WO2011115008A1 - Etching method and etching device - Google Patents

Etching method and etching device Download PDF

Info

Publication number
WO2011115008A1
WO2011115008A1 PCT/JP2011/055767 JP2011055767W WO2011115008A1 WO 2011115008 A1 WO2011115008 A1 WO 2011115008A1 JP 2011055767 W JP2011055767 W JP 2011055767W WO 2011115008 A1 WO2011115008 A1 WO 2011115008A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
substrate
gas
peak
vacuum chamber
Prior art date
Application number
PCT/JP2011/055767
Other languages
French (fr)
Japanese (ja)
Inventor
泰宏 森川
貴英 村山
学 吉居
直樹 水谷
Original Assignee
株式会社 アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アルバック filed Critical 株式会社 アルバック
Priority to JP2012505645A priority Critical patent/JPWO2011115008A1/en
Publication of WO2011115008A1 publication Critical patent/WO2011115008A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to an etching method, in particular, a method related to reactive ion etching and an apparatus used for carrying out the etching method.
  • a parallel plate etching apparatus is known as one form of an apparatus that performs dry etching on a substrate formed of a semiconductor material, an insulating material, or the like. ing.
  • a parallel plate type etching apparatus usually has a stage electrode on which a substrate is placed and an upper electrode arranged to face the stage electrode in a vacuum chamber into which an etching gas is introduced.
  • a high-frequency power source for applying a bias voltage to the substrate is connected to the stage electrode via a matching box for impedance matching.
  • an etching gas is first introduced through a gas introduction hole provided in the upper electrode.
  • plasma is generated from the etching gas in the vacuum chamber by applying a high-frequency voltage to the substrate from a high-frequency power source.
  • positive ions in the plasma are attracted toward the stage electrode that is negatively biased with respect to the plasma, whereby the substrate is chemically or physically etched.
  • a recess having a predetermined shape is formed in the thickness direction of the substrate by so-called reactive ion etching.
  • a sheath having a substantially uniform thickness is first formed on the surface of the substrate. Thereafter, the positive ions entering the sheath are accelerated by the electric field formed in the sheath, and the positive ions collide with the surface of the substrate in a state having energy corresponding to the electric field acceleration.
  • the positive ions may be applied to the electric field regardless of the thickness of the sheath. It is drawn in the normal direction which is the direction of. For this reason, etching proceeds only in the thickness direction of the substrate.
  • the particles that enter the sheath include positive ions and radicals that fly in a direction different from the normal direction, in addition to positive ions that fly in the normal direction. Then, positive ions and radicals flying in a direction different from the normal direction are less likely to reach the bottom surface of the concave portion as the distance between the bottom surface of the concave portion being formed and the upper end portion of the sheath increases. As a result, when the flight distance of the particles is increased by increasing the thickness of the sheath or the depth of the recess, the normal direction while the positive ions flying in the normal direction etch the bottom surface of the recess. The positive ions and radicals flying in different directions continue to etch only near the opening of the recess.
  • CD Crohn's Dimensions
  • the present invention has been made in view of the above-described conventional situation, and an object thereof is an etching method capable of increasing the anisotropy of an etching shape formed in the thickness direction from the surface of a substrate, and the etching. It is to provide an apparatus for use in carrying out the method.
  • a first aspect of the present invention is an etching method for etching a substrate placed on a stage electrode in a vacuum chamber in the thickness direction.
  • the etching method includes supplying an etching gas into the vacuum chamber, supplying high-frequency power to the stage electrode at a frequency of 60 MHz to 150 MHz, and energy distribution of ions incident on the substrate is the high-frequency power.
  • a pair of first peaks that appear at the ends of the high energy side of the energy distribution by different electric field accelerations determined by the frequency of the pair, and an energy region that is lower than the pair of first peaks, and the pair of first peaks Etching at a pressure such that the second peak has a higher intensity than the second peak.
  • a second aspect of the present invention is an etching apparatus for etching a substrate in the thickness direction thereof, a vacuum chamber, a stage electrode disposed in the vacuum chamber and mounting the substrate, and the vacuum chamber
  • An etching gas supply unit that supplies an etching gas to the substrate, a high-frequency power source that supplies high-frequency power to the stage electrode, an exhaust unit that evacuates the vacuum chamber, and an energy distribution of ions incident on the substrate is 60 MHz or more and 150 MHz.
  • new positive ions may be generated in the above-described sheath.
  • positive ions may be generated by charge exchange between positive ions that have entered the sheath and neutral particles.
  • newly generated positive ions are accelerated by the electric field from the generated position. Therefore, when a new positive ion is generated in the sheath, a peak different from the bimodal peak is recognized in an energy region lower than the bimodal peak described above.
  • the etching is performed in a pressure region in which the bimodal peak and the peak in the energy region lower than the bimodal peak are recognized in the ion energy distribution.
  • ions that fly in the sheath and are drawn into the substrate that is, ions that contribute to etching, are constituted by the following four types of [first ion] to [fourth ion].
  • the [third ion] and the [fourth ion] are more likely to reach the substrate than the [first ion] and [second ion] flying from the upper end of the sheath toward the substrate.
  • the shorter the flight distance the easier it is to reach the bottom surface of the etching target area. Therefore, in the etching method using the above-mentioned [first ions] to [fourth ions], the [third ions] and [fourth ions] are newly generated in the thickness direction of the substrate. It is possible to increase the anisotropy of the formed etching shape. In particular, if the processing increases the etching amount in the thickness direction of the substrate, the effect becomes more remarkable.
  • the anisotropy of the etching shape is changed by excessively increasing the pressure. Loss can be suppressed.
  • the pressure is 50 Pa or more and 150 Pa or less
  • the plasma density is 1 ⁇ 10 10 / cm 3 or more and 5 ⁇ 10 12 / cm 3 or less. That is the gist.
  • the control unit has the pressure of 50 Pa to 150 Pa and a plasma density of 1 ⁇ 10 10 / cm 3 to 5 ⁇ 10.
  • the gist is to control the flow rate of the etching gas supplied into the vacuum chamber so as to be 12 / cm 3 or less.
  • the thickness of the sheath formed on the substrate is defined by the plasma density, which is the density of ions and electrons contained in the plasma.
  • the plasma density is the density of ions and electrons contained in the plasma.
  • a density range and a pressure range are defined.
  • the pressure is set to 50 Pa or more and 150 Pa or less, and the plasma density is 1 ⁇ 10 10 / cm 3 or more and 5 ⁇ 10 12 / cm 3 or less. Therefore, it is possible to obtain reproducibility in the ratio of the intensity of the first peak to the intensity of the second peak as described above.
  • adjusting the flow rate of the etching gas and adjusting the exhaust amount of the etching gas can be mentioned.
  • the pressure of the space in which the plasma is generated is adjusted by the flow rate of the etching gas
  • the surface of the substrate is compared with the method of adjusting the exhaust amount of the etching gas. It is possible to increase the speed of the fluid. Therefore, if the pressure in the space where plasma is generated is increased, it is possible to carry out the etching in a so-called reaction-limited region where the etching rate is controlled by the progress of the etching reaction. As a result, it is possible to increase the anisotropy of the etching shape while suppressing a decrease in the etching rate.
  • the substrate is a silicon substrate, and the etching gas is at least one of fluorine-containing gas, chlorine, bromine, and iodine.
  • the gist of the present invention is that it is a mixed gas containing hydrogen halide gas having two.
  • etching of a silicon substrate uses a gas containing fluorine that forms silicon fluoride, which is a highly volatile compound, by combining with silicon.
  • silicon halides in which chlorine, bromine, and iodine, which are halogen elements other than fluorine, are bonded to silicon are less volatile than the above silicon fluoride, and silicon hydrides in which hydrogen is bonded to silicon are fluorine. More volatile than siliconized silicon.
  • a hydrogen halide gas containing at least one of chlorine, bromine, and iodine is used as the etching gas for the fluorine-containing gas that is the main component of etching.
  • the etching progressing in the thickness direction of the substrate is promoted by hydrogen ions, and the peripheral wall of the recess formed in the same thickness direction is hardly etched by the silicon halide deposit. Therefore, anisotropy of the etching shape is more easily obtained.
  • the schematic block diagram of the etching apparatus used for implementation of the etching method concerning one embodiment of this invention The figure which shows distribution of ion energy of the ion which reaches
  • FIG. 1 shows a schematic configuration of an etching apparatus according to this embodiment, which is generally called a parallel plate type or a capacitive coupling type.
  • the parallel plate type etching apparatus has a stage electrode 3 disposed in the vacuum chamber 1 via an insulating spacer 2.
  • a substrate S which is an object to be etched, is placed on the stage electrode 3, and a high frequency power source 4 that supplies high frequency power to the stage electrode 3 is connected via a matching box 5 that matches impedance. .
  • the high frequency power supply 4 sets the frequency of the high frequency power supplied to the stage electrode 3 to 60 MHz or more and 150 MHz or less.
  • an ion energy analyzer 6 for analyzing the energy of positive ions incident on the substrate S is disposed near the stage electrode 3.
  • the ion energy analyzer 6 collects a part of particles flying toward the stage electrode 3 and classifies positive ions contained in the particles for each electron temperature (eV), and also has positive ions having each electron temperature. Measure the number of
  • stage electrode 3 Above the stage electrode 3 is a shower plate 7 that functions as a ground electrode facing the stage electrode 3 and is provided with a gas introduction hole for introducing an etching gas supplied from the outside of the vacuum chamber 1 into the vacuum chamber 1. It is arranged.
  • a gas supply unit 8 that supplies various gases used for etching the substrate S is connected to the shower plate 7.
  • an exhaust unit 9 that exhausts various gases such as etching gas and air in the vacuum chamber 1 is connected to the vacuum chamber 1.
  • the flow rate of the gas per unit time supplied from the gas supply unit 8 to the vacuum chamber 1 is adjusted by the gas supply unit 8 or the exhaust amount per unit time of the exhaust unit 9 is adjusted.
  • the pressure in the vacuum chamber 1 is adjusted to a predetermined value (in this embodiment, 50 Pa or more and 150 Pa or less).
  • a predetermined value in this embodiment, 50 Pa or more and 150 Pa or less.
  • the pressure in the vacuum chamber 1 is adjusted to the predetermined value by the cooperation of the gas supply unit 8 and the exhaust unit 9.
  • the substrate S to be etched is first transferred into the vacuum chamber 1 and placed on the stage electrode 3.
  • the air in the vacuum chamber 1 is exhausted by the exhaust unit 9, and a predetermined flow rate of etching gas is supplied from the gas supply unit 8 into the vacuum chamber 1.
  • the inside of the vacuum chamber 1 is adjusted to a predetermined pressure by the flow rate of the etching gas supplied from the gas supply unit 8 and the exhaust amount of the exhaust unit 9.
  • the substrate S is a silicon substrate, for example, and the etching gas is composed of sulfur hexafluoride (SF 6 ) gas, oxygen (O 2 ) gas, and hydrogen bromide (HBr) gas.
  • SF 6 sulfur hexafluoride
  • O 2 oxygen
  • HBr hydrogen bromide
  • a mixed gas is used.
  • the etching gas is not limited to such a combination, and any etching gas may be used as long as it is a gas in which a fluorine-containing gas and a hydrogen halide gas containing at least one of chlorine, bromine, and iodine are mixed. Can do.
  • examples of the fluorine-containing gas constituting the etching gas include sulfur hexafluoride gas, iodine pentafluoride (IF 5 ) gas, chlorine trifluoride (ClF 3 ) gas, and boron trifluoride (BF). 3 ) At least one of gas, thionyl fluoride (SOF 2 ) gas, sulfuryl fluoride (SO 2 F 2 ) gas, and carbonyl fluoride (COF 2 ) gas can be employed. Also.
  • the hydrogen halide gas for example, at least one of hydrogen chloride (HCl) gas, hydrogen bromide, and hydrogen iodide (HI) gas can be employed.
  • a mixed gas containing sulfur hexafluoride gas which is a fluorine-containing gas generally used for etching a silicon substrate
  • hydrogen bromide gas which is a hydrogen halide gas
  • etching gas is used as an etching gas.
  • the etching progressing in the thickness direction of the substrate S is promoted by hydrogen ions that form silicon hydride having higher volatility than silicon fluoride.
  • the peripheral wall of the concave portion extending in the thickness direction of the substrate S is difficult to be etched by the silicon halide deposit. Therefore, anisotropy of the etching shape is easily obtained as compared with the case where etching is performed using other gas species.
  • the etching gas further contains an oxygen gas in addition to the fluorine-containing gas and the hydrogen halide gas.
  • an oxygen gas in addition to the fluorine-containing gas and the hydrogen halide gas.
  • the positive ions flying through the sheath in this way include positive ions flying in a direction different from the normal direction, in addition to positive ions flying in the normal direction.
  • the positive ions flying in a direction different from the normal direction are less likely to reach the bottom surface of the concave portion as the depth of the concave portion being formed increases.
  • positive ions flying in the normal direction increase the depth of the recess
  • positive ions flying in a direction different from the normal direction continue to expand the opening of the recess. Therefore, when the bimodal peak is recognized as a dominant peak in the positive ion energy distribution, the etching amount on the side wall of the recess increases as the depth of the recess increases. As a result, so-called CD loss increases.
  • etching is performed under the condition that the second peak having a lower energy than the first bimodal peak in the positive ion energy distribution is dominant, particularly the pressure condition. I am doing so.
  • FIGS. 2 to 5 illustrate positive ion energy distributions under the following etching conditions, and sequentially illustrate the energy distributions when the frequency of the high-frequency power is 40 MHz, 60 MHz, 150 MHz, and 250 MHz.
  • Etching gas mixed gas composed of SF 6 gas, O 2 gas, and HBr gas
  • Output value of high-frequency power at the stage electrode 3 10 W / cm 2 -Pressure in the vacuum chamber 1: 0.2 Pa, 25 Pa, 50 Pa, 150 Pa, 250 Pa ⁇
  • Plasma density during etching 1 ⁇ 10 11
  • the ion energy distributions shown in FIGS. 2 to 5 are obtained from the output values output from the ion energy analyzer 6 provided in the etching apparatus.
  • the ion energy when the pressure in the vacuum chamber 1 is 0.2 Pa is shown by a solid line
  • the ion energy when the pressure is 25 Pa is shown by a broken line.
  • the ion energy when the pressure in the vacuum chamber 1 is 50 Pa is indicated by a two-dot chain line
  • the ion energy when the pressure is 150 Pa is indicated by a one-dot chain line
  • the ion energy when the pressure is 250 Pa is indicated by a thick line.
  • the first high energy peak P1 recognized at about 140 eV is obtained under the condition where the pressure is 0.2 Pa and the condition where the pressure is 25 Pa.
  • a bimodal peak BP constituted by the second high energy peak P2 recognized at about 65 eV is recognized at the end on the high energy side.
  • the pressure is higher (50 Pa, 150 Pa, 250 Pa)
  • the bimodal peak BP is not recognized.
  • the pressure is 250 Pa, almost no positive ions having an energy of 65 to 140 eV, which is an energy region sandwiched between the bimodal peaks BP, are recognized.
  • the frequency of the high frequency power is 60 MHz
  • the first high energy peak P1 recognized at about 125 eV and the pressure other than 250 Pa (0.2 Pa, 25 Pa, 50 Pa, 150 Pa) and
  • a bimodal peak BP constituted by the second high energy peak P2 recognized at about 80 eV is recognized at the end on the high energy side.
  • An energy peak P3 is observed.
  • the positive ions showing such a low energy peak P3 have an energy lower than that given by the electric field acceleration. Therefore, positive ions having a low energy peak P3 are generated in the sheath and positively generated by electric field acceleration from the middle of the sheath, for example, positive ions generated by charge exchange between neutral particles and positive ions. It can be assigned as an ion.
  • strength of bimodal peak BP is recognized by the low energy side of this bimodal peak BP is a tendency recognized in the whole range of 50 Pa or more and 150 Pa or less. .
  • the first pressure that is recognized at about 110 eV is obtained under conditions other than the pressure of 250 Pa (0.2 Pa, 25 Pa, 50 Pa, 150 Pa).
  • a bimodal peak BP constituted by the high energy peak P1 and the second high energy peak P2 recognized at about 90 eV is recognized at the end on the high energy side.
  • the conditions where the pressure is 50 Pa and the conditions where the pressure is 150 Pa have higher intensity on the lower energy side than the bimodal peak BP and higher than the bimodal peak BP.
  • the low energy peak P3 which is the second peak is recognized.
  • the first condition which is recognized at about 95 eV
  • the pressure is 0.2 Pa
  • a bimodal peak BP composed of the high energy peak P1 and the second high energy peak P2 recognized at about 105 eV is recognized at the end on the high energy side.
  • the pressure is higher (50 Pa, 150 Pa, 250 Pa)
  • the bimodal peak BP is not recognized.
  • the frequency band is 60 MHz or more and 150 MHz or less, and the pressure in the vacuum chamber is 50 Pa or more and 150 Pa or less.
  • the frequency band is determined to be 60 MHz or more and 150 MHz or less, and the following [First Condition] and [Second Condition] are satisfied.
  • a range is defined. For example, under the above-described etching conditions, the frequency band is set to 60 MHz to 150 MHz, and the pressure range is set to 50 Pa to 150 Pa.
  • the bimodal peak BP is recognized at the end on the high energy side.
  • a low energy peak P3 having a lower energy side than the bimodal peak BP and having an intensity higher than that of the bimodal peak BP is recognized.
  • Examples of a method for adjusting the pressure of the space where the plasma is generated to such a predetermined value include adjusting the flow rate of the etching gas and adjusting the exhaust amount of the etching gas. From the viewpoint of adjusting the speed of the fluid, it is preferable to adjust the pressure according to the flow rate of the etching gas. According to this, since the etching is easily performed in a so-called reaction rate limiting region in which the etching rate is controlled by the progress of the etching reaction, anisotropy of the etching shape is increased while suppressing a decrease in the etching rate. It is possible.
  • the thickness of the sheath formed on the substrate S is defined by the plasma density, which is the density of ions and electrons contained in the plasma.
  • the plasma density which is the density of ions and electrons contained in the plasma.
  • a thinner sheath is formed as the plasma density is higher, and a thicker sheath is formed as the plasma density is lower. Therefore, not only the above [first condition] and [second condition] but also when the reproducibility is required for the ratio between the intensity of the low energy peak P3 and the intensity of the bimodal peak BP, such a plasma density.
  • a method in which the range and the pressure range are defined is preferable.
  • the flow rate of the etching gas and the high-frequency power are adjusted so that the pressure is 50 Pa or more and 150 Pa or less and the plasma density is 1 ⁇ 10 10 / cm 3 or more and 5 ⁇ 10 12 / cm 3 or less.
  • Output value is set.
  • FIG. 6 shows the trajectory of positive ions near the surface of the substrate S when the reactive ion etching is performed.
  • FIG. 7 schematically shows an etching shape formed by reactive ion etching.
  • FIG. 6 shows, after the board
  • the electron E having a higher moving speed generated following the electric field formed by the high-frequency current reaches the surface of the substrate S, so that the surface of the substrate S is negatively biased with respect to the plasma. Thereby, on the surface of the substrate S, the electrons E are repelled and bounced back to the side away from the surface of the substrate S.
  • the positive ions IP incident on the surface of the substrate S can be roughly classified into the following two.
  • First positive ions IPa that reach the surface of the substrate S without colliding with other particles.
  • a second positive ion IPb newly generated from the neutral particle NP by charge exchange between the neutral particle NP and the positive ion IP in the sheath Rs.
  • the first positive ion IPa is subjected to electric field acceleration by high-frequency power and maintains the energy obtained by the acceleration until it enters the substrate S. That is, the first positive ion IPa is a positive ion belonging to the bimodal peak BP composed of the first high energy peak P1 and the second high energy peak P2 shown in FIGS. As shown in FIG. 6, the first positive ions IPa fly in the direction normal to the surface of the substrate S, and the first positive ions fly in a direction different from the normal direction. IPa is included. The first positive ions IPa flying in the normal direction and the first positive ions IPa flying in a direction different from the normal direction do not collide with other positive ions IP and neutral particles NP. The surface of S is reached. However, the first positive ion IPa flying along the direction different from the normal direction among the first positive ions IPa reaches the bottom surface of the concave portion as the depth of the concave portion formed in the substrate S increases. It becomes difficult to do.
  • the second positive ion IPb is a positive ion whose energy given by the electric field acceleration is smaller than that of the first positive ion IPa, that is, a positive energy attributed to the low energy peak P3 shown in FIGS. Ion.
  • the second positive ion IPb also includes a second positive ion IPb flying in the normal direction and a second positive ion IPb flying in a direction different from the normal direction. It is included.
  • the positive ions generated in the sheath Rs in this manner have the same velocity direction distribution as that of the first positive ions IPa when the electric field acceleration is started, but the positions when the electric field acceleration is started are the first.
  • the flight distance of the second positive ion IPb is the distance Db from the point where the charge exchange is performed, and the charge exchange occurs in the sheath Rs. Therefore, the distance Db corresponds to the thickness of the sheath Rs. It becomes smaller than the distance Da. Therefore, the second positive ion IPb generated by the charge exchange reaches the substrate S more than the first positive ion IPa even if the flight direction deviates from the normal direction for the same reason as the first positive ion IPa. Since the flight distance until the time is shortened, it becomes easier to reach the bottom surface of the recess formed in the substrate S.
  • FIG. 7A and 7B schematically show etching shapes formed when reactive ion etching is performed by the first positive ions IPa and the second positive ions IPb, respectively.
  • a predetermined etching shape for example, a recess H is formed on the substrate S by reactive ion etching
  • a mask M having a predetermined opening is formed on the substrate S prior to reactive ion etching. Formed on the surface.
  • the positive ions IP are incident on the substrate S from the opening, whereby the substrate S is etched.
  • the method of the opening Ma of the mask M is performed with the first positive ion IPa flying in a direction different from the normal direction. Etching proceeds outward from the line direction. As a result, the maximum diameter DiaB in the recessed portion H that is an etching shape is larger than the diameter DiaA of the opening Ma.
  • the second positive ions IPb are accelerated in the electric field from the vicinity of the substrate S. Etching is likely to proceed along the normal direction. Therefore, the diameter of the recessed portion H that is an etching shape is substantially equal to the diameter DiaA in the opening Ma.
  • the ratio of the second positive ions IPb to the positive ions IP incident on the substrate S is increased. That is, as shown in FIGS. ] And [Second condition] are performed under such conditions that the anisotropy of the recess H is increased.
  • the second positive ion IPb belonging to the low energy peak P3 has lower ion energy than the first positive ion IPa belonging to the bimodal peak BP. If etching is performed under conditions where only the second positive ions IPb are present, the etching rate may decrease. In this regard, according to the present embodiment, the etching is performed under the condition in which the first positive ion IPa belonging to the bimodal peak BP and the second positive ion IPb belonging to the low energy peak P3 coexist. Therefore, a decrease in the etching rate can be suppressed by the first positive ions IPa while maintaining the anisotropy of the etching shape by the second positive ions IPb.
  • Example 1 After a mask having an opening with a diameter of 50 ⁇ m is applied to an 8-inch silicon substrate with a thickness of 750 ⁇ m, it is composed of SF 6 gas, O 2 gas, and HBr gas using the parallel plate etching apparatus. Etching was performed using a mixed gas as an etching gas. At this time, the frequency of the high frequency power output from the high frequency power source was 60 MHz, and the output value was 10 W / cm 2 . In addition, various gases contained in the mixed gas are made of SF 6 gas so that the plasma density is 1 ⁇ 10 10 / cm 3 or more and 5 ⁇ 10 12 / cm 3 or less and the pressure during etching is 120 Pa. , O 2 gas, and HBr gas were supplied to the vacuum chamber at flow rates of 150 sccm, 150 sccm, and 30 sccm, respectively.
  • FIG. 8A shows a cross-sectional image of the recess H of Example 1 taken using a scanning electron microscope (SEM). Moreover, the maximum value (maximum depth) of the depth of the recessed part H measured based on the cross-sectional image of Fig.8 (a) and the maximum value (maximum internal diameter) of the internal diameter of the recessed part H are shown below.
  • Maximum inner diameter 67 ⁇ m
  • the total flow rate of the mixed gas was changed so that the pressure during etching was 25 Pa, and the other conditions were the same as in Example 1 to obtain the recess H of Comparative Example 1.
  • FIG. 8B shows a cross-sectional image of the recess H of Comparative Example 1 taken using a scanning electron microscope (SEM). Moreover, the maximum depth and the maximum internal diameter of the recessed part H measured based on the cross-sectional image of FIG.8 (b) are shown below. ⁇ Maximum depth: 88 ⁇ m ⁇ Maximum inner diameter: 68 ⁇ m [Comparative Example 2] The total flow rate of the mixed gas was changed so that the pressure during etching was 250 Pa, and the other conditions were the same as in Example 1 to obtain a recess H of Comparative Example 2.
  • FIG. 8C shows a cross-sectional image of the recess H of Comparative Example 2 photographed using a scanning electron microscope (SEM).
  • the maximum depth and the maximum internal diameter of the recessed part H measured based on the cross-sectional image of FIG.8 (c) are shown below.
  • Maximum inner diameter: 71 ⁇ m From these results, the maximum depth of Example 1 is about twice the maximum depth of Comparative Example 1, and the maximum inner diameter of Example 1 is substantially the same as the maximum inner diameter of Comparative Example 1. Was recognized. According to this difference in the maximum depth, it was found that positive ions are more likely to reach the bottom surface of the recess H in the pressure region where the low energy peak P3 is recognized than in the low pressure region where it is not recognized. Further, according to the difference in the maximum inner diameter, it is understood that the positive ions reaching the side surface of the recess H are approximately the same in the pressure region where the low energy peak P3 is recognized and the low pressure region where it is not recognized. It was.
  • Example 1 was slightly larger than the maximum depth of Comparative Example 2, and that the maximum inner diameter of Example 1 was slightly smaller than the maximum inner diameter of Comparative Example 2. According to the difference in the maximum depth, even in the pressure region where the low energy peak P3 is recognized, positive ions hardly reach the bottom surface of the recess H in a high pressure region where the bimodal peak BP disappears. I found out. Further, according to the difference in the maximum inner diameter, even in the pressure region where the low energy peak P3 is recognized, in the high pressure region where the bimodal peak BP disappears, the positive ions reaching the side wall of the recess H I found out that it was going to increase.
  • the effects listed below can be obtained.
  • the intensity of the low energy peak P3 It is also possible to obtain reproducibility in the ratio of the intensity of the bimodal peak BP with respect to.
  • etching gas sulfur hexafluoride gas that is one of fluorine-containing gases and hydrogen bromide that is one of hydrogen halide gases containing at least one of chlorine, bromine, and iodine are included.
  • a mixed gas was used.
  • the etching gas contains oxygen gas in addition to sulfur hexafluoride gas and hydrogen bromide gas.
  • the plasma density range in the above embodiment may be a range in which the above [first condition] and [second condition] are satisfied by the energy distribution of ions incident on the substrate, and the low energy peak P3 If a particular reproducibility is not required for the ratio between the intensity and the intensity of the bimodal peak BP, it is possible to omit the determination of the plasma density range.
  • the pressure range in the said embodiment should just be a range with which said [1st condition] and said [2nd condition] are satisfy
  • etching gas For example, it may be 50 Pa or less or 150 Pa or more. With such an etching method, it is possible to expand the type of etching gas and the range of materials to be etched.
  • the ion energy distribution in the above embodiment is acquired by the ion energy analyzer 6 provided in the vicinity of the stage electrode 3.
  • the method used for this is a method capable of analyzing the energy of positive ions incident on the substrate S, such as a method using a single probe (Langmuir probe), a method using decomposition ion mass spectrometry, a method using emission spectroscopy, or the like.
  • the method is not limited to the method actually mounted on the etching apparatus, and an apparatus for obtaining the distribution of ion energy is separately used, and the pressure range in which the [first condition] and the [second condition] are satisfied is the etching apparatus.
  • the method may be determined by a different device.
  • etching method was carried out using a parallel plate type etching apparatus.
  • the present invention is not limited thereto, and the etching is performed using another etching apparatus having a configuration in which a substrate that is an object to be etched is placed above the electrode and a high-frequency power source that applies a bias voltage to the substrate is connected to the electrode. You can also.

Abstract

Disclosed is an etching method in which a substrate (S) mounted on a stage electrode (3) in a vacuum chamber (1) is etched in the thickness direction of the substrate (S), and in which: an etching gas is supplied to the vacuum chamber (1); high frequency electric power is supplied to the stage electrode (3) at a frequency between 60 MHz and 150 MHz inclusive; and etching is carried out at a pressure such that the energy distribution of ions incident on the substrate (S) has a pair of first peaks which occur at the edge of the high-energy side of the energy distribution and which are caused by different electric field accelerations in accordance with the frequency of the high frequency electric power, and a second peak which occurs in a lower energy range than the pair of first peaks and which has a higher intensity than the pair of first peaks.

Description

エッチング方法及びエッチング装置Etching method and etching apparatus
 この発明は、エッチング方法、特に反応性イオンエッチングにかかる方法及び該エッチング方法の実施に用いられる装置に関する。 The present invention relates to an etching method, in particular, a method related to reactive ion etching and an apparatus used for carrying out the etching method.
 従来から、例えば特許文献1及び特許文献2に記載のように、半導体材料や絶縁材料等によって形成された基板に対してドライエッチングを施す装置の一形態として、平行平板型のエッチング装置が知られている。平行平板型のエッチング装置は通常、エッチングガスが導入される真空槽内に、基板が載置されるステージ電極と、ステージ電極に対向して配置された上部電極とを有している。そしてステージ電極には、基板にバイアス電圧を印加する高周波電源が、インピーダンスの整合を図るマッチングボックスを介して接続されている。 2. Description of the Related Art Conventionally, as described in, for example, Patent Document 1 and Patent Document 2, a parallel plate etching apparatus is known as one form of an apparatus that performs dry etching on a substrate formed of a semiconductor material, an insulating material, or the like. ing. A parallel plate type etching apparatus usually has a stage electrode on which a substrate is placed and an upper electrode arranged to face the stage electrode in a vacuum chamber into which an etching gas is introduced. A high-frequency power source for applying a bias voltage to the substrate is connected to the stage electrode via a matching box for impedance matching.
 こうした平行平板型のエッチング装置においてエッチング処理が実施される際には、まず、上部電極に設けられたガス導入孔を介して、エッチングガスが導入される。次いで、高周波電圧が高周波電源から基板に印加されることによって、真空槽内のエッチングガスからプラズマが生成される。そして、プラズマに対して負にバイアスされたステージ電極に向かってプラズマ中の正イオンが引き込まれることによって、基板が化学的又は物理的にエッチングされる。このように、平行平板型のエッチング装置においては、いわゆる反応性イオンエッチングによって、所定の形状を呈する凹部が基板の厚さ方向に形成される。 When an etching process is performed in such a parallel plate type etching apparatus, an etching gas is first introduced through a gas introduction hole provided in the upper electrode. Next, plasma is generated from the etching gas in the vacuum chamber by applying a high-frequency voltage to the substrate from a high-frequency power source. Then, positive ions in the plasma are attracted toward the stage electrode that is negatively biased with respect to the plasma, whereby the substrate is chemically or physically etched. Thus, in the parallel plate type etching apparatus, a recess having a predetermined shape is formed in the thickness direction of the substrate by so-called reactive ion etching.
特開平6-53191号公報JP-A-6-53191 特開2004-128236号公報JP 2004-128236 A
 ところで、上述したように基板に向けて正イオンが引き込まれる過程では、まず基板の表面上にほぼ一様の厚さを有したシースが形成される。その後、シース内に進入した正イオンがシースに形成される電場によって加速されるとともに、電場加速に応じたエネルギーを有する状態で正イオンが基板の表面に衝突する。 Incidentally, in the process of attracting positive ions toward the substrate as described above, a sheath having a substantially uniform thickness is first formed on the surface of the substrate. Thereafter, the positive ions entering the sheath are accelerated by the electric field formed in the sheath, and the positive ions collide with the surface of the substrate in a state having energy corresponding to the electric field acceleration.
 この際、上記シース内に進入した正イオンの全てが基板の表面の法線方向に沿って飛行するのであれば、シースの厚さがどのような大きさであろうとも、該正イオンが電場の方向である法線方向に引き込まれる。そのため、基板の厚さ方向へのみエッチングが進行するようになる。 At this time, if all of the positive ions that have entered the sheath fly along the normal direction of the surface of the substrate, the positive ions may be applied to the electric field regardless of the thickness of the sheath. It is drawn in the normal direction which is the direction of. For this reason, etching proceeds only in the thickness direction of the substrate.
 しかしながら上記シース内に進入する粒子には、法線方向に飛行する正イオンの他に、法線方向とは異なる方向に飛行する正イオンやラジカルが含まれている。そして、法線方向とは異なる方向に飛行する正イオンやラジカルは、形成されつつある凹部の底面とシースの上端部との距離が大きくなるほど、該凹部の底面に到達し難くなる。その結果、シースの厚さが大きくなったり凹部の深さが大きくなったりすることによって粒子の飛行距離が大きくなると、法線方向に飛行する正イオンが凹部の底面をエッチングする間、法線方向とは異なる方向に飛行する正イオンやラジカルが凹部の開口付近のみをエッチングし続けるようになる。そして、凹部の側壁におけるエッチング量が大きくなる結果、いわゆるCD(Critical Dimensions)ロスが大きくなってしまう。特に、基板の厚さ方向へのエッチング量が大きくなる加工、例えばシリコン基板に貫通孔を形成するような加工にあっては、このような問題が顕著なものとなる。 However, the particles that enter the sheath include positive ions and radicals that fly in a direction different from the normal direction, in addition to positive ions that fly in the normal direction. Then, positive ions and radicals flying in a direction different from the normal direction are less likely to reach the bottom surface of the concave portion as the distance between the bottom surface of the concave portion being formed and the upper end portion of the sheath increases. As a result, when the flight distance of the particles is increased by increasing the thickness of the sheath or the depth of the recess, the normal direction while the positive ions flying in the normal direction etch the bottom surface of the recess. The positive ions and radicals flying in different directions continue to etch only near the opening of the recess. As a result of an increase in the etching amount on the side wall of the recess, so-called CD (Critical Dimensions) loss increases. In particular, such a problem becomes conspicuous in a process that increases the etching amount in the thickness direction of the substrate, for example, a process that forms a through hole in a silicon substrate.
 なお、こうした問題は、プラズマ密度を高くしてシースの厚さを小さくすることで軽減することが可能であるが、プラズマ密度を高くするとしても、それには限りがある。また、CDロスの問題は、上記平行平板型のエッチング装置においてのみ生じるものではなく、エッチングの対象物である基板が電極の上方に載置されるとともに、基板にバイアス電圧を印加する高周波電源が該電極に接続された構成を有するエッチング装置であれば、概ね共通して生じるものである。 Note that these problems can be alleviated by increasing the plasma density and decreasing the sheath thickness, but even if the plasma density is increased, this is limited. Further, the problem of CD loss does not occur only in the parallel plate type etching apparatus, and a high frequency power source that applies a bias voltage to the substrate is mounted on the substrate, which is an object to be etched. If it is an etching apparatus which has the structure connected to this electrode, it will occur in general.
 この発明は、上記従来の実情に鑑みてなされたものであり、その目的は、基板の表面からその厚さ方向に形成されるエッチング形状の異方性を高めることの可能なエッチング方法及び該エッチング方法の実施に用いられる装置を提供することにある。 The present invention has been made in view of the above-described conventional situation, and an object thereof is an etching method capable of increasing the anisotropy of an etching shape formed in the thickness direction from the surface of a substrate, and the etching. It is to provide an apparatus for use in carrying out the method.
 以下、上記課題を解決するための手段及びその作用効果について記載する。
 本発明の第一の態様は、真空槽内のステージ電極に載置された基板をその厚さ方向にエッチングするエッチング方法である。当該エッチング方法は、前記真空槽内にエッチングガスを供給すること、前記ステージ電極に60MHz以上150MHz以下の周波数にて高周波電力を供給すること、前記基板に入射するイオンのエネルギー分布が、前記高周波電力の周波数によって定められる互いに異なる電場加速によって前記エネルギー分布の高エネルギー側の端に発現する一対の第1ピークと、前記一対の第1ピークよりも低いエネルギー領域において発現し、前記一対の第1ピークよりも高い強度を有する第2ピークと、を有するような圧力でエッチングを実施すること、を備える。
Hereinafter, means for solving the above-described problems and the effects thereof will be described.
A first aspect of the present invention is an etching method for etching a substrate placed on a stage electrode in a vacuum chamber in the thickness direction. The etching method includes supplying an etching gas into the vacuum chamber, supplying high-frequency power to the stage electrode at a frequency of 60 MHz to 150 MHz, and energy distribution of ions incident on the substrate is the high-frequency power. A pair of first peaks that appear at the ends of the high energy side of the energy distribution by different electric field accelerations determined by the frequency of the pair, and an energy region that is lower than the pair of first peaks, and the pair of first peaks Etching at a pressure such that the second peak has a higher intensity than the second peak.
 本発明の第二の態様は、基板をその厚さ方向にエッチングするエッチング装置であって、真空槽と、前記真空槽内に配置されて前記基板を載置するステージ電極と、前記真空槽内にエッチングガスを供給するエッチングガス供給部と、前記ステージ電極に高周波電力を供給する高周波電源と、前記真空槽内を排気する排気部と、前記基板に入射するイオンのエネルギー分布が、60MHz以上150MHz以下の前記高周波電力の周波数によって定められる互いに異なる電場加速によって前記エネルギー分布の高エネルギー側の端に発現する一対の第1ピークと、前記一対の第1ピークよりも低いエネルギー領域において発現し、前記一対の第1ピークよりも高い強度を有する第2ピークと、を有するような圧力に前記真空槽内の圧力を制御する制御部と、を備える。 A second aspect of the present invention is an etching apparatus for etching a substrate in the thickness direction thereof, a vacuum chamber, a stage electrode disposed in the vacuum chamber and mounting the substrate, and the vacuum chamber An etching gas supply unit that supplies an etching gas to the substrate, a high-frequency power source that supplies high-frequency power to the stage electrode, an exhaust unit that evacuates the vacuum chamber, and an energy distribution of ions incident on the substrate is 60 MHz or more and 150 MHz. Expressed in a pair of first peaks expressed at the high energy side ends of the energy distribution by different electric field accelerations determined by the frequency of the high frequency power below, and in an energy region lower than the pair of first peaks, And a second peak having a higher intensity than the pair of first peaks, and the pressure in the vacuum chamber is controlled to a pressure having a second peak. And a control unit for, a.
 基板の表面上に所定の厚さで形成されるシース内にて他の粒子と衝突することなくイオンが基板に到達する場合、このイオンが追従する60MHz以上150MHz以下の周波数帯域では、該イオンが基板に到達する際の高周波電力の位相によって、大きな電場加速を受けるイオンとそうでないイオンとが生成される。これにより、基板に到達したイオンの間にエネルギー差が生じるようになる。その結果、上記高周波電力の周波数によって定められる互いに異なる電場加速による一対のピーク、いわゆるバイモーダルピークが、イオンのエネルギー分布内の高エネルギー側の端に認められるようになる。 When ions reach the substrate without colliding with other particles in a sheath formed with a predetermined thickness on the surface of the substrate, in the frequency band from 60 MHz to 150 MHz that the ions follow, the ions Depending on the phase of the high-frequency power when it reaches the substrate, ions that receive a large electric field acceleration and ions that do not. As a result, an energy difference is generated between ions that have reached the substrate. As a result, a pair of peaks due to different electric field accelerations determined by the frequency of the high-frequency power, so-called bimodal peaks, are recognized at the end on the high energy side in the ion energy distribution.
 また、上述したシース内で新たに正イオンが生成される場合がある。例えば、シース内に進入した正イオンと中性粒子との電荷交換によって正イオンが生成される場合がある。この場合には、新たに生成された正イオンが、その生成された位置から電場によって加速されることとなる。そのため、シース内で新たに正イオンが生成される場合には、上述したバイモーダルピークよりも低いエネルギー領域に、該バイモーダルピークとは異なるピークが認められるようになる。 Also, new positive ions may be generated in the above-described sheath. For example, positive ions may be generated by charge exchange between positive ions that have entered the sheath and neutral particles. In this case, newly generated positive ions are accelerated by the electric field from the generated position. Therefore, when a new positive ion is generated in the sheath, a peak different from the bimodal peak is recognized in an energy region lower than the bimodal peak described above.
 本発明の第一及び第二の態様によれば、上記バイモーダルピークと該バイモーダルピークよりも低いエネルギー領域のピークとが、イオンエネルギーの分布に認められるような圧力領域でエッチングが実行される。このような圧力領域では、シース内を飛行して基板に引き込まれるイオン、つまりエッチングに寄与するイオンが、下記[第一イオン]~[第四イオン]の4種類によって構成されるようになる。 According to the first and second aspects of the present invention, the etching is performed in a pressure region in which the bimodal peak and the peak in the energy region lower than the bimodal peak are recognized in the ion energy distribution. . In such a pressure region, ions that fly in the sheath and are drawn into the substrate, that is, ions that contribute to etching, are constituted by the following four types of [first ion] to [fourth ion].
 [第一イオン]基板表面の法線方向に沿ってシース内を飛行するイオン
 [第二イオン]基板表面の法線方向とは異なる方向に沿ってシース内を飛行するイオン
 [第三イオン]シース内で生成されて基板表面の法線方向に飛行するイオン
 [第四イオン]シース内で生成されて基板表面の法線方向とは異なる方向に飛行するイオン
 ここで、第1のピークであるバイモーダルピークに帰属されるイオンのうち、基板の法線方向とは異なる方向から基板に到達する上記[第二イオン]は、エッチング対象領域の深さが大きくなるほど、該対象領域の底面へ到達し難くなる。一方、上記[第三イオン]及び上記[第四イオン]は、シースの上端部から基板に向けて飛行する上記[第一イオン]及び[第二イオン]よりも、該基板に到達するまでの飛行距離が短くなる分、エッチング対象領域の底面まで到達しやすくなる。それゆえに、上記[第一イオン]~[第四イオン]が用いられるエッチング方法であれば、上記[第三イオン]及び[第四イオン]が新たに生成される分、基板の厚さ方向に形成されるエッチング形状の異方性を高めることが可能である。特に、基板の厚さ方向へのエッチング量が大きくなるような加工であれば、その効果がより顕著なものとなる。
[First ion] Ions flying in the sheath along the normal direction of the substrate surface [Second ion] Ions flying in the sheath along a direction different from the normal direction of the substrate surface [Third ion] sheath Ions generated in the air and flying in the normal direction of the substrate surface [Fourth ion] Ions generated in the sheath and flying in a direction different from the normal direction of the substrate surface Among the ions attributed to the modal peak, the [second ion] that reaches the substrate from a direction different from the normal direction of the substrate reaches the bottom surface of the target region as the depth of the target region increases. It becomes difficult. On the other hand, the [third ion] and the [fourth ion] are more likely to reach the substrate than the [first ion] and [second ion] flying from the upper end of the sheath toward the substrate. The shorter the flight distance, the easier it is to reach the bottom surface of the etching target area. Therefore, in the etching method using the above-mentioned [first ions] to [fourth ions], the [third ions] and [fourth ions] are newly generated in the thickness direction of the substrate. It is possible to increase the anisotropy of the formed etching shape. In particular, if the processing increases the etching amount in the thickness direction of the substrate, the effect becomes more remarkable.
 しかも上述したエッチング方法によれば、相対的に高いエネルギーを有した上記[第一イオン]及び[第二イオン]も存在するため、圧力が過剰に高くなることでエッチング形状の異方性がかえって失われることも抑えることができる。 Moreover, according to the etching method described above, since the [first ion] and [second ion] having relatively high energy exist, the anisotropy of the etching shape is changed by excessively increasing the pressure. Loss can be suppressed.
 本発明の第三の態様は、上記第一の態様のエッチング方法において、前記圧力が50Pa以上150Pa以下であり、且つプラズマの密度が1×1010/cm以上5×1012/cm以下であることをその要旨とする。 According to a third aspect of the present invention, in the etching method according to the first aspect, the pressure is 50 Pa or more and 150 Pa or less, and the plasma density is 1 × 10 10 / cm 3 or more and 5 × 10 12 / cm 3 or less. That is the gist.
 本発明の第四の態様は、上記第二の態様のエッチング装置において、前記制御部は、前記圧力が50Pa以上150Pa以下であり、且つプラズマの密度が1×1010/cm以上5×1012/cm以下になるように、前記真空槽内に供給するエッチングガスの流量を制御することを要旨とする。 According to a fourth aspect of the present invention, in the etching apparatus according to the second aspect, the control unit has the pressure of 50 Pa to 150 Pa and a plasma density of 1 × 10 10 / cm 3 to 5 × 10. The gist is to control the flow rate of the etching gas supplied into the vacuum chamber so as to be 12 / cm 3 or less.
 基板上に形成されるシースの厚さは、プラズマ中に含まれるイオン及び電子の密度であるプラズマ密度によって規定される。ここで一般には、プラズマ密度が高い程、薄いシースが形成され、プラズマ密度が低い程、厚いシースが形成される。そこで、第1のピークと第2のピークとの大小関係のみならず、第2のピークの強度に対する第1のピークの強度の比率等に再現性が要求される場合には、このようなプラズマ密度の範囲と圧力の範囲とが定められることが好ましい。この点、上記本発明の第三及び第四の態様によれば、圧力が50Pa以上150Pa以下に設定され、且つ、プラズマ密度が1×1010/cm以上5×1012/cm以下に設定されるため、上述したように第2のピークの強度に対する第1のピークの強度の比率等に再現性を得ることが可能となる。 The thickness of the sheath formed on the substrate is defined by the plasma density, which is the density of ions and electrons contained in the plasma. In general, the higher the plasma density, the thinner the sheath, and the lower the plasma density, the thicker the sheath. Therefore, in the case where reproducibility is required not only in the magnitude relationship between the first peak and the second peak but also in the ratio of the intensity of the first peak to the intensity of the second peak, etc., such a plasma is used. Preferably, a density range and a pressure range are defined. In this regard, according to the third and fourth aspects of the present invention, the pressure is set to 50 Pa or more and 150 Pa or less, and the plasma density is 1 × 10 10 / cm 3 or more and 5 × 10 12 / cm 3 or less. Therefore, it is possible to obtain reproducibility in the ratio of the intensity of the first peak to the intensity of the second peak as described above.
 なお、プラズマが生成される空間の圧力を所定値に調整する方法としては、エッチングガスの流量を調整することと、エッチングガスの排気量を調整することとが挙げられる。この点、本発明の第四の態様によれば、プラズマが生成される空間の圧力がエッチングガスの流量によって調整されるため、エッチングガスの排気量を調整する方式と比較して、基板の表面における流体の速さを高めることが可能である。そのため、プラズマが生成される空間の圧力を高める場合であれば、エッチング反応の進行によってエッチング速度が律速するようないわゆる反応律速となる領域で、上記エッチングを実施することが可能である。ひいては、エッチング速度の低下を抑えつつ、エッチング形状の異方性を高めることが可能である。 In addition, as a method of adjusting the pressure of the space where the plasma is generated to a predetermined value, adjusting the flow rate of the etching gas and adjusting the exhaust amount of the etching gas can be mentioned. In this regard, according to the fourth aspect of the present invention, since the pressure of the space in which the plasma is generated is adjusted by the flow rate of the etching gas, the surface of the substrate is compared with the method of adjusting the exhaust amount of the etching gas. It is possible to increase the speed of the fluid. Therefore, if the pressure in the space where plasma is generated is increased, it is possible to carry out the etching in a so-called reaction-limited region where the etching rate is controlled by the progress of the etching reaction. As a result, it is possible to increase the anisotropy of the etching shape while suppressing a decrease in the etching rate.
 本発明の第五の態様は、上記第一又は第三の態様のエッチング方法において、前記基板がシリコン基板であるとともに、前記エッチングガスが、フッ素含有ガスと、塩素、臭素、及びヨウ素の少なくとも一つを有するハロゲン化水素ガスとを含む混合ガスであることをその要旨とする。 According to a fifth aspect of the present invention, in the etching method of the first or third aspect, the substrate is a silicon substrate, and the etching gas is at least one of fluorine-containing gas, chlorine, bromine, and iodine. The gist of the present invention is that it is a mixed gas containing hydrogen halide gas having two.
 シリコン基板のエッチングには一般に、シリコンと結合して揮発性の高い化合物であるフッ化シリコンを形成するフッ素を含有するガスが用いられる。一方、フッ素以外のハロゲン元素である塩素、臭素、及びヨウ素がシリコンと結合したハロゲン化シリコンは、上記フッ化シリコンよりも揮発性が低く、また、水素がシリコンと結合した水素化シリコンは、フッ化シリコンよりも揮発性が高い。 In general, etching of a silicon substrate uses a gas containing fluorine that forms silicon fluoride, which is a highly volatile compound, by combining with silicon. On the other hand, silicon halides in which chlorine, bromine, and iodine, which are halogen elements other than fluorine, are bonded to silicon are less volatile than the above silicon fluoride, and silicon hydrides in which hydrogen is bonded to silicon are fluorine. More volatile than siliconized silicon.
 そのため、本発明の第五の態様では、エッチングガスとして、エッチングの主体となるフッ素含有ガスに、塩素、臭素、及びヨウ素の少なくとも一つを含有するハロゲン化水素ガスを用いるようにしている。これにより、基板の厚さ方向へと進行するエッチングは、水素イオンによって促進されるとともに、同厚さ方向に形成された凹部の周壁は、ハロゲン化シリコンの堆積物によってエッチングされにくくなる。したがって、エッチング形状の異方性がより得られやすくなる。 Therefore, in the fifth aspect of the present invention, a hydrogen halide gas containing at least one of chlorine, bromine, and iodine is used as the etching gas for the fluorine-containing gas that is the main component of etching. Thus, the etching progressing in the thickness direction of the substrate is promoted by hydrogen ions, and the peripheral wall of the recess formed in the same thickness direction is hardly etched by the silicon halide deposit. Therefore, anisotropy of the etching shape is more easily obtained.
本発明の一実施の形態にかかるエッチング方法の実施に用いられるエッチング装置の概略構成図。The schematic block diagram of the etching apparatus used for implementation of the etching method concerning one embodiment of this invention. 高周波電力の周波数が40MHzであるときに、基板に到達するイオンのイオンエネルギーの分布を示す図。The figure which shows distribution of ion energy of the ion which reaches | attains a board | substrate when the frequency of high frequency electric power is 40 MHz. 高周波電力の周波数が60MHzであるときに、基板に到達するイオンのイオンエネルギーの分布を示す図。The figure which shows distribution of the ion energy of the ion which reaches | attains a board | substrate when the frequency of high frequency electric power is 60 MHz. 高周波電力の周波数が150MHzであるときに、基板に到達するイオンのイオンエネルギーの分布を示す図。The figure which shows distribution of the ion energy of the ion which reaches | attains a board | substrate when the frequency of high frequency electric power is 150 MHz. 高周波電力の周波数が250MHzであるときに、基板に到達するイオンのイオンエネルギーの分布を示す図。The figure which shows distribution of the ion energy of the ion which reaches | attains a board | substrate when the frequency of high frequency electric power is 250 MHz. 反応性イオンエッチングにおける正イオンの軌道を示す模式図。The schematic diagram which shows the track | orbit of the positive ion in reactive ion etching. (a)(b)反応性イオンエッチングによって形成されたエッチング形状を示す模式図。(A) (b) The schematic diagram which shows the etching shape formed by reactive ion etching. (a)~(c)エッチングによってシリコン基板に形成された凹部を走査型電子顕微鏡(SEM)によって撮影した画像。(A) to (c) Images obtained by photographing a recess formed in a silicon substrate by etching with a scanning electron microscope (SEM).
 以下、本発明にかかるエッチング方法、及び該エッチング方法の実施に用いられるエッチング装置を具現化した一実施の形態を、図1~図6を参照して説明する。
 図1は、本実施の形態にかかるエッチング装置であって、一般に平行平板型、あるいは容量結合型と呼ばれるエッチング装置の概略構成を示している。平行平板型のエッチング装置は、真空槽1の内部に絶縁スペーサ2を介して配設されるステージ電極3を有している。ステージ電極3には、エッチングの対象物である基板Sが載置されるとともに、ステージ電極3に高周波電力を供給する高周波電源4が、インピーダンスの整合を図るマッチングボックス5を介して接続されている。高周波電源4は、ステージ電極3に供給する高周波電力の周波数を60MHz以上150MHz以下に設定する。
Hereinafter, an embodiment in which an etching method according to the present invention and an etching apparatus used for carrying out the etching method are embodied will be described with reference to FIGS.
FIG. 1 shows a schematic configuration of an etching apparatus according to this embodiment, which is generally called a parallel plate type or a capacitive coupling type. The parallel plate type etching apparatus has a stage electrode 3 disposed in the vacuum chamber 1 via an insulating spacer 2. A substrate S, which is an object to be etched, is placed on the stage electrode 3, and a high frequency power source 4 that supplies high frequency power to the stage electrode 3 is connected via a matching box 5 that matches impedance. . The high frequency power supply 4 sets the frequency of the high frequency power supplied to the stage electrode 3 to 60 MHz or more and 150 MHz or less.
 また、ステージ電極3の近傍には、基板Sに入射する正イオンのエネルギーを分析するためのイオンエネルギー分析器6が配置されている。イオンエネルギー分析器6は、ステージ電極3に向けて飛行する粒子の一部を収集して該粒子中に含まれる正イオンを電子温度(eV)毎に分類するとともに、各電子温度を有する正イオンの数を測定する。 Also, an ion energy analyzer 6 for analyzing the energy of positive ions incident on the substrate S is disposed near the stage electrode 3. The ion energy analyzer 6 collects a part of particles flying toward the stage electrode 3 and classifies positive ions contained in the particles for each electron temperature (eV), and also has positive ions having each electron temperature. Measure the number of
 ステージ電極3の上方には、これと対向する接地電極として機能し、且つ、真空槽1の外部から供給されたエッチングガスを真空槽1内に導入するガス導入孔が設けられたシャワープレート7が配設されている。シャワープレート7には、基板Sのエッチングに用いられる各種ガスを供給するガス供給部8が接続されている。加えて、真空槽1には、真空槽1内のエッチングガスや大気等の各種ガスを排気する排気部9が連結されている。本実施の形態では、上記ガス供給部8から真空槽1に供給される単位時間当りのガスの流量がガス供給部8によって調整されること、あるいは、排気部9の単位時間当りの排気量が排気部9によって調整されることによって真空槽1内の圧力が所定値(本実施の形態では、50Pa以上150Pa以下)に調整される。またあるいは、ガス供給部8及び排気部9の協働により、真空槽1内の圧力が上記所定値に調整される。 Above the stage electrode 3 is a shower plate 7 that functions as a ground electrode facing the stage electrode 3 and is provided with a gas introduction hole for introducing an etching gas supplied from the outside of the vacuum chamber 1 into the vacuum chamber 1. It is arranged. A gas supply unit 8 that supplies various gases used for etching the substrate S is connected to the shower plate 7. In addition, an exhaust unit 9 that exhausts various gases such as etching gas and air in the vacuum chamber 1 is connected to the vacuum chamber 1. In the present embodiment, the flow rate of the gas per unit time supplied from the gas supply unit 8 to the vacuum chamber 1 is adjusted by the gas supply unit 8 or the exhaust amount per unit time of the exhaust unit 9 is adjusted. By adjusting with the exhaust part 9, the pressure in the vacuum chamber 1 is adjusted to a predetermined value (in this embodiment, 50 Pa or more and 150 Pa or less). Alternatively, the pressure in the vacuum chamber 1 is adjusted to the predetermined value by the cooperation of the gas supply unit 8 and the exhaust unit 9.
 上記平行平板型のエッチング装置にてエッチングが実施される際には、まずエッチングの対象となる基板Sが真空槽1内に搬送されて、ステージ電極3上に載置される。次いで、排気部9によって真空槽1内の大気等が排出されるとともに、ガス供給部8から、所定流量のエッチングガスが真空槽1内に供給される。このとき、ガス供給部8から供給されるエッチングガスの流量と、上記排気部9の排気量とにより、真空槽1内が所定の圧力に調整される。エッチングガスの供給の後、高周波電源4からステージ電極3への高周波電極の供給が実施されると、ステージ電極3に載置された基板Sとシャワープレート7との間での放電によって、エッチングガスのプラズマが生成される。なお、上述した排気部9による排気処理、ガス供給部8によるガス供給処理、高周波電源4による電力供給処理等、エッチング装置で実行される各種処理は、エッチング装置に接続された制御部10によって各部が駆動されることによって実行されるようになっている。 When etching is performed by the parallel plate type etching apparatus, the substrate S to be etched is first transferred into the vacuum chamber 1 and placed on the stage electrode 3. Next, the air in the vacuum chamber 1 is exhausted by the exhaust unit 9, and a predetermined flow rate of etching gas is supplied from the gas supply unit 8 into the vacuum chamber 1. At this time, the inside of the vacuum chamber 1 is adjusted to a predetermined pressure by the flow rate of the etching gas supplied from the gas supply unit 8 and the exhaust amount of the exhaust unit 9. When the high frequency electrode is supplied from the high frequency power supply 4 to the stage electrode 3 after the etching gas is supplied, the etching gas is discharged by the discharge between the substrate S placed on the stage electrode 3 and the shower plate 7. Plasma is generated. Various processes executed in the etching apparatus such as the exhaust process by the exhaust unit 9, the gas supply process by the gas supply unit 8, and the power supply process by the high frequency power source 4 are performed by the control unit 10 connected to the etching apparatus. Is executed by being driven.
 プラズマの生成時には、基板S及び真空槽1の表面にプラズマ中の電子が衝突することによって、これら表面がプラズマに対して負にバイアスされるとともに、同表面には、所定の厚さを有したシースがほぼ一様に形成される。そして、プラズマ中の正イオンがシースと該シースを除いたプラズマとの境界(シースの上端部)に到達すると、負にバイアスされた基板Sの表面に該正イオンが引き込まれることになる。こうして基板Sの表面に引き込まれた正イオンが、基板Sを化学的又は物理的にエッチングすることにより、所定のエッチング形状を伴うエッチングが、基板Sの表面から該基板Sの厚さ方向に進行する。そして基板Sの表面から該基板Sの厚さ方向に延びる凹部が形成される。 When the plasma is generated, electrons in the plasma collide with the surface of the substrate S and the vacuum chamber 1, so that these surfaces are negatively biased with respect to the plasma, and the surfaces have a predetermined thickness. The sheath is formed almost uniformly. When positive ions in the plasma reach the boundary between the sheath and the plasma excluding the sheath (the upper end of the sheath), the positive ions are attracted to the surface of the negatively biased substrate S. The positive ions drawn into the surface of the substrate S etch the substrate S chemically or physically, so that etching with a predetermined etching shape proceeds from the surface of the substrate S in the thickness direction of the substrate S. To do. And the recessed part extended in the thickness direction of this board | substrate S from the surface of the board | substrate S is formed.
 なお、本実施の形態では、上記基板Sを例えばシリコン基板とし、エッチングガスとしては、六フッ化硫黄(SF)ガス、酸素(O)ガス、及び臭化水素(HBr)ガスから構成される混合ガスを用いている。ただし、エッチングガスとしては、こうした組み合わせに限らず、フッ素含有ガスと、塩素、臭素、及びヨウ素の少なくとも一つを有するハロゲン化水素ガスとが混合されたガスであれば該エッチングガスとして採用することができる。より詳細には、エッチングガスを構成するフッ素含有ガスとしては、例えば、六フッ化硫黄ガス、五フッ化ヨウ素(IF)ガス、三フッ化塩素(ClF)ガス、三フッ化ホウ素(BF)ガス、フッ化チオニル(SOF)ガス、フッ化スルフリル(SO)ガス、及びフッ化カルボニル(COF)ガスのうちの少なくとも1つを採用することができる。また。ハロゲン化水素ガスとしては、例えば、塩化水素(HCl)ガス、臭化水素、及びヨウ化水素(HI)ガスのうちの少なくとも1つを採用することができる。 In this embodiment, the substrate S is a silicon substrate, for example, and the etching gas is composed of sulfur hexafluoride (SF 6 ) gas, oxygen (O 2 ) gas, and hydrogen bromide (HBr) gas. A mixed gas is used. However, the etching gas is not limited to such a combination, and any etching gas may be used as long as it is a gas in which a fluorine-containing gas and a hydrogen halide gas containing at least one of chlorine, bromine, and iodine are mixed. Can do. More specifically, examples of the fluorine-containing gas constituting the etching gas include sulfur hexafluoride gas, iodine pentafluoride (IF 5 ) gas, chlorine trifluoride (ClF 3 ) gas, and boron trifluoride (BF). 3 ) At least one of gas, thionyl fluoride (SOF 2 ) gas, sulfuryl fluoride (SO 2 F 2 ) gas, and carbonyl fluoride (COF 2 ) gas can be employed. Also. As the hydrogen halide gas, for example, at least one of hydrogen chloride (HCl) gas, hydrogen bromide, and hydrogen iodide (HI) gas can be employed.
 本実施の形態では、エッチングガスとして、シリコン基板のエッチングに際して一般に用いられるフッ素含有ガスである六フッ化硫黄ガスと、ハロゲン化水素ガスである臭化水素ガスとを含む混合ガスを用いるようにしている。これにより、基板Sの厚さ方向へと進行するエッチングは、フッ化シリコンよりも揮発性の高い水素化シリコンを形成する水素イオンによって促進される。また、基板Sの厚さ方向に延びる凹部の周壁は、ハロゲン化シリコンの堆積物によってエッチングされにくくなる。したがって、他のガス種を用いてエッチングを行う場合と比較して、エッチング形状の異方性が得られやすくなる。 In this embodiment, a mixed gas containing sulfur hexafluoride gas, which is a fluorine-containing gas generally used for etching a silicon substrate, and hydrogen bromide gas, which is a hydrogen halide gas, is used as an etching gas. Yes. Thereby, the etching progressing in the thickness direction of the substrate S is promoted by hydrogen ions that form silicon hydride having higher volatility than silicon fluoride. Further, the peripheral wall of the concave portion extending in the thickness direction of the substrate S is difficult to be etched by the silicon halide deposit. Therefore, anisotropy of the etching shape is easily obtained as compared with the case where etching is performed using other gas species.
 ちなみに、本実施の形態では、エッチングガスが、上記フッ素含有ガスとハロゲン化水素ガスに加えて、酸素ガスを更に含んでいる。このようなエッチングガスによれば、エッチングに際して、上記水素化シリコン、フッ化シリコン、及びハロゲン化シリコンのいずれよりも揮発性が低い酸化シリコンが形成されるようになる。そのため、基板Sの厚さ方向に延びる凹部の周壁が、よりエッチングされにくくなる。 Incidentally, in this embodiment, the etching gas further contains an oxygen gas in addition to the fluorine-containing gas and the hydrogen halide gas. According to such an etching gas, silicon oxide having lower volatility than any of the silicon hydride, silicon fluoride, and silicon halide is formed during the etching. For this reason, the peripheral wall of the recess extending in the thickness direction of the substrate S is more difficult to be etched.
 ここで、上述した反応性イオンエッチングの際に、シース内を基板Sに向かって飛行する正イオンが他の粒子と衝突することなく基板Sの表面に到達するとする。この場合、高周波電力の周波数帯域が上記60MHz以上150MHz以下であると、高周波電力が形成する電界に正イオンが追従する。その結果、正イオンが基板Sに到達する際に高周波電力の位相に応じて、大きな電場加速を受ける正イオンとそうでない正イオンとが生成される。これにより、これら正イオンの間にエネルギー差が生じるようになる。このため、高周波電力の周波数によって定められた互いに異なる電場加速による一対のピーク、いわゆるバイモーダルピークが、正イオンのエネルギー分布内で高エネルギー側の端に認められるようになる。 Here, it is assumed that positive ions flying toward the substrate S in the sheath reach the surface of the substrate S without colliding with other particles during the reactive ion etching described above. In this case, if the frequency band of the high frequency power is 60 MHz or more and 150 MHz or less, positive ions follow the electric field formed by the high frequency power. As a result, when positive ions reach the substrate S, positive ions that undergo a large electric field acceleration and positive ions that do not, are generated according to the phase of the high-frequency power. This causes an energy difference between these positive ions. For this reason, a pair of peaks due to different electric field accelerations determined by the frequency of the high-frequency power, so-called bimodal peaks, are recognized at the high-energy side end in the positive ion energy distribution.
 こうしたバイモーダルピークが、正イオンのエネルギー分布内での優位なピークとして認められる場合、正イオンの大部分は、基板Sの表面上に形成されたシースの上端部から基板Sの表面まで飛行することになる。このようにしてシースを飛行する正イオンには、法線方向に飛行する正イオンの他に、法線方向とは異なる方向に飛行する正イオンが含まれている。このように法線方向とは異なる方向に飛行する正イオンは、形成されつつある凹部の深さが大きくなるほど、該凹部の底面に到達し難くなる。その結果、法線方向に飛行する正イオンが凹部の深さを大きくする間、法線方向とは異なる方向に飛行する正イオンが凹部の開口を拡大し続けるようになる。それゆえに、正イオンのエネルギー分布内でバイモーダルピークが優位なピークとして認められる場合には、凹部の深さが大きくなるほど、凹部の側壁におけるエッチング量が大きくなる。その結果、いわゆるCDロスが大きくなってしまう。 When such a bimodal peak is recognized as a dominant peak in the energy distribution of positive ions, most of the positive ions fly from the upper end of the sheath formed on the surface of the substrate S to the surface of the substrate S. It will be. The positive ions flying through the sheath in this way include positive ions flying in a direction different from the normal direction, in addition to positive ions flying in the normal direction. Thus, the positive ions flying in a direction different from the normal direction are less likely to reach the bottom surface of the concave portion as the depth of the concave portion being formed increases. As a result, while positive ions flying in the normal direction increase the depth of the recess, positive ions flying in a direction different from the normal direction continue to expand the opening of the recess. Therefore, when the bimodal peak is recognized as a dominant peak in the positive ion energy distribution, the etching amount on the side wall of the recess increases as the depth of the recess increases. As a result, so-called CD loss increases.
 そこで本実施の形態では、正イオンのエネルギー分布において、第1のピークである上記バイモーダルピークよりもエネルギーの小さい第2のピークが優位となるような条件、特に圧力条件にてエッチングを実施するようにしている。 Therefore, in the present embodiment, etching is performed under the condition that the second peak having a lower energy than the first bimodal peak in the positive ion energy distribution is dominant, particularly the pressure condition. I am doing so.
 次に、基板Sに引き込まれた正イオンのエネルギーの分布に対する高周波電力の周波数の依存性及び真空槽1内の圧力の依存性を、下記エッチング条件を一例として、図2~図5を参照して説明する。図2~図5は、下記エッチング条件における正イオンのエネルギー分布であって、順に、高周波電力の周波数を40MHz、60MHz、150MHz、250MHzとするときのエネルギー分布を例示するものである。
(エッチング条件)
・エッチングガス:SFガス、Oガス、HBrガスからなる混合ガス
・ステージ電極3における高周波電力の出力値:10W/cm
・真空槽1内の圧力:0.2Pa、25Pa、50Pa、150Pa、250Pa
・エッチング時におけるプラズマ密度:1×1011
 なお、図2~図5に示されるイオンエネルギー分布は、上記エッチング装置に設けられたイオンエネルギー分析器6が出力する出力値から得られるものである。また、各図には、真空槽1内の圧力が0.2Paであるときのイオンエネルギーが実線、同圧力が25Paであるときのイオンエネルギーが破線で示されている。また、真空槽1内の圧力が50Paであるときのイオンエネルギーが二点鎖線、同圧力が150Paであるときのイオンエネルギーが一点鎖線、同圧力が250Paであるときのイオンエネルギーが太線で示されている。
Next, the dependence of the frequency of the high-frequency power on the distribution of the positive ion energy drawn into the substrate S and the dependence of the pressure in the vacuum chamber 1 will be described with reference to FIGS. I will explain. FIGS. 2 to 5 illustrate positive ion energy distributions under the following etching conditions, and sequentially illustrate the energy distributions when the frequency of the high-frequency power is 40 MHz, 60 MHz, 150 MHz, and 250 MHz.
(Etching conditions)
Etching gas: mixed gas composed of SF 6 gas, O 2 gas, and HBr gas Output value of high-frequency power at the stage electrode 3: 10 W / cm 2
-Pressure in the vacuum chamber 1: 0.2 Pa, 25 Pa, 50 Pa, 150 Pa, 250 Pa
・ Plasma density during etching: 1 × 10 11
The ion energy distributions shown in FIGS. 2 to 5 are obtained from the output values output from the ion energy analyzer 6 provided in the etching apparatus. Moreover, in each figure, the ion energy when the pressure in the vacuum chamber 1 is 0.2 Pa is shown by a solid line, and the ion energy when the pressure is 25 Pa is shown by a broken line. Also, the ion energy when the pressure in the vacuum chamber 1 is 50 Pa is indicated by a two-dot chain line, the ion energy when the pressure is 150 Pa is indicated by a one-dot chain line, and the ion energy when the pressure is 250 Pa is indicated by a thick line. ing.
 図2に示されるように、高周波電力の周波数が40MHzである場合、圧力が0.2Paである条件と、圧力が25Paである条件とには、約140eVに認められる第一高エネルギーピークP1と、約65eVに認められる第二高エネルギーピークP2とによって構成されるバイモーダルピークBPが高エネルギー側の端に認められる。これに対し、圧力がより高い条件(50Pa、150Pa、250Pa)である場合には、バイモーダルピークBPが認められない。特に、圧力が250Paである条件では、バイモーダルピークBPによって挟まれたエネルギー領域である65~140eVのエネルギーを有した正イオンがほとんど認められない。 As shown in FIG. 2, when the frequency of the high frequency power is 40 MHz, the first high energy peak P1 recognized at about 140 eV is obtained under the condition where the pressure is 0.2 Pa and the condition where the pressure is 25 Pa. , A bimodal peak BP constituted by the second high energy peak P2 recognized at about 65 eV is recognized at the end on the high energy side. On the other hand, when the pressure is higher (50 Pa, 150 Pa, 250 Pa), the bimodal peak BP is not recognized. In particular, when the pressure is 250 Pa, almost no positive ions having an energy of 65 to 140 eV, which is an energy region sandwiched between the bimodal peaks BP, are recognized.
 図3に示されるように、高周波電力の周波数が60MHzである場合、圧力が250Pa以外(0.2Pa、25Pa、50Pa、150Pa)の条件には、約125eVに認められる第一高エネルギーピークP1と、約80eVに認められる第二高エネルギーピークP2とによって構成されるバイモーダルピークBPが高エネルギー側の端に認められる。 As shown in FIG. 3, when the frequency of the high frequency power is 60 MHz, the first high energy peak P1 recognized at about 125 eV and the pressure other than 250 Pa (0.2 Pa, 25 Pa, 50 Pa, 150 Pa) and , A bimodal peak BP constituted by the second high energy peak P2 recognized at about 80 eV is recognized at the end on the high energy side.
 さらに、圧力が50Paである条件と、圧力が150Paである条件とには、このバイモーダルピークBPよりも低エネルギー側に、バイモーダルピークBPよりも高い強度を有した第2のピークである低エネルギーピークP3が認められる。このような低エネルギーピークP3を示す正イオンは、電場加速によって与えられるエネルギーよりも低いエネルギーを有する。このため、低エネルギーピークP3を有する正イオンは、シース内で生成されてシース内の途中から電場加速された正イオン、例えば、中性粒子と正イオンとの電荷交換によって新たに生成された正イオンとして帰属できる。なお、バイモーダルピークBPの強度よりも高い強度を有した低エネルギーピークP3が該バイモーダルピークBPの低エネルギー側に認められるという上記傾向は、50Pa以上150Pa以下の全範囲において認められる傾向である。 Furthermore, in the condition where the pressure is 50 Pa and the condition where the pressure is 150 Pa, the low peak which is the second peak having higher intensity than the bimodal peak BP on the lower energy side than the bimodal peak BP. An energy peak P3 is observed. The positive ions showing such a low energy peak P3 have an energy lower than that given by the electric field acceleration. Therefore, positive ions having a low energy peak P3 are generated in the sheath and positively generated by electric field acceleration from the middle of the sheath, for example, positive ions generated by charge exchange between neutral particles and positive ions. It can be assigned as an ion. In addition, the said tendency that the low energy peak P3 which has intensity | strength higher than the intensity | strength of bimodal peak BP is recognized by the low energy side of this bimodal peak BP is a tendency recognized in the whole range of 50 Pa or more and 150 Pa or less. .
 図4に示されるように、周波数が150MHzである場合、上記60MHzであるときと同様、圧力が250Pa以外(0.2Pa、25Pa、50Pa、150Pa)の条件には、約110eVに認められる第一高エネルギーピークP1と、約90eVに認められる第二高エネルギーピークP2とによって構成されるバイモーダルピークBPが高エネルギー側の端に認められる。また、上記60MHzであるときと同様、圧力が50Paである条件と、圧力が150Paである条件とには、このバイモーダルピークBPよりも低エネルギー側に、バイモーダルピークBPよりも高い強度を有した第2のピークである低エネルギーピークP3が認められる。なお、上記60MHzのときには、低エネルギーピークP3が、50Pa及び150Paのそれぞれの圧力条件について1つしか認められないのに対し、150MHzについては、50Pa及び150Paのそれぞれの圧力条件について3つの低エネルギーピークP3が認められる。また、上記60MHzであるときと同様、バイモーダルピークBPの強度よりも高い強度を有した低エネルギーピークP3が該バイモーダルピークBPの低エネルギー側に認められるという上記傾向は、50Pa以上150Pa以下の全範囲において認められる傾向である。 As shown in FIG. 4, when the frequency is 150 MHz, as in the case of 60 MHz, the first pressure that is recognized at about 110 eV is obtained under conditions other than the pressure of 250 Pa (0.2 Pa, 25 Pa, 50 Pa, 150 Pa). A bimodal peak BP constituted by the high energy peak P1 and the second high energy peak P2 recognized at about 90 eV is recognized at the end on the high energy side. As in the case of 60 MHz, the conditions where the pressure is 50 Pa and the conditions where the pressure is 150 Pa have higher intensity on the lower energy side than the bimodal peak BP and higher than the bimodal peak BP. The low energy peak P3 which is the second peak is recognized. At 60 MHz, only one low energy peak P3 is recognized for each pressure condition of 50 Pa and 150 Pa, whereas for 150 MHz, three low energy peaks are obtained for each pressure condition of 50 Pa and 150 Pa. P3 is accepted. Moreover, the said tendency that the low energy peak P3 which has intensity | strength higher than the intensity | strength of the bimodal peak BP is recognized by the low energy side of this bimodal peak BP is 50 Pa or more and 150 Pa or less similarly to the case of said 60 MHz. This tendency is observed in the entire range.
 図5に示されるように、周波数が250MHzである場合、上記40MHzであるときと同様、圧力が0.2Paである条件と、圧力が25Paである条件とには、約95eVに認められる第一高エネルギーピークP1と、約105eVに認められる第二高エネルギーピークP2とにより構成されるバイモーダルピークBPが高エネルギー側の端に認められる。これに対し、圧力がより高い条件(50Pa、150Pa、250Pa)である場合には、バイモーダルピークBPが認められない。 As shown in FIG. 5, when the frequency is 250 MHz, as in the case of 40 MHz, the first condition, which is recognized at about 95 eV, is obtained under the condition where the pressure is 0.2 Pa and the condition where the pressure is 25 Pa. A bimodal peak BP composed of the high energy peak P1 and the second high energy peak P2 recognized at about 105 eV is recognized at the end on the high energy side. On the other hand, when the pressure is higher (50 Pa, 150 Pa, 250 Pa), the bimodal peak BP is not recognized.
 このように、基板Sに入射するイオンのエネルギー分布において、上記バイモーダルピークBPと、バイモーダルピークBPよりも低いエネルギー領域にあって且つ強度が高い低エネルギーピークP3とが認められる条件とは、周波数帯域が60MHz以上且つ150MHz以下、且つ真空槽内の圧力が50Pa以上150Pa以下の範囲である。そして、本実施の形態では、上記エッチング装置にてエッチングを実施する際に、周波数帯域が60MHz以上且つ150MHz以下に定められ、且つ、下記[第一条件]及び[第二条件]が満たされる圧力範囲が定められる。例えば、上述したエッチング条件にあっては、周波数帯域が60MHz以上且つ150MHz以下に定められ、且つ、圧力範囲が50Pa以上150Pa以下に定められる。
[第一条件]バイモーダルピークBPが高エネルギー側の端に認められること。
[第二条件]バイモーダルピークBPよりも低エネルギー側にあって、且つ強度がバイモーダルピークBPよりも高い低エネルギーピークP3が認められること。
Thus, in the energy distribution of ions incident on the substrate S, the conditions under which the bimodal peak BP and the low energy peak P3 in the energy region lower than the bimodal peak BP and having high intensity are recognized. The frequency band is 60 MHz or more and 150 MHz or less, and the pressure in the vacuum chamber is 50 Pa or more and 150 Pa or less. In this embodiment, when etching is performed with the above etching apparatus, the frequency band is determined to be 60 MHz or more and 150 MHz or less, and the following [First Condition] and [Second Condition] are satisfied. A range is defined. For example, under the above-described etching conditions, the frequency band is set to 60 MHz to 150 MHz, and the pressure range is set to 50 Pa to 150 Pa.
[First condition] The bimodal peak BP is recognized at the end on the high energy side.
[Second condition] A low energy peak P3 having a lower energy side than the bimodal peak BP and having an intensity higher than that of the bimodal peak BP is recognized.
 プラズマが生成される空間の圧力をこのような所定値に調整する方法としては、エッチングガスの流量を調整することと、エッチングガスの排気量を調整することとが挙げられるが、基板Sの表面における流体の速さを調整できる観点からすれば、エッチングガスの流量によって該圧力を調整することが好ましい。これによれば、エッチング反応の進行によってエッチング速度が律速するようないわゆる反応律速となる領域で、上記エッチングを実施しやすくなるため、エッチング速度の低下を抑えつつ、エッチング形状の異方性を高めることが可能である。 Examples of a method for adjusting the pressure of the space where the plasma is generated to such a predetermined value include adjusting the flow rate of the etching gas and adjusting the exhaust amount of the etching gas. From the viewpoint of adjusting the speed of the fluid, it is preferable to adjust the pressure according to the flow rate of the etching gas. According to this, since the etching is easily performed in a so-called reaction rate limiting region in which the etching rate is controlled by the progress of the etching reaction, anisotropy of the etching shape is increased while suppressing a decrease in the etching rate. It is possible.
 なお、基板S上に形成されるシースの厚さは、プラズマ中に含まれるイオン及び電子の密度であるプラズマ密度によって規定される。一般には、プラズマ密度が高い程、薄いシースが形成され、プラズマ密度が低い程、厚いシースが形成されることが知られている。そこで上記[第一条件]及び[第二条件]のみならず、低エネルギーピークP3の強度とバイモーダルピークBPの強度との比率等に再現性が要求される場合には、このようなプラズマ密度の範囲と圧力の範囲とを規定した方法が好ましい。そこで本実施の形態では、圧力が50Pa以上150Pa以下であり、且つ、プラズマ密度が1×1010/cm以上5×1012/cm以下となるように、エッチングガスの流量や高周波電力の出力値が設定されている。 The thickness of the sheath formed on the substrate S is defined by the plasma density, which is the density of ions and electrons contained in the plasma. In general, it is known that a thinner sheath is formed as the plasma density is higher, and a thicker sheath is formed as the plasma density is lower. Therefore, not only the above [first condition] and [second condition] but also when the reproducibility is required for the ratio between the intensity of the low energy peak P3 and the intensity of the bimodal peak BP, such a plasma density. A method in which the range and the pressure range are defined is preferable. Therefore, in this embodiment, the flow rate of the etching gas and the high-frequency power are adjusted so that the pressure is 50 Pa or more and 150 Pa or less and the plasma density is 1 × 10 10 / cm 3 or more and 5 × 10 12 / cm 3 or less. Output value is set.
 以下に、上述のようにして定められる周波数帯域及び圧力範囲によって得られるエッチング形状を、図6、図7を参照して説明する。図6は、上記反応性イオンエッチングを実施したときの、基板Sの表面近傍での正イオンの軌道を示している。また、図7は、反応性イオンエッチングによって形成されるエッチング形状を模式的に示している。 Hereinafter, an etching shape obtained by the frequency band and pressure range determined as described above will be described with reference to FIGS. FIG. 6 shows the trajectory of positive ions near the surface of the substrate S when the reactive ion etching is performed. FIG. 7 schematically shows an etching shape formed by reactive ion etching.
 図6に示されるように、基板Sが上記エッチング装置に収容された後、真空槽1へのエッチングガスの供給とステージ電極3への高周波電流の供給とが、この順に実施されることにより、中性粒子NPから構成されるエッチングガスから、電子Eと正イオンIPとを含むプラズマRpが生成される。次いで、高周波電流で形成される電界に追従して生成される移動速度のより早い電子Eが基板Sの表面に到達することによって、基板Sの表面がプラズマに対して負にバイアスされる。これにより、基板Sの表面では、電子Eが反発して基板Sの表面から離間する側に跳ね返されることから、基板Sの表面から所定の距離Daには、電子Eの数よりも正イオンIPの数が多い領域であるシースRsが形成される。そして、シースRsよりも基板Sから離間した領域は、正イオンIP、電子E、及び中性粒子NPが存在するとともに、電気的に中性なプラズマRpの領域となる。プラズマRp中の正イオンIPが、該プラズマRpとシースRsとの境界面BPに到達すると、正電位の正イオンIPが、負にバイアスされた基板Sの表面に引き込まれる、言い換えれば、正イオンIPが基板Sの表面まで飛行する。 As FIG. 6 shows, after the board | substrate S is accommodated in the said etching apparatus, supply of the etching gas to the vacuum chamber 1, and supply of the high frequency current to the stage electrode 3 are implemented in this order, A plasma Rp containing electrons E and positive ions IP is generated from an etching gas composed of neutral particles NP. Next, the electron E having a higher moving speed generated following the electric field formed by the high-frequency current reaches the surface of the substrate S, so that the surface of the substrate S is negatively biased with respect to the plasma. Thereby, on the surface of the substrate S, the electrons E are repelled and bounced back to the side away from the surface of the substrate S. Therefore, at a predetermined distance Da from the surface of the substrate S, more positive ions IP than the number of electrons E are present. A sheath Rs that is a region having a large number of is formed. A region farther from the substrate S than the sheath Rs is a region of the electrically neutral plasma Rp while the positive ions IP, the electrons E, and the neutral particles NP exist. When the positive ions IP in the plasma Rp reach the boundary surface BP between the plasma Rp and the sheath Rs, the positive potential positive ions IP are drawn into the surface of the negatively biased substrate S. In other words, the positive ions The IP flies to the surface of the substrate S.
 ここで、基板Sの表面に入射する正イオンIPとしては以下の2つに大別できる。
 ・他の粒子と衝突することなく基板Sの表面に到達する第一正イオンIPa。
 ・シースRs内にて中性粒子NPと正イオンIPとの電荷交換によって、中性粒子NPから新たに生成される第二正イオンIPb。
Here, the positive ions IP incident on the surface of the substrate S can be roughly classified into the following two.
First positive ions IPa that reach the surface of the substrate S without colliding with other particles.
A second positive ion IPb newly generated from the neutral particle NP by charge exchange between the neutral particle NP and the positive ion IP in the sheath Rs.
 上記第一正イオンIPaは、高周波電力による電場加速を受けるとともに、該加速によって得られたエネルギーを基板Sに入射するまで維持している。すなわち、第一正イオンIPaとは、先の図2~図5に示される第一高エネルギーピークP1及び第二高エネルギーピークP2から構成されるバイモーダルピークBPに帰属する正イオンである。上記第一正イオンIPaには、図6に示されるように、基板Sの表面の法線方向に飛行する第一正イオンIPaと、該法線方向とは異なる方向に飛行する第一正イオンIPaとが含まれている。そして、これら法線方向に飛行する第一正イオンIPaと、法線方向とは異なる方向に飛行する第一正イオンIPaとが、他の正イオンIPや中性粒子NPと衝突することなく基板Sの表面に到達する。ただし、上記第一正イオンIPaのうちで法線方向とは異なる方向に沿って飛行する第一正イオンIPaは、基板Sに形成される凹部の深さが大きくなるほど、該凹部の底面へ到達し難くなる。 The first positive ion IPa is subjected to electric field acceleration by high-frequency power and maintains the energy obtained by the acceleration until it enters the substrate S. That is, the first positive ion IPa is a positive ion belonging to the bimodal peak BP composed of the first high energy peak P1 and the second high energy peak P2 shown in FIGS. As shown in FIG. 6, the first positive ions IPa fly in the direction normal to the surface of the substrate S, and the first positive ions fly in a direction different from the normal direction. IPa is included. The first positive ions IPa flying in the normal direction and the first positive ions IPa flying in a direction different from the normal direction do not collide with other positive ions IP and neutral particles NP. The surface of S is reached. However, the first positive ion IPa flying along the direction different from the normal direction among the first positive ions IPa reaches the bottom surface of the concave portion as the depth of the concave portion formed in the substrate S increases. It becomes difficult to do.
 他方、上記第二正イオンIPbは、電場加速によって与えられるエネルギーが上記第一正イオンIPaよりも小さい正イオン、すなわち、先の図3、図4に示される低エネルギーピークP3に帰属される正イオンである。上記第二正イオンIPbにも、上記第一正イオンIPaと同様に、上記法線方向に飛行する第二正イオンIPbと、上記法線方向とは異なる方向に飛行する第二正イオンIPbとが含まれている。このようにしてシースRs内で生成された正イオンは、電場加速され始める際の速度方向の分布が上記第一正イオンIPaのそれと同じであるものの、電場加速され始める際の位置が上記第一正イオンIPaよりも基板Sに近くなる。つまり、第二正イオンIPbの飛行距離は、上記電荷交換がなされた地点からの距離Dbであるとともに、電荷交換はシースRs内で生じることから、距離Dbは、シースRsの厚さに相当する上記距離Daよりも小さくなる。そのため、電荷交換により生じた第二正イオンIPbは、たとえ上記第一正イオンIPaと同様の理由でその飛行方向が法線方向からずれるとしても、上記第一正イオンIPaよりも基板Sに到達するまでの飛行距離が短くなる分、基板Sに形成される凹部の底面へ到達しやすくなる。 On the other hand, the second positive ion IPb is a positive ion whose energy given by the electric field acceleration is smaller than that of the first positive ion IPa, that is, a positive energy attributed to the low energy peak P3 shown in FIGS. Ion. Similarly to the first positive ion IPa, the second positive ion IPb also includes a second positive ion IPb flying in the normal direction and a second positive ion IPb flying in a direction different from the normal direction. It is included. The positive ions generated in the sheath Rs in this manner have the same velocity direction distribution as that of the first positive ions IPa when the electric field acceleration is started, but the positions when the electric field acceleration is started are the first. It is closer to the substrate S than the positive ion IPa. That is, the flight distance of the second positive ion IPb is the distance Db from the point where the charge exchange is performed, and the charge exchange occurs in the sheath Rs. Therefore, the distance Db corresponds to the thickness of the sheath Rs. It becomes smaller than the distance Da. Therefore, the second positive ion IPb generated by the charge exchange reaches the substrate S more than the first positive ion IPa even if the flight direction deviates from the normal direction for the same reason as the first positive ion IPa. Since the flight distance until the time is shortened, it becomes easier to reach the bottom surface of the recess formed in the substrate S.
 上記第一正イオンIPa、及び第二正イオンIPbによって反応性イオンエッチングが行われた場合に形成されるエッチング形状を、模式的に図7(a)及び(b)にそれぞれ示す。なお、図7に示されるように、基板Sに反応性イオンエッチングによって所定のエッチング形状、例えば凹部Hを形成する場合、反応性イオンエッチングに先立ち、所定の開口部を有したマスクMが基板Sの表面に形成される。そして、この開口部から基板Sに対して上記正イオンIPが入射することにより、基板Sがエッチングされる。 7A and 7B schematically show etching shapes formed when reactive ion etching is performed by the first positive ions IPa and the second positive ions IPb, respectively. As shown in FIG. 7, when a predetermined etching shape, for example, a recess H is formed on the substrate S by reactive ion etching, a mask M having a predetermined opening is formed on the substrate S prior to reactive ion etching. Formed on the surface. Then, the positive ions IP are incident on the substrate S from the opening, whereby the substrate S is etched.
 図7(a)に示されるように、上記第一正イオンIPaによってエッチングを実施した場合、上記法線方向とは異なる方向に飛行する第一正イオンIPaによって、マスクMの開口部Maの法線方向よりも外側に向かってエッチングが進行することになる。これにより、開口部Maの直径DiaAよりも、エッチング形状である凹部Hにおける最大直径DiaBが大きくなる。 As shown in FIG. 7A, when etching is performed with the first positive ion IPa, the method of the opening Ma of the mask M is performed with the first positive ion IPa flying in a direction different from the normal direction. Etching proceeds outward from the line direction. As a result, the maximum diameter DiaB in the recessed portion H that is an etching shape is larger than the diameter DiaA of the opening Ma.
 他方、図7(b)に示されるように、上記第二正イオンIPbによってエッチングを実施した場合、第二正イオンIPbが基板Sの近傍から電場加速されるため、マスクMの開口部Maの法線方向に沿ってエッチングが進行しやすくなる。そのため、エッチング形状である凹部Hの直径は、開口部Maにおける直径DiaAにほぼ等しくなる。 On the other hand, as shown in FIG. 7B, when etching is performed with the second positive ions IPb, the second positive ions IPb are accelerated in the electric field from the vicinity of the substrate S. Etching is likely to proceed along the normal direction. Therefore, the diameter of the recessed portion H that is an etching shape is substantially equal to the diameter DiaA in the opening Ma.
 したがって、基板Sに入射する正イオンIPに第二正イオンIPbが占める割合を大きくする、すなわち、先の図3、図4に示されるように、イオンエネルギーの分布中で、上記[第一条件]及び[第二条件]が満たされるような条件でエッチングを実施することによって、凹部Hの異方性が高められるようになる。 Therefore, the ratio of the second positive ions IPb to the positive ions IP incident on the substrate S is increased. That is, as shown in FIGS. ] And [Second condition] are performed under such conditions that the anisotropy of the recess H is increased.
 なお、同図3、図4に示されるように、低エネルギーピークP3に帰属する第二正イオンIPbとは、バイモーダルピークBPに帰属する第一正イオンIPaよりもイオンエネルギーが低いことから、第二正イオンIPbのみが存在する条件でエッチングを実施すると、エッチング速度が低下する虞がある。この点、本実施の形態によれば、バイモーダルピークBPに帰属する第一正イオンIPaと、低エネルギーピークP3に帰属する第二正イオンIPbとが共存する条件にてエッチングを実施しているため、第二正イオンIPbによってエッチング形状の異方性を維持しつつ、第一正イオンIPaによってエッチング速度の低下を抑制することができる。
[実施例1]
 厚さが750μmの8インチのシリコン基板に、直径50μmの開口部を有するマスクを塗布した後、上記平行平板型のエッチング装置を用いて、SFガス、Oガス、HBrガスから構成される混合ガスをエッチングガスとしてエッチングを実施した。この際、高周波電源から出力する高周波電力の周波数を60MHz、出力値を10W/cmとした。また、プラズマ密度が1×1010/cm以上5×1012/cm以下であって、且つ、エッチング時の圧力が120Paとなるように、混合ガスに含まれる各種ガスを、SFガス、Oガス、HBrガスの順にそれぞれ、150sccm、150sccm、30sccmの流量で真空槽に供給した。
As shown in FIGS. 3 and 4, the second positive ion IPb belonging to the low energy peak P3 has lower ion energy than the first positive ion IPa belonging to the bimodal peak BP. If etching is performed under conditions where only the second positive ions IPb are present, the etching rate may decrease. In this regard, according to the present embodiment, the etching is performed under the condition in which the first positive ion IPa belonging to the bimodal peak BP and the second positive ion IPb belonging to the low energy peak P3 coexist. Therefore, a decrease in the etching rate can be suppressed by the first positive ions IPa while maintaining the anisotropy of the etching shape by the second positive ions IPb.
[Example 1]
After a mask having an opening with a diameter of 50 μm is applied to an 8-inch silicon substrate with a thickness of 750 μm, it is composed of SF 6 gas, O 2 gas, and HBr gas using the parallel plate etching apparatus. Etching was performed using a mixed gas as an etching gas. At this time, the frequency of the high frequency power output from the high frequency power source was 60 MHz, and the output value was 10 W / cm 2 . In addition, various gases contained in the mixed gas are made of SF 6 gas so that the plasma density is 1 × 10 10 / cm 3 or more and 5 × 10 12 / cm 3 or less and the pressure during etching is 120 Pa. , O 2 gas, and HBr gas were supplied to the vacuum chamber at flow rates of 150 sccm, 150 sccm, and 30 sccm, respectively.
 そして、上記条件下でエッチングを300秒間実施することによって、実施例1の凹部Hを得た。走査型電子顕微鏡(SEM)を用いて撮影した実施例1の凹部Hの断面画像を図8(a)に示す。また図8(a)の断面画像に基づいて計測した凹部Hの深さの最大値(最大深さ)及び凹部Hの内径の最大値(最大内径)を以下に示す。
・最大深さ:154μm
・最大内径:67μm
[比較例1]
 エッチング時の圧力が25Paとなるように混合ガスの総流量を変更するとともに、その他の条件を上記実施例1と同じくして比較例1の凹部Hを得た。走査型電子顕微鏡(SEM)を用いて撮影した比較例1の凹部Hの断面画像を図8(b)に示す。また図8(b)の断面画像に基づいて計測した凹部Hの最大深さ及び最大内径を以下に示す。
・最大深さ:88μm
・最大内径:68μm
[比較例2]
 エッチング時の圧力が250Paとなるように混合ガスの総流量を変更するとともに、その他の条件を上記実施例1と同じくして比較例2の凹部Hを得た。走査型電子顕微鏡(SEM)を用いて撮影した比較例2の凹部Hの断面画像を図8(c)に示す。また図8(c)の断面画像に基づいて計測した凹部Hの最大深さ及び最大内径を以下に示す。
・最大深さ:150μm
・最大内径:71μm
 これらの結果から、実施例1の最大深さが比較例1の最大深さの2倍程度であること、また実施例1の最大内径と比較例1の最大内径とが略同程度であることが認められた。この最大深さの違いによれば、低エネルギーピークP3が認められる圧力領域で、それが認められない低圧領域よりも凹部Hの底面に正イオンが到達しやすくなることが分った。また上記最大内径の違いによれば、低エネルギーピークP3が認められる圧力領域と、それが認められない低圧領域とでは、凹部Hの側面に到達する正イオンが略同程度であることが分った。
And the recessed part H of Example 1 was obtained by implementing etching on the said conditions for 300 second. FIG. 8A shows a cross-sectional image of the recess H of Example 1 taken using a scanning electron microscope (SEM). Moreover, the maximum value (maximum depth) of the depth of the recessed part H measured based on the cross-sectional image of Fig.8 (a) and the maximum value (maximum internal diameter) of the internal diameter of the recessed part H are shown below.
・ Maximum depth: 154μm
・ Maximum inner diameter: 67μm
[Comparative Example 1]
The total flow rate of the mixed gas was changed so that the pressure during etching was 25 Pa, and the other conditions were the same as in Example 1 to obtain the recess H of Comparative Example 1. FIG. 8B shows a cross-sectional image of the recess H of Comparative Example 1 taken using a scanning electron microscope (SEM). Moreover, the maximum depth and the maximum internal diameter of the recessed part H measured based on the cross-sectional image of FIG.8 (b) are shown below.
・ Maximum depth: 88μm
・ Maximum inner diameter: 68μm
[Comparative Example 2]
The total flow rate of the mixed gas was changed so that the pressure during etching was 250 Pa, and the other conditions were the same as in Example 1 to obtain a recess H of Comparative Example 2. FIG. 8C shows a cross-sectional image of the recess H of Comparative Example 2 photographed using a scanning electron microscope (SEM). Moreover, the maximum depth and the maximum internal diameter of the recessed part H measured based on the cross-sectional image of FIG.8 (c) are shown below.
・ Maximum depth: 150μm
・ Maximum inner diameter: 71μm
From these results, the maximum depth of Example 1 is about twice the maximum depth of Comparative Example 1, and the maximum inner diameter of Example 1 is substantially the same as the maximum inner diameter of Comparative Example 1. Was recognized. According to this difference in the maximum depth, it was found that positive ions are more likely to reach the bottom surface of the recess H in the pressure region where the low energy peak P3 is recognized than in the low pressure region where it is not recognized. Further, according to the difference in the maximum inner diameter, it is understood that the positive ions reaching the side surface of the recess H are approximately the same in the pressure region where the low energy peak P3 is recognized and the low pressure region where it is not recognized. It was.
 なお、比較例1の圧力を50Paよりも低い他の圧力に変更するとともに、その他の条件を比較例1と同じくして、そのエッチング形状を計測した結果、エッチング時の圧力が50Paよりも低くなるほど、上述した最大深さの減少傾向は顕著であった。 In addition, while changing the pressure of Comparative Example 1 to another pressure lower than 50 Pa, and measuring the etching shape under the same conditions as Comparative Example 1 as other conditions, the pressure during etching becomes lower than 50 Pa. The above-mentioned decreasing tendency of the maximum depth was remarkable.
 また上記結果から、実施例1の最大深さが比較例2の最大深さよりも若干大きいこと、また実施例1の最大内径が比較例2の最大内径よりも若干小さいことが認められた。この最大深さの違いによれば、低エネルギーピークP3が認められる圧力領域であっても、バイモーダルピークBPが消失するほどの高圧領域では、凹部Hの底面に正イオンが到達し難くなることが分った。また上記最大内径の違いによれば、これもまた低エネルギーピークP3が認められる圧力領域であっても、バイモーダルピークBPが消失するほどの高圧領域では、凹部Hの側壁に到達する正イオンが多くなることが分った。 From the above results, it was confirmed that the maximum depth of Example 1 was slightly larger than the maximum depth of Comparative Example 2, and that the maximum inner diameter of Example 1 was slightly smaller than the maximum inner diameter of Comparative Example 2. According to the difference in the maximum depth, even in the pressure region where the low energy peak P3 is recognized, positive ions hardly reach the bottom surface of the recess H in a high pressure region where the bimodal peak BP disappears. I found out. Further, according to the difference in the maximum inner diameter, even in the pressure region where the low energy peak P3 is recognized, in the high pressure region where the bimodal peak BP disappears, the positive ions reaching the side wall of the recess H I found out that it was going to increase.
 なお、比較例2の圧力を150Paよりも高い他の圧力に変更するとともに、その他の条件を比較例2と同じくして、そのエッチング形状を計測した結果、エッチング時の圧力が150Paよりも高くなるほど、上述した最大深さの減少傾向は顕著となるとともに最大内径の増加傾向は顕著であった。 In addition, while changing the pressure of Comparative Example 2 to another pressure higher than 150 Pa and measuring the etching shape under the same conditions as Comparative Example 2 as the other conditions, the pressure during etching becomes higher than 150 Pa. The above-mentioned decreasing tendency of the maximum depth became remarkable and the increasing tendency of the maximum inner diameter was remarkable.
 以上説明したように、本実施の形態のエッチング方法及びエッチング装置によれば、以下に列挙する効果が得られるようになる。
 (1)高周波電力の周波数が60MHz以上150MHz以下であって、バイモーダルピークBPと、これよりも強度が高く、且つ低いエネルギーを有する低エネルギーピークP3とが、イオンエネルギーの分布に認められる圧力領域でエッチングが実施される。そのため、上記第二正イオンIPbがシースRs内で新たに生成される分、基板Sの厚さ方向に形成されるエッチング形状の異方性を高めることが可能である。
As described above, according to the etching method and the etching apparatus of the present embodiment, the effects listed below can be obtained.
(1) Pressure region where the frequency of the high frequency power is 60 MHz or more and 150 MHz or less, and the bimodal peak BP and the low energy peak P3 having higher intensity and lower energy are recognized in the distribution of ion energy. Etching is performed. Therefore, the anisotropy of the etching shape formed in the thickness direction of the substrate S can be increased by the amount of the second positive ions IPb newly generated in the sheath Rs.
 (2)また相対的に高いエネルギーを有した上記第一正イオンIPaによるエッチングも進行するため、圧力が過剰に高くなることでエッチング形状の異方性がかえって失われることを抑えることが可能でもある。 (2) Since the etching with the first positive ion IPa having relatively high energy also proceeds, it is possible to suppress the loss of etching shape anisotropy due to excessively high pressure. is there.
 (3)圧力が50Pa以上150Pa以下であって、且つ、プラズマ密度が1×1010/cm以上5×1012/cm以下となる条件でエッチングが行われるため、低エネルギーピークP3の強度に対するバイモーダルピークBPの強度の比率等に再現性を得ることが可能でもある。 (3) Since the etching is performed under conditions where the pressure is 50 Pa or more and 150 Pa or less and the plasma density is 1 × 10 10 / cm 3 or more and 5 × 10 12 / cm 3 or less, the intensity of the low energy peak P3 It is also possible to obtain reproducibility in the ratio of the intensity of the bimodal peak BP with respect to.
 (4)エッチングガスとして、フッ素含有ガスの1つである六フッ化硫黄ガスと、塩素、臭素、及びヨウ素の少なくとも一つを含有するハロゲン化水素ガスの1つである臭化水素とを含む混合ガスを用いるようにした。これにより、基板Sの厚さ方向へと進行するエッチングは、水素イオンによって促進されるとともに、基板Sに形成された凹部の側壁は、ハロゲン化シリコンの堆積物によってエッチングされにくくなる。したがって、エッチング形状の異方性がより得られやすくなる。 (4) As an etching gas, sulfur hexafluoride gas that is one of fluorine-containing gases and hydrogen bromide that is one of hydrogen halide gases containing at least one of chlorine, bromine, and iodine are included. A mixed gas was used. As a result, the etching progressing in the thickness direction of the substrate S is promoted by hydrogen ions, and the side walls of the recesses formed in the substrate S are less likely to be etched by silicon halide deposits. Therefore, anisotropy of the etching shape is more easily obtained.
 (5)エッチングガスは、六フッ化硫黄ガスと臭化水素ガスとの他に、酸素ガスを含むようにした。これにより、エッチングに際して、上記水素化シリコン、フッ化シリコン、及びハロゲン化シリコンのいずれよりも揮発性が低い酸化シリコンが形成されるようになる。そのため、上記照射面の周壁が、よりエッチングされにくくなる。 (5) The etching gas contains oxygen gas in addition to sulfur hexafluoride gas and hydrogen bromide gas. As a result, during etching, silicon oxide having lower volatility than any of the silicon hydride, silicon fluoride, and silicon halide is formed. Therefore, the peripheral wall of the irradiation surface is more difficult to be etched.
 なお、上記実施の形態は、以下のように適宜変更して実施することも可能である。
 ・上記実施の形態におけるプラズマ密度の範囲とは、基板に入射するイオンのエネルギー分布にて上記[第一条件]及び上記[第二条件]が満たされる範囲であればよく、低エネルギーピークP3の強度とバイモーダルピークBPの強度との比率などに特段の再現性が求められない場合には、このようなプラズマ密度の範囲を定めることを割愛することも可能である。
It should be noted that the above embodiment can be implemented with appropriate modifications as follows.
The plasma density range in the above embodiment may be a range in which the above [first condition] and [second condition] are satisfied by the energy distribution of ions incident on the substrate, and the low energy peak P3 If a particular reproducibility is not required for the ratio between the intensity and the intensity of the bimodal peak BP, it is possible to omit the determination of the plasma density range.
 ・上記実施の形態における圧力範囲とは、基板に入射するイオンのエネルギー分布にて上記[第一条件]及び上記[第二条件]が満たされる範囲であればよく、エッチングガスの種別に応じて、例えば50Pa以下あるいは150Pa以上であってもよい。このようなエッチング方法であれば、エッチングガスの種別やエッチングの対象材料の範囲を拡大させることが可能でもある。 -The pressure range in the said embodiment should just be a range with which said [1st condition] and said [2nd condition] are satisfy | filled by the energy distribution of the ion which injects into a board | substrate, According to the kind of etching gas For example, it may be 50 Pa or less or 150 Pa or more. With such an etching method, it is possible to expand the type of etching gas and the range of materials to be etched.
 ・上記実施の形態におけるイオンエネルギーの分布は、ステージ電極3の近傍に設けられたイオンエネルギー分析器6によって取得されるものである。これに用いられる方式としては、単探針(ラングミュアプローブ)を用いる方式、分解型イオン質量分析を用いる方式、発光分光を用いる方式等、基板Sに入射する正イオンのエネルギーを分析できる方式であれば特に限定されるものではない。またエッチング装置に実際に搭載される方式に限られず、イオンエネルギーの分布を取得するための装置を別途用い、上記[第一条件]及び上記[第二条件]が満たされる圧力範囲が、エッチング装置とは異なる装置で定められる方式であってもよい。 The ion energy distribution in the above embodiment is acquired by the ion energy analyzer 6 provided in the vicinity of the stage electrode 3. The method used for this is a method capable of analyzing the energy of positive ions incident on the substrate S, such as a method using a single probe (Langmuir probe), a method using decomposition ion mass spectrometry, a method using emission spectroscopy, or the like. There is no particular limitation. In addition, the method is not limited to the method actually mounted on the etching apparatus, and an apparatus for obtaining the distribution of ion energy is separately used, and the pressure range in which the [first condition] and the [second condition] are satisfied is the etching apparatus. The method may be determined by a different device.
 ・上記エッチング方法を、平行平板型のエッチング装置を用いて実施するようにした。これに限らず、エッチングの対象物である基板が電極の上方に載置されるとともに、基板にバイアス電圧を印加する高周波電源が電極に接続された構成を有する他のエッチング装置を用いて実施することもできる。 -The above etching method was carried out using a parallel plate type etching apparatus. However, the present invention is not limited thereto, and the etching is performed using another etching apparatus having a configuration in which a substrate that is an object to be etched is placed above the electrode and a high-frequency power source that applies a bias voltage to the substrate is connected to the electrode. You can also.

Claims (5)

  1.  真空槽内のステージ電極に載置された基板をその厚さ方向にエッチングするエッチング方法であって、
     前記真空槽内にエッチングガスを供給すること、
     前記ステージ電極に60MHz以上150MHz以下の周波数にて高周波電力を供給すること、
     前記基板に入射するイオンのエネルギー分布が、前記高周波電力の周波数によって定められる互いに異なる電場加速によって前記エネルギー分布の高エネルギー側の端に発現する一対の第1ピークと、前記一対の第1ピークよりも低いエネルギー領域において発現し、前記一対の第1ピークよりも高い強度を有する第2ピークとを有するような圧力でエッチングを実施すること、
    を備えるエッチング方法。
    An etching method for etching a substrate placed on a stage electrode in a vacuum chamber in the thickness direction,
    Supplying an etching gas into the vacuum chamber;
    Supplying high-frequency power to the stage electrode at a frequency of 60 MHz to 150 MHz;
    From the pair of first peaks, the energy distribution of ions incident on the substrate is expressed at the high energy side ends of the energy distribution by different electric field accelerations determined by the frequency of the high frequency power, and the pair of first peaks. Etching at a pressure such that the second peak is expressed in a low energy region and has a second peak having a higher intensity than the pair of first peaks,
    An etching method comprising:
  2.  請求項1に記載のエッチング方法において、
     前記圧力が、50Pa以上150Pa以下であり、且つ、
     プラズマの密度が、1×1010/cm以上5×1012/cm以下である
    ことを特徴とするエッチング方法。
    The etching method according to claim 1,
    The pressure is 50 Pa or more and 150 Pa or less, and
    The etching method is characterized in that the plasma density is 1 × 10 10 / cm 3 or more and 5 × 10 12 / cm 3 or less.
  3.  請求項1又は2に記載のエッチング方法において、
     前記基板がシリコン基板であるとともに、
     前記エッチングガスが、フッ素含有ガスと、塩素、臭素、及びヨウ素の少なくとも1つを有するハロゲン化水素ガスとを含む混合ガスである
    ことを特徴とするエッチング方法。
    The etching method according to claim 1 or 2,
    The substrate is a silicon substrate;
    The etching method, wherein the etching gas is a mixed gas containing a fluorine-containing gas and a hydrogen halide gas containing at least one of chlorine, bromine, and iodine.
  4.  基板をその厚さ方向にエッチングするエッチング装置であって、
     真空槽と、
     前記真空槽内に配置されて前記基板を載置するステージ電極と、
     前記真空槽内にエッチングガスを供給するエッチングガス供給部と、
     前記ステージ電極に高周波電力を供給する高周波電源と、
     前記真空槽内を排気する排気部と、
     前記基板に入射するイオンのエネルギー分布が、60MHz以上150MHz以下の前記高周波電力の周波数によって定められる互いに異なる電場加速によって前記エネルギー分布の高エネルギー側の端に発現する一対の第1ピークと、前記一対の第1ピークよりも低いエネルギー領域において発現し、前記一対の第1ピークよりも高い強度を有する第2ピークとを有するような圧力に前記真空槽内の圧力を制御する制御部と、
    を備えるエッチング装置。
    An etching apparatus for etching a substrate in its thickness direction,
    A vacuum chamber;
    A stage electrode placed in the vacuum chamber to place the substrate;
    An etching gas supply unit for supplying an etching gas into the vacuum chamber;
    A high frequency power supply for supplying high frequency power to the stage electrode;
    An exhaust section for exhausting the inside of the vacuum chamber;
    A pair of first peaks appearing at an end on the high energy side of the energy distribution due to different electric field accelerations determined by the frequency of the high-frequency power of 60 MHz to 150 MHz, the energy distribution of ions incident on the substrate; A controller that controls the pressure in the vacuum chamber to a pressure that is expressed in an energy region lower than the first peak of the second peak and has a second peak having a higher intensity than the pair of first peaks;
    An etching apparatus comprising:
  5.  請求項4に記載のエッチング装置において、
     前記制御部は、前記圧力が50Pa以上150Pa以下であり、且つプラズマの密度が1×1010/cm以上5×1012/cm以下になるように、前記真空槽内に供給するエッチングガスの流量を制御することを特徴とするエッチング装置。
    The etching apparatus according to claim 4, wherein
    The control unit is an etching gas supplied into the vacuum chamber so that the pressure is 50 Pa or more and 150 Pa or less and the plasma density is 1 × 10 10 / cm 3 or more and 5 × 10 12 / cm 3 or less. An etching apparatus characterized by controlling the flow rate of.
PCT/JP2011/055767 2010-03-16 2011-03-11 Etching method and etching device WO2011115008A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012505645A JPWO2011115008A1 (en) 2010-03-16 2011-03-11 Etching method and etching apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-059962 2010-03-16
JP2010059962 2010-03-16

Publications (1)

Publication Number Publication Date
WO2011115008A1 true WO2011115008A1 (en) 2011-09-22

Family

ID=44649103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055767 WO2011115008A1 (en) 2010-03-16 2011-03-11 Etching method and etching device

Country Status (3)

Country Link
JP (1) JPWO2011115008A1 (en)
TW (1) TW201203352A (en)
WO (1) WO2011115008A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168505A (en) * 2012-02-15 2013-08-29 Ulvac Japan Ltd Method for forming texture structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093776A (en) * 2000-09-14 2002-03-29 Tokyo Electron Ltd HIGH SPEED ETCHING METHOD OF Si
JP2003234331A (en) * 2001-12-05 2003-08-22 Tokyo Electron Ltd Plasma etching method and apparatus
WO2003085717A1 (en) * 2002-04-08 2003-10-16 Tokyo Electron Limited Plasma etching method
JP2007103876A (en) * 2005-10-07 2007-04-19 Hitachi High-Technologies Corp Etching method and etching apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093776A (en) * 2000-09-14 2002-03-29 Tokyo Electron Ltd HIGH SPEED ETCHING METHOD OF Si
JP2003234331A (en) * 2001-12-05 2003-08-22 Tokyo Electron Ltd Plasma etching method and apparatus
WO2003085717A1 (en) * 2002-04-08 2003-10-16 Tokyo Electron Limited Plasma etching method
JP2007103876A (en) * 2005-10-07 2007-04-19 Hitachi High-Technologies Corp Etching method and etching apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168505A (en) * 2012-02-15 2013-08-29 Ulvac Japan Ltd Method for forming texture structure

Also Published As

Publication number Publication date
TW201203352A (en) 2012-01-16
JPWO2011115008A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
TWI430361B (en) Plasma processing device and plasma processing method
TWI450328B (en) Plasma etch methods and computer-readable memory media
US4521286A (en) Hollow cathode sputter etcher
Booth et al. Dual-frequency capacitive radiofrequency discharges: effect of low-frequency power on electron density and ion flux
JP4714166B2 (en) Substrate plasma processing apparatus and plasma processing method
US8252193B2 (en) Plasma processing apparatus of substrate and plasma processing method thereof
JP3753194B2 (en) Plasma processing method and apparatus
US9805945B2 (en) Etching method
KR102458996B1 (en) Etching method
JP2014053644A (en) Plasma processing device and plasma processing method
US20050189482A1 (en) 3-grid neutral beam source used for etching semiconductor device
CN106504982B (en) Substrate etching method
WO2011115008A1 (en) Etching method and etching device
KR101055956B1 (en) By-product collecting processes for cleaning processes
CN110364441B (en) Etching method for lithium niobate material
CN117293007A (en) Plasma processing apparatus and plasma processing method
JP5041696B2 (en) Dry etching method
CN114068320A (en) Silicon dry etching method
WO2009116579A1 (en) Plasma processing method and plasma processing apparatus
US8669538B1 (en) Method of improving ion beam quality in an implant system
JPH11345803A (en) Method and apparatus for plasma production and processing
JP2011228694A (en) Plasma processing method and plasma processing apparatus
US20050287814A1 (en) H2O plasma for simultaneous resist removal and charge releasing
JP3347909B2 (en) Plasma generation processing method and apparatus therefor
JP2012222270A (en) Etching apparatus and etching method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756194

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505645

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756194

Country of ref document: EP

Kind code of ref document: A1