WO2011115290A1 - Working vehicle engine control device and engine control method - Google Patents

Working vehicle engine control device and engine control method Download PDF

Info

Publication number
WO2011115290A1
WO2011115290A1 PCT/JP2011/056723 JP2011056723W WO2011115290A1 WO 2011115290 A1 WO2011115290 A1 WO 2011115290A1 JP 2011056723 W JP2011056723 W JP 2011056723W WO 2011115290 A1 WO2011115290 A1 WO 2011115290A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
operation amount
engine
work vehicle
output torque
Prior art date
Application number
PCT/JP2011/056723
Other languages
French (fr)
Japanese (ja)
Inventor
雅明 今泉
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2011115290A1 publication Critical patent/WO2011115290A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2066Control of propulsion units of the type combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/415Wheel loaders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/604Engine control mode selected by driver, e.g. to manually start particle filter regeneration or to select driving style
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/26Control of the engine output torque by applying a torque limit

Definitions

  • the present invention relates to an engine control device and an engine control method for a work vehicle that drives a traveling system and a work machine system with a common engine output.
  • construction machine refers to a driving system for driving a vehicle and a working machine system such as a loader or a steering mechanism by a common engine output.
  • a loader, a skid steer loader, etc. can be illustrated.
  • the engine control device controls the fuel injection amount of the engine so that the fluctuation of the engine speed with respect to the fluctuation of the work load becomes small.
  • the engine speed is determined according to the amount of operation of the accelerator pedal, and the engine output torque is controlled to the maximum torque that can be output so as to maintain the engine speed (see Patent Document 2). (See FIG. 5).
  • the engine control device follows the engine torque curve indicating the maximum torque of the engine from the current engine speed to the engine speed corresponding to the amount of operation of the accelerator pedal. And output torque of the engine is controlled toward a matching point where the absorption torque of the torque converter of the traveling system is balanced. According to such a construction machine, it is possible to stabilize the traveling speed and the operation of the work machine system against the fluctuation of the engine load.
  • JP 2001-090574 A Japanese Patent Laying-Open No. 2008-180203 (FIG. 5)
  • the construction machine described above outputs the maximum torque until it reaches the engine speed corresponding to the operation amount of the accelerator pedal, regardless of the required output torque amount. For this reason, in the construction machine described above, even when the output torque as much as the maximum torque is not required, the maximum torque is output until the engine speed corresponding to the accelerator pedal is reached.
  • fuel is injected in a region where the efficiency of the torque converter is not good, fuel is wasted and this is one of the factors that deteriorate fuel consumption.
  • the present invention has been made in view of the above, and an object thereof is to provide an engine control device and an engine control method for a work vehicle that can reduce fuel consumption.
  • an engine control device for a work vehicle includes an operation amount detection unit that detects an operation amount of the work vehicle, and an operation detected by the operation amount detection unit.
  • the engine control method for a work vehicle includes an operation amount detection step for detecting an operation amount of the work vehicle, and an engine amount when the operation amount of the work vehicle detected by the operation amount detection step is less than a threshold value. And a control step for limiting the output torque of the engine in accordance with an equal horsepower characteristic curve that is a horsepower passing through the maximum output torque point during idle rotation.
  • the engine output torque is limited according to an equal horsepower characteristic curve that is a horsepower passing through the maximum output torque point at the time of engine idle rotation.
  • the fuel efficiency can be reduced while maintaining the required driving performance.
  • FIG. 1 is a schematic side view showing the overall configuration of a wheel loader according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a control system of the wheel loader shown in FIG.
  • FIG. 3 is a diagram showing the relationship between engine output torque, engine speed, and accelerator pedal opening in conventional engine control processing.
  • FIG. 4 is a diagram showing the relationship between the torque limit value, the engine speed, and the accelerator pedal opening when torque limit control is performed using the accelerator opening.
  • FIG. 5 is a flowchart showing an engine control processing procedure according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing the relationship between the target value of the hydraulic pump absorption torque of the work implement and the opening degree of the accelerator pedal.
  • FIG. 1 is a schematic side view showing the overall configuration of a wheel loader according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a control system of the wheel loader shown in FIG.
  • FIG. 3 is a diagram showing
  • FIG. 7 is a diagram showing the relationship between the torque limit value, the engine speed, and the accelerator pedal opening when torque limit control is performed using the engine speed.
  • FIG. 8 is a diagram showing the relationship between the torque limit value, the engine speed, and the accelerator pedal opening when the torque limit control is performed by combining the accelerator opening and the engine speed.
  • FIG. 9 corresponds to FIG. 4 and is an explanatory diagram for explaining fuel efficiency improvement when torque limit control is performed using the accelerator opening.
  • FIG. 10 corresponds to FIG. 7 and is an explanatory diagram for explaining fuel efficiency improvement when torque limit control is performed using the engine speed.
  • FIG. 11 corresponds to FIG. 8 and is an explanatory diagram for explaining fuel efficiency improvement when torque limit control is performed by combining the accelerator opening and the engine speed.
  • FIG. 12 is a diagram illustrating temporal changes in the accelerator opening, the engine speed, and the limit torque when the torque limit control according to the present embodiment is applied to the V shape work of the wheel loader.
  • FIG. 1 is a schematic side view showing the overall configuration of a wheel loader according to an embodiment of the present invention.
  • a wheel loader 1 according to an embodiment of the present invention includes a work machine 2, a frame unit 3, and a vehicle body 4.
  • the work machine 2 includes a lift arm 5.
  • the lift arm 5 is attached to the frame portion 3 with a base end portion freely swingable.
  • the frame portion 3 and the lift arm 5 are connected by a pair of lift cylinders 6.
  • the lift arm 5 swings as the lift cylinder 6 expands and contracts according to the operation of the work implement lever by the operator.
  • a bucket 7 is swingably attached to the tip of the lift arm 5.
  • the work machine 2 includes a bell crank (tilt lever) 8.
  • the bell crank 8 is rotatably supported at a substantially central portion of the lift arm 5.
  • One end portion of the bell crank 8 and the frame portion 3 are connected by a tilt cylinder 9.
  • the other end of the bell crank 8 and the bucket 7 are connected by a tilt rod 10.
  • the bucket 7 swings as the tilt cylinder 9 expands and contracts according to the operation of the work implement lever by the operator.
  • the vehicle body 4 is equipped with a traveling device for traveling the wheel loader 1 and an engine 11 for supplying drive output to the traveling device.
  • the traveling device includes a PTO mechanism 12, a torque converter (T / C) 13, a transmission 15 that can be switched forward and backward and a plurality of shift speeds, a transfer 16, and a speed reducer 19 that drives a front wheel 17 and a rear wheel 18. Is provided.
  • the drive output of the engine 11 is transmitted to the transfer 16 through the PTO mechanism 12, the T / C 13, and the transmission 15 in this order, and is transmitted to the speed reducer 19 on the front wheel 17 and rear wheel 18 side by the transfer 16.
  • the speed reducer 19 transmits the drive output of the engine 11 transmitted by the transfer 16 to the front wheels 17 and the rear wheels 18.
  • the vehicle body 4 is equipped with a variable displacement hydraulic pump 20 that supplies pressure oil to the lift cylinder 6 and the tilt cylinder 9 via a work machine control valve (not shown).
  • the hydraulic pump 20 is connected to the engine 11 via the PTO mechanism 12 and is driven using a part of the drive output of the engine 11.
  • the pump capacity of the hydraulic pump 20 is variably controlled by changing the inclination angle of the swash plate of the hydraulic pump 20 by a controller (not shown).
  • a driver's cab 21 is provided in the upper part of the vehicle body 4.
  • a driving operation device 22 including a transmission shift lever, an accelerator pedal, a brake pedal, and a work implement lever for operating the work implement 2 operated by the driver is provided in the cab 21.
  • the driver can operate the driving operation device 22 to perform forward / reverse switching of the wheel loader 1, adjustment of traveling speed (acceleration and deceleration), and operation of the work machine 2.
  • FIG. 2 is a block diagram showing a configuration of an engine control device that controls the operation of the engine 11 of the wheel loader 1 shown in FIG.
  • the engine control apparatus 100 includes an engine speed sensor 101, a speed stage sensor 103, a work implement lever sensor 104, an accelerator pedal sensor 105, a transmission controller 106, an engine controller 107, a work implement controller 111, and torque.
  • a restriction mode switch 112 is provided.
  • the engine speed sensor 101 is attached to the output rotation shaft of the engine 11 and detects the engine speed.
  • the engine speed sensor 101 inputs an electric signal indicating the engine speed to the transmission controller 106.
  • the speed stage sensor 103 detects the operation position of the speed stage lever 108 for switching the speed stage of the transmission 15 and inputs an electric signal indicating the detected operation position to the transmission controller 106.
  • the work machine lever sensor 104 detects an operation amount of the work machine lever 109 for operating the work machine 2 and inputs an electric signal indicating the detected operation amount to the work machine controller 111.
  • the accelerator pedal sensor 105 detects an operation amount of the accelerator pedal 110 and inputs an electric signal indicating the detected operation amount to the transmission controller 106.
  • the work machine controller 111 controls the pump capacity of the hydraulic pump 20 by driving the swash plate actuator 20 a based on the electrical signal input from the work machine lever sensor 104 and controlling the inclination angle of the swash plate of the hydraulic pump 20. To do.
  • the pressure oil discharged from the hydraulic pump 20 drives the lift cylinder 6, the tilt cylinder 9, and the like.
  • the engine speed sensor 101 and the accelerator pedal sensor 105 function as an operation amount detection unit according to the present invention.
  • the transmission controller 106 is realized by a microcomputer including a CPU, a RAM, a ROM, an input / output circuit, and the like.
  • a control program In the ROM of the transmission controller 106, a control program, a map 106a indicating the relationship between the output torque limit value of the engine 11 and the accelerator opening, and a map indicating the relationship between the work machine pump torque target value and the accelerator opening. 106b is stored.
  • the CPU in the transmission controller 106 loads the control program into the RAM, and executes the control program loaded into the RAM, whereby the engine speed sensor 101, the speed stage sensor 103, the accelerator pedal sensor 105, and the work machine.
  • a control signal for controlling the operation of the engine 11 is output to the engine controller 107 in accordance with the electrical signal input from the controller 111.
  • the transmission controller 106 functions as control means according to the present invention.
  • the engine controller 107 is realized by a microcomputer including a CPU, a RAM, a ROM, an input / output circuit, and the like.
  • a control program is stored in advance in the engine controller 107.
  • the CPU in the engine controller 107 loads the control program into the RAM and executes the control program loaded in the RAM, thereby controlling the operation of the engine 11 according to the control signal input from the transmission controller 106.
  • the CPU in the engine controller 107 controls the operation of the fuel injection device 11 a that controls the fuel injection amount of the engine 11 in accordance with a control signal input from the transmission controller 106.
  • the torque limit mode switch 112 is an operator operated by an operator, and is a switch for selecting and instructing a torque limit mode in which fuel efficiency is emphasized without requiring so much acceleration according to an operation by the operator.
  • the torque limit mode switch 112 inputs a torque limit mode selection instruction signal to the work machine controller 111.
  • the transmission controller 106, the engine controller 107, and the work machine controller 111 are configured separately, but the transmission controller 106, the engine controller 107, and the work machine controller 111 may be configured integrally.
  • the signals input from the sensors are not limited to the controller input in the present embodiment, and data may be obtained through communication between the controllers.
  • the control programs and maps stored in the transmission controller 106 and the engine controller 107 are files that can be installed or executed, and can be read by computers such as CD-ROMs, flexible disks, CD-Rs, and DVDs.
  • the recording medium may be recorded and provided.
  • the control program and the map may be stored on a computer connected to a network such as the Internet and provided by being downloaded via the network. Moreover, you may comprise so that a control program and a map may be provided or distributed via telecommunication lines, such as the internet.
  • FIG. 3 is a diagram showing the relationship between engine output torque, engine speed, and accelerator pedal opening (accelerator opening) in conventional engine control processing.
  • symbol A is an output torque curve showing a change in engine output torque accompanying the operation of the accelerator pedal.
  • Symbol Tmax (broken line) is an engine torque curve indicating the maximum torque that can be output by the engine.
  • Reference numeral N 0 is an engine speed that is normally referred to as an idling speed, in which an accelerator opening is zero and a minimum speed at which the engine does not stall is set.
  • Reference numerals C1 to C3 are equal horsepower curves showing the relationship between the engine output torque at which the engine output horsepower becomes constant, the engine speed and the accelerator opening. The horsepower gradually increases from the equal horsepower curves C1 to C3.
  • equal horsepower curve C1 is a curve passing through the maximum torque point when the engine rotational speed N is close to 0.
  • Reference symbol D represents an absorption torque curve of T / C13.
  • the absorption torque curve D rises and falls according to the speed stage of the transmission 15, the roadbed state, the flat road running, the uphill running, and the downhill running, in other words, according to the magnitude of the load related to the running.
  • the absorption torque curve D shown in FIG. 3 is obtained when the speed stage of the transmission 15 is at the maximum speed stage and traveling on flat ground.
  • Reference numerals L1 to L6 are examples of the regulation line for each accelerator opening used when adjusting the speed (adjusting the fuel injection amount so as to achieve the target engine speed), and depressing the accelerator pedal greatly.
  • the regulation line L1 changes to L6, and if the depression amount is Full, the engine torque curve Tmax is obtained.
  • the illustrated relationship between the engine speed and the accelerator pedal depression amount (accelerator opening) is an example of the embodiment, and the engine speed and the accelerator opening that are the maximum output torque of the regulation line are expressed as follows. You may associate.
  • the accelerator opening degree Full need not correspond to the maximum engine speed.
  • the accelerator opening degree Full may pass through the engine torque curve Tmax line at an accelerator opening degree of 80%.
  • the regulation lines are discretely shown from L1 to L6, it does not prevent the regulation line from changing linearly according to the change in the operation amount of the accelerator pedal.
  • the engine output torque is the engine speed near the engine speed N 0 .
  • Control is performed toward a matching point M with D.
  • the output torque of the engine that contributes to actual traveling is the lower part of the absorption torque curve D of the traveling system, and the upper part contributes to acceleration until shifting to the matching point M.
  • the maximum torque is output until the engine speed reaches the matching point M. Therefore, the output corresponding to the area of the region R0 shown in FIG.
  • the horsepower is used to improve acceleration, and is absorbed by the torque converter in an inefficient state, which is one of the factors that deteriorate fuel consumption.
  • the maximum speed is not required and the accelerator pedal is half-accelerated. If the engine control is performed so that the engine output torque moves on the regulation line L4 by the half accelerator operation, the matching point with the absorption torque curve D of the traveling system is M ′, and the output torque curve is indicated by an arrow.
  • the engine is controlled so as to decrease the output torque along the regulation line L4. That is, in the half accelerator operation, the torque required for traveling is about the output torque at the matching point M ′, and the maximum output torque of the engine is not required. Therefore, in the case of half-acceleration operation, the degree of deterioration of fuel consumption due to excessive consumption of fuel in a low speed region lower than the desired speed (speed obtained by the engine speed at the matching point M ′). Is getting fierce.
  • the transmission controller 106 limits the output torque of the engine, thereby suppressing fuel consumption and reducing fuel consumption. That is, as shown in FIG. 4, when the accelerator opening is less than Os (threshold), an equal horsepower characteristic curve that is a horsepower passing through the maximum output torque point P1 at the time of engine idling (idle engine speed N 0 ). The engine output torque is limited according to an equal horsepower torque limit curve LN0 which is a part of C1.
  • the accelerator opening degree Os is an accelerator opening degree corresponding to a regulation line Ls passing through the intersection P2 between the absorption torque curve D and the equal horsepower characteristic curve C1 shown in FIG.
  • the limit torque gradually increases as the accelerator opening increases from the intersection point P2 toward the matching point M1 between the absorption torque curve D of the traveling system and the maximum torque line Tmax.
  • the engine output torque is limited according to the hour torque limit characteristic curve LN1.
  • the intersection P2 is changed to the maximum horsepower point M2 on the maximum torque line Tmax.
  • the engine output torque is limited in accordance with a torque limitation characteristic curve LN2 during operation that gradually increases as the accelerator opening increases.
  • the engine output torque is in accordance with the torque limit curve TL1 including the equal horsepower torque limit curve LN0 and the running torque limit characteristic curve LN1.
  • the engine output torque is determined according to the torque limit curve TL2 composed of the equal horsepower torque limit curve LN0 and the working torque limit characteristic curve LN2. Limited.
  • torque limitation is performed to minimize the absorption torque of the hydraulic pump 20 that drives the working machine 2.
  • the limit on the absorption torque of the hydraulic pump 20 is released only when the accelerator opening is equal to or greater than Os and the work implement lever operation amount exceeds a predetermined value. That is, as shown in the map 106b in FIG. 6, when the accelerator opening is less than Os, the working machine hydraulic pump torque target value is set to the minimum value (L10), and the accelerator opening is Os or more. Even when the work implement lever operation amount is equal to or less than the predetermined value, the work implement hydraulic pump torque target value is set to the minimum value (L12), the accelerator opening is equal to or greater than Os, and the work implement lever operation amount is the predetermined value. When exceeding, the working machine hydraulic pump torque target value is set to the maximum value (L11).
  • the torque limit of the hydraulic pump 20 is controlled by a swash plate actuator 21a that controls the swash plate angle of the swash plate.
  • the running torque limit characteristic curve LN1 preferably corresponds to the absorption torque curve D of the traveling system, but the absorption torque curve D of the traveling system varies depending on the speed stage, for example, the absorption torque curve of the first forward speed, the forward 2 There is a fast absorption torque curve.
  • the running torque limit characteristic curve LN1 is preferably a curve equal to or higher than the absorption torque curve of the fourth forward speed, for example, because high speed operation is performed in the high engine speed range.
  • FIG. 5 is a flowchart showing an engine control processing procedure for limiting the output torque of the engine by the transmission controller 106.
  • the engine control process by the transmission controller 106 starts at the timing when the ignition switch of the wheel loader 1 is switched from the off state to the on state, and proceeds to the process of step S1.
  • the transmission controller 106 detects the operation amount (accelerator opening) of the accelerator pedal 110 via the accelerator pedal sensor 105, and determines the work implement lever operation amount detected by the work implement lever sensor 104. Detecting via the work machine controller 111.
  • the transmission controller 106 determines whether or not the torque limit mode switch 112 is turned on via the work machine controller 111 (step S2). When the torque limit mode switch 112 is on, it indicates that the torque limit mode is in the selection instruction state. If the torque limit mode switch 112 is not on (step S2, No), the engine output torque is not limited (step S3), and this process is terminated. When the engine output torque is not limited, the matching point is reached through the maximum torque line Tmax with high acceleration as shown in FIG.
  • the transmission controller 106 refers to the map 106b shown in FIG. 6 and controls the swash plate of the hydraulic pump 20 via the swash plate actuator 20a.
  • the pump absorption torque is limited to the minimum by minimizing the inclination angle (step S4). That is, the working machine hydraulic pump torque target value is initially set to TPmin.
  • the transmission controller 106 determines whether or not the accelerator opening is less than the threshold value Os (step S5).
  • the accelerator opening is less than the threshold value Os (step S5, Yes)
  • the torque limit value on the equal horsepower torque limit curve LN0 corresponding to the accelerator opening is acquired with reference to the map 106a shown in FIG. S6).
  • the intersection Mx between the regulation line Lx of the engine speed Nx corresponding to the accelerator opening Ox and the equal horsepower torque limit curve LN0 is obtained, and the torque limit value Tx of this intersection Mx is obtained. get. Thereafter, the process proceeds to step S11.
  • the transmission controller 106 further determines whether or not the work machine lever operation amount exceeds a predetermined value Bmin (step S7).
  • This predetermined value Bmin is a value for determining whether or not the work implement lever is operated, and is, for example, a value of 5% of the lever stroke.
  • the torque limit value on the running torque limit characteristic curve LN1 corresponding to the accelerator opening is referred to with reference to the map 106a shown in FIG. Obtain (step S8).
  • the torque limit value on the working torque limit characteristic curve LN2 corresponding to the accelerator opening is acquired with reference to the map 106a shown in FIG. (Step S9).
  • the transmission controller 106 releases the restriction that minimized the pump absorption torque by minimizing the inclination angle of the swash plate of the hydraulic pump 20 (step S10). That is, in the map 106b shown in FIG.
  • step S9 since the accelerator opening is equal to or greater than Os (region R11) and the working machine lever operation amount exceeds the predetermined value Bmin, the limit of the pump absorption torque is released, and the working machine The hydraulic pump torque target value is allowed up to TPmax (L11). Thereafter, the process proceeds to step S11. Even when the accelerator opening is equal to or greater than Os (region R11), when the operating lever operating amount is equal to or smaller than a predetermined value Bmin, the accelerator is initially set and the pump absorption torque is limited (see FIG. 6 L12). Further, when the accelerator opening is less than Os (region R10), it is in an initially set state, and the pump absorption torque is limited (L10 in FIG. 6). Note that the processing order of step S9 and step S10 may be interchanged.
  • step S11 the engine output torque is limited according to the torque limit values Tx, Ty1, Ty2 obtained in steps S6, S8, S9, respectively (step S11). That is, the torque limit value is output from the transmission controller 106 to the engine controller 107, and the engine controller 107 controls the output torque of the engine 11 based on the torque limit value.
  • the engine controller 107 determines the fuel injection amount so as to output torque on the regulation line corresponding to the engine speed at that time.
  • the engine controller 107 determines the fuel injection amount using the torque limit value as the output torque, not the output torque on the regulation line.
  • the engine speed and output torque of the engine 11 rise at the idling engine speed N 0 so as to pass the paths X, Y1, and Y2 shown in FIG.
  • the engine speed is controlled to increase while maintaining the output torques Tx, Ty1, Ty2, respectively. And it will go to matching point Mx, My1, My2 according to the accelerator opening, respectively.
  • the map 106a of the torque limit value with respect to the accelerator opening described in FIG. 4 is a numerical table with the accelerator opening as a variable. You can also In addition, since the relationship between the accelerator opening and the regulation line is used even in normal engine control without torque limitation, a map showing the relationship between the accelerator opening and the regulation line is provided in the engine controller 107 and selected. It is also possible to cause the transmission controller 106 to read out the regulation line.
  • the running torque limit characteristic curve LN1 is the same as the absorption torque curve D of the running system.
  • the running torque limit characteristic curve LN1 is not limited to the absorption torque curve D of the running system, and may be any curve that gradually increases toward the matching point M1 as the accelerator opening increases.
  • a plurality of torque limiting characteristic curves are further provided between the running torque limiting characteristic curve LN1 and the working torque limiting characteristic curve LN2, and for example, a plurality of threshold values are provided for the work machine lever operation amount to correspond to each threshold value. You may make it transfer to a some torque limitation characteristic curve.
  • the fixed torque limit value is calculated based on the accelerator opening, but the torque limit value may be calculated sequentially based on the engine speed.
  • a map showing the relationship between the output torque limit value (torque limit value) of the engine 11 and the accelerator opening as shown in FIG. A map to which is added is stored.
  • the torque limit values are the torque limit curve TL1 composed of the equal horsepower torque limit curve LN0 and the running torque limit characteristic curve LN1, the equal horsepower torque limit curve LN0, and the working torque limit characteristic curve LN2.
  • the torque limit curves TL1 and TL2 are the same as those shown in FIG. 4 from the viewpoint that the regulation line is determined by the accelerator opening.
  • the torque limit value changes according to the equal horsepower torque limit curve LN0 when the engine speed is less than the threshold value Ns ′, and when the engine speed becomes equal to or greater than the threshold value Ns ′, the running torque limit characteristic curve LN1 or the working torque.
  • the threshold Ns ′ is the engine speed at the intersection P2 between the absorption torque curve D and the equal horsepower characteristic curve C1 shown in FIG.
  • step S1 shown in FIG. 5 the engine speed is detected instead of the accelerator opening.
  • step S5 it is determined whether the engine speed is less than Ns'.
  • steps S6, S8, and S9 torque limit values on the curves LN0, LN1, and LN2 corresponding to the engine speeds are acquired. For example, in steps S6, S8, and S9, the respective intersections of the engine speeds Ns ′, Ny1 ′, and Ny2 ′ with the equal horsepower torque limiting curve LN0, the running torque limiting characteristic curve LN1, and the working torque limiting characteristic curve LN2. The matching points Mx, My1, and My2 are obtained, and the torque limit values at this time are obtained.
  • An operation amount of the work vehicle when processing the engine speed instead of the accelerator opening, the engine controller 107, as shown in FIG. 7, first, on the equal horsepower torque limit curve LN0 at idling engine speed N 0 of It moves to the intersection P1, and then reaches the matching point along the torque limit curves TL1 and TL2. For example, when moving to matching points Mx, My1, My2 (engine speeds Ns ′, Ny1 ′, Ny2 ′), the paths X ′, Y1 ′, Y2 ′ shown in FIG.
  • torque limit control using the accelerator opening and torque limit control using the engine speed may be combined. For example, as shown in FIG. 8, when the accelerator opening is less than Os (the engine speed is less than Ns ′), torque limit control using the accelerator opening is performed, and the accelerator opening is greater than or equal to Os (the engine speed is Ns ′ or higher), torque limit control using the engine speed is performed. In this case, when the accelerator opening is less than Os and the transition is made to the matching point Mx, the torque is limited by the torque limit value Tx of the matching point Mx and reaches the matching point Mx (path X ′′), and the torque is limited by the accelerator opening.
  • the engine output torque is limited according to the equal horsepower characteristic limit curve LN0, and the accelerator opening or the engine speed is equal to or greater than the threshold.
  • the working machine lever operation amount is less than or equal to the predetermined value
  • the engine output torque is limited according to the running torque limit characteristic curve LN1
  • the accelerator opening or the engine speed is greater than or equal to the threshold value.
  • the operation amount exceeds a predetermined value
  • the engine output torque is limited according to the working torque limit characteristic curve LN2.
  • the traveling system torque limit characteristic curve LN1 is a limited torque curve that is equal to or greater than the traveling system absorption torque curve. Therefore, fuel consumption can be improved while ensuring the required running torque. Further, when the accelerator opening or the engine speed is equal to or greater than the threshold value and the working machine lever operation amount exceeds a predetermined value, the fuel consumption is ensured while ensuring sufficient working torque below the working torque limit characteristic curve LN2. Can be improved. In addition, in this case, since the matching point M2 is the maximum horsepower point, the maximum horsepower can be reliably obtained, and the work is not hindered.
  • the accelerator opening degree or the engine speed is less than the threshold value, and when the accelerator opening degree or the engine speed is the threshold value or more and the work implement lever operation amount is not more than a predetermined value, that is, When it is considered that the work implement lever is not operated, the pump absorption torque is limited to the minimum, so the engine output is supplied with priority over the running torque. The fuel efficiency can be improved without impeding the running performance.
  • the accelerator opening or the engine speed is greater than or equal to the threshold value and the working machine lever operation amount exceeds a predetermined value, that is, when the working machine lever is operated, the limit to minimize the pump absorption torque Since the torque is released, fuel consumption can be improved while reliably obtaining the torque required for the work.
  • FIGS. 9 to 11 are diagrams respectively corresponding to FIGS. 4, 7, and 8 and are explanatory diagrams for explaining fuel consumption improvement according to the present embodiment.
  • FIG. 9 shows the torque limit control using the accelerator opening, and the fuel efficiency corresponding to the region R1 is improved when shifting to the matching point My1 as compared to the case of passing through the conventional maximum torque line Tmax.
  • FIG. 10 shows the time of torque limit control using the engine speed, and the fuel consumption corresponding to the region R2 is greater when the transition to the matching point My1 is made than when the conventional maximum torque line Tmax is passed. Improved. Further, FIG.
  • FIG. 11 shows the time of torque limit control using a combination of the accelerator opening and the engine speed, and the fuel efficiency corresponding to the region R3 is improved as compared with the case of passing through the conventional maximum torque line Tmax.
  • the region R3 in FIG. 11 is larger than the regions R1 and R2, and further fuel economy is improved.
  • FIG. 12 is a diagram showing temporal changes in the accelerator opening, the engine speed, and the limit torque when the torque limit control according to the present embodiment is applied to the V shape work of the wheel loader.
  • the V-shape work by the wheel loader is to move forward to the ground and excavate the earth and sand (W1), raise the boom after excavation and move backward (W2), move forward when reaching the direction change position (W3), Is a series of operations in which the waste is dumped into a hopper or dump truck and loaded (W4) through a V-shaped route.
  • L103 is a conventional output torque, and this conventional output torque has a portion exceeding the limit torque L102.
  • the torque limit is performed by the limit torque L102, in the case of this V-shaping work, the fuel consumption can be improved as compared with the conventional engine control.
  • the torque limit mode switch 112 described above is for selecting and instructing the torque limit mode when turned on.
  • the torque limit mode is not limited to this, and is normally controlled in the torque limit mode, and is canceled when turned off. May be.
  • the torque limit mode switch 112 is a mode in which the torque is limited only by the torque limit curve TL1 that is a combination of the equal horsepower torque limit curve LN0 and the running torque limit characteristic curve LN1, and the equal horsepower torque limit curve LN0 and the torque limit characteristic during work.
  • There are a plurality of modes such as a mode in which torque is limited only by the torque limit curve TL2 combined with the curve LN2, and a mode in which the travel time torque limit characteristic curve LN1 and the work time torque limit characteristic curve LN2 are switched according to the work machine lever operation amount as described above. This mode may be selected and instructed.
  • a torque limit mode corresponding to each of them may be provided.
  • the torque limit mode may be selected simultaneously with the selection of the economy work mode.
  • the torque limit mode may be selectable when the economy work mode is selected.
  • the torque limit mode may be automatically selected according to these various operations.
  • the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to the above embodiment.
  • a torque limit curve is set for each speed stage.
  • this control may be applied to each speed stage.
  • the torque limit curves are different from each other so that a smoother acceleration / shifting feeling can be obtained, such as acceleration of a work vehicle to which the present invention is applied and when shifting from 2nd speed to 3rd speed. good.
  • the torque limit value has been described using an example of the numerical value of the engine output torque.
  • the torque limit is limited by a ratio so that the maximum output torque value at the engine speed is 100% and the output torque is 80%. It may be a map.
  • other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above-described embodiments are all included in the scope of the present invention.
  • the construction machine has been described as an example.
  • work vehicles including an industrial vehicle such as a forklift and an agricultural machine such as a tractor that drives a traveling system and a work machine system with a common engine output. Can be applied.

Abstract

The disclosed device is provided with: a torque limit mode switch (112); an accelerator pedal sensor (105) which detects the accelerator opening degree; and a transmission controller (106). When the torque limit mode switch (112) has designated an output torque limit, if the accelerator opening degree is less than a threshold value (Os), the transmission controller (106) limits the output torque of the engine in accordance with an equal horsepower characteristic curve (LN0) which constitutes the horsepower passing through the maximum output torque point (P1) during the idle revolution of the engine, and if the accelerator opening degree is not less than a threshold value (Os), the transmission controller (106) limits the output torque of the engine in accordance with an in-travel torque limit characteristic curve (LN1) wherein the limit torque gradually increases according to the increase of the accelerator opening degree, from an intersection point (P2) between the equal horsepower characteristic curve (LN0) and the absorption torque curve of a travel system, toward a matching point (M1) between a maximum torque line and the absorption torque curve of the travel system. Thus, the fuel consumption for a part of surface of a region (R1) is suppressed more than during engine control by the maximum torque line (Tmax), thus fuel consumption can be reduced.

Description

作業車両のエンジン制御装置及びエンジン制御方法Engine control apparatus and engine control method for work vehicle
 本発明は、共通のエンジン出力によって走行系と作業機系とを駆動する作業車両のエンジン制御装置及びエンジン制御方法に関する。 The present invention relates to an engine control device and an engine control method for a work vehicle that drives a traveling system and a work machine system with a common engine output.
 従来、アクセルペダルの操作量に応じてエンジン出力を制御する建設機械が知られている。なお、本明細書中における“建設機械”とは、車両を走行させるための走行系とローダやステアリング機構等の作業機系とを共通のエンジン出力によって駆動するものを指し、具体的にはホイールローダやスキッドステアローダ等を例示することができる。 Conventionally, construction machines that control engine output according to the amount of operation of an accelerator pedal are known. In the present specification, “construction machine” refers to a driving system for driving a vehicle and a working machine system such as a loader or a steering mechanism by a common engine output. A loader, a skid steer loader, etc. can be illustrated.
 この種の建設機械では、作業機を動作させたときに、その作業負荷によらず安定的に動作することが求められる。このような背景から、この種の建設機械では、作業負荷の変動に対するエンジン回転数の変動が小さくなるように、エンジン制御装置が、エンジンの燃料噴射量を制御している。このようなエンジン制御では、アクセルペダルの操作量に応じてエンジンの回転数が決まり、エンジンの出力トルクはそのエンジン回転数を維持するように出力可能な最大トルクまで制御される(特許文献2の第5図参照)。一方、走行においては、エンジン制御装置は、その時点のエンジン回転数からアクセルペダルの操作量に応じたエンジン回転数になるまで、エンジンの最大トルクを示すエンジントルクカーブに沿って、エンジンの出力トルクと走行系のトルクコンバータの吸収トルクとが釣り合うマッチング点に向かってエンジンの出力トルクを制御する。このような建設機械によれば、エンジン負荷の変動に対して走行速度や作業機系の動作を安定させることができる。 This type of construction machine is required to operate stably regardless of its work load when the work machine is operated. Against this background, in this type of construction machine, the engine control device controls the fuel injection amount of the engine so that the fluctuation of the engine speed with respect to the fluctuation of the work load becomes small. In such engine control, the engine speed is determined according to the amount of operation of the accelerator pedal, and the engine output torque is controlled to the maximum torque that can be output so as to maintain the engine speed (see Patent Document 2). (See FIG. 5). On the other hand, in traveling, the engine control device follows the engine torque curve indicating the maximum torque of the engine from the current engine speed to the engine speed corresponding to the amount of operation of the accelerator pedal. And output torque of the engine is controlled toward a matching point where the absorption torque of the torque converter of the traveling system is balanced. According to such a construction machine, it is possible to stabilize the traveling speed and the operation of the work machine system against the fluctuation of the engine load.
特開2001-090574号公報JP 2001-090574 A 特開2008-180203号公報(第5図)Japanese Patent Laying-Open No. 2008-180203 (FIG. 5)
 ところで、低速で走行しているときのように、アクセルペダルの操作量が最大操作量でない、いわゆるハーフアクセル操作である場合には、最大トルクほどの出力トルクが要求されていないときが多く、加速性もそれほど要求されていない。しかしながら、上述の建設機械は、要求される出力トルク量に関係なく、アクセルペダルの操作量に応じたエンジン回転数に到達するまで最大トルクを出力する。このため、上述の建設機械では、最大トルクほどの出力トルクが要求されていないときであっても、アクセルペダルに応じたエンジン回転数になるまでは最大トルクが出力されることになり、加速性は良いがトルクコンバータの効率の良くない領域にて燃料噴射するので、燃料が無駄に消費され、燃費が悪化する要因の一つとなっている。 By the way, when the accelerator pedal operation amount is not the maximum operation amount, such as when driving at low speed, so-called half accelerator operation, the output torque as much as the maximum torque is often not required, and acceleration Sex is not so required. However, the construction machine described above outputs the maximum torque until it reaches the engine speed corresponding to the operation amount of the accelerator pedal, regardless of the required output torque amount. For this reason, in the construction machine described above, even when the output torque as much as the maximum torque is not required, the maximum torque is output until the engine speed corresponding to the accelerator pedal is reached. However, since fuel is injected in a region where the efficiency of the torque converter is not good, fuel is wasted and this is one of the factors that deteriorate fuel consumption.
 本発明は、上記に鑑みてなされたものであって、燃費の低減が可能な作業車両のエンジン制御装置及びエンジン制御方法を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide an engine control device and an engine control method for a work vehicle that can reduce fuel consumption.
 上述した課題を解決し、目的を達成するために、本発明に係る作業車両のエンジン制御装置は、作業車両の操作量を検出する操作量検出手段と、前記操作量検出手段によって検出された作業車両の操作量が閾値未満である場合、エンジンのアイドル回転時における最大出力トルク点を通る馬力となる等馬力特性曲線に従ってエンジンの出力トルクを制限する制御手段と、を備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, an engine control device for a work vehicle according to the present invention includes an operation amount detection unit that detects an operation amount of the work vehicle, and an operation detected by the operation amount detection unit. Control means for limiting the output torque of the engine in accordance with an equal horsepower characteristic curve that is a horsepower passing through a maximum output torque point when the engine is idling when the operation amount of the vehicle is less than a threshold value. .
 また、本発明に係る作業車両のエンジン制御方法は、作業車両の操作量を検出する操作量検出ステップと、前記操作量検出ステップによって検出された作業車両の操作量が閾値未満である場合、エンジンのアイドル回転時における最大出力トルク点を通る馬力となる等馬力特性曲線に従ってエンジンの出力トルクを制限する制御ステップと、を含むことを特徴とする。 The engine control method for a work vehicle according to the present invention includes an operation amount detection step for detecting an operation amount of the work vehicle, and an engine amount when the operation amount of the work vehicle detected by the operation amount detection step is less than a threshold value. And a control step for limiting the output torque of the engine in accordance with an equal horsepower characteristic curve that is a horsepower passing through the maximum output torque point during idle rotation.
 本発明によれば、作業車両の操作量が閾値未満である場合、エンジンのアイドル回転時における最大出力トルク点を通る馬力となる等馬力特性曲線に従ってエンジンの出力トルクを制限するようにしているので、必要な走行性能を維持しつつ、燃費を低減することができる。 According to the present invention, when the operation amount of the work vehicle is less than the threshold value, the engine output torque is limited according to an equal horsepower characteristic curve that is a horsepower passing through the maximum output torque point at the time of engine idle rotation. The fuel efficiency can be reduced while maintaining the required driving performance.
図1は、本発明の一実施形態であるホイールローダの全体構成を示す側面概略構成図である。FIG. 1 is a schematic side view showing the overall configuration of a wheel loader according to an embodiment of the present invention. 図2は、図1に示すホイールローダの制御系の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a control system of the wheel loader shown in FIG. 図3は、従来のエンジン制御処理におけるエンジンの出力トルクとエンジン回転数及びアクセルペダルの開度との関係を示す図である。FIG. 3 is a diagram showing the relationship between engine output torque, engine speed, and accelerator pedal opening in conventional engine control processing. 図4は、アクセル開度を用いてトルク制限制御を行う場合における、トルク制限値とエンジン回転数及びアクセルペダルの開度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the torque limit value, the engine speed, and the accelerator pedal opening when torque limit control is performed using the accelerator opening. 図5は、本発明の一実施形態であるエンジン制御処理手順を示すフローチャートである。FIG. 5 is a flowchart showing an engine control processing procedure according to an embodiment of the present invention. 図6は、作業機の油圧ポンプ吸収トルクの目標値とアクセルペダルの開度との関係を示す図である。FIG. 6 is a diagram showing the relationship between the target value of the hydraulic pump absorption torque of the work implement and the opening degree of the accelerator pedal. 図7は、エンジン回転数を用いてトルク制限制御を行う場合における、トルク制限値とエンジン回転数及びアクセルペダルの開度との関係を示す図である。FIG. 7 is a diagram showing the relationship between the torque limit value, the engine speed, and the accelerator pedal opening when torque limit control is performed using the engine speed. 図8は、アクセル開度およびエンジン回転数を組み合わせてトルク制限制御を行う場合における、トルク制限値とエンジン回転数及びアクセルペダルの開度との関係を示す図である。FIG. 8 is a diagram showing the relationship between the torque limit value, the engine speed, and the accelerator pedal opening when the torque limit control is performed by combining the accelerator opening and the engine speed. 図9は、図4に対応し、アクセル開度を用いてトルク制限制御を行う場合における燃費改善を説明する説明図である。FIG. 9 corresponds to FIG. 4 and is an explanatory diagram for explaining fuel efficiency improvement when torque limit control is performed using the accelerator opening. 図10は、図7に対応し、エンジン回転数を用いてトルク制限制御を行う場合における燃費改善を説明する説明図である。FIG. 10 corresponds to FIG. 7 and is an explanatory diagram for explaining fuel efficiency improvement when torque limit control is performed using the engine speed. 図11は、図8に対応し、アクセル開度およびエンジン回転数を組み合わせてトルク制限制御を行う場合における燃費改善を説明する説明図である。FIG. 11 corresponds to FIG. 8 and is an explanatory diagram for explaining fuel efficiency improvement when torque limit control is performed by combining the accelerator opening and the engine speed. 図12は、本実施形態によるトルク制限制御を、ホイールローダのVシェープ作業に適用した場合のアクセル開度、エンジン回転数、制限トルクの時間変化を示す図である。FIG. 12 is a diagram illustrating temporal changes in the accelerator opening, the engine speed, and the limit torque when the torque limit control according to the present embodiment is applied to the V shape work of the wheel loader.
 以下、図面を参照して、本発明の一実施形態であるホイールローダの構成及びそのエンジン制御処理の流れについて説明する。なお、本発明の適用範囲は、ホイールローダに限定されることはなく、共通のエンジン出力が走行系と作業機系とに分配される作業車両であれば、同様に適用することができる。 Hereinafter, a configuration of a wheel loader according to an embodiment of the present invention and a flow of an engine control process thereof will be described with reference to the drawings. The scope of application of the present invention is not limited to the wheel loader, and can be similarly applied to any work vehicle in which a common engine output is distributed to the traveling system and the work machine system.
〔ホイールローダの全体構成〕
 始めに、図1を参照して、本発明の一実施形態であるホイールローダの全体構成について説明する。
[Wheel loader overall configuration]
First, an overall configuration of a wheel loader that is one embodiment of the present invention will be described with reference to FIG.
 図1は、本発明の一実施形態であるホイールローダの全体構成を示す側面概略構成図である。図1に示すように、本発明の一実施形態であるホイールローダ1は、作業機2,フレーム部3,及び車体4を備える。 FIG. 1 is a schematic side view showing the overall configuration of a wheel loader according to an embodiment of the present invention. As shown in FIG. 1, a wheel loader 1 according to an embodiment of the present invention includes a work machine 2, a frame unit 3, and a vehicle body 4.
 作業機2は、リフトアーム5を備える。リフトアーム5は、基端部を揺動自在にしてフレーム部3に取り付けられている。フレーム部3とリフトアーム5とは、一対のリフトシリンダ6によって連結されている。リフトアーム5は、オペレータによる作業機レバーの操作に応じてリフトシリンダ6が伸縮することによって、揺動する。リフトアーム5の先端部には、バケット7が揺動自在に取り付けられている。作業機2は、ベルクランク(チルトレバー)8を備える。ベルクランク8は、リフトアーム5の略中央部において回動自在に支持されている。ベルクランク8の一端部とフレーム部3とは、チルトシリンダ9によって連結されている。ベルクランク8の他端部とバケット7とは、チルトロッド10によって連結されている。バケット7は、オペレータによる作業機レバーの操作に応じてチルトシリンダ9が伸縮することによって、揺動する。 The work machine 2 includes a lift arm 5. The lift arm 5 is attached to the frame portion 3 with a base end portion freely swingable. The frame portion 3 and the lift arm 5 are connected by a pair of lift cylinders 6. The lift arm 5 swings as the lift cylinder 6 expands and contracts according to the operation of the work implement lever by the operator. A bucket 7 is swingably attached to the tip of the lift arm 5. The work machine 2 includes a bell crank (tilt lever) 8. The bell crank 8 is rotatably supported at a substantially central portion of the lift arm 5. One end portion of the bell crank 8 and the frame portion 3 are connected by a tilt cylinder 9. The other end of the bell crank 8 and the bucket 7 are connected by a tilt rod 10. The bucket 7 swings as the tilt cylinder 9 expands and contracts according to the operation of the work implement lever by the operator.
 車体4には、ホイールローダ1を走行させるための走行装置と、走行装置に駆動出力を供給するエンジン11とが搭載されている。走行装置は、PTO機構12,トルクコンバータ(T/C)13,前後進切替及び複数段の変速段切替が可能なトランスミッション15,トランスファ16,及び前輪17と後輪18とを駆動する減速機19を備える。エンジン11の駆動出力は、PTO機構12,T/C13,及びトランスミッション15を順に介してトランスファ16に伝達され、トランスファ16によって前輪17及び後輪18側の減速機19に伝達される。減速機19は、トランスファ16によって伝達されたエンジン11の駆動出力を前輪17及び後輪18に伝達する。 The vehicle body 4 is equipped with a traveling device for traveling the wheel loader 1 and an engine 11 for supplying drive output to the traveling device. The traveling device includes a PTO mechanism 12, a torque converter (T / C) 13, a transmission 15 that can be switched forward and backward and a plurality of shift speeds, a transfer 16, and a speed reducer 19 that drives a front wheel 17 and a rear wheel 18. Is provided. The drive output of the engine 11 is transmitted to the transfer 16 through the PTO mechanism 12, the T / C 13, and the transmission 15 in this order, and is transmitted to the speed reducer 19 on the front wheel 17 and rear wheel 18 side by the transfer 16. The speed reducer 19 transmits the drive output of the engine 11 transmitted by the transfer 16 to the front wheels 17 and the rear wheels 18.
 車体4には、図示しない作業機用制御弁を介してリフトシリンダ6とチルトシリンダ9とに圧油を供給する可変容量型の油圧ポンプ20が搭載されている。油圧ポンプ20は、PTO機構12を介してエンジン11に連結され、エンジン11の駆動出力の一部を使って駆動される。油圧ポンプ20のポンプ容量は、図示しないコントローラが油圧ポンプ20の斜板の傾斜角を変更することによって可変制御される。車体4の上部には、運転室21が設けられている。運転室21内には、運転者によって操作される変速機シフトレバー,アクセルペダル,ブレーキペダル,及び作業機2を操作するための作業機レバー等を含む運転操作装置22が設けられている。運転者は、運転操作装置22を操作することにより、ホイールローダ1の前後進切替,走行速度の調節(加速と減速),及び作業機2の操作を行うことができる。 The vehicle body 4 is equipped with a variable displacement hydraulic pump 20 that supplies pressure oil to the lift cylinder 6 and the tilt cylinder 9 via a work machine control valve (not shown). The hydraulic pump 20 is connected to the engine 11 via the PTO mechanism 12 and is driven using a part of the drive output of the engine 11. The pump capacity of the hydraulic pump 20 is variably controlled by changing the inclination angle of the swash plate of the hydraulic pump 20 by a controller (not shown). A driver's cab 21 is provided in the upper part of the vehicle body 4. A driving operation device 22 including a transmission shift lever, an accelerator pedal, a brake pedal, and a work implement lever for operating the work implement 2 operated by the driver is provided in the cab 21. The driver can operate the driving operation device 22 to perform forward / reverse switching of the wheel loader 1, adjustment of traveling speed (acceleration and deceleration), and operation of the work machine 2.
〔エンジン制御装置の構成〕
 次に、図2を参照して、エンジン11の動作を制御するエンジン制御装置の構成について説明する。
[Configuration of engine control unit]
Next, the configuration of the engine control device that controls the operation of the engine 11 will be described with reference to FIG.
 図2は、図1に示すホイールローダ1のエンジン11の動作を制御するエンジン制御装置の構成を示すブロック図である。図2に示すように、エンジン制御装置100は、エンジン回転数センサ101,速度段センサ103,作業機レバーセンサ104,アクセルペダルセンサ105,トランスミッションコントローラ106,エンジンコントローラ107,作業機コントローラ111,及びトルク制限モードスイッチ112を備える。 FIG. 2 is a block diagram showing a configuration of an engine control device that controls the operation of the engine 11 of the wheel loader 1 shown in FIG. As shown in FIG. 2, the engine control apparatus 100 includes an engine speed sensor 101, a speed stage sensor 103, a work implement lever sensor 104, an accelerator pedal sensor 105, a transmission controller 106, an engine controller 107, a work implement controller 111, and torque. A restriction mode switch 112 is provided.
 エンジン回転数センサ101は、エンジン11の出力回転軸に付設され、エンジン回転数を検出する。エンジン回転数センサ101は、エンジン回転数を示す電気信号をトランスミッションコントローラ106に入力する。 The engine speed sensor 101 is attached to the output rotation shaft of the engine 11 and detects the engine speed. The engine speed sensor 101 inputs an electric signal indicating the engine speed to the transmission controller 106.
 速度段センサ103は、トランスミッション15の速度段を切り替えるための速度段レバー108の操作位置を検出し、検出された操作位置を示す電気信号をトランスミッションコントローラ106に入力する。作業機レバーセンサ104は、作業機2を操作するための作業機レバー109の操作量を検出し、検出された操作量を示す電気信号を作業機コントローラ111に入力する。 The speed stage sensor 103 detects the operation position of the speed stage lever 108 for switching the speed stage of the transmission 15 and inputs an electric signal indicating the detected operation position to the transmission controller 106. The work machine lever sensor 104 detects an operation amount of the work machine lever 109 for operating the work machine 2 and inputs an electric signal indicating the detected operation amount to the work machine controller 111.
 アクセルペダルセンサ105は、アクセルペダル110の操作量を検出し、検出された操作量を示す電気信号をトランスミッションコントローラ106に入力する。作業機コントローラ111は、作業機レバーセンサ104から入力された電気信号に基づき、斜板アクチュエータ20aを駆動し、油圧ポンプ20の斜板の傾斜角を制御することによって油圧ポンプ20のポンプ容量を制御する。この油圧ポンプ20から吐出された圧油は、リフトシリンダ6やチルトシリンダ9等を駆動する。エンジン回転数センサ101及びアクセルペダルセンサ105は、本発明に係る操作量検出手段として機能する。 The accelerator pedal sensor 105 detects an operation amount of the accelerator pedal 110 and inputs an electric signal indicating the detected operation amount to the transmission controller 106. The work machine controller 111 controls the pump capacity of the hydraulic pump 20 by driving the swash plate actuator 20 a based on the electrical signal input from the work machine lever sensor 104 and controlling the inclination angle of the swash plate of the hydraulic pump 20. To do. The pressure oil discharged from the hydraulic pump 20 drives the lift cylinder 6, the tilt cylinder 9, and the like. The engine speed sensor 101 and the accelerator pedal sensor 105 function as an operation amount detection unit according to the present invention.
 トランスミッションコントローラ106は、CPU,RAM,ROM,入出力回路等を含むマイクロコンピュータによって実現される。トランスミッションコントローラ106のROM内には、制御プログラムと、エンジン11の出力トルクの制限値とアクセル開度との関係を示すマップ106aと、作業機ポンプトルク目標値とアクセル開度との関係を示すマップ106bとが記憶されている。 The transmission controller 106 is realized by a microcomputer including a CPU, a RAM, a ROM, an input / output circuit, and the like. In the ROM of the transmission controller 106, a control program, a map 106a indicating the relationship between the output torque limit value of the engine 11 and the accelerator opening, and a map indicating the relationship between the work machine pump torque target value and the accelerator opening. 106b is stored.
 トランスミッションコントローラ106内のCPUは、制御プログラムをRAM内にロードし、RAM内にロードされた制御プログラムを実行することによって、エンジン回転数センサ101,速度段センサ103,アクセルペダルセンサ105,及び作業機コントローラ111から入力される電気信号に従って、エンジン11の動作を制御する制御信号をエンジンコントローラ107に出力する。トランスミッションコントローラ106は、本発明に係る制御手段として機能する。 The CPU in the transmission controller 106 loads the control program into the RAM, and executes the control program loaded into the RAM, whereby the engine speed sensor 101, the speed stage sensor 103, the accelerator pedal sensor 105, and the work machine. A control signal for controlling the operation of the engine 11 is output to the engine controller 107 in accordance with the electrical signal input from the controller 111. The transmission controller 106 functions as control means according to the present invention.
 エンジンコントローラ107は、CPU,RAM,ROM,入出力回路等を含むマイクロコンピュータによって実現される。エンジンコントローラ107内には、制御プログラムが予め記憶されている。エンジンコントローラ107内のCPUは、制御プログラムをRAM内にロードし、RAM内にロードされた制御プログラムを実行することによって、トランスミッションコントローラ106から入力される制御信号に従って、エンジン11の動作を制御する。具体的には、エンジンコントローラ107内のCPUは、トランスミッションコントローラ106から入力される制御信号に従ってエンジン11の燃料噴射量を制御する燃料噴射装置11aの動作を制御する。 The engine controller 107 is realized by a microcomputer including a CPU, a RAM, a ROM, an input / output circuit, and the like. A control program is stored in advance in the engine controller 107. The CPU in the engine controller 107 loads the control program into the RAM and executes the control program loaded in the RAM, thereby controlling the operation of the engine 11 according to the control signal input from the transmission controller 106. Specifically, the CPU in the engine controller 107 controls the operation of the fuel injection device 11 a that controls the fuel injection amount of the engine 11 in accordance with a control signal input from the transmission controller 106.
 トルク制限モードスイッチ112は、オペレータによって操作される操作子であり、オペレータによる操作に応じて、加速性をそれほど要求せずに燃費を重視したトルク制限モードを選択指示するスイッチである。トルク制限モードスイッチ112は、トルク制限モードの選択指示信号を作業機コントローラ111に入力する。 The torque limit mode switch 112 is an operator operated by an operator, and is a switch for selecting and instructing a torque limit mode in which fuel efficiency is emphasized without requiring so much acceleration according to an operation by the operator. The torque limit mode switch 112 inputs a torque limit mode selection instruction signal to the work machine controller 111.
 なお、本実施形態では、トランスミッションコントローラ106とエンジンコントローラ107と作業機コントローラ111とを別体により構成したが、トランスミッションコントローラ106とエンジンコントローラ107と作業機コントローラ111とを一体によって構成してもよい。また、センサ類からの信号についても、入力されるコントローラが本実施形態に限定されるものではなく、コントローラ間の通信によってデータを入手できるように構成してもよい。また、トランスミッションコントローラ106やエンジンコントローラ107内に格納される制御プログラムやマップは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM,フレキシブルディスク,CD-R,DVD等のコンピュータが読み取り可能な記録媒体に記録して提供するように構成してもよい。また、制御プログラムやマップは、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることによって提供するように構成してもよい。また、制御プログラムやマップをインターネット等の電気通信回線を介して提供又は配布するように構成してもよい。 In the present embodiment, the transmission controller 106, the engine controller 107, and the work machine controller 111 are configured separately, but the transmission controller 106, the engine controller 107, and the work machine controller 111 may be configured integrally. Also, the signals input from the sensors are not limited to the controller input in the present embodiment, and data may be obtained through communication between the controllers. The control programs and maps stored in the transmission controller 106 and the engine controller 107 are files that can be installed or executed, and can be read by computers such as CD-ROMs, flexible disks, CD-Rs, and DVDs. The recording medium may be recorded and provided. Further, the control program and the map may be stored on a computer connected to a network such as the Internet and provided by being downloaded via the network. Moreover, you may comprise so that a control program and a map may be provided or distributed via telecommunication lines, such as the internet.
〔エンジン制御処理〕
 次に、図3乃至図8を参照して、ホイールローダ1の燃費を低減するためのエンジン制御処理の流れについて説明する。
[Engine control processing]
Next, the flow of engine control processing for reducing the fuel consumption of the wheel loader 1 will be described with reference to FIGS. 3 to 8.
 図3は、従来のエンジン制御処理におけるエンジンの出力トルクとエンジン回転数及びアクセルペダルの開度(アクセル開度)との関係を示す図である。図3中、符号Aは、アクセルペダルの操作に伴うエンジンの出力トルクの変化を示す出力トルク曲線である。符号Tmax(破線)は、エンジンが出力可能な最大トルクを示すエンジントルクカーブである。符号Nは、通常アイドル回転と呼ばれるエンジン回転数であり、アクセル開度がゼロで、エンジンがエンストしない最低回転数が設定されている。符号C1~C3は、エンジンの出力馬力が一定になるエンジンの出力トルクとエンジン回転数及びアクセル開度との関係を示す等馬力曲線である。等馬力曲線C1からC3に向けて馬力は順次大きくなっている。等馬力曲線C1から等馬力曲線C3に向かって順にエンジンの出力馬力が増加する。なお、等馬力曲線C1は、エンジン回転数N付近であるときの最大トルク点を通る曲線である。符号Dは、T/C13の吸収トルク曲線を示す。なお、吸収トルク曲線Dは、トランスミッション15の速度段、路盤状態、平地走行、登坂走行、降坂走行に応じて、換言すれば、走行に係る負荷の大小に応じて上下する。図3に示す吸収トルク曲線Dは、トランスミッション15の速度段が最大速度段にあり平地走行しているときのものである。符号L1~L6は、調速(目標のエンジン回転数となるように燃料噴射量を調整すること)を行う際に使用されるアクセル開度毎のレギュレーションラインの例示であり、アクセルペダルを大きく踏み込めば、アクセル開度が大きくなりレギュレーションラインL1からL6へ、さらには踏み込み量がFullであれば、エンジントルクカーブTmaxのラインになる。なお、図示されたエンジン回転数とアクセルペダルの踏み込み量(アクセル開度)との関係は実施形態の一例を示すものであり、レギュレーションラインの最大出力トルクとなるエンジン回転数とアクセル開度とを関連付けしてもよい。また、アクセル開度Fullと最大エンジン回転数とが対応している必要はなく、例えば、アクセル開度80%でエンジントルクカーブTmaxのラインを通るようにしてもよい。さらに、レギュレーションラインをL1~L6まで離散的に図示したが、アクセルペダルの操作量の変化に応じてリニアに変化するようにすることを妨げるものではない。 FIG. 3 is a diagram showing the relationship between engine output torque, engine speed, and accelerator pedal opening (accelerator opening) in conventional engine control processing. In FIG. 3, symbol A is an output torque curve showing a change in engine output torque accompanying the operation of the accelerator pedal. Symbol Tmax (broken line) is an engine torque curve indicating the maximum torque that can be output by the engine. Reference numeral N 0 is an engine speed that is normally referred to as an idling speed, in which an accelerator opening is zero and a minimum speed at which the engine does not stall is set. Reference numerals C1 to C3 are equal horsepower curves showing the relationship between the engine output torque at which the engine output horsepower becomes constant, the engine speed and the accelerator opening. The horsepower gradually increases from the equal horsepower curves C1 to C3. The output horsepower of the engine increases in order from the equal horsepower curve C1 toward the equal horsepower curve C3. Incidentally, equal horsepower curve C1 is a curve passing through the maximum torque point when the engine rotational speed N is close to 0. Reference symbol D represents an absorption torque curve of T / C13. The absorption torque curve D rises and falls according to the speed stage of the transmission 15, the roadbed state, the flat road running, the uphill running, and the downhill running, in other words, according to the magnitude of the load related to the running. The absorption torque curve D shown in FIG. 3 is obtained when the speed stage of the transmission 15 is at the maximum speed stage and traveling on flat ground. Reference numerals L1 to L6 are examples of the regulation line for each accelerator opening used when adjusting the speed (adjusting the fuel injection amount so as to achieve the target engine speed), and depressing the accelerator pedal greatly. For example, if the accelerator opening increases, the regulation line L1 changes to L6, and if the depression amount is Full, the engine torque curve Tmax is obtained. The illustrated relationship between the engine speed and the accelerator pedal depression amount (accelerator opening) is an example of the embodiment, and the engine speed and the accelerator opening that are the maximum output torque of the regulation line are expressed as follows. You may associate. Further, the accelerator opening degree Full need not correspond to the maximum engine speed. For example, the accelerator opening degree Full may pass through the engine torque curve Tmax line at an accelerator opening degree of 80%. Further, although the regulation lines are discretely shown from L1 to L6, it does not prevent the regulation line from changing linearly according to the change in the operation amount of the accelerator pedal.
 従来のエンジン制御処理では、エンジンの出力トルクは、図3の出力トルク曲線の実線(矢印A)に示すように、アクセルペダルが操作されたとき、エンジン回転数がエンジン回転数N近傍においてエンジンが出力可能な最大トルクの大きさに制御され実線のように立ち上がり、そこからエンジン回転数の上昇に伴い、最大トルクを示すエンジントルクカーブTmaxに沿ってエンジンの出力トルクと走行系の吸収トルク曲線Dとのマッチング点Mに向かって制御される。ここで、実際の走行に寄与するエンジンの出力トルクは、走行系の吸収トルク曲線Dの図示の下部分であり、上部分はマッチング点Mに移行するまでの加速性に寄与する。このため、従来のエンジン制御処理では、エンジン回転数がマッチング点Mに到達するまで最大トルクが出力されるため、走行系の吸収トルク分を除いた図3に示す領域R0の面積に相当する出力馬力は、加速性を良くするために用いられるとともに、効率の良くない状態のトルクコンバータに吸収され、燃費が悪化する要因の一つとなっていた。 In the conventional engine control process, as shown by the solid line (arrow A) of the output torque curve in FIG. 3, when the accelerator pedal is operated, the engine output torque is the engine speed near the engine speed N 0 . Is controlled to the maximum torque that can be output and rises as shown by a solid line, and the engine output torque and the absorption torque curve of the traveling system along the engine torque curve Tmax indicating the maximum torque as the engine speed increases. Control is performed toward a matching point M with D. Here, the output torque of the engine that contributes to actual traveling is the lower part of the absorption torque curve D of the traveling system, and the upper part contributes to acceleration until shifting to the matching point M. For this reason, in the conventional engine control process, the maximum torque is output until the engine speed reaches the matching point M. Therefore, the output corresponding to the area of the region R0 shown in FIG. The horsepower is used to improve acceleration, and is absorbed by the torque converter in an inefficient state, which is one of the factors that deteriorate fuel consumption.
 さらに、最大速度が必要ではなく、アクセルペダルをハーフアクセル操作としている状態を考える。いま、エンジン出力トルクがハーフアクセル操作によってレギュレーションラインL4上を動くようにエンジン制御が行われているとすると、走行系の吸収トルク曲線Dとのマッチング点はM’となり、出力トルク曲線は、矢印Bが示す経路になり、レギュレーションラインL4に沿って出力トルクを減少させるようにエンジン制御される。つまり、ハーフアクセル操作においては、走行に必要なトルクはマッチング点M’の出力トルク程度であり、エンジンの最大出力トルクを要求されていないことになる。従って、ハーフアクセル操作による場合、その所望する速度(マッチング点M’でのエンジン回転数によって得られる速度)よりも低い低速度の領域で必要以上の加速に燃料が消費され、燃費が悪化する度合いが激しくなっている。 Suppose further that the maximum speed is not required and the accelerator pedal is half-accelerated. If the engine control is performed so that the engine output torque moves on the regulation line L4 by the half accelerator operation, the matching point with the absorption torque curve D of the traveling system is M ′, and the output torque curve is indicated by an arrow. The engine is controlled so as to decrease the output torque along the regulation line L4. That is, in the half accelerator operation, the torque required for traveling is about the output torque at the matching point M ′, and the maximum output torque of the engine is not required. Therefore, in the case of half-acceleration operation, the degree of deterioration of fuel consumption due to excessive consumption of fuel in a low speed region lower than the desired speed (speed obtained by the engine speed at the matching point M ′). Is getting fierce.
 そこで、本発明の実施形態であるホイールローダ1では、トランスミッションコントローラ106が、エンジンの出力トルク制限を行うことにより、燃料が無駄に消費されることを抑制して燃費を低減するようにしている。すなわち、図4に示すように、アクセル開度がOs(閾値)未満である場合、エンジンのアイドル回転時(アイドルエンジン回転数N)における最大出力トルク点P1を通る馬力となる等馬力特性曲線C1の一部である等馬力トルク制限曲線LN0に従ってエンジンの出力トルクを制限する。なお、アクセル開度Osは、図3に示した吸収トルク曲線Dと等馬力特性曲線C1との交点P2を通るレギュレーションラインLsに対応するアクセル開度である。また、アクセル開度がOs以上である場合、交点P2から、走行系の吸収トルク曲線Dと最大トルク線Tmaxとのマッチング点M1に向けてアクセル開度の増加に応じて制限トルクが漸増する走行時トルク制限特性曲線LN1に従ってエンジンの出力トルクを制限する。さらに、アクセル開度がOs以上である場合であって、作業機レバーセンサ104が検出する作業機レバー操作量が所定値を越える場合、交点P2から、最大トルク線Tmax上の最大馬力点M2に向けてアクセル開度の増加に応じて漸増する作業時トルク制限特性曲線LN2に従ってエンジンの出力トルクを制限する。 Thus, in the wheel loader 1 according to the embodiment of the present invention, the transmission controller 106 limits the output torque of the engine, thereby suppressing fuel consumption and reducing fuel consumption. That is, as shown in FIG. 4, when the accelerator opening is less than Os (threshold), an equal horsepower characteristic curve that is a horsepower passing through the maximum output torque point P1 at the time of engine idling (idle engine speed N 0 ). The engine output torque is limited according to an equal horsepower torque limit curve LN0 which is a part of C1. The accelerator opening degree Os is an accelerator opening degree corresponding to a regulation line Ls passing through the intersection P2 between the absorption torque curve D and the equal horsepower characteristic curve C1 shown in FIG. In addition, when the accelerator opening is equal to or greater than Os, the limit torque gradually increases as the accelerator opening increases from the intersection point P2 toward the matching point M1 between the absorption torque curve D of the traveling system and the maximum torque line Tmax. The engine output torque is limited according to the hour torque limit characteristic curve LN1. Further, when the accelerator opening is equal to or greater than Os and the work implement lever operation amount detected by the work implement lever sensor 104 exceeds a predetermined value, the intersection P2 is changed to the maximum horsepower point M2 on the maximum torque line Tmax. The engine output torque is limited in accordance with a torque limitation characteristic curve LN2 during operation that gradually increases as the accelerator opening increases.
 すなわち、アクセル開度がOs以上のとき作業機レバー操作量が所定値以下である場合、等馬力トルク制限曲線LN0と走行時トルク制限特性曲線LN1とからなるトルク制限曲線TL1に従ってエンジンの出力トルクが制限され、アクセル開度がOs以上のとき作業機レバー操作量が所定値を超える場合、等馬力トルク制限曲線LN0と作業時トルク制限特性曲線LN2とからなるトルク制限曲線TL2に従ってエンジンの出力トルクが制限される。なお、作業機レバー操作量が所定値以下である走行時は、作業機2を駆動する油圧ポンプ20の吸収トルクを最小にするトルク制限を行う。逆に、アクセル開度がOs以上である場合であって、作業機レバー操作量が所定値を超える場合にのみ、油圧ポンプ20の吸収トルク制限を解除する。すなわち、図6に示したマップ106bのように、アクセル開度がOs未満の場合には、作業機油圧ポンプトルク目標値を最小値に設定し(L10)、アクセル開度がOs以上であって作業機レバー操作量が所定値以下である場合にも、作業機油圧ポンプトルク目標値を最小値に設定し(L12)、アクセル開度がOs以上であって作業機レバー操作量が所定値を越える場合、作業機油圧ポンプトルク目標値を最大値に設定する(L11)。ここで、油圧ポンプ20のトルク制限は、斜板の斜板角を制御する斜板アクチュエータ21aによって制御される。なお、走行時トルク制限特性曲線LN1は、走行系の吸収トルク曲線Dに対応するものが好ましいが、走行系の吸収トルク曲線Dは速度段により異なり、たとえば前進1速の吸収トルク曲線、前進2速の吸収トルク曲線などがある。ここで、走行時トルク制限特性曲線LN1は、高エンジン回転数領域で高速運転となるため、たとえば前進4速の吸収トルク曲線以上の曲線であることが好ましい。 That is, when the accelerator opening is greater than or equal to Os and the work implement lever operation amount is less than or equal to a predetermined value, the engine output torque is in accordance with the torque limit curve TL1 including the equal horsepower torque limit curve LN0 and the running torque limit characteristic curve LN1. When the accelerator opening is greater than or equal to Os and the working machine lever operation amount exceeds a predetermined value, the engine output torque is determined according to the torque limit curve TL2 composed of the equal horsepower torque limit curve LN0 and the working torque limit characteristic curve LN2. Limited. When traveling with the working machine lever operation amount being a predetermined value or less, torque limitation is performed to minimize the absorption torque of the hydraulic pump 20 that drives the working machine 2. Conversely, the limit on the absorption torque of the hydraulic pump 20 is released only when the accelerator opening is equal to or greater than Os and the work implement lever operation amount exceeds a predetermined value. That is, as shown in the map 106b in FIG. 6, when the accelerator opening is less than Os, the working machine hydraulic pump torque target value is set to the minimum value (L10), and the accelerator opening is Os or more. Even when the work implement lever operation amount is equal to or less than the predetermined value, the work implement hydraulic pump torque target value is set to the minimum value (L12), the accelerator opening is equal to or greater than Os, and the work implement lever operation amount is the predetermined value. When exceeding, the working machine hydraulic pump torque target value is set to the maximum value (L11). Here, the torque limit of the hydraulic pump 20 is controlled by a swash plate actuator 21a that controls the swash plate angle of the swash plate. The running torque limit characteristic curve LN1 preferably corresponds to the absorption torque curve D of the traveling system, but the absorption torque curve D of the traveling system varies depending on the speed stage, for example, the absorption torque curve of the first forward speed, the forward 2 There is a fast absorption torque curve. Here, the running torque limit characteristic curve LN1 is preferably a curve equal to or higher than the absorption torque curve of the fourth forward speed, for example, because high speed operation is performed in the high engine speed range.
 以下、図5に示すフローチャートを参照して、トランスミッションコントローラ106によるエンジンの出力トルク制限を行うエンジン制御処理手順について説明する。図5は、トランスミッションコントローラ106によるエンジンの出力トルク制限を行うエンジン制御処理手順を示すフローチャートである。トランスミッションコントローラ106によるエンジン制御処理は、ホイールローダ1のイグニッションスイッチがオフ状態からオン状態に切り替えられたタイミングで開始となり、ステップS1の処理に進む。 Hereinafter, an engine control processing procedure for limiting engine output torque by the transmission controller 106 will be described with reference to a flowchart shown in FIG. FIG. 5 is a flowchart showing an engine control processing procedure for limiting the output torque of the engine by the transmission controller 106. The engine control process by the transmission controller 106 starts at the timing when the ignition switch of the wheel loader 1 is switched from the off state to the on state, and proceeds to the process of step S1.
 まず、ステップS1の処理では、トランスミッションコントローラ106が、アクセルペダルセンサ105を介してアクセルペダル110の操作量(アクセル開度)を検出するとともに、作業機レバーセンサ104が検出する作業機レバー操作量を、作業機コントローラ111を介して検出する。 First, in the process of step S1, the transmission controller 106 detects the operation amount (accelerator opening) of the accelerator pedal 110 via the accelerator pedal sensor 105, and determines the work implement lever operation amount detected by the work implement lever sensor 104. Detecting via the work machine controller 111.
 その後、トランスミッションコントローラ106は、作業機コントローラ111を介してトルク制限モードスイッチ112がオンであるか否かを判断する(ステップS2)。トルク制限モードスイッチ112がオンの場合は、トルク制限モードが選択指示状態であることを示す。トルク制限モードスイッチ112がオンでない場合(ステップS2,No)、エンジンの出力トルク制限を行わず(ステップS3)、本処理を終了する。エンジンの出力トルク制限を行わない場合、図3に示したように、高い加速性をもって、最大トルク線Tmaxを通ってマッチング点に到達する。 Thereafter, the transmission controller 106 determines whether or not the torque limit mode switch 112 is turned on via the work machine controller 111 (step S2). When the torque limit mode switch 112 is on, it indicates that the torque limit mode is in the selection instruction state. If the torque limit mode switch 112 is not on (step S2, No), the engine output torque is not limited (step S3), and this process is terminated. When the engine output torque is not limited, the matching point is reached through the maximum torque line Tmax with high acceleration as shown in FIG.
 一方、トルク制限モードスイッチ112がオンである場合(ステップS2,Yes)、トランスミッションコントローラ106は、図6に示すマップ106bを参照して、斜板アクチュエータ20aを介して、油圧ポンプ20の斜板の傾斜角を最小にしてポンプ吸収トルクを最小に制限する(ステップS4)。すなわち、作業機油圧ポンプトルク目標値をTPminに初期設定する。 On the other hand, when the torque limit mode switch 112 is on (step S2, Yes), the transmission controller 106 refers to the map 106b shown in FIG. 6 and controls the swash plate of the hydraulic pump 20 via the swash plate actuator 20a. The pump absorption torque is limited to the minimum by minimizing the inclination angle (step S4). That is, the working machine hydraulic pump torque target value is initially set to TPmin.
 その後、トランスミッションコントローラ106は、アクセル開度が閾値Os未満であるか否かを判断する(ステップS5)。アクセル開度が閾値Os未満である場合(ステップS5,Yes)、図4に示すマップ106aを参照して、アクセル開度に応じた等馬力トルク制限曲線LN0上のトルク制限値を取得する(ステップS6)。たとえば、アクセル開度がOxである場合、このアクセル開度Oxに対応するエンジン回転数NxのレギュレーションラインLxと等馬力トルク制限曲線LN0との交点Mxを求め、この交点Mxのトルク制限値Txを取得する。その後、ステップS11に移行する。 Thereafter, the transmission controller 106 determines whether or not the accelerator opening is less than the threshold value Os (step S5). When the accelerator opening is less than the threshold value Os (step S5, Yes), the torque limit value on the equal horsepower torque limit curve LN0 corresponding to the accelerator opening is acquired with reference to the map 106a shown in FIG. S6). For example, when the accelerator opening is Ox, the intersection Mx between the regulation line Lx of the engine speed Nx corresponding to the accelerator opening Ox and the equal horsepower torque limit curve LN0 is obtained, and the torque limit value Tx of this intersection Mx is obtained. get. Thereafter, the process proceeds to step S11.
 一方、アクセル開度が閾値Os以上である場合(ステップS5,No)、トランスミッションコントローラ106は、さらに作業機レバー操作量が所定値Bminを越えるか否かを判断する(ステップS7)。この所定値Bminは、作業機レバーが操作されているか否かを判定するための値で、たとえばレバーストロークの5%の値である。作業機レバー操作量が所定値Bmin以下である場合(ステップS7,No)、図4に示すマップ106aを参照して、アクセル開度に応じた走行時トルク制限特性曲線LN1上のトルク制限値を取得する(ステップS8)。たとえば、アクセル開度がOyである場合、このアクセル開度Oyに対応するエンジン回転数NyのレギュレーションラインLyと走行時トルク制限特性曲線LN1との交点My1を求め、この交点My1のトルク制限値Ty1を取得する。その後、ステップS11に移行する。 On the other hand, when the accelerator opening is equal to or greater than the threshold value Os (step S5, No), the transmission controller 106 further determines whether or not the work machine lever operation amount exceeds a predetermined value Bmin (step S7). This predetermined value Bmin is a value for determining whether or not the work implement lever is operated, and is, for example, a value of 5% of the lever stroke. When the work machine lever operation amount is equal to or smaller than the predetermined value Bmin (step S7, No), the torque limit value on the running torque limit characteristic curve LN1 corresponding to the accelerator opening is referred to with reference to the map 106a shown in FIG. Obtain (step S8). For example, when the accelerator opening is Oy, an intersection My1 between the regulation line Ly of the engine speed Ny corresponding to the accelerator opening Oy and the running torque limit characteristic curve LN1 is obtained, and the torque limit value Ty1 of the intersection My1 To get. Thereafter, the process proceeds to step S11.
 作業機レバー操作量が所定値Bminを超える場合(ステップS7,Yes)、図4に示すマップ106aを参照して、アクセル開度に応じた作業時トルク制限特性曲線LN2上のトルク制限値を取得する(ステップS9)。たとえば、アクセル開度がOyである場合、このアクセル開度Oyに対応するエンジン回転数NyのレギュレーションラインLyと作業時トルク制限特性曲線LN2との交点My2を求め、この交点My2のトルク制限値Ty2を取得する。その後、トランスミッションコントローラ106は、油圧ポンプ20の斜板の傾斜角を最小にしてポンプ吸収トルクを最小にしていた制限を解除する(ステップS10)。すなわち、図6に示したマップ106bにおいて、アクセル開度はOs以上(領域R11)であって、作業機レバー操作量が所定値Bminを越えるため、ポンプ吸収トルクの制限を解除して、作業機油圧ポンプトルク目標値をTPmax(L11)まで許容する。その後、ステップS11に移行する。なお、アクセル開度はOs以上(領域R11)であっても、作業機レバー操作量が所定値Bmin以下の場合には、初期設定された状態であり、ポンプ吸収トルクは制限されている(図6のL12)。また、アクセル開度がOs未満(領域R10)の場合、初期設定された状態であり、ポンプ吸収トルクは制限されている(図6のL10)。なお、ステップS9の処理とステップS10の処理とは、処理順序を入れ替えてもよい。 When the working machine lever operation amount exceeds the predetermined value Bmin (step S7, Yes), the torque limit value on the working torque limit characteristic curve LN2 corresponding to the accelerator opening is acquired with reference to the map 106a shown in FIG. (Step S9). For example, when the accelerator opening is Oy, an intersection My2 between the regulation line Ly of the engine speed Ny corresponding to the accelerator opening Oy and the working torque limit characteristic curve LN2 is obtained, and the torque limit value Ty2 of the intersection My2 is obtained. To get. Thereafter, the transmission controller 106 releases the restriction that minimized the pump absorption torque by minimizing the inclination angle of the swash plate of the hydraulic pump 20 (step S10). That is, in the map 106b shown in FIG. 6, since the accelerator opening is equal to or greater than Os (region R11) and the working machine lever operation amount exceeds the predetermined value Bmin, the limit of the pump absorption torque is released, and the working machine The hydraulic pump torque target value is allowed up to TPmax (L11). Thereafter, the process proceeds to step S11. Even when the accelerator opening is equal to or greater than Os (region R11), when the operating lever operating amount is equal to or smaller than a predetermined value Bmin, the accelerator is initially set and the pump absorption torque is limited (see FIG. 6 L12). Further, when the accelerator opening is less than Os (region R10), it is in an initially set state, and the pump absorption torque is limited (L10 in FIG. 6). Note that the processing order of step S9 and step S10 may be interchanged.
 ステップS11では、ステップS6,S8,S9でそれぞれ取得したトルク制限値Tx,Ty1,Ty2に応じてエンジンの出力トルクを制限する(ステップS11)。すなわち、トランスミッションコントローラ106からトルク制限値がエンジンコントローラ107に出力され、エンジンコントローラ107は、このトルク制限値をもとに、エンジン11の出力トルクを制御する。エンジンコントローラ107は、アクセル開度から決定するレギュレーションラインに対応した制御を行うため、その時点のエンジン回転数に対応するレギュレーションライン上のトルクを出力するように燃料噴射量を決定する。ここで、トランスミッションコントローラ106からトルク制限値が入力されると、エンジンコントローラ107は、レギュレーションライン上の出力トルクではなく、トルク制限値を出力トルクとした燃料噴射量を決定するようにする。このため、トルク制限値がTx,Ty1,Ty2である場合、エンジン11のエンジン回転数と出力トルクは、図4に示す経路X,Y1,Y2を通るように、アイドリングエンジン回転数Nで立ち上がり、それぞれ出力トルクTx,Ty1,Ty2を保ちながらエンジン回転数が増加するように制御される。そして、それぞれアクセル開度に応じたマッチング点Mx,My1,My2に向かうことになる。 In step S11, the engine output torque is limited according to the torque limit values Tx, Ty1, Ty2 obtained in steps S6, S8, S9, respectively (step S11). That is, the torque limit value is output from the transmission controller 106 to the engine controller 107, and the engine controller 107 controls the output torque of the engine 11 based on the torque limit value. In order to perform control corresponding to the regulation line determined from the accelerator opening, the engine controller 107 determines the fuel injection amount so as to output torque on the regulation line corresponding to the engine speed at that time. Here, when the torque limit value is input from the transmission controller 106, the engine controller 107 determines the fuel injection amount using the torque limit value as the output torque, not the output torque on the regulation line. For this reason, when the torque limit values are Tx, Ty1, and Ty2, the engine speed and output torque of the engine 11 rise at the idling engine speed N 0 so as to pass the paths X, Y1, and Y2 shown in FIG. The engine speed is controlled to increase while maintaining the output torques Tx, Ty1, Ty2, respectively. And it will go to matching point Mx, My1, My2 according to the accelerator opening, respectively.
 なお、この実施形態では、アクセル開度によりレギュレーションラインが決定する関係になっているので、図4で説明したアクセル開度に対するトルク制限値のマップ106aは、アクセル開度を変数とした数表とすることもできる。また、トルク制限を行わない通常のエンジン制御でも、アクセル開度とレギュレーションラインとの関係は使われるため、エンジンコントローラ107内にアクセル開度とレギュレーションラインとの関係を示すマップを持たせ、選択されるレギュレーションラインをトランスミッションコントローラ106に読み出させることもできる。 In this embodiment, since the regulation line is determined by the accelerator opening, the map 106a of the torque limit value with respect to the accelerator opening described in FIG. 4 is a numerical table with the accelerator opening as a variable. You can also In addition, since the relationship between the accelerator opening and the regulation line is used even in normal engine control without torque limitation, a map showing the relationship between the accelerator opening and the regulation line is provided in the engine controller 107 and selected. It is also possible to cause the transmission controller 106 to read out the regulation line.
 また、上述した実施形態では、走行時トルク制限特性曲線LN1は、走行系の吸収トルク曲線Dと同じである。ただし、走行時トルク制限特性曲線LN1は、走行系の吸収トルク曲線Dに限らず、アクセル開度の増加とともにマッチング点M1に向けて漸増する特性を有するものであればよい。また、走行時トルク制限特性曲線LN1と作業時トルク制限特性曲線LN2との間にさらに複数のトルク制限特性曲線を設け、たとえば作業機レバー操作量に複数の閾値を設けて、各閾値に対応した複数のトルク制限特性曲線に移行するようにしてもよい。 In the embodiment described above, the running torque limit characteristic curve LN1 is the same as the absorption torque curve D of the running system. However, the running torque limit characteristic curve LN1 is not limited to the absorption torque curve D of the running system, and may be any curve that gradually increases toward the matching point M1 as the accelerator opening increases. Further, a plurality of torque limiting characteristic curves are further provided between the running torque limiting characteristic curve LN1 and the working torque limiting characteristic curve LN2, and for example, a plurality of threshold values are provided for the work machine lever operation amount to correspond to each threshold value. You may make it transfer to a some torque limitation characteristic curve.
 ところで、上述した実施形態では、アクセル開度に基づいて固定したトルク制限値を算出するようにしていたが、エンジン回転数に基づいて順次トルク制限値を算出するようにしてもよい。この場合、トランスミッションコントローラ106のROM内には予め図7に示すようなエンジン11の出力トルクの制限値(トルク制限値)とアクセル開度との関係を示すマップに、さらにエンジン回転数との関係を付加したマップが記憶されている。図7に示すマップでは、トルク制限値は、等馬力トルク制限曲線LN0と走行時トルク制限特性曲線LN1とからなるトルク制限曲線TL1と、等馬力トルク制限曲線LN0と作業時トルク制限特性曲線LN2とからなるトルク制限曲線TL2とに従って変化する。このトルク制限曲線TL1,TL2はアクセル開度によりレギュレーションラインが決定される観点では図4に示すものと同じである。一方、エンジン回転数の観点からは、次のように説明できる。すなわち、トルク制限値は、エンジン回転数が閾値Ns’未満である場合、等馬力トルク制限曲線LN0に従って変化し、エンジン回転数が閾値Ns’以上になると走行時トルク制限特性曲線LN1あるいは作業時トルク制限特性曲線LN2に従って、エンジン回転数の増加に応じて増加する。なお、閾値Ns’は、図3に示した吸収トルク曲線Dと等馬力特性曲線C1との交点P2におけるエンジン回転数である。 In the above-described embodiment, the fixed torque limit value is calculated based on the accelerator opening, but the torque limit value may be calculated sequentially based on the engine speed. In this case, in the ROM of the transmission controller 106, a map showing the relationship between the output torque limit value (torque limit value) of the engine 11 and the accelerator opening as shown in FIG. A map to which is added is stored. In the map shown in FIG. 7, the torque limit values are the torque limit curve TL1 composed of the equal horsepower torque limit curve LN0 and the running torque limit characteristic curve LN1, the equal horsepower torque limit curve LN0, and the working torque limit characteristic curve LN2. It changes in accordance with a torque limit curve TL2 consisting of The torque limit curves TL1 and TL2 are the same as those shown in FIG. 4 from the viewpoint that the regulation line is determined by the accelerator opening. On the other hand, it can be explained as follows from the viewpoint of the engine speed. That is, the torque limit value changes according to the equal horsepower torque limit curve LN0 when the engine speed is less than the threshold value Ns ′, and when the engine speed becomes equal to or greater than the threshold value Ns ′, the running torque limit characteristic curve LN1 or the working torque. According to the limiting characteristic curve LN2, it increases with an increase in the engine speed. The threshold Ns ′ is the engine speed at the intersection P2 between the absorption torque curve D and the equal horsepower characteristic curve C1 shown in FIG.
 この場合、図5に示したステップS1ではアクセル開度に替えてエンジン回転数を検出する。また、ステップS5の判断は、エンジン回転数がNs’未満であるか否かを判断する。さらに、ステップS6,S8,S9では、それぞれエンジン回転数に応じた曲線LN0,LN1,LN2上のトルク制限値を取得することになる。たとえば、ステップS6,S8,S9では、エンジン回転数Ns’,Ny1’,Ny2’と、等馬力トルク制限曲線LN0,走行時トルク制限特性曲線LN1,作業時トルク制限特性曲線LN2とのそれぞれの交点であるマッチング点Mx,My1,My2を求め、このときのトルク制限値をそれぞれ取得する。 In this case, in step S1 shown in FIG. 5, the engine speed is detected instead of the accelerator opening. In step S5, it is determined whether the engine speed is less than Ns'. Further, in steps S6, S8, and S9, torque limit values on the curves LN0, LN1, and LN2 corresponding to the engine speeds are acquired. For example, in steps S6, S8, and S9, the respective intersections of the engine speeds Ns ′, Ny1 ′, and Ny2 ′ with the equal horsepower torque limiting curve LN0, the running torque limiting characteristic curve LN1, and the working torque limiting characteristic curve LN2. The matching points Mx, My1, and My2 are obtained, and the torque limit values at this time are obtained.
 作業車両の操作量を、アクセル開度に替えてエンジン回転数として処理する場合、エンジンコントローラ107は、図7に示すように、まず、アイドルエンジン回転数Nにおいて等馬力トルク制限曲線LN0上の交点P1に移行し、その後、トルク制限曲線TL1,TL2に沿ってマッチング点に到達する。たとえば、マッチング点Mx,My1,My2(エンジン回転数Ns’,Ny1’,Ny2’)に移行する場合、それぞれ図7に示す経路X’,Y1’,Y2’を通ることになる。 An operation amount of the work vehicle, when processing the engine speed instead of the accelerator opening, the engine controller 107, as shown in FIG. 7, first, on the equal horsepower torque limit curve LN0 at idling engine speed N 0 of It moves to the intersection P1, and then reaches the matching point along the torque limit curves TL1 and TL2. For example, when moving to matching points Mx, My1, My2 (engine speeds Ns ′, Ny1 ′, Ny2 ′), the paths X ′, Y1 ′, Y2 ′ shown in FIG.
 なお、アクセル開度を用いたトルク制限制御とエンジン回転数を用いたトルク制限制御とを組み合わせるようにしてもよい。たとえば、図8に示すように、アクセル開度がOs未満(エンジン回転数がNs’未満)の場合、アクセル開度を用いたトルク制限制御を行い、アクセル開度がOs以上(エンジン回転数がNs’以上)の場合、エンジン回転数を用いたトルク制限制御を行うようにする。この場合、アクセル開度がOs未満の場合でマッチング点Mxに移行する場合、マッチング点Mxのトルク制限値Txで制限されてマッチング点Mxに到達し(経路X”)、アクセル開度によるトルク制限制御と同じとなるが、アクセル開度がOs以上の場合でマッチング点My1に移行する場合、このマッチング点My1のトルク制限値Ty1と等馬力トルク制限曲線LN0との交点My1”に移行するまでは、トルク制限値Ty1で制限されて移行し、交点My1”以降は、エンジン回転数によるトルク制限制御と同様に、等馬力トルク制御曲線LN0および走行時トルク制限特性曲線LN1に沿ってマッチング点My1に到達する(経路Y1”)。 Note that torque limit control using the accelerator opening and torque limit control using the engine speed may be combined. For example, as shown in FIG. 8, when the accelerator opening is less than Os (the engine speed is less than Ns ′), torque limit control using the accelerator opening is performed, and the accelerator opening is greater than or equal to Os (the engine speed is Ns ′ or higher), torque limit control using the engine speed is performed. In this case, when the accelerator opening is less than Os and the transition is made to the matching point Mx, the torque is limited by the torque limit value Tx of the matching point Mx and reaches the matching point Mx (path X ″), and the torque is limited by the accelerator opening. This is the same as the control, but when the accelerator opening is Os or more and the transition is made to the matching point My1, until the transition to the intersection My1 ″ between the torque limit value Ty1 of the matching point My1 and the equal horsepower torque limit curve LN0. After the intersection My1 ″, the transition is made to the matching point My1 along the equal horsepower torque control curve LN0 and the running torque limit characteristic curve LN1 after the intersection My1 ″. Arrive (path Y1 ″).
 上述した実施形態では、アクセル開度またはエンジン回転数が閾値未満の場合には、等馬力特性制限曲線LN0に従ってエンジンの出力トルクを制限し、アクセル開度またはエンジン回転数が閾値以上の場合であって作業機レバー操作量が所定値以下である場合には、走行時トルク制限特性曲線LN1に従ってエンジンの出力トルクを制限し、アクセル開度またはエンジン回転数が閾値以上の場合であって作業機レバー操作量が所定値を越える場合には、作業時トルク制限特性曲線LN2に従ってエンジンの出力トルクを制限するようにしている。 In the above-described embodiment, when the accelerator opening or the engine speed is less than the threshold, the engine output torque is limited according to the equal horsepower characteristic limit curve LN0, and the accelerator opening or the engine speed is equal to or greater than the threshold. When the working machine lever operation amount is less than or equal to the predetermined value, the engine output torque is limited according to the running torque limit characteristic curve LN1, and the accelerator opening or the engine speed is greater than or equal to the threshold value. When the operation amount exceeds a predetermined value, the engine output torque is limited according to the working torque limit characteristic curve LN2.
 したがって、アクセル開度またはエンジン回転数が閾値未満である場合、等馬力特性でトルク制限されることから、必要な加速性を維持しながらエンジン出力トルクが下げられ燃費を改善することができる。また、アクセル開度またはエンジン回転数が閾値以上の場合であって作業機レバー操作量が所定値以下である場合、走行系トルク制限特性曲線LN1は、走行系の吸収トルク曲線以上の制限トルク曲線としているため、必要な走行トルクを確保しつつ、燃費を改善することができる。さらに、アクセル開度またはエンジン回転数が閾値以上の場合であって作業機レバー操作量が所定値を越える場合には、作業時トルク制限特性曲線LN2以下で十分な作業トルクを確保しつつ、燃費を改善できる。しかも、この場合、マッチング点M2は、最大馬力点であるため、確実に最大馬力を得ることができ、作業に支障を与えることがない。 Therefore, when the accelerator opening degree or the engine speed is less than the threshold value, the torque is limited by the equal horsepower characteristic, so that the engine output torque can be lowered and the fuel consumption can be improved while maintaining the required acceleration. When the accelerator opening or the engine speed is equal to or greater than the threshold value and the work implement lever operation amount is equal to or less than a predetermined value, the traveling system torque limit characteristic curve LN1 is a limited torque curve that is equal to or greater than the traveling system absorption torque curve. Therefore, fuel consumption can be improved while ensuring the required running torque. Further, when the accelerator opening or the engine speed is equal to or greater than the threshold value and the working machine lever operation amount exceeds a predetermined value, the fuel consumption is ensured while ensuring sufficient working torque below the working torque limit characteristic curve LN2. Can be improved. In addition, in this case, since the matching point M2 is the maximum horsepower point, the maximum horsepower can be reliably obtained, and the work is not hindered.
 また、この実施形態では、アクセル開度またはエンジン回転数が閾値未満の場合、およびアクセル開度またはエンジン回転数が閾値以上の場合であって作業機レバー操作量が所定値以下である場合、すなわち作業機レバーが操作されていないとみなされた場合には、ポンプ吸収トルクが最小となるように制限しているので、エンジン出力を、走行トルクに対して優先的に供給するようにしているので、走行性能に支障を与えずに、燃費を改善することができる。また、アクセル開度またはエンジン回転数が閾値以上の場合であって作業機レバー操作量が所定値を越える場合、すなわち作業機レバーが操作されている場合には、ポンプ吸収トルクを最小とする制限を解除するようにしているので、作業に必要なトルクを確実に得つつ、燃費を改善できる。 Further, in this embodiment, when the accelerator opening degree or the engine speed is less than the threshold value, and when the accelerator opening degree or the engine speed is the threshold value or more and the work implement lever operation amount is not more than a predetermined value, that is, When it is considered that the work implement lever is not operated, the pump absorption torque is limited to the minimum, so the engine output is supplied with priority over the running torque. The fuel efficiency can be improved without impeding the running performance. In addition, when the accelerator opening or the engine speed is greater than or equal to the threshold value and the working machine lever operation amount exceeds a predetermined value, that is, when the working machine lever is operated, the limit to minimize the pump absorption torque Since the torque is released, fuel consumption can be improved while reliably obtaining the torque required for the work.
 図9~図11は、それぞれ図4,図7,図8に対応する図であり、本実施形態による燃費改善を説明する説明図である。図9は、アクセル開度を用いたトルク制限制御時を示しており、マッチング点My1に移行する際、従来の最大トルク線Tmaxを経由する場合に比して領域R1に相当する燃費が改善される。また、図10は、エンジン回転数を用いたトルク制限制御時を示しており、マッチング点My1に移行する際、従来の最大トルク線Tmaxを経由する場合に比して領域R2に相当する燃費が改善される。さらに、図11は、アクセル開度およびエンジン回転数を組み合わせて用いたトルク制限制御時を示しており、従来の最大トルク線Tmaxを経由する場合に比して領域R3に相当する燃費が改善される。この図11の領域R3は、領域R1,R2よりも大きく、さらなる燃費が改善されている。 FIGS. 9 to 11 are diagrams respectively corresponding to FIGS. 4, 7, and 8 and are explanatory diagrams for explaining fuel consumption improvement according to the present embodiment. FIG. 9 shows the torque limit control using the accelerator opening, and the fuel efficiency corresponding to the region R1 is improved when shifting to the matching point My1 as compared to the case of passing through the conventional maximum torque line Tmax. The Further, FIG. 10 shows the time of torque limit control using the engine speed, and the fuel consumption corresponding to the region R2 is greater when the transition to the matching point My1 is made than when the conventional maximum torque line Tmax is passed. Improved. Further, FIG. 11 shows the time of torque limit control using a combination of the accelerator opening and the engine speed, and the fuel efficiency corresponding to the region R3 is improved as compared with the case of passing through the conventional maximum torque line Tmax. The The region R3 in FIG. 11 is larger than the regions R1 and R2, and further fuel economy is improved.
 なお、図12は、本実施形態によるトルク制限制御を、ホイールローダのVシェープ作業に適用した場合のアクセル開度、エンジン回転数、制限トルクの時間変化を示す図である。ホイールローダによるVシェープ作業とは、地山に前進して土砂を掘削し(W1)、掘削後にブームを上げて後進して(W2)、方向転換位置に達すると前進して(W3)、土砂をホッパやダンプトラックに廃土して積込む(W4)という一連の動作をV字型の経路で繰り返し行うことである。ここで、L103は、従来の出力トルクであり、この従来の出力トルクは、制限トルクL102を超える部分がある。本実施形態では、制限トルクL102でトルク制限を行っているため、このVシェープ作業の場合、従来のエンジン制御に比して燃費を改善できる。 FIG. 12 is a diagram showing temporal changes in the accelerator opening, the engine speed, and the limit torque when the torque limit control according to the present embodiment is applied to the V shape work of the wheel loader. The V-shape work by the wheel loader is to move forward to the ground and excavate the earth and sand (W1), raise the boom after excavation and move backward (W2), move forward when reaching the direction change position (W3), Is a series of operations in which the waste is dumped into a hopper or dump truck and loaded (W4) through a V-shaped route. Here, L103 is a conventional output torque, and this conventional output torque has a portion exceeding the limit torque L102. In the present embodiment, since the torque limit is performed by the limit torque L102, in the case of this V-shaping work, the fuel consumption can be improved as compared with the conventional engine control.
 なお、上述したトルク制限モードスイッチ112は、オンによってトルク制限モードを選択指示するものであったが、これに限らず、通常、トルク制限モードで制御され、オフによってトルク制限モードを解除するようにしてもよい。 The torque limit mode switch 112 described above is for selecting and instructing the torque limit mode when turned on. However, the torque limit mode is not limited to this, and is normally controlled in the torque limit mode, and is canceled when turned off. May be.
 さらに、トルク制限モードスイッチ112は、等馬力トルク制限曲線LN0と走行時トルク制限特性曲線LN1とを組み合わせたトルク制限曲線TL1のみによってトルク制限するモード、等馬力トルク制限曲線LN0と作業時トルク制限特性曲線LN2とを組み合わせたトルク制限曲線TL2のみによってトルク制限するモード、上述したように、作業機レバー操作量によって走行時トルク制限特性曲線LN1と作業時トルク制限特性曲線LN2とを切り換えるモードなどの複数のモードを選択指示できるようにしてもよい。 Further, the torque limit mode switch 112 is a mode in which the torque is limited only by the torque limit curve TL1 that is a combination of the equal horsepower torque limit curve LN0 and the running torque limit characteristic curve LN1, and the equal horsepower torque limit curve LN0 and the torque limit characteristic during work. There are a plurality of modes such as a mode in which torque is limited only by the torque limit curve TL2 combined with the curve LN2, and a mode in which the travel time torque limit characteristic curve LN1 and the work time torque limit characteristic curve LN2 are switched according to the work machine lever operation amount as described above. This mode may be selected and instructed.
 また、モードにより、最大トルク線Tmax自体が異なるものが複数設定されている場合、それぞれに対応したトルク制限モードをもたせてもよい。さらに、最大トルク線Tmax自体が通常作業モードと高エンジン回転数側でトルク制限されたエコノミー作業モードとを有する場合、エコノミー作業モードの選択と同時にトルク制限モードが選択されるようにしてもよいし、エコノミー作業モードの選択時に、トルク制限モードが選択可能となるようにしてもよい。 In addition, when a plurality of different maximum torque lines Tmax are set depending on the mode, a torque limit mode corresponding to each of them may be provided. Further, when the maximum torque line Tmax itself has a normal work mode and an economy work mode in which torque is limited on the high engine speed side, the torque limit mode may be selected simultaneously with the selection of the economy work mode. The torque limit mode may be selectable when the economy work mode is selected.
 さらに、作業車両では、掘削、積み込みなどの各種作業が実施されるが、この各種作業に応じて自動的にトルク制限モードが選択されるようにしてもよい。 Furthermore, although various operations such as excavation and loading are performed on the work vehicle, the torque limit mode may be automatically selected according to these various operations.
 以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、上記実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。例えば、トルク制限の曲線について、最大速が出せるトランスミッションの速度段についてのみを説示したが、最大速度段のみに本制御を適用することであっても、各速度段毎にトルク制限曲線を設定して、それぞれの速度段にも本制御を適用しても良い。さらに、本発明が適用される作業車両の加速、2速から3速への変速時等、よりスムーズな加速・変速感を得ることができるように、それぞれが異なるトルク制限カーブとなっていても良い。また、トルク制限値について、エンジン出力トルクの数値を用いる例で説明したが、エンジン回転数における最大の出力トルク値を100%として出力トルクをその80%とするように、比率でもってトルク制限するマップとすることでも良い。このように、上記実施形態に基づいて当業者等によりなされる他の実施形態、実施例、及び運用技術等は、全て本発明の範疇に含まれる。 As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to the above embodiment. For example, for the torque limit curve, only the speed stage of the transmission that can produce the maximum speed was described, but even if this control is applied only to the maximum speed stage, a torque limit curve is set for each speed stage. Thus, this control may be applied to each speed stage. Furthermore, even if the torque limit curves are different from each other so that a smoother acceleration / shifting feeling can be obtained, such as acceleration of a work vehicle to which the present invention is applied and when shifting from 2nd speed to 3rd speed. good. Further, the torque limit value has been described using an example of the numerical value of the engine output torque. However, the torque limit is limited by a ratio so that the maximum output torque value at the engine speed is 100% and the output torque is 80%. It may be a map. As described above, other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above-described embodiments are all included in the scope of the present invention.
 なお、上述した実施形態では、建設機械を例にとって説明したが、共通のエンジン出力によって走行系と作業機系とを駆動する、フォークリフトなどの産業車両やトラクタなどの農業機械を含む作業車両全般に適用することができる。 In the above-described embodiment, the construction machine has been described as an example. However, in general work vehicles including an industrial vehicle such as a forklift and an agricultural machine such as a tractor that drives a traveling system and a work machine system with a common engine output. Can be applied.
 1 ホイールローダ
 11 エンジン
 13 トルクコンバータ(T/C)
 11a 燃料噴射装置
 12 PTO機構
 20 油圧ポンプ
 20a 斜板アクチュエータ
 100 エンジン制御装置
 101 エンジン回転数センサ
 103 速度段センサ
 104 作業機レバーセンサ
 105 アクセルペダルセンサ
 106 トランスミッションコントローラ
 106a,106b マップ
 107 エンジンコントローラ
 108 速度段レバー
 109 作業機レバー
 110 アクセルペダル
 111 作業機コントローラ
 112 トルク制限モードスイッチ
1 Wheel loader 11 Engine 13 Torque converter (T / C)
DESCRIPTION OF SYMBOLS 11a Fuel injection apparatus 12 PTO mechanism 20 Hydraulic pump 20a Swash plate actuator 100 Engine control apparatus 101 Engine speed sensor 103 Speed stage sensor 104 Work implement lever sensor 105 Accelerator pedal sensor 106 Transmission controller 106a, 106b Map 107 Engine controller 108 Speed stage lever 109 Work implement lever 110 Accelerator pedal 111 Work implement controller 112 Torque limit mode switch

Claims (15)

  1.  作業車両の操作量を検出する操作量検出手段と、
     前記操作量検出手段によって検出された作業車両の操作量が閾値未満である場合、エンジンのアイドル回転時における最大出力トルク点を通る馬力となる等馬力特性曲線に従ってエンジンの出力トルクを制限する制御手段と、
     を備えたことを特徴とする作業車両のエンジン制御装置。
    An operation amount detecting means for detecting an operation amount of the work vehicle;
    Control means for limiting the output torque of the engine according to an equal horsepower characteristic curve that is a horsepower passing through the maximum output torque point during idling of the engine when the operation amount of the work vehicle detected by the operation amount detection means is less than a threshold value. When,
    An engine control device for a work vehicle.
  2.  エンジンの出力トルク制限を選択指示するトルク制限モードスイッチを備え、
     前記制御手段は、前記トルク制限モードスイッチが出力トルク制限を指示した状態で、前記操作量検出手段によって検出された作業車両の操作量が閾値未満である場合、エンジンのアイドル回転時における最大出力トルク点を通る馬力となる等馬力特性曲線に従ってエンジンの出力トルクを制限することを特徴とする請求項1に記載の作業車両のエンジン制御装置。
    A torque limit mode switch for selecting and instructing engine output torque limit
    In a state where the torque limit mode switch instructs the output torque limit and the operation amount of the work vehicle detected by the operation amount detection means is less than a threshold value, the control means is configured to output a maximum output torque during idle rotation of the engine. The engine control device for a work vehicle according to claim 1, wherein the engine output torque is limited according to an equal horsepower characteristic curve that is a horsepower passing through a point.
  3.  前記制御手段は、前記トルク制限モードスイッチが出力トルク制限を指示した状態で、前記操作量検出手段によって検出された作業車両の操作量が閾値以上である場合、走行系の吸収トルク曲線と前記等馬力特性曲線との交点から該走行系の吸収トルク曲線と最大トルク線とのマッチング点に向けて該作業車両の操作量の増加に応じて制限トルクが漸増する走行時トルク制限特性曲線に従ってエンジンの出力トルクを制限することを特徴とする請求項2に記載の作業車両のエンジン制御装置。 When the operation amount of the work vehicle detected by the operation amount detection means is greater than or equal to a threshold value in a state where the torque limit mode switch instructs the output torque limit, the control means and the absorption torque curve of the traveling system and the like In accordance with the running torque limit characteristic curve in which the limit torque gradually increases as the operation amount of the work vehicle increases from the intersection with the horsepower characteristic curve toward the matching point between the absorption torque curve and the maximum torque line of the traveling system. The engine control device for a work vehicle according to claim 2, wherein the output torque is limited.
  4.  前記走行時トルク制限特性曲線は、走行系の吸収トルク曲線であることを特徴とする請求項3に記載の作業車両のエンジン制御装置。 The engine control apparatus for a work vehicle according to claim 3, wherein the running torque limit characteristic curve is a running absorption torque curve.
  5.  前記操作量検出手段は、作業機レバー操作量を含めて検出し、
     前記制御手段は、前記トルク制限モードスイッチが出力トルク制限を指示した状態で、前記操作量検出手段によって検出された作業車両の操作量が閾値以上である場合であって、前記作業機レバー操作量が所定値を越えた場合、走行系の吸収トルク曲線と前記等馬力特性曲線との交点から最大トルク線上の最大馬力点に向けて該作業車両の操作量の増加に応じて制限トルクが漸増する作業時トルク制限特性曲線に従ってエンジンの出力トルクを制限すること特徴とする請求項2または3に記載の作業車両のエンジン制御装置。
    The operation amount detection means detects the operation device lever operation amount including the operation amount,
    The control means is a case where the operation amount of the work vehicle detected by the operation amount detection means is greater than or equal to a threshold value in a state where the torque limit mode switch instructs output torque restriction, and the work implement lever operation amount Exceeds the predetermined value, the limit torque gradually increases as the operation amount of the work vehicle increases from the intersection of the absorption torque curve of the traveling system and the equal horsepower characteristic curve toward the maximum horsepower point on the maximum torque line. The engine control device for a work vehicle according to claim 2 or 3, wherein the output torque of the engine is limited according to a torque limitation characteristic curve during operation.
  6.  前記制御手段は、前記トルク制限モードスイッチが出力トルク制限を指示した状態で、前記作業機レバー操作量が前記所定値以下の場合、作業機油圧ポンプのポンプ吸収トルクを制限すること特徴とする請求項5に記載の作業車両のエンジン制御装置。 The control means limits a pump absorption torque of a work implement hydraulic pump when the work implement lever operation amount is equal to or less than the predetermined value in a state where the torque limit mode switch instructs an output torque limit. Item 6. The engine control device for a work vehicle according to Item 5.
  7.  前記制御手段は、前記トルク制限モードスイッチが出力トルク制限を指示した状態で、前記操作量検出手段によって検出された作業車両の操作量が閾値以上である場合であって、前記作業機レバー操作量が前記所定値を越える場合、作業機油圧ポンプのポンプ吸収トルクの制限を解除すること特徴とする請求項6に記載の作業車両のエンジン制御装置。 The control means is a case where the operation amount of the work vehicle detected by the operation amount detection means is greater than or equal to a threshold value in a state where the torque limit mode switch instructs output torque restriction, and the work implement lever operation amount The engine control device for a work vehicle according to claim 6, wherein when the value exceeds the predetermined value, the restriction on the pump absorption torque of the work implement hydraulic pump is released.
  8.  前記制御手段は、前記ポンプ吸収トルクを最小に制限することを特徴とする請求項6に記載の作業車両のエンジン制御装置。 The engine control device for a work vehicle according to claim 6, wherein the control means limits the pump absorption torque to a minimum.
  9.  前記操作量検出手段は、作業車両の操作量としてアクセルペダルの開度を検出することを特徴とする請求項1に記載の作業車両のエンジン制御装置。 The engine control device for a work vehicle according to claim 1, wherein the operation amount detection means detects an opening degree of an accelerator pedal as an operation amount of the work vehicle.
  10.  前記操作量検出手段は、作業車両の操作量としてエンジン回転数を検出することを特徴とする請求項1に記載の作業車両のエンジン制御装置。 The engine control device for a work vehicle according to claim 1, wherein the operation amount detection means detects an engine speed as an operation amount of the work vehicle.
  11.  作業車両の操作量を検出する操作量検出ステップと、
     前記操作量検出ステップによって検出された作業車両の操作量が閾値未満である場合、エンジンのアイドル回転時における最大出力トルク点を通る馬力となる等馬力特性曲線に従ってエンジンの出力トルクを制限する制御ステップと、
     を含むことを特徴とする作業車両のエンジン制御方法。
    An operation amount detection step for detecting an operation amount of the work vehicle;
    A control step of limiting the engine output torque according to an equal horsepower characteristic curve that is a horsepower passing through the maximum output torque point at the time of idling of the engine when the operation amount of the work vehicle detected by the operation amount detection step is less than a threshold value. When,
    An engine control method for a work vehicle characterized by comprising:
  12.  エンジンの出力トルク制限の選択指示状態であるか否かを判断する指示判断ステップを含み、
     前記制御ステップは、出力トルク制限が選択指示状態で、前記操作量検出ステップによって検出された作業車両の操作量が閾値未満である場合、エンジンのアイドル回転時における最大出力トルク点を通る馬力となる等馬力特性曲線に従ってエンジンの出力トルクを制限する制御ステップと、
     を含むことを特徴とする請求項11に記載の作業車両のエンジン制御方法。
    Including an instruction determination step of determining whether or not the engine output torque limit selection instruction state;
    In the control step, when the output torque limit is in a selection instruction state and the operation amount of the work vehicle detected by the operation amount detection step is less than a threshold, the horsepower passes through the maximum output torque point during idling of the engine. A control step for limiting the output torque of the engine in accordance with an equal horsepower characteristic curve;
    The engine control method for a work vehicle according to claim 11, comprising:
  13.  前記制御ステップは、出力トルク制限が選択指示状態で、前記操作量検出ステップによって検出された作業車両の操作量が閾値以上である場合、走行系の吸収トルク曲線と前記等馬力特性曲線との交点から該走行系の吸収トルク曲線と最大トルク線とのマッチング点に向けて該作業車両の操作量の増加に応じて制限トルクが漸増する走行時トルク制限特性曲線に従ってエンジンの出力トルクを制限することを特徴とする請求項12に記載の作業車両のエンジン制御方法。 In the control step, when the output torque limit is in a selection instruction state and the operation amount of the work vehicle detected by the operation amount detection step is equal to or greater than a threshold value, the intersection of the absorption torque curve of the traveling system and the equal horsepower characteristic curve The engine output torque is limited according to a running torque limit characteristic curve in which the limit torque gradually increases in accordance with an increase in the operation amount of the work vehicle toward the matching point between the absorption torque curve of the travel system and the maximum torque line. The engine control method for a work vehicle according to claim 12.
  14.  前記操作量検出ステップは、作業機レバー操作量を含めて検出し、
     前記制御ステップは、出力トルク制限が選択指示状態で、前記操作量検出ステップによって検出された作業車両の操作量が閾値以上である場合であって、前記作業機レバー操作量が所定値を越えた場合、走行系の吸収トルク曲線と前記等馬力特性曲線との交点から最大トルク線上の最大馬力点に向けて該作業車両の操作量の増加に応じて制限トルクが漸増する作業時トルク制限特性曲線に従ってエンジンの出力トルクを制限すること特徴とする請求項12または13に記載の作業車両のエンジン制御方法。
    In the operation amount detection step, the operation machine lever operation amount is detected and detected.
    The control step is a case where the output torque limit is in a selection instruction state, and the operation amount of the work vehicle detected by the operation amount detection step is equal to or greater than a threshold value, and the operation device lever operation amount exceeds a predetermined value. A torque limiting characteristic curve during operation in which the limiting torque gradually increases as the operation amount of the work vehicle increases from the intersection of the absorption torque curve of the traveling system and the equal horsepower characteristic curve toward the maximum horsepower point on the maximum torque line. The engine output torque of the work vehicle according to claim 12 or 13, wherein the output torque of the engine is limited according to the above.
  15.  前記制御ステップは、出力トルク制限が選択指示状態で、前記作業機レバー操作量が前記所定値以下の場合、作業機油圧ポンプのポンプ吸収トルクを制限すること特徴とする請求項14に記載の作業車両のエンジン制御方法。 15. The operation according to claim 14, wherein the control step limits the pump absorption torque of the work implement hydraulic pump when the output torque limit is in a selection instruction state and the work implement lever operation amount is equal to or less than the predetermined value. Vehicle engine control method.
PCT/JP2011/056723 2010-03-19 2011-03-22 Working vehicle engine control device and engine control method WO2011115290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-064619 2010-03-19
JP2010064619 2010-03-19

Publications (1)

Publication Number Publication Date
WO2011115290A1 true WO2011115290A1 (en) 2011-09-22

Family

ID=44649369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056723 WO2011115290A1 (en) 2010-03-19 2011-03-22 Working vehicle engine control device and engine control method

Country Status (1)

Country Link
WO (1) WO2011115290A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661206A (en) * 2012-05-11 2012-09-12 三一重工股份有限公司 Engine control device, engineering vehicle and engine control method
CN104444966A (en) * 2013-09-18 2015-03-25 株式会社丰田自动织机 Industrial vehicle
CN104512840A (en) * 2013-09-27 2015-04-15 株式会社丰田自动织机 Industrial vehicle
JP2015132168A (en) * 2014-01-09 2015-07-23 株式会社豊田自動織機 Power control device for cargo handling vehicle
EP2930077A1 (en) * 2014-03-26 2015-10-14 Kabushiki Kaisha Toyota Jidoshokki Vehicle equipped with a hydraulically-operated device
CN107044147A (en) * 2016-02-05 2017-08-15 贵州詹阳动力重工有限公司 A kind of BBG wheeled hydraulic excavator drive-control system and control method
CN108755830A (en) * 2018-06-05 2018-11-06 徐州工业职业技术学院 A kind of reduction engineering machinery power consumption device and reduce energy consuming process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255414A (en) * 2005-11-01 2007-10-04 Yanmar Co Ltd Engine controller of hydraulic shovel
JP2008190506A (en) * 2007-02-07 2008-08-21 Komatsu Ltd Control device for engine and its control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255414A (en) * 2005-11-01 2007-10-04 Yanmar Co Ltd Engine controller of hydraulic shovel
JP2008190506A (en) * 2007-02-07 2008-08-21 Komatsu Ltd Control device for engine and its control method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661206A (en) * 2012-05-11 2012-09-12 三一重工股份有限公司 Engine control device, engineering vehicle and engine control method
US9505395B2 (en) 2013-09-18 2016-11-29 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle
EP2862834A1 (en) * 2013-09-18 2015-04-22 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle
CN104444966A (en) * 2013-09-18 2015-03-25 株式会社丰田自动织机 Industrial vehicle
CN104512840A (en) * 2013-09-27 2015-04-15 株式会社丰田自动织机 Industrial vehicle
EP2865634A1 (en) * 2013-09-27 2015-04-29 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle
US9567919B2 (en) 2013-09-27 2017-02-14 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle
JP2015132168A (en) * 2014-01-09 2015-07-23 株式会社豊田自動織機 Power control device for cargo handling vehicle
EP2930077A1 (en) * 2014-03-26 2015-10-14 Kabushiki Kaisha Toyota Jidoshokki Vehicle equipped with a hydraulically-operated device
JP2015187413A (en) * 2014-03-26 2015-10-29 株式会社豊田自動織機 Vehicle with hydraulic actuated device
US9316167B2 (en) 2014-03-26 2016-04-19 Kabushiki Kaisha Toyota Jidoshokki Vehicle equipped with a hydraulically-operated device
CN107044147A (en) * 2016-02-05 2017-08-15 贵州詹阳动力重工有限公司 A kind of BBG wheeled hydraulic excavator drive-control system and control method
CN107044147B (en) * 2016-02-05 2023-02-14 贵州詹阳动力重工有限公司 Running control system and method for wheel type hydraulic excavator of electronic fuel injection engine
CN108755830A (en) * 2018-06-05 2018-11-06 徐州工业职业技术学院 A kind of reduction engineering machinery power consumption device and reduce energy consuming process

Similar Documents

Publication Publication Date Title
WO2011115290A1 (en) Working vehicle engine control device and engine control method
JP5161380B1 (en) Work vehicle and control method of work vehicle
JP5074086B2 (en) Construction vehicle
JP4754969B2 (en) Engine control device for work vehicle
JP5059969B2 (en) Construction vehicle
JP5248387B2 (en) Wheel loader
JP5092060B1 (en) Work vehicle and control method of work vehicle
EP2287405B1 (en) Working vehicle, control device for working vehicle, and control method for working vehicle
KR20140024322A (en) Drive control device for work vehicle
WO2006064623A1 (en) Control device for traveling working vehicle
JP5113946B1 (en) Work vehicle and control method of work vehicle
EP2891783B1 (en) Wheel loader and wheel loader control method
JP2010223416A5 (en)
US11125327B2 (en) Work vehicle and control method for work vehicle
US20210131070A1 (en) Work vehicle and control method for work vehicle
JP2572387B2 (en) Hydraulic control device for wheel type hydraulic shovel
JP3813576B2 (en) Wheel loader
WO2011108444A1 (en) Engine control device and engine control method for working vehicle
US20220063624A1 (en) Work machine and method for controlling work machine
JP3898981B2 (en) Industrial vehicle travel control device
JP5219376B2 (en) Engine load control device for work vehicle
JP2004116706A (en) Travelling controller for hydraulic driven vehicle and hydraulic driven vehicle
JP4376009B2 (en) Control device for work vehicle
JPH0732240Y2 (en) Driving speed control device for hydraulically driven vehicle
JP4376018B2 (en) Control device for work vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP