquiera de las reivindicaciones 1 a 6, que comprende: 23. Method for the production of the polynucleotide according to any of claims 1 to 6, comprising:
a. amplificar mediante una técnica de PCR el fragmento de la secuencia nucleotídica que tiene al menos un 55% de identidad con respecto a la secuencia aminoacídica SEQ ID NO: 1 , en toda su longitud, usando como molde un ADN cromosómico de Bifidobacteríum,  to. amplify by means of a PCR technique the fragment of the nucleotide sequence that has at least 55% identity with respect to the amino acid sequence SEQ ID NO: 1, in its entire length, using as a template a chromosomal DNA of Bifidobacterium,
b. clonar dicho fragmento en un vector de expresión, y  b. cloning said fragment into an expression vector, and
c. transformar dicho vector en una célula huésped para su replicación.  C. transforming said vector into a host cell for replication.
24. Método según la reivindicación 23, donde la amplificación del paso (a) se lleva cabo mediante el cebador directo SEQ ID NO: 7 y el cebador reverso SEQ ID NO: 8, y el molde es ADN es cromosómico de Bifidobacteríum pseudocatenulatum. 24. Method according to claim 23, wherein the amplification of step (a) is carried out by the direct primer SEQ ID NO: 7 and the reverse primer SEQ ID NO: 8, and the template is DNA is chromosomal from Bifidobacteríum pseudocatenulatum.
25. Método según la reivindicación 24, donde la amplificación del paso (a) se lleva cabo mediante el cebador directo SEQ ID NO: 9 y el cebador reverso SEQ ID NO: 10, y el molde es ADN es cromosómico de Bifidobacteríum longum subsp. infantis. 25. Method according to claim 24, wherein the amplification of step (a) is carried out by the direct primer SEQ ID NO: 9 and the reverse primer SEQ ID NO: 10, and the template is DNA is chromosomal from Bifidobacterium longum subsp. infantis
26. Método para reducir el contenido de lnsP6 de un alimento que comprende: 26. Method for reducing the lnsP 6 content of a food comprising:
a. poner en contacto el alimento con la secuencia aminoacídica según la reivindicación 8 ó 9, con la célula según cualquiera de las reivindicaciones 1 1 a 13, o con la población celular según la reivindicación 14, e  to. contacting the food with the amino acid sequence according to claim 8 or 9, with the cell according to any one of claims 1 to 13, or with the cell population according to claim 14, and
b. incubar la mezcla obtenida en el paso (a) a un pH de entre 3,5 y 7,5. b. incubate the mixture obtained in step (a) at a pH between 3.5 and 7.5.
27. Método para producir InsPe que comprende: 27. Method for producing InsPe comprising:
a. poner en contacto una composición que comprende ácido fítico o al menos una sal de fitato con la secuencia aminoacídica según la reivindicación 8 ó 9, con la célula según cualquiera de las reivindicaciones 1 1 a 13, o con la población celular según la reivindicación 14,  to. contacting a composition comprising phytic acid or at least one phytate salt with the amino acid sequence according to claim 8 or 9, with the cell according to any one of claims 1 to 13, or with the cell population according to claim 14,
b. incubar la mezcla obtenida en el paso (a) a un pH de entre 3,5 y 7,5.  b. incubate the mixture obtained in step (a) at a pH between 3.5 and 7.5.
28. Método según cualquiera de las reivindicaciones 26 ó 27, donde la incubación del paso (b) se lleva a cabo a un pH de entre 5,5 y 6,5. 28. A method according to any of claims 26 or 27, wherein the incubation of step (b) is carried out at a pH between 5.5 and 6.5.
29. Método según cualquiera de las reivindicaciones 27 ó 28, donde la composición del paso (a) además comprende calcio o al menos una sal de calcio, en el caso de emplear la secuencia aminoacídica SEQ ID NO: 3 de Bifidobacterium longum subsp. infantis, la célula según cualquiera de las reivindicaciones 1 1 a 13 que la comprende, o la población celular según la reivindicación 14 que comprende dicha célula. 29. A method according to any of claims 27 or 28, wherein the composition of step (a) further comprises calcium or at least one calcium salt, in the case of using the amino acid sequence SEQ ID NO: 3 of Bifidobacterium longum subsp. infantis, the cell according to any one of claims 1 to 13 comprising it, or the cell population according to claim 14 comprising said cell.
30. Método según la reivindicación 29, donde la sal de calcio es cloruro de calcio. 30. Method according to claim 29, wherein the calcium salt is calcium chloride.
PCT/ES2011/070198 2010-03-24 2011-03-24 Truncated phytases of bifidobacteria and uses thereof WO2011117452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030438A ES2372206B1 (en) 2010-03-24 2010-03-24 FITASAS TRUNCADAS DE BIFIDOBACTERIAS AND ITS USES.
ESP201030438 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011117452A1 true WO2011117452A1 (en) 2011-09-29

Family

ID=44672482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070198 WO2011117452A1 (en) 2010-03-24 2011-03-24 Truncated phytases of bifidobacteria and uses thereof

Country Status (2)

Country Link
ES (1) ES2372206B1 (en)
WO (1) WO2011117452A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008097619A2 (en) * 2007-02-07 2008-08-14 Danisco Us, Inc., Genencor Division Variant buttiauxella sp. phytases having altered properties

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008097619A2 (en) * 2007-02-07 2008-08-14 Danisco Us, Inc., Genencor Division Variant buttiauxella sp. phytases having altered properties

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAROS, M. ET AL.: "Myo-inosotol hexakisphophate degradation by Bifidobacterium infantis ATCC 15697", vol. 117, no. 1, 10 June 2007 (2007-06-10), pages 76 - 84 *
HAROS, M. ET AL.: "Phytase activity as a novel metabolic in Bifidobacterium", FEMS MICROBIOLOGY LETTERS., vol. 247, no. 2, 15 June 2005 (2005-06-15), pages 231 - 239 *

Also Published As

Publication number Publication date
ES2372206B1 (en) 2013-01-18
ES2372206A1 (en) 2012-01-17

Similar Documents

Publication Publication Date Title
Kumar et al. β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications
ES2675026T3 (en) Polypeptide for the hydrolytic dissociation of zearalenone and / or zearalenone derivatives, isolated polynucleotide thereof, as well as an additive containing a polypeptide, use thereof, as well as procedure
ES2395514T3 (en) Phytase
Kim et al. Screening and characterization of a novel esterase from a metagenomic library
JP5778077B2 (en) Citrobacterium freundii phytase and homolog
EP1151088B1 (en) Improved phytases
Ewis et al. Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus
ES2856265T3 (en) Yeast promoters for protein expression
ES2738181T3 (en) Yeast promoters from Pichia pastoris
TWI635178B (en) Phytase
JP2008099701A (en) New phytase
EP2069486A2 (en) Phytases with improved thermal stability
EP2173868B1 (en) Recombinant preparation of selected bromelain fractions
JP2001506503A (en) Phytase polypeptide
Monteiro et al. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance
TW201504259A (en) Phytase
JP2018506993A (en) Fusarium toxin cleaving polypeptide variants, additives containing the same, and uses thereof, and methods for cleaving fusarium toxin
US8507241B2 (en) Cloning, expression and use of acid lysophospholipases
US7220445B2 (en) Phytase enzymes, nucleic acid sequences encoding phytase enzymes and vectors and host cells incorporating same
Liu et al. Isolation and characterization of α-amylase from marine Pseudomonas sp. K6-28-040
ES2372206B1 (en) FITASAS TRUNCADAS DE BIFIDOBACTERIAS AND ITS USES.
Ali-Nehari et al. Digestive enzymes characterization of krill (Euphausia superba) residues deoiled by supercritical carbon dioxide and organic solvents
CN106884008B (en) Phospholipase, coding gene and preparation method thereof
US20070163009A1 (en) Polynucleotides encoding phytase polypeptides
Gedvilaite et al. Functional analysis of a lipolytic protein encoded in phytoplasma phage based genomic island

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758866

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11758866

Country of ref document: EP

Kind code of ref document: A1