WO2011115102A1 - Phosphole compound, method for producing same, method for producing compound having intramolecular phosphole ring, compound having intramolecular phosphole ring, and application thereof - Google Patents

Phosphole compound, method for producing same, method for producing compound having intramolecular phosphole ring, compound having intramolecular phosphole ring, and application thereof Download PDF

Info

Publication number
WO2011115102A1
WO2011115102A1 PCT/JP2011/056038 JP2011056038W WO2011115102A1 WO 2011115102 A1 WO2011115102 A1 WO 2011115102A1 JP 2011056038 W JP2011056038 W JP 2011056038W WO 2011115102 A1 WO2011115102 A1 WO 2011115102A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
phosphole
substituent
ring
Prior art date
Application number
PCT/JP2011/056038
Other languages
French (fr)
Japanese (ja)
Inventor
善博 俣野
博 今堀
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2012505694A priority Critical patent/JPWO2011115102A1/en
Publication of WO2011115102A1 publication Critical patent/WO2011115102A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6568Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms
    • C07F9/65685Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms the ring phosphorus atom being part of a phosphine oxide or thioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3227Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing only one kind of heteroatoms other than N, O, S, Si, Se, Te
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions

Abstract

Disclosed are: a phosphole compound useful in producing a compound having an intramolecular phosphole ring such as a polyphosphole; a method for producing same; a method for producing the compound having an intramolecular phosphole ring such as a polyphosphole; the compound having an intramolecular phosphole ring such as a polyphosphole; and an application thereof as a functional material. The phosphole compound useful in producing the compound having an intramolecular phosphole ring such as a polyphosphole is characterized by having a stannyl group at the α position. As a result, it is possible to easily produce the compound having an intramolecular phosphole ring such as a polyphosphole that can be used as a photofunctional material, an electron conductive material, or the like.

Description

ホスホール化合物およびその製造方法、ホスホール環を分子内に有する化合物の製造方法、ホスホール環を分子内に有する化合物およびその用途Phosphor compound and method for producing the same, method for producing compound having phosphole ring in molecule, compound having phosphole ring in molecule and use thereof
 本発明は、ホスホール化合物およびその製造方法、ホスホール環を分子内に有する化合物の製造方法、ホスホール環を分子内に有する化合物およびその用途に関する。 The present invention relates to a phosphole compound and a method for producing the same, a method for producing a compound having a phosphole ring in the molecule, a compound having a phosphole ring in the molecule and use thereof.
 ヘテロシクロペンタジエンのα位で相互に結合したポリマー構造を有する不飽和複素五員環高分子(ポリヘテロール)は、縮合多環系高分子の一種であり、有機太陽電池、有機電界効果トランジスタ、有機発光ダイオードなどに用いられる光機能性材料や電子導電性材料などとして期待されている(例えば非特許文献1を参照のこと)。しかしながら、これまでに報告されているポリヘテロールの多くはポリピロールやポリチオフェンに関するものであり、ポリホスホールについての報告は皆無である。ホスホールはピロールの窒素がリンに置き換わった複素環化合物であるが、HOMO-LUMOギャップがピロールのそれに比べて小さく、ピロールの窒素上の非共有電子対の塩基性は極めて小さいのに対し、ホスホールのリン上の非共有電子対の塩基性は比較的大きいといった特徴を有している。従って、ポリホスホールはポリピロールやポリチオフェンとは異なった機能性材料となりうる興味深いものであるが、それにもかかわらずその報告が皆無である理由は、有効な製造方法が存在しないことによる。 Unsaturated hetero five-membered ring polymers (polyheteroals) having polymer structures bonded to each other at the α-position of heterocyclopentadiene are a kind of condensed polycyclic polymers, organic solar cells, organic field effect transistors, organic light emission It is expected as an optical functional material or an electronic conductive material used for a diode or the like (see, for example, Non-Patent Document 1). However, most of the polyheteroals reported so far are related to polypyrrole and polythiophene, and there are no reports on polyphospholes. Phosphole is a heterocyclic compound in which the pyrrole nitrogen is replaced by phosphorus, but the HOMO-LUMO gap is smaller than that of pyrrole, and the basicity of the lone pair on the pyrrole nitrogen is very small, whereas The basicity of unshared electron pairs on phosphorus is relatively large. Therefore, polyphosphole is an interesting material that can be a functional material different from polypyrrole and polythiophene, but the reason for nevertheless being reported is that there is no effective production method.
 そこで本発明は、ポリホスホールなどのホスホール環を分子内に有する化合物の製造に有用なホスホール化合物およびその製造方法、ポリホスホールなどのホスホール環を分子内に有する化合物の製造方法、ポリホスホールなどのホスホール環を分子内に有する化合物およびその機能性材料としての用途を提供することを目的とする。 Therefore, the present invention provides a phosphole compound useful for the production of a compound having a phosphole ring such as polyphosphole in the molecule and a production method thereof, a method for producing a compound having a phosphole ring such as polyphosphole in the molecule, and a phosphole ring such as polyphosphole as a molecule. It aims at providing the use as a compound and its functional material which have in inside.
 本発明者らは、上記の点に鑑みて鋭意研究を重ねた結果、α位にスタンニル基を有するホスホール化合物をキー化合物として、ポリホスホールなどのホスホール環を分子内に有する化合物を容易に製造する方法を見出した。 As a result of intensive studies in view of the above points, the present inventors have easily made a compound having a phosphole ring such as polyphosphole in the molecule using a phosphole compound having a stannyl group at the α-position as a key compound. I found.
 上記の知見に基づいてなされた本発明のα位にスタンニル基を有するホスホール化合物は、請求項1記載の通り、下記の一般式(1)で表されることを特徴とする。 The phosphole compound having a stannyl group at the α-position of the present invention based on the above knowledge is represented by the following general formula (1) as described in claim 1.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式中、Rはアルキル基を示す。Xは-SnR (Rはアルキル基を示す)、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基のいずれかを示す。Yは任意に酸素原子、-S(O)-(lは0~2の整数を示す)、-NR-(Rは水素原子またはアルキル基を示す)によって中断されていてもよく、置換基を有してもよいアルキレン基を示す。Arは置換基を有していてもよいアリール基を示す。]
 また、本発明の請求項1記載のα位にスタンニル基を有するホスホール化合物の製造方法は、請求項2記載の通り、下記の一般式(2)で表されるジイン化合物を有機遷移金属化合物と反応させた後、ArPU(Uはハロゲン原子を示す。Arは前記と同義である)と反応させ、さらにP-オキシド化することによることを特徴とする。
[Wherein R 1 represents an alkyl group. X represents —SnR 2 3 (R 2 represents an alkyl group), an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or an alkynyl which may have a substituent A group or an aryl group which may have a substituent. Y may optionally be interrupted by an oxygen atom, —S (O) 1 — (wherein 1 represents an integer of 0 to 2), —NR 3 — (R 3 represents a hydrogen atom or an alkyl group), The alkylene group which may have a substituent is shown. Ar represents an aryl group which may have a substituent. ]
Moreover, the manufacturing method of the phosphole compound which has a stannyl group in (alpha) position of Claim 1 of this invention is a diyne compound represented by following General formula (2) as an organic transition metal compound as described in Claim 2. After the reaction, it is characterized by reacting with ArPU 2 (U represents a halogen atom. Ar is as defined above) and further P-oxidizing.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式中、R,X,Yは前記と同義である。]
 また、本発明のα位にハロゲン原子を有するホスホール化合物は、請求項3記載の通り、下記の一般式(3)で表されることを特徴とする。
[Wherein R 1 , X and Y are as defined above. ]
In addition, the phosphole compound having a halogen atom at the α-position of the present invention is represented by the following general formula (3) as described in claim 3.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式中、Rはハロゲン原子を示す。Zは置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、ハロゲン原子のいずれかを示す。Y,Arは前記と同義である。]
 また、本発明の請求項3記載のα位にハロゲン原子を有するホスホール化合物の製造方法は、請求項4記載の通り、請求項1記載のα位にスタンニル基を有するホスホール化合物が有するスタンニル基をハロゲン原子に置換することによることを特徴とする。
 また、本発明のホスホール環を分子内に有する化合物の製造方法は、請求項5記載の通り、請求項1記載のα位にスタンニル基を有するホスホール化合物とハロゲン原子で置換された複素環化合物を金属触媒存在下でカップリングさせることによることを特徴とする。
 また、本発明のホスホール環を分子内に有する化合物は、請求項6記載の通り、下記の一般式(4)で表されることを特徴とする。
[Wherein, R 4 represents a halogen atom. Z is an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, an aryl group which may have a substituent, Indicates one of halogen atoms. Y and Ar are as defined above. ]
In addition, the method for producing a phosphole compound having a halogen atom at the α-position according to claim 3 of the present invention includes the stannyl group possessed by the phosphole compound having a stannyl group at the α-position according to claim 1. It is characterized by being substituted with a halogen atom.
Moreover, the manufacturing method of the compound which has the phosphole ring in a molecule | numerator of this invention is the heterocyclic compound substituted by the phosphole compound which has the stannyl group in (alpha) position of Claim 1, and a halogen atom as described in Claim 5. It is characterized by being coupled in the presence of a metal catalyst.
Moreover, the compound which has the phosphole ring of this invention in a molecule | numerator is represented by following General formula (4) as Claim 6. It is characterized by the above-mentioned.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式中、Tは置換基を有していてもよい複素環を示す。nは1~25の整数を示す。Y,Arは前記と同義である。]
 また、請求項7記載のホスホール環を分子内に有する化合物は、請求項6記載のホスホール環を分子内に有する化合物において、下記の一般式(5)で表されることを特徴とする。
[In formula, T shows the heterocyclic ring which may have a substituent. n represents an integer of 1 to 25. Y and Ar are as defined above. ]
A compound having a phosphole ring in the molecule according to claim 7 is represented by the following general formula (5) in the compound having a phosphole ring in the molecule according to claim 6.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式中、mは2~50の整数を示す。Y,Arは前記と同義である。]
 また、本発明の光機能性材料は、請求項8記載の通り、請求項6記載のホスホール環を分子内に有する化合物からなることを特徴とする。
 また、本発明の電子導電性材料は、請求項9記載の通り、請求項6記載のホスホール環を分子内に有する化合物からなることを特徴とする。
[Wherein, m represents an integer of 2 to 50. Y and Ar are as defined above. ]
In addition, the optical functional material of the present invention is characterized in that, as described in claim 8, it comprises a compound having the phosphor ring in claim 6 in the molecule.
Moreover, the electronic conductive material of this invention consists of a compound which has the phosphole ring of Claim 6 in a molecule | numerator as described in Claim 9.
 本発明によれば、ポリホスホールなどのホスホール環を分子内に有する化合物の製造に有用なホスホール化合物およびその製造方法、ポリホスホールなどのホスホール環を分子内に有する化合物の製造方法、ポリホスホールなどのホスホール環を分子内に有する化合物およびその機能性材料としての用途を提供することができる。 According to the present invention, a phosphole compound useful for the production of a compound having a phosphole ring such as polyphosphole in the molecule and a production method thereof, a method for producing a compound having a phosphole ring such as polyphosphole in the molecule, and a phosphole ring such as polyphosphole. It is possible to provide a compound possessed in a molecule and its use as a functional material.
実施例における本発明のホスホール環を分子内に有する化合物のUV/Vis吸収スペクトルである(CHCl中)。It is a UV / Vis absorption spectrum of a compound having in the molecule a phosphole ring of the present invention in the embodiment (in CH 2 Cl 2).
 ポリホスホールなどのホスホール環を分子内に有する化合物の製造に有用な本発明のホスホール化合物は、α位にスタンニル基を有する下記の一般式(1)で表されることを特徴とするものである。 The phosphole compound of the present invention useful for the production of a compound having a phosphole ring in the molecule, such as polyphosphole, is characterized by being represented by the following general formula (1) having a stannyl group at the α-position.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式中、Rはアルキル基を示す。Xは-SnR (Rはアルキル基を示す)、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基のいずれかを示す。Yは任意に酸素原子、-S(O)-(lは0~2の整数を示す)、-NR-(Rは水素原子またはアルキル基を示す)によって中断されていてもよく、置換基を有してもよいアルキレン基を示す。Arは置換基を有していてもよいアリール基を示す。] [Wherein R 1 represents an alkyl group. X represents —SnR 2 3 (R 2 represents an alkyl group), an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or an alkynyl which may have a substituent A group or an aryl group which may have a substituent. Y may optionally be interrupted by an oxygen atom, —S (O) 1 — (wherein 1 represents an integer of 0 to 2), —NR 3 — (R 3 represents a hydrogen atom or an alkyl group), The alkylene group which may have a substituent is shown. Ar represents an aryl group which may have a substituent. ]
 上記の一般式(1)で表されるα位にスタンニル基を有するホスホール化合物とハロゲン原子で置換された複素環化合物を金属触媒存在下でカップリングさせることにより、下記の一般式(4)で表されるホスホール環を分子内に有する化合物を製造することができる。このカップリング反応は、例えばPd触媒を用いたStille型反応を利用して行うことができる(必要であれば例えばDevreux,V.et al.J.Org.Chem.2007,72,3783を参照のこと)。 By coupling a phosphoryl compound having a stannyl group at the α-position represented by the above general formula (1) and a heterocyclic compound substituted with a halogen atom in the presence of a metal catalyst, the following general formula (4) A compound having a phosphole ring represented in the molecule can be produced. This coupling reaction can be performed using, for example, a Stille type reaction using a Pd catalyst (see, for example, Devreux, V. et al. J. Org. Chem. 2007, 72, 3783 if necessary). thing).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式中、Tは置換基を有していてもよい複素環を示す。nは1~25の整数を示す。Y,Arは前記と同義である。] [In formula, T shows the heterocyclic ring which may have a substituent. n represents an integer of 1 to 25. Y and Ar are as defined above. ]
 ハロゲン原子で置換された複素環化合物として下記の一般式(3)で表されるα位にハロゲン原子を有するホスホール化合物を用いた場合、ホスホール環を分子内に有する化合物として下記の一般式(5)で表されるポリホスホールを製造することができる。 When a phosphole compound having a halogen atom at the α-position represented by the following general formula (3) is used as a heterocyclic compound substituted with a halogen atom, the following general formula (5 ) Can be produced.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式中、Rはハロゲン原子を示す。Zは置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、ハロゲン原子のいずれかを示す。Y,Arは前記と同義である。] [Wherein, R 4 represents a halogen atom. Z is an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, an aryl group which may have a substituent, Indicates one of halogen atoms. Y and Ar are as defined above. ]
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式中、mは2~50の整数を示す。Y,Arは前記と同義である。] [Wherein, m represents an integer of 2 to 50. Y and Ar are as defined above. ]
 なお、上記の一般式(1)で表されるα位にスタンニル基を有するホスホール化合物は、下記の一般式(2)で表されるジイン化合物を有機遷移金属化合物と反応させた後、ArPU(Uはハロゲン原子を示す。Arは前記と同義である)と反応させ、さらにP-オキシド化することによって製造することができる。有機遷移金属化合物としては、例えば有機チタン化合物を用いることができ、ホスホール環はメタラシクロペンタジエン化合物を経由した環化反応によって形成することができる(必要であれば例えばMatano,Y.et al.J.Org.Chem.2006,71,5792を参照のこと)。P-オキシド化は、例えば過酸化水素を用いて行うことができる。 In addition, after reacting the diyne compound represented by the following general formula (2) with the organic transition metal compound, the phosphole compound having a stannyl group at the α-position represented by the above general formula (1) is used to form ArPU 2. (U represents a halogen atom. Ar is as defined above) and further P-oxidized. As the organic transition metal compound, for example, an organic titanium compound can be used, and a phosphole ring can be formed by a cyclization reaction via a metallacyclopentadiene compound (for example, Matano, Y. et al. J if necessary). .Org.Chem.2006, 71, 5792). P-oxidation can be performed using, for example, hydrogen peroxide.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式中、R,X,Yは前記と同義である。] [Wherein R 1 , X and Y are as defined above. ]
 また、上記の一般式(3)で表されるα位にハロゲン原子を有するホスホール化合物は、上記の一般式(1)で表されるα位にスタンニル基を有するホスホール化合物が有するスタンニル基をハロゲン原子に置換することによって製造することができる。ハロゲン原子がヨウ素原子の場合、この反応は、例えばN-ヨードスクシンイミド(NIS)を用いて行うことができる。 In addition, the phosphole compound having a halogen atom at the α-position represented by the general formula (3) is a halogenated stannyl group possessed by the phosphole compound having a stannyl group at the α-position represented by the general formula (1). It can be produced by substituting atoms. When the halogen atom is an iodine atom, this reaction can be performed using, for example, N-iodosuccinimide (NIS).
 なお、上記において、R,R,Rにおけるアルキル基、X,Zにおける置換基を有していてもよいアルキル基のアルキル基としては、例えば炭素数1~20の直鎖状や分枝鎖状や環状のもの、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基などが挙げられる。X,Zにおける置換基を有していてもよいアルケニル基のアルケニル基としては、例えば炭素数2~10の直鎖状や分枝鎖状のもの、具体的にはビニル基、アリル基、ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-メチル-1-プロペニル基などが挙げられる。X,Zにおける置換基を有していてもよいアルキニル基のアルキニル基としては、例えば炭素数2~10の直鎖状や分枝鎖状のもの、具体的にはエチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基などが挙げられる。X,Ar,Zにおける置換基を有していてもよいアリール基のアリール基としては、フェニル基やナフチル基を挙げることができる。Yにおける任意に酸素原子、-S(O)-(lは0~2の整数を示す)、-NR-(Rは水素原子またはアルキル基を示す)によって中断されていてもよく、置換基を有してもよいアルキレン基のアルキレン基としては、炭素数が2~6の直鎖状や分枝鎖状のもの、具体的にはエチレン基、トリメチレン基、2-メチルトリメチレン基、テトラメチレン基、2-メチルテトラメチレン基、2-エチルテトラメチレン基などが挙げられる。U,R,Zにおけるハロゲン原子としては、フッ素原子や塩素原子や臭素原子やヨウ素原子などが挙げられる。Tにおける置換基を有していてもよい複素環の複素環としては、ヘテロ原子としてN,O,P,Sなどを含む5員環または6員環のもの、具体的にはピロール環、フラン環、チオフェン環、チアゾール環、イソチアゾール環、オキサゾール環、イソキサゾール環、ピラゾール環、イミダゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ホスホール環などが挙げられる。 In the above, the alkyl group in R 1 , R 2 , R 3 and the alkyl group of the alkyl group which may have a substituent in X, Z are, for example, straight chain or branched groups having 1 to 20 carbon atoms. Branched or cyclic, specifically methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, hexyl, cyclohexyl Group, octyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group and the like. The alkenyl group of the alkenyl group which may have a substituent in X and Z is, for example, a linear or branched group having 2 to 10 carbon atoms, specifically vinyl group, allyl group, butenyl group. Group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-methyl-1-propenyl group and the like. Examples of the alkynyl group of the alkynyl group which may have a substituent in X and Z include, for example, a straight chain or branched chain group having 2 to 10 carbon atoms, such as an ethynyl group or a 1-propynyl group. 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group and the like. Examples of the aryl group that may have a substituent in X, Ar, and Z include a phenyl group and a naphthyl group. Optionally interrupted by an oxygen atom in Y, —S (O) 1 — (wherein 1 represents an integer from 0 to 2), —NR 3 — (wherein R 3 represents a hydrogen atom or an alkyl group), The alkylene group of the alkylene group which may have a substituent is a straight chain or branched chain group having 2 to 6 carbon atoms, specifically an ethylene group, trimethylene group, 2-methyltrimethylene group. , Tetramethylene group, 2-methyltetramethylene group, 2-ethyltetramethylene group and the like. Examples of the halogen atom in U, R 4 and Z include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. The heterocyclic ring which may have a substituent for T is a 5-membered or 6-membered ring containing N, O, P, S or the like as a hetero atom, specifically a pyrrole ring, furan And a ring, a thiophene ring, a thiazole ring, an isothiazole ring, an oxazole ring, an isoxazole ring, a pyrazole ring, an imidazole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a phosphole ring.
 X,Zにおけるアルキル基、アルケニル基、アルキニル基が有していてもよい置換基、Yにおける任意に酸素原子、-S(O)-(lは0~2の整数を示す)、-NR-(Rは水素原子またはアルキル基を示す)によって中断されていてもよいアルキレン基が有していてもよい置換基としては、フッ素原子や塩素原子や臭素原子やヨウ素原子などのハロゲン原子、水酸基、ニトロ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アルキルカルボニル基、アルコキシカルボニル基、アルコキシ基、ホルミル基、シアノ基、カルボキシ基、カルボニル基、カルバモイル基、アルキルカルバモイル基、アルキルスルホニル基、アリールスルホニル基、アルコキシスルホニル基、スルファモイル基、アルキルスルファモイル基、スルファニル基、スルフィノ基、スルホ基、ジアルキルホスホリル基、ジアリールホスホリル基、ジアルコキシホスホリル基、ジアミノホスホリル基などが挙げられる。X,Ar,Zにおけるアリール基が有していてもよい置換基、Tにおける複素環が有していてもよい置換基としては、上記の置換基の他、上記の置換基を有していてもよい例えば炭素数1~20の直鎖状や分枝鎖状や環状のアルキル基やアリール基やヘテロアリール基などが挙げられる。また、隣接する2つの置換基が一緒になって任意に酸素原子、-S(O)-(lは0~2の整数を示す)、-NR-(Rは水素原子またはアルキル基を示す)によって中断されていてもよく、置換基を有してもよいアルキレン基を形成してもよい。置換基は場合によっては自体公知の保護基で保護された形態であってもよい。なお、置換基の数が2つ以上の場合、同じ置換基であってもよいし、異なる置換基であってもよい。 An alkyl group, an alkenyl group or an alkynyl group in X and Z, an optionally substituted oxygen atom in Y, —S (O) 1 — (l represents an integer of 0 to 2), —NR The substituent which the alkylene group which may be interrupted by 3- (R 3 represents a hydrogen atom or an alkyl group) may have a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom Hydroxyl group, nitro group, amino group, monoalkylamino group, dialkylamino group, alkylcarbonyl group, alkoxycarbonyl group, alkoxy group, formyl group, cyano group, carboxy group, carbonyl group, carbamoyl group, alkylcarbamoyl group, alkylsulfonyl Group, arylsulfonyl group, alkoxysulfonyl group, sulfamoyl group, alkylsulfamoyl group Sulfanyl group, a sulfino group, a sulfo group, a dialkyl phosphoryl group, diarylphosphoryl group, dialkoxy phosphoryl group, such as diamino phosphoryl group. As the substituent that the aryl group in X, Ar, and Z may have and the substituent that the heterocyclic ring in T may have, in addition to the above-described substituents, For example, a linear, branched or cyclic alkyl group, aryl group or heteroaryl group having 1 to 20 carbon atoms may be mentioned. In addition, two adjacent substituents are optionally combined to form an oxygen atom, —S (O) 1 — (l represents an integer of 0 to 2), —NR 3 — (R 3 is a hydrogen atom or an alkyl group) And an alkylene group which may have a substituent may be formed. In some cases, the substituent may be in a form protected with a protecting group known per se. In addition, when the number of substituents is two or more, they may be the same substituent or different substituents.
 上記の一般式(4)で表されるホスホール環を分子内に有する化合物は、有機太陽電池、有機電界効果トランジスタ、有機発光ダイオードなどに用いられる光機能性材料や電子導電性材料などとして用いることができる。その光学的特性や電気化学的特性は、分子内に有するホスホール環に由来して、ポリピロールやポリチオフェンの特性とは異なったものであり、これまでにない新たな機能性材料として期待される。 The compound having a phosphole ring represented by the general formula (4) in the molecule is used as a photofunctional material or an electronic conductive material used for an organic solar cell, an organic field effect transistor, an organic light emitting diode, or the like. Can do. The optical properties and electrochemical properties are derived from the phosphole ring in the molecule and are different from those of polypyrrole and polythiophene, and are expected as new functional materials that have never existed before.
 以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not construed as being limited to the following description.
実施例1:本発明のα位にスタンニル基を有するホスホール化合物の合成
(A)1-フェニル-7-トリブチルスタンニル-1,6-ヘプタジイン(1)の合成
 下記の方法に従って合成した。
Example 1: Synthesis of a phosphole compound having a stannyl group at the α-position of the present invention (A) Synthesis of 1-phenyl-7-tributylstannyl-1,6-heptadiyne (1) Synthesis was performed according to the following method.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 1-フェニル-1,6-ヘプタジイン(2.93 g, 17.4 mmol)のTHF溶液(88 mL)に-78℃にてnBuLi(1.65 M, 10.6 mL, 17.5 mmol)をゆっくりと添加した。-78℃にて1時間攪拌した後、BuSnCl(4.8 mL, 18 mmol)を添加し、得られた混合物を室温にて2時間攪拌した。その後、水を添加し、水層をEtOで3回抽出した。抽出液をあわせ、食塩水で洗浄した後、NaSOで乾燥させた。減圧下で揮発成分を除去することで、目的とする化合物1を薄黄色オイルとして得た(8.13 g, 100%)。この化合物1はさらなる精製を行うことなく次の工程に供した。
1H NMR (400 MHz, CDCl3): δ 0.91 (t, J = 7.3 Hz, 9H; Me), 0.97 (pseudo t, J = 8.0 Hz, 6H; SnCH2), 1.34 (sextet, J = 7.3 Hz, 6H; SnCH2CH2CH 2), 1.53-1.60 (m, 6H; SnCH2CH 2), 1.82 (quintet, J = 7.1 Hz, 2H; C≡CCH2CH 2), 2.43 (t, J = 7.1 Hz, 2H; C≡CCH2), 2.54 (t, J = 7.1 Hz, 2H; C≡CCH2), 7.26-7.30 (m, 3H; Ph), 7.37-7.40 (m, 2H; Ph); 13C NMR (75 MHz, CDCl3): δ 11.0, 13.7, 18.5, 19.4, 27.0, 28.3, 28.9, 81.0, 82.4, 89.4, 110.6, 123.9, 127.5, 128.1, 131.5.
NBuLi (1.65 M, 10.6 mL, 17.5 mmol) was slowly added to a THF solution (88 mL) of 1-phenyl-1,6-heptadiyne (2.93 g, 17.4 mmol) at −78 ° C. After stirring at −78 ° C. for 1 hour, Bu 3 SnCl (4.8 mL, 18 mmol) was added and the resulting mixture was stirred at room temperature for 2 hours. Then water was added and the aqueous layer was extracted 3 times with Et 2 O. The extracts were combined, washed with brine, and dried over Na 2 SO 4 . The target compound 1 was obtained as a pale yellow oil by removing volatile components under reduced pressure (8.13 g, 100%). This compound 1 was subjected to the next step without further purification.
1 H NMR (400 MHz, CDCl 3 ): δ 0.91 (t, J = 7.3 Hz, 9H; Me), 0.97 (pseudo t, J = 8.0 Hz, 6H; SnCH 2 ), 1.34 (sextet, J = 7.3 Hz , 6H; SnCH 2 CH 2 C H 2 ), 1.53-1.60 (m, 6H; SnCH 2 C H 2 ), 1.82 (quintet, J = 7.1 Hz, 2H; C≡CCH 2 C H 2 ), 2.43 (t , J = 7.1 Hz, 2H; C≡CCH 2 ), 2.54 (t, J = 7.1 Hz, 2H; C≡CCH 2 ), 7.26-7.30 (m, 3H; Ph), 7.37-7.40 (m, 2H; Ph); 13 C NMR (75 MHz, CDCl 3 ): δ 11.0, 13.7, 18.5, 19.4, 27.0, 28.3, 28.9, 81.0, 82.4, 89.4, 110.6, 123.9, 127.5, 128.1, 131.5.
(B)1,7-ビス(トリブチルスタンニル)-1,6-ヘプタジイン(2)の合成
 下記の方法に従って合成した。
(B) Synthesis of 1,7-bis (tributylstannyl) -1,6-heptadiyne (2) Synthesized according to the following method.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 1,6-ヘプタジイン(3.4 mL, 30 mmol)のTHF溶液(150 mL)に-78℃にてnBuLi(1.57 M, 38 mL, 60 mmol)をゆっくりと添加した。-78℃にて1時間攪拌した後、BuSnCl(16.4 mL, 60.0 mmol)を添加し、得られた混合物を室温にて2時間攪拌した。その後、水を添加し、水層をEtOで3回抽出した。抽出液をあわせ、食塩水で洗浄した後、NaSOで乾燥させた。減圧下で揮発成分を除去することで、目的とする化合物2を薄黄色オイルとして得た(20.4 g, 100%)。この化合物2はさらなる精製を行うことなく次の工程に供した。
1H NMR (400 MHz, CDCl3): δ 0.90 (t, J = 7.3 Hz, 18H; Me), 0.95 (pseudo t, J = 8.0 Hz, 12H; SnCH2), 1.33 (sextet, J = 7.3 Hz, 12H; SnCH2CH2CH 2), 1.51-1.59 (m, 12H; SnCH2CH 2), 1.72 (quintet, J = 7.1 Hz, 2H; C≡CCH2CH 2), 2.36 (t, J = 7.1 Hz, 4H; C≡CCH2); 13C NMR (75 MHz, CDCl3): δ 10.9, 13.6, 19.3, 26.9, 28.8, 68.5, 81.9, 110.8.
NBuLi (1.57 M, 38 mL, 60 mmol) was slowly added to a THF solution (150 mL) of 1,6-heptadiyne (3.4 mL, 30 mmol) at −78 ° C. After stirring at −78 ° C. for 1 hour, Bu 3 SnCl (16.4 mL, 60.0 mmol) was added, and the resulting mixture was stirred at room temperature for 2 hours. Then water was added and the aqueous layer was extracted 3 times with Et 2 O. The extracts were combined, washed with brine, and dried over Na 2 SO 4 . The target compound 2 was obtained as a pale yellow oil by removing volatile components under reduced pressure (20.4 g, 100%). This compound 2 was subjected to the next step without further purification.
1 H NMR (400 MHz, CDCl 3 ): δ 0.90 (t, J = 7.3 Hz, 18H; Me), 0.95 (pseudo t, J = 8.0 Hz, 12H; SnCH 2 ), 1.33 (sextet, J = 7.3 Hz , 12H; SnCH 2 CH 2 C H 2 ), 1.51-1.59 (m, 12H; SnCH 2 C H 2 ), 1.72 (quintet, J = 7.1 Hz, 2H; C≡CCH 2 C H 2 ), 2.36 (t , J = 7.1 Hz, 4H; C≡CCH 2 ); 13 C NMR (75 MHz, CDCl 3 ): δ 10.9, 13.6, 19.3, 26.9, 28.8, 68.5, 81.9, 110.8.
(C)2-フェニル-5-トリブチルスタンニルホスホール(3)の合成
 下記の方法に従って合成した。
(C) Synthesis of 2-phenyl-5-tributylstannylphosphole (3) The compound was synthesized according to the following method.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 化合物1(1.96 g, 4.28 mmol)とTi(Oi-Pr)(1.26 mL, 4.30 mmol)を含むEtO溶液(65 mL)に-70℃にてi-PrMgCl(2.0 M, 4.3 mL, 8.6 mmol)を添加し、得られた混合物を-50℃にて攪拌した。3時間後、PhPCl(0.58 mL, 4.3 mmol)を溶液に添加し、得られた混合物を0℃にて1時間攪拌した後、室温にて3時間攪拌した。その後、飽和水性NHCl溶液を添加し、セライトベッドで混合物を濾過した。有機層を分離し、水層をEtOAcで抽出した。抽出液をエバポレートし、油状残渣をCHCl(ca. 20 mL)に溶解した。この溶液にH(30 wt%, 0.5 mL, 4.4 mmol)を添加した。室温にて20分間攪拌した後、水を添加し、有機層を分離した。水層をCHClで3回抽出した。抽出液をあわせ、NaSOで乾燥させた後、減圧下でエバポレートした。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/CHCl=4/1→CHCl/アセトン=20/1)にかけることで、目的とする化合物3を薄黄色固体として得た(1.40 g, 56%)。
M.p. 77-79 ℃; 1H NMR (400 MHz, CDCl3): δ 0.83 (t, J = 7.3 Hz, 9H; Me), 0.87-0.99 (m, 6H; SnCH2), 1.21 (sextet, J = 7.1 Hz, 6H; SnCH2CH2CH 2), 1.27-1.45 (m, 6H; SnCH2CH 2), 1.98-2.28 (m, 2H; C=CCH2CH 2), 2.50-2.69 (m, 2H; C=CCH2), 2.78-2.96 (m, 2H; C=CCH2), 7.16 (t, J = 7.6 Hz, 1H; Ph), 7.26 (t, J = 7.6 Hz, 2H; Ph), 7.32-7.36 (m, 2H; PPh), 7.39-7.42 (m, 1H; PPh), 7.60 (d, J = 7.6 Hz, 2H; Ph), 7.72 (dd, J = 6.8, 11.2 Hz, 2H; PPh); 13C NMR (100 MHz, CDCl3): δ 10.0 (d, 3J(P,C) = 2.5 Hz), 13.6, 26.0 (d, 4J(P,C) = 2.5 Hz), 27.2, 29.0, 29.7 (d, 3J(P,C) = 13.2 Hz), 31.4 (d, 3J(P,C) = 19.8 Hz), 127.3 (d, J(P,C) = 50.4 Hz), 127.6 (d, J(P,C) = 37.2 Hz), 127.7, 128.5 (d, J(P,C) = 3.3 Hz), 128.6 (d, J(P,C) = 8.3 Hz), 130.4 (d, 3J(P,C) = 9.9 Hz), 131.2 (d, 1J(P,C) = 86.0 Hz), 131.3 (d, J(P,C) = 3.3 Hz), 131.9 (d, 1J(P,C) = 88.4 Hz), 133.5 (d, J(P,C) = 13.2 Hz), 153.8 (d, 2J(P,C) = 36.4 Hz), 171.3 (d, J(P,C) = 13.2 Hz); 31P NMR (162 MHz, CD2Cl2): δ 64.9 (2J(Sn,P) = 122 Hz); HRMS (EI): calcd. for C31H43OP120Sn: 582.2073, found: m/z 582.2051 [M+]; IR (KBr): νmax 1187 (P=O) cm-1.
To an Et 2 O solution (65 mL) containing Compound 1 (1.96 g, 4.28 mmol) and Ti (Oi-Pr) 4 (1.26 mL, 4.30 mmol) at −70 ° C., i-PrMgCl (2.0 M, 4.3 mL, 8.6 mmol) was added and the resulting mixture was stirred at −50 ° C. After 3 hours, PhPCl 2 (0.58 mL, 4.3 mmol) was added to the solution, and the resulting mixture was stirred at 0 ° C. for 1 hour and then at room temperature for 3 hours. Saturated aqueous NH 4 Cl solution was then added and the mixture was filtered through a celite bed. The organic layer was separated and the aqueous layer was extracted with EtOAc. The extract was evaporated and the oily residue was dissolved in CH 2 Cl 2 (ca. 20 mL). To this solution was added H 2 O 2 (30 wt%, 0.5 mL, 4.4 mmol). After stirring for 20 minutes at room temperature, water was added and the organic layer was separated. The aqueous layer was extracted 3 times with CH 2 Cl 2 . The extracts were combined, dried over Na 2 SO 4 and then evaporated under reduced pressure. The residue was subjected to silica gel column chromatography (hexane / CH 2 Cl 2 = 4/1 → CH 2 Cl 2 / acetone = 20/1) to obtain the target compound 3 as a pale yellow solid (1.40 g, 56%).
Mp 77-79 ° C; 1 H NMR (400 MHz, CDCl 3 ): δ 0.83 (t, J = 7.3 Hz, 9H; Me), 0.87-0.99 (m, 6H; SnCH 2 ), 1.21 (sextet, J = 7.1 Hz, 6H; SnCH 2 CH 2 C H 2 ), 1.27-1.45 (m, 6H; SnCH 2 C H 2 ), 1.98-2.28 (m, 2H; C = CCH 2 C H 2 ), 2.50-2.69 ( m, 2H; C = CCH 2 ), 2.78-2.96 (m, 2H; C = CCH 2 ), 7.16 (t, J = 7.6 Hz, 1H; Ph), 7.26 (t, J = 7.6 Hz, 2H; Ph ), 7.32-7.36 (m, 2H; PPh), 7.39-7.42 (m, 1H; PPh), 7.60 (d, J = 7.6 Hz, 2H; Ph), 7.72 (dd, J = 6.8, 11.2 Hz, 2H ; PPh); 13 C NMR (100 MHz, CDCl 3 ): δ 10.0 (d, 3 J (P, C) = 2.5 Hz), 13.6, 26.0 (d, 4 J (P, C) = 2.5 Hz), 27.2, 29.0, 29.7 (d, 3 J (P, C) = 13.2 Hz), 31.4 (d, 3 J (P, C) = 19.8 Hz), 127.3 (d, J (P, C) = 50.4 Hz) , 127.6 (d, J (P, C) = 37.2 Hz), 127.7, 128.5 (d, J (P, C) = 3.3 Hz), 128.6 (d, J (P, C) = 8.3 Hz), 130.4 ( d, 3 J (P, C) = 9.9 Hz), 131.2 (d, 1 J (P, C) = 86.0 Hz), 131.3 (d, J (P, C) = 3.3 Hz), 131.9 (d, 1 J (P, C) = 88.4 Hz), 133.5 (d, J (P, C) = 13.2 Hz), 153.8 (d, 2 J (P, C) = 36.4 Hz), 171.3 (d, J (P, C) = 13.2 Hz); 31 P NMR (162 MHz, CD 2 Cl 2 ): δ 64.9 ( 2 J (Sn, P) = 122 Hz); HRMS (EI): calcd.for C 31 H 43 OP 120 Sn: 582.2073, found: m / z 582.2051 [M + ]; IR (KBr): ν max 1187 (P = O) cm -1 .
(D)2,5-ビス(トリブチルスタンニル)ホスホール(4a)の合成
 下記の方法に従って合成した。
(D) Synthesis of 2,5-bis (tributylstannyl) phosphole (4a) Synthesized according to the following method.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 化合物2(6.70 g, 10.0 mmol)とTi(Oi-Pr)(2.9 mL, 9.9 mmol)を含むEtO溶液(190 mL)に-70℃にてi-PrMgCl(2.0 M, 10 mL, 20 mmol)を添加し、得られた混合物を-50℃にて攪拌した。2時間後、PhPCl(1.4 mL, 10 mmol)を溶液に添加し、得られた混合物を0℃にて1時間攪拌した後、室温にて2時間攪拌した。その後、飽和水性NHCl溶液を添加し、セライトベッドで混合物を濾過した。有機層を分離し、水層をEtOAcで抽出した。抽出液をエバポレートし、油状残渣をCHCl(ca. 100 mL)に溶解した。この溶液にH(30 wt%, 1.7 mL, 15 mmol)を添加した。室温にて20分間攪拌した後、水を添加し、有機層を分離した。水層をCHClで3回抽出した。抽出液をあわせ、NaSOで乾燥させた後、減圧下でエバポレートした。残渣をシリカゲル(中性)カラムクロマトグラフィー(CHCl→CHCl/アセトン=20/1)にかけることで、目的とする化合物4aを薄黄色オイルとして得た(1.75 g, 22%)。
1H NMR (400 MHz, CDCl3): δ 0.81 (t, J = 7.3 Hz, 18 H; Me), 0.83-0.94 (m, 12H; SnCH2), 1.18 (sextet, J = 7.3 Hz, 12H; SnCH2CH2CH 2), 1.23-1.40 (m, 12H; SnCH2CH 2), 1.89-2.15 (m, 2H; C=CCH2CH 2), 2.45-2.65 (m, 4H; C=CCH2), 7.31-7.36 (m, 2H; PPh), 7.39-7.43 (m, 1H; PPh), 7.62-7.57 (m, 2H; PPh); 13C NMR (100 MHz, CDCl3): δ 9.8 (d, 3J(P,C) = 1.6 Hz), 13.6, 25.3 (d, 4J(P,C) = 2.5 Hz), 27.2, 29.1, 30.6 (d, 3J(P,C) = 6.2 Hz),  128.3 (d, 2J(P,C) = 10.7 Hz), 130.5 (d, 3J(P,C) = 9.1 Hz), 130.8 (d, 4J(P,C) = 2.5 Hz), 131.1 (d, 1J(P,C) = 124.0 Hz), 133.1 (d, 1J(P,C) = 43.0 Hz), 170.2 (d, 2J(P,C) = 22.3 Hz); 31P NMR (162 MHz, CDCl3): δ 78.2 (2J(Sn,P) = 116 Hz); HRMS (FAB): calcd. for C37H65OP116Sn118Sn: 790.2807, found: m/z 790.2830 [M+]; IR (KBr): νmax 1186 (P=O) cm-1. Anal. calcd. for C37H65OPSn2: C, 55.95; H, 8.25. Found: C, 56.12; H, 8.21.
To an Et 2 O solution (190 mL) containing Compound 2 (6.70 g, 10.0 mmol) and Ti (Oi-Pr) 4 (2.9 mL, 9.9 mmol) at −70 ° C., i-PrMgCl (2.0 M, 10 mL, 20 mmol) was added and the resulting mixture was stirred at −50 ° C. After 2 hours, PhPCl 2 (1.4 mL, 10 mmol) was added to the solution, and the resulting mixture was stirred at 0 ° C. for 1 hour and then at room temperature for 2 hours. Saturated aqueous NH 4 Cl solution was then added and the mixture was filtered through a celite bed. The organic layer was separated and the aqueous layer was extracted with EtOAc. The extract was evaporated and the oily residue was dissolved in CH 2 Cl 2 (ca. 100 mL). To this solution was added H 2 O 2 (30 wt%, 1.7 mL, 15 mmol). After stirring for 20 minutes at room temperature, water was added and the organic layer was separated. The aqueous layer was extracted 3 times with CH 2 Cl 2 . The extracts were combined, dried over Na 2 SO 4 and then evaporated under reduced pressure. The residue was subjected to silica gel (neutral) column chromatography (CH 2 Cl 2 → CH 2 Cl 2 / acetone = 20/1) to obtain the target compound 4a as a pale yellow oil (1.75 g, 22% ).
1 H NMR (400 MHz, CDCl 3 ): δ 0.81 (t, J = 7.3 Hz, 18 H; Me), 0.83-0.94 (m, 12H; SnCH 2 ), 1.18 (sextet, J = 7.3 Hz, 12H; SnCH 2 CH 2 C H 2 ), 1.23-1.40 (m, 12H; SnCH 2 C H 2 ), 1.89-2.15 (m, 2H; C = CCH 2 C H 2 ), 2.45-2.65 (m, 4H; C = CCH 2 ), 7.31-7.36 (m, 2H; PPh), 7.39-7.43 (m, 1H; PPh), 7.62-7.57 (m, 2H; PPh); 13 C NMR (100 MHz, CDCl 3 ): δ 9.8 (d, 3 J (P, C) = 1.6 Hz), 13.6, 25.3 (d, 4 J (P, C) = 2.5 Hz), 27.2, 29.1, 30.6 (d, 3 J (P, C) = 6.2 Hz), 128.3 (d, 2 J (P, C) = 10.7 Hz), 130.5 (d, 3 J (P, C) = 9.1 Hz), 130.8 (d, 4 J (P, C) = 2.5 Hz ), 131.1 (d, 1 J (P, C) = 124.0 Hz), 133.1 (d, 1 J (P, C) = 43.0 Hz), 170.2 (d, 2 J (P, C) = 22.3 Hz); 31 P NMR (162 MHz, CDCl 3 ): δ 78.2 ( 2 J (Sn, P) = 116 Hz); HRMS (FAB): calcd.for C 37 H 65 OP 116 Sn 118 Sn: 790.2807, found: m / z 790.2830 [M + ]; IR (KBr): ν max 1186 (P = O) cm -1 . Anal.calcd.for C 37 H 65 OPSn 2 : C, 55.95; H, 8.25. Found: C, 56.12; H, 8.21.
(E)ジクロロ(4-ドデシルオキシフェニル)ホスフィンの合成
 下記の方法に従って合成した。
(E) Synthesis of dichloro (4-dodecyloxyphenyl) phosphine Synthesized according to the following method.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 4-ドデシルオキシブロモベンゼン(10.3 g, 30.0 mmol)のEtO溶液(62 mL)に0℃にてnBuLi(1.65 M, 18 mL, 30 mmol)を添加し、得られた混合物を室温にて1時間攪拌した。得られた溶液を-78℃に冷却した後、クロロビス(ジエチルアミノ)ホスフィン(6.4 mL, 30 mmol)を添加した。室温にて3.5時間攪拌した後、-78℃にてHCl(2.0 M, 60 mL, 120 mmol)を添加し、得られた懸濁液を室温にて19時間攪拌した。白色の沈殿物を濾過して除去し、得られた粗生成物を含むエーテル溶液(ca. 150 mL)をさらなる精製を行うことなく次の工程に供した。 NBuLi (1.65 M, 18 mL, 30 mmol) was added to an Et 2 O solution (62 mL) of 4-dodecyloxybromobenzene (10.3 g, 30.0 mmol) at 0 ° C., and the resulting mixture was added at room temperature. Stir for 1 hour. The resulting solution was cooled to −78 ° C., and chlorobis (diethylamino) phosphine (6.4 mL, 30 mmol) was added. After stirring at room temperature for 3.5 hours, HCl (2.0 M, 60 mL, 120 mmol) was added at −78 ° C., and the resulting suspension was stirred at room temperature for 19 hours. The white precipitate was removed by filtration, and the resulting ether solution containing the crude product (ca. 150 mL) was subjected to the next step without further purification.
(F)1-ドデシルオキシフェニル-2,5-ビス(トリブチルスタンニル)ホスホール(4b)の合成
 下記の方法に従って合成した。
(F) Synthesis of 1-dodecyloxyphenyl-2,5-bis (tributylstannyl) phosphole (4b) Synthesized according to the following method.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 化合物2(20.4 g, 30.4 mmol)とTi(Oi-Pr)(8.8 mL, 30 mmol)を含むEtO溶液(450 mL)に-70℃にてi-PrMgCl(2.0 M, 30 mL, 60 mmol)を添加し、得られた混合物を-50℃にて2時間攪拌した。ジクロロ(4-ドデシルオキシフェニル)ホスフィン(ca. 30 mmol)のエーテル溶液(150 mL)を添加した後、混合物を0℃にて1時間攪拌した後、室温にて3.5時間攪拌した。飽和水性NHCl溶液を添加し、得られた混合物をセライトベッドで濾過した。有機層を分離し、水層をEtOAcで抽出した。抽出液をエバポレートし、油状残渣をCHCl(ca. 100 mL)に溶解した。この溶液にH(30 wt%, 5.0 mL, 44 mmol)を添加した。室温にて20分間攪拌した後、水を添加し、有機層を分離した。水層をCHClで3回抽出した。抽出液をあわせ、NaSOで乾燥させた後、減圧下でエバポレートした。残渣をシリカゲル(中性)カラムクロマトグラフィー(CHCl/ヘキサン=7/1→CHCl)にかけることで、目的とする化合物4bを薄黄色オイルとして得た(1.76 g, 1,6-ヘプタジインから6%)。
1H NMR (400 MHz, CD2Cl2): δ 0.82 (t, J = 7.3 Hz, 18H; SnCH2CH2CH2CH 3), 0.86-0.94 (m, 15H; dodecyl-Me + SnCH2), 1.20 (sextet, J = 7.2 Hz, 12H; SnCH2CH2CH 2), 1.27-1.34 (m, 30H; dodecyl-CH2 + SnCH2CH2CH 2), 1.76 (quintet, J = 6.9 Hz, 2H; OCH2CH 2), 1.91-2.14 (m, 2H; C=CCH2CH2), 2.45-2.63 (m, 4H; C=CCH2), 3.95 (t, J = 6.3 Hz, 2H; OCH2), 6.85 (dd, J = 1.5, 8.8 Hz, 2H; PPh), 7.50 (dd, J = 8.8, 9.8 Hz, 2H; PPh); 13C NMR (100 MHz, CDCl3): δ 9.8 (d, 3J(P,C) = 1.6 Hz), 13.6, 14.1, 22.7, 25.3 (d, 4J(P,C) = 1.7 Hz), 26.0, 27.3, 29.0, 29.2, 29.4, 29.4, 29.6, 29.6, 29.6, 29.7, 30.6 (d, 3J(P,C) = 6.2 Hz), 31.9, 68.0, 114.4 (d, 2J(P,C) = 11.6 Hz), 121.6 (d. 1J(P,C) = 90.1 Hz), 132.2 (d, 3J(P,C) = 10.7 Hz), 133.2 (d, 1J(P,C) = 43.8 Hz), 161.5 (d, 4J(P,C) = 2.5 Hz), 169.7 (d, 2J(P,C) = 22.3 Hz); 31P NMR (162 MHz, CDCl3): δ 78.7 (2J(Sn,P) = 116 Hz); HRMS (FAB): calcd. for C49H89O2P120Sn2: 980.4644, found: m/z 980.4655 [M+]; IR (KBr): νmax 1174 (P=O) cm-1.
To an Et 2 O solution (450 mL) containing Compound 2 (20.4 g, 30.4 mmol) and Ti (Oi-Pr) 4 (8.8 mL, 30 mmol) at −70 ° C., i-PrMgCl (2.0 M, 30 mL, 60 mmol) was added and the resulting mixture was stirred at −50 ° C. for 2 hours. After adding an ether solution (150 mL) of dichloro (4-dodecyloxyphenyl) phosphine (ca. 30 mmol), the mixture was stirred at 0 ° C. for 1 hour and then at room temperature for 3.5 hours. Saturated aqueous NH 4 Cl solution was added and the resulting mixture was filtered through a celite bed. The organic layer was separated and the aqueous layer was extracted with EtOAc. The extract was evaporated and the oily residue was dissolved in CH 2 Cl 2 (ca. 100 mL). To this solution was added H 2 O 2 (30 wt%, 5.0 mL, 44 mmol). After stirring for 20 minutes at room temperature, water was added and the organic layer was separated. The aqueous layer was extracted 3 times with CH 2 Cl 2 . The extracts were combined, dried over Na 2 SO 4 and then evaporated under reduced pressure. The residue was subjected to silica gel (neutral) column chromatography (CH 2 Cl 2 / hexane = 7/1 → CH 2 Cl 2 ) to obtain the target compound 4b as a light yellow oil (1.76 g, 1, 6% from 6-heptadiyne).
1 H NMR (400 MHz, CD 2 Cl 2 ): δ 0.82 (t, J = 7.3 Hz, 18H; SnCH 2 CH 2 CH 2 C H 3 ), 0.86-0.94 (m, 15H; dodecyl-Me + SnCH 2 ), 1.20 (sextet, J = 7.2 Hz, 12H; SnCH 2 CH 2 C H 2 ), 1.27-1.34 (m, 30H; dodecyl-CH 2 + SnCH 2 CH 2 C H 2 ), 1.76 (quintet, J = 6.9 Hz, 2H; OCH 2 C H 2 ), 1.91-2.14 (m, 2H; C = CCH 2 CH 2 ), 2.45-2.63 (m, 4H; C = CCH 2 ), 3.95 (t, J = 6.3 Hz , 2H; OCH 2 ), 6.85 (dd, J = 1.5, 8.8 Hz, 2H; PPh), 7.50 (dd, J = 8.8, 9.8 Hz, 2H; PPh); 13 C NMR (100 MHz, CDCl 3 ): δ 9.8 (d, 3 J (P, C) = 1.6 Hz), 13.6, 14.1, 22.7, 25.3 (d, 4 J (P, C) = 1.7 Hz), 26.0, 27.3, 29.0, 29.2, 29.4, 29.4 , 29.6, 29.6, 29.6, 29.7, 30.6 (d, 3 J (P, C) = 6.2 Hz), 31.9, 68.0, 114.4 (d, 2 J (P, C) = 11.6 Hz), 121.6 (d. 1 J (P, C) = 90.1 Hz), 132.2 (d, 3 J (P, C) = 10.7 Hz), 133.2 (d, 1 J (P, C) = 43.8 Hz), 161.5 (d, 4 J ( P, C) = 2.5 Hz), 169.7 (d, 2 J (P, C) = 22.3 Hz); 31 P NMR (162 MHz, CDCl 3 ): δ 78.7 ( 2 J (Sn, P) = 116 Hz) HRMS (FAB): calcd.for C 49 H 89 O 2 P 120 Sn 2 : 980.4644, found: m / z 980.4655 [M + ]; IR (KBr ): ν max 1174 (P = O) cm -1 .
実施例2:本発明のα位にハロゲン原子を有するホスホール化合物の合成
(A)1-ヨード-5-フェニルホスホール(5)の合成
 下記の方法に従って合成した。
Example 2: Synthesis of a phosphole compound having a halogen atom at the α-position of the present invention (A) Synthesis of 1-iodo-5-phenylphosphole (5) Synthesis was performed according to the following method.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 化合物3(582 mg, 1.00 mmol)のCHCl溶液(10 mL)に-78℃にてNIS(266 mg, 1.18 mmol)のCHCl(30 mL)/MeCN(5 mL)溶液を滴下した。反応混合物を-78℃にて15分間攪拌した後、室温にて30分間攪拌した。得られた混合物をシリカゲルカラムクロマトグラフィー(CHCl→CHCl/アセトン=20/1)にかけることで、目的とする化合物5を黄色固体として得た(411 mg, 98%)。
M.p. 175 ℃ (dec); 1H NMR (400 MHz, CDCl3): δ 2.07-2.29 (m, 2H; C=CCH2CH 2), 2.40-2.61 (m, 2H; C=CCH2), 2.95-3.09 (m, 2H; C=CCH2), 7.21-7.32 (m, 3H; Ph), 7.42 (dt, 2H, J = 2.9 Hz, 7.6 Hz; PPh), 7.51 (t, 1H, J = 6.8 Hz; PPh), 7.58 (d, 2H, J = 7.8 Hz; Ph), 7.75 (dd, 2H, J = 6.8 Hz, 12.2 Hz; PPh); 13C NMR (100 MHz, CDCl3): δ 25.0, 31.2 (d, 3J(P,C) = 12.4 Hz), 31.4 (d, 3J(P,C) = 9.9 Hz), 79.1 (d, 1J(P,C) = 95.1 Hz), 127.8 (d, 3J(P,C) = 6.6 Hz), 128.1, 128.4 (d, 1J(P,C) = 86.8 Hz), 128.8, 129.0 (d, 2J(P,C) = 12.4 Hz), 129.8 (d, 1J(P,C) = 96.7 Hz), 130.9 (d, 3J(P,C) = 9.9 Hz), 132.4 (d, 4J(P,C) = 2.5 Hz), 133.0 (d, 2J(P,C) = 12.4 Hz), 154.5 (d, 2J(P,C) = 24.0 Hz), 166.7 (d, 2J(P,C) = 27.3 Hz); 31P NMR (162 MHz, CD2Cl2): δ 51.5; HRMS (EI): calcd. for C19H16OPI: 417.9983, found: m/z 417.9984 [M+]; IR (KBr): νmax 1190 (P=O) cm-1. Anal. calcd. for C19H16OPI: C, 54.57; H, 3.86. Found: C, 54.32; H, 3.92.
A solution of NIS 3 (266 mg, 1.18 mmol) in CH 2 Cl 2 (30 mL) / MeCN (5 mL) was added to a solution of compound 3 (582 mg, 1.00 mmol) in CH 2 Cl 2 (10 mL) at −78 ° C. It was dripped. The reaction mixture was stirred at −78 ° C. for 15 minutes and then stirred at room temperature for 30 minutes. The obtained mixture was subjected to silica gel column chromatography (CH 2 Cl 2 → CH 2 Cl 2 / acetone = 20/1) to give the target compound 5 as a yellow solid (411 mg, 98%).
Mp 175 ° C (dec); 1 H NMR (400 MHz, CDCl 3 ): δ 2.07-2.29 (m, 2H; C = CCH 2 C H 2 ), 2.40-2.61 (m, 2H; C = CCH 2 ), 2.95-3.09 (m, 2H; C = CCH 2 ), 7.21-7.32 (m, 3H; Ph), 7.42 (dt, 2H, J = 2.9 Hz, 7.6 Hz; PPh), 7.51 (t, 1H, J = 6.8 Hz; PPh), 7.58 (d, 2H, J = 7.8 Hz; Ph), 7.75 (dd, 2H, J = 6.8 Hz, 12.2 Hz; PPh); 13 C NMR (100 MHz, CDCl 3 ): δ 25.0 , 31.2 (d, 3 J (P, C) = 12.4 Hz), 31.4 (d, 3 J (P, C) = 9.9 Hz), 79.1 (d, 1 J (P, C) = 95.1 Hz), 127.8 (d, 3 J (P, C) = 6.6 Hz), 128.1, 128.4 (d, 1 J (P, C) = 86.8 Hz), 128.8, 129.0 (d, 2 J (P, C) = 12.4 Hz) , 129.8 (d, 1 J (P, C) = 96.7 Hz), 130.9 (d, 3 J (P, C) = 9.9 Hz), 132.4 (d, 4 J (P, C) = 2.5 Hz), 133.0 (d, 2 J (P, C) = 12.4 Hz), 154.5 (d, 2 J (P, C) = 24.0 Hz), 166.7 (d, 2 J (P, C) = 27.3 Hz); 31 P NMR (162 MHz, CD 2 Cl 2 ): δ 51.5; HRMS (EI): calcd.for C 19 H 16 OPI: 417.9983, found: m / z 417.9984 [M + ]; IR (KBr): ν max 1190 (P = O) cm -1 . Anal.calcd.for C 19 H 16 OPI: C, 54.57; H, 3.86.Found: C, 54.32; H, 3.92.
(B)2,5-ジヨードホスホール(6a)の合成
 下記の方法に従って合成した。
(B) Synthesis of 2,5-diiodophosphole (6a) Synthesized according to the following method.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 化合物4a(716 mg, 0.90 mmol)のCHCl溶液(18 mL)に-78℃にてNIS(498 mg, 2.21 mmol)のCHCl(45 mL)/MeCN(8 mL)溶液を滴下した。反応混合物を-78℃にて15分間攪拌した後、室温にて30分間攪拌した。得られた混合物をシリカゲルカラムクロマトグラフィー(CHCl→CHCl/アセトン=20/1)にかけることで、目的とする化合物6aを薄黄色固体として得た(380 mg, 90%)。
M.p. 130 ℃ (dec); 1H NMR (400 MHz, CDCl3): δ 2.05-2.25 (m, 2H; C=CCH2CH 2), 2.48-2.68 (m, 4H; C=CCH2), 7.50 (dt, 2H, J = 3.1 Hz, J = 7.6 Hz; PPh), 7.59-7.63 (m, 1H; PPh), 7.69-7.74 (m, 2H; PPh); 13C NMR (100 MHz, CDCl3): δ 23.4 (d, 4J(P,C) = 1.7 Hz), 32.5 (d, 3J(P,C) = 9.9 Hz), 79.2 (d, 1J(P,C) = 95.6 Hz), 125.6 (d, 1J(P,C) = 103.3 Hz), 129.1 (d, 2J(P,C) = 13.2 Hz), 131.3 (d, 3J(P,C) = 10.7 Hz), 133.0 (d, 4J(P,C) = 3.3 Hz), 166.8 (d, 2J(P,C) = 24.8 Hz); 31P NMR (162 MHz, CD2Cl2): δ 48.4; HRMS (EI): calcd. for C13H11OPI2: 467.8637, found: m/z 467.8640 [M+]; IR (KBr): νmax 1203 (P=O) cm-1.
A CH 2 Cl 2 (45 mL) / MeCN (8 mL) solution of NIS (498 mg, 2.21 mmol) in a CH 2 Cl 2 solution (18 mL) of compound 4a (716 mg, 0.90 mmol) at −78 ° C. It was dripped. The reaction mixture was stirred at −78 ° C. for 15 minutes and then stirred at room temperature for 30 minutes. The obtained mixture was subjected to silica gel column chromatography (CH 2 Cl 2 → CH 2 Cl 2 / acetone = 20/1) to obtain the target compound 6a as a pale yellow solid (380 mg, 90%) .
Mp 130 ° C (dec); 1 H NMR (400 MHz, CDCl 3 ): δ 2.05-2.25 (m, 2H; C = CCH 2 C H 2 ), 2.48-2.68 (m, 4H; C = CCH 2 ), 7.50 (dt, 2H, J = 3.1 Hz, J = 7.6 Hz; PPh), 7.59-7.63 (m, 1H; PPh), 7.69-7.74 (m, 2H; PPh); 13 C NMR (100 MHz, CDCl 3 ): δ 23.4 (d, 4 J (P, C) = 1.7 Hz), 32.5 (d, 3 J (P, C) = 9.9 Hz), 79.2 (d, 1 J (P, C) = 95.6 Hz) , 125.6 (d, 1 J (P, C) = 103.3 Hz), 129.1 (d, 2 J (P, C) = 13.2 Hz), 131.3 (d, 3 J (P, C) = 10.7 Hz), 133.0 (d, 4 J (P, C) = 3.3 Hz), 166.8 (d, 2 J (P, C) = 24.8 Hz); 31 P NMR (162 MHz, CD 2 Cl 2 ): δ 48.4; HRMS (EI ): calcd.for C 13 H 11 OPI 2 : 467.8637, found: m / z 467.8640 [M + ]; IR (KBr): ν max 1203 (P = O) cm -1 .
(C)1-ドデシルオキシフェニル-2,5-ジヨードホスホール(6b)の合成
 下記の方法に従って合成した。
(C) Synthesis of 1-dodecyloxyphenyl-2,5-diiodophosphole (6b) Synthesized according to the following method.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 化合物4b(145 mg, 0.15 mmol)のCHCl溶液(3.0 mL)に-78℃にてNIS(83 mg, 0.37 mmol)のCHCl(7.5 mL)/MeCN(1.4 mL)溶液を滴下した。反応混合物を-78℃にて15分間攪拌した後、室温にて40分間攪拌した。得られた混合物をシリカゲルカラムクロマトグラフィー(CHCl/ヘキサン=7/1→CHCl/アセトン=20/1)にかけることで、目的とする化合物6bをオフ白色固体として得た(85 mg, 89%)。
M.p. 115-117 ℃; 1H NMR (400 MHz, CDCl3): δ 0.88 (t, J = 6.8 Hz, 3H; Me), 1.27-1.49 (m, 18H; dodecyl-CH2), 1.79 (quintet, J = 7.0 Hz, 2H; OCH2CH 2), 2.04-2.23 (m, 2H; C=CCH2CH 2), 2.47-2.66 (m, 4H; C=CCH2), 4.00 (t, J = 6.6 Hz, 2H; OCH2), 6.98 (dd, J = 2.4, 9.1 Hz, 2H; PPh), 7.58 (dd, J = 9.1, 12.2 Hz, 2H; PPh); 13C NMR (100 MHz, CDCl3): δ 14.1, 22.7, 23.4, 26.0, 29.1, 29.3, 29.6, 29.6, 29.6, 29.7, 31.9, 32.5 (d, 3J(P,C) = 9.9 Hz), 68.2, 79.7 (d, 1J(P,C) = 93.4 Hz), 115.2 (d, 2J(P,C) = 14.0 Hz), 115.5 (d, 1J(P,C) = 110.8 Hz), 133.2 (d, 3J(P,C) = 11.6 Hz), 163.1 (d, 4J(P,C) = 2.5 Hz), 166.2 (d, 2J(P,C) = 24.8 Hz); 31P NMR (162 MHz, CDCl3): δ 49.8; HRMS (FAB): calcd. for C25H35I2O2P: 652.0464, found: m/z 652.0461 [M+]; IR (KBr): νmax 1179 (P=O) cm-1. Anal. calcd. for C25H35I2O2P: C, 46.03; H, 5.41. Found: C, 45.96; H, 5.18.(ピークのオーバーラップによりドデシルオキシ基の炭素原子の1つは検出不可)
A solution of compound 4b (145 mg, 0.15 mmol) in CH 2 Cl 2 (3.0 mL) at −78 ° C. with NIS (83 mg, 0.37 mmol) in CH 2 Cl 2 (7.5 mL) / MeCN (1.4 mL) was added. It was dripped. The reaction mixture was stirred at −78 ° C. for 15 minutes and then stirred at room temperature for 40 minutes. The obtained mixture was subjected to silica gel column chromatography (CH 2 Cl 2 / hexane = 7/1 → CH 2 Cl 2 / acetone = 20/1) to obtain the target compound 6b as an off-white solid ( 85 mg, 89%).
Mp 115-117 ° C; 1 H NMR (400 MHz, CDCl 3 ): δ 0.88 (t, J = 6.8 Hz, 3H; Me), 1.27-1.49 (m, 18H; dodecyl-CH 2 ), 1.79 (quintet, J = 7.0 Hz, 2H; OCH 2 C H 2 ), 2.04-2.23 (m, 2H; C = CCH 2 C H 2 ), 2.47-2.66 (m, 4H; C = CCH 2 ), 4.00 (t, J = 6.6 Hz, 2H; OCH 2 ), 6.98 (dd, J = 2.4, 9.1 Hz, 2H; PPh), 7.58 (dd, J = 9.1, 12.2 Hz, 2H; PPh); 13 C NMR (100 MHz, CDCl 3 ): δ 14.1, 22.7, 23.4, 26.0, 29.1, 29.3, 29.6, 29.6, 29.6, 29.7, 31.9, 32.5 (d, 3 J (P, C) = 9.9 Hz), 68.2, 79.7 (d, 1 J (P, C) = 93.4 Hz), 115.2 (d, 2 J (P, C) = 14.0 Hz), 115.5 (d, 1 J (P, C) = 110.8 Hz), 133.2 (d, 3 J (P , C) = 11.6 Hz), 163.1 (d, 4 J (P, C) = 2.5 Hz), 166.2 (d, 2 J (P, C) = 24.8 Hz); 31 P NMR (162 MHz, CDCl 3 ) : δ 49.8; HRMS (FAB) : calcd for C 25 H 35 I 2 O 2 P: 652.0464, found: m / z 652.0461 [M +]; IR (KBr): ν max 1179 (P = O) cm -. 1. Anal. Calcd. For C 25 H 35 I 2 O 2 P: C, 46.03; H, 5.41. Found: C, 45.96; H, 5.18. (One of the carbon atoms of the dodecyloxy group due to peak overlap. Cannot be detected)
 また、下記の方法によっても合成した。 Also synthesized by the following method.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 化合物4b(194 mg, ca. 0.19 mmol)のCHCl溶液(1.0 mL)に-78℃にてNIS(110 mg, 0.489 mmol)のCHCl(2.0 mL)/MeCN(1.0 mL)溶液を滴下した。-78℃にて20分間攪拌した後、室温にて15分間攪拌し、水を添加して有機層を分離した。水層をCHClで3回抽出した。抽出液をあわせ、NaSOで乾燥させた後、減圧下でエバポレートした。残渣をシリカゲルカラムクロマトグラフィー(CHCl/ヘキサン=7/1→CHCl/アセトン=20/1)にかけ、薄黄色画分を集め、エバポレートした。CHCl/ヘキサンから残渣を再沈殿させることで、目的とする化合物6bをオフ白色固体として得た(43 mg, 化合物2から34%)。 A CH 2 Cl 2 solution (1.0 mL) of compound 4b (194 mg, ca. 0.19 mmol) in CH 2 Cl 2 (2.0 mL) / MeCN (1.0 mL) of NIS (110 mg, 0.489 mmol) at −78 ° C. The solution was added dropwise. After stirring at −78 ° C. for 20 minutes, the mixture was stirred at room temperature for 15 minutes, and water was added to separate the organic layer. The aqueous layer was extracted 3 times with CH 2 Cl 2 . The extracts were combined, dried over Na 2 SO 4 and then evaporated under reduced pressure. The residue was subjected to silica gel column chromatography (CH 2 Cl 2 / hexane = 7/1 → CH 2 Cl 2 / acetone = 20/1), and the light yellow fraction was collected and evaporated. The desired compound 6b was obtained as an off-white solid (43 mg, 34% from compound 2) by reprecipitation of the residue from CH 2 Cl 2 / hexane.
 また、下記の方法によっても合成した。 Also synthesized by the following method.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 化合物4b(194 mg, ca. 0.19 mmol)のCHCl溶液(1.0 mL)に0℃にてI(123 mg, 0.484 mmol)のCHCl溶液(3.0 mL)を滴下した。室温にて1時間攪拌した後、反応混合物を希薄水性Na溶液と水で洗浄した。有機層をNaSOで乾燥させた後、減圧下でエバポレートした。残渣をシリカゲルカラムクロマトグラフィー(CHCl/ヘキサン=7/1→CHCl/アセトン=20/1)にかけ、薄黄色画分を集め、エバポレートした。残渣をヘキサンで洗浄することで、目的とする化合物6bをオフ白色固体として得た(46 mg, 化合物2から36%)。 A CH 2 Cl 2 solution (3.0 mL) of I 2 (123 mg, 0.484 mmol) was added dropwise at 0 ° C. to a CH 2 Cl 2 solution (1.0 mL) of compound 4b (194 mg, ca. 0.19 mmol). After stirring at room temperature for 1 hour, the reaction mixture was washed with dilute aqueous Na 2 S 2 O 3 solution and water. The organic layer was dried over Na 2 SO 4 and then evaporated under reduced pressure. The residue was subjected to silica gel column chromatography (CH 2 Cl 2 / hexane = 7/1 → CH 2 Cl 2 / acetone = 20/1), and the light yellow fraction was collected and evaporated. The residue was washed with hexane to obtain the target compound 6b as an off-white solid (46 mg, 36% from compound 2).
実施例3:本発明のホスホール環を分子内に有する化合物の合成
(A)α,α’-ビホスホール(7)の合成
 下記の方法に従って合成した。
Example 3: Synthesis of a compound having a phosphole ring of the present invention in the molecule (A) Synthesis of α, α'-biphosphole (7) The compound was synthesized according to the following method.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 Pd(dba)(94 mg, 0.10 mmol)、(2-フリル)P(49 mg, 0.21 mmol)、NMP(5.0 mL)の混合物を室温にて1時間攪拌した。この混合物に、化合物3(578 mg, 1.00 mmol)、化合物5(432 mg, 1.00 mmol)、CuI(193 mg, 1.00 mmol)、NMP(15.0 mL)を添加した。得られた混合物を室温にて2.5時間攪拌した後、冷EtOAcを添加した。沈殿物を濾過して除去し、CHClを注入した。不溶性物質をセライトベッドで濾過して除去し、濾液をエバポレートすることで固体を得た。CHCl/ヘキサンから固体残渣を再沈殿させることで、目的とする化合物7をオレンジ色固体として得た(495 mg, 85%; ジアステレオマーの混合物)。以下のスペクトルデータではジアステレオマーのそれぞれの帰属をAとBで示す。
TLC (CH2Cl2/acetone = 7/1): Rf = 0.30 (A), 0.51 (B). M.p. 275 ℃ (dec); 1H NMR (600 MHz, CD2Cl2): δ 1.78-1.85 (m, 2H; A), 1.90-1.98 (m, 2H; B), 2.07-2.18 (m, 2H; A, 2H; B), 2.39-2.48 (m, 2H; A, 2H; B), 2.60-2.66 (m, 2H; A), 2.69-2.77 (m, 4H; B), 2.86 (dd, J = 7.7, 18.2 Hz, 2H; A), 3.19-3.25 (m, 2H; B), 3.64 (dd, J = 7.7, 18.2 Hz, 2H; A), 7.17-7.21 (m, 2H; A, 2H; B), 7.26-7.32 (m, 8H; A, 4H; B), 7.42-7.49 (m, 2H; A, 6H; B), 7.50-7.54 (m, 4H; A), 7.56 (d, J = 7.4 Hz, 4H; B), 7.59 (d, J = 7.7 Hz, 4H; A), 7.83-7.86 (m, 4H; B); 13C NMR (100 MHz, Cl2CDCDCl2): δ 27.6, 28.0, 31.6 (t, J(C,P) = 5.8 Hz), 31.8 (t, J(C,P) = 5.8 Hz), 33.3 (t, J(C,P) = 5.8 Hz), 33.8 (t, J(C,P) = 5.8 Hz), 122.9 (d, J(C,P) = 105 Hz), 123.0 (d, J(C,P) = 104 Hz), 127.2, 128.2, 129.2 (t, J(C,P) = 3.3 Hz), 129.4, 129.5, 130.3, 130.3, 130.5 (t, J(C,P) = 5.8 Hz), 130.7 (t, J(C,P) = 5.8 Hz), 131.1, 131.5, 132.0 (t, J(C,P) = 5.0 Hz), 132.2 (t, J(C,P) = 5.0 Hz), 133.4, 133.6, 134.4, 134.4, 134.5, 134.5, 156.6, 156.8, 156.8, 156.9, 157.2, 157.3, 157.4, 161.6, 161.7, 161.8, 161.9, 161.9, 162.0 ; 31P NMR (162 MHz, CDCl3): δ 54.0 (A), 55.1 (B); HRMS (EI): calcd. for C38H32O2P2: 582.1878, found: m/z 582.1880 [M+]; IR (KBr): νmax 1184 (P=O) cm-1.(ピークが複雑なために化合物7の炭素原子は完全には帰属不可)
A mixture of Pd 2 (dba) 3 (94 mg, 0.10 mmol), (2-furyl) 3 P (49 mg, 0.21 mmol) and NMP (5.0 mL) was stirred at room temperature for 1 hour. To this mixture, compound 3 (578 mg, 1.00 mmol), compound 5 (432 mg, 1.00 mmol), CuI (193 mg, 1.00 mmol), and NMP (15.0 mL) were added. The resulting mixture was stirred at room temperature for 2.5 hours before cold EtOAc was added. The precipitate was removed by filtration and CHCl 3 was injected. Insoluble material was removed by filtration through a celite bed, and the filtrate was evaporated to obtain a solid. The solid residue was reprecipitated from CHCl 3 / hexane to give the target compound 7 as an orange solid (495 mg, 85%; mixture of diastereomers). In the following spectral data, each assignment of diastereomers is indicated by A and B.
TLC (CH 2 Cl 2 / acetone = 7/1): R f = 0.30 (A), 0.51 (B) .Mp 275 ° C (dec); 1 H NMR (600 MHz, CD 2 Cl 2 ): δ 1.78- 1.85 (m, 2H; A), 1.90-1.98 (m, 2H; B), 2.07-2.18 (m, 2H; A, 2H; B), 2.39-2.48 (m, 2H; A, 2H; B), 2.60-2.66 (m, 2H; A), 2.69-2.77 (m, 4H; B), 2.86 (dd, J = 7.7, 18.2 Hz, 2H; A), 3.19-3.25 (m, 2H; B), 3.64 (dd, J = 7.7, 18.2 Hz, 2H; A), 7.17-7.21 (m, 2H; A, 2H; B), 7.26-7.32 (m, 8H; A, 4H; B), 7.42-7.49 (m , 2H; A, 6H; B), 7.50-7.54 (m, 4H; A), 7.56 (d, J = 7.4 Hz, 4H; B), 7.59 (d, J = 7.7 Hz, 4H; A), 7.83 -7.86 (m, 4H; B); 13 C NMR (100 MHz, Cl 2 CDCDCl 2 ): δ 27.6, 28.0, 31.6 (t, J (C, P) = 5.8 Hz), 31.8 (t, J (C , P) = 5.8 Hz), 33.3 (t, J (C, P) = 5.8 Hz), 33.8 (t, J (C, P) = 5.8 Hz), 122.9 (d, J (C, P) = 105 Hz), 123.0 (d, J (C, P) = 104 Hz), 127.2, 128.2, 129.2 (t, J (C, P) = 3.3 Hz), 129.4, 129.5, 130.3, 130.3, 130.5 (t, J (C, P) = 5.8 Hz), 130.7 (t, J (C, P) = 5.8 Hz), 131.1, 131.5, 132.0 (t, J (C, P) = 5.0 Hz), 132.2 (t, J ( C, P) = 5.0 Hz), 133.4, 133.6, 134.4, 134.4, 134.5, 134.5, 156.6, 1 56.8, 156.8, 156.9, 157.2, 157.3, 157.4, 161.6, 161.7, 161.8, 161.9, 161.9, 162.0; 31 P NMR (162 MHz, CDCl 3 ): δ 54.0 (A), 55.1 (B); HRMS (EI) : calcd. for C 38 H 32 O 2 P 2 : 582.1878, found: m / z 582.1880 [M + ]; IR (KBr): ν max 1184 (P = O) cm -1 . The carbon atom of compound 7 cannot be completely assigned)
(B)α,α’-ターホスホール(8)の合成
 下記の方法に従って合成した。
(B) Synthesis of α, α′-terphosphole (8) Synthesized according to the following method.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 Pd(dba)(18.5 mg, 0.0202 mmol)、(2-フリル)P(9.7 mg, 0.042 mmol)、NMP(1.0 mL)の混合物を室温にて1時間攪拌した。この混合物に、化合物5(97.6 mg, 0.233 mmol)、CuI(43.9 mg, 0.231 mmol)、化合物4a(76.6 mg, 0.0964 mmol)のNMP溶液(1.0 mL)を添加した。得られた混合物を室温にて5時間攪拌した後、EtOAcを添加し、飽和水性NHCl溶液を添加した。不溶性物質をセライトベッドで濾過して除去した。有機層を分離し、飽和水性NHCl溶液で2回洗浄し、食塩水で2回洗浄した後、NaSOで乾燥させてからエバポレートした。残渣をシリカゲルカラムクロマトグラフィー(EtOAc/CHCl=1/1→EtOAc/MeOH=20/1)にかけ、赤色画分を集め、エバポレートした。CHCl/ヘキサンから固体残渣を再沈殿させることで、目的とする化合物8を暗赤色固体として得た(32 mg, 41%; ジアステレオマーの混合物)。以下のスペクトルデータではジアステレオマーのそれぞれの帰属をAとBとCで示す。
M.p. 160 ℃ (dec); 1H NMR (400 MHz, CD2Cl2): δ 1.56-3.61 (m, 18H), 7.14-7.80 (m, 25H); 31P NMR (243 MHz, CDCl3): δ 52.1 (t, J(P,P) = 30.9 Hz, 1P; A), 53.8 (pseudo t, J(P,P) = 30.9 Hz, 1P; B), 53.9 (d, J(P,P) = 30.9 Hz, 2P; A), 54.7 (pseudo d, J(P,P) = 30.6 Hz, 2P; C), 54.8 (d, J(P,P) = 30.9 Hz, 1P; B), 55.0 (d, J(P,P) = 33.8 Hz, 1P; B), 55.4 (dd, J(P,P) = 28.2, 36.4 Hz, 1P; C); HRMS (FAB): calcd. for C51H43O3P3: 796.2425, found: m/z 796.2418 [M+]; IR (KBr): νmax 1190 (P=O) cm-1.(溶解性が低いために化合物8の高S/N比の13C{H}NMRスペクトルは取得不可)
A mixture of Pd 2 (dba) 3 (18.5 mg, 0.0202 mmol), (2-furyl) 3 P (9.7 mg, 0.042 mmol) and NMP (1.0 mL) was stirred at room temperature for 1 hour. To this mixture, an NMP solution (1.0 mL) of compound 5 (97.6 mg, 0.233 mmol), CuI (43.9 mg, 0.231 mmol), and compound 4a (76.6 mg, 0.0964 mmol) was added. After the resulting mixture was stirred at room temperature for 5 hours, EtOAc was added and saturated aqueous NH 4 Cl solution was added. Insoluble material was removed by filtration through a celite bed. The organic layer was separated, washed twice with saturated aqueous NH 4 Cl solution, washed twice with brine, dried over Na 2 SO 4 and evaporated. The residue was subjected to silica gel column chromatography (EtOAc / CHCl 3 = 1/1 → EtOAc / MeOH = 20/1), and the red fraction was collected and evaporated. The solid residue was reprecipitated from CH 2 Cl 2 / hexane to give the target compound 8 as a dark red solid (32 mg, 41%; mixture of diastereomers). In the following spectral data, each assignment of diastereomers is indicated by A, B, and C.
Mp 160 ° C (dec); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ 1.56-3.61 (m, 18H), 7.14-7.80 (m, 25H); 31 P NMR (243 MHz, CDCl 3 ): δ 52.1 (t, J (P, P) = 30.9 Hz, 1P; A), 53.8 (pseudo t, J (P, P) = 30.9 Hz, 1P; B), 53.9 (d, J (P, P) = 30.9 Hz, 2P; A), 54.7 (pseudo d, J (P, P) = 30.6 Hz, 2P; C), 54.8 (d, J (P, P) = 30.9 Hz, 1P; B), 55.0 ( d, J (P, P) = 33.8 Hz, 1P; B), 55.4 (dd, J (P, P) = 28.2, 36.4 Hz, 1P; C); HRMS (FAB): calcd.for C 51 H 43 O 3 P 3 : 796.2425, found: m / z 796.2418 [M + ]; IR (KBr): ν max 1190 (P = O) cm −1 (high S / N ratio of compound 8 due to low solubility) 13 C { 1 H} NMR spectrum cannot be obtained)
 なお、シリカゲル上の残渣の質量分析により、上記の反応によって下記の化学構造式で示されるクオーターホスホール(S1)も生成することがわかった(単離精製不可)。この化合物の粗精製物のCHCl中での吸収極大波長(λmax)は541nmであった。 Note that mass spectrometry of the residue on the silica gel revealed that the above reaction also produced quarterphosphole (S1) represented by the following chemical structural formula (isolation and purification not possible). The absorption maximum wavelength (λ max ) in CH 2 Cl 2 of the crude product of this compound was 541 nm.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(C)α,α’-ポリホスホール(9)の合成
 下記の方法に従って合成した。
(C) Synthesis of α, α'-polyphosphole (9) Synthesized according to the following method.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 Pd(dba)(9.2 mg, 0.010 mmol)、(2-フリル)P(4.9 mg, 0.021 mmol)、NMP(0.5 mL)の混合物を室温にて1時間攪拌した。この混合物に、CuI(47.2 mg, 0.250 mmol)、化合物6b(65.8 mg, 0.100 mmol)、化合物4b(96.4 mg, 0.099 mmol)と化合物3(3.1 mg, 0.0053 mmol)のNMP溶液(2.0 mL)を添加した。室温にて49時間攪拌した後、得られた混合物をMeOH(500 mL)に注入し、得られた沈殿物を集め、ヘキサンとメタノールで洗浄した。固体をCHClに溶解し、不溶性物質をマイクロフィルター(0.45μm)で濾過して除去した。CHCl-ヘキサンとそれに続くCHCl-メタノールによる再沈殿を繰り返し行うことで、目的とする化合物9を暗青色固体として得た(42 mg, 51%)。この化合物のゲル濾過カラムクロマトグラフィー分析(ポリスチレン標準)によって求めた数平均分子量(M)は13000(n=32)、多分散性指数(PDI)は2.3であった。なお、化合物3を添加しなかった場合、得られた化合物の分子量分布は添加した場合のそれに比較して高分子側に偏った。
1H NMR (400 MHz, CDCl3): δ 0.88 (broad s, 3H; Me), 1.26-3.91 (m, 28H; CH2), 6.30-7.52 (m, 4H; PPh); 31P NMR (162 MHz, CDCl3): δ 51.6-56.4 (m); IR (KBr): νmax 1175 (P=O) cm-1
A mixture of Pd 2 (dba) 3 (9.2 mg, 0.010 mmol), (2-furyl) 3 P (4.9 mg, 0.021 mmol) and NMP (0.5 mL) was stirred at room temperature for 1 hour. To this mixture was added NMP solution (2.0 mL) of CuI (47.2 mg, 0.250 mmol), compound 6b (65.8 mg, 0.100 mmol), compound 4b (96.4 mg, 0.099 mmol) and compound 3 (3.1 mg, 0.0053 mmol). Added. After stirring at room temperature for 49 hours, the resulting mixture was poured into MeOH (500 mL), and the resulting precipitate was collected and washed with hexane and methanol. The solid was dissolved in CHCl 3 and the insoluble material was removed by filtration through a microfilter (0.45 μm). CHCl 3 - hexanes followed by the CHCl 3 - By repeating reprecipitation with methanol to give compound 9 of interest as a dark blue solid (42 mg, 51%). The number average molecular weight (M n ) determined by gel filtration column chromatography analysis (polystyrene standard) of this compound was 13000 (n = 32), and the polydispersity index (PDI) was 2.3. In addition, when the compound 3 was not added, the molecular weight distribution of the obtained compound was biased toward the polymer side compared to that when the compound 3 was added.
1 H NMR (400 MHz, CDCl 3 ): δ 0.88 (broad s, 3H; Me), 1.26-3.91 (m, 28H; CH 2 ), 6.30-7.52 (m, 4H; PPh); 31 P NMR (162 MHz, CDCl 3 ): δ 51.6-56.4 (m); IR (KBr): ν max 1175 (P = O) cm -1 .
(D)ホスホール-チオフェンブロックポリマーの合成
 化合物4bと2,5-ジヨードチオフェンから上記と同様の方法で下記の化学構造式で表されるホスホール-チオフェンブロックポリマー(Ar:4-ドデシルオキシフェニル基)を合成した。この化合物のゲル濾過カラムクロマトグラフィー分析(ポリスチレン標準)によって求めた数平均分子量(M)は2500(n=5)、多分散性指数(PDI)は2.0であった。CHCl中での吸収極大波長(λmax)は574nmであった。
1H NMR (400 MHz, CDCl3): δ 0.87 (broad s, 3H; Me), 1.25-2.81 (m, 26H; CH2), 3.92(2H; OCH2)6.86-7.63 (m, 6H; PPh, thiophene); 31P NMR (162 MHz, CDCl3): δ 48.0-54.0 (m).
(D) Synthesis of phosphole-thiophene block polymer A phosphole-thiophene block polymer (Ar: 4-dodecyloxyphenyl group) represented by the following chemical structural formula from compound 4b and 2,5-diiodothiophene by the same method as described above. ) Was synthesized. The number average molecular weight (M n ) determined by gel filtration column chromatography analysis (polystyrene standard) of this compound was 2500 (n = 5), and the polydispersity index (PDI) was 2.0. The absorption maximum wavelength (λ max ) in CH 2 Cl 2 was 574 nm.
1 H NMR (400 MHz, CDCl 3 ): δ 0.87 (broad s, 3H; Me), 1.25-2.81 (m, 26H; CH 2 ), 3.92 (2H; OCH 2 ) 6.86-7.63 (m, 6H; PPh , thiophene); 31 P NMR (162 MHz, CDCl 3 ): δ 48.0-54.0 (m).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
実施例4:本発明のホスホール環を分子内に有する化合物の機能性評価
 化合物7、化合物8、化合物9のUV/Vis吸収スペクトル(CHCl中)を図1に示し、光学データと酸化還元電位(サイクリックボルタンメトリーおよび微分パルスボルタンメトリーによる測定)を表1に示す。なお、図1と表1には下記の化学構造式で示されるモノマー10(Saito,A.et al.Chem.-Eur.J.2009,15,10000)のデータもあわせて示す。
Example 4: Functional evaluation of compounds having a phosphole ring of the present invention in the molecule The UV / Vis absorption spectra (in CH 2 Cl 2 ) of compounds 7, 8 and 9 are shown in FIG. The reduction potential (measured by cyclic voltammetry and differential pulse voltammetry) is shown in Table 1. 1 and Table 1 also show data of monomer 10 represented by the following chemical structural formula (Saito, A. et al. Chem.-Eur. J. 2009, 15, 10000).
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 図1と表1から明らかなように、本発明のホスホール環を分子内に有する化合物は、ホスホールユニットの数が増すにつれて、吸収極大波長(λmax)が長波長側にシフトした。下記の化学構造式で示されるビチオフェン11aおよびターチオフェン11b(Lee,S.et al.J.Phys.Chem.A 2000,104,1827)、ポリチオフェン12(Izumi,T.et al.J.Am.Chem.Soc.2003,125,5286)の吸収極大波長は、それぞれ376nm、404nm、546.3nmであることからすれば、本発明のホスホール環を分子内に有する化合物の吸収極大波長の長波長側へのシフトは顕著であり、とりわけ化合物9は、その立ち上がりが850nm(E=1.46eV)に達し、π-共役系が極めて効果的に拡張していることがわかった。以上の結果から、本発明のホスホール環を分子内に有する化合物は、光機能性材料として用いることができることがわかった。また、本発明のホスホール環を分子内に有する化合物の還元電位(Ered)は、ホスホールユニットの数が増すにつれて正側にシフトし、電子受容能が高まった。以上の結果から、本発明のホスホール環を分子内に有する化合物は、電子導電性材料としても用いることができることがわかった。 As is clear from FIG. 1 and Table 1, in the compound having the phosphole ring of the present invention in the molecule, the absorption maximum wavelength (λ max ) shifted to the long wavelength side as the number of phosphole units increased. Bithiophene 11a and terthiophene 11b (Lee, S. et al. J. Phys. Chem. A 2000, 104, 1827) and polythiophene 12 (Izumi, T. et al. J. Am. Chem. Soc. 2003, 125, 5286) are 376 nm, 404 nm, and 546.3 nm, respectively, and therefore, the long wavelength side of the absorption maximum wavelength of the compound having the phosphor ring in the molecule of the present invention. In particular, the rise of Compound 9 reached 850 nm (E g = 1.46 eV), and it was found that the π-conjugated system was very effectively extended. From the above results, it was found that the compound having the phosphole ring of the present invention in the molecule can be used as a photofunctional material. In addition, the reduction potential (E red ) of the compound having the phosphor ring of the present invention in the molecule shifted to the positive side as the number of phosphor units increased, and the electron accepting ability increased. From the above results, it was found that the compound having the phosphole ring of the present invention in the molecule can also be used as an electron conductive material.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 本発明は、ポリホスホールなどのホスホール環を分子内に有する化合物の製造に有用なホスホール化合物およびその製造方法、ポリホスホールなどのホスホール環を分子内に有する化合物の製造方法、ポリホスホールなどのホスホール環を分子内に有する化合物およびその機能性材料としての用途を提供することができる点において産業上の利用可能性を有する。 The present invention relates to a phosphole compound useful for the production of a compound having a phosphole ring such as polyphosphole in the molecule and a production method thereof, a method for producing a compound having a phosphole ring such as polyphosphole in the molecule, and a phosphole ring such as polyphosphole in the molecule. The present invention has industrial applicability in that it can provide an application as a compound and a functional material thereof.

Claims (9)

  1.  下記の一般式(1)で表されるα位にスタンニル基を有するホスホール化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rはアルキル基を示す。Xは-SnR (Rはアルキル基を示す)、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基のいずれかを示す。Yは任意に酸素原子、-S(O)-(lは0~2の整数を示す)、-NR-(Rは水素原子またはアルキル基を示す)によって中断されていてもよく、置換基を有してもよいアルキレン基を示す。Arは置換基を有していてもよいアリール基を示す。]
    A phosphole compound having a stannyl group at the α-position represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 represents an alkyl group. X represents —SnR 2 3 (R 2 represents an alkyl group), an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or an alkynyl which may have a substituent A group or an aryl group which may have a substituent. Y may optionally be interrupted by an oxygen atom, —S (O) 1 — (wherein 1 represents an integer of 0 to 2), —NR 3 — (R 3 represents a hydrogen atom or an alkyl group), The alkylene group which may have a substituent is shown. Ar represents an aryl group which may have a substituent. ]
  2.  下記の一般式(2)で表されるジイン化合物を有機遷移金属化合物と反応させた後、ArPU(Uはハロゲン原子を示す。Arは前記と同義である)と反応させ、さらにP-オキシド化することによる請求項1記載のα位にスタンニル基を有するホスホール化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    [式中、R,X,Yは前記と同義である。]
    The diyne compound represented by the following general formula (2) is reacted with an organic transition metal compound, then reacted with ArPU 2 (U represents a halogen atom, Ar is as defined above), and further P-oxide The method for producing a phosphole compound having a stannyl group at the α-position according to claim 1,
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R 1 , X and Y are as defined above. ]
  3.  下記の一般式(3)で表されるα位にハロゲン原子を有するホスホール化合物。
    Figure JPOXMLDOC01-appb-C000003
    [式中、Rはハロゲン原子を示す。Zは置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、ハロゲン原子のいずれかを示す。Y,Arは前記と同義である。]
    A phosphole compound having a halogen atom at the α-position represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, R 4 represents a halogen atom. Z is an alkyl group which may have a substituent, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, an aryl group which may have a substituent, Indicates one of halogen atoms. Y and Ar are as defined above. ]
  4.  請求項1記載のα位にスタンニル基を有するホスホール化合物が有するスタンニル基をハロゲン原子に置換することによる請求項3記載のα位にハロゲン原子を有するホスホール化合物の製造方法。 The method for producing a phosphole compound having a halogen atom at the α-position according to claim 3, wherein the stannyl group of the phosphole compound having a stannyl group at the α-position according to claim 1 is substituted with a halogen atom.
  5.  請求項1記載のα位にスタンニル基を有するホスホール化合物とハロゲン原子で置換された複素環化合物を金属触媒存在下でカップリングさせることによるホスホール環を分子内に有する化合物の製造方法。 A process for producing a compound having a phosphole ring in the molecule by coupling the phosphole compound having a stannyl group at the α-position according to claim 1 and a heterocyclic compound substituted with a halogen atom in the presence of a metal catalyst.
  6.  下記の一般式(4)で表されるホスホール環を分子内に有する化合物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、Tは置換基を有していてもよい複素環を示す。nは1~25の整数を示す。Y,Arは前記と同義である。]
    The compound which has the phosphole ring represented by following General formula (4) in a molecule | numerator.
    Figure JPOXMLDOC01-appb-C000004
    [In formula, T shows the heterocyclic ring which may have a substituent. n represents an integer of 1 to 25. Y and Ar are as defined above. ]
  7.  下記の一般式(5)で表される請求項6記載のホスホール環を分子内に有する化合物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、mは2~50の整数を示す。Y,Arは前記と同義である。]
    The compound which has the phosphole ring of Claim 6 represented by following General formula (5) in a molecule | numerator.
    Figure JPOXMLDOC01-appb-C000005
    [Wherein, m represents an integer of 2 to 50. Y and Ar are as defined above. ]
  8.  請求項6記載のホスホール環を分子内に有する化合物からなる光機能性材料。 A photofunctional material comprising a compound having a phosphole ring according to claim 6 in the molecule.
  9.  請求項6記載のホスホール環を分子内に有する化合物からなる電子導電性材料。 An electronically conductive material comprising a compound having the phosphole ring according to claim 6 in the molecule.
PCT/JP2011/056038 2010-03-15 2011-03-15 Phosphole compound, method for producing same, method for producing compound having intramolecular phosphole ring, compound having intramolecular phosphole ring, and application thereof WO2011115102A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012505694A JPWO2011115102A1 (en) 2010-03-15 2011-03-15 Phosphor compound and method for producing the same, method for producing compound having phosphole ring in molecule, compound having phosphole ring in molecule and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-058349 2010-03-15
JP2010058349 2010-03-15

Publications (1)

Publication Number Publication Date
WO2011115102A1 true WO2011115102A1 (en) 2011-09-22

Family

ID=44649187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056038 WO2011115102A1 (en) 2010-03-15 2011-03-15 Phosphole compound, method for producing same, method for producing compound having intramolecular phosphole ring, compound having intramolecular phosphole ring, and application thereof

Country Status (2)

Country Link
JP (1) JPWO2011115102A1 (en)
WO (1) WO2011115102A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179585A (en) * 2008-01-30 2009-08-13 Kyushu Electric Power Co Inc Organic el device, dibenzophosphole oxide derivative, and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179585A (en) * 2008-01-30 2009-08-13 Kyushu Electric Power Co Inc Organic el device, dibenzophosphole oxide derivative, and method for producing the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ARIHIRO SAITO ET AL., ORGANIC LETTERS, vol. 12, no. 11, 2010, pages 2675 - 2677 *
ELIANE DESCHAMPS ET AL., ANGEWANDTE CHEMIE INTERNATIONAL EDITION IN ENGLISH, vol. 33, no. 11, 1994, pages 1158 - 1161 *
YOSHIHIRO MATANO ET AL., ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 48, no. 22, 2009, pages 4002 - 4005 *
YOSHIHIRO MATANO ET AL., CHEMISTRY A EUROPEAN JOURNAL, vol. 14, no. 27, 2008, pages 8102 - 8115 *
YOSHIHIRO MATANO ET AL., ORGANIC LETTERS, vol. 11, no. 15, 2009, pages 3338 - 3341 *

Also Published As

Publication number Publication date
JPWO2011115102A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP6783832B2 (en) Heterocycle-containing compounds, polymers using the compounds, and their uses
Liao et al. Pt (II) metal complexes tailored with a newly designed spiro-arranged tetradentate ligand; harnessing of charge-transfer phosphorescence and fabrication of sky blue and white OLEDs
Liu et al. C–H activation: making diketopyrrolopyrrole derivatives easily accessible
Fallon et al. A nature-inspired conjugated polymer for high performance transistors and solar cells
Yamashita et al. Synthesis and properties of benzobis (thiadiazole) s with nonclassical π-electron ring systems
Liang et al. Supramolecular phosphorescent polymer iridium complexes for high-efficiency organic light-emitting diodes
Bolduc et al. Insight into the isoelectronic character of azomethines and vinylenes using representative models: a spectroscopic and electrochemical study
WO2006109895A1 (en) Thiophene compound having phosphoric ester and process for producing the same
Wang et al. Luminescent dendrimers composed of quinacridone core and carbazole dendrons: structure, electrochemical, and photophysical properties
Ono et al. Photooxidation and reproduction of pentacene derivatives substituted by aromatic groups
Laughlin et al. Fluorescent heteroacenes with multiply-bonded phosphorus
JP6332644B2 (en) Compound, polymer compound, organic semiconductor material, organic semiconductor device, compound synthesis method, polymer compound synthesis method
Matano et al. Synthesis of 2-alkenyl-and 2-alkynyl-benzo [b] phospholes by using palladium-catalyzed cross-coupling reactions
Yu et al. Triphenylamine-functionalized iridium (III) complexes for near-infrared phosphorescent organic light emitting diodes
Zhang et al. Synthesis and properties of furan/thiophene substituted difluoroboron β-diketonate derivatives bearing a triphenylamine moiety
Pareek et al. Synthesis and properties of cyclophosphazenes appended with covalently linked porphyrin–ferrocene conjugates
Liu et al. Dendritic [2] rotaxanes: synthesis, characterization, and properties
US9070882B2 (en) Boron ester fused thiophene monomers
JP5546142B2 (en) Heterocyclic fused oligothiophene, method for producing the same, and polymer
Kim et al. Effect of the bipyridine ligand substituents on the emission properties of phosphorescent Ir (III) compounds
Idzik et al. Synthesis and electrochemical properties of tetrathienyl-linked branched polymers with various aromatic cores
WO2012133874A1 (en) Production method for aromatic polymer
JP6146214B2 (en) Benzobisthiazole compounds
WO2011115102A1 (en) Phosphole compound, method for producing same, method for producing compound having intramolecular phosphole ring, compound having intramolecular phosphole ring, and application thereof
Chen et al. Synthesis and properties of Zn 2+/Cd 2+-directed self-assembled metallo-supramolecular polymers based on 1, 4-diketo-pyrrolo [3, 4-c] pyrrole (DPP) derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756287

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012505694

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756287

Country of ref document: EP

Kind code of ref document: A1