WO2011116550A1 - 小区切换的方法及系统 - Google Patents

小区切换的方法及系统 Download PDF

Info

Publication number
WO2011116550A1
WO2011116550A1 PCT/CN2010/073559 CN2010073559W WO2011116550A1 WO 2011116550 A1 WO2011116550 A1 WO 2011116550A1 CN 2010073559 W CN2010073559 W CN 2010073559W WO 2011116550 A1 WO2011116550 A1 WO 2011116550A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
base station
time
domain resource
cell
Prior art date
Application number
PCT/CN2010/073559
Other languages
English (en)
French (fr)
Inventor
文永明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011116550A1 publication Critical patent/WO2011116550A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point

Definitions

  • Orthogonal Frequency Division Multiple Access (OFDM A) technology is a multiple access based on Orthogonal Frequency Division Multiplexing (OFDM) multi-carrier modulation.
  • OFDM Orthogonal Frequency Division Multiplexing
  • LTE Long-Term Evolution
  • Wimax Worldwide Interoperability for Microwave Access
  • OFDMA is to divide a wider bandwidth carrier into thousands of narrower bandwidth subcarriers in the frequency domain, and each subcarrier is orthogonal to each other within one OFDMA symbol period.
  • the subcarriers are divided into multiple time slots in the time domain, so that time and frequency are used as system resources to construct a two-dimensional space, and all terminals in the small area share the time-frequency domain resources in the two-dimensional space.
  • the terminal is assigned a specific time slot and a specific subcarrier to transmit uplink or downlink data.
  • FIG. 1 is a schematic diagram of allocating different time-frequency domain resources to a plurality of terminals under an OFDMA system according to the related art.
  • the cell can use the time-frequency domain resource as a two-dimensional space, and different terminals are allocated different sub-carriers and time slots as needed.
  • the terminal Due to complexity, power consumption, volume, cost, etc., the terminal generally only has a set of receivers/transmitters in a specific frequency band to receive signals from the downlink or transmit uplink signals. Therefore, when When a terminal switches from one cell to another, it is difficult to balance the same downlink information sent by two cells at different times and different frequencies by using one set of receivers. 2 Because the uplink time between the neighboring cells and the frequency resources are completely uncoordinated, the transmitter of the terminal cannot transmit the same signal to the neighboring cells at different times and different frequency resources.
  • the LTE standard since the uplink and downlink time-frequency domains are not synchronized, the LTE standard has to use the method of hard handover to perform 'j, zone handover, and the so-called hard handover means that the terminal first disconnects the link with the source cell. Then establish a link connection with the target cell.
  • 2 is a schematic diagram of a simplified flow of hard handover under the LTE standard according to the related art.
  • the terminal detects that the condition of the handover is met. For example, when the signal quality of the target cell is good enough, the measurement report is reported to the source cell.
  • the source cell and the target cell exchange control signaling and service data through the X2 interface of the access network, and then the source cell disconnects the terminal by sending a connection reconfiguration message ConnectionReconfiguration, and causes the terminal to initiate a connection request to the target cell, and finally Establish a connection with the target cell.
  • the terminal has no link connection with any cell.
  • the call drop rate, delay, and bit error rate are large at the terminal, and handover failure may occur. It can be seen that since the uplink and downlink time-frequency domains of the neighboring cells are not synchronized, the method of using the hard handover is used to perform cell handover, which may cause handover failure. Summary of the invention
  • the uplink/downlink time-frequency i of the ten pairs of neighboring cells is not synchronized, so that the method of hard handover is used to perform cell handover, thereby causing the problem that handover failure may occur, and the present invention is proposed.
  • the main purpose is to provide a method and system for cell handover to solve the above problems.
  • a method of cell handover is provided.
  • the method for cell handover includes: respectively, reserving the same time-frequency domain resource in the source cell and the target cell; the terminal is switched by the source base station of the source cell to the target base station of the target cell; and during the handover, the source base station And the target base station instructs the terminal to use the reserved time-frequency domain resource.
  • the source base station and the target base station instructing the terminal to use the time-frequency domain resource include: the source base station instructing the terminal to use the time-frequency domain resource reserved by the source base station; the source base station instructing the terminal to directly send the handover request message to the target base station; receiving the handover request After the message, the target base station instructs the terminal to use the time-frequency domain resources reserved by the target base station.
  • the source cell and the target cell negotiate the configuration of the time-frequency domain resource by using one of the following methods: the source base station of the source cell and the target base station of the target cell negotiate the configuration through the X2 interface; the source base station and the target cell of the source cell The target base station and the core network are negotiated and configured through the S 1 interface. Further, after the source cell and the target cell respectively reserve the same time-frequency domain resource, the method further includes: converting between the reserved time-frequency domain resource and the non-reserved time-frequency domain resource, where The reserved time-frequency domain resource is a time-frequency domain resource other than the reserved time-frequency domain resource among the time-frequency domain resources of the source cell and the target cell.
  • the source base station pre-determines that the quality of service level of the terminal is greater than a threshold, and instructs the terminal to perform an operation of switching the time-frequency domain resource reserved by the unreserved time-frequency domain resource. Further, after the terminal is switched by the source base station of the source cell to the target base station of the target cell, the method further includes: the source base station recovering the reserved time-frequency domain resource; the target base station instructing the terminal to perform the reserved time-frequency domain resource switching Operation to non-reserved time-frequency domain resources.
  • a system for cell handover is provided.
  • the system for cell handover includes a source base station and a target base station, where the source base station includes: a first reservation module, configured to reserve a time-frequency domain resource, and a first indication module, configured to instruct the terminal to use the time-frequency domain resource
  • the target base station includes: a second reservation module, configured to reserve the same time-frequency domain resource as the source base station, and a second indication module, configured to instruct the terminal to use the time-frequency domain resource.
  • the first indication module includes: a first indication sub-module, configured to indicate that the terminal uses the time-frequency domain resource reserved by the source base station; and a second indication sub-module, configured to instruct the terminal to directly send the handover request message to the target base station.
  • the source base station and the target base station each include: a conversion module, configured to convert between the reserved time-frequency domain resource and the unreserved time-frequency domain resource, where the unreserved time-frequency domain resource is The time-frequency domain resources other than the reserved time-frequency domain resources among the time-frequency domain resources of the source cell and the target cell.
  • the source base station further includes: a determining module, configured to determine whether the quality of service level of the terminal is greater than a threshold; the first indication module is further configured to: when the quality of service level is greater than the threshold, instruct the terminal to perform a time-frequency domain that is not reserved The operation of switching resources to reserved time-frequency domain resources.
  • the source base station further includes: a recovery module, configured to recover the reserved time-frequency domain resource; the target base station further includes: a third indication module, configured to instruct the terminal to perform the switching from the reserved time-frequency domain resource to the non-reserved The operation of the time-frequency domain resource.
  • the source cell and the target cell respectively reserve the same time-frequency domain resource, and in the process of the terminal switching from the source base station of the source cell to the target base station of the target cell, the source base station and the target base station indicate the terminal use.
  • the time-frequency domain resource solves the problem that the uplink and downlink time-frequency domains of the neighboring cells are not synchronized, and thus has to use the method of hard handover to perform cell handover, thereby causing a problem that handover failure may occur, thereby reducing the call drop of the terminal. Rate, latency and bit error rate.
  • FIG. 1 is a schematic diagram of allocating different time-frequency domain resources to multiple terminals under an OFDMA system according to the related art
  • FIG. 2 is a simplified flow of hard handover under the LTE standard according to the related art.
  • FIG. 3 is a flowchart of a method for cell handover according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a reserved part time-frequency domain resource as a soft handover dedicated time-frequency domain resource according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a system for performing cell handover according to an embodiment of the present invention
  • FIG. 7 is a block diagram of a system for performing cell handover according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for cell handover according to an embodiment of the present invention. As shown in FIG. 3, the following steps S302 to S306 are included. Step S302: Reserve the same time-frequency domain resource in the source cell and the target cell, respectively. Step S304: The terminal is switched by the source base station of the source cell to the target base station of the target cell.
  • Step S306 in the handover process, the source base station and the target base station instruct the terminal to use the time-frequency domain resource.
  • the time-frequency domain resources of the source cell and the target cell are not synchronized with each other.
  • the same time-frequency domain resource is reserved for the source cell and the target cell, and therefore, during the handover process.
  • the terminal can simultaneously communicate with the source base station of the source cell and the target base station of the target cell by using the reserved time-frequency domain resource, thereby avoiding call drop and delay of the terminal during the handover process.
  • the terminal may perform a transition by using the reserved time-frequency domain resource, that is, by disconnecting the communication with the source cell and maintaining the target.
  • the communication of the cell thereby achieving soft handover. Therefore, the problem of handover failure due to having to use hard handover in the OFDMA system is solved by the soft handover, and the call drop rate, delay, and bit error rate of the terminal are reduced.
  • the same time-frequency domain resource is reserved in the source cell and the target cell respectively, and specifically, resources in the same time and the same frequency are reserved for all cells in a certain geographical coverage.
  • the terminal can ensure that the terminal performs cell handover by using the soft handover method in all the cells, which can solve the problem that the handover fails due to having to use the hard handover, and reduce the call drop rate of the terminal. Delay and bit error rate.
  • the step S306 includes: the source base station instructing the terminal to use the time-frequency domain resource reserved by the source base station, for example, when the terminal measures the result of the triggering of the handover to the source cell or the target cell.
  • the source base station of the source cell may configure the terminal to use the time-frequency domain resource reserved by the source base station;
  • the source base station instructs the terminal to directly send a handover request message to the target base station, and the terminal directly sends the handover request message to the target base station, where the terminal sends the handover request message to the target base station without releasing the uplink and downlink connection with the source base station;
  • the target base station instructs the terminal to use the time-frequency domain resource reserved by the target base station.
  • the terminal can simultaneously communicate with the source base station and the target base station by using the reserved time-frequency domain resource, thereby avoiding call drop and delay of the terminal during the handover process.
  • the target base station sends the same information to the terminal to the terminal through the reserved downlink time-frequency domain resource, and receives the terminal information through the reserved uplink time-frequency domain resource.
  • the source cell and the target cell negotiate the configuration of the time-frequency domain resource by using one of the following methods: the source base station of the source cell and the target base station of the target cell negotiate the configuration through the X2 interface; the source base station and the target cell of the source cell The target base station and the core network are negotiated and configured through the S 1 interface.
  • the reserved time-frequency domain resource may be negotiated and configured by the base station of all cells in a certain geographical coverage through the inter-cell interconnection X2 interface of the access network; or may be interconnected by the core network and the base station of the cell. S 1 interface negotiation configuration.
  • the terminal moves within the large geographic coverage, soft handover can be implemented, thereby solving the problem that the handover failure occurs in the OFDMA system due to having to use the hard handover, and the call drop rate and time of the terminal are reduced. Delay and bit error rate.
  • the preferred embodiments 1, 2 and 3 described below will analyze how to allocate reserved time-frequency domain resources.
  • the source base station After the terminal is handed over from the source base station of the source cell to the target base station of the target cell, the source base station recovers the reserved time-frequency domain resource; the target base station instructs the terminal to use the unreserved time-frequency domain resource. Based on the current reserved time-frequency domain resource, after the terminal disconnects the communication with the source base station, the source base station recovers the reserved time-frequency domain resource for use in the next handover.
  • the target base station immediately configures the terminal to use the unreserved time-frequency domain resources to save the reserved time-frequency domain resources to other terminals with handover requirements. In this way, the reserved time-frequency domain resources can be utilized to a greater extent without changing the original reserved time-frequency domain resource allocation, so as to balance the handover performance and non-handover performance of the base station.
  • the source base station pre-determines the quality of service level of the terminal; when the quality of service level is greater than the threshold, the source base station instructs the terminal to use the time-frequency domain resource.
  • the source base station pre-determines the quality of service of the terminal (Quality of Service, Jane It is called QoS) level, and when the quality of service level is greater than a certain threshold, the terminal is configured to use the reserved time-frequency domain resources for soft handover, otherwise the traditional hard handover is used. In this way, by distinguishing the importance of different terminals, it is also possible to ensure that important terminal users use the reserved time-frequency domain resources without changing the original reserved time-frequency domain resource allocation. Both switching performance and non-switching performance in the base station are taken into consideration.
  • the base station allocates the non-reserved time-frequency domain resources to the terminal.
  • the base station allocates the non-reserved time-frequency domain resources to the terminal.
  • the terminal needs a higher uplink and downlink rate, resulting in insufficient allocation of non-reserved time-frequency domain resources, if there is no terminal that is currently performing soft handover, or the currently ongoing soft handover does not completely exhaust all
  • the reserved time-frequency domain resources are then temporarily allocated to the non-switched terminals for the remaining reserved time-frequency domain resources.
  • the reserved time-frequency domain resources are immediately stopped.
  • the base station immediately allocates the reserved time-frequency domain resource to the terminal that initiates the soft handover. Therefore, through the foregoing embodiment, when the signal strength of the source cell is lower than a certain threshold or the other handover completion condition is met, the terminal may perform a cell handover transition by using the reserved time-frequency domain resource.
  • the transition process may be divided into the following steps: First, the non-reserved time-frequency domain resource of the source cell is switched to the time-frequency domain resource reserved by the source cell and the target cell, (the terminal simultaneously receives the signals of the source cell and the target cell, Simultaneous communication with the source cell and the target cell.) Then - (when the source cell signal is degraded) disconnects the communication with the source cell and maintains communication with the target cell, and finally switches the reserved time-frequency domain resource of the target cell Non-reserved time-frequency domain resources to the target cell, thereby implementing soft handover.
  • the utilization of the time-frequency domain resources in the base station can be greatly improved, so as to balance the handover performance and the non-handover performance in the base station. . Therefore, by properly allocating reserved time-frequency domain resources and non-reserved time-frequency domain resources, sufficient reserved time-frequency domain resources can be ensured for soft handover, and sufficient non-reserved time-frequency domains are ensured.
  • the resources are used for non-switching terminals to avoid affecting the performance of non-switching terminals due to the reduction of frequency domain resources available when non-switching terminals are available.
  • the cell handover method in the above OFDMA system can be applied not only to
  • the LTE network can also be applied to all broadband mobile communication networks using OFDMA, such as Wimax.
  • the present invention also provides a preferred embodiment incorporating the technical solutions of the above-described plurality of preferred embodiments, which are described in detail below with reference to FIGS. 4 and 5.
  • FIG. 4 is a schematic diagram of a reserved part time-frequency domain resource as a soft handover dedicated time-frequency domain resource according to an embodiment of the present invention, where the "reserved" part indicates a reserved time-frequency domain resource, specifically, the "Reserved, part of the time-frequency domain resource is reserved for soft handover based on the original OFDMA technology, and then the remaining unreserved time-frequency domain resources are allocated to the non-switching terminal for use.
  • Figure 5 is implemented according to the present invention.
  • Step S502 The terminal and the source cell have established a link connection, and the non-pre- The part of the time-frequency domain resource is reserved for uplink and downlink data transmission.
  • Step S504 The terminal measures that the signal quality of the neighboring cell becomes good enough, and the condition for triggering the measurement result is triggered. These triggers report the measurement result and may cause the handover. There are many conditions, such as the A3 event in LTE, the signal quality of the neighboring cell exceeds a certain offset value of the current cell; or the A4 event, the signal quality of the neighboring cell exceeds A threshold value; or A5 event, the signal quality of the serving cell is lower than a certain threshold and the neighboring cell is higher than a certain threshold.
  • Step S506 The terminal sends a measurement result to the current cell.
  • Step S508 After receiving the measurement result of the terminal, the current cell decides to initiate the handover, and because the QoS level of the current service of the terminal is high, the current cell decides to use the soft handover.
  • the current cell and the neighboring cell exchange through the X2 interface of the LTE access network. Controlling signaling and service data. At this time, the current cell becomes the source cell of the handover, and the neighboring cell becomes the target cell of the handover.
  • Step S510 The source cell control terminal uses the time-frequency domain resource of the "reserved" part of FIG. The uplink and downlink data are exchanged.
  • Step S512 The source cell control terminal initiates a handover to the target cell, and the terminal initiates synchronization with the target cell and requests to establish a connection.
  • Step S514 The target cell also controls the terminal to use the time-frequency domain of the "reserved" part in FIG. The resource interacts with the uplink and downlink data. At this time, the terminal is connected to the source cell and the target cell at the same time, and the phase is used. The same time-frequency domain resource enters the soft handover.
  • Step S516 The signal quality of the source cell measured by the terminal is deteriorated, which is insufficient to meet the communication requirement, and the condition for triggering the measurement result is reached.
  • Step S518 The terminal measures the result to the source cell, and releases the connection with the source cell.
  • the basic reason why the CDMA2000 network in the 2G wireless communication network is better than the GSM network switching performance is that the CDMA2000 network uses soft handover, and the GSM network uses hard handover.
  • the existing LTE standard only has a hard handover, and after using the technology proposed by the present invention, soft handover can be implemented, thereby greatly improving the performance of the LTE network handover, and is particularly effective for services with high QoS requirements.
  • the technology proposed by the present invention can enable the cell to flexibly configure the performance requirements of the soft handover between the handover performance and the non-handover performance, and the different QoS levels, and the compromise balance considers the influence of various factors to achieve the optimal use effect, and
  • the cell can dynamically adjust the proportion of the reserved resources, the conditions for temporarily using the reserved resources, and the related parameters such as the QoS level of the reserved resources, as needed.
  • the cell handover method proposed by all the foregoing embodiments of the present invention can be applied to both the sector and the cell.
  • FIG. 6 is a structural block diagram of a system for cell handover according to an embodiment of the present invention, including a source base station 20 and a target base station 40, wherein the source base station includes a first reservation module 202. And the first indication module 204, the target base station includes a second reservation module 402 and a second indication module 404.
  • the first reservation module 202 is configured to reserve the time-frequency domain resource of the source base station 20.
  • the first indication module 204 is connected to the first reservation module 202 for instructing the terminal to use the time-frequency domain resources reserved by the first reservation module 202.
  • the second reservation module 402 is connected to the first reservation module 202, and is configured to reserve the same time-frequency domain resource as the time-frequency domain resource of the source base station 20 reserved by the first reservation module 202.
  • the second indication module 404 is connected to the second reservation module 402, and is configured to instruct the terminal to use the time-frequency domain resource reserved by the second reservation module 402.
  • the terminal can simultaneously perform the same with the source base station of the source cell and the target base station of the target cell by using the reserved time-frequency domain resource during the handover process. Communication, thereby avoiding call drop and delay of the terminal during handover. Meanwhile, when the signal strength of the source cell is lower than a certain threshold or the other handover completion condition is met, the terminal may perform a transition by using the reserved time-frequency domain resource, that is, by disconnecting the communication with the source cell and maintaining the target. The communication of the cell, thereby achieving soft handover.
  • the first indication module 204 includes: a first indication sub-module 2042, connected to the first reservation module 202, configured to indicate that the terminal uses the time-frequency domain resource reserved by the first reservation module 202; the second indication sub-module 2044. Connect to the first indication sub-module 2042, to indicate that the terminal directly sends a handover request message to the target base station 40 without releasing the uplink and downlink connection with the source base station 20.
  • the terminal can simultaneously communicate with the source base station and the target base station by using the reserved time-frequency domain resource, thereby avoiding call drop and delay of the terminal during the handover process.
  • the target base station sends the same information to the terminal to the terminal through the reserved downlink time-frequency domain resource, and receives the terminal information through the reserved uplink time-frequency domain resource.
  • the source base station 20 further includes a first conversion module 206 connected to the first reservation module 202 and the first indication submodule 2042 of the first indication module 204.
  • the target base station 40 further includes a second conversion module 406 connected to The second reservation module 402 and the second indication module 404 are both configured to convert between the reserved time-frequency domain resources and the non-reserved time-frequency domain resources, where the unreserved time-frequency domain
  • the resource is a time-frequency domain resource other than the reserved time-frequency domain resource among the time-frequency domain resources of the source cell and the target cell.
  • the first indicator sub-module 2042 is further configured to instruct the terminal to use the reserved time-frequency domain resource converted by the first conversion module 206.
  • the second indication module 404 is further configured to instruct the terminal to use the reserved time-frequency domain resource converted by the second conversion module 406.
  • the source base station 20 further includes a determining module 208 and a recycling module 209
  • the target base station 40 further includes a third indicating module 408.
  • the determining module 208 is connected to the first indicating submodule in the first indicating module 204.
  • the method is used to determine whether a quality of service level of the terminal is greater than a threshold, and when the quality of service level is greater than a threshold, driving the first indicator sub-module 2042 to instruct the terminal to perform time-frequency domain switching from the unreserved time-frequency domain resource to the reserved time-frequency.
  • the operation of a domain resource In this way, by distinguishing the importance of different terminals, it is also possible to ensure that the reserved time-frequency domain resources are used to important end users without changing the original reserved time-frequency domain resource allocation. Both switching performance and non-switching performance in the base station are taken into consideration.
  • the recovery module 209 is connected to the second indication module 404, and is configured to recover the reserved time-frequency domain after the second indication module 404 instructs the terminal to use the time-frequency domain resource of the target base station, and the terminal meets the handover condition and completes the handover.
  • the third indication module 408 is connected to the second indication module 404, and is configured to instruct the terminal to perform after the second indication module 404 instructs the terminal to use the time-frequency domain resource of the target base station, and the terminal meets the handover condition and completes the handover. The operation of switching from the reserved time-frequency domain resource to the unreserved time-frequency domain resource.
  • the reserved time-frequency domain resources can be utilized to a greater extent without changing the original reserved time-frequency domain resource allocation, so as to balance the handover performance and non-handover performance of the base station.
  • a method and system for cell handover are provided.
  • the source cell and the target cell respectively reserve the same time-frequency domain resource, and in the process of the terminal switching from the source base station of the source cell to the target base station of the target cell, the source base station and the target base station instruct the terminal to use the time-frequency domain resource. .
  • a part of the subcarriers are reserved in the subcarriers of the uplink and downlink as a common reserved handover reserved subcarrier between different cells, and is used only for soft handover, and the reserved subcarrier frequency is reserved for handover between the cells. All the same. So when the terminal is between the various cells When switching, the terminal receiver can receive the same-frequency signals from multiple cells because the sub-carriers of the same frequency are used.
  • a part of the common time slot is reserved as a common reserved handover reserved time slot between different cells, which is only used for soft handover, and for a certain terminal, the allocated handover reservation time The gaps are all the same.
  • the terminal switches, the same-frequency signal from multiple cells can be simultaneously received, thereby solving the uplink and downlink time-frequency domain of the neighboring cell is not synchronized, and thus the method of hard handover is used to perform cell handover, thereby causing The problem of handover failure may occur, thereby reducing the call drop rate, delay, and bit error rate of the terminal.
  • the system for cell handover described in the device embodiment corresponds to the foregoing method embodiment, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种小区切换的方法及系统,该方法包括:在源小区与目标小区分别预留相同的时频域资源;终端由源小区的源基站向目标小区的目标基站切换;以及切换过程中,源基站和目标基站指示终端使用时频域资源。本发明减少了终端的掉话率、时延和误码率。

Description

小区切换的方法及系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种小区切换的方法及系统。 背景技术 目前, 正交频分多址 ( Orthogonal Frequency Division Multiple Access, 简称为 OFDM A ) 技术是一种基于正交频分复用 ( Orthogonal Frequency Division Multiplexing , 简称为 OFDM ) 多载波调制的多址接入技术, 目前已 经作为下一代通信网络的核心技术之一, 被广泛釆用到了长期演进 ( Long-Term Evolution , 简称为 LTE )、 啟波接入全球互通 (Worldwide Interoperability for Microwave Access , 简称为 Wimax ) 等系统中。
OFDMA 是在频域上将较宽带宽的载波划分为若千个较窄带宽的子载 波, 并且各个子载波在一个 OFDMA符号周期之内彼此正交。 同时, 在时域 上将子载波划分为多个时隙, 这样将时间、 频率都作为系统资源, 构建成一 个二维空间, 小区内的所有终端都共享这个二维空间内的时频域资源, 由网 络根据特定调度算法在小区内的终端间动态分配。 当为一个小区内的某个终 端分配资源时, 给这个终端分配特定的时隙和特定的子载波, 以传输上行或 下行数据。
OFDMA技术具有很多优点, 例如降低计算复杂度、 在大时延下平滑降 低性能、 开发频率分集、 可用于多接入方案、 抗窄带千扰能力强、 适用于相 千解调、 可以灵活配置上下行非对称业务的资源等。 因此 OFDMA作为物理 层的核心技术广泛应用在 LTE、 Wimax等下一代移动通信网络中。 但是, 在现有的 LTE标准中, 因为相邻小区各自釆用独自的 OFDMA资 源分配方式, 所以相邻小区的各自时间、 频率资源都互不协调。 图 1是才艮据相关技术的在 OFDMA系统下向多个终端分配不同的时频域 资源的示意图。 小区可以将时频域资源作为一个二维空间, 不同的终端才艮据 需要被分配不同的子载波和时隙。 在这种情况下, 存在着下述两种问题: ①由于复杂度、 功耗、 体积、 成本等方面的考虑, 终端一般只有一套特 定频带范围内的接收 /发射机,以接收下行链路发来的信号或发射上行链路信 号, 因此, 当终端在从一个小区切换到另一个小区时, 利用一套接收机很难 兼顾两个小区在不同时间、 不同频率发来的相同下行链路信息。 ②由于相邻小区之间的上行时间、 频率资源完全没有协调, 因此, 终端 的发射机不能在不同的时间、 不同的频率资源下发射相同的信号给这些相邻 小区。 因此, 由于上述上下行链路时频域不同步, LTE标准中不得不釆用硬切 换的方法进行 'j、区切换, 而所谓硬切换就是指终端首先断开和源小区的链路 连接, 然后再和目标小区建立链路连接。 图 2是根据相关技术的 LTE标准下硬切换的简化流程的示意图。终端检 测到满足切换的条件, 比如目标小区信号质量足够好时, 向源小区上报测量 报告。 源小区和目标小区通过接入网的 X2接口交互切换的控制信令和业务 数据, 然后源小区通过下发连接重配置消息 ConnectionReconfiguration让终 端断开连接, 并让终端向目标小区发起连接请求, 最后和目标小区建立连接。 在这个过程中, 从终端与源小区断开连接到终端与目标小区建立连接过程中 有一段短暂的时间终端与任何小区都没有链路连接。 从而导致终端时的掉话 率、 时延、 误码率较大, 并可能发生切换失败。 由此可见, 由于相邻小区的上下行链路时频域不同步, 从而导致不得不 釆用硬切换的方法进行小区切换, 进而导致可能发生切换失败。 发明内容
4十对相邻小区的上下行链路时频 i或不同步, 从而不得不釆用硬切换的方 法进行小区切换, 进而导致可能发生切换失败的问题而提出本发明, 为此, 本发明的主要目的在于提供一种小区切换的方法及系统, 以解决上述问题。 为了实现上述目的, 才艮据本发明的一个方面, 提供了一种小区切换的方 法。 才艮据本发明的小区切换的方法包括: 在源小区与目标小区分别预留相同 的时频域资源; 终端由源小区的源基站向目标小区的目标基站切换; 以及切 换过程中, 源基站和目标基站指示终端使用该预留的时频域资源。 进一步地, 源基站和目标基站指示终端使用时频域资源包括: 源基站指 示终端使用源基站预留的时频域资源; 源基站指示终端直接向目标基站发送 切换请求消息; 在接收到切换请求消息之后, 目标基站指示终端使用目标基 站预留的时频域资源。 进一步地, 源小区与目标小区通过包括以下之一的方式对时频域资源进 行协商配置: 源小区的源基站和目标小区的目标基站通过 X2接口进行协商 配置; 源小区的源基站、 目标小区的目标基站以及核心网通过 S 1 接口进行 协商配置。 进一步地, 在源小区与目标小区分别预留相同的时频域资源之后, 上述 方法还包括: 在预留的时频域资源与非预留的时频域资源之间进行转换, 其 中, 非预留的时频域资源为源小区与目标小区的时频域资源中除该预留的时 频域资源之外的时频域资源。 进一步地, 源基站预先判断终端的服务质量等级大于阈值, 指示终端执 行由非预留的时频域资源切换 J l预留的时频域资源的操作。 进一步地, 在终端由源小区的源基站向目标小区的目标基站切换之后, 上述方法还包括: 源基站回收预留的时频域资源; 目标基站指示终端执行由 预留的时频域资源切换到非预留的时频域资源的操作。 为了实现上述目的, 根据本发明的另一方面, 提供了一种小区切换的系 统。 根据本发明的小区切换的系统包括源基站和目标基站, 其中, 源基站包 括: 第一预留模块, 用于预留时频域资源, 第一指示模块, 用于指示终端使 用时频域资源; 目标基站包括: 第二预留模块, 用于预留与源基站相同的时 频域资源, 第二指示模块, 用于指示终端使用时频域资源。 进一步地, 第一指示模块包括: 第一指示子模块, 用于指示终端使用源 基站预留的时频域资源; 第二指示子模块, 用于指示终端直接向目标基站发 送切换请求消息。 进一步地, 源基站和目标基站均还包括: 转换模块, 用于在预留的时频 域资源与非预留的时频域资源之间进行转换, 其中, 非预留的时频域资源为 源小区与目标小区的时频域资源中除预留的时频域资源之外的时频域资源。 进一步地, 源基站还包括: 判断模块, 用于判断终端的服务质量等级是 否大于阈值; 第一指示模块, 还用于当服务质量等级大于阈值时, 指示终端 执行由非预留的时频域资源切换到预留的时频域资源的操作。 进一步地, 源基站还包括: 回收模块, 用于回收预留的时频域资源; 目 标基站还包括: 第三指示模块, 用于指示终端执行由预留的时频域资源切换 到非预留的时频域资源的操作。 通过本发明, 釆用在源小区与目标小区分别预留相同的时频域资源, 并 且, 在终端由源小区的源基站向目标小区的目标基站切换过程中, 源基站和 目标基站指示终端使用时频域资源, 解决了相邻小区的上下行链路时频域不 同步, 从而不得不釆用硬切换的方法进行小区切换, 进而导致可能发生切换 失败的问题, 从而减少了终端的掉话率、 时延和误码率。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是才艮据相关技术的在 OFDMA系统下向多个终端分配不同的时频域 资源的示意图; 图 2是才艮据相关技术的 LTE标准下硬切换的简化流程的示意图; 图 3是 居本发明实施例的小区切换的方法的流程图; 图 4是才艮据本发明实施例的预留部分时频域资源作为软切换专用时频域 资源的示意图; 图 5是根据本发明实施例的基于图 4的时频域资源进行软切换的简化流 程的示意图; 图 6是 居本发明实施例的小区切换的系统的结构框图; 图 7是 居本发明优选实施例的小区切换的系统的结构框图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 本发明提供了一种小区切换的方法, 图 3是根据本发明实施例的小区切 换的方法的流程图, 如图 3所示, 包括如下的步骤 S302至步骤 S306。 步骤 S302, 在源小区与目标小区分别预留相同的时频域资源。 步骤 S304, 终端由源小区的源基站向目标小区的目标基站切换。 步骤 S306 , 切换过程中, 源基站和目标基站指示终端使用时频域资源。 相关技术中, 源小区与目标小区上下行链路的时频域资源不同步, 而本 实施例中, 对于源小区与目标小区分别预留了相同的时频域资源, 因此, 在 切换过程中, 终端通过使用该预留的时频域资源可以同时与源小区的源基站 和目标小区的目标基站进行通信, 从而避免切换过程中终端的掉话和时延。 同时, 当源小区的信号强度低于某个阈值或者满足其它切换完成的判别 条件时, 终端可以通过该预留的时频域资源进行过渡, 即通过断开与源小区 的通信并保持与目标小区的通信, 从而实现软切换。 因此, 通过该软切换解 决了 OFDMA系统中由于不得不釆用硬切换而导致切换失败的问题, 并减少 了终端的掉话率、 时延和误码率。 需要说明的是,通过在源小区与目标小区分别预留了相同的时频域资源, 具体而言, 通过在某较大地理覆盖范围内的所有小区都预留相同时间、 相同 频率的资源专门用于切换, 可以解决该所有小区的上下行链路时频域不同步 的问题。 进而, 通过使用该预留的资源, 保证终端在该所有小区釆用软切换 的方法进行小区切换, 可以解决由于不得不釆用硬切换而导致切换失败的问 题, 并减少终端的掉话率、 时延和误码率。 优选地, 步骤 S306包括: 源基站指示终端使用源基站预留的时频域资源, 例如, 当终端因为满足 某些触发切换的条件而向源小区上 4艮本源小区或目标小区的测量结果时, 源 小区的源基站可以配置终端使用源基站预留的时频域资源; 源基站指示终端直接向目标基站发送切换请求消息, 终端直接向目标基 站发送切换请求消息是指终端在不释放和本源基站的上下行链路连接的情况 下, 向目标基站发送切换请求消息; 在接收到切换请求消息之后, 目标基站指示终端使用目标基站预留的时 频域资源。 需要说明的是, 在上述情况下, 终端通过使用该预留的时频域资源可以 同时与源基站和目标基站进行通信,从而避免切换过程中终端的掉话和时延。 并且, 该目标基站通过预留的下行时频域资源向终端发送与源基站相同的信 息, 通过预留的上行时频域资源接收终端信息。 优选地, 源小区与目标小区通过包括以下之一的方式对时频域资源进行 协商配置: 源小区的源基站和目标小区的目标基站通过 X2接口进行协商配 置; 源小区的源基站、 目标小区的目标基站以及核心网通过 S 1 接口进行协 商配置。 例如, 预留的时频域资源可以由某较大地理覆盖范围内的所有小区 的基站通过接入网的小区间互联的 X2接口协商配置; 也可以由核心网和小 区的基站间互联的通过 S 1 接口协商配置。 这样, 当终端在该较大地理覆盖 范围内移动时, 就可以实现软切换, 从而解决 OFDMA系统中由于不得不釆 用硬切换而导致切换失败的问题, 并减少了终端的掉话率、 时延和误码率。 下述优选实施例①、 ②和③将对如何分配预留的时频域资源进行分析。
①在终端由源小区的源基站向目标小区的目标基站切换之后, 源基站回 收预留的时频域资源; 目标基站指示终端使用非预留的时频域资源。 基于保持当前的预留的时频域资源, 当终端断开与源基站的通信之后, 源基站回收预留的时频域资源, 以供下次切换时使用。 同时, 当终端切换完 成后, 目标基站立刻配置终端使用非预留的时频域资源, 以节约预留的时频 域资源给其它具有切换需求的终端使用。 这样, 在不改变原有的预留的时频域资源分配的情况下, 可以更大限度 的利用该预留的时频域资源, 以兼顾基站的切换性能和非切换性能。
②源基站预先判断终端的服务质量等级; 源基站当服务质量等级大于阈 值时, 指示终端使用时频域资源。 在终端切换时, 源基站预先判断终端的服务质量(Quality of Service, 简 称为 QoS ) 等级, 并当服务质量等级大于一定的阈值时, 才配置终端使用上 述预留的时频域资源进行软切换, 否则釆用传统的硬切换。 这样, 通过对不同的终端的重要性进行区分, 也可以在不改变原有的预 留的时频域资源分配的情况下, 保证重要的终端用户使用到该预留的时频域 资源, 以兼顾基站中切换性能和非切换性能。
③在预留的时频域资源与非预留的时频域资源之间进行转换。 为了最大限度的提高时频域资源的利用率, 还可以釆用如下资源分配策 略: 基站在非预留的时频域资源足够分配时, 分配该非预留的时频域资源给 终端。 当终端较多或者终端需要较高的上下行速率, 导致非预留的时频域资 源不够分配时, 如果当前没有正在进行软切换的终端, 或者当前正在进行的 软切换没有完全用尽所有的预留的时频域资源, 那么将剩余的预留的时频域 资源也暂时分配给非切换的终端使用。 同时, 只要存在非预留的时频域资源 可供分配, 则立刻停止使用该预留的时频域资源。 或者, 当有终端发起软切 换, 需要使用该预留的时频域资源时, 基站立刻将该预留的时频域资源优先 分配给该发起软切换的终端使用。 因此, 通过上述实施例, 当源小区的信号强度低于某个阈值或者满足其 它切换完成的判别条件时, 终端可以通过预留的时频域资源进行小区切换的 过渡。 该过渡过程可以分为如下的步骤: 先由源小区的非预留的时频域资源 切换到源小区与目标小区预留的时频域资源,(终端同时接收源小区和目标小 区的信号, 与源小区和目标小区同时通信。) 然后- (当源小区信号变差时) 断开与源小区的通信并保持与目标小区的通信, 最后再由目标小区的预留的 时频域资源切换到目标小区的非预留的时频域资源, 从而实现软切换。 这样, 通过在预留的时频域资源与非预留的时频域资源之间进行转换, 可以更大限度提高基站内时频域资源的利用率, 以兼顾基站中切换性能和非 切换性能。 因此, 通过合理地分配预留的时频域资源与非预留的时频域资源, 可以 保证足够的预留的时频域资源用于软切换, 并保证足够的非预留的时频域资 源用于非切换终端使用, 从而避免由于非切换终端可用时频域资源的减少而 影响非切换终端的性能。 需要说明的是, 上述 OFDMA系统中的小区切换方法, 不仅可以应用于 LTE网络, 还可以 4舞广应用到 Wimax等所有釆用 OFDMA的宽带移动通信 网络中。 本发明还提供了一个优选实施例, 结合了上述多个优选实施例的技术方 案, 下面结合图 4和图 5来详细描述。 图 4是才艮据本发明实施例的预留部分时频域资源作为软切换专用时频域 资源的示意图, 图中的 "预留"部分表示预留的时频域资源, 具体地, 该 "预 留,, 部分在原有 OFDMA技术基础上预留部分时频域资源作为软切换专用, 然后将剩余的非预留的时频域资源分配给非切换终端使用。 图 5是根据本发明实施例的基于图 4的时频域资源进行软切换的简化流 程的示意图。 包括如下的步骤 S502至步骤 S524。 步骤 S502: 终端和源小区已经建立了链路连接, 并且通过图 4中非 "预 留" 部分的时频域资源进行上下行数据传输。 步骤 S504: 终端测量到相邻小区的信号质量变得足够好, 达到了触发上 报测量结果的条件。这些触发上报测量结果并且可能导致切换的条件有很多 , 例如 LTE中的 A3事件, 相邻小区的信号质量超过当前小区某个偏置值; 或 者 A4事件, 相邻小区的信号质量超过某个门限值; 或者 A5事件, 服务小区 的信号质量低于某个门限值而相邻小区高于某个门限值。 步骤 S506: 终端向当前小区上 4艮测量结果。 步骤 S508: 当前小区接收到终端的测量结果后, 决定发起切换。 并且因 为终端当前业务的 QoS等级较高, 当前小区决定釆用软切换。 当前小区和相 邻小区通过 LTE接入网的 X2接口交互切换的控制信令和业务数据。 此时当 前小区变为切换的源小区, 相邻小区变为切换的目标小区。 步骤 S510: 源小区控制终端使用图 4中 "预留 " 部分的时频域资源与其 交互上下行数据。 步骤 S512: 源小区控制终端向目标小区发起切换, 终端向目标小区发起 同步并请求建立连接。 步骤 S514: 目标小区也控制终端使用图 4中 "预留"部分的时频域资源 与其交互上下行数据。 此时终端与源小区和目标小区同时连接, 并且使用相 同的时频域资源, 进入软切换。 步骤 S516: 终端测量到源小区的信号质量变差, 不足以满足通信要求, 达到了触发上 ·ί艮测量结果的条件。 步骤 S518: 终端向源小区上 4艮测量结果, 并且释放与源小区的连接。 步骤 S520、 步骤 S522: 源小区或终端向目标小区上报切换完成, 告诉 目标小区可以重新分配时频域资源。 步骤 S524: 目标小区控制终端使用图 4中非 "预留 "部分的时频域资源 与其交互上下行数据。 此时源小区和目标小区都回收了预留的时频域资源。 从以上的描述中, 可以看出, 本优选实施例实现了如下技术效果。 ①实现了软切换。软切换由于自身的特点, 比硬切换具有更高的可靠性、 更低的延迟、更低的误码率等。 2G无线通信网络中的 CDMA2000网络比 GSM 网络切换性能更优的基本原因就是 CDMA2000网络釆用了软切换, 而 GSM 网络釆用了硬切换。 现有的 LTE标准只有硬切换, 而釆用本发明提出的技术 后, 可以实现软切换, 从而大大提高 LTE 网络切换的性能, 对于高 QoS要 求的业务特别有效。
②资源配置灵活。 本发明提出的技术可以使得小区在切换性能和非切换 性能间、 不同的 QoS等级对软切换的性能要求间进行灵活配置, 折中平衡考 虑多种因素的影响, 达到最优的使用效果, 并且小区可以根据需要随时动态 调整预留资源的比例、 临时使用预留资源的条件、 能够使用预留资源的 QoS 等级等相关参数。 另外, 无论是扇区还是小区, 本发明上述所有实施例提出的小区切换方 法均可以适用。 需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执 行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是 在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 才艮据本发明的实施例, 提供了一种小区切换的系统。 该系统可以用于实 现上述小区切换的方法。 图 6是才艮据本发明实施例的小区切换的系统的结构 框图, 包括源基站 20和目标基站 40, 其中, 源基站包括第一预留模块 202 和第一指示模块 204 , 目标基站包括第二预留模块 402和第二指示模块 404。 下面对其结构进行详细描述。 第一预留模块 202 , 用于预留源基站 20 的时频域资源。 第一指示模块 204 , 连接至第一预留模块 202 , 用于指示终端使用第一预留模块 202预留的 时频域资源。 第二预留模块 402 , 连接至第一预留模块 202 , 用于预留与第一预留模 块 202预留的源基站 20的时频域资源相同的时频域资源。第二指示模块 404 , 连接至第二预留模块 402 , 用于指示终端使用第二预留模块 402预留的时频 域资源。 由于源小区与目标小区分别预留了相同的时频域资源, 因此, 在切换过 程中, 终端通过使用该预留的时频域资源可以同时与源小区的源基站和目标 小区的目标基站进行通信, 从而避免切换过程中终端的掉话和时延。 同时, 当源小区的信号强度低于某个阈值或者满足其它切换完成的判别 条件时, 终端可以通过该预留的时频域资源进行过渡, 即通过断开与源小区 的通信并保持与目标小区的通信, 从而实现软切换。 因此, 通过该软切换解 决了 OFDMA系统中由于不得不釆用硬切换而导致切换失败的问题, 并减少 了终端的掉话率、 时延和误码率。 图 7是 居本发明优选实施例的小区切换的系统的结构框图。 优选地, 第一指示模块 204包括: 第一指示子模块 2042 , 连接至第一预留模块 202 , 用于指示终端使用第一预留模块 202 预留的时频域资源; 第二指示子模块 2044 , 连接至第一指示子模块 2042 , 用于指示终端在不释放和源基站 20的 上下行链路连接的情况下, 直接向目标基站 40发送切换请求消息。 在上述情况下, 终端通过使用该预留的时频域资源可以同时与源基站和 目标基站进行通信, 从而避免切换过程中终端的掉话和时延。 并且, 该目标 基站通过预留的下行时频域资源向终端发送与源基站相同的信息, 通过预留 的上行时频域资源接收终端信息。 优选地, 源基站 20还包括第一转换模块 206 , 连接至第一预留模块 202 和第一指示模块 204中的第一指示子模块 2042 , 目标基站 40还包括第二转 换模块 406 , 连接至第二预留模块 402和第二指示模块 404 , 均用于在预留 的时频域资源与非预留的时频域资源之间进行转换, 其中, 非预留的时频域 资源为源小区与目标小区的时频域资源中除预留的时频域资源之外的时频域 资源。 同时, 第一指示子模块 2042 还用于指示终端使用第一转换模块 206 转换得到的预留的时频域资源。 第二指示模块 404还用于指示终端使用第二 转换模块 406转换得到的预留的时频域资源。 这样, 通过在预留的时频域资源与非预留的时频域资源之间进行转换, 可以更大限度提高基站内时频域资源的利用率, 以兼顾基站中切换性能和非 切换性能。 优选地, 上述源基站 20还包括判断模块 208和回收模块 209 , 上述目标 基站 40还包括第三指示模块 408。 其中, 判断模块 208 , 连接至第一指示模块 204 中的第一指示子模块
2042 , 用于判断终端的服务质量等级是否大于阈值, 并当该服务质量等级大 于阈值时, 驱动第一指示子模块 2042 指示终端执行由非预留的时频域资源 切换到预留的时频域资源的操作。 这样, 通过对不同的终端的重要性进行区分, 也可以在不改变原有的预 留的时频域资源分配的情况下, 保证该预留的时频域资源使用到重要的终端 用户, 以兼顾基站中切换性能和非切换性能。 回收模块 209 , 连接至第二指示模块 404 , 用于在第二指示模块 404指 示终端使用目标基站的时频域资源之后, 且该终端满足切换条件并切换完成 之后,回收预留的时频域资源;第三指示模块 408 ,连接至第二指示模块 404 , 用于在第二指示模块 404指示终端使用目标基站的时频域资源之后, 且该终 端满足切换条件并切换完成之后, 指示终端执行由预留的时频域资源切换到 非预留的时频域资源的操作。 这样, 在不改变原有的预留的时频域资源分配的情况下, 可以更大限度 的利用该预留的时频域资源, 以兼顾基站的切换性能和非切换性能。 综上所述, 根据本发明的上述实施例, 提供了一种小区切换的方法及系 统。 釆用在源小区与目标小区分别预留相同的时频域资源, 并且, 在终端由 源小区的源基站向目标小区的目标基站切换过程中, 源基站和目标基站指示 终端使用时频域资源。 并具体地, 通过在上下行链路的子载波中预留一部分 子载波, 作为各个不同小区间公共约定的切换预留子载波, 仅用于软切换, 各个小区间的切换预留子载波频率都相同。 这样当终端在各个小区之间进行 切换时, 由于釆用相同频率的子载波, 可以方便终端接收机接收来自多个小 区的同频信号。 同时, 在这些预留子载波中, 预留一部分公共时隙, 作为各 个不同小区间公共约定的切换预留时隙,仅用于软切换,对于某个终端而言, 分配的切换预留时隙都相同。 这样, 当终端切换时可以同时接收来自多个小 区的同频信号, 从而解决了相邻小区的上下行链路时频域不同步, 从而不得 不釆用硬切换的方法进行小区切换, 进而导致可能发生切换失败的问题, 从 而减少了终端的掉话率、 时延和误码率。 需要说明的是, 装置实施例中描述的小区切换的系统对应于上述的方法 实施例, 其具体的实现过程在方法实施例中已经进行过详细说明, 在此不再 赘述。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书 一种小区切换的方法, 其特征在于, 包括:
在源小区与目标小区分别预留相同的时频域资源;
终端由所述源小区的源基站向所述目标小区的目标基站切换; 以及 切换过程中, 所述源基站和所述目标基站指示所述终端使用所述时 频域资源。 根据权利要求 1所述的小区切换的方法, 其特征在于, 所述源基站和所 述目标基站指示所述终端使用所述时频域资源包括:
所述源基站指示所述终端使用所述源基站预留的时频域资源; 所述源基站指示所述终端直接向所述目标基站发送切换请求消息; 在接收到所述切换请求消息之后, 所述目标基站指示所述终端使用 所述目标基站预留的时频域资源。 根据权利要求 1所述的小区切换的方法, 其特征在于, 所述源小区与目 标小区通过包括以下之一的方式对所述时频域资源进行协商配置:
所述源小区的源基站和所述目标小区的目标基站通过 X2接口进行 协商配置;
所述源小区的源基站、 所述目标小区的目标基站以及核心网通过 S 1 接口进行协商配置。 根据权利要求 1所述的小区切换的方法, 其特征在于, 在所述源小区与 所述目标小区分别预留所述相同的时频域资源之后, 还包括:
在所述预留的时频域资源与非预留的时频域资源之间进行转换, 其 中, 所述非预留的时频域资源为所述源小区与所述目标小区的时频域资 源中除所述预留的时频域资源之外的时频域资源。 根据权利要求 4所述的小区切换的方法, 其特征在于,
所述源基站预先判断所述终端的服务质量等级大于阈值, 指示所述 终端执行由所述非预留的时频域资源切换到所述预留的时频域资源的操 作。
6. 根据权利要求 4所述的小区切换的方法, 其特征在于, 在所述终端由所 述源小区的源基站向所述目标小区的目标基站切换之后, 还包括: 所述源基站回收所述预留的时频域资源;
所述目标基站指示所述终端执行由所述预留的时频域资源切换到所 述非预留的时频域资源的操作。
7. —种小区切换的系统, 包括源基站和目标基站, 其特征在于,
所述源基站包括:
第一预留模块, 用于预留时频域资源,
第一指示模块, 用于指示终端使用所述时频域资源;
所述目标基站包括:
第二预留模块, 用于预留与所述源基站相同的时频域资源, 第二指示模块, 用于指示所述终端使用所述时频域资源。
8. 根据权利要求 7所述的小区切换的系统, 其特征在于, 所述第一指示模 块包括:
第一指示子模块, 用于指示所述终端使用所述源基站预留的时频域 资源;
第二指示子模块, 用于指示所述终端直接向所述目标基站发送切换 请求消息。
9. 根据权利要求 7所述的小区切换的系统, 其特征在于, 所述源基站和所 述目标基站均还包括:
转换模块, 用于在所述预留的时频域资源与非预留的时频域资源之 间进行转换, 其中, 所述非预留的时频域资源为所述源小区与所述目标 小区的时频域资源中除所述预留的时频域资源之外的时频域资源。
10. 根据权利要求 7所述的小区切换的系统, 其特征在于,
所述源基站还包括: 判断模块, 用于判断所述终端的 艮务质量等级 是否大于阈值; 所述第一指示模块, 还用于当所述服务质量等级大于阈值时, 指示 所述终端执行由所述非预留的时频域资源切换到所述预留的时频域资源 的操作。
11. 根据权利要求 7所述的小区切换的系统, 其特征在于,
所述源基站还包括:
回收模块, 用于回收所述预留的时频域资源;
所述目标基站还包括:
第三指示模块, 用于指示执行由所述预留的时频域资源切换到所述 非预留的时频域资源的操作。
PCT/CN2010/073559 2010-03-22 2010-06-04 小区切换的方法及系统 WO2011116550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010149517.9 2010-03-22
CN201010149517A CN101827408A (zh) 2010-03-22 2010-03-22 小区切换的方法及系统

Publications (1)

Publication Number Publication Date
WO2011116550A1 true WO2011116550A1 (zh) 2011-09-29

Family

ID=42691053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073559 WO2011116550A1 (zh) 2010-03-22 2010-06-04 小区切换的方法及系统

Country Status (2)

Country Link
CN (1) CN101827408A (zh)
WO (1) WO2011116550A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812052A (zh) * 2014-01-24 2015-07-29 中兴通讯股份有限公司 D2d通信同步信号的传输方法及系统、发送端及接收端

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083111B (zh) * 2011-01-27 2013-06-12 大唐移动通信设备有限公司 一种测量控制消息的发送方法和设备
US9699701B2 (en) * 2012-08-10 2017-07-04 Qualcomm Incorporated Mobility operation in LTE
CN107371205B (zh) * 2016-05-11 2022-11-08 中兴通讯股份有限公司 基站间切换方法及装置
CN108282813B (zh) * 2017-01-06 2021-10-01 展讯通信(上海)有限公司 测量报告触发方法、装置及用户设备
CN108347749B (zh) * 2017-01-24 2021-01-15 中国移动通信有限公司研究院 一种切换方法、用户设备及基站
WO2020107459A1 (zh) * 2018-11-30 2020-06-04 华为技术有限公司 一种下行信号接收方法、终端及源基站
CN112423369A (zh) * 2020-11-11 2021-02-26 北京小米移动软件有限公司 一种控制驻留的方法、装置及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074110A1 (en) * 2000-03-30 2001-10-04 Nokia Mobile Phones Limited Apparatus and method for selecting a target cell in hand-off procedure
WO2008133579A1 (en) * 2007-04-27 2008-11-06 Telefonaktiebolaget Lm Ericsson (Publ) Handover using dedicated resources reserved for a limited time interval
CN101374326A (zh) * 2007-08-23 2009-02-25 大唐移动通信设备有限公司 一种用户终端参与切换决定的切换方法及其实现设备
CN101527942A (zh) * 2008-03-07 2009-09-09 中兴通讯股份有限公司 一种微波存取全球互通系统中移动终端切换的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316436A (zh) * 2007-05-30 2008-12-03 华为技术有限公司 移动通信系统中实现切换的方法、基站及移动台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074110A1 (en) * 2000-03-30 2001-10-04 Nokia Mobile Phones Limited Apparatus and method for selecting a target cell in hand-off procedure
WO2008133579A1 (en) * 2007-04-27 2008-11-06 Telefonaktiebolaget Lm Ericsson (Publ) Handover using dedicated resources reserved for a limited time interval
CN101374326A (zh) * 2007-08-23 2009-02-25 大唐移动通信设备有限公司 一种用户终端参与切换决定的切换方法及其实现设备
CN101527942A (zh) * 2008-03-07 2009-09-09 中兴通讯股份有限公司 一种微波存取全球互通系统中移动终端切换的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812052A (zh) * 2014-01-24 2015-07-29 中兴通讯股份有限公司 D2d通信同步信号的传输方法及系统、发送端及接收端
WO2015109433A1 (zh) * 2014-01-24 2015-07-30 中兴通讯股份有限公司 D2d通信同步信号的传输方法及系统、发送端及接收端

Also Published As

Publication number Publication date
CN101827408A (zh) 2010-09-08

Similar Documents

Publication Publication Date Title
TWI713346B (zh) 無線通訊方法與無線通訊裝置
TWI772651B (zh) 無線通訊方法與無線通訊裝置
US9584274B2 (en) Method, system and apparatus for transmitting data in carrier aggregation manner
US10555254B2 (en) Wireless network access control method, device and system
WO2011116550A1 (zh) 小区切换的方法及系统
US20240129181A1 (en) Apparatus and method for performing dual connectivity in wireless communication system
JP6978494B2 (ja) ビームの切替え
TW202002691A (zh) 使用者設備之無線通訊方法及装置、電腦可讀介質
TW202008806A (zh) 用於交遞增強的方法和裝置
JP5981172B2 (ja) 無線通信システム、通信方法、基地局装置、および通信端末
CN113678546A (zh) 在下一代移动通信系统中支持向多个发送和接收点同时发送和接收的方法和装置
US8908640B2 (en) Method, apparatus and system for handover between multi-carrier cells
JP2018528652A (ja) 無認可キャリアのクリアチャネルアセスメントが失敗するときの、アップリンク制御チャネル情報の送信
EP3874852A1 (en) Methods to avoid transmission collisions for nr v2x and lte v2x within the same device
WO2010118618A1 (zh) 基站间切换方法
JP2012529841A (ja) 広帯域無線接続システムでの効率的なキャリア管理方法
US20160183135A1 (en) Scheme for transmitting and receiving information in wireless communication system
US20200314725A1 (en) Method and apparatus for carrier aggregation communication in wireless communication system
TW201737738A (zh) 經由pdcch來指示pdsch和pusch的開始符號和停止符號
WO2014163550A1 (en) Handover request indicating split of a radio bearer between cells
TW202106102A (zh) Rrc狀態之間ue輔助的快速轉換
TW202033045A (zh) 無線通訊方法及裝置、電腦可讀介質
US20100322067A1 (en) Method and apparatus to faciliate reestablishing communications in a wireless network
WO2016070784A1 (zh) 非授权频谱通信的重传方法以及基站和用户设备
TW202015366A (zh) 控制資訊之編碼和資源配置方法、使用者設備及存儲介質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848212

Country of ref document: EP

Kind code of ref document: A1