WO2011114590A1 - Position input device, position input system, position input method, position input program and computer-readable recording medium - Google Patents
Position input device, position input system, position input method, position input program and computer-readable recording medium Download PDFInfo
- Publication number
- WO2011114590A1 WO2011114590A1 PCT/JP2010/072385 JP2010072385W WO2011114590A1 WO 2011114590 A1 WO2011114590 A1 WO 2011114590A1 JP 2010072385 W JP2010072385 W JP 2010072385W WO 2011114590 A1 WO2011114590 A1 WO 2011114590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- representative
- correction
- pen
- input
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/038—Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
- G06F3/0386—Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry for light pen
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/0418—Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/042—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
Definitions
- the present invention relates to a position input device equipped with a light detection sensor.
- a touch panel that reads the position of the pen as coordinates is realized by bringing the pen into contact with the contact surface.
- an optical pen type touch panel that inputs coordinates using a light pen that emits light from the pen tip has been developed.
- a light pen type touch panel has a built-in light detection sensor, and the light detection sensor receives light emitted from the light pen in contact with the contact surface, so that the light pen in contact with the contact surface. Is read as coordinates.
- FIG. 16 is a diagram for explaining an optical pen type touch panel.
- the touch panel 201 is provided with a sensor surface 202 on which a light detection sensor is arranged and a protective plate 203 for protecting the sensor surface 202.
- a surface of the protective plate 203 opposite to the side on which the sensor surface 202 is disposed is a contact surface 204.
- the touch panel 201 receives the light 206 projected on the sensor surface 202 by a light detection sensor disposed on the sensor surface 202. As a result, the touch panel 201 reads the position indicated by the optical pen 205 as coordinates.
- Patent Document 1 discloses an information input device that inputs coordinates using a vibration pen provided with a vibrator. This will be described with reference to FIG.
- FIG. 17 is a diagram illustrating a configuration of a conventional information input device.
- the information input device 300 includes an input tablet including a vibration transmission plate 308 having three vibration sensors 306 provided at the corners, a vibration pen 303 including a vibrator, and a display including a CRT. 311.
- the vibration transmission plate 308 transmits the vibration transmitted from the vibration pen 303 to the vibration sensor 306.
- the input tablet composed of the vibration transmission plate 308 performs coordinate input with the vibration pen 303, and an input image is displayed on the display 311 arranged to overlap the input tablet in accordance with the input coordinate information.
- the touch panel 201 shown in FIG. 16 has a distance (gap) between the sensor surface 202 and the contact surface 204. For this reason, unless the user touches the optical pen 205 perpendicularly to the contact surface 204, the position of the light 206 projected on the sensor surface 202 and the correct pen position in contact with the contact surface 204 of the optical pen 205 Therefore, a deviation (parallax) occurs.
- the transmission time of the ultrasonic vibration transmitted from the vibration pen 303 to the vibration sensor 306 via the vibration transmission plate 308 is measured, so that the vibration pen 303 and the vibration sensor 306 are connected. The distance between them is detected, and the coordinates of the vibration pen 303 on the vibration transmission plate 308 are detected.
- the input position and the display position for the operator are matched by correcting the position of the display information corresponding to the input information.
- Patent Document 1 is a method using vibration. For this reason, the case where light is emitted from the pen tip is not taken into consideration, and cannot be applied to an optical pen type touch panel.
- the present invention has been made to solve the above problems, and its purpose is to improve the input accuracy of the position of the touch panel provided with the light detection sensor.
- a position input device of the present invention includes a contact surface that contacts an indicating device that instructs position input, and a light receiving surface of a light detection element that receives projection light from the indicating device.
- a position detection device for obtaining a position at which the pointing device directs input by detecting a position of the projection light on the light detection surface, the contact surface, and the light
- a representative position calculating means for calculating a representative position representative of the position in the light detection surface of the light projected onto the light detection surface; and correcting the representative position, It is characterized by comprising position correction means for calculating an indicated position, which is a position at which the pointing device in the light detection surface instructs input.
- a position input method is configured to contact a pointing device for instructing position input and to be separated from the contact surface, and to receive projection light from the pointing device.
- a position at which the pointing device obtains a position for instructing input by detecting a position of the projection light on the light detecting surface of a position input device including a light detecting surface including a light receiving surface of the light detecting element An input method, a representative position calculating step for calculating a representative position representative of the position in the light detection surface of the projection light to the light detection surface, and correcting the representative position to correct the representative position in the light detection surface. And a position correction step of calculating an indicated position, which is a position where the pointing device directs input.
- the position of the projection light projected on the light detection surface is detected from the pointing device in contact with the contact surface. Can do. Thereby, based on the detected position of the projection light, the position pointed to by the pointing device can be acquired as an input.
- the contact surface and the light detection surface are provided apart from each other. For this reason, since an indicating device does not contact a light detection element directly, a light detection element can be protected.
- the position correcting unit corrects the representative position and calculates an indicated position that is a position where the pointing device in the light detection surface instructs input. Therefore, even if there is a deviation between the representative position and the indicated position due to the contact surface and the light detection surface being provided apart from each other, the indicated position is accurately set. Can be calculated. Therefore, the position input accuracy can be improved.
- a position input device includes a contact surface that contacts an instruction device that instructs position input, and a light detection surface that includes a light receiving surface of a light detection element that receives projection light from the instruction device.
- a position input device that acquires a position at which the pointing device instructs input by detecting a position of the projection light on a detection surface, wherein the contact surface and the light detection surface are provided apart from each other.
- representative position calculating means for calculating a representative position representative of the position of the projection light on the light detection surface in the light detection surface, and correcting the representative position so that the pointing device in the light detection surface
- Position correction means for calculating an indicated position that is an input instruction position.
- the position input method of the present invention includes a contact surface that contacts an indicating device that instructs position input, and a light receiving surface of a light detection element that is spaced apart from the contact surface and receives projection light from the indicating device.
- a position input method for acquiring a position at which the pointing device directs input by detecting a position of the projection light on the light detecting surface of a position input device having a light detecting surface, the light detecting surface A representative position calculating step for calculating a representative position representative of a position in the light detection surface of the light projected onto the surface, and a position at which the pointing device in the light detection surface instructs to input by correcting the representative position. Including a position correction step of calculating a specified position.
- FIG. 1 It is a block diagram showing the structure of the position input system which concerns on the 1st Embodiment of this invention. It is sectional drawing showing the structure of the liquid crystal panel of the touchscreen which concerns on this Embodiment.
- (A) is a figure showing a mode that the optical pen is made to contact perpendicularly to the contact surface of a liquid crystal panel,
- (b) is a top view showing the mode of the projection light of a sensor surface.
- A It is a figure showing a mode that the optical pen is made to incline and contact the contact surface of a liquid crystal panel,
- (b) is a top view showing the mode of the projection light of a sensor surface.
- FIG. 5C is a diagram illustrating the state of projection light when the pen is tilted in the Y-axis minus direction
- FIG. 6C is a diagram illustrating the state of projection light when the optical pen is tilted in the X-axis minus direction and the Y-plus direction.
- FIG. 1 It is a flowchart showing the flow of a process of the position input system which concerns on 1st Embodiment. It is a block diagram showing the structure of the position input system which concerns on the 2nd Embodiment of this invention. It is a figure showing the light quantity of the projection light projected on the sensor surface from the optical pen which contacted the contact surface of the touch panel.
- (A) (b) is a top view showing the mode of the projection light of a sensor surface, (a) is a figure showing the case where the inclination angle of the optical pen with respect to the perpendicular of a contact surface is small, (b) is a contact surface. It is a figure showing the case where the inclination-angle of the optical pen with respect to the perpendicular of is large.
- (A)-(c) is a figure showing the shape of the various projection light projected on the sensor surface from the optical pen
- (a) is a projection light when the optical pen inclines in the X-axis plus direction.
- (B) represents the state of the projection light when the optical pen is tilted in the Y axis minus direction
- (c) is the projection when the light pen is tilted in the X axis minus direction and the Y plus direction.
- It is a figure showing the mode of light.
- It is a flowchart showing the flow of a process of the position input system which concerns on 2nd Embodiment.
- It is a block diagram showing the structure of the position input system which concerns on the 3rd Embodiment of this invention.
- (A) is a figure showing the case where the inclination angle of the optical pen with respect to the perpendicular of a contact surface is small
- (b) is a figure showing the case where the inclination angle of the optical pen with respect to the perpendicular of a contact surface is large.
- It is a flowchart showing the flow of a process of the position input system which concerns on 3rd Embodiment. It is a figure explaining the conventional optical pen type touch panel. It is a figure showing the structure of the conventional information input device.
- FIG. 2 is a cross-sectional view showing the configuration of the liquid crystal panel 10 of the touch panel 1.
- the touch panel (position input device) 1 includes a liquid crystal panel 10 including a light detection sensor (light detection element) 16, and a liquid crystal drive circuit 25 that controls driving of each pixel of the liquid crystal panel 10.
- a light detection sensor control unit 30 that controls driving of the light detection sensor 16 and an output from the light detection sensor 16 and a backlight 20 are provided.
- the touch panel 1 is provided with a light detection sensor 16 for each pixel of the liquid crystal panel 10.
- the touch panel 1 is a sensor surface on which a contact surface 1a that makes contact with a light pen (instruction device) 27 that instructs position input and a light receiving surface of a light detection sensor 16 that receives projection light 28 from the light pen 27 are arranged. (Light detection surface) 16a. And the touch panel 1 acquires the position where the optical pen 27 directs input by detecting the position of the projection light 28 on the sensor surface 16a. And the touch panel 1 is mounted in an electronic device, and outputs the information according to the input position with respect to the said electronic device.
- the touch panel 1 is a liquid crystal display device-integrated touch panel that can display an image on the liquid crystal panel 10 and has an image display function.
- the optical pen 27 is used by the user to bring the pen tip into contact with a contact surface 1 a (described later) of the touch panel 1 in order to instruct the position on the touch panel 1.
- the light pen 27 includes a light emitting element such as an LED (Light Emitting Diode), for example, and is configured such that light emitted from the light emitting element is emitted from the pen tip.
- the backlight 20 is a light source that illuminates the liquid crystal panel 10, and is disposed on the back side of the liquid crystal panel 10.
- the surface opposite to the surface on which the backlight 20 of the liquid crystal panel 10 is disposed is the contact surface 1a.
- the liquid crystal panel 10 has pixels for displaying an image arranged in a matrix.
- the liquid crystal panel 10 includes an active matrix substrate 11, a liquid crystal layer 13, a counter substrate 12, polarizing plates 14 a and 14 b, and a protective plate 15.
- the active matrix substrate 11 and the counter substrate 12 are arranged to face each other with the liquid crystal layer 13 interposed therebetween.
- a front-side polarizing plate 14a and a back-side polarizing plate 14b are provided, respectively.
- Each polarizing plate 14a, 14b plays a role as a polarizer.
- the polarization direction of the front side polarizing plate 14a and the polarization direction of the back side polarizing plate 14b are arranged so as to have a crossed Nicols relationship.
- a normally black mode liquid crystal panel 10 can be realized.
- the active matrix substrate 11 is provided with a TFT (not shown) which is a switching element for driving each pixel, an alignment film (not shown), a light detection sensor 16 and the like.
- a TFT (not shown) which is a switching element for driving each pixel
- an alignment film (not shown)
- a light detection sensor 16 and the like.
- the counter substrate 12 is provided with a color filter layer, a counter electrode, an alignment film, and the like.
- the color filter layer is composed of colored portions having respective colors of red (R), green (G), and blue (B), and a black matrix.
- the protective plate 15 is made of a transparent material such as acrylic resin or glass, and is a member for protecting the surface of the liquid crystal panel 10.
- the protective plate 15 is disposed on the opposite side of the liquid crystal panel 10 from the backlight 20 with a gap from the polarizing plate 14a.
- the surface of the protective plate 15 (that is, the surface opposite to the side on which the liquid crystal panel 10 is disposed) is a contact surface 1 a for contacting the optical pen 27.
- the optical pen 27 does not directly contact the polarizing plate 14a or the light detection sensor 16. For this reason, the polarizing plate 14a and the light detection sensor 16 can be protected.
- the light detection sensor 16 is composed of a photodiode or a phototransistor, and is provided for each pixel.
- a plane including the light receiving surface of the light detection sensor 16 is referred to as a sensor surface 16a.
- the light detection sensor 16 receives light projected from the light pen 27 in contact with the contact surface 1a on the light receiving surface, and passes a current according to the intensity of the received light, thereby projecting the projected light projected on the sensor surface 16a. Can be detected.
- the function as the position input device of the touch panel 1 is realized by acquiring the position at which the optical pen 27 instructs input based on the position of the projection light detected by the light detection sensor 16.
- the photodetection sensor 16 and the TFT can be formed monolithically on the active matrix substrate 11 by substantially the same process. That is, some constituent members of the light detection sensor 16 may be formed simultaneously with some constituent members of the TFT.
- the light detection sensor 16 is not necessarily provided for each pixel.
- the light detection sensor 16 is provided for each pixel having any one of R, G, and B color filters.
- the provided structure may be sufficient.
- a light shielding film may be provided on the back surface of the light detection sensor 16 to prevent light emitted from the backlight 20 from entering the light detection sensor 16 from the back surface of the light detection sensor 16. .
- the user touches the touch surface 1 a of the liquid crystal panel 10 of the touch panel 1 with respect to such a touch panel 1 in order to instruct the touch panel 1 to input coordinates. Then, the light emitted from the pen tip of the optical pen 27 that has contacted the contact surface 1a is projected onto the sensor surface 16a.
- the touch panel 1 acquires a light reception signal from each of the light detection sensors 16 included in the projection light 28 that is light projected onto the sensor surface 16a. From the light reception signals acquired from the respective light detection sensors 16, coordinates indicating the position of the projection light 28 are read as representative coordinates.
- the representative coordinates indicate coordinates in the projection light 28 on the sensor surface 16a, and are, for example, the center coordinates of the projection light 28.
- the touch panel 1 reads the position of the projection light 28 projected on the sensor surface 16a with the light detection sensor 16, and inputs information to the electronic device on which the touch panel 1 is mounted, or a target operation. Can be executed.
- the touch panel function can be realized by the light detection sensor 16.
- touch panel 1 does not necessarily have an image display function, and the touch panel function may be realized by the light detection sensor 16.
- FIG. 1 is a block diagram showing the configuration of the position input system 39 according to the first embodiment.
- the position input system 39 includes an optical pen 27 and a touch panel 1.
- the touch panel 1 includes a liquid crystal panel 10 including a light detection sensor 16, a liquid crystal driving circuit 25, and a light detection sensor control unit 30.
- the light detection sensor control unit 30 includes a received light amount calculation unit 31, a representative coordinate calculation unit (representative position calculation unit) 32, a long axis calculation unit 33, a correction amount calculation unit (correction amount calculation unit) 35, and a correction direction.
- a calculation unit (correction direction calculation unit) 36, a coordinate correction unit (position correction unit) 37, and an interface unit 38 are provided.
- the light detection sensor control unit 30 is a timing generation circuit (illustrated) that generates a timing signal for controlling the operation of each circuit in synchronization, and light that supplies power to drive each light detection sensor 16.
- a detection sensor driving circuit (appended) is provided.
- the light pen 27 projects the light emitted from the pen tip onto the light detection sensor 16 of the liquid crystal panel 10 when indicating the input position.
- the light detection sensor 16 receives the light projected from the light pen 27 and outputs a current having a different value according to the amount of received light to the received light amount calculation unit 31 as a received light signal.
- the received light amount calculation unit 31 receives a received light signal from each light detection sensor 16 that passes a current having a different value according to the received light amount, and calculates the received light amount of each light detection sensor 16.
- the representative coordinate calculation unit 32 calculates representative coordinates (representative position) which are coordinates representing the position of the projection light 28 on the sensor surface 16a.
- the representative coordinate calculation unit 32 calculates the representative coordinates of the projection light 28 projected on the sensor surface 16 a based on the received light amount of each light detection sensor 16 calculated by the received light amount calculation unit 31.
- the long axis calculation unit 33 calculates the length of the long axis of the projection light 28 projected on the sensor surface 16a.
- the correction amount calculation unit 35 calculates the correction amount for the designated position p of the representative coordinates from the length of the long axis of the projection light 28 calculated by the long axis calculation unit 33.
- the designated position p is a position in the sensor surface 16a where the user instructs the input.
- the designated position p is a center coordinate in the projection light 28 when the optical pen 27 is brought into contact with the contact surface 1a perpendicularly.
- the correction direction calculation unit 36 calculates a correction direction for the designated position p of the representative coordinates. Specifically, the correction direction calculation unit 36 calculates a correction direction for the designated position p of the representative coordinates from the major axis of the projection light 28 and the curvature of the circumference of the projection light 28 that intersects the major axis.
- the coordinate correction unit 37 corrects the representative position of the projection light 28, and calculates a designated position p, which is a position where the light pen 27 in the sensor surface 16a directs input. That is, the coordinate correction unit 37 uses the representative position of the projection light 28 actually projected on the sensor surface 16a in the projection light projected on the sensor surface 16a when the optical pen 27 is brought into contact with the contact surface 1a perpendicularly. Correct to the position of the center coordinate.
- the coordinate correction unit 37 calculates the indicated position p from the representative coordinates, the correction amount calculated by the correction amount calculation unit 35, and the correction direction calculated by the correction direction calculation unit 36.
- the interface circuit 75 uses the information on the designated position p calculated by the representative coordinate calculation unit 32 to control other control units (for example, the liquid crystal driving circuit 25) in the touch panel 1 and the electronic device on which the touch panel 1 is mounted. Output to the section.
- FIG. 3A is a diagram illustrating a state in which the optical pen is vertically contacted with the contact surface of the liquid crystal panel
- FIG. 3B is a plan view illustrating the state of the projection light on the sensor surface.
- FIG. 4A is a diagram illustrating a state in which the optical pen is tilted and brought into contact with the contact surface of the liquid crystal panel
- FIG. 4B is a plan view illustrating the state of the projection light on the sensor surface.
- FIG. 5A is a diagram illustrating a state in which the optical pen is in contact with the contact surface of the liquid crystal panel with a large inclination
- FIG. 5B is a plan view illustrating the state of the projection light on the sensor surface.
- the projection light 28a projected on the sensor surface 16a has a circular shape with a diameter r, as shown in FIG.
- the user touches the contact surface 1a with which the optical pen 27 is contacted in order to instruct position input.
- the designated position p which is the coordinate position in the sensor surface 16a based on the position (contact position p ′), and the position of the representative coordinates (representative position q) where the light detection sensor 16 has read the projection light 28a projected on the sensor surface 16a. There is no gap between the two.
- the user usually causes the optical pen 27 to contact the contact surface 1a with a slight inclination with respect to the normal of the contact surface 1a.
- the optical pen 27 is tilted in the positive direction of the X axis from the perpendicular of the contact surface 1a.
- the distance in the major axis direction of the projection light 28b and the magnitude of the curvature of a circle around the circumference intersecting with the major axis of the projection light 28b are calculated as the degree of collapse of the projection light 28b from the circular shape will be described.
- the projection light 28b has a shape with the X direction as the major axis direction.
- the deviation amount may be obtained by multiplying or adding a constant according to the distance between the contact surface 1a and the sensor surface 16a and the refractive index between the contact surface 1a and the sensor surface 16a.
- the plus / minus directions of the X and Y axes are based on the representative position.
- the projection light 28b has a relative curvature of the circumference located in the plus direction of the X direction in the circumference including the respective points where the major axis and the circumference intersect. It is larger than the curvature.
- the X-axis plus direction circumference of the projection light 28 a is closer to the pen tip of the optical pen 27 and the X-axis minus direction circumference is far from the pen tip of the light pen 27.
- the correction direction of the representative position q1 with respect to the designated position p can be calculated by calculating the magnitude of the curvature of the circumference intersecting the major axis of the projection light 28a.
- the X axis plus direction which is the direction in which the point where the circumference having a large curvature intersects with the major axis, is used as the correction direction, and from the distance r1 in the major axis direction, The difference between the diameters r is used as a shift amount (correction amount), and the representative position q1 is corrected as shown by the arrow in FIG. Thereby, the designated position p can be calculated.
- the degree of collapse of the projection light 28b from the circular shape also increases. That is, the distance r2 in the major axis direction that is the X-axis direction of the projection light 28b is longer than the distance r1 in the major axis direction of the projection light 28b.
- the distance r2 of the projection light 28c in the major axis direction and the curvature of the circumference including the point intersecting the major axis change. Therefore, by correcting the distance r2 in the major axis direction and the magnitude relationship between the curvatures of the circumferences intersecting the major axis, the indication position p and the representative position q2, which is the position of the representative coordinates of the projection light 28c, are corrected.
- the amount and correction direction will be known.
- the X axis plus direction which is the direction in which the point where the circumference having a large curvature intersects with the major axis, exists from the representative position q2, which is the position of the representative coordinate of the projection light 28c, as the correction direction.
- the coordinate of the representative position q2 is corrected as indicated by the arrow in FIG. 5B using the difference between the long-axis direction distance r2 and the circular diameter r as a correction amount. Thereby, the designated position p can be calculated.
- the correction amount and the correction direction are known from the shape of the light projected on the sensor surface 16a, by correcting the position of the light projected on the sensor surface 16a from the correction amount and the correction direction.
- the exact position of the light pen 27 in the surface of the pen tip can be calculated.
- FIG. 6A to 6C are views showing various shapes of projection light projected from the light pen 27 onto the sensor surface
- FIG. 6A is a view in which the light pen 27 is inclined in the plus direction of the X axis.
- B represents the state of the projection light when the light pen 27 is tilted in the Y-axis minus direction
- (c) represents the state of the projection light when the light pen 27 is tilted in the X-axis minus direction and the Y plus direction. It is a figure showing the mode of the projection light in case it inclines to.
- the projection light 28d is deformed from a circular shape so that the X direction is the major axis direction.
- the optical pen 27 that has contacted the contact surface 1a is in contact with the contact surface 1a while being inclined in the X-axis direction, which is the major axis direction, from the perpendicular of the contact surface 1a.
- the projection light 28d has a relative X axis out of the curvature of the circumference in the X axis plus direction and the curvature of the circumference in the minus direction of the X axis including the respective points where the major axis and the circumference intersect.
- the curvature of the circumference in the plus direction is larger.
- the X axis plus direction is the correction direction
- the difference between the major axis direction distance r3 and the circular diameter r is the correction amount, as shown by the arrow in FIG.
- the coordinates of the representative position q3 are corrected. Thereby, the contact position p can be calculated.
- the shape of the projection light 28e is broken from the circular shape so that the Y direction becomes the major axis direction.
- the optical pen 27 in contact with the contact surface 1a is tilted in the Y-axis direction from the perpendicular of the contact surface 1a and is in contact with the contact surface 1a.
- the projection light 28e has a relative Y axis between the curvature of the circumference in the Y axis plus direction and the curvature of the circumference in the Y axis minus direction including the respective points where the major axis and the circumference intersect.
- the curvature of the circumference of the minus direction is larger.
- the Y-axis minus direction is the correction direction
- the difference between the major axis direction distance r4 and the circular diameter r is the correction amount, as indicated by the arrow in FIG.
- the projection light 28f is deformed from a circular shape so as to be in the major axis direction from the X-axis plus and Y-axis minus to the X-axis minus and Y-axis plus directions. Yes.
- the optical pen 27 that has contacted the contact surface 1a is inclined from the perpendicular of the contact surface 1a in the X-axis minus and Y-axis plus directions (upper left direction in the drawing) and is in contact with the contact surface 1a. Recognize.
- the projection light 28f has a curvature of the circumference in the X axis plus / Y axis minus direction including each point where the major axis and the circumference intersect, and a curvature of the circumference in the X axis minus / Y axis plus direction.
- the curvature of the circumference in the X-axis minus / Y-axis plus direction is relatively larger.
- the correction direction of the representative position q5 which is the position of the representative coordinates of the projection light 28f, is the X axis minus and the Y axis plus direction.
- the contact position p can be calculated.
- FIG. 7 is a flowchart showing the processing flow of the position input system 39.
- the user brings the pen tip of the optical pen 27 emitting light from the pen tip into contact with the contact surface 1a of the liquid crystal panel 10. Then, the light emitted from the pen tip of the optical pen 27 that has contacted the contact surface 1 a is projected onto the sensor surface 16 a of the touch panel 1.
- the light detection sensor 16 included in the projection light 28 receives the projection light 28 onto the sensor surface 16a on the light receiving surface. Each light detection sensor 16 that has received the projection light 28 outputs a current corresponding to the amount of received light to the received light amount calculation unit 31 as a received light signal.
- the light reception amount calculation unit 31 calculates the light reception amount of each light detection sensor 16 that has output the light reception signal (step S11). Then, the received light amount calculation unit 31 outputs the calculated received light amount of each light detection sensor 16 to the representative coordinate calculation unit 32, the long axis calculation unit 33, and the correction direction calculation unit 36 as a received light amount signal.
- the representative coordinate calculation unit 32 acquires the received light amount signal from the received light amount calculation unit 31, the representative coordinate calculation unit 32 calculates representative coordinates from the acquired received light amount signal (step S12). Then, the representative coordinate calculation unit 32 outputs the calculated representative coordinates to the coordinate correction unit 37.
- the long axis calculation unit 33 acquires the received light amount signal from the received light amount calculation unit 31, the long axis calculation unit 33 extracts the long axis of the projection light 28 from the acquired received light amount signal. That is, the long axis calculation unit 33 extracts the coordinates of two points at the end of the long axis of the projection light 28, and calculates the length of the long axis from the extracted coordinates of the end of the long axis (step S13). ). Then, the long axis calculation unit 33 outputs the calculated length of the long axis of the projection light to the correction amount calculation unit 35 and the coordinates of two points at the end of the long axis of the projection light to the correction direction calculation unit 36. Output.
- the correction amount calculation unit 35 acquires the length of the long axis of the projection light from the long axis calculation unit 33, the correction amount (correction amount) of the representative coordinates of the projection light is calculated from the length of the long axis of the acquired projection light. Is calculated (step S14).
- the correction amount calculation unit 35 uses a value obtained by dividing the length of the major axis of the projection light 28 by the length of the diameter r when the projection light has a circular shape. Calculate as Then, the correction amount calculation unit 35 outputs the calculated deviation amount of the representative coordinates to the coordinate correction unit 37.
- the correction direction calculation unit 36 acquires the received light amount signal from the received light amount calculation unit 31 and acquires the coordinates of the end of the long axis of the projection light 28 from the long axis calculation unit 33, the correction direction calculation unit 36 The correction direction of the representative coordinates is calculated from the acquired received light amount signal and the coordinates of the end of the long axis of the projection light (step S15).
- the correction direction calculation unit 36 compares the curvatures of the circumferences in the vicinity of the coordinates of the two points at the end of the long axis among the circumferences of the projection light. Then, the correction direction calculation unit 36 calculates a direction in which the end of the long axis included in the circumference having a large curvature is located as the correction direction.
- the correction direction calculation unit 36 outputs the calculated correction direction to the coordinate correction unit 37.
- the coordinate correction unit 37 acquires a signal indicating the representative coordinates from the representative coordinate calculation unit 32, acquires a deviation amount of the representative coordinates from the correction amount calculation unit 35, and acquires a correction direction from the correction direction calculation unit 36, the acquisition is performed.
- the corrected coordinates are calculated from the representative coordinates, the deviation amount of the representative coordinates, and the correction direction (step S16), and the calculated coordinates are output to the interface unit 38 as indicating the designated position p.
- the interface unit 38 outputs the designated position p acquired from the coordinate correction unit 37 to an external device such as an electronic device connected to the interface unit 38 as a position input by the user.
- the touch panel 1 acquires the coordinates output from the coordinate correction unit 37 to the interface unit 38 as the designated position p designated by the user.
- each block of the touch panel 1, in particular, the representative coordinate calculation unit 32, the long axis calculation unit 33, the correction amount calculation unit 35, the correction direction calculation unit 36, and the coordinate correction unit 37 may be configured by hardware logic. However, it may be realized by software using a computer as follows.
- the representative coordinate calculation unit 32, the long axis calculation unit 33, the correction amount calculation unit 35, the correction direction calculation unit 36, and the coordinate correction unit 37 are a CPU (central processing unit that executes a command of a control program that realizes each function. ), A ROM (read only memory) storing the program, a RAM (random access memory) for expanding the program, and a storage device (recording medium) such as a memory for storing the program and various data.
- An object of the present invention is to provide a control program for the representative coordinate calculation unit 32, the long axis calculation unit 33, the correction amount calculation unit 35, the correction direction calculation unit 36, and the coordinate correction unit 37, which is software that implements the functions described above.
- a recording medium on which a program code (execution format program, intermediate code program, source program) is recorded so as to be readable by a computer is represented by a representative coordinate calculation unit 32, a long axis calculation unit 33, a correction amount calculation unit 35, a correction direction calculation unit 36, This can also be achieved by supplying the data to the coordinate correction unit 37 and reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU).
- Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R.
- Card system such as IC card, IC card (including memory card) / optical card, or semiconductor memory system such as mask ROM / EPROM / EEPROM / flash ROM.
- the representative coordinate calculation unit 32, the long axis calculation unit 33, the correction amount calculation unit 35, the correction direction calculation unit 36, and the coordinate correction unit 37 are configured to be connectable to a communication network, and the program code is transmitted via the communication network. You may supply.
- the communication network is not particularly limited.
- the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available.
- the transmission medium constituting the communication network is not particularly limited.
- infrared rays such as IrDA and remote control, Bluetooth ( (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used.
- the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
- FIG. 8 is a block diagram showing the configuration of the position input system 49 according to the second embodiment.
- the position input system 49 includes a light pen 27 and a touch panel (position input device) 40.
- the touch panel 40 does not calculate the correction amount and the correction direction of the representative coordinates from the shape of the projection light 28, but is obtained from the position of light of a brighter portion of the projection light 28. 1 and different. That is, the touch panel 40 calculates the correction amount and the correction direction of the representative coordinates from the coordinates having a high light amount in the projection light and the representative coordinates of the projection light.
- the touch panel 40 includes a light detection sensor control unit 41 instead of the light detection sensor control unit 30 of the touch panel 1.
- the light detection sensor control unit 41 includes a received light amount calculation unit 31, a representative coordinate calculation unit 32, a high light quantity coordinate extraction unit 43, a correction direction calculation unit (correction direction calculation unit) 46, and a correction amount calculation unit (correction amount calculation unit). 45, a coordinate correction unit 37, and an interface unit 38.
- the high light quantity coordinate extracting unit 43 extracts the coordinates having the highest light quantity in the projection light 28 as the high light quantity position.
- the correction direction calculation unit 46 calculates the direction from the representative position to the high light quantity position as the correction direction for the designated position of the representative position.
- the correction amount calculation unit 45 calculates a correction amount for the designated position of the representative position from the distance between the high light quantity position and the representative position.
- FIG. 9 is a diagram illustrating the light amount of the projection light projected on the sensor surface from the optical pen that has contacted the contact surface.
- the Z-axis direction in FIG. 9 represents the light amount of the projection light 28b.
- FIG. 9 shows that the light amount of the projection light 28b increases as it goes in the plus direction of the Z-axis.
- the user slightly tilts the vertical direction of the X axis with respect to the normal of the contact surface 1a to bring the optical pen 27 into contact with the position p1 contact surface 1a, thereby Projection light 28b is projected from the pen tip 27 onto the sensor surface 16a.
- the high light quantity region 29b having a high light quantity in the projection light 28b approaches the X axis plus direction.
- the high light quantity position s1 which is the coordinate with the highest (brightest) light quantity, is in the X axis plus direction from the center of the high light quantity region 29b, that is, the pen tip of the optical pen 27 is in contact with the contact surface 1a. Close to the direction of contact.
- the deviation amount (correction amount) and the correction direction of the representative position q1 with respect to the contact position p are calculated. can do.
- the representative coordinates By correcting the representative coordinates using the deviation amount and the correction direction calculated in this way, it is possible to correct the coordinates to a position at which the user intends to input.
- FIG. 10A and 10B are plan views showing the state of the projected light on the sensor surface
- FIG. 10A is a view showing the case where the tilt angle of the optical pen with respect to the normal of the contact surface is small.
- FIG. 10A is a view showing the case where the tilt angle of the optical pen with respect to the normal of the contact surface is small.
- FIG. 10B is a view showing the case where the inclination angle of the optical pen with respect to the perpendicular of the contact surface is large.
- the X axis plus direction which is the direction in which the high light quantity position S1 exists, is set as the correction direction, and the representative position q1 and the high position.
- the representative coordinates are corrected as indicated by the arrows in FIG.
- the contact position p which is the contact position on the contact surface 1a of the optical pen 27 is computable.
- the shift amount (correction amount) may be calculated from the distance between the representative position q1 and the high light quantity position S1, and is obtained by multiplying by a constant according to the distance between the contact surface 1a and the sensor surface 16a. May be. In the present embodiment, twice the distance between the representative position q1 and the high light quantity position S1 is set as a shift amount (correction amount).
- the angle of the contact surface 1a of the optical pen 27 with respect to the perpendicular is increased. That is, it is assumed that the light pen 27 is greatly inclined in the X axis plus direction.
- the distance between the high light amount position s2 of the high light amount region 29c in the projection light 28c and the representative position q2 increases. Therefore, by calculating the distance between the high light quantity position s2 and the representative position q2, the contact position p on the contact surface 1a of the optical pen 27 and the representative position q2 that is the position of the representative coordinates of the projection light 28c.
- the correction amount and the correction direction can be known.
- the correction amount and the correction direction can be determined from the position of the bright portion of the projection light projected onto the sensor surface 16a.
- the correct position of the pen tip of the optical pen 27 can be calculated by correcting the position of the light projected on the sensor surface 16a from the correction amount and the correction direction.
- FIGS. 11A to 11C are diagrams showing various shapes of projection light projected from the light pen 27 onto the sensor surface 16a.
- FIG. 11A shows the light pen 27 tilted in the plus direction of the X axis.
- B shows the state of the projection light when the light pen 27 is tilted in the Y-axis minus direction
- (c) shows the state of the projection light when the light pen 27 is tilted in the X-axis minus direction and Y plus. It is a figure showing the mode of the projection light in case it inclines in the direction.
- the high light quantity position s3 which is the coordinate with the highest light quantity in the high light quantity area 29d having the highest light quantity in the projection light 28d, is shifted from the representative position q3 to the X axis. Located in the plus direction.
- the optical pen 27 in contact with the contact surface 1a is in contact with the contact surface 1a while being inclined in the X-axis plus direction from the perpendicular of the contact surface 1a.
- the X-axis plus direction which is the direction from the representative position q3 toward the high light quantity position s3, is used as the correction direction, and twice the distance between the representative position q3 and the high light quantity position s3 is used as the shift amount (that is, the correction quantity). 11, the representative coordinates are corrected as indicated by the arrow (a).
- the contact position p which is the contact position on the contact surface 1a of the optical pen 27 is computable.
- the high light quantity position s4 which is the coordinate with the highest light quantity in the high light quantity area 29e having the highest light quantity in the projection light 28e, is shifted from the representative position q4 to the Y axis. Located in the negative direction. Thereby, it can be seen that the optical pen 27 in contact with the contact surface 1a is inclined in the Y-axis direction from the perpendicular of the contact surface 1a and is in contact with the contact surface 1a.
- the Y axis minus direction which is the direction from the representative position q4 to the high light quantity position s4, is used as the correction direction, and twice the distance between the representative position q4 and the high light quantity position s4 is used as the shift amount (that is, the correction quantity). 11, the representative coordinates are corrected as indicated by the arrow (b).
- the contact position p which is the contact position on the contact surface 1a of the optical pen 27 is computable.
- the high light quantity position s5 which is the coordinate with the highest light quantity in the high light quantity area 29f having the highest light quantity in the projection light 28f, is changed from the representative position q5 to the X Located in the direction of the axis minus and the Y axis plus.
- the optical pen 27 in contact with the contact surface 1a is in contact with the contact surface 1a while being inclined in the X-axis minus and Y-axis plus directions from the perpendicular of the contact surface 1a.
- FIG. 12 is a flowchart showing a process flow of the position input system 49.
- step S11 is the same as that in the first embodiment, and a description thereof will be omitted.
- the received light amount calculation unit 31 outputs the received light amount of each light detection sensor 16 calculated in step S11 to the representative coordinate calculation unit 32 and the high light amount coordinate extraction unit 43 as a received light amount signal.
- the representative coordinate calculation unit 32 calculates a representative coordinate (step S12), and then sends a signal indicating the calculated representative coordinate to the coordinate correction unit 37 and the correction amount calculation unit 45. Output to.
- the high light quantity coordinate extracting unit 43 acquires the received light amount signal from the received light amount calculating unit 31, the high light quantity coordinate extracting unit 43 extracts the coordinate having the highest light amount in the projection light from the acquired received light amount signal (step S23). Then, the signal indicating the extracted coordinates is output to the correction amount calculation unit 45 and the correction direction calculation unit 46 as a signal indicating the high light quantity position.
- the correction amount calculating unit 45 acquires a signal indicating the representative coordinates from the representative coordinate calculating unit 32 and acquires a signal indicating the high light amount position from the high light amount coordinate extracting unit 43, the correction amount calculating unit 45 obtains a signal between the acquired representative coordinates and the high light amount position.
- a deviation amount (correction amount) of the representative coordinates of the projection light is calculated from the distance (step S24).
- the correction amount calculation unit 45 calculates twice the distance between the representative coordinate and the high light quantity position as a deviation amount (correction amount) of the representative coordinate of the projection light. Then, the correction amount calculation unit 45 outputs the calculated deviation amount of the representative coordinates to the coordinate correction unit 37.
- the correction direction calculation unit 46 acquires a signal indicating the representative coordinates from the representative coordinate calculation unit 32 and acquires a signal indicating the high light amount position from the high light amount position extraction unit, the acquired representative coordinates and the high light amount position are obtained. From this, the correction direction of the representative coordinates is calculated (step S25).
- the correction direction calculation unit 46 calculates the direction in which the high light quantity position is located as the correction direction with respect to the representative coordinates. Then, the correction direction calculation unit 36 outputs a signal indicating the calculated correction direction to the coordinate correction unit 37.
- the coordinate correction unit 37 acquires a signal indicating the representative coordinates from the coordinate correction unit 37, acquires a signal indicating the amount of deviation of the representative coordinates from the correction amount calculation unit 35, and receives a signal indicating the correction direction from the correction direction calculation unit 36.
- the corrected coordinates are calculated (step S16), and a signal indicating the calculated coordinates is output to the interface unit 38, as in step S16 of the first embodiment.
- the touch panel 40 acquires the coordinates output from the coordinate correction unit 37 to the interface unit 38 as the input position instructed by the user.
- the correction amount calculation unit 45 calculates the correction amount for the designated coordinates of the representative coordinates from the high light quantity position and the representative coordinates. Then, the correction direction calculation unit 46 calculates the direction from the representative coordinate to the high light quantity position as the correction direction with respect to the designated coordinate of the representative coordinate. As a result, the indicated coordinates indicated by the optical pen 27 can be accurately calculated from the light amount distribution of the projection light 28 on the sensor surface 16a.
- FIG. 13 is a block diagram showing the configuration of the position input system 59 according to the third embodiment.
- the position input system 59 includes a light pen (instruction device) 24 and a touch panel (position input device) 50.
- the optical pen 24 includes a direction sensor 26 (direction detection element) that detects an inclination angle of the optical pen 24 with respect to the vertical direction and an inclination direction of the optical pen 24 with respect to the vertical direction. Further, the optical pen 24 is connected to the touch panel 50 so as to be able to communicate with the touch panel 50.
- the optical pen 24 and the touch panel 50 may be electrically connected by wire or may be connected so as to be able to perform wireless communication with each other.
- the direction sensor 26 includes a geomagnetic sensor and an acceleration sensor.
- the optical pen 24 determines the inclination angle ⁇ (optical pen inclination angle signal) with respect to the vertical direction of the optical pen 24 and the inclination direction (optical pen inclination direction signal) with respect to the vertical direction of the optical pen 24 based on the geomagnetic sensor and the acceleration sensor. And detect. Then, by extracting output values from the geomagnetic sensor and the acceleration sensor, the optical pen direction sensor signal is output from the direction sensor 26 to the optical pen direction sensor signal acquisition unit 57 of the touch panel 50.
- the inclination angle ⁇ detected by the geomagnetic sensor and the acceleration sensor included in the direction sensor 26 and the inclination direction with respect to the vertical direction of the optical pen 24 are absolute information as directions.
- the optical pen 24 and the touch panel 50 are connected so that they can communicate by wire or wirelessly.
- the timing of outputting the light pen direction sensor signal from the light pen 24 to the light pen direction sensor signal acquisition unit 57 is not particularly limited, and may be output every time the direction of the light pen 24 changes. The output may be performed based on an output instruction output from the touch panel 50 to the optical pen 24.
- the touch panel 50 does not calculate the correction amount and the correction direction from the light shape and light amount as in the touch panels 1 and 40, but the information indicating the correction amount and the correction direction from the direction sensor 26 provided in the optical pen 24. The difference is that the optical pen direction sensor signal is acquired.
- the touch panel 50 includes a light detection sensor control unit 51 instead of the light detection sensor control units 30 and 41 of the touch panels 1 and 40.
- the light detection sensor control unit 51 includes a received light amount calculation unit 31, a representative coordinate calculation unit 32, a direction sensor 53, a correction direction calculation unit (correction direction calculation unit) 56, and a correction amount calculation unit (correction amount calculation unit). 55, a light pen direction sensor signal acquisition unit 57, a coordinate correction unit 37, and an interface unit 38.
- the direction sensor 53 detects the inclination of the touch panel 50 and the direction of the inclination of the touch panel 50.
- the direction sensor 53 includes a geomagnetic sensor and an acceleration sensor.
- the direction sensor 53 includes a tilt angle ⁇ with respect to the vertical direction of the vertical line of the touch panel 50 (that is, a tilt angle with respect to the horizontal direction of the touch panel 50; a device tilt angle signal) and a tilt direction with respect to the vertical direction of the touch panel 50 (device tilt direction signal).
- a tilt angle ⁇ with respect to the vertical direction of the vertical line of the touch panel 50 that is, a tilt angle with respect to the horizontal direction of the touch panel 50; a device tilt angle signal
- a tilt direction with respect to the vertical direction of the touch panel 50 device tilt direction signal.
- the inclination angle ⁇ detected by the geomagnetic sensor and the acceleration sensor included in the direction sensor 53 and the inclination direction with respect to the vertical direction of the vertical line of the touch panel 50 are absolute information as directions.
- the direction sensor 53 does not necessarily need to be included in the light detection sensor control unit 51, and may be provided outside the light detection sensor control unit 51.
- the direction sensor 53 is arranged in an electronic device including the touch panel 50, the correction amount calculation unit 55 acquires the device tilt angle signal of the electronic device output from the direction sensor 53, and calculates the device tilt direction signal as the correction direction. Any configuration that can be acquired by the unit 56 may be used.
- the direction sensor 53 may be omitted when the touch panel 50 is used as a position input device of an electronic device that is used while being fixed.
- the light pen direction sensor signal acquisition unit 57 acquires a light pen tilt angle signal and a light pen tilt direction signal as the light pen direction sensor signal from the light pen 24. Then, the light pen direction sensor signal acquisition unit 57 outputs the light pen tilt angle signal acquired from the light pen 24 to the correction amount calculation unit 55. Further, the direction sensor signal acquisition unit 57 outputs the optical pen tilt direction signal acquired from the optical pen 24 to the correction direction calculation unit 56.
- the correction amount calculation unit 55 acquires the tilt angle of the optical pen 24 with respect to the vertical direction, and calculates the correction amount for the designated position p of the representative coordinates from the acquired tilt angle of the light pen 24 with respect to the vertical direction.
- the correction amount calculation unit 55 acquires the device tilt angle signal from the direction sensor 53 and acquires the light pen tilt angle information from the light pen direction sensor signal acquisition unit 57.
- the correction amount calculation unit 55 calculates a correction amount for the designated position p of the representative seat amount from the device tilt angle signal and the light pen tilt angle signal.
- the correction amount calculation unit 55 outputs the calculated representative coordinate correction amount to the coordinate correction unit 37.
- the correction amount calculation unit 55 previously stores distance information indicating a distance (gap) between the contact surface 1a of the liquid crystal panel 10 and the sensor surface 16a, and a refraction indicating a refractive index between the contact surface 1a and the sensor surface 16a. Rate information may be recorded. Then, the correction amount calculation unit 55 may calculate the correction amount for the designated position p of the representative seat amount from the apparatus tilt angle signal, the light pen tilt angle signal, the distance information, and the refractive index information.
- the correction amount calculation unit 55 includes only the light pen tilt angle signal output from the light pen direction sensor signal acquisition unit 57 or the light pen tilt angle signal and distance information. From the refractive index information, the correction amount for the designated position p of the representative seating amount may be calculated.
- the correction direction calculation unit 56 acquires a tilt direction with respect to the vertical direction of the light pen 24, and calculates a correction direction with respect to the designated position p of the representative coordinates from the acquired tilt direction with respect to the vertical direction of the light pen 24.
- the correction direction calculation unit 56 acquires a device tilt direction signal from the direction sensor 53 and acquires a light pen tilt direction signal from the light pen direction sensor signal acquisition unit 57.
- the correction direction calculation unit 56 calculates the correction direction for the designated position p of the representative coordinates from the apparatus tilt direction signal and the light pen tilt direction signal.
- the correction direction calculation unit 56 outputs the calculated correction direction of the representative coordinates to the coordinate correction unit 37.
- the correction direction calculation unit 56 calculates a correction direction for the designated position p of the representative coordinates from only the light pen tilt direction signal that is a signal indicating the tilt direction of the light pen 24. May be.
- FIG. 14A is a diagram illustrating a state in which the optical pen is brought into contact with the contact surface of the liquid crystal panel
- FIG. 14B is a view in which the optical pen is brought into contact with the contact surface of the liquid crystal panel with a large inclination. It is a figure showing a mode made to do.
- the optical pen 24 incorporates a direction sensor 26.
- the touch panel 50 also includes a direction sensor.
- the direction sensor 26 built in the optical pen 24 detects the inclination angle ⁇ 1 of the optical pen 24 with respect to the vertical direction and also detects the inclination direction of the optical pen 24 with respect to the vertical direction.
- the inclination direction of the optical pen 24 with respect to the vertical direction is the X axis plus direction.
- the direction sensor 53 built in the touch panel 50 detects an inclination angle ⁇ 1 with respect to the vertical direction of the vertical line of the contact surface 1a of the touch panel 50 (that is, an inclination angle with respect to the horizontal direction of the touch panel 50).
- the inclination direction with respect to the vertical direction of the perpendicular line 1a is detected.
- the inclination direction of the perpendicular to the touch panel 50 is the X axis plus direction with respect to the vertical direction.
- the distance between the contact surface 1a and the sensor surface 16a and the refractive index between the contact surface 1a and the sensor surface 16a are calculated in advance, and the calculated values are multiplied or added as constants to obtain a correction amount. May be calculated.
- the correction direction of the representative position q1 with respect to the indicated position p can be calculated from the inclination direction (X-axis plus direction) with respect to the vertical direction of the light pen 24 and the inclination direction of the vertical line of the touch panel 50 (X-axis plus direction). it can.
- the angle of the contact surface 1a of the optical pen 27 with respect to the perpendicular is large, and the amount of deviation between the indicated position p and the representative position q2 due to the projection light 28c projected on the sensor surface 16a is large.
- the correction direction and the correction amount with respect to the designated position p of the representative position q2 of the projection light 28c can be calculated.
- the direction sensor 26 built in the optical pen 24 detects the inclination angle ⁇ 2 of the optical pen 24 with respect to the vertical direction and also detects the inclination direction of the optical pen 24 with respect to the vertical direction.
- the inclination direction of the optical pen 24 with respect to the vertical direction is the X axis plus direction.
- the direction sensor 53 built in the touch panel 50 detects an inclination angle ⁇ 2 of the vertical line of the contact surface 1a of the touch panel 50 with respect to the vertical direction (that is, an inclination angle with respect to the horizontal direction of the touch panel 50) and The inclination direction with respect to the vertical direction is detected.
- the inclination direction of the perpendicular to the touch panel 50 is the X axis plus direction with respect to the vertical direction.
- the correction direction of the representative position q2 with respect to the indicated position p can be calculated from the inclination direction (X-axis plus direction) of the light pen 24 with respect to the vertical direction and the inclination direction of the vertical line of the touch panel 50 (X-axis plus direction). it can.
- FIG. 15 is a flowchart showing the process flow of the position input system 59.
- step S11 is the same as that in the first embodiment, and a description thereof will be omitted.
- the received light amount calculation unit 31 outputs the received light amount of each light detection sensor 16 calculated in step S11 to the representative coordinate calculation unit 32 and the high light amount coordinate extraction unit 43 as a received light amount signal.
- the representative coordinate calculation unit 32 calculates a representative coordinate (step S12) and outputs a signal indicating the calculated representative coordinate to the coordinate correction unit 37, as in step S12 of the first embodiment.
- the direction sensor 26 of the light pen 24 detects the inclination angle ⁇ with respect to the vertical direction of the light pen 24 (step S31) and detects the inclination direction of the light pen 24 with respect to the vertical direction (step S32).
- the light pen 24 is a light pen tilt angle signal that is a signal indicating the tilt angle ⁇ with respect to the vertical direction of the light pen 24 detected by the direction sensor 26 and a light pen tilt that is a signal indicating the tilt direction of the light pen 24 with respect to the vertical direction.
- the direction signal is output to the light pen direction sensor signal acquisition unit 57 as a light pen direction sensor signal.
- the light pen direction sensor signal acquisition unit 57 outputs a light pen tilt angle signal among the light pen direction sensor signals output from the light pen 24 to the correction amount calculation unit 55.
- the light pen direction sensor signal acquisition unit 57 outputs a light pen tilt direction signal among the light pen direction sensor signals output from the light pen 24 to the correction direction calculation unit 56.
- the direction sensor 53 of the touch panel 50 detects the inclination angle ⁇ of the vertical line of the touch panel 50 with respect to the vertical direction (step S33) and detects the inclination direction of the vertical line of the touch panel 50 with respect to the vertical direction (step S34).
- the direction sensor 53 outputs a device inclination angle signal, which is a signal indicating the inclination angle ⁇ with respect to the vertical direction of the detected vertical line of the touch panel 50, to the correction amount calculation unit 55. Further, the direction sensor 53 outputs a device tilt direction signal, which is a signal indicating a tilt direction with respect to the vertical direction of the detected vertical line of the touch panel 50, to the correction direction calculation unit 56.
- the correction amount calculation unit 55 calculates the correction amount of the representative coordinates of the projection light from the light pen tilt angle signal acquired from the light pen direction sensor signal acquisition unit 57 and the device tilt angle signal acquired from the direction sensor 53 ( Step S35).
- the correction amount calculation unit 55 outputs the calculated representative coordinate correction amount to the coordinate correction unit 37.
- the correction direction calculation unit 56 calculates the correction direction of the representative coordinates from the light pen tilt direction signal acquired from the light pen direction sensor signal acquisition unit 57 and the device tilt direction signal acquired from the direction sensor 53 (step S36). ). The correction direction calculation unit 56 outputs the calculated correction direction of the representative coordinates to the coordinate correction unit 37.
- the coordinate correction unit 37 acquires a signal indicating the representative coordinates from the coordinate correction unit 37, acquires the correction amount of the representative coordinates from the correction amount calculation unit 55, and acquires the correction direction from the correction direction calculation unit 56. Similar to steps S16 and S16, the corrected coordinates are calculated (step S16), and a signal indicating the calculated coordinates is output to the interface unit 38. In this way, the touch panel 50 acquires the coordinates output from the coordinate correction unit 37 to the interface unit 38 as the input position instructed by the user.
- the correction amount calculation unit 55 calculates the correction amount of the representative coordinates of the projection light from the light pen tilt angle signal and the device tilt angle signal. Then, the correction direction calculation unit 56 calculates the correction direction of the representative coordinates from the optical pen tilt direction signal and the apparatus tilt direction signal. Thereby, the touch panel 50 can accurately calculate the designated coordinates designated by the optical pen 27.
- a position input device of the present invention includes a contact surface that contacts an indicating device that instructs position input, and a light receiving surface of a light detection element that receives projection light from the indicating device.
- a position detection device for obtaining a position at which the pointing device directs input by detecting a position of the projection light on the light detection surface, the contact surface, and the light
- a representative position calculating means for calculating a representative position representative of the position in the light detection surface of the light projected onto the light detection surface; and correcting the representative position, It is characterized by comprising position correction means for calculating an indicated position, which is a position at which the pointing device in the light detection surface instructs input.
- a position input method is configured to contact a pointing device for instructing position input and to be separated from the contact surface, and to receive projection light from the pointing device.
- a position at which the pointing device obtains a position for instructing input by detecting a position of the projection light on the light detecting surface of a position input device including a light detecting surface including a light receiving surface of the light detecting element An input method, a representative position calculating step for calculating a representative position representative of the position in the light detection surface of the projection light to the light detection surface, and correcting the representative position to correct the representative position in the light detection surface. And a position correction step of calculating an indicated position, which is a position where the pointing device directs input.
- the position of the projection light projected on the light detection surface is detected from the pointing device in contact with the contact surface. Can do. Thereby, based on the detected position of the projection light, the position pointed to by the pointing device can be acquired as an input.
- the contact surface and the light detection surface are provided apart from each other. For this reason, since an indicating device does not contact a light detection element directly, a light detection element can be protected.
- the position correcting unit corrects the representative position and calculates an indicated position that is a position where the pointing device in the light detection surface instructs input. Therefore, even if there is a deviation between the representative position and the indicated position due to the contact surface and the light detection surface being provided apart from each other, the indicated position is accurately set. Can be calculated. Therefore, the position input accuracy can be improved.
- the position correcting unit includes the representative position
- the indicated position is calculated from the representative position calculated by the position acquisition unit, the correction amount calculated by the correction amount calculation unit, and the correction direction calculated by the correction direction calculation unit.
- the position correction unit includes the representative position calculated by the representative position acquisition unit, the correction amount calculated by the correction amount calculation unit, and the correction direction calculated by the correction direction calculation unit.
- the indicated position can be calculated.
- the correction amount calculating means calculates a correction amount for the designated position of the representative position from the length of the long axis of the projection light on the light detecting surface, and the correction direction calculating means is the light detecting surface. It is preferable to calculate the correction direction of the representative position with respect to the indicated position from the major axis of the projection light to and the curvature of the circumference of the projection light intersecting with the major axis.
- the correction direction calculation means calculates the correction direction of the representative position with respect to the indicated position from the major axis of the projection light on the light detection surface and the curvature of the circumference of the projection light that intersects the major axis. Can be calculated. As a result, the position indicated by the pointing device can be accurately calculated from the shape of the light projected onto the light detection surface.
- the correction amount calculating means calculates a correction amount for the indicated position of the representative position from a distance between the representative light and the high light amount position where the light amount is the highest among the projection light on the light detection surface, Preferably, the correction direction calculation means calculates a direction from the representative position to the high light quantity position as a correction direction of the representative position with respect to the indicated position.
- the correction amount calculation means calculates a correction amount for the designated position of the representative position from the high light amount position and the representative position, and the correction direction calculation means calculates from the representative position,
- the direction to the high light quantity position is calculated as the correction direction of the representative position with respect to the indicated position.
- the correction amount calculation means acquires an inclination angle of the pointing device with respect to the vertical direction, calculates a correction amount of the representative position with respect to the pointing position from the acquired inclination angle of the pointing device with respect to the vertical direction
- the correction direction calculation means acquires a tilt direction with respect to a vertical direction of the pointing device, and calculates a correction direction of the representative position with respect to the pointing position from the acquired tilt direction with respect to the vertical direction of the pointing device.
- the correction amount calculating means calculates a correction amount for the designated position of the representative position from an inclination angle of the pointing device with respect to the vertical direction. From the inclination direction, the correction direction of the representative position with respect to the indicated position is calculated. As a result, it is possible to calculate the indication position indicated by the indication device.
- the position input system of the present invention preferably includes the position input device and the pointing device.
- the pointing position indicated by the pointing device can be accurately calculated, so that the position input accuracy of the position input system can be improved.
- the pointing device includes a direction detection element that detects a tilt angle of the pointing device with respect to the vertical direction and a tilting direction of the pointing device with respect to the vertical direction.
- the direction detecting element can detect the tilt angle of the pointing device with respect to the vertical direction and the tilt direction of the pointing device with respect to the vertical direction.
- the above may be realized by a computer.
- a display program for realizing the above in the computer by operating the computer as each of the above means and a computer-readable recording medium recording the display program are also included in the category of the present invention.
- the present invention can be used for a position input device equipped with a light detection sensor.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
Abstract
A touch panel (1) is provided with a tactile surface (1a) upon which a light pen (27) for designating input of a position is caused to come into tactile contact and a sensor surface (16a) including a light receiving surface of an optical detection sensor (16) for receiving projected light (28) from the light pen (27); wherein the light pen (27) acquires a position for designating input by detecting a position of the projected light (28) to the sensor surface (16a), and the tactile surface (1a) and the sensor surface (16a) are disposed apart. The touch panel (1) is provided with a representative coordinate calculation unit (32) for calculating representative coordinates representing the position within the sensor surface (16a) of the projected light (28) to the sensor surface (16a), and a coordinate correction unit (37) for calculating the designated position (p) which is the position where input has been designated by the light pen (27) within the sensor surface (16a). Accordingly, it is possible to improve input accuracy of the position.
Description
本発明は、光検出センサを備えた位置入力装置等に関する。
The present invention relates to a position input device equipped with a light detection sensor.
ペンを接触面に接触させることで、ペンの位置を座標として読み取るタッチパネルが実現されている。
A touch panel that reads the position of the pen as coordinates is realized by bringing the pen into contact with the contact surface.
さらに、近年では、ペン先から光を発光する光ペンにより、座標の入力を行う光ペン方式のタッチパネルが開発されている。このような光ペン方式のタッチパネルは、光検出センサを内蔵しており、接触面に接触した光ペンから発光されている光を、光検出センサで受光することで、接触面に接触した光ペンの接触位置を座標として読み取る。
Furthermore, in recent years, an optical pen type touch panel that inputs coordinates using a light pen that emits light from the pen tip has been developed. Such a light pen type touch panel has a built-in light detection sensor, and the light detection sensor receives light emitted from the light pen in contact with the contact surface, so that the light pen in contact with the contact surface. Is read as coordinates.
図16は、光ペン方式のタッチパネルを説明する図である。
FIG. 16 is a diagram for explaining an optical pen type touch panel.
タッチパネル201は、光検出センサが配されているセンサ面202と、センサ面202を保護するための保護板203が配されている。この保護板203のうち、センサ面202が配されている側とは逆側の面が、接触面204である。
The touch panel 201 is provided with a sensor surface 202 on which a light detection sensor is arranged and a protective plate 203 for protecting the sensor surface 202. A surface of the protective plate 203 opposite to the side on which the sensor surface 202 is disposed is a contact surface 204.
ユーザが、ペン先から光を発光している光ペン205を、接触面204に接触させると、光ペン205のペン先端部から発光した光は、センサ面202に投射される。そして、タッチパネル201は、センサ面202に投射された光206を、センサ面202に配されている光検出センサで受光する。これによりタッチパネル201は、光ペン205が示す位置を座標として読み取る。
When the user brings the optical pen 205 emitting light from the pen tip into contact with the contact surface 204, the light emitted from the pen tip of the optical pen 205 is projected onto the sensor surface 202. The touch panel 201 receives the light 206 projected on the sensor surface 202 by a light detection sensor disposed on the sensor surface 202. As a result, the touch panel 201 reads the position indicated by the optical pen 205 as coordinates.
また、特許文献1には、振動子を備えた振動ペンによって座標を入力する情報入力装置が開示されている。これについて、図17を用いて説明する。
Further, Patent Document 1 discloses an information input device that inputs coordinates using a vibration pen provided with a vibrator. This will be described with reference to FIG.
図17は、従来の情報入力装置の構成を表す図である。
FIG. 17 is a diagram illustrating a configuration of a conventional information input device.
図17に示すように、情報入力装置300は、振動センサ306が角部に3個設けられた振動伝達板308からなる入力タブレットと、振動子を備えた振動ペン303と、CRTからなる表示器311とを備えている。
As shown in FIG. 17, the information input device 300 includes an input tablet including a vibration transmission plate 308 having three vibration sensors 306 provided at the corners, a vibration pen 303 including a vibrator, and a display including a CRT. 311.
振動伝達板308は、振動ペン303から伝達される振動を振動センサ306に伝達する。これにより、振動伝達板308からなる入力タブレットに、振動ペン303によって座標入力を行わせ、入力された座標情報にしたがって、入力タブレットに重ねて配置された表示器311に入力画像を表示する。
The vibration transmission plate 308 transmits the vibration transmitted from the vibration pen 303 to the vibration sensor 306. As a result, the input tablet composed of the vibration transmission plate 308 performs coordinate input with the vibration pen 303, and an input image is displayed on the display 311 arranged to overlap the input tablet in accordance with the input coordinate information.
しかし、図16に示したタッチパネル201は、センサ面202と、接触面204との間に距離(ギャップ)がある。このため、ユーザが、光ペン205を接触面204に対して垂直に接触させない限り、センサ面202に投射された光206の位置と、光ペン205の接触面204に接触している正しいペン位置とでずれ(視差)が生じることになる。
However, the touch panel 201 shown in FIG. 16 has a distance (gap) between the sensor surface 202 and the contact surface 204. For this reason, unless the user touches the optical pen 205 perpendicularly to the contact surface 204, the position of the light 206 projected on the sensor surface 202 and the correct pen position in contact with the contact surface 204 of the optical pen 205 Therefore, a deviation (parallax) occurs.
このため、正確に座標を入力することができないという課題が生じる。
For this reason, there arises a problem that coordinates cannot be input accurately.
一方、図17の情報入力装置300では、振動ペン303から振動伝達板308を介して振動センサ306に伝達された超音波振動の伝達時間を計測することにより、振動ペン303と振動センサ306との間の距離を検出し、振動ペン303の振動伝達板308上での座標を検出している。このように、情報入力装置300では、入力情報に対応した表示情報の位置を補正することで、操作者に対する入力位置、表示位置を一致させている。
On the other hand, in the information input device 300 of FIG. 17, the transmission time of the ultrasonic vibration transmitted from the vibration pen 303 to the vibration sensor 306 via the vibration transmission plate 308 is measured, so that the vibration pen 303 and the vibration sensor 306 are connected. The distance between them is detected, and the coordinates of the vibration pen 303 on the vibration transmission plate 308 are detected. Thus, in the information input device 300, the input position and the display position for the operator are matched by correcting the position of the display information corresponding to the input information.
しかし、特許文献1の情報入力装置は、振動を用いる方法である。このため、ペン先から光を発光する場合については考慮されておらず、光ペン方式のタッチパネルに適用することはできない。
However, the information input device of Patent Document 1 is a method using vibration. For this reason, the case where light is emitted from the pen tip is not taken into consideration, and cannot be applied to an optical pen type touch panel.
本発明は、上記の問題点を解決するためになされたもので、その目的は、光検出センサを備えたタッチパネルの位置の入力精度を向上することである。
The present invention has been made to solve the above problems, and its purpose is to improve the input accuracy of the position of the touch panel provided with the light detection sensor.
上記の課題を解決するために、本発明の位置入力装置は、位置の入力を指示する指示デバイスを接触させる接触面と、当該指示デバイスからの投射光を受光する光検出素子の受光面を含む光検出面とを備え、上記光検出面への上記投射光の位置を検出することで、上記指示デバイスが入力を指示する位置を取得する位置入力装置であって、上記接触面と、上記光検出面とは離間して設けられており、上記光検出面への投射光の光検出面内の位置を代表する代表位置を算出する代表位置算出手段と、上記代表位置を補正して、上記光検出面内の上記指示デバイスが入力を指示する位置である指示位置を算出する位置補正手段とを備えていることを特徴としている。
In order to solve the above-described problem, a position input device of the present invention includes a contact surface that contacts an indicating device that instructs position input, and a light receiving surface of a light detection element that receives projection light from the indicating device. A position detection device for obtaining a position at which the pointing device directs input by detecting a position of the projection light on the light detection surface, the contact surface, and the light A representative position calculating means for calculating a representative position representative of the position in the light detection surface of the light projected onto the light detection surface; and correcting the representative position, It is characterized by comprising position correction means for calculating an indicated position, which is a position at which the pointing device in the light detection surface instructs input.
上記の課題を解決するために、本発明の位置入力方法は、位置の入力を指示する指示デバイスを接触させる接触面と、当該接触面と離間しており、当該指示デバイスからの投射光を受光する光検出素子の受光面を含む光検出面とを備えた位置入力装置の上記光検出面への上記投射光の位置を検出することで、上記指示デバイスが入力を指示する位置を取得する位置入力方法であって、上記光検出面への投射光の光検出面内の位置を代表する代表位置を算出する代表位置算出ステップと、上記代表位置を補正して、上記光検出面内の上記指示デバイスが入力を指示する位置である指示位置を算出する位置補正ステップとを含むことを特徴としている。
In order to solve the above problems, a position input method according to the present invention is configured to contact a pointing device for instructing position input and to be separated from the contact surface, and to receive projection light from the pointing device. A position at which the pointing device obtains a position for instructing input by detecting a position of the projection light on the light detecting surface of a position input device including a light detecting surface including a light receiving surface of the light detecting element An input method, a representative position calculating step for calculating a representative position representative of the position in the light detection surface of the projection light to the light detection surface, and correcting the representative position to correct the representative position in the light detection surface. And a position correction step of calculating an indicated position, which is a position where the pointing device directs input.
上記構成によると、上記光検出面に光検出素子の受光面が含まれているので、上記接触面に接触した指示デバイスから、上記光検出面に投射された上記投射光の位置を検出することができる。これにより、検出した投射光の位置に基づいて、上記指示デバイスが指示する位置を入力として取得することができる。
According to the above configuration, since the light detection surface includes the light receiving surface of the light detection element, the position of the projection light projected on the light detection surface is detected from the pointing device in contact with the contact surface. Can do. Thereby, based on the detected position of the projection light, the position pointed to by the pointing device can be acquired as an input.
上記構成によると、上記接触面と、上記光検出面とは離間して設けられている。このため、直接、光検出素子に、指示デバイスが接触することが無いので、光検出素子を保護することができる。
According to the above configuration, the contact surface and the light detection surface are provided apart from each other. For this reason, since an indicating device does not contact a light detection element directly, a light detection element can be protected.
上記構成によると、上記位置補正手段は、上記代表位置を補正して、上記光検出面内の上記指示デバイスが入力を指示する位置である指示位置を算出する。これにより、上記接触面と、上記光検出面とが離間して設けられていることにより、上記代表位置と、上記指示位置との間にずれが生じていたとしても、上記指示位置を正確に算出することができる。従って、位置の入力精度を向上させることができる。
According to the above configuration, the position correcting unit corrects the representative position and calculates an indicated position that is a position where the pointing device in the light detection surface instructs input. Thereby, even if there is a deviation between the representative position and the indicated position due to the contact surface and the light detection surface being provided apart from each other, the indicated position is accurately set. Can be calculated. Therefore, the position input accuracy can be improved.
本発明の位置入力装置は、位置の入力を指示する指示デバイスを接触させる接触面と、当該指示デバイスからの投射光を受光する光検出素子の受光面を含む光検出面とを備え、上記光検出面への上記投射光の位置を検出することで、上記指示デバイスが入力を指示する位置を取得する位置入力装置であって、上記接触面と、上記光検出面とは離間して設けられており、上記光検出面への投射光の光検出面内の位置を代表する代表位置を算出する代表位置算出手段と、上記代表位置を補正して、上記光検出面内の上記指示デバイスが入力を指示する位置である指示位置を算出する位置補正手段とを備えている。
A position input device according to the present invention includes a contact surface that contacts an instruction device that instructs position input, and a light detection surface that includes a light receiving surface of a light detection element that receives projection light from the instruction device. A position input device that acquires a position at which the pointing device instructs input by detecting a position of the projection light on a detection surface, wherein the contact surface and the light detection surface are provided apart from each other. And representative position calculating means for calculating a representative position representative of the position of the projection light on the light detection surface in the light detection surface, and correcting the representative position so that the pointing device in the light detection surface Position correction means for calculating an indicated position that is an input instruction position.
本発明の位置入力方法は、位置の入力を指示する指示デバイスを接触させる接触面と、当該接触面と離間しており、当該指示デバイスからの投射光を受光する光検出素子の受光面を含む光検出面とを備えた位置入力装置の上記光検出面への上記投射光の位置を検出することで、上記指示デバイスが入力を指示する位置を取得する位置入力方法であって、上記光検出面への投射光の光検出面内の位置を代表する代表位置を算出する代表位置算出ステップと、上記代表位置を補正して、上記光検出面内の上記指示デバイスが入力を指示する位置である指示位置を算出する位置補正ステップとを含むことを含む。
The position input method of the present invention includes a contact surface that contacts an indicating device that instructs position input, and a light receiving surface of a light detection element that is spaced apart from the contact surface and receives projection light from the indicating device. A position input method for acquiring a position at which the pointing device directs input by detecting a position of the projection light on the light detecting surface of a position input device having a light detecting surface, the light detecting surface A representative position calculating step for calculating a representative position representative of a position in the light detection surface of the light projected onto the surface, and a position at which the pointing device in the light detection surface instructs to input by correcting the representative position. Including a position correction step of calculating a specified position.
従って、位置の入力精度を向上させることができるという効果を奏する。
Therefore, the position input accuracy can be improved.
〔実施の形態1〕
図1~図7を用い、本発明のタッチパネル1の第1の実施の形態について説明する。なお、本発明はこれに限定されるものではない。 [Embodiment 1]
A first embodiment of atouch panel 1 of the present invention will be described with reference to FIGS. Note that the present invention is not limited to this.
図1~図7を用い、本発明のタッチパネル1の第1の実施の形態について説明する。なお、本発明はこれに限定されるものではない。 [Embodiment 1]
A first embodiment of a
図2は、タッチパネル1の液晶パネル10の構成を表す断面図である。
FIG. 2 is a cross-sectional view showing the configuration of the liquid crystal panel 10 of the touch panel 1.
図2に示すように、タッチパネル(位置入力装置)1は、光検出センサ(光検出素子)16を備えている液晶パネル10と、液晶パネル10の各画素の駆動を制御する液晶駆動回路25と、光検出センサ16の駆動及び光検出センサ16からの出力を制御する光検出センサ制御部30と、バックライト20とを備えている。
As shown in FIG. 2, the touch panel (position input device) 1 includes a liquid crystal panel 10 including a light detection sensor (light detection element) 16, and a liquid crystal drive circuit 25 that controls driving of each pixel of the liquid crystal panel 10. A light detection sensor control unit 30 that controls driving of the light detection sensor 16 and an output from the light detection sensor 16 and a backlight 20 are provided.
タッチパネル1には、液晶パネル10の画素毎に光検出センサ16が配されている。
The touch panel 1 is provided with a light detection sensor 16 for each pixel of the liquid crystal panel 10.
タッチパネル1は、位置の入力を指示する光ペン(指示デバイス)27を接触させる接触面1aと、光ペン27からの投射光28を受光する光検出センサ16の受光面が配されているセンサ面(光検出面)16aとを備えている。そして、タッチパネル1は、センサ面16aへの投射光28の位置を検出することで、光ペン27が入力を指示する位置を取得するものである。そして、タッチパネル1は、電子機器に搭載されることで、入力された位置に応じた情報を、上記電子機器に対して出力する。
The touch panel 1 is a sensor surface on which a contact surface 1a that makes contact with a light pen (instruction device) 27 that instructs position input and a light receiving surface of a light detection sensor 16 that receives projection light 28 from the light pen 27 are arranged. (Light detection surface) 16a. And the touch panel 1 acquires the position where the optical pen 27 directs input by detecting the position of the projection light 28 on the sensor surface 16a. And the touch panel 1 is mounted in an electronic device, and outputs the information according to the input position with respect to the said electronic device.
さらに、タッチパネル1は、液晶パネル10に画像を表示することも可能な、画像表示機能を有する液晶表示装置一体型のタッチパネルである。
Furthermore, the touch panel 1 is a liquid crystal display device-integrated touch panel that can display an image on the liquid crystal panel 10 and has an image display function.
光ペン27は、タッチパネル1に位置を指示するために、ユーザが、タッチパネル1の接触面1a(後述する)にペン先を接触させるものである。光ペン27は、例えばLED(Light Emitting Diode)等の発光素子が内蔵されており、当該発光素子から発光された光が、ペン先から出射するように構成されている。
The optical pen 27 is used by the user to bring the pen tip into contact with a contact surface 1 a (described later) of the touch panel 1 in order to instruct the position on the touch panel 1. The light pen 27 includes a light emitting element such as an LED (Light Emitting Diode), for example, and is configured such that light emitted from the light emitting element is emitted from the pen tip.
バックライト20は、液晶パネル10を照明する光源であり、液晶パネル10の裏面側に配されている。液晶パネル10のバックライト20が配されている側の面とは逆側の面が接触面1aである。
The backlight 20 is a light source that illuminates the liquid crystal panel 10, and is disposed on the back side of the liquid crystal panel 10. The surface opposite to the surface on which the backlight 20 of the liquid crystal panel 10 is disposed is the contact surface 1a.
液晶パネル10には、画像を表示するための画素がマトリクス状に配されている。液晶パネル10は、アクティブマトリクス基板11と、液晶層13と、対向基板12と、偏光板14a・14bと、保護板15とを備えている。
The liquid crystal panel 10 has pixels for displaying an image arranged in a matrix. The liquid crystal panel 10 includes an active matrix substrate 11, a liquid crystal layer 13, a counter substrate 12, polarizing plates 14 a and 14 b, and a protective plate 15.
アクティブマトリクス基板11と、対向基板12とは液晶層13を介して、対向配置されている。アクティブマトリクス基板11と、対向基板12との外側には、それぞれ、表側の偏光板14aおよび裏側の偏光板14bが設けられている。
The active matrix substrate 11 and the counter substrate 12 are arranged to face each other with the liquid crystal layer 13 interposed therebetween. On the outside of the active matrix substrate 11 and the counter substrate 12, a front-side polarizing plate 14a and a back-side polarizing plate 14b are provided, respectively.
各偏光板14a・14bは、偏光子としての役割を果たす。例えば、液晶層13に封入されている液晶材料が垂直配向型である場合、表側偏光板14aの偏光方向と裏側偏光板14bの偏光方向とを、互いにクロスニコルの関係になるように配置することで、ノーマリーブラックモードの液晶パネル10を実現することができる。
Each polarizing plate 14a, 14b plays a role as a polarizer. For example, when the liquid crystal material sealed in the liquid crystal layer 13 is a vertical alignment type, the polarization direction of the front side polarizing plate 14a and the polarization direction of the back side polarizing plate 14b are arranged so as to have a crossed Nicols relationship. Thus, a normally black mode liquid crystal panel 10 can be realized.
アクティブマトリクス基板11には、各画素を駆動するためのスイッチング素子であるTFT(図示せず)、配向膜(図示せず)、光検出センサ16などが設けられている。
The active matrix substrate 11 is provided with a TFT (not shown) which is a switching element for driving each pixel, an alignment film (not shown), a light detection sensor 16 and the like.
また、対向基板12には、カラーフィルタ層、対向電極及び配向膜などが形成されている。カラーフィルタ層は、赤(R)、緑(G)、青(B)のそれぞれの色を有する着色部と、ブラックマトリクスとから構成されている。
The counter substrate 12 is provided with a color filter layer, a counter electrode, an alignment film, and the like. The color filter layer is composed of colored portions having respective colors of red (R), green (G), and blue (B), and a black matrix.
保護板15は、アクリル樹脂やガラスなど透明な材料からなり、液晶パネル10の表面を保護するための部材である。保護板15は、液晶パネル10におけるバックライト20とは反対側に、偏光板14aと隙間をあけて配されている。
The protective plate 15 is made of a transparent material such as acrylic resin or glass, and is a member for protecting the surface of the liquid crystal panel 10. The protective plate 15 is disposed on the opposite side of the liquid crystal panel 10 from the backlight 20 with a gap from the polarizing plate 14a.
保護板15の表面(すなわち、液晶パネル10が配されている側とは逆側の面)が、光ペン27を接触させるための接触面1aである。
The surface of the protective plate 15 (that is, the surface opposite to the side on which the liquid crystal panel 10 is disposed) is a contact surface 1 a for contacting the optical pen 27.
このように、接触面1aと、センサ面16aとは離間して設けられているので、偏光板14aや光検出センサ16に、直接、光ペン27が接触することが無い。このため偏光板14aや光検出センサ16を保護することができる。
Thus, since the contact surface 1a and the sensor surface 16a are provided apart from each other, the optical pen 27 does not directly contact the polarizing plate 14a or the light detection sensor 16. For this reason, the polarizing plate 14a and the light detection sensor 16 can be protected.
光検出センサ16は、フォトダイオードまたはフォトトランジスタで構成されており、各画素毎に設けられている。本実施の形態では、光検出センサ16の受光面を含む平面をセンサ面16aと称する。
The light detection sensor 16 is composed of a photodiode or a phototransistor, and is provided for each pixel. In the present embodiment, a plane including the light receiving surface of the light detection sensor 16 is referred to as a sensor surface 16a.
光検出センサ16は、接触面1aに接触した光ペン27から投射された光を受光面で受光し、受光した光の強度に応じた電流を流すことで、センサ面16aに投射された投射光の位置を検出することができる。このようにして、光検出センサ16が検出した投射光の位置に基づいて、光ペン27が入力を指示する位置を取得することで、タッチパネル1の位置入力装置としての機能が実現されている。
The light detection sensor 16 receives light projected from the light pen 27 in contact with the contact surface 1a on the light receiving surface, and passes a current according to the intensity of the received light, thereby projecting the projected light projected on the sensor surface 16a. Can be detected. Thus, the function as the position input device of the touch panel 1 is realized by acquiring the position at which the optical pen 27 instructs input based on the position of the projection light detected by the light detection sensor 16.
光検出センサ16及びTFTは、アクティブマトリクス基板11上に、ほぼ同一のプロセスによってモノリシックに形成することができる。つまり、光検出センサ16の一部の構成部材は、TFTの一部の構成部材と同時に形成されてもよい。
The photodetection sensor 16 and the TFT can be formed monolithically on the active matrix substrate 11 by substantially the same process. That is, some constituent members of the light detection sensor 16 may be formed simultaneously with some constituent members of the TFT.
なお、本発明では、必ずしも光検出センサ16は一画素ごとに設けられていなくてもよく、例えば、R,G,Bのうちの何れか1つのカラーフィルタを有する画素ごとに光検出センサ16が備えられている構成であってもよい。
In the present invention, the light detection sensor 16 is not necessarily provided for each pixel. For example, the light detection sensor 16 is provided for each pixel having any one of R, G, and B color filters. The provided structure may be sufficient.
また、光検出センサ16の裏面には、バックライト20から発光された光が、光検出センサ16の裏面から光検出センサ16に入射することを防止するための遮光膜が設けられていてもよい。
In addition, a light shielding film may be provided on the back surface of the light detection sensor 16 to prevent light emitted from the backlight 20 from entering the light detection sensor 16 from the back surface of the light detection sensor 16. .
このようなタッチパネル1に対して、ユーザは、タッチパネル1に座標の入力を指示するために、ペン先から光が発光した光ペン27を、タッチパネル1の液晶パネル10の接触面1aに接触させる。すると、接触面1aに接触した光ペン27のペン先から発光した光は、センサ面16aに投射される。
The user touches the touch surface 1 a of the liquid crystal panel 10 of the touch panel 1 with respect to such a touch panel 1 in order to instruct the touch panel 1 to input coordinates. Then, the light emitted from the pen tip of the optical pen 27 that has contacted the contact surface 1a is projected onto the sensor surface 16a.
そして、センサ面16aに投射された投射光28を、光検出センサ16が受光すると、受光した光の光量に応じた電流を流す。
Then, when the light detection sensor 16 receives the projection light 28 projected on the sensor surface 16a, a current corresponding to the amount of the received light is passed.
これにより、タッチパネル1は、センサ面16aに投射された光である投射光28に含まれている光検出センサ16のそれぞれから、受光信号を取得する。この各光検出センサ16から取得した受光信号から、投射光28の位置を示す座標を代表座標として読み取る。この代表座標は、センサ面16aにおける投射光28内の座標を示すものであり、例えば、投射光28の中心座標とする。
Thereby, the touch panel 1 acquires a light reception signal from each of the light detection sensors 16 included in the projection light 28 that is light projected onto the sensor surface 16a. From the light reception signals acquired from the respective light detection sensors 16, coordinates indicating the position of the projection light 28 are read as representative coordinates. The representative coordinates indicate coordinates in the projection light 28 on the sensor surface 16a, and are, for example, the center coordinates of the projection light 28.
このように、タッチパネル1は、センサ面16aに投射された投射光28の位置を、光検出センサ16で読み取り、タッチパネル1が搭載された電子機器に対して情報を入力したり、目的とする動作を実行させたりすることができる。このように、本実施の形態のタッチパネル1では、光検出センサ16によってタッチパネル機能を実現することができる。
As described above, the touch panel 1 reads the position of the projection light 28 projected on the sensor surface 16a with the light detection sensor 16, and inputs information to the electronic device on which the touch panel 1 is mounted, or a target operation. Can be executed. Thus, in the touch panel 1 of the present embodiment, the touch panel function can be realized by the light detection sensor 16.
なお、タッチパネル1は、必ずしも画像表示機能を有している必要はなく、光検出センサ16によって、タッチパネル機能が実現されればよい。
Note that the touch panel 1 does not necessarily have an image display function, and the touch panel function may be realized by the light detection sensor 16.
(位置入力システム)
次に、図1を用い、位置入力システム39の構成について説明する。 (Position input system)
Next, the configuration of the position input system 39 will be described with reference to FIG.
次に、図1を用い、位置入力システム39の構成について説明する。 (Position input system)
Next, the configuration of the position input system 39 will be described with reference to FIG.
図1は、第1の実施の形態に係る位置入力システム39の構成を表すブロック図である。
FIG. 1 is a block diagram showing the configuration of the position input system 39 according to the first embodiment.
図1に示すように、位置入力システム39は、光ペン27と、タッチパネル1とを備えている。
As shown in FIG. 1, the position input system 39 includes an optical pen 27 and a touch panel 1.
タッチパネル1は、光検出センサ16を備えた液晶パネル10と、液晶駆動回路25と、光検出センサ制御部30とを備えている。
The touch panel 1 includes a liquid crystal panel 10 including a light detection sensor 16, a liquid crystal driving circuit 25, and a light detection sensor control unit 30.
光検出センサ制御部30は、受光量算出部31と、代表座標算出部(代表位置算出手段)32と、長軸算出部33と、補正量算出部(補正量算出手段)35と、補正方向算出部(補正方向算出手段)36と、座標補正部(位置補正手段)37と、インターフェース部38とを備えている。
The light detection sensor control unit 30 includes a received light amount calculation unit 31, a representative coordinate calculation unit (representative position calculation unit) 32, a long axis calculation unit 33, a correction amount calculation unit (correction amount calculation unit) 35, and a correction direction. A calculation unit (correction direction calculation unit) 36, a coordinate correction unit (position correction unit) 37, and an interface unit 38 are provided.
さらに、光検出センサ制御部30は、各回路の動作を同期させて制御するためのタイミング信号を発生させるタイミング発生回路(付図示)、各光検出センサ16を駆動するための電源を供給する光検出センサ駆動回路(付図示)等を備えている。
Further, the light detection sensor control unit 30 is a timing generation circuit (illustrated) that generates a timing signal for controlling the operation of each circuit in synchronization, and light that supplies power to drive each light detection sensor 16. A detection sensor driving circuit (appended) is provided.
光ペン27は、入力位置を指示する際にペン先から発光された光を液晶パネル10の光検出センサ16に投射する。
The light pen 27 projects the light emitted from the pen tip onto the light detection sensor 16 of the liquid crystal panel 10 when indicating the input position.
光検出センサ16は、光ペン27から投射された光を受光し、受光量に応じて異なる値の電流を受光信号として受光量算出部31に出力する。
The light detection sensor 16 receives the light projected from the light pen 27 and outputs a current having a different value according to the amount of received light to the received light amount calculation unit 31 as a received light signal.
受光量算出部31は、受光量に応じて異なる値の電流を流す各光検出センサ16から受光信号を受け取り、各光検出センサ16のそれぞれの受光量を算出する。
The received light amount calculation unit 31 receives a received light signal from each light detection sensor 16 that passes a current having a different value according to the received light amount, and calculates the received light amount of each light detection sensor 16.
代表座標算出部32は、センサ面16aへの投射光28の位置を代表する座標である代表座標(代表位置)を算出するものである。代表座標算出部32は、受光量算出部31で算出された各光検出センサ16の受光量に基づいて、センサ面16aに投射された投射光28の代表座標を算出する。
The representative coordinate calculation unit 32 calculates representative coordinates (representative position) which are coordinates representing the position of the projection light 28 on the sensor surface 16a. The representative coordinate calculation unit 32 calculates the representative coordinates of the projection light 28 projected on the sensor surface 16 a based on the received light amount of each light detection sensor 16 calculated by the received light amount calculation unit 31.
長軸算出部33は、センサ面16aに投射された投射光28の長軸の長さを算出する。
The long axis calculation unit 33 calculates the length of the long axis of the projection light 28 projected on the sensor surface 16a.
補正量算出部35は、具体的には、長軸算出部33が算出した投射光28の長軸の長さから、代表座標の指示位置pに対する補正量を算出する。
Specifically, the correction amount calculation unit 35 calculates the correction amount for the designated position p of the representative coordinates from the length of the long axis of the projection light 28 calculated by the long axis calculation unit 33.
ここで、指示位置pは、ユーザが入力を指示するセンサ面16a内の位置である。換言すると、指示位置pは、接触面1aに垂直に光ペン27を接触させたときの投射光28における中心座標である。
Here, the designated position p is a position in the sensor surface 16a where the user instructs the input. In other words, the designated position p is a center coordinate in the projection light 28 when the optical pen 27 is brought into contact with the contact surface 1a perpendicularly.
補正方向算出部36は、代表座標の指示位置pに対する補正方向を算出するものである。具体的には、補正方向算出部36は、投射光28の長軸と、当該長軸と交わる投射光28の円周の曲率から、代表座標の指示位置pに対する補正方向を算出する。
The correction direction calculation unit 36 calculates a correction direction for the designated position p of the representative coordinates. Specifically, the correction direction calculation unit 36 calculates a correction direction for the designated position p of the representative coordinates from the major axis of the projection light 28 and the curvature of the circumference of the projection light 28 that intersects the major axis.
座標補正部37は、投射光28の代表位置を補正して、センサ面16a内の光ペン27が入力を指示する位置である指示位置pを算出するものである。すなわち、座標補正部37は、実際にセンサ面16aに投射された投射光28の代表位置を、接触面1aに垂直に光ペン27を接触させたときにセンサ面16aに投射される投射光における中心座標の位置へと補正する。
The coordinate correction unit 37 corrects the representative position of the projection light 28, and calculates a designated position p, which is a position where the light pen 27 in the sensor surface 16a directs input. That is, the coordinate correction unit 37 uses the representative position of the projection light 28 actually projected on the sensor surface 16a in the projection light projected on the sensor surface 16a when the optical pen 27 is brought into contact with the contact surface 1a perpendicularly. Correct to the position of the center coordinate.
具体的には、座標補正部37は、代表座標と、補正量算出部35が算出した補正量と、補正方向算出部36が算出した補正方向とから、指示位置pを算出する。
Specifically, the coordinate correction unit 37 calculates the indicated position p from the representative coordinates, the correction amount calculated by the correction amount calculation unit 35, and the correction direction calculated by the correction direction calculation unit 36.
インターフェース回路75は、代表座標算出部32において算出された指示位置pの情報を、タッチパネル1内の他の制御部(例えば、液晶駆動回路25など)や、タッチパネル1が搭載された電子機器の制御部へ出力する。
The interface circuit 75 uses the information on the designated position p calculated by the representative coordinate calculation unit 32 to control other control units (for example, the liquid crystal driving circuit 25) in the touch panel 1 and the electronic device on which the touch panel 1 is mounted. Output to the section.
(位置の補正)
次に、図3~図6を用いて、投射光28の代表座標を補正する方法について説明する。 (Position correction)
Next, a method for correcting the representative coordinates of theprojection light 28 will be described with reference to FIGS.
次に、図3~図6を用いて、投射光28の代表座標を補正する方法について説明する。 (Position correction)
Next, a method for correcting the representative coordinates of the
図3の(a)は、液晶パネルの接触面に光ペンを垂直に接触させている様子を表す図であり、(b)はセンサ面の投射光の様子を表す平面図である。
3A is a diagram illustrating a state in which the optical pen is vertically contacted with the contact surface of the liquid crystal panel, and FIG. 3B is a plan view illustrating the state of the projection light on the sensor surface.
図4の(a)は、液晶パネルの接触面に光ペンを傾斜して接触させている様子を表す図であり、(b)はセンサ面の投射光の様子を表す平面図である。
4A is a diagram illustrating a state in which the optical pen is tilted and brought into contact with the contact surface of the liquid crystal panel, and FIG. 4B is a plan view illustrating the state of the projection light on the sensor surface.
図5の(a)は、液晶パネルの接触面に光ペンを大きく傾斜して接触させている様子を表す図であり、(b)はセンサ面の投射光の様子を表す平面図である。
5A is a diagram illustrating a state in which the optical pen is in contact with the contact surface of the liquid crystal panel with a large inclination, and FIG. 5B is a plan view illustrating the state of the projection light on the sensor surface.
例えば、図3の(a)に示すように、ユーザが、接触面1aに対して垂直に光ペン27を接触させた場合は、光ペン27から発光された光は、そのまま垂直方向(-Z軸方向)にセンサ面16aに投射される。このようにセンサ面16aに投射された投射光28aは、図3の(b)に示すように、直径rの円形状となる。
For example, as shown in FIG. 3A, when the user brings the light pen 27 into contact with the contact surface 1a perpendicularly, the light emitted from the light pen 27 remains in the vertical direction (−Z (Axial direction) is projected onto the sensor surface 16a. Thus, the projection light 28a projected on the sensor surface 16a has a circular shape with a diameter r, as shown in FIG.
このため、液晶パネル10の接触面1aと、センサ面16aとの間にはギャップが生じていても、ユーザが、位置の入力を指示するために光ペン27を接触させた接触面1a上の位置(接触位置p’)によるセンサ面16a内の座標位置である指示位置pと、センサ面16aに投射された投射光28aを光検出センサ16が読み取った代表座標の位置(代表位置q)との間にはずれは生じない。
For this reason, even if there is a gap between the contact surface 1a of the liquid crystal panel 10 and the sensor surface 16a, the user touches the contact surface 1a with which the optical pen 27 is contacted in order to instruct position input. The designated position p, which is the coordinate position in the sensor surface 16a based on the position (contact position p ′), and the position of the representative coordinates (representative position q) where the light detection sensor 16 has read the projection light 28a projected on the sensor surface 16a. There is no gap between the two.
しかし、図4の(a)に示すように、通常、ユーザは、接触面1aの垂線に対して、多少、傾けて光ペン27を、接触面1aに接触させる。図4の(a)では、光ペン27は、接触面1aの垂線から、X軸のプラス方向に傾いているものとする。
However, as shown in FIG. 4A, the user usually causes the optical pen 27 to contact the contact surface 1a with a slight inclination with respect to the normal of the contact surface 1a. In FIG. 4A, it is assumed that the optical pen 27 is tilted in the positive direction of the X axis from the perpendicular of the contact surface 1a.
このように、接触面1aの垂線に対して、傾いて接触面1aに接触した光ペン27から発光された光が、センサ面16aに投射されると、ユーザが、タッチパネル1に座標を入力するために、接触面1aに光ペン27の接触させた接触位置p’による指示位置pと、センサ面16aに投射された投射光28bによりタッチパネル1が読み取る代表座標の位置(代表位置q1)との間にはずれが生じる。
As described above, when light emitted from the optical pen 27 that is inclined with respect to the perpendicular to the contact surface 1 a and is in contact with the contact surface 1 a is projected onto the sensor surface 16 a, the user inputs coordinates to the touch panel 1. Therefore, the indication position p by the contact position p ′ where the optical pen 27 is brought into contact with the contact surface 1a and the position of the representative coordinates (representative position q1) read by the touch panel 1 by the projection light 28b projected on the sensor surface 16a. There is a gap between them.
このように、指示位置pと代表位置q1とでずれが生じると、図4の(b)に示すように、投射光28bの形状は、円形状から崩れる。
As described above, when a deviation occurs between the designated position p and the representative position q1, as shown in FIG. 4B, the shape of the projection light 28b collapses from the circular shape.
この投射光28aの円形状からの崩れ度合いを算出することで、指示位置pに対する代表位置q1のずれ量(補正量)及び補正方向を算出することができる。このように算出したずれ量及び補正方向を用いて、代表座標を補正することで、指示位置pと、代表位置q1との間にずれが生じていたとしても、光ペン27により入力を指示された指示位置pを正確に算出することができる。
By calculating the degree of collapse of the projection light 28a from the circular shape, it is possible to calculate the deviation amount (correction amount) and the correction direction of the representative position q1 with respect to the designated position p. By correcting the representative coordinates using the deviation amount and the correction direction calculated in this way, even if there is a deviation between the designated position p and the representative position q1, an input is instructed by the optical pen 27. The indicated position p can be accurately calculated.
例えば、投射光28bの円形状からの崩れ度合いとして、投射光28bの長軸方向の距離と、投射光28bの長軸と交わる円周の円の曲率の大小とを算出する場合について説明する。
For example, the case where the distance in the major axis direction of the projection light 28b and the magnitude of the curvature of a circle around the circumference intersecting with the major axis of the projection light 28b are calculated as the degree of collapse of the projection light 28b from the circular shape will be described.
具体的には、投射光28bは、円形状とは異なり、X方向を長軸方向とする形状となっている。円形状の直径rと、投射光28bの長軸方向の距離r1との差分を算出することで、指示位置pと、代表位置q1とのずれ量を算出することができる。なお、ずれ量(補正量)は、接触面1aと、センサ面16aとの距離や、接触面1a及びセンサ面16a間の屈折率に応じて、定数を乗算や加算して求めてもよい。
Specifically, unlike the circular shape, the projection light 28b has a shape with the X direction as the major axis direction. By calculating the difference between the circular diameter r and the distance r1 in the major axis direction of the projection light 28b, the amount of deviation between the indicated position p and the representative position q1 can be calculated. The deviation amount (correction amount) may be obtained by multiplying or adding a constant according to the distance between the contact surface 1a and the sensor surface 16a and the refractive index between the contact surface 1a and the sensor surface 16a.
また、以下の説明では、X,Y軸のプラスマイナスの方向は、代表位置を基準とするものとする。
In the following explanation, the plus / minus directions of the X and Y axes are based on the representative position.
投射光28bは、長軸と円周とが交わるそれぞれの点を含む円周のうち、相対的に、X方向プラス方向に位置する円周の曲率が、X軸マイナス方向に位置する円周の曲率と比べて大きくなっている。これにより、投射光28aのうち、X軸プラス方向の円周の方が、光ペン27のペン先に近く、X軸マイナス方向の円周が光ペン27のペン先から遠いことがわかる。このように、投射光28aの長軸と交わる円周の曲率の大小を算出することで、指示位置pに対する代表位置q1の補正方向を算出することができる。
The projection light 28b has a relative curvature of the circumference located in the plus direction of the X direction in the circumference including the respective points where the major axis and the circumference intersect. It is larger than the curvature. Thus, it can be seen that the X-axis plus direction circumference of the projection light 28 a is closer to the pen tip of the optical pen 27 and the X-axis minus direction circumference is far from the pen tip of the light pen 27. Thus, the correction direction of the representative position q1 with respect to the designated position p can be calculated by calculating the magnitude of the curvature of the circumference intersecting the major axis of the projection light 28a.
すなわち、投射光28bの代表位置q1から、曲率が大きい円周と長軸とが交わる点が存在する方向であるX軸プラス方向を補正方向として、また、長軸方向の距離r1から円形状の直径rの差分をずれ量(補正量)として、図4の(b)の矢印に示すように、代表位置q1を補正する。これにより、指示位置pを算出することができる。
In other words, from the representative position q1 of the projection light 28b, the X axis plus direction, which is the direction in which the point where the circumference having a large curvature intersects with the major axis, is used as the correction direction, and from the distance r1 in the major axis direction, The difference between the diameters r is used as a shift amount (correction amount), and the representative position q1 is corrected as shown by the arrow in FIG. Thereby, the designated position p can be calculated.
さらに、図5の(a)に示すように、光ペン27の接触面1aの垂線に対する角度が大きくなると、すなわち、光ペン27をX軸プラス方向に大きく傾けると、指示位置pと、センサ面16aに投射された投射光28cによる代表位置q2とのずれ量も大きくなる。
Further, as shown in FIG. 5 (a), when the angle of the contact surface 1a of the optical pen 27 with respect to the perpendicular is increased, that is, when the optical pen 27 is greatly inclined in the X axis plus direction, the indicated position p and the sensor surface The amount of deviation from the representative position q2 due to the projection light 28c projected onto 16a also increases.
それと共に、図5の(b)に示すように、投射光28bの円形状から崩れる度合いも大きくなる。すなわち、投射光28bのX軸方向である長軸方向の距離r2は、投射光28bの長軸方向の距離r1より長くなる。
At the same time, as shown in FIG. 5B, the degree of collapse of the projection light 28b from the circular shape also increases. That is, the distance r2 in the major axis direction that is the X-axis direction of the projection light 28b is longer than the distance r1 in the major axis direction of the projection light 28b.
このように、光ペン27の接触面1aの垂線に対する角度によって、投射光28cの長軸方向の距離r2や、長軸と交わる点を含む円周の曲率の大小が変わる。このため、長軸方向の距離r2と、長軸と交わる円周の曲率の大小関係とを算出することで、指示位置pと、投射光28cの代表座標の位置である代表位置q2との補正量及び補正方向がわかることになる。
Thus, depending on the angle of the contact surface 1a of the optical pen 27 with respect to the perpendicular, the distance r2 of the projection light 28c in the major axis direction and the curvature of the circumference including the point intersecting the major axis change. Therefore, by correcting the distance r2 in the major axis direction and the magnitude relationship between the curvatures of the circumferences intersecting the major axis, the indication position p and the representative position q2, which is the position of the representative coordinates of the projection light 28c, are corrected. The amount and correction direction will be known.
図5の(b)では、投射光28cの代表座標の位置である代表位置q2から、曲率が大きい円周と長軸とが交わる点が存在する方向であるX軸プラス方向を補正方向として、長軸方向の距離r2から円形状の直径rの差分を補正量として、図5の(b)の矢印に示すように、代表位置q2の座標を補正する。これにより、指示位置pを算出することができる。
In FIG. 5B, the X axis plus direction, which is the direction in which the point where the circumference having a large curvature intersects with the major axis, exists from the representative position q2, which is the position of the representative coordinate of the projection light 28c, as the correction direction. The coordinate of the representative position q2 is corrected as indicated by the arrow in FIG. 5B using the difference between the long-axis direction distance r2 and the circular diameter r as a correction amount. Thereby, the designated position p can be calculated.
このように、センサ面16aに投射された光の形状から、補正量と補正方向とがわかるので、その補正量及び補正方向から、センサ面16aに投射された光の位置に補正を加えることで、光ペン27のペン先の面内の正確な位置を算出することができる。
As described above, since the correction amount and the correction direction are known from the shape of the light projected on the sensor surface 16a, by correcting the position of the light projected on the sensor surface 16a from the correction amount and the correction direction. The exact position of the light pen 27 in the surface of the pen tip can be calculated.
図6の(a)~(c)は、光ペン27からセンサ面に投射されたさまざまな投射光の形状を表す図であり、(a)は光ペン27がX軸プラス方向に傾いている場合の投射光の様子を表し、(b)は光ペン27がY軸マイナス方向に傾いている場合の投射光の様子を表し、(c)は光ペン27がX軸マイナス方向及びYプラス方向に傾いている場合の投射光の様子を表す図である。
6A to 6C are views showing various shapes of projection light projected from the light pen 27 onto the sensor surface, and FIG. 6A is a view in which the light pen 27 is inclined in the plus direction of the X axis. (B) represents the state of the projection light when the light pen 27 is tilted in the Y-axis minus direction, and (c) represents the state of the projection light when the light pen 27 is tilted in the X-axis minus direction and the Y plus direction. It is a figure showing the mode of the projection light in case it inclines to.
図6の(a)に示すように、投射光28dは、X方向が長軸方向となるように、円形状から形状が崩れている。これにより、接触面1aに接触した光ペン27は、接触面1aの垂線から長軸方向であるX軸方向に傾斜して接触面1aと接触していることがわかる。
As shown in FIG. 6A, the projection light 28d is deformed from a circular shape so that the X direction is the major axis direction. Thus, it can be seen that the optical pen 27 that has contacted the contact surface 1a is in contact with the contact surface 1a while being inclined in the X-axis direction, which is the major axis direction, from the perpendicular of the contact surface 1a.
また、投射光28dは、長軸と円周とが交わるそれぞれの点を含むX軸プラス方向の円周の曲率と、X軸マイナス方向の円周の曲率とのうち、相対的に、X軸プラス方向の円周の曲率の方が大きくなっている。これにより、接触面1aに接触している光ペン27は、接触面1aに対する垂線からX軸プラス方向に傾斜していることがわかる。すなわち、投射光28dの代表座標である代表位置q3の補正方向は、X軸プラス方向であることが分かる。
In addition, the projection light 28d has a relative X axis out of the curvature of the circumference in the X axis plus direction and the curvature of the circumference in the minus direction of the X axis including the respective points where the major axis and the circumference intersect. The curvature of the circumference in the plus direction is larger. Thereby, it can be seen that the optical pen 27 in contact with the contact surface 1a is inclined in the plus direction of the X axis from the perpendicular to the contact surface 1a. That is, it can be seen that the correction direction of the representative position q3, which is the representative coordinate of the projection light 28d, is the X axis plus direction.
従って、投射光28dの代表位置q3から、X軸プラス方向を補正方向として、長軸方向の距離r3から円形状の直径rの差分を補正量として、図6(a)の矢印に示すように、代表位置q3の座標を補正する。これにより、接触位置pを算出することができる。
Therefore, from the representative position q3 of the projection light 28d, the X axis plus direction is the correction direction, and the difference between the major axis direction distance r3 and the circular diameter r is the correction amount, as shown by the arrow in FIG. The coordinates of the representative position q3 are corrected. Thereby, the contact position p can be calculated.
図6(b)に示すように、投射光28eは、Y方向が長軸方向となるように、円形状から形状が崩れている。これにより、接触面1aに接触した光ペン27は、接触面1aの垂線から、Y軸方向に傾斜して接触面1aと接触していることがわかる。
As shown in FIG. 6B, the shape of the projection light 28e is broken from the circular shape so that the Y direction becomes the major axis direction. Thereby, it can be seen that the optical pen 27 in contact with the contact surface 1a is tilted in the Y-axis direction from the perpendicular of the contact surface 1a and is in contact with the contact surface 1a.
また、投射光28eは、長軸と円周とが交わるそれぞれの点を含むY軸プラス方向の円周の曲率と、Y軸マイナス方向の円周の曲率とのうち、相対的に、Y軸マイナス方向の円周の曲率の方が大きくなっている。これにより、接触面1aに接触している光ペン27は、接触面1aに対する垂線からY軸マイナス方向に傾斜していることがわかる。すなわち、投射光28eの代表座標の位置である代表位置q4の補正方向は、Y軸マイナス方向であることが分かる。
Further, the projection light 28e has a relative Y axis between the curvature of the circumference in the Y axis plus direction and the curvature of the circumference in the Y axis minus direction including the respective points where the major axis and the circumference intersect. The curvature of the circumference of the minus direction is larger. Thereby, it can be seen that the optical pen 27 in contact with the contact surface 1a is inclined in the Y-axis minus direction from the perpendicular to the contact surface 1a. That is, it can be seen that the correction direction of the representative position q4, which is the position of the representative coordinates of the projection light 28e, is the Y-axis minus direction.
従って、投射光28eの代表位置q4から、Y軸マイナス方向を補正方向として、長軸方向の距離r4から円形状の直径rの差分を補正量として、図6の(b)の矢印に示すように、代表位置q4の座標を補正する。これにより、接触位置pを算出することができる。
Therefore, from the representative position q4 of the projection light 28e, the Y-axis minus direction is the correction direction, and the difference between the major axis direction distance r4 and the circular diameter r is the correction amount, as indicated by the arrow in FIG. Then, the coordinates of the representative position q4 are corrected. Thereby, the contact position p can be calculated.
図6の(c)に示すように、投射光28fは、X軸プラス及びY軸マイナスから、X軸マイナス及びY軸プラスの方向にかけて長軸方向となるように、円形状から形状が崩れている。これにより、接触面1aに接触した光ペン27は、接触面1aの垂線から、X軸マイナス及びY軸プラスの方向(紙面左上の方向)に傾斜して接触面1aと接触していることがわかる。
As shown in FIG. 6 (c), the projection light 28f is deformed from a circular shape so as to be in the major axis direction from the X-axis plus and Y-axis minus to the X-axis minus and Y-axis plus directions. Yes. Thereby, the optical pen 27 that has contacted the contact surface 1a is inclined from the perpendicular of the contact surface 1a in the X-axis minus and Y-axis plus directions (upper left direction in the drawing) and is in contact with the contact surface 1a. Recognize.
また、投射光28fは、長軸と円周とが交わるそれぞれの点を含むX軸プラス・Y軸マイナス方向の円周の曲率と、X軸マイナス・Y軸プラス方向の円周の曲率とのうち、相対的に、X軸マイナス・Y軸プラス方向の円周の曲率の方が大きくなっている。これにより、接触面1aに接触している光ペン27は、接触面1aに対する垂線からX軸マイナス・Y軸プラス方向に傾斜していることがわかる。
Further, the projection light 28f has a curvature of the circumference in the X axis plus / Y axis minus direction including each point where the major axis and the circumference intersect, and a curvature of the circumference in the X axis minus / Y axis plus direction. Among them, the curvature of the circumference in the X-axis minus / Y-axis plus direction is relatively larger. Thereby, it can be seen that the optical pen 27 in contact with the contact surface 1a is inclined in the X-axis minus / Y-axis plus direction from the perpendicular to the contact surface 1a.
すなわち、投射光28fの代表座標の位置である代表位置q5の補正方向は、X軸マイナスであってY軸プラス方向であることが分かる。
That is, it can be seen that the correction direction of the representative position q5, which is the position of the representative coordinates of the projection light 28f, is the X axis minus and the Y axis plus direction.
従って、投射光28fの代表位置q5から、X軸マイナスであってY軸プラス方向を補正方向として、長軸方向の距離r5から円形状の直径rの差分を補正量として、図6の(c)の矢印に示すように、代表位置q5の座標を補正する。これにより、接触位置pを算出することができる。
Therefore, from the representative position q5 of the projection light 28f, the X axis minus and the Y axis plus direction is the correction direction, and the difference between the major axis direction distance r5 and the circular diameter r is the correction amount (c) in FIG. ), The coordinates of the representative position q5 are corrected. Thereby, the contact position p can be calculated.
(フローチャート)
次に、図7を用い、位置入力システム39の処理の流れについて説明する。 (flowchart)
Next, the processing flow of the position input system 39 will be described with reference to FIG.
次に、図7を用い、位置入力システム39の処理の流れについて説明する。 (flowchart)
Next, the processing flow of the position input system 39 will be described with reference to FIG.
図7は、位置入力システム39の処理の流れを表すフローチャートである。
FIG. 7 is a flowchart showing the processing flow of the position input system 39.
ユーザが、ペン先から光を発光させている光ペン27のペン先を、液晶パネル10の接触面1aに接触させる。すると、接触面1aに接触した光ペン27のペン先から発光された光は、タッチパネル1のセンサ面16aに投射される。このセンサ面16aへの投射光28を、当該投射光28に含まれている光検出センサ16が受光面で受光する。そして、投射光28を受光した各光検出センサ16は、それぞれ受光量に応じた電流を受光信号として受光量算出部31に出力する。
The user brings the pen tip of the optical pen 27 emitting light from the pen tip into contact with the contact surface 1a of the liquid crystal panel 10. Then, the light emitted from the pen tip of the optical pen 27 that has contacted the contact surface 1 a is projected onto the sensor surface 16 a of the touch panel 1. The light detection sensor 16 included in the projection light 28 receives the projection light 28 onto the sensor surface 16a on the light receiving surface. Each light detection sensor 16 that has received the projection light 28 outputs a current corresponding to the amount of received light to the received light amount calculation unit 31 as a received light signal.
受光量算出部31は、各光検出センサ16から受光信号を取得すると、当該受光信号を出力した各光検出センサ16のそれぞれの受光量を算出する(ステップS11)。そして、受光量算出部31は、算出した各光検出センサ16のそれぞれの受光量を受光量信号として代表座標算出部32、長軸算出部33、及び補正方向算出部36へ出力する。
When receiving the light reception signal from each light detection sensor 16, the light reception amount calculation unit 31 calculates the light reception amount of each light detection sensor 16 that has output the light reception signal (step S11). Then, the received light amount calculation unit 31 outputs the calculated received light amount of each light detection sensor 16 to the representative coordinate calculation unit 32, the long axis calculation unit 33, and the correction direction calculation unit 36 as a received light amount signal.
代表座標算出部32は、受光量信号を受光量算出部31から取得すると、当該取得した受光量信号から代表座標を算出する(ステップS12)。そして、代表座標算出部32は、算出した代表座標を座標補正部37に出力する。
When the representative coordinate calculation unit 32 acquires the received light amount signal from the received light amount calculation unit 31, the representative coordinate calculation unit 32 calculates representative coordinates from the acquired received light amount signal (step S12). Then, the representative coordinate calculation unit 32 outputs the calculated representative coordinates to the coordinate correction unit 37.
また、長軸算出部33は、受光量信号を受光量算出部31から取得すると、当該取得した受光量信号から、投射光28の長軸を抽出する。すなわち、長軸算出部33は、投射光28の長軸の端部の2点の座標を抽出し、当該抽出した長軸の端部の座標から、長軸の長さを算出する(ステップS13)。そして、長軸算出部33は、算出した投射光の長軸の長さを補正量算出部35に出力すると共に、投射光の長軸の端部の2点の座標を補正方向算出部36に出力する。
Further, when the long axis calculation unit 33 acquires the received light amount signal from the received light amount calculation unit 31, the long axis calculation unit 33 extracts the long axis of the projection light 28 from the acquired received light amount signal. That is, the long axis calculation unit 33 extracts the coordinates of two points at the end of the long axis of the projection light 28, and calculates the length of the long axis from the extracted coordinates of the end of the long axis (step S13). ). Then, the long axis calculation unit 33 outputs the calculated length of the long axis of the projection light to the correction amount calculation unit 35 and the coordinates of two points at the end of the long axis of the projection light to the correction direction calculation unit 36. Output.
補正量算出部35は、長軸算出部33から投射光の長軸の長さを取得すると、当該取得した投射光の長軸の長さから、投射光の代表座標のずれ量(補正量)を算出する(ステップS14)。ここでは、補正量算出部35は、投射光28の長軸の長さから、予め設定された、投射光が円形状である場合の直径rの長さを除算した値を代表座標のずれ量として算出する。そして、補正量算出部35は、算出した代表座標のずれ量を座標補正部37に出力する。
When the correction amount calculation unit 35 acquires the length of the long axis of the projection light from the long axis calculation unit 33, the correction amount (correction amount) of the representative coordinates of the projection light is calculated from the length of the long axis of the acquired projection light. Is calculated (step S14). Here, the correction amount calculation unit 35 uses a value obtained by dividing the length of the major axis of the projection light 28 by the length of the diameter r when the projection light has a circular shape. Calculate as Then, the correction amount calculation unit 35 outputs the calculated deviation amount of the representative coordinates to the coordinate correction unit 37.
また、補正方向算出部36は、受光量信号を受光量算出部31から取得し、長軸算出部33から投射光28の長軸の端部の座標を取得すると、補正方向算出部36は、当該取得した受光量信号と、投射光の長軸の端部の座標とから、代表座標の補正方向を算出する(ステップS15)。
When the correction direction calculation unit 36 acquires the received light amount signal from the received light amount calculation unit 31 and acquires the coordinates of the end of the long axis of the projection light 28 from the long axis calculation unit 33, the correction direction calculation unit 36 The correction direction of the representative coordinates is calculated from the acquired received light amount signal and the coordinates of the end of the long axis of the projection light (step S15).
すなわち、補正方向算出部36は、投射光の円周のうち、長軸の端部の2点の座標近傍の円周同士の曲率を比較する。そして、補正方向算出部36は、長軸方向であって、曲率が大きい円周に含まれる長軸の端部が位置する方向を、補正方向として算出する。
That is, the correction direction calculation unit 36 compares the curvatures of the circumferences in the vicinity of the coordinates of the two points at the end of the long axis among the circumferences of the projection light. Then, the correction direction calculation unit 36 calculates a direction in which the end of the long axis included in the circumference having a large curvature is located as the correction direction.
そして、補正方向算出部36は、算出した補正方向を座標補正部37に出力する。
Then, the correction direction calculation unit 36 outputs the calculated correction direction to the coordinate correction unit 37.
座標補正部37は、代表座標を示す信号を代表座標算出部32から取得し、代表座標のずれ量を補正量算出部35から取得し、補正方向を補正方向算出部36から取得すると、当該取得した代表座標、代表座標のずれ量、及び補正方向から、補正した座標を算出し(ステップS16)、当該算出した座標を、指示位置pを示すものとしてインターフェース部38に出力する。そして、インターフェース部38は、座標補正部37から取得した指示位置pを、ユーザから入力された位置であるとして、インターフェース部38に接続されている電子機器等の外部装置へ出力する。
When the coordinate correction unit 37 acquires a signal indicating the representative coordinates from the representative coordinate calculation unit 32, acquires a deviation amount of the representative coordinates from the correction amount calculation unit 35, and acquires a correction direction from the correction direction calculation unit 36, the acquisition is performed. The corrected coordinates are calculated from the representative coordinates, the deviation amount of the representative coordinates, and the correction direction (step S16), and the calculated coordinates are output to the interface unit 38 as indicating the designated position p. Then, the interface unit 38 outputs the designated position p acquired from the coordinate correction unit 37 to an external device such as an electronic device connected to the interface unit 38 as a position input by the user.
このようにして、タッチパネル1は、座標補正部37からインターフェース部38に出力された座標を、ユーザによって指示された指示位置pとして取得する。
In this way, the touch panel 1 acquires the coordinates output from the coordinate correction unit 37 to the interface unit 38 as the designated position p designated by the user.
(プログラム、コンピュータ読み取り可能な記録媒体)
また、タッチパネル1の各ブロック、特に、代表座標算出部32、長軸算出部33、補正量算出部35、補正方向算出部36、及び座標補正部37は、ハードウェアロジックによって構成してもよいし、次のようにコンピュータを用いてソフトウェアによって実現してもよい。 (Program, computer-readable recording medium)
In addition, each block of thetouch panel 1, in particular, the representative coordinate calculation unit 32, the long axis calculation unit 33, the correction amount calculation unit 35, the correction direction calculation unit 36, and the coordinate correction unit 37 may be configured by hardware logic. However, it may be realized by software using a computer as follows.
また、タッチパネル1の各ブロック、特に、代表座標算出部32、長軸算出部33、補正量算出部35、補正方向算出部36、及び座標補正部37は、ハードウェアロジックによって構成してもよいし、次のようにコンピュータを用いてソフトウェアによって実現してもよい。 (Program, computer-readable recording medium)
In addition, each block of the
すなわち、代表座標算出部32、長軸算出部33、補正量算出部35、補正方向算出部36、及び座標補正部37は、各機能を実現する制御プログラムの命令を実行するCPU(central processing unit)、上記プログラムを格納したROM(read only memory)、上記プログラムを展開するRAM(random access memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである代表座標算出部32、長軸算出部33、補正量算出部35、補正方向算出部36、及び座標補正部37の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、代表座標算出部32、長軸算出部33、補正量算出部35、補正方向算出部36、及び座標補正部37に供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。
That is, the representative coordinate calculation unit 32, the long axis calculation unit 33, the correction amount calculation unit 35, the correction direction calculation unit 36, and the coordinate correction unit 37 are a CPU (central processing unit that executes a command of a control program that realizes each function. ), A ROM (read only memory) storing the program, a RAM (random access memory) for expanding the program, and a storage device (recording medium) such as a memory for storing the program and various data. An object of the present invention is to provide a control program for the representative coordinate calculation unit 32, the long axis calculation unit 33, the correction amount calculation unit 35, the correction direction calculation unit 36, and the coordinate correction unit 37, which is software that implements the functions described above. A recording medium on which a program code (execution format program, intermediate code program, source program) is recorded so as to be readable by a computer is represented by a representative coordinate calculation unit 32, a long axis calculation unit 33, a correction amount calculation unit 35, a correction direction calculation unit 36, This can also be achieved by supplying the data to the coordinate correction unit 37 and reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU).
上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM/MO/MD/DVD/CD-R等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ系などを用いることができる。
Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R. Card system such as IC card, IC card (including memory card) / optical card, or semiconductor memory system such as mask ROM / EPROM / EEPROM / flash ROM.
また、代表座標算出部32、長軸算出部33、補正量算出部35、補正方向算出部36、及び座標補正部37を通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。
Further, the representative coordinate calculation unit 32, the long axis calculation unit 33, the correction amount calculation unit 35, the correction direction calculation unit 36, and the coordinate correction unit 37 are configured to be connectable to a communication network, and the program code is transmitted via the communication network. You may supply. The communication network is not particularly limited. For example, the Internet, intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available. Further, the transmission medium constituting the communication network is not particularly limited. For example, even in the case of wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc., infrared rays such as IrDA and remote control, Bluetooth ( (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used. The present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
〔実施の形態2〕
次に、図8~図12を用いて、本発明の位置入力システムの第2の実施の形態について説明する。 [Embodiment 2]
Next, a second embodiment of the position input system of the present invention will be described with reference to FIGS.
次に、図8~図12を用いて、本発明の位置入力システムの第2の実施の形態について説明する。 [Embodiment 2]
Next, a second embodiment of the position input system of the present invention will be described with reference to FIGS.
なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
For convenience of explanation, members having the same functions as those in the drawings explained in the first embodiment are given the same reference numerals and explanations thereof are omitted.
図8は、第2の実施の形態に係る位置入力システム49の構成を表すブロック図である。
FIG. 8 is a block diagram showing the configuration of the position input system 49 according to the second embodiment.
位置入力システム49は、光ペン27と、タッチパネル(位置入力装置)40とを備えている。
The position input system 49 includes a light pen 27 and a touch panel (position input device) 40.
タッチパネル40は、タッチパネル1のように、代表座標の補正量及び補正方向を投射光28の形状から算出するのではなく、投射光28のうち、さらに明るい部分の光の位置から求める点で、タッチパネル1と相違する。すなわち、タッチパネル40は、投射光のうち、光量が高い座標と、投射光の代表座標とから、代表座標の補正量及び補正方向を算出する。
Unlike the touch panel 1, the touch panel 40 does not calculate the correction amount and the correction direction of the representative coordinates from the shape of the projection light 28, but is obtained from the position of light of a brighter portion of the projection light 28. 1 and different. That is, the touch panel 40 calculates the correction amount and the correction direction of the representative coordinates from the coordinates having a high light amount in the projection light and the representative coordinates of the projection light.
図8に示すように、タッチパネル40は、タッチパネル1の光検出センサ制御部30に替えて光検出センサ制御部41を備えている。
As shown in FIG. 8, the touch panel 40 includes a light detection sensor control unit 41 instead of the light detection sensor control unit 30 of the touch panel 1.
光検出センサ制御部41は、受光量算出部31と、代表座標算出部32、高光量座標抽出部43、補正方向算出部(補正方向算出手段)46、補正量算出部(補正量算出手段)45、座標補正部37、インターフェース部38とを備えている。
The light detection sensor control unit 41 includes a received light amount calculation unit 31, a representative coordinate calculation unit 32, a high light quantity coordinate extraction unit 43, a correction direction calculation unit (correction direction calculation unit) 46, and a correction amount calculation unit (correction amount calculation unit). 45, a coordinate correction unit 37, and an interface unit 38.
高光量座標抽出部43は、投射光28のうち光量が最も高い座標を高光量位置として抽出するものである。
The high light quantity coordinate extracting unit 43 extracts the coordinates having the highest light quantity in the projection light 28 as the high light quantity position.
補正方向算出部46は、代表位置から、高光量位置への方向を、代表位置の指示位置に対する補正方向として算出するものである。
The correction direction calculation unit 46 calculates the direction from the representative position to the high light quantity position as the correction direction for the designated position of the representative position.
補正量算出部45は、高光量位置と、代表位置との距離から、代表位置の指示位置に対する補正量を算出するものである。
The correction amount calculation unit 45 calculates a correction amount for the designated position of the representative position from the distance between the high light quantity position and the representative position.
図9は、接触面に接触した光ペンからセンサ面に投射された投射光の光量を表す図である。図9のZ軸方向は、投射光28bの光量を表している。図9は、Z軸プラス方向に行くほど、投射光28bの光量が大きいことを示している。
FIG. 9 is a diagram illustrating the light amount of the projection light projected on the sensor surface from the optical pen that has contacted the contact surface. The Z-axis direction in FIG. 9 represents the light amount of the projection light 28b. FIG. 9 shows that the light amount of the projection light 28b increases as it goes in the plus direction of the Z-axis.
図4の(a)に示したように、ユーザが、接触面1aの垂線に対して、多少、X軸のプラス方向に傾けて光ペン27を位置p1接触面1aに接触させて、光ペン27のペン先からセンサ面16aに投射光28bを投射させる。
As shown in FIG. 4A, the user slightly tilts the vertical direction of the X axis with respect to the normal of the contact surface 1a to bring the optical pen 27 into contact with the position p1 contact surface 1a, thereby Projection light 28b is projected from the pen tip 27 onto the sensor surface 16a.
すると、図9に示すように、投射光28bのうち、光量が高い高光量領域29bは、X軸プラス方向に寄る。さらに、高光量領域29bの中でも、最も光量が高い(最も明るい)座標である高光量位置s1は、高光量領域29bの中心からX軸プラス方向、すなわち光ペン27のペン先が接触面1aと接触している方向に寄っている。
Then, as shown in FIG. 9, the high light quantity region 29b having a high light quantity in the projection light 28b approaches the X axis plus direction. Further, in the high light quantity region 29b, the high light quantity position s1, which is the coordinate with the highest (brightest) light quantity, is in the X axis plus direction from the center of the high light quantity region 29b, that is, the pen tip of the optical pen 27 is in contact with the contact surface 1a. Close to the direction of contact.
この高光量位置s1と、投射光28bの代表座標の位置である代表位置q1との距離及び方向を算出することで、接触位置pに対する代表位置q1のずれ量(補正量)及び補正方向を算出することができる。このように算出したずれ量及び補正方向を用いて、代表座標を補正することで、ユーザが入力を意図した位置の座標へと補正することができる。
By calculating the distance and direction between the high light amount position s1 and the representative position q1, which is the position of the representative coordinates of the projection light 28b, the deviation amount (correction amount) and the correction direction of the representative position q1 with respect to the contact position p are calculated. can do. By correcting the representative coordinates using the deviation amount and the correction direction calculated in this way, it is possible to correct the coordinates to a position at which the user intends to input.
図10の(a)(b)はセンサ面の投射光の様子を表す平面図であり、(a)は接触面の垂線に対する光ペンの傾斜角度が小さい場合を表す図であり、(b)は接触面の垂線に対する光ペンの傾斜角度が大きい場合を表す図である。
10A and 10B are plan views showing the state of the projected light on the sensor surface, and FIG. 10A is a view showing the case where the tilt angle of the optical pen with respect to the normal of the contact surface is small. These are figures showing the case where the inclination angle of the optical pen with respect to the perpendicular of the contact surface is large.
図10の(a)に示すように、投射光28bの代表座標の位置である代表位置q1から、高光量位置S1が存在する方向であるX軸プラス方向を補正方向として、代表位置q1と高光量位置S1との距離をずれ量(補正量)として、図10の(a)の矢印に示すように、代表座標を補正する。これにより、光ペン27の接触面1a上の接触位置である接触位置pを算出することができる。
As shown in FIG. 10A, from the representative position q1 that is the position of the representative coordinates of the projection light 28b, the X axis plus direction, which is the direction in which the high light quantity position S1 exists, is set as the correction direction, and the representative position q1 and the high position. Using the distance from the light amount position S1 as a shift amount (correction amount), the representative coordinates are corrected as indicated by the arrows in FIG. Thereby, the contact position p which is the contact position on the contact surface 1a of the optical pen 27 is computable.
ここで、ずれ量(補正量)は、代表位置q1と高光量位置S1との距離から算出されればよく、接触面1aと、センサ面16aとの距離に応じて、定数を乗算して求めてもよい。本実施の形態では、代表位置q1と高光量位置S1との距離の2倍をずれ量(補正量)とする。
Here, the shift amount (correction amount) may be calculated from the distance between the representative position q1 and the high light quantity position S1, and is obtained by multiplying by a constant according to the distance between the contact surface 1a and the sensor surface 16a. May be. In the present embodiment, twice the distance between the representative position q1 and the high light quantity position S1 is set as a shift amount (correction amount).
さらに、図5の(a)に示したように、光ペン27の接触面1aの垂線に対する角度を大きくするとする。すなわち、光ペン27をX軸プラス方向に大きく傾けるとする。
Further, as shown in FIG. 5A, the angle of the contact surface 1a of the optical pen 27 with respect to the perpendicular is increased. That is, it is assumed that the light pen 27 is greatly inclined in the X axis plus direction.
すると、図10の(b)に示すように、投射光28cのうちの高光量領域29cの高光量位置s2と、代表位置q2との距離が大きくなる。このため、高光量位置s2と、代表位置q2との距離を算出することで、光ペン27の接触面1a上の接触位置pと、投射光28cの代表座標の位置である代表位置q2との補正量及び補正方向がわかることになる。
Then, as shown in FIG. 10B, the distance between the high light amount position s2 of the high light amount region 29c in the projection light 28c and the representative position q2 increases. Therefore, by calculating the distance between the high light quantity position s2 and the representative position q2, the contact position p on the contact surface 1a of the optical pen 27 and the representative position q2 that is the position of the representative coordinates of the projection light 28c. The correction amount and the correction direction can be known.
図10の(b)では、投射光28bの代表位置q2から、高光量位置S2が存在する方向であるX軸プラス方向を補正方向として、代表位置q2と高光量位置S2との距離の2倍をずれ量(すなわち補正量)として、図10の(b)の矢印に示すように、代表座標を補正する。これにより、光ペン27の接触面1a上の接触位置である接触位置pを算出することができる。
In (b) of FIG. 10, twice the distance between the representative position q2 and the high light amount position S2 from the representative position q2 of the projection light 28b, with the X axis plus direction, which is the direction in which the high light amount position S2 exists, as the correction direction. Is a shift amount (that is, a correction amount), and the representative coordinates are corrected as shown by the arrow in FIG. Thereby, the contact position p which is the contact position on the contact surface 1a of the optical pen 27 is computable.
このように、センサ面16aに投射された投射光のうち、光の明るい部分の位置から、補正量と補正方向とがわかる。このため、その補正量及び補正方向から、センサ面16aに投射された光の位置に補正を加えることで、光ペン27のペン先の正確な位置を算出することができる。
Thus, the correction amount and the correction direction can be determined from the position of the bright portion of the projection light projected onto the sensor surface 16a. For this reason, the correct position of the pen tip of the optical pen 27 can be calculated by correcting the position of the light projected on the sensor surface 16a from the correction amount and the correction direction.
図11の(a)~(c)は、光ペン27からセンサ面16aに投射されたさまざまな投射光の形状を表す図であり、(a)は光ペン27がX軸プラス方向に傾いている場合の投射光の様子を表し、(b)は光ペン27がY軸マイナス方向に傾いている場合の投射光の様子を表し、(c)は光ペン27がX軸マイナス方向及びYプラス方向に傾いている場合の投射光の様子を表す図である。
FIGS. 11A to 11C are diagrams showing various shapes of projection light projected from the light pen 27 onto the sensor surface 16a. FIG. 11A shows the light pen 27 tilted in the plus direction of the X axis. (B) shows the state of the projection light when the light pen 27 is tilted in the Y-axis minus direction, and (c) shows the state of the projection light when the light pen 27 is tilted in the X-axis minus direction and Y plus. It is a figure showing the mode of the projection light in case it inclines in the direction.
図11の(a)に示すように、投射光28dでは、投射光28dの中で光量が高い高光量領域29dの中でも最も光量が高い座標である高光量位置s3は、代表位置q3からX軸プラス方向に位置する。これにより、接触面1aに接触した光ペン27は、接触面1aの垂線からX軸プラス方向に傾斜して接触面1aと接触していることがわかる。
As shown in FIG. 11A, in the projection light 28d, the high light quantity position s3, which is the coordinate with the highest light quantity in the high light quantity area 29d having the highest light quantity in the projection light 28d, is shifted from the representative position q3 to the X axis. Located in the plus direction. As a result, it can be seen that the optical pen 27 in contact with the contact surface 1a is in contact with the contact surface 1a while being inclined in the X-axis plus direction from the perpendicular of the contact surface 1a.
このため、代表位置q3から高光量位置s3に向かう方向であるX軸プラス方向を補正方向として、代表位置q3と高光量位置s3との距離の2倍をずれ量(すなわち補正量)として、図11の(a)の矢印に示すように、代表座標を補正する。これにより、光ペン27の接触面1a上の接触位置である接触位置pを算出することができる。
For this reason, the X-axis plus direction, which is the direction from the representative position q3 toward the high light quantity position s3, is used as the correction direction, and twice the distance between the representative position q3 and the high light quantity position s3 is used as the shift amount (that is, the correction quantity). 11, the representative coordinates are corrected as indicated by the arrow (a). Thereby, the contact position p which is the contact position on the contact surface 1a of the optical pen 27 is computable.
図11の(b)に示すように、投射光28eでは、投射光28eの中で光量が高い高光量領域29eの中でも最も光量が高い座標である高光量位置s4は、代表位置q4からY軸マイナス方向に位置する。これにより、接触面1aに接触した光ペン27は、接触面1aの垂線からY軸方向に傾斜して接触面1aと接触していることがわかる。
As shown in FIG. 11B, in the projection light 28e, the high light quantity position s4, which is the coordinate with the highest light quantity in the high light quantity area 29e having the highest light quantity in the projection light 28e, is shifted from the representative position q4 to the Y axis. Located in the negative direction. Thereby, it can be seen that the optical pen 27 in contact with the contact surface 1a is inclined in the Y-axis direction from the perpendicular of the contact surface 1a and is in contact with the contact surface 1a.
このため、代表位置q4から高光量位置s4に向かう方向であるY軸マイナス方向を補正方向として、代表位置q4と高光量位置s4との距離の2倍をずれ量(すなわち補正量)として、図11の(b)の矢印に示すように、代表座標を補正する。これにより、光ペン27の接触面1a上の接触位置である接触位置pを算出することができる。
Therefore, the Y axis minus direction, which is the direction from the representative position q4 to the high light quantity position s4, is used as the correction direction, and twice the distance between the representative position q4 and the high light quantity position s4 is used as the shift amount (that is, the correction quantity). 11, the representative coordinates are corrected as indicated by the arrow (b). Thereby, the contact position p which is the contact position on the contact surface 1a of the optical pen 27 is computable.
図11の(c)に示すように、投射光28fでは、投射光28fの中で光量が高い高光量領域29fの中でも最も光量が高い座標である高光量位置s5は、代表位置q5から、X軸マイナス及びY軸プラスの方向に位置する。これにより、接触面1aに接触した光ペン27は、接触面1aの垂線からX軸マイナス及びY軸プラスの方向に傾斜して接触面1aと接触していることがわかる。
As shown in FIG. 11C, in the projection light 28f, the high light quantity position s5, which is the coordinate with the highest light quantity in the high light quantity area 29f having the highest light quantity in the projection light 28f, is changed from the representative position q5 to the X Located in the direction of the axis minus and the Y axis plus. As a result, it can be seen that the optical pen 27 in contact with the contact surface 1a is in contact with the contact surface 1a while being inclined in the X-axis minus and Y-axis plus directions from the perpendicular of the contact surface 1a.
このため、代表位置q5から高光量位置s5に向かう方向であるX軸マイナス及びY軸プラスの方向を補正方向として、代表位置q5と高光量位置s5との距離の2倍をズレ量(すなわち補正量)として、図11の(c)の矢印に示すように、代表座標を補正する。これにより、光ペン27の接触面1a上の接触位置である接触位置pを算出することができる。
Therefore, with the X-axis minus and Y-axis plus directions that are directions from the representative position q5 toward the high light quantity position s5 as correction directions, twice the distance between the representative position q5 and the high light quantity position s5 is a deviation amount (that is, correction). As the amount), the representative coordinates are corrected as indicated by the arrows in FIG. Thereby, the contact position p which is the contact position on the contact surface 1a of the optical pen 27 is computable.
(フローチャート)
次に、図12を用いて位置入力システム49の処理の流れについて説明する。 (flowchart)
Next, the processing flow of the position input system 49 will be described with reference to FIG.
次に、図12を用いて位置入力システム49の処理の流れについて説明する。 (flowchart)
Next, the processing flow of the position input system 49 will be described with reference to FIG.
図12は、位置入力システム49の処理の流れを表すフローチャートである。
FIG. 12 is a flowchart showing a process flow of the position input system 49.
なお、ステップS11は、実施の形態1と同様であるので、説明を省略する。
Note that step S11 is the same as that in the first embodiment, and a description thereof will be omitted.
受光量算出部31は、ステップS11で算出した各光検出センサ16のそれぞれの受光量を受光量信号として代表座標算出部32、高光量座標抽出部43へ出力する。
The received light amount calculation unit 31 outputs the received light amount of each light detection sensor 16 calculated in step S11 to the representative coordinate calculation unit 32 and the high light amount coordinate extraction unit 43 as a received light amount signal.
また、代表座標算出部32は、実施の形態1のステップS12と同様に、代表座標を算出したあと(ステップS12)、算出した代表座標を示す信号を座標補正部37、及び補正量算出部45に出力する。
Similarly to step S12 of the first embodiment, the representative coordinate calculation unit 32 calculates a representative coordinate (step S12), and then sends a signal indicating the calculated representative coordinate to the coordinate correction unit 37 and the correction amount calculation unit 45. Output to.
高光量座標抽出部43は、受光量信号を受光量算出部31から取得すると、当該取得した受光量信号から、投射光のなかで最も光量が高い座標を抽出する(ステップS23)。そして、抽出した座標を示す信号を、高光量位置を示す信号として、補正量算出部45、補正方向算出部46に出力する。
When the high light quantity coordinate extracting unit 43 acquires the received light amount signal from the received light amount calculating unit 31, the high light quantity coordinate extracting unit 43 extracts the coordinate having the highest light amount in the projection light from the acquired received light amount signal (step S23). Then, the signal indicating the extracted coordinates is output to the correction amount calculation unit 45 and the correction direction calculation unit 46 as a signal indicating the high light quantity position.
補正量算出部45は、代表座標算出部32から代表座標を示す信号を取得し、高光量座標抽出部43から高光量位置を示す信号を取得すると、それぞれ取得した代表座標と高光量位置との距離から、投射光の代表座標のずれ量(補正量)を算出する(ステップS24)。ここでは、補正量算出部45は、代表座標と高光量位置との距離の2倍を、投射光の代表座標のずれ量(補正量)として算出する。そして、補正量算出部45は、算出した代表座標のずれ量を座標補正部37に出力する。
When the correction amount calculating unit 45 acquires a signal indicating the representative coordinates from the representative coordinate calculating unit 32 and acquires a signal indicating the high light amount position from the high light amount coordinate extracting unit 43, the correction amount calculating unit 45 obtains a signal between the acquired representative coordinates and the high light amount position. A deviation amount (correction amount) of the representative coordinates of the projection light is calculated from the distance (step S24). Here, the correction amount calculation unit 45 calculates twice the distance between the representative coordinate and the high light quantity position as a deviation amount (correction amount) of the representative coordinate of the projection light. Then, the correction amount calculation unit 45 outputs the calculated deviation amount of the representative coordinates to the coordinate correction unit 37.
また、補正方向算出部46は、代表座標算出部32から代表座標を示す信号を取得し、高光量位置抽出部から高光量位置を示す信号を取得すると、それぞれ取得した代表座標と高光量位置とから、代表座標の補正方向を算出する(ステップS25)。
Further, when the correction direction calculation unit 46 acquires a signal indicating the representative coordinates from the representative coordinate calculation unit 32 and acquires a signal indicating the high light amount position from the high light amount position extraction unit, the acquired representative coordinates and the high light amount position are obtained. From this, the correction direction of the representative coordinates is calculated (step S25).
すなわち、補正方向算出部46は、代表座標に対して、高光量位置が位置する方向を、補正方向として算出する。そして、補正方向算出部36は、算出した補正方向を示す信号を座標補正部37に出力する。
That is, the correction direction calculation unit 46 calculates the direction in which the high light quantity position is located as the correction direction with respect to the representative coordinates. Then, the correction direction calculation unit 36 outputs a signal indicating the calculated correction direction to the coordinate correction unit 37.
座標補正部37は、代表座標を示す信号を座標補正部37から取得し、代表座標のズレ量を示す信号を補正量算出部35から取得し、補正方向を示す信号を補正方向算出部36から取得すると、実施の形態1のステップS16と同様に、補正した座標を算出(ステップS16)し、当該算出した座標を示す信号を、インターフェース部38に出力する。このようにして、タッチパネル40は、座標補正部37からインターフェース部38に出力された座標を、ユーザによって指示された入力位置として取得する。
The coordinate correction unit 37 acquires a signal indicating the representative coordinates from the coordinate correction unit 37, acquires a signal indicating the amount of deviation of the representative coordinates from the correction amount calculation unit 35, and receives a signal indicating the correction direction from the correction direction calculation unit 36. When acquired, the corrected coordinates are calculated (step S16), and a signal indicating the calculated coordinates is output to the interface unit 38, as in step S16 of the first embodiment. In this way, the touch panel 40 acquires the coordinates output from the coordinate correction unit 37 to the interface unit 38 as the input position instructed by the user.
このように、タッチパネル40の構成によると、補正量算出部45は、高光量位置と、代表座標とから、代表座標の指示座標に対する補正量を算出する。そして、補正方向算出部46は、代表座標から、高光量位置への方向を、代表座標の指示座標に対する補正方向として算出する。これにより、センサ面16aへの投射光28の光量分布から、光ペン27が指示する指示座標を正確に算出することができる。
As described above, according to the configuration of the touch panel 40, the correction amount calculation unit 45 calculates the correction amount for the designated coordinates of the representative coordinates from the high light quantity position and the representative coordinates. Then, the correction direction calculation unit 46 calculates the direction from the representative coordinate to the high light quantity position as the correction direction with respect to the designated coordinate of the representative coordinate. As a result, the indicated coordinates indicated by the optical pen 27 can be accurately calculated from the light amount distribution of the projection light 28 on the sensor surface 16a.
〔実施の形態3〕
次に、図13~図15を用いて、本発明の位置入力システムの第3の実施の形態について説明する。なお、説明の便宜上、前記実施の形態1、2にて説明した図面と同じ機能を有する部材については同じ符号を付記し、その説明を省略する。 [Embodiment 3]
Next, a third embodiment of the position input system of the present invention will be described with reference to FIGS. For convenience of explanation, members having the same functions as those in the drawings explained in the first and second embodiments are given the same reference numerals and explanations thereof are omitted.
次に、図13~図15を用いて、本発明の位置入力システムの第3の実施の形態について説明する。なお、説明の便宜上、前記実施の形態1、2にて説明した図面と同じ機能を有する部材については同じ符号を付記し、その説明を省略する。 [Embodiment 3]
Next, a third embodiment of the position input system of the present invention will be described with reference to FIGS. For convenience of explanation, members having the same functions as those in the drawings explained in the first and second embodiments are given the same reference numerals and explanations thereof are omitted.
図13は、第3の実施の形態に係る位置入力システム59の構成を表すブロック図である。
FIG. 13 is a block diagram showing the configuration of the position input system 59 according to the third embodiment.
位置入力システム59は、光ペン(指示デバイス)24と、タッチパネル(位置入力装置)50とを備えている。
The position input system 59 includes a light pen (instruction device) 24 and a touch panel (position input device) 50.
光ペン24は、光ペン27の構成に加え、光ペン24の鉛直方向に対する傾斜角度と、光ペン24の鉛直方向に対する傾斜方向とを検出する方向センサ26(方向検出素子)を備えている。また、光ペン24は、タッチパネル50と通信が可能なようにタッチパネル50と接続されている。光ペン24と、タッチパネル50とは、有線で電気的に接続されていてもよいし、互いに無線通信が可能なように接続されていてもよい。
In addition to the configuration of the optical pen 27, the optical pen 24 includes a direction sensor 26 (direction detection element) that detects an inclination angle of the optical pen 24 with respect to the vertical direction and an inclination direction of the optical pen 24 with respect to the vertical direction. Further, the optical pen 24 is connected to the touch panel 50 so as to be able to communicate with the touch panel 50. The optical pen 24 and the touch panel 50 may be electrically connected by wire or may be connected so as to be able to perform wireless communication with each other.
方向センサ26は、地磁気センサと加速度センサとを備えている。
The direction sensor 26 includes a geomagnetic sensor and an acceleration sensor.
光ペン24は、光ペン24の鉛直方向に対する傾斜角度α(光ペン傾斜角度信号)と、光ペン24の鉛直方向に対する傾き方向(光ペン傾斜方向信号)とを、上記地磁気センサと上記加速度センサとで検出する。そして、上記地磁気センサと上記加速度センサとからの出力値を取り出すことで、方向センサ26から、光ペン方向センサ信号が、タッチパネル50の光ペン方向センサ信号取得部57に出力される。
The optical pen 24 determines the inclination angle α (optical pen inclination angle signal) with respect to the vertical direction of the optical pen 24 and the inclination direction (optical pen inclination direction signal) with respect to the vertical direction of the optical pen 24 based on the geomagnetic sensor and the acceleration sensor. And detect. Then, by extracting output values from the geomagnetic sensor and the acceleration sensor, the optical pen direction sensor signal is output from the direction sensor 26 to the optical pen direction sensor signal acquisition unit 57 of the touch panel 50.
なお、方向センサ26が備えている地磁気センサと加速度センサと検出される傾斜角度αと、光ペン24の鉛直方向に対する傾き方向とは、方位として絶対的な情報である。
In addition, the inclination angle α detected by the geomagnetic sensor and the acceleration sensor included in the direction sensor 26 and the inclination direction with respect to the vertical direction of the optical pen 24 are absolute information as directions.
上述したように、光ペン24と、タッチパネル50とは、有線又は無線で通信が可能なように接続されている。光ペン方向センサ信号を、光ペン24から光ペン方向センサ信号取得部57に出力するタイミングは、特に限定されるものではなく、光ペン24の方向が変わるたびに出力するようにしてもよいし、タッチパネル50から光ペン24へ出力する出力指示に基づいて、出力するようにしてもよい。
As described above, the optical pen 24 and the touch panel 50 are connected so that they can communicate by wire or wirelessly. The timing of outputting the light pen direction sensor signal from the light pen 24 to the light pen direction sensor signal acquisition unit 57 is not particularly limited, and may be output every time the direction of the light pen 24 changes. The output may be performed based on an output instruction output from the touch panel 50 to the optical pen 24.
タッチパネル50は、タッチパネル1、40のように、光の形状や光量から補正量及び補正方向を算出するのではなく、光ペン24に備えられた方向センサ26から、補正量及び補正方向を示す情報である光ペン方向センサ信号を取得する点で相違する。
The touch panel 50 does not calculate the correction amount and the correction direction from the light shape and light amount as in the touch panels 1 and 40, but the information indicating the correction amount and the correction direction from the direction sensor 26 provided in the optical pen 24. The difference is that the optical pen direction sensor signal is acquired.
タッチパネル50は、タッチパネル1・40の光検出センサ制御部30・41に替えて光検出センサ制御部51を備えている。
The touch panel 50 includes a light detection sensor control unit 51 instead of the light detection sensor control units 30 and 41 of the touch panels 1 and 40.
光検出センサ制御部51は、受光量算出部31と、代表座標算出部32と、方向センサ53と、補正方向算出部(補正方向算出手段)56と、補正量算出部(補正量算出手段)55と、光ペン方向センサ信号取得部57と、座標補正部37と、インターフェース部38とを備えている。
The light detection sensor control unit 51 includes a received light amount calculation unit 31, a representative coordinate calculation unit 32, a direction sensor 53, a correction direction calculation unit (correction direction calculation unit) 56, and a correction amount calculation unit (correction amount calculation unit). 55, a light pen direction sensor signal acquisition unit 57, a coordinate correction unit 37, and an interface unit 38.
方向センサ53は、タッチパネル50の傾きと、タッチパネル50の傾きの方向を検出するものである。方向センサ53は、地磁気センサと加速度センサとを備えている。
The direction sensor 53 detects the inclination of the touch panel 50 and the direction of the inclination of the touch panel 50. The direction sensor 53 includes a geomagnetic sensor and an acceleration sensor.
方向センサ53は、タッチパネル50の垂線の鉛直方向に対する傾斜角度β(すなわちタッチパネル50の水平方向に対する傾斜角度;装置傾斜角度信号)と、タッチパネル50の垂線の鉛直方向に対する傾斜方向(装置傾斜方向信号)とを、装置方向センサ信号として、上記地磁気センサと上記加速度センサで検出する。そして、当該地磁気センサと加速度センサとからの出力値を取り出すことで、方向センサ53から、装置方向センサ信号が出力される。
The direction sensor 53 includes a tilt angle β with respect to the vertical direction of the vertical line of the touch panel 50 (that is, a tilt angle with respect to the horizontal direction of the touch panel 50; a device tilt angle signal) and a tilt direction with respect to the vertical direction of the touch panel 50 (device tilt direction signal). Are detected by the geomagnetic sensor and the acceleration sensor as device direction sensor signals. Then, the device direction sensor signal is output from the direction sensor 53 by taking out the output values from the geomagnetic sensor and the acceleration sensor.
なお、方向センサ53が備えている地磁気センサと加速度センサと検出される傾斜角度βと、タッチパネル50の垂線の鉛直方向に対する傾斜方向とは、方位として絶対的な情報である。
In addition, the inclination angle β detected by the geomagnetic sensor and the acceleration sensor included in the direction sensor 53 and the inclination direction with respect to the vertical direction of the vertical line of the touch panel 50 are absolute information as directions.
方向センサ53は、必ずしも、光検出センサ制御部51に含まれている必要はなく、光検出センサ制御部51の外部に設けられていてもよい。例えば、方向センサ53は、タッチパネル50を備える電子機器に配され、方向センサ53から出力される当該電子機器の装置傾斜角度信号を補正量算出部55が取得し、装置傾斜方向信号を補正方向算出部56が取得できる構成であればよい。
The direction sensor 53 does not necessarily need to be included in the light detection sensor control unit 51, and may be provided outside the light detection sensor control unit 51. For example, the direction sensor 53 is arranged in an electronic device including the touch panel 50, the correction amount calculation unit 55 acquires the device tilt angle signal of the electronic device output from the direction sensor 53, and calculates the device tilt direction signal as the correction direction. Any configuration that can be acquired by the unit 56 may be used.
タッチパネル50が固定されて使用される電子機器の位置入力装置として使用される場合は、方向センサ53は省略してもよい。
The direction sensor 53 may be omitted when the touch panel 50 is used as a position input device of an electronic device that is used while being fixed.
光ペン方向センサ信号取得部57は、光ペン24から、光ペン方向センサ信号として、光ペン傾斜角度信号と、光ペン傾斜方向信号とを取得する。そして、光ペン方向センサ信号取得部57は、光ペン24から取得した光ペン傾斜角度信号を補正量算出部55に出力する。また、方向センサ信号取得部57は、光ペン24から取得した光ペン傾斜方向信号を補正方向算出部56に出力する。
The light pen direction sensor signal acquisition unit 57 acquires a light pen tilt angle signal and a light pen tilt direction signal as the light pen direction sensor signal from the light pen 24. Then, the light pen direction sensor signal acquisition unit 57 outputs the light pen tilt angle signal acquired from the light pen 24 to the correction amount calculation unit 55. Further, the direction sensor signal acquisition unit 57 outputs the optical pen tilt direction signal acquired from the optical pen 24 to the correction direction calculation unit 56.
補正量算出部55は、光ペン24の鉛直方向に対する傾斜角度を取得し、当該取得した光ペン24の鉛直方向に対する傾斜角度から、代表座標の指示位置pに対する補正量を算出するものである。
The correction amount calculation unit 55 acquires the tilt angle of the optical pen 24 with respect to the vertical direction, and calculates the correction amount for the designated position p of the representative coordinates from the acquired tilt angle of the light pen 24 with respect to the vertical direction.
補正量算出部55は、方向センサ53から装置傾斜角度信号を取得し、光ペン方向センサ信号取得部57から光ペン傾斜角度情報を取得する。補正量算出部55は、装置傾斜角度信号と、光ペン傾斜角度信号とから、代表座量の指示位置pに対する補正量を算出する。補正量算出部55は、算出した代表座標の補正量を座標補正部37に出力する。
The correction amount calculation unit 55 acquires the device tilt angle signal from the direction sensor 53 and acquires the light pen tilt angle information from the light pen direction sensor signal acquisition unit 57. The correction amount calculation unit 55 calculates a correction amount for the designated position p of the representative seat amount from the device tilt angle signal and the light pen tilt angle signal. The correction amount calculation unit 55 outputs the calculated representative coordinate correction amount to the coordinate correction unit 37.
また、補正量算出部55には、予め、液晶パネル10の接触面1aと、センサ面16aとの距離(ギャップ)を表す距離情報や、接触面1a、センサ面16a間の屈折率を表す屈折率情報を記録しておいてもよい。そして、補正量算出部55は、装置傾斜角度信号と、光ペン傾斜角度信号と、距離情報と、屈折率情報とから、代表座量の指示位置pに対する補正量を算出してもよい。
The correction amount calculation unit 55 previously stores distance information indicating a distance (gap) between the contact surface 1a of the liquid crystal panel 10 and the sensor surface 16a, and a refraction indicating a refractive index between the contact surface 1a and the sensor surface 16a. Rate information may be recorded. Then, the correction amount calculation unit 55 may calculate the correction amount for the designated position p of the representative seat amount from the apparatus tilt angle signal, the light pen tilt angle signal, the distance information, and the refractive index information.
方向センサ53が省略された構成の場合は、補正量算出部55は、光ペン方向センサ信号取得部57から出力された光ペン傾斜角度信号のみ、または、光ペン傾斜角度信号及び距離情報と、屈折率情報とから、代表座量の指示位置pに対する補正量を算出してもよい。
When the direction sensor 53 is omitted, the correction amount calculation unit 55 includes only the light pen tilt angle signal output from the light pen direction sensor signal acquisition unit 57 or the light pen tilt angle signal and distance information. From the refractive index information, the correction amount for the designated position p of the representative seating amount may be calculated.
補正方向算出部56は、光ペン24の鉛直方向に対する傾斜方向を取得し、当該取得した光ペン24の鉛直方向に対する傾斜方向から、代表座標の指示位置pに対する補正方向を算出するものである。
The correction direction calculation unit 56 acquires a tilt direction with respect to the vertical direction of the light pen 24, and calculates a correction direction with respect to the designated position p of the representative coordinates from the acquired tilt direction with respect to the vertical direction of the light pen 24.
補正方向算出部56は、方向センサ53から装置傾斜方向信号を取得し、光ペン方向センサ信号取得部57から光ペン傾斜方向信号を取得する。補正方向算出部56は、装置傾斜方向信号と、光ペン傾斜方向信号とから、代表座標の指示位置pに対する補正方向を算出する。補正方向算出部56は、算出した代表座標の補正方向を座標補正部37に出力する。
The correction direction calculation unit 56 acquires a device tilt direction signal from the direction sensor 53 and acquires a light pen tilt direction signal from the light pen direction sensor signal acquisition unit 57. The correction direction calculation unit 56 calculates the correction direction for the designated position p of the representative coordinates from the apparatus tilt direction signal and the light pen tilt direction signal. The correction direction calculation unit 56 outputs the calculated correction direction of the representative coordinates to the coordinate correction unit 37.
方向センサ53が省略された構成の場合は、補正方向算出部56は、光ペン24の傾きの方向を表す信号である光ペン傾斜方向信号のみから、代表座標の指示位置pに対する補正方向を算出してもよい。
When the direction sensor 53 is omitted, the correction direction calculation unit 56 calculates a correction direction for the designated position p of the representative coordinates from only the light pen tilt direction signal that is a signal indicating the tilt direction of the light pen 24. May be.
(位置の補正)
図14の(a)は、液晶パネルの接触面に光ペンを傾斜して接触させている様子を表す図であり、(b)は、液晶パネルの接触面に光ペンを大きく傾斜して接触させている様子を表す図である。 (Position correction)
FIG. 14A is a diagram illustrating a state in which the optical pen is brought into contact with the contact surface of the liquid crystal panel, and FIG. 14B is a view in which the optical pen is brought into contact with the contact surface of the liquid crystal panel with a large inclination. It is a figure showing a mode made to do.
図14の(a)は、液晶パネルの接触面に光ペンを傾斜して接触させている様子を表す図であり、(b)は、液晶パネルの接触面に光ペンを大きく傾斜して接触させている様子を表す図である。 (Position correction)
FIG. 14A is a diagram illustrating a state in which the optical pen is brought into contact with the contact surface of the liquid crystal panel, and FIG. 14B is a view in which the optical pen is brought into contact with the contact surface of the liquid crystal panel with a large inclination. It is a figure showing a mode made to do.
図14の(a)に示すように、光ペン24は、方向センサ26を内蔵している。また、タッチパネル50にも方向センサが内蔵されている。
As shown in FIG. 14A, the optical pen 24 incorporates a direction sensor 26. Further, the touch panel 50 also includes a direction sensor.
図14の(a)に示すように、タッチパネル50の接触面1aが水平方向から傾いて配されているとする。そして、ユーザは、この水平方向から傾いて配されている接触面1aに対して、さらに、光ペン24を傾いて接触面1aに接触させる。
As shown in FIG. 14A, it is assumed that the contact surface 1a of the touch panel 50 is inclined with respect to the horizontal direction. Then, the user further tilts the optical pen 24 against the contact surface 1a with respect to the contact surface 1a disposed to be inclined from the horizontal direction.
光ペン24に内蔵された方向センサ26は、光ペン24の鉛直方向に対する傾斜角度α1を検出すると共に、光ペン24の鉛直方向に対する傾斜方向を検出する。図14の(a)に示す例では、光ペン24の鉛直方向に対する傾斜方向は、X軸プラス方向である。
The direction sensor 26 built in the optical pen 24 detects the inclination angle α1 of the optical pen 24 with respect to the vertical direction and also detects the inclination direction of the optical pen 24 with respect to the vertical direction. In the example shown in FIG. 14A, the inclination direction of the optical pen 24 with respect to the vertical direction is the X axis plus direction.
また、タッチパネル50に内蔵されている方向センサ53は、タッチパネル50の接触面1aの垂線の鉛直方向に対する傾斜角度β1(すなわちタッチパネル50の水平方向に対する傾斜角)を検出すると共に、タッチパネル50の接触面1aの垂線の鉛直方向に対する傾斜方向を検出する。図14の(a)に示す例では、タッチパネル50に対する垂線の傾斜方向は、鉛直方向に対して、X軸プラス方向である。
In addition, the direction sensor 53 built in the touch panel 50 detects an inclination angle β1 with respect to the vertical direction of the vertical line of the contact surface 1a of the touch panel 50 (that is, an inclination angle with respect to the horizontal direction of the touch panel 50). The inclination direction with respect to the vertical direction of the perpendicular line 1a is detected. In the example shown in FIG. 14A, the inclination direction of the perpendicular to the touch panel 50 is the X axis plus direction with respect to the vertical direction.
これから、光ペン24の接触面1aに対する傾斜角度θ1は、以下のように求めることができる。
θ1=α1-β1
この傾斜角度θ1から、指示位置pと、センサ面16aへの光ペン24の投射光28bの代表位置q1とのずれ量を補正量として算出することができる。 From this, the inclination angle θ1 with respect to thecontact surface 1a of the light pen 24 can be obtained as follows.
θ1 = α1-β1
From this inclination angle θ1, the amount of deviation between the indicated position p and the representative position q1 of the projection light 28b of theoptical pen 24 on the sensor surface 16a can be calculated as a correction amount.
θ1=α1-β1
この傾斜角度θ1から、指示位置pと、センサ面16aへの光ペン24の投射光28bの代表位置q1とのずれ量を補正量として算出することができる。 From this, the inclination angle θ1 with respect to the
θ1 = α1-β1
From this inclination angle θ1, the amount of deviation between the indicated position p and the representative position q1 of the projection light 28b of the
さらに、予め、接触面1aとセンサ面16aとの距離や、接触面1a及びセンサ面16a間の屈折率を算出しておき、当該算出したそれぞれの値を定数として乗算や加算して、補正量を算出してもよい。
Further, the distance between the contact surface 1a and the sensor surface 16a and the refractive index between the contact surface 1a and the sensor surface 16a are calculated in advance, and the calculated values are multiplied or added as constants to obtain a correction amount. May be calculated.
また、光ペン24の鉛直方向に対する傾斜方向(X軸プラス方向)と、タッチパネル50の垂線の傾斜方向(X軸プラス方向)とから、指示位置pに対する代表位置q1の補正方向を算出することができる。
Further, the correction direction of the representative position q1 with respect to the indicated position p can be calculated from the inclination direction (X-axis plus direction) with respect to the vertical direction of the light pen 24 and the inclination direction of the vertical line of the touch panel 50 (X-axis plus direction). it can.
図14の(b)に示すように、光ペン27の接触面1aの垂線に対する角度が大きく、指示位置pと、センサ面16aに投射された投射光28cによる代表位置q2とのずれ量が大きくても同様に、投射光28cの代表位置q2の指示位置pに対する補正方向及び補正量を算出することができる。
As shown in FIG. 14B, the angle of the contact surface 1a of the optical pen 27 with respect to the perpendicular is large, and the amount of deviation between the indicated position p and the representative position q2 due to the projection light 28c projected on the sensor surface 16a is large. However, similarly, the correction direction and the correction amount with respect to the designated position p of the representative position q2 of the projection light 28c can be calculated.
光ペン24に内蔵された方向センサ26は、光ペン24の鉛直方向に対する傾斜角度α2を検出すると共に、光ペン24の鉛直方向に対する傾斜方向を検出する。図14の(b)に示す例では、光ペン24の鉛直方向に対する傾斜方向は、X軸プラス方向である。
The direction sensor 26 built in the optical pen 24 detects the inclination angle α2 of the optical pen 24 with respect to the vertical direction and also detects the inclination direction of the optical pen 24 with respect to the vertical direction. In the example shown in FIG. 14B, the inclination direction of the optical pen 24 with respect to the vertical direction is the X axis plus direction.
また、タッチパネル50に内蔵されている方向センサ53は、タッチパネル50の接触面1aの垂線の鉛直方向に対する傾斜角度β2(すなわちタッチパネル50の水平方向に対する傾斜角)を検出すると共に、タッチパネル50の垂線の鉛直方向に対する傾斜方向を検出する。図14の(b)に示す例では、タッチパネル50に対する垂線の傾斜方向は、鉛直方向に対して、X軸プラス方向である。
In addition, the direction sensor 53 built in the touch panel 50 detects an inclination angle β2 of the vertical line of the contact surface 1a of the touch panel 50 with respect to the vertical direction (that is, an inclination angle with respect to the horizontal direction of the touch panel 50) and The inclination direction with respect to the vertical direction is detected. In the example shown in FIG. 14B, the inclination direction of the perpendicular to the touch panel 50 is the X axis plus direction with respect to the vertical direction.
これから、光ペン24の接触面1aに対する傾斜角度θ2は、以下のように求めることができる。
θ2=α2-β2
この傾斜角度θから、指示位置pと、センサ面16aへの光ペン24の投射光28bの代表位置q2とのずれ量を補正量として算出することができる。 From this, the inclination angle θ2 of theoptical pen 24 with respect to the contact surface 1a can be obtained as follows.
θ2 = α2-β2
From this inclination angle θ, the amount of deviation between the indicated position p and the representative position q2 of the projection light 28b of theoptical pen 24 onto the sensor surface 16a can be calculated as a correction amount.
θ2=α2-β2
この傾斜角度θから、指示位置pと、センサ面16aへの光ペン24の投射光28bの代表位置q2とのずれ量を補正量として算出することができる。 From this, the inclination angle θ2 of the
θ2 = α2-β2
From this inclination angle θ, the amount of deviation between the indicated position p and the representative position q2 of the projection light 28b of the
また、光ペン24の鉛直方向に対する傾斜方向(X軸プラス方向)と、タッチパネル50の垂線の傾斜方向(X軸プラス方向)とから、指示位置pに対する代表位置q2の補正方向を算出することができる。
Further, the correction direction of the representative position q2 with respect to the indicated position p can be calculated from the inclination direction (X-axis plus direction) of the light pen 24 with respect to the vertical direction and the inclination direction of the vertical line of the touch panel 50 (X-axis plus direction). it can.
(フローチャート)
次に、図15を用いて位置入力システム59の処理の流れについて説明する。 (flowchart)
Next, the processing flow of the position input system 59 will be described with reference to FIG.
次に、図15を用いて位置入力システム59の処理の流れについて説明する。 (flowchart)
Next, the processing flow of the position input system 59 will be described with reference to FIG.
図15は、位置入力システム59の処理の流れを表すフローチャートである。
FIG. 15 is a flowchart showing the process flow of the position input system 59.
なお、ステップS11は、実施の形態1と同様であるので、説明を省略する。
Note that step S11 is the same as that in the first embodiment, and a description thereof will be omitted.
受光量算出部31は、ステップS11で算出した各光検出センサ16のそれぞれの受光量を受光量信号として代表座標算出部32、高光量座標抽出部43へ出力する。
The received light amount calculation unit 31 outputs the received light amount of each light detection sensor 16 calculated in step S11 to the representative coordinate calculation unit 32 and the high light amount coordinate extraction unit 43 as a received light amount signal.
また、代表座標算出部32は、実施の形態1のステップS12と同様に、代表座標を算出したあと(ステップS12)、算出した代表座標を示す信号を座標補正部37に出力する。
Also, the representative coordinate calculation unit 32 calculates a representative coordinate (step S12) and outputs a signal indicating the calculated representative coordinate to the coordinate correction unit 37, as in step S12 of the first embodiment.
また、光ペン24の方向センサ26は、光ペン24の鉛直方向に対する傾斜角度αを検出する(ステップS31)と共に、光ペン24の鉛直方向に対する傾き方向とを検出する(ステップS32)。光ペン24は、方向センサ26が検出した光ペン24の鉛直方向に対する傾斜角度αを示す信号である光ペン傾斜角度信号と、光ペン24の鉛直方向に対する傾き方向を示す信号である光ペン傾斜方向信号とを光ペン方向センサ信号として光ペン方向センサ信号取得部57に出力する。
Further, the direction sensor 26 of the light pen 24 detects the inclination angle α with respect to the vertical direction of the light pen 24 (step S31) and detects the inclination direction of the light pen 24 with respect to the vertical direction (step S32). The light pen 24 is a light pen tilt angle signal that is a signal indicating the tilt angle α with respect to the vertical direction of the light pen 24 detected by the direction sensor 26 and a light pen tilt that is a signal indicating the tilt direction of the light pen 24 with respect to the vertical direction. The direction signal is output to the light pen direction sensor signal acquisition unit 57 as a light pen direction sensor signal.
光ペン方向センサ信号取得部57は、光ペン24から出力された光ペン方向センサ信号のうち、光ペン傾斜角度信号を補正量算出部55に出力する。また、光ペン方向センサ信号取得部57は、光ペン24から出力された光ペン方向センサ信号のうち、光ペン傾斜方向信号を補正方向算出部56に出力する。
The light pen direction sensor signal acquisition unit 57 outputs a light pen tilt angle signal among the light pen direction sensor signals output from the light pen 24 to the correction amount calculation unit 55. The light pen direction sensor signal acquisition unit 57 outputs a light pen tilt direction signal among the light pen direction sensor signals output from the light pen 24 to the correction direction calculation unit 56.
タッチパネル50の方向センサ53は、タッチパネル50の垂線の鉛直方向に対する傾斜角度βを検出する(ステップS33)と共に、タッチパネル50の垂線の鉛直方向に対する傾斜方向を検出する(ステップS34)。
The direction sensor 53 of the touch panel 50 detects the inclination angle β of the vertical line of the touch panel 50 with respect to the vertical direction (step S33) and detects the inclination direction of the vertical line of the touch panel 50 with respect to the vertical direction (step S34).
方向センサ53は、検出したタッチパネル50の垂線の鉛直方向に対する傾斜角度βを示す信号である装置傾斜角度信号を補正量算出部55に出力する。また、方向センサ53は、検出したタッチパネル50の垂線の鉛直方向に対する傾斜方向を示す信号である装置傾斜方向信号を補正方向算出部56に出力する。
The direction sensor 53 outputs a device inclination angle signal, which is a signal indicating the inclination angle β with respect to the vertical direction of the detected vertical line of the touch panel 50, to the correction amount calculation unit 55. Further, the direction sensor 53 outputs a device tilt direction signal, which is a signal indicating a tilt direction with respect to the vertical direction of the detected vertical line of the touch panel 50, to the correction direction calculation unit 56.
補正量算出部55は、光ペン方向センサ信号取得部57から取得した光ペン傾斜角度信号と、方向センサ53から取得した装置傾斜角度信号とから、投射光の代表座標の補正量を算出する(ステップS35)。補正量算出部55は、算出した代表座標の補正量を座標補正部37に出力する。
The correction amount calculation unit 55 calculates the correction amount of the representative coordinates of the projection light from the light pen tilt angle signal acquired from the light pen direction sensor signal acquisition unit 57 and the device tilt angle signal acquired from the direction sensor 53 ( Step S35). The correction amount calculation unit 55 outputs the calculated representative coordinate correction amount to the coordinate correction unit 37.
また、補正方向算出部56は、光ペン方向センサ信号取得部57から取得した光ペン傾斜方向信号と、方向センサ53から取得した装置傾斜方向信号とから代表座標の補正方向を算出する(ステップS36)。補正方向算出部56は、算出した代表座標の補正方向を座標補正部37に出力する。
Further, the correction direction calculation unit 56 calculates the correction direction of the representative coordinates from the light pen tilt direction signal acquired from the light pen direction sensor signal acquisition unit 57 and the device tilt direction signal acquired from the direction sensor 53 (step S36). ). The correction direction calculation unit 56 outputs the calculated correction direction of the representative coordinates to the coordinate correction unit 37.
座標補正部37は、代表座標を示す信号を座標補正部37から取得し、代表座標の補正量を補正量算出部55から取得し、補正方向を補正方向算出部56から取得すると、実施の形態1、2のステップS16と同様に、補正した座標を算出(ステップS16)し、当該算出した座標を示す信号を、インターフェース部38に出力する。このようにして、タッチパネル50は、座標補正部37からインターフェース部38に出力された座標を、ユーザによって指示された入力位置として取得する。
The coordinate correction unit 37 acquires a signal indicating the representative coordinates from the coordinate correction unit 37, acquires the correction amount of the representative coordinates from the correction amount calculation unit 55, and acquires the correction direction from the correction direction calculation unit 56. Similar to steps S16 and S16, the corrected coordinates are calculated (step S16), and a signal indicating the calculated coordinates is output to the interface unit 38. In this way, the touch panel 50 acquires the coordinates output from the coordinate correction unit 37 to the interface unit 38 as the input position instructed by the user.
このように、タッチパネル50の構成によると、補正量算出部55は、光ペン傾斜角度信号と、装置傾斜角度信号とから、投射光の代表座標の補正量を算出する。そして、補正方向算出部56は、光ペン傾斜方向信号と、装置傾斜方向信号とから代表座標の補正方向を算出する。これにより、タッチパネル50は、光ペン27が指示する指示座標を正確に算出することができる。
As described above, according to the configuration of the touch panel 50, the correction amount calculation unit 55 calculates the correction amount of the representative coordinates of the projection light from the light pen tilt angle signal and the device tilt angle signal. Then, the correction direction calculation unit 56 calculates the correction direction of the representative coordinates from the optical pen tilt direction signal and the apparatus tilt direction signal. Thereby, the touch panel 50 can accurately calculate the designated coordinates designated by the optical pen 27.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
上記の課題を解決するために、本発明の位置入力装置は、位置の入力を指示する指示デバイスを接触させる接触面と、当該指示デバイスからの投射光を受光する光検出素子の受光面を含む光検出面とを備え、上記光検出面への上記投射光の位置を検出することで、上記指示デバイスが入力を指示する位置を取得する位置入力装置であって、上記接触面と、上記光検出面とは離間して設けられており、上記光検出面への投射光の光検出面内の位置を代表する代表位置を算出する代表位置算出手段と、上記代表位置を補正して、上記光検出面内の上記指示デバイスが入力を指示する位置である指示位置を算出する位置補正手段とを備えていることを特徴としている。
In order to solve the above-described problem, a position input device of the present invention includes a contact surface that contacts an indicating device that instructs position input, and a light receiving surface of a light detection element that receives projection light from the indicating device. A position detection device for obtaining a position at which the pointing device directs input by detecting a position of the projection light on the light detection surface, the contact surface, and the light A representative position calculating means for calculating a representative position representative of the position in the light detection surface of the light projected onto the light detection surface; and correcting the representative position, It is characterized by comprising position correction means for calculating an indicated position, which is a position at which the pointing device in the light detection surface instructs input.
上記の課題を解決するために、本発明の位置入力方法は、位置の入力を指示する指示デバイスを接触させる接触面と、当該接触面と離間しており、当該指示デバイスからの投射光を受光する光検出素子の受光面を含む光検出面とを備えた位置入力装置の上記光検出面への上記投射光の位置を検出することで、上記指示デバイスが入力を指示する位置を取得する位置入力方法であって、上記光検出面への投射光の光検出面内の位置を代表する代表位置を算出する代表位置算出ステップと、上記代表位置を補正して、上記光検出面内の上記指示デバイスが入力を指示する位置である指示位置を算出する位置補正ステップとを含むことを特徴としている。
In order to solve the above problems, a position input method according to the present invention is configured to contact a pointing device for instructing position input and to be separated from the contact surface, and to receive projection light from the pointing device. A position at which the pointing device obtains a position for instructing input by detecting a position of the projection light on the light detecting surface of a position input device including a light detecting surface including a light receiving surface of the light detecting element An input method, a representative position calculating step for calculating a representative position representative of the position in the light detection surface of the projection light to the light detection surface, and correcting the representative position to correct the representative position in the light detection surface. And a position correction step of calculating an indicated position, which is a position where the pointing device directs input.
上記構成によると、上記光検出面に光検出素子の受光面が含まれているので、上記接触面に接触した指示デバイスから、上記光検出面に投射された上記投射光の位置を検出することができる。これにより、検出した投射光の位置に基づいて、上記指示デバイスが指示する位置を入力として取得することができる。
According to the above configuration, since the light detection surface includes the light receiving surface of the light detection element, the position of the projection light projected on the light detection surface is detected from the pointing device in contact with the contact surface. Can do. Thereby, based on the detected position of the projection light, the position pointed to by the pointing device can be acquired as an input.
上記構成によると、上記接触面と、上記光検出面とは離間して設けられている。このため、直接、光検出素子に、指示デバイスが接触することが無いので、光検出素子を保護することができる。
According to the above configuration, the contact surface and the light detection surface are provided apart from each other. For this reason, since an indicating device does not contact a light detection element directly, a light detection element can be protected.
上記構成によると、上記位置補正手段は、上記代表位置を補正して、上記光検出面内の上記指示デバイスが入力を指示する位置である指示位置を算出する。これにより、上記接触面と、上記光検出面とが離間して設けられていることにより、上記代表位置と、上記指示位置との間にずれが生じていたとしても、上記指示位置を正確に算出することができる。従って、位置の入力精度を向上させることができる。
According to the above configuration, the position correcting unit corrects the representative position and calculates an indicated position that is a position where the pointing device in the light detection surface instructs input. Thereby, even if there is a deviation between the representative position and the indicated position due to the contact surface and the light detection surface being provided apart from each other, the indicated position is accurately set. Can be calculated. Therefore, the position input accuracy can be improved.
さらに、上記代表位置の上記指示位置に対する補正量を算出する補正量算出手段と、上記代表位置の上記指示位置に対する補正方向を算出する補正方向算出手段とを備え、上記位置補正手段は、上記代表位置取得手段が算出した上記代表位置と、上記補正量算出手段が算出した上記補正量と、上記補正方向算出手段が算出した上記補正方向とから、上記指示位置を算出することが好ましい。
Furthermore, a correction amount calculating unit that calculates a correction amount of the representative position with respect to the designated position, and a correction direction calculating unit that calculates a correction direction of the representative position with respect to the designated position, the position correcting unit includes the representative position Preferably, the indicated position is calculated from the representative position calculated by the position acquisition unit, the correction amount calculated by the correction amount calculation unit, and the correction direction calculated by the correction direction calculation unit.
上記構成により、上記位置補正手段は、上記代表位置取得部が算出した上記代表位置と、上記補正量算出手段が算出した上記補正量と、上記補正方向算出手段が算出した上記補正方向とから、上記指示位置を算出することができる。
With the above configuration, the position correction unit includes the representative position calculated by the representative position acquisition unit, the correction amount calculated by the correction amount calculation unit, and the correction direction calculated by the correction direction calculation unit. The indicated position can be calculated.
さらに、上記補正量算出手段は、上記光検出面への投射光の長軸の長さから、上記代表位置の上記指示位置に対する補正量を算出し、上記補正方向算出手段は、上記光検出面への投射光の長軸と、当該長軸と交わる上記投射光の円周の曲率から、上記代表位置の上記指示位置に対する補正方向を算出することが好ましい。
Further, the correction amount calculating means calculates a correction amount for the designated position of the representative position from the length of the long axis of the projection light on the light detecting surface, and the correction direction calculating means is the light detecting surface. It is preferable to calculate the correction direction of the representative position with respect to the indicated position from the major axis of the projection light to and the curvature of the circumference of the projection light intersecting with the major axis.
上記構成により、上記補正方向算出手段は、上記光検出面への投射光の長軸と、当該長軸と交わる上記投射光の円周の曲率から、上記代表位置の上記指示位置に対する補正方向を算出することができる。これにより、上記光検出面への投射光の形状から、指示デバイスが指示する指示位置を正確に算出することができる。
With the above configuration, the correction direction calculation means calculates the correction direction of the representative position with respect to the indicated position from the major axis of the projection light on the light detection surface and the curvature of the circumference of the projection light that intersects the major axis. Can be calculated. As a result, the position indicated by the pointing device can be accurately calculated from the shape of the light projected onto the light detection surface.
さらに、上記補正量算出手段は、上記光検出面への投射光のうち光量が最も高い高光量位置と、上記代表位置との距離から、上記代表位置の上記指示位置に対する補正量を算出し、上記補正方向算出手段は、上記代表位置から、上記高光量位置への方向を、上記代表位置の上記指示位置に対する補正方向として算出することが好ましい。
Further, the correction amount calculating means calculates a correction amount for the indicated position of the representative position from a distance between the representative light and the high light amount position where the light amount is the highest among the projection light on the light detection surface, Preferably, the correction direction calculation means calculates a direction from the representative position to the high light quantity position as a correction direction of the representative position with respect to the indicated position.
上記構成によると、上記補正量算出手段は、上記高光量位置と、上記代表位置とから、上記代表位置の上記指示位置に対する補正量を算出し、上記補正方向算出手段は、上記代表位置から、上記高光量位置への方向を、上記代表位置の上記指示位置に対する補正方向として算出する。これにより、上記光検出面への投射光の光量分布から、指示デバイスが指示する指示位置を正確に算出することができる。
According to the above configuration, the correction amount calculation means calculates a correction amount for the designated position of the representative position from the high light amount position and the representative position, and the correction direction calculation means calculates from the representative position, The direction to the high light quantity position is calculated as the correction direction of the representative position with respect to the indicated position. As a result, the position indicated by the pointing device can be accurately calculated from the light amount distribution of the light projected onto the light detection surface.
さらに、上記補正量算出手段は、上記指示デバイスの鉛直方向に対する傾斜角度を取得し、当該取得した上記指示デバイスの鉛直方向に対する傾斜角度から、上記代表位置の上記指示位置に対する補正量を算出し、上記補正方向算出手段は、上記指示デバイスの鉛直方向に対する傾斜方向を取得し、当該取得した上記指示デバイスの鉛直方向に対する傾斜方向から、上記代表位置の上記指示位置に対する補正方向を算出することが好ましい。
Further, the correction amount calculation means acquires an inclination angle of the pointing device with respect to the vertical direction, calculates a correction amount of the representative position with respect to the pointing position from the acquired inclination angle of the pointing device with respect to the vertical direction, Preferably, the correction direction calculation means acquires a tilt direction with respect to a vertical direction of the pointing device, and calculates a correction direction of the representative position with respect to the pointing position from the acquired tilt direction with respect to the vertical direction of the pointing device. .
上記構成によると、上記補正量算出手段は、上記指示デバイスの鉛直方向に対する傾斜角度から上記代表位置の上記指示位置に対する補正量を算出し、上記補正方向算出手段は、上記指示デバイスの鉛直方向に対する傾斜方向から、上記代表位置の上記指示位置に対する補正方向を算出する。これにより、指示デバイスが指示する指示位置を算出することができる。
According to the above configuration, the correction amount calculating means calculates a correction amount for the designated position of the representative position from an inclination angle of the pointing device with respect to the vertical direction. From the inclination direction, the correction direction of the representative position with respect to the indicated position is calculated. As a result, it is possible to calculate the indication position indicated by the indication device.
さらに、本発明の位置入力システムは、上記位置入力装置と、上記指示デバイスとを備えていることが好ましい。これにより、指示デバイスが指示する指示位置を正確に算出することができるので、位置入力システムの位置の入力精度を向上させることができる。
Furthermore, the position input system of the present invention preferably includes the position input device and the pointing device. As a result, the pointing position indicated by the pointing device can be accurately calculated, so that the position input accuracy of the position input system can be improved.
さらに、上記指示デバイスは、当該指示デバイスの鉛直方向に対する傾斜角度と、当該指示デバイスの鉛直方向に対する傾斜方向とを検出する方向検出素子とを備えていることが好ましい。
Furthermore, it is preferable that the pointing device includes a direction detection element that detects a tilt angle of the pointing device with respect to the vertical direction and a tilting direction of the pointing device with respect to the vertical direction.
上記構成によると、上記方向検出素子により、指示デバイスの鉛直方向に対する傾斜角度と、当該指示デバイスの鉛直方向に対する傾斜方向とを検出することができる。
According to the above configuration, the direction detecting element can detect the tilt angle of the pointing device with respect to the vertical direction and the tilt direction of the pointing device with respect to the vertical direction.
なお、上記は、コンピュータによって実現してもよい。この場合、コンピュータを上記各手段として動作させることにより上記をコンピュータにおいて実現する表示プログラム、およびその表示プログラムを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
The above may be realized by a computer. In this case, a display program for realizing the above in the computer by operating the computer as each of the above means and a computer-readable recording medium recording the display program are also included in the category of the present invention.
本発明は、光検出センサを備えた位置入力装置等に利用することができる。
The present invention can be used for a position input device equipped with a light detection sensor.
1・40・50 タッチパネル(位置入力装置)
1a 接触面
10・60 液晶パネル
15 保護板
16 光検出センサ(光検出素子)
16a センサ面(光検出面)
24・27 光ペン(指示デバイス)
26 方向センサ(方向検出素子)
28・28a~28f 投射光
30 光検出センサ制御部
31 受光量算出部
32 代表座標算出部(代表位置算出手段)
33 長軸算出部
35・45 補正量算出部(補正量算出手段)
36・46 補正方向算出部(補正方向算出手段)
37 座標補正部(位置補正手段)
39・49・59 位置入力システム
41 光検出センサ制御部
43 高光量座標抽出部
57 光ペン方向センサ信号取得部 1.40.50 Touch panel (position input device)
1a Contact surface 10.60Liquid crystal panel 15 Protection plate 16 Photodetection sensor (photodetection element)
16a Sensor surface (light detection surface)
24 ・ 27 Optical pen (instruction device)
26 Direction sensor (direction detection element)
28 / 28a to28f Projection light 30 Photodetection sensor control unit 31 Received light amount calculation unit 32 Representative coordinate calculation unit (representative position calculation means)
33 Longaxis calculation unit 35/45 Correction amount calculation unit (correction amount calculation means)
36.46 Correction direction calculation unit (correction direction calculation means)
37 Coordinate correction unit (position correction means)
39, 49, 59Position input system 41 Light detection sensor control unit 43 High light quantity coordinate extraction unit 57 Optical pen direction sensor signal acquisition unit
1a 接触面
10・60 液晶パネル
15 保護板
16 光検出センサ(光検出素子)
16a センサ面(光検出面)
24・27 光ペン(指示デバイス)
26 方向センサ(方向検出素子)
28・28a~28f 投射光
30 光検出センサ制御部
31 受光量算出部
32 代表座標算出部(代表位置算出手段)
33 長軸算出部
35・45 補正量算出部(補正量算出手段)
36・46 補正方向算出部(補正方向算出手段)
37 座標補正部(位置補正手段)
39・49・59 位置入力システム
41 光検出センサ制御部
43 高光量座標抽出部
57 光ペン方向センサ信号取得部 1.40.50 Touch panel (position input device)
1a Contact surface 10.60
16a Sensor surface (light detection surface)
24 ・ 27 Optical pen (instruction device)
26 Direction sensor (direction detection element)
28 / 28a to
33 Long
36.46 Correction direction calculation unit (correction direction calculation means)
37 Coordinate correction unit (position correction means)
39, 49, 59
Claims (10)
- 位置の入力を指示する指示デバイスを接触させる接触面と、当該指示デバイスからの投射光を受光する光検出素子の受光面を含む光検出面とを備え、上記光検出面への上記投射光の位置を検出することで、上記指示デバイスが入力を指示する位置を取得する位置入力装置であって、
上記接触面と、上記光検出面とは離間して設けられており、
上記光検出面への投射光の光検出面内の位置を代表する代表位置を算出する代表位置算出手段と、
上記代表位置を補正して、上記光検出面内の上記指示デバイスが入力を指示する位置である指示位置を算出する位置補正手段とを備えていることを特徴とする位置入力装置。 A contact surface that contacts an indicating device that instructs position input; and a light detection surface that includes a light receiving surface of a light detection element that receives projection light from the indicating device, and the projection light is incident on the light detection surface. A position input device that acquires a position at which the pointing device instructs input by detecting a position,
The contact surface and the light detection surface are provided apart from each other,
Representative position calculating means for calculating a representative position representing the position in the light detection surface of the light projected onto the light detection surface;
A position input device comprising: a position correcting unit that corrects the representative position and calculates an indicated position that is a position at which the pointing device within the light detection surface instructs input. - 上記代表位置の上記指示位置に対する補正量を算出する補正量算出手段と、
上記代表位置の上記指示位置に対する補正方向を算出する補正方向算出手段とを備え、
上記位置補正手段は、上記代表位置算出手段が算出した上記代表位置と、上記補正量算出手段が算出した上記補正量と、上記補正方向算出手段が算出した上記補正方向とから、上記指示位置を算出することを特徴とする請求項1に記載の位置入力装置。 Correction amount calculating means for calculating a correction amount for the designated position of the representative position;
Correction direction calculation means for calculating a correction direction of the representative position with respect to the indicated position,
The position correction means calculates the indicated position from the representative position calculated by the representative position calculation means, the correction amount calculated by the correction amount calculation means, and the correction direction calculated by the correction direction calculation means. The position input device according to claim 1, wherein the position input device calculates the position input device. - 上記補正量算出手段は、上記光検出面への投射光の長軸の長さから、上記代表位置の上記指示位置に対する補正量を算出し、
上記補正方向算出手段は、上記光検出面への投射光の長軸と、当該長軸と交わる上記投射光の円周の曲率から、上記代表位置の上記指示位置に対する補正方向を算出することを特徴とする請求項2に記載の位置入力装置。 The correction amount calculation means calculates a correction amount for the designated position of the representative position from the length of the long axis of the light projected onto the light detection surface,
The correction direction calculating means calculates a correction direction of the representative position with respect to the indicated position from the major axis of the projection light on the light detection surface and the curvature of the circumference of the projection light intersecting with the major axis. The position input device according to claim 2, wherein: - 上記補正量算出手段は、上記光検出面への投射光のうち光量が最も高い高光量位置と、上記代表位置との距離から、上記代表位置の上記指示位置に対する補正量を算出し、
上記補正方向算出手段は、上記代表位置から、上記高光量位置への方向を、上記代表位置の上記指示位置に対する補正方向として算出することを特徴とする請求項2に記載の位置入力装置。 The correction amount calculating means calculates a correction amount for the indicated position of the representative position from the distance between the high light amount position where the light amount is the highest among the projection light onto the light detection surface and the representative position,
The position input device according to claim 2, wherein the correction direction calculation means calculates a direction from the representative position to the high light quantity position as a correction direction of the representative position with respect to the indicated position. - 上記補正量算出手段は、上記指示デバイスの鉛直方向に対する傾斜角度を取得し、当該取得した上記指示デバイスの鉛直方向に対する傾斜角度から、上記代表位置の上記指示位置に対する補正量を算出し、
上記補正方向算出手段は、上記指示デバイスの鉛直方向に対する傾斜方向を取得し、当該取得した上記指示デバイスの鉛直方向に対する傾斜方向から、上記代表位置の上記指示位置に対する補正方向を算出することを特徴とする請求項2に記載の位置入力装置。 The correction amount calculation means acquires an inclination angle of the pointing device with respect to the vertical direction, calculates a correction amount of the representative position with respect to the pointing position from the acquired inclination angle of the pointing device with respect to the vertical direction,
The correction direction calculation means acquires a tilt direction with respect to the vertical direction of the pointing device, and calculates a correction direction of the representative position with respect to the pointing position from the acquired tilt direction with respect to the vertical direction of the pointing device. The position input device according to claim 2. - 請求項1~5の何れか1項に記載の位置入力装置と、上記指示デバイスとを備えていることを特徴とする位置入力システム。 A position input system comprising the position input device according to any one of claims 1 to 5 and the pointing device.
- 上記指示デバイスは、当該指示デバイスの鉛直方向に対する傾斜角度と、当該指示デバイスの鉛直方向に対する傾斜方向とを検出する方向検出素子とを備えていることを特徴とする請求項6に記載の位置入力システム。 The position input according to claim 6, wherein the pointing device includes a direction detection element that detects a tilt angle of the pointing device with respect to a vertical direction and a tilt direction of the pointing device with respect to the vertical direction. system.
- 位置の入力を指示する指示デバイスを接触させる接触面と、当該接触面と離間しており、当該指示デバイスからの投射光を受光する光検出素子の受光面を含む光検出面とを備えた位置入力装置の上記光検出面への上記投射光の位置を検出することで、上記指示デバイスが入力を指示する位置を取得する位置入力方法であって、
上記光検出面への投射光の光検出面内の位置を代表する代表位置を算出する代表位置算出ステップと、
上記代表位置を補正して、上記光検出面内の上記指示デバイスが入力を指示する位置である指示位置を算出する位置補正ステップとを含むことを特徴とする位置入力方法。 A position provided with a contact surface that contacts an instruction device for instructing position input, and a light detection surface that is spaced apart from the contact surface and includes a light receiving surface of a light detection element that receives projection light from the instruction device By detecting the position of the projection light on the light detection surface of the input device, a position input method for acquiring a position at which the pointing device instructs input,
A representative position calculating step for calculating a representative position representing the position in the light detection surface of the light projected onto the light detection surface;
A position correcting step of correcting the representative position and calculating an indicated position, which is a position where the pointing device in the light detection plane instructs input. - 請求項1~5の何れか1項に記載の位置入力装置を動作させるための位置入力プログラムであって、コンピュータを上記の各手段として機能させるための位置入力プログラム。 A position input program for operating the position input device according to any one of claims 1 to 5, wherein the position input program causes a computer to function as each of the above means.
- 請求項9に記載の位置入力プログラムを記録している、コンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the position input program according to claim 9 is recorded.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010059476 | 2010-03-16 | ||
JP2010-059476 | 2010-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011114590A1 true WO2011114590A1 (en) | 2011-09-22 |
Family
ID=44648708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072385 WO2011114590A1 (en) | 2010-03-16 | 2010-12-13 | Position input device, position input system, position input method, position input program and computer-readable recording medium |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011114590A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013065272A1 (en) * | 2011-11-02 | 2013-05-10 | シャープ株式会社 | Touch panel and display device with touch panel |
JP2014027564A (en) * | 2012-07-27 | 2014-02-06 | Sharp Corp | Verification device and electronic signature authentication method |
WO2014112132A1 (en) * | 2013-01-21 | 2014-07-24 | 株式会社 東芝 | Information apparatus and information processing method |
WO2015033751A1 (en) * | 2013-09-04 | 2015-03-12 | シャープ株式会社 | Display device |
CN111258443A (en) * | 2018-12-03 | 2020-06-09 | 瑞萨电子株式会社 | Information input device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007523394A (en) * | 2003-11-25 | 2007-08-16 | スリーエム イノベイティブ プロパティズ カンパニー | Light emitting stylus and user input device using light emitting stylus |
-
2010
- 2010-12-13 WO PCT/JP2010/072385 patent/WO2011114590A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007523394A (en) * | 2003-11-25 | 2007-08-16 | スリーエム イノベイティブ プロパティズ カンパニー | Light emitting stylus and user input device using light emitting stylus |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013065272A1 (en) * | 2011-11-02 | 2013-05-10 | シャープ株式会社 | Touch panel and display device with touch panel |
JP2014027564A (en) * | 2012-07-27 | 2014-02-06 | Sharp Corp | Verification device and electronic signature authentication method |
WO2014112132A1 (en) * | 2013-01-21 | 2014-07-24 | 株式会社 東芝 | Information apparatus and information processing method |
WO2015033751A1 (en) * | 2013-09-04 | 2015-03-12 | シャープ株式会社 | Display device |
CN111258443A (en) * | 2018-12-03 | 2020-06-09 | 瑞萨电子株式会社 | Information input device |
CN111258443B (en) * | 2018-12-03 | 2024-06-07 | 瑞萨电子株式会社 | Information input device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9436275B2 (en) | Transmissive display apparatus and operation input method | |
JP6123365B2 (en) | Image display system and head-mounted display device | |
US8614696B2 (en) | Display device, position correction method, and program | |
US9678663B2 (en) | Display system and operation input method | |
JP2013125247A (en) | Head-mounted display and information display apparatus | |
WO2011114590A1 (en) | Position input device, position input system, position input method, position input program and computer-readable recording medium | |
US20130027356A1 (en) | Display device and display direction switching system | |
TW201635092A (en) | Display device, electronic device, hand-wearing device and control system | |
JP3705871B2 (en) | Display device with touch panel | |
US9213440B2 (en) | System and method for remote touch detection | |
US20110298757A1 (en) | Touch panel input system and input pen | |
WO2016113917A1 (en) | Device and method for contactless input | |
US20160170482A1 (en) | Display apparatus, and control method for display apparatus | |
JP2015115038A (en) | Information processor and control method of the same | |
US20240019715A1 (en) | Air floating video display apparatus | |
WO2016121883A1 (en) | Electronic device | |
JP2017182109A (en) | Display system, information processing device, projector, and information processing method | |
US9778792B2 (en) | Information handling system desktop surface display touch input compensation | |
KR101319351B1 (en) | Method for Automatically Setting Angles in Infrared Sensor Modules and Display Device Applying the Same | |
KR20120066814A (en) | Optical touch pannel | |
KR101065771B1 (en) | Touch display system | |
JP2006302029A (en) | Display device control program, display device control method and display device | |
WO2018209572A1 (en) | Head-mountable display device and interaction and input method thereof | |
US9563344B2 (en) | Information processing method and electronic apparatus | |
KR20170021665A (en) | Display apparatus with optical touch screen function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10847996 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10847996 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |