WO2011111484A1 - Method for producing cellulose ester, cellulose ester, and cellulose ester film - Google Patents

Method for producing cellulose ester, cellulose ester, and cellulose ester film Download PDF

Info

Publication number
WO2011111484A1
WO2011111484A1 PCT/JP2011/053229 JP2011053229W WO2011111484A1 WO 2011111484 A1 WO2011111484 A1 WO 2011111484A1 JP 2011053229 W JP2011053229 W JP 2011053229W WO 2011111484 A1 WO2011111484 A1 WO 2011111484A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose ester
film
cellulose
acid
solvent
Prior art date
Application number
PCT/JP2011/053229
Other languages
French (fr)
Japanese (ja)
Inventor
学 松岡
笠原 健三
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012504380A priority Critical patent/JPWO2011111484A1/en
Publication of WO2011111484A1 publication Critical patent/WO2011111484A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/16Preparation of mixed organic cellulose esters, e.g. cellulose aceto-formate or cellulose aceto-propionate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/22Post-esterification treatments, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/14Mixed esters, e.g. cellulose acetate-butyrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/14Mixed esters

Definitions

  • the present invention relates to a cellulose ester production method, a cellulose ester, and a cellulose ester film, and suppresses variation in performance between production lots of cellulose ester and reduces the film surface failure (diagonal streaks, horizontal dan, egg unevenness, etc.).
  • the present invention relates to a method for producing a cellulose ester capable of producing a film, a cellulose ester produced thereby, and a cellulose ester film using the cellulose ester.
  • cellulose ester has been suitably used as a raw material for a protective film of a polarizing plate used in a liquid crystal display device because of its high transparency, low birefringence, and excellent adhesion with a polarizer.
  • it is suitably used as a raw material for optical films such as a retardation film, a field-of-view expansion film, and an antireflection film.
  • Cellulose esters used in the above products are generally activated (pretreatment) in which the raw cellulose coarsely pulverized in the pulverization step is activated in order to react with acyl groups, and the cellulose ester is produced under carboxylic acid and acid catalyst.
  • An esterification step for esterifying a hydroxyl group an aging step for converting the acyl group substituted in the esterification step to a desired acyl group substitution degree by deacylation or the like, if necessary, hydrolyzing the carboxylic acid anhydride, and a base
  • the product is obtained by precipitating, purifying and drying the product through a neutralization step of neutralizing the acid catalyst.
  • cellulose ester films used for optical applications are generally formed into solutions, and are formed using a chlorinated solvent such as methylene chloride.
  • Cellulose esters are greatly involved in properties such as solubility and viscosity due to changes in acyl group substitution degree distribution and polymerization degree. If an optical film is made using cellulose ester whose distribution of acyl group substitution degree or degree of polymerization is not uniformly adjusted, insoluble matter may remain and cause bright spot foreign matter, or optically fatal such as phase difference Therefore, it is important to precisely adjust the esterification process and the aging process.
  • cellulose is a natural polymer, and there are large variations in the molecular weight, molecular chain, crystallinity, etc.
  • Patent Document 2 includes a step of activating cellulose with an activating agent, a step of esterifying cellulose with an acylating agent having at least 2 carbon atoms (particularly at least 3 carbon atoms) in the presence of an acylation catalyst, And a method for producing a cellulose ester, comprising a step of saponifying and ripening the produced cellulose ester, and after the esterification step, the esterification reaction terminator is added to 0.1 mol of the acylating agent remaining in the reaction system.
  • a technique for remarkably improving the generation of bright spot foreign matter by adding cellulose at a rate of 3 to 10 equivalents / minute to produce a cellulose ester is disclosed.
  • An object of the present invention is to provide a method for producing a cellulose ester capable of producing a cellulose ester film capable of producing a cellulose ester film with reduced film surface failures (diagonal streaks, horizontal dans, egg unevenness, etc.) by suppressing variation in performance between production lots of cellulose esters.
  • the object is to provide a produced cellulose ester and a cellulose ester film using the cellulose ester.
  • the pulverization step mixes and pulverizes the raw material cellulose and a solvent, and a mechanochemical pulverization step
  • the manufacturing method of the cellulose ester characterized by the above-mentioned.
  • the above-mentioned solvent is characterized in that the solvent is at least one solvent selected from carboxylic acids, alcohols, ketones, ethers and cellosolves, or a mixed solvent of at least one solvent and water.
  • the cellulose ester has an average acyl group substitution degree of 1.2 to 2.95, an acyl group total carbon number of 2.0 to 9.5, and an average weight molecular weight of 100,000 to 500,000. 3.
  • a cellulose ester film comprising the cellulose ester as described in 5 above.
  • a method for producing a cellulose ester capable of producing a cellulose ester film capable of producing a cellulose ester film with reduced film surface failures (diagonal stripes, horizontal dans, egg unevenness, etc.) by suppressing variation in performance between production lots of cellulose esters The produced cellulose ester and a cellulose ester film using the cellulose ester can be provided.
  • a conventional method for producing a cellulose ester is generally to dry-grind raw material cellulose to form a cotton, and then activate it with an acetic acid aqueous solution or hot water.
  • dry pulverization of the raw material cellulose it is easy to form a finely pulverized cotton-like product with uneven pulverized particle size, and a uniform cellulose ester is formed by the activation process and esterification process in the next step. There was a problem that it was difficult to be done.
  • the present inventor has found that in the cellulose ester production method including a raw cellulose pulverization step, an activation step, an esterification step, an aging step, and a post-treatment step, the pulverization step is the raw cellulose This is a mechanochemical pulverization process that mixes and pulverizes with a solvent. It has been found that the problem of streaks, horizontal dunes, egg unevenness, etc.) can be solved, and the invention according to claim 1 of the present application has been achieved.
  • the cellulose chains can be uniformly pulverized without damaging them as much as possible.
  • the reaction in the esterification step / ripening step can be performed smoothly.
  • the reaction time in the ripening step can be shortened, it has been possible to achieve both improvement in the uniformity of the reaction and prevention of a decrease in the degree of polymerization, which have been the trade-off.
  • raw material cellulose and solvent are mixed and mechanochemically pulverized to form a slurry state, and the cellulose is made into fine particles by effectively cutting the molecular force and hydrogen bonds of raw material cellulose.
  • the mixed solution of the solvent and water enters or bonds between cellulose molecules, so that hydrogen bonding between the hydroxyl groups of cellulose can be prevented, and the pulverized cellulose itself becomes activated.
  • the activation step which is the next step, it is possible to take a means to replace the activator according to the mixed solvent at the time of pulverization, so that cellulose activated by pulverization by these means can quickly undergo subsequent esterification reactions. It is performed uniformly and has the effect of reducing unacetylated components and impurities.
  • the invention according to claim 3 of the present application effectively removes impurities contained in the raw material cellulose and unacetylated components that could not be esterified by passing the esterified dope through a filter. This is a preferred embodiment for further enhancing the effects of the present invention.
  • the present invention has been found that not only variation between lots of cellulose ester after purification but also variation in lots can be remarkably suppressed by mixing and finely pulverizing (mechanochemical pulverization) a solvent and raw material cellulose. .
  • the cellulose ester of the present invention is preferably contained in a cellulose ester film for use in an optical film, and is preferably a cellulose ester having an aliphatic acyl group having 2 or more carbon atoms, and more preferably an acyl total of cellulose ester.
  • the total number of acyl groups in the cellulose ester is preferably 4.0 to 9.0, more preferably 5.0 to 8.5.
  • the acyl group total carbon number is the sum total of the products of the substitution degree and the carbon number of each acyl group substituted in the glucose unit of the cellulose ester.
  • the number of carbon atoms of the aliphatic acyl group is preferably 2 or more and 6 or less, more preferably 2 or more and 4 or less, from the viewpoint of productivity and cost of cellulose synthesis.
  • the portion not substituted with an acyl group usually exists as a hydroxyl group.
  • the glucose unit constituting cellulose with ⁇ -1,4-glycosidic bonds has free hydroxyl groups at the 2nd, 3rd and 6th positions.
  • the cellulose ester in the present invention is a polymer obtained by esterifying some or all of these hydroxyl groups with an acyl group.
  • the acyl group substitution degree represents the total ratio of cellulose esterified at the 2nd, 3rd and 6th positions of the repeating unit. Specifically, the degree of substitution is 1 when the hydroxyl groups at the 2-position, 3-position and 6-position of cellulose are each 100% esterified. Therefore, when all of the 2nd, 3rd and 6th positions of cellulose are 100% esterified, the degree of substitution is 3 at the maximum.
  • acyl group examples include an acetyl group, a propionyl group, a butyryl group, a pentanate group, and a hexanate group.
  • cellulose ester examples include cellulose acetate, cellulose propionate, cellulose butyrate, and cellulose pentanate.
  • mixed fatty acid esters such as cellulose acetate, cellulose acetate propionate, cellulose propionate, cellulose acetate butyrate, and cellulose acetate pentanate may be used as long as the above-mentioned side chain carbon number is satisfied.
  • cellulose acetate, cellulose acetate propionate, and cellulose propionate are particularly preferable cellulose esters for optical film applications.
  • Preferred cellulose esters other than cellulose triacetate have an acyl group having 2 to 4 carbon atoms as a substituent, and when the substitution degree of acetyl group is X and the substitution degree of propionyl group or butyryl group is Y, the following formula ( It is a cellulose ester including a cellulose ester that simultaneously satisfies I) and (II).
  • Formula (I) 1.2 ⁇ X + Y ⁇ 2.95
  • Formula (II) 0 ⁇ X ⁇ 2.5
  • cellulose acetate propionate is particularly preferably used, and 0.1 ⁇ X ⁇ 2.5 and 0.1 ⁇ Y ⁇ 2.8 are particularly preferable.
  • the portion that is not substituted with an acyl group usually exists as a hydroxyl group.
  • the method for measuring the degree of acyl group substitution can be measured according to ASTM-D817-96.
  • the cellulose ester of the present invention preferably has a weight average molecular weight Mw of 50,000 to 500,000, more preferably 100,000 to 300,000, still more preferably 150,000 to 250,000.
  • the measurement conditions are as follows.
  • the raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood. Softwood pulp is preferably used.
  • the cellulose ester made from these can be mixed suitably or can be used independently.
  • the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
  • cellulose having a high degree of polymerization is preferable.
  • linter pulp is preferable, and it is preferable to use cellulose composed of at least linter pulp.
  • the ⁇ -cellulose content which is an index of the crystallinity of cellulose, is 90% or more (eg, 92 to 100%, preferably 95 to 100%, more preferably about 99.5 to 100%).
  • the cellulose ester production process is largely divided into a raw material cellulose crushing step, activation step, esterification step for substitution with acyl groups, aging step for promoting the elimination of acyl groups and adjusting the degree of substitution, and precipitation / washing of purified products. It is divided into the post-processing (finishing) process to dry.
  • FIG. 1 shows a production flow of the cellulose ester of the present invention.
  • a filtration step can be incorporated between the esterification step and the aging step.
  • the neutralization process can serve as both the ripening stop and the neutralization process, and both are shown by the dotted line.
  • the raw cellulose pulverization step according to the present invention is a mechanochemical pulverization step in which raw cellulose and a solvent are mixed and pulverized.
  • the solvent is preferably at least one solvent selected from carboxylic acids, alcohols, ketones, ethers and cellosolves, or a mixed solvent of the solvent and water.
  • carboxylic acids such as acetic acid and propionic acid are preferred, and carboxylic acid is particularly preferred in view of the subsequent activation treatment.
  • the said solvent is mixed with the solution of the range of 50 mass parts to 1000 mass parts with respect to 100 mass parts of raw material cellulose, and it grind
  • a more preferable range of the solvent amount is 75 parts by mass to 700 parts by mass, and a range of 95 parts by mass to 500 parts by mass is more preferable.
  • the raw cellulose may be crushed by adding a dry coarse pulverization step to a size that can be charged into a fine pulverization apparatus as a previous step. It is also preferable to perform pre-stirring at a low speed after adding the solvent in order to promote uniform mixing of the raw material cellulose and the solvent.
  • the apparatus for pulverizing the raw material cellulose is not particularly limited as long as it is an apparatus that can be finely pulverized in a wet manner, but a ball mill system (planetary ball mill, etc.), a wet pulverizer (ball-in-liquid collision type, slurry type, etc.), and a grinding type.
  • a ball mill system planetary ball mill, etc.
  • a wet pulverizer ball-in-liquid collision type, slurry type, etc.
  • a grinding type a grinding type.
  • Pulverizers stone mortar type, screen type, etc.
  • collision type pulverizers wet jet mill, etc.
  • screw type pulverizers, etc. are preferably used, and these may be used in combination.
  • the raw material cellulose at the time of pulverization is easily amorphized because it is finely pulverized in a liquid or slurry state where the raw material is wet, which is advantageous in the subsequent cellulose ester production process.
  • the pulverizer is preferably provided with a cooling function, and the temperature setting is preferably controlled at 60 ° C. or lower.
  • the temperature is preferably 10 to 50 ° C, more preferably 20 to 45 ° C.
  • the pulverization time can be appropriately determined, but is preferably 15 minutes to 45 minutes, and more preferably 20 minutes to 30 minutes.
  • the raw cellulose is refined by mechanochemical pulverization according to the present invention, and the average particle size of the raw cellulose after pulverization is 100 ⁇ m or less, but considering the addition of filtration before the aging step, the reaction in each step is performed in a short time. And from the viewpoint of preventing clogging of the filter medium, it is preferably 10 ⁇ m or more and 80 ⁇ m or less.
  • the particle size of the raw material cellulose can be measured by using a microscope or the like.
  • activation process In the activation step, cellulose is treated with an activator to activate the cellulose.
  • raw material cellulose is supplied in a slurry wet state.
  • acylation solvent organic carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid are used. Or an aliphatic carboxylic acid (linear or branched C1-6 alkanoic acid) such as valeric acid. These activators can be used alone or in combination of two or more.
  • an aqueous medium containing water is used as the activator.
  • This aqueous medium may be an aqueous medium containing an organic carboxylic acid.
  • it is economical. It is preferable to use many organic carboxylic acids.
  • the activation step is not limited to a single activation step, and may be composed of a plurality of activation steps, and can be performed using activators having different concentrations of the acylation catalyst.
  • the acylating catalyst may be composed of a first activating step for activating cellulose with an activating agent and a second activating step for activating cellulose with an activating agent containing an acylating catalyst. You may comprise in the 1st process of processing cellulose with the activator with a low density
  • the amount of the activator used is, for example, about 25 to 150 parts by weight, preferably 30 to 125 parts by weight, and more preferably 50 to 100 parts by weight (for example, 70 to 100 parts by weight) with respect to 100 parts by weight of cellulose. It may be.
  • the cellulose may be treated with an activator, the activator may be sprayed on the cellulose, or the cellulose may be immersed in the activator.
  • raw material cellulose is often added to the activator to form a slurry.
  • the activation treatment temperature can be selected from a range of 0 ° C. to 100 ° C. In order to perform the activation treatment without applying industrial load, it is usually 10 ° C. to 40 ° C., preferably about 15 ° C. to 35 ° C. It is.
  • the activation treatment time can be selected in the range of 0.1 to 72 hours, and is usually about 0.1 to 3 hours, preferably about 0.2 to 2 hours.
  • the activation process proceeds in the fine pulverization stage, so the standing time is short, and it is immediately put into the esterification reaction vessel. be able to.
  • Cellulose activated by the activation treatment is esterified with a carboxylic acid (containing at least one or more) having an acyl group having at least 2 carbon atoms and a carboxylic anhydride (containing at least one or more) in the presence of an acid catalyst.
  • a carboxylic acid containing at least one or more
  • carboxylic anhydride containing at least one or more
  • an acid catalyst Lewis acid or strong acid can be used, but sulfuric acid is generally used.
  • acid anhydrides for example, acid anhydrides of carboxylic acids having 2 or more carbon atoms (carboxylic anhydrides)
  • C2-6 alkanoic anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, valeric anhydride, etc. Things can be used.
  • a carboxylic acid having an acyl group having at least 2 carbon atoms (for example, at least a C2-6 carboxylic anhydride) is used. You may use these individually or in combination of 2 or more types. As long as it has an acyl group and is easily acylated, it is not limited to carboxylic acids, and organic acid halides can also be used.
  • the amount of acid catalyst (especially sulfuric acid) used in the esterification step is, for example, in the range of 3 to 20 parts by weight, preferably 5 to 18 parts by weight, more preferably about 7 to 15 parts by weight with respect to 100 parts by weight of cellulose. Usually, it is about 7 to 15 parts by mass.
  • an esterification solvent corresponding to at least an acyl group having 2 or more carbon atoms for example, a carboxylic acid (acid anhydride) may be used, and for example, selected from acid anhydrides corresponding to C2-6 carboxylic acid A plurality of acid anhydrides having different carbon numbers may be used.
  • a carboxylic acid acid anhydride
  • acid anhydrides having different carbon numbers
  • propionic anhydride and / or butyric anhydride and acetic anhydride may be used in combination.
  • Preferred esterification solvents are C2-4 alkanecarboxylic anhydrides, for example, at least one selected from C2-4 carboxylic anhydrides (such as acetic anhydride or propionic anhydride), a combination of acetic anhydride and propionic anhydride, A combination of acetic anhydride and butyric anhydride, and a combination of acetic anhydride, propionic anhydride and butyric anhydride.
  • C2-4 carboxylic anhydrides such as acetic anhydride or propionic anhydride
  • a combination of acetic anhydride and propionic anhydride such as acetic anhydride or propionic anhydride
  • a combination of acetic anhydride and butyric anhydride such as acetic anhydride and butyric anhydride
  • a combination of acetic anhydride, propionic anhydride and butyric anhydride are preferable.
  • Acetic anhydride is more reactive than propionic anhydride and the like, and in the case of obtaining a cellulose mixed fatty acid ester having a low degree of acetyl group substitution, acetic anhydride is not used or the object of the present invention is not impaired.
  • the esterification solvent having at least 3 carbon atoms and corresponding to the acyl group may be combined with a small amount of acetic anhydride.
  • the esterification solvent may correspond to an acyl group having 3 or more carbon atoms, for example, propionic anhydride, if acylation or aging can be performed in the presence of acetic acid.
  • acylation or aging can be performed in the presence of acetic acid.
  • What is necessary is just to comprise by butyric anhydride etc., and it does not necessarily need to contain the esterification solvent (acetic anhydride) corresponding to an acetyl group.
  • acetic anhydride is not necessarily used, and the reaction may be carried out in the presence of acetic acid.
  • Such acetic acid may be present in the reaction system in the esterification step and the ripening step (particularly at least the ripening step), and may be composed only of acetic acid derived from the activation treatment. May be newly added, and may be used as an esterification solvent in an ordinary esterification step.
  • a plurality of esterification solvents may coexist in the reaction system, and after esterifying cellulose with a specific esterification solvent
  • the cellulose may be esterified with another esterification solvent.
  • the amount of the esterification solvent used in the esterification step is, for example, about 1.1 to 4 equivalents, preferably 1.1 to 2 equivalents, more preferably about 1.3 to 1.8 equivalents relative to the hydroxyl group of cellulose. is there.
  • the amount of acetic anhydride used in the esterification step is 0.5 equivalent or less (about 0 to 0.3 equivalent) relative to the hydroxyl group of cellulose. ), Or less than 0.2 equivalent (0.01-0.1 equivalent), and may not be used substantially.
  • an esterification solvent organic carboxylic acid such as acetic acid, propionic acid, butyric acid
  • the amount of esterification solvent (carboxylic acid) used is about 50 to 700 parts by weight, preferably 150 to 600 parts by weight, and more preferably about 200 to 550 parts by weight with respect to 100 parts by weight of cellulose.
  • the esterification reaction can be performed at a temperature of about 0 to 50 ° C., preferably 5 to 45 ° C., more preferably about 10 to 40 ° C.
  • the esterification reaction may be initially performed at a relatively low temperature of 10 ° C. or lower (0 to 10 ° C.).
  • the reaction time at such a low temperature may be, for example, 30 minutes or more, 40 minutes to 2 hours, preferably about 45 to 100 minutes from the start of the esterification reaction.
  • the esterification time at 10 to 50 ° C. is 10 minutes or more and 20 to 90 minutes, preferably 30 to 80 minutes, 40 minutes to 75 minutes.
  • the hydrolysis reaction may be started, or the esterification solvent, the esterification solvent, and the acid catalyst may be left as they are, and the aging step may be performed.
  • the quenching agent that promotes hydrolysis may be composed of at least one selected from water, an esterification solvent, an alcohol, and a neutralizing agent. More specifically, examples of the quenching agent include water alone, a mixture of water and carboxylic acid, a mixture of water and alcohol, a mixture of water and neutralizing agent, water, an organic carboxylic acid and alcohol, and the like. Examples thereof include a mixture with a hydrating agent.
  • Examples of the neutralizing agent include bases that can neutralize part of the acid catalyst or esterification solvent, such as alkali metal compounds (hydroxides such as sodium hydroxide and potassium hydroxide, carbonates such as sodium carbonate and potassium carbonate, etc. , Organic acid salts such as sodium acetate and potassium acetate), alkaline earth metal compounds (eg, hydroxides such as calcium hydroxide, carbonates such as calcium carbonate, organic acid salts such as calcium acetate and magnesium acetate) And may be used alone or in combination of two or more.
  • Examples of the alcohol include straight chain alcohols (ethanol, methanol, propanol, etc.). These alcohols can also be used alone or in combination of two or more.
  • the ratio of water and esterification solvent or water and alcohol can be selected from the range of about 20 to 140 parts by mass of esterification solvent or alcohol with respect to 100 parts by mass of water, usually 25 to 120 parts by mass, preferably 50 parts by mass. ⁇ 100 parts by mass.
  • a neutralizing agent may be included at a ratio of partially neutralizing the acid catalyst, or a neutralizing agent may not be included.
  • the preferred deactivator may be water alone, but since water is a poor solvent for cellulose esters, there is a high possibility that cellulose esters other than the desired degree of substitution will precipitate. And a mixed solution is preferable.
  • reaction component contained in the raw material cellulose is not 100%, an unreacted component is included at this stage, so a process of filtering the reaction solution once may be introduced.
  • This reaction stopping step can be omitted if necessary.
  • the solution after completion of the esterification reaction contains unacetylated, low-acetylated components and impurities that did not react with the raw material cellulose. Time is further shortened, and specific cleavage of molecular chains and substituents occurring in the reaction solution is difficult to occur.
  • the film surface quality of the film formed using the obtained cellulose ester is cellulose without filtration. Even better than the ester.
  • Filter media used for filtration preferably have low absolute filtration accuracy, but if the absolute filtration accuracy is too low, the filter media is likely to be clogged, and the filter media must be replaced frequently, reducing productivity. There is a problem of making it.
  • the filter medium used in the cellulose ester slurry after the esterification step of the present invention preferably has an absolute filtration accuracy of 10 ⁇ m or less, more preferably in the range of 1 to 8 ⁇ m, and still more preferably in the range of 3 to 5 ⁇ m.
  • the material of the filter medium is not particularly limited, and a normal filter medium can be used. However, a filter medium made of plastic such as polypropylene, polyester, and PTFE, a filter medium made of glass fiber, and a metal filter medium such as stainless steel fiber can be used. This is preferable because there is no dropout.
  • the metal filter Since the cellulose ester slurry contains an acid, the metal filter is easily corroded, and therefore, a filter made of glass fiber or plastic fiber is more preferable.
  • the required amount of acid catalyst may be added again, or used in the aging process without neutralizing the acid catalyst (especially sulfuric acid) used in the esterification process. May be.
  • An acid catalyst other than the acid catalyst used in the esterification may be added.
  • the acid catalyst used in the esterification step as it is in the aging step without adding an acid catalyst in the aging step.
  • the alkali metal or alkaline earth metal contained in the neutralizing agent is added in the neutralizing agent, and remains in the purified cellulose ester. It is preferable not to add sulfuric acid in the aging process because it can be an obstacle.
  • a deacylation solvent such as a mixed solution of water and carboxylic acid
  • a deacylation solvent such as a mixed solution of water and carboxylic acid
  • the reaction temperature during the ripening step is preferably 20 ° C. to 90 ° C., preferably 25 ° C. to 80 ° C., more preferably 30 ° C. to 70 ° C.
  • the ripening reaction may be performed in a nitrogen atmosphere or in an air atmosphere You may go on.
  • the aging reaction time can be selected from the range of 20 minutes or more and 25 minutes to 6 hours, preferably 30 minutes to 5 hours, more preferably 1 to 3 hours.
  • the reaction product (dope containing cellulose mixed fatty acid ester) is put into a precipitation solvent (water, aqueous acetic acid solution, etc.) to separate the cellulose mixed fatty acid ester, and free metal components and sulfuric acid components are removed by washing with water. May be.
  • a neutralizing agent can also be used in the case of washing with water.
  • a mixed solution of water and carboxylic acid is preferably used.
  • These precipitation solvents are not limited, and ketones, alcohols, ethers, esters and the like alone or water mixed solvents may be used.
  • the process of filtering and washing the precipitated product is repeated until the free acid concentration is 500 ppm or less, preferably 300 ppm or less, more preferably 150 ppm or less.
  • the residual sulfuric acid content in the cellulose ester used in the present invention is preferably in the range of 0.1 to 40 ppm in terms of elemental sulfur. These are considered to be contained in the form of salts. If the residual sulfuric acid content exceeds 40 ppm, the deposit on the die lip during heat melting increases, such being undesirable. Moreover, since it becomes easy to fracture
  • a smaller amount is preferable, but if it is less than 0.1, it is not preferable because the burden of the washing step of the cellulose resin becomes too large. This is not well understood, although an increase in the number of washings may affect the resin. Furthermore, the range of 0.1 to 30 ppm is preferable.
  • the residual sulfuric acid content can be similarly measured by ASTM-D817-96.
  • the residual sulfuric acid content can be within the above range, and when producing a film by the melt casting method.
  • adhesion to the lip portion is reduced, and a film having excellent flatness can be obtained.
  • a cellulose ester film for use in an optical film is produced using the cellulose ester obtained by the above operation.
  • the method for producing a cellulose ester film is roughly classified into a solution casting film forming method and a melt casting film forming method, and the effects of the present invention can be achieved by using either method.
  • melt casting method In the method for producing a cellulose ester film comprising the cellulose ester of the present invention, at least a polymer forming the film, particulate matter and additives are mixed and melted, the melt is filtered by a filtration device, and then extruded from a normal die. Cast on a cooling roll.
  • the mixture of the polymer, particulate matter, plasticizer and other additives that form the film used for melt extrusion is preferably kneaded in advance and pelletized.
  • Pelletization may be performed by a known method.
  • a polymer, a plasticizer, and other additives that form a film are supplied to an extruder with a feeder, and are kneaded using a single-screw or twin-screw extruder. Extruded into a shape, water-cooled or air-cooled and cut.
  • Pre-drying of raw materials before extrusion is important for preventing decomposition of the raw materials.
  • the polymer forming the optical film is likely to absorb moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 300 ppm or less, further 100 ppm or less.
  • Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders. A small amount of an additive such as an antioxidant is preferably mixed in advance in order to mix uniformly.
  • Mixing of the antioxidants may be performed by mixing solids, and if necessary, the antioxidant may be dissolved in a solvent and impregnated with a polymer forming an optical film, or may be mixed or sprayed. May be mixed.
  • a vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
  • the extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
  • the produced pellets are extruded using a single-screw or twin-screw type extruder, the melting temperature Tm is about 200 to 350 ° C., filtered by the filtration device of the present invention to remove foreign matters, and then formed into a film from the T die. And solidified on a cooling roll and cast while pressing with an elastic touch roll.
  • Tm is the temperature of the die exit portion of the extruder.
  • defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
  • the inner surface that comes into contact with the molten resin is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy.
  • a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
  • the cooling roll is a roll having a structure in which a heat medium or a cooling medium whose temperature can be controlled flows with a high-rigidity metal roll, the size of which is not limited, but a melt-extruded film
  • the diameter of the cooling roll is usually about 100 mm to 1 m.
  • the surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
  • the surface roughness of the cooling roll surface is preferably 0.1 ⁇ m or less in terms of Ra, and more preferably 0.05 ⁇ m or less.
  • the smoother the roll surface the smoother the surface of the resulting film.
  • the surface processed is further polished to have the above-described surface roughness.
  • Examples of the elastic touch roll of the present invention include JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97-028950, JP-A-11-235747, JP-A-11-235747.
  • a thin-film metal sleeve-covered silicon rubber roll can be used.
  • the film obtained as described above is preferably stretched by a stretching operation after passing through a step in contact with a cooling roll.
  • the stretching method a known roll stretching machine or tenter can be preferably used.
  • the stretching temperature is usually preferably in the temperature range of Tg to Tg + 60 ° C. of the resin constituting the film.
  • the end Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking or scratching during winding.
  • the knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing.
  • grip part of the clip of both ends of a film is cut out and reused.
  • Organic solvent useful for forming a dope when a cellulose ester film is produced by a solution casting method can be used without limitation as long as it dissolves cellulose ester and other additives simultaneously.
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
  • the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • the proportion of alcohol in the dope increases, the web gels and peeling from the metal support becomes easy.
  • the proportion of alcohol is small, thermoplastic acrylic resins and cellulose ester resins in non-chlorine organic solvent systems There is also a role of promoting dissolution of the.
  • thermoplastic acrylic resin in particular, cellulose ester resin, and acrylic particles are used.
  • a dope composition in which 45% by mass is dissolved is preferable.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
  • a step of preparing a dope by dissolving a cellulose ester and an additive in a solvent a step of casting the dope on a belt-shaped or drum-shaped metal support, and casting. It is performed by a step of drying the dope as a web, a step of peeling from the metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
  • the concentration of the cellulose ester and the additive in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of the cellulose ester is too high, the load during filtration increases. Thus, the filtration accuracy is deteriorated.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be 1 ⁇ 4m.
  • the surface temperature of the metal support in the casting step is set to ⁇ 50 ° C. to below the temperature at which the solvent boils and does not foam. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, Particularly preferred is 0 to 0.01% by mass or less.
  • a roll drying method (a method in which a plurality of rolls arranged at the top and bottom are alternately passed through the web for drying) or a tenter method for drying while transporting the web is employed.
  • a plasticizer in combination with the cellulose ester film.
  • the plasticizer is not particularly limited, but is preferably a polycarboxylic acid ester plasticizer, a glycolate plasticizer, a phthalate ester plasticizer, a fatty acid ester plasticizer, a polyhydric alcohol ester plasticizer, or a polyester. It is selected from plasticizers, acrylic plasticizers, carbohydrate ester plasticizers and the like. Of these, when two or more plasticizers are used, at least one plasticizer is preferably a polyhydric alcohol ester plasticizer.
  • the polyhydric alcohol ester plasticizer is a plasticizer composed of an ester of a divalent or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
  • a divalent to 20-valent aliphatic polyhydric alcohol ester is preferred.
  • the polyhydric alcohol preferably used in the present invention is represented by the following general formula (a).
  • Ra- (OH) n (However, Ra represents an n-valent organic group, n represents a positive integer of 2 or more, and an OH group represents an alcoholic and / or phenolic hydroxyl group.)
  • n represents a positive integer of 2 or more
  • an OH group represents an alcoholic and / or phenolic hydroxyl group.
  • preferred polyhydric alcohols include the following, but the present invention is not limited to these.
  • Examples include 1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, and xylitol.
  • monocarboxylic acid used for polyhydric alcohol ester there is no restriction
  • Preferred examples of the monocarboxylic acid include the following, but the present invention is not limited to this.
  • aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used.
  • the number of carbon atoms is more preferably 1-20, and particularly preferably 1-10.
  • acetic acid is contained, the compatibility with the cellulose ester is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanoic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include those in which 1 to 3 alkoxy groups such as alkyl group, methoxy group or ethoxy group are introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, biphenylcarboxylic acid, Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as naphthalenecarboxylic acid and tetralincarboxylic acid, or derivatives thereof. Benzoic acid is particularly preferable.
  • the molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably 300 to 1500, and more preferably 350 to 750. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose ester.
  • the carboxylic acid used in the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
  • the glycolate plasticizer is not particularly limited, but alkylphthalylalkyl glycolates can be preferably used.
  • alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl ethyl Glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl glycol Butyl phthalyl propyl glycolate, methyl phthalyl octyl
  • phthalate ester plasticizer examples include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, and dicyclohexyl terephthalate.
  • citrate plasticizer examples include acetyl trimethyl citrate, acetyl triethyl citrate, and acetyl tributyl citrate.
  • fatty acid ester plasticizers examples include butyl oleate, methylacetyl ricinoleate, and dibutyl sebacate.
  • phosphate ester plasticizer examples include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like.
  • carbohydrate ester plasticizer examples include glucose pentaacetate, glucose pentapropionate, glucose pentabtylate, saccharose octaacetate, saccharose octabenzoate and the like.
  • saccharose octaacetate, saccharose Octabenzoate is more preferred, and sucrose octabenzoate is particularly preferred.
  • monopet SB manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • monopet SOA manufactured by Daiichi Kogyo Seiyaku Co., Ltd. can be cited as commercially available products.
  • the plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the cellulose ester film. If the added amount of the plasticizer exceeds 30 parts by mass, the surface becomes sticky, which is not preferable for practical use.
  • the cellulose ester film preferably contains an ultraviolet absorber, and examples of the ultraviolet absorber used include benzotriazole, 2-hydroxybenzophenone, and salicylic acid phenyl ester.
  • the ultraviolet absorber used include benzotriazole, 2-hydroxybenzophenone, and salicylic acid phenyl ester.
  • 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And benzophenones.
  • ultraviolet absorbers having a molecular weight of 400 or more are less likely to volatilize at a high boiling point and are difficult to disperse even during high
  • Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] Such as til] -4- [3- (3,5-di-tert-butyl
  • 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
  • antioxidants can be added to the cellulose ester film in order to improve the thermal decomposability and thermal colorability during molding. It is also possible to add an antistatic agent to give the optical film antistatic performance.
  • a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used.
  • Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, halogen-containing phosphites, and the like.
  • triphenyl phosphate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris ( ⁇ -chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
  • a matting agent in the cellulose ester film, can be added in order to impart slipperiness, optical and mechanical functions.
  • the matting agent include inorganic compound fine particles and organic compound fine particles.
  • the shape of the matting agent is preferably a spherical shape, rod shape, needle shape, layer shape, flat plate shape or the like.
  • the matting agent include oxidation of metals such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate.
  • Inorganic fine particles such as materials, phosphates, silicates, carbonates and crosslinked polymer fine particles.
  • silicon dioxide is preferable because it can reduce the haze of the film.
  • These fine particles are preferably surface-treated with an organic substance because the haze of the film can be reduced.
  • thermoplastic acrylic resin may be mixed with the cellulose ester as a resin.
  • the acrylic resin used in the present invention preferably exhibits negative birefringence with respect to the stretching direction of the film, and the structure is not particularly limited, but is obtained by polymerizing an ethylenically unsaturated monomer. It is preferable that a polymer having a weight average molecular weight of 500 or more and 1000000 or less is appropriately selected.
  • the proper molecular weight range of the acrylic polymer is as described above, but when it is contained in an amount of 30% by mass or more, the weight average molecular weight is preferably 80,000 to 1,000,000 from the viewpoint of compatibility with the cellulose ester.
  • Thermoplastic acrylic resin includes methacrylic resin.
  • the thermoplastic acrylic resin is not particularly limited, but is preferably composed of 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith.
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile, Examples thereof include maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like, and these can be used alone or in combination of two or more monomers.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • n-Butyl acrylate is particularly preferably used.
  • the weight average molecular weight (Mw) is preferably 80,000 to 500,000, and more preferably 110,000 to 500,000.
  • the weight average molecular weight of the thermoplastic acrylic resin can be measured by the gel permeation chromatography described above, including the measurement conditions.
  • thermoplastic acrylic resin there is no restriction
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization.
  • polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent. Commercial products can also be used.
  • thermoplastic acrylic resin a graft copolymer obtained by grafting a (meth) acrylic resin to a copolymer of (meth) acrylic rubber and an aromatic vinyl compound described in JP-A-2009-84574 is used. May be.
  • graft copolymer a copolymer of (meth) acrylic rubber and an aromatic vinyl compound forms a core, and the (meth) acrylic resin forms a shell around the copolymer.
  • -A shell-type graft copolymer is preferred.
  • the cellulose ester film according to the present invention is preferably a “film that does not cause ductile fracture”.
  • the ductile fracture is a fracture caused by applying a stress larger than the strength of a certain material, and is defined as a fracture accompanied by significant elongation or drawing of the material until the final fracture.
  • the fracture surface is characterized by numerous indentations called dimples.
  • the size of liquid crystal display devices is increasing, and the brightness of backlight light sources is increasing.
  • the use of digital signage and other outdoor applications demands higher brightness.
  • the cellulose ester film of the present invention is required to be able to withstand use in a high temperature environment, and if the tension softening point is 105 ° C. to 145 ° C., it can be determined that it exhibits sufficient heat resistance, In particular, it is preferable to control at 110 ° C. to 130 ° C.
  • the cellulose ester film is cut out at 120 mm (length) ⁇ 10 mm (width) with a tension of 10 N. While pulling, the temperature can be raised at a rate of 30 ° C./min. The temperature at the time when the temperature reaches 9 N is measured three times, and the average value can be obtained.
  • the cellulose ester film preferably has a glass transition temperature (Tg) of 110 ° C. or higher. More preferably, it is 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.
  • Tg glass transition temperature
  • the glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min. Point glass transition temperature (Tmg).
  • the dimensional change rate (%) is preferably less than 0.5%, and more preferably less than 0.3%.
  • the cellulose ester film preferably has a defect of 5 ⁇ m or more in diameter in the film plane of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less.
  • the diameter of the defect indicates the diameter when the defect is circular, and when it is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
  • the range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object. If the defect is a change in surface shape, such as transfer of a roll flaw or an abrasion, the size is confirmed by observing the defect with the reflected light of a differential interference microscope.
  • the film When the number of defects is more than 1/10 cm square, for example, when a tension is applied to the film during processing in a later process, the film may be broken with the defect as a starting point and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
  • the coating agent may not be formed uniformly, resulting in defects (coating defects).
  • the defect is a void in the film (foaming defect) generated due to the rapid evaporation of the solvent in the drying process of the solution casting, a foreign matter in the film forming stock solution, or a foreign matter mixed in the film forming. This refers to the foreign matter (foreign matter defect) in the film.
  • the cellulose ester film preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more, as measured in accordance with JIS-K7127-1999.
  • the upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
  • the thickness of the cellulose ester film is preferably 20 ⁇ m or more. More preferably, it is 30 ⁇ m or more.
  • the upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 250 ⁇ m from the viewpoint of applicability, foaming, solvent drying and the like.
  • the thickness of the film can be appropriately selected depending on the application.
  • the cellulose ester film preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
  • the slit film is dissolved again in the solvent at a relatively low temperature, so that the properties equivalent to those of the new raw material can be maintained, and there is no particular problem in the properties even when the optical film is formed.
  • the cellulose ester of the present invention is extremely uniform and has few impurities, even if the film obtained by melt casting is used again as a recycled material, there is little occurrence of deterioration and coloring, and optical use It turns out that the quality of the film has been fully achieved.
  • the use ratio of the recycled material is preferably 0 to 70% by mass, more preferably 10 to 50% by mass, and particularly preferably 20 to 40% by mass with respect to the solid content of the main unused raw material.
  • the additives contained in the cellulose ester film such as plasticizers, ultraviolet absorbers, and fine particles are reduced according to the amount used, and the final cellulose ester film composition becomes the design value. It is preferable to make such adjustments.
  • the cellulose ester film of the present invention can be provided with functional layers such as an antistatic layer, a backcoat layer, an antireflection layer, a slippery layer, an adhesive layer, an antiglare layer, and a barrier layer.
  • functional layers such as an antistatic layer, a backcoat layer, an antireflection layer, a slippery layer, an adhesive layer, an antiglare layer, and a barrier layer.
  • the hard coat layer used in the present invention contains an actinic radiation curable resin, and is a layer mainly composed of a resin that cures through a crosslinking reaction by irradiation with an actinic ray (also referred to as an active energy ray) such as an ultraviolet ray or an electron beam. Preferably there is.
  • an actinic radiation curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and an actinic radiation curable resin layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams.
  • Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, but the resin that is cured by ultraviolet irradiation is excellent in mechanical film strength (abrasion resistance, pencil hardness). preferable.
  • an ultraviolet curable urethane acrylate resin for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, ultraviolet curable acrylate resins are preferred.
  • the hard coat layer contains a photopolymerization initiator to accelerate the curing of the actinic radiation curable resin.
  • photopolymerization initiator examples include acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto.
  • the hard coat layer preferably contains fine particles of an inorganic compound or an organic compound.
  • silicon oxide, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated silicic acid Mention may be made of calcium, aluminum silicate, magnesium silicate and calcium phosphate.
  • silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide and the like are preferably used.
  • polymethacrylic acid methyl acrylate resin powder acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder,
  • a polyolefin resin powder, a polyester resin powder, a polyamide resin powder, a polyimide resin powder, a polyfluoroethylene resin powder, or the like can be added.
  • the average particle diameter of these fine particle powders is not particularly limited, but is preferably 0.01 to 5 ⁇ m, and more preferably 0.01 to 1.0 ⁇ m. Moreover, you may contain 2 or more types of microparticles
  • the average particle diameter of the fine particles can be measured by, for example, a laser diffraction particle size distribution measuring device.
  • the ratio of the ultraviolet curable resin composition and the fine particles is desirably 10 to 400 parts by mass, more preferably 50 to 200 parts by mass with respect to 100 parts by mass of the resin composition.
  • These hard coat layers are coated using a known method such as a gravure coater, dip coater, reverse coater, wire bar coater, die coater, ink jet method, and the like. And can be formed by UV curing.
  • the dry film thickness of the hard coat layer is an average film thickness of 0.1 to 30 ⁇ m, preferably 1 to 20 ⁇ m, particularly preferably 6 to 15 ⁇ m.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 5 to 500 mJ / cm 2 , preferably 5 to 200 mJ / cm 2 .
  • a back coat layer may be provided on the surface opposite to the side on which the hard coat layer is provided to prevent curling and sticking.
  • examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, and oxide. Mention may be made of indium, zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate.
  • the particles contained in the backcoat layer are preferably 0.1 to 50% by mass with respect to the binder.
  • the increase in haze is preferably 1.5% or less, more preferably 0.5% or less, and particularly preferably 0.1% or less.
  • the binder is preferably a cellulose ester resin such as diacetylcellulose.
  • the cellulose ester film of the present invention can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on the hard coat layer.
  • the antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference.
  • the antireflection layer is preferably composed of a low refractive index layer having a refractive index lower than that of the support, or a combination of a high refractive index layer having a refractive index higher than that of the support and a low refractive index layer. Particularly preferably, it is an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support).
  • an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
  • the layer structure of the antireflection film the following structure can be considered, but it is not limited to this.
  • the refractive index layer preferably contains silica-based fine particles, and its refractive index is lower than the refractive index of the cellulose film as the support, and is in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm. It is preferable.
  • the film thickness of the low refractive index layer is preferably 5 nm to 0.5 ⁇ m, more preferably 10 nm to 0.3 ⁇ m, and most preferably 30 nm to 0.2 ⁇ m.
  • the composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles.
  • the particles having the outer shell layer and having a porous or hollow interior are preferably hollow silica-based fine particles.
  • composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
  • OSi-1 organosilicon compound represented by the following general formula (OSi-1)
  • hydrolyzate thereof a hydrolyzate thereof
  • polycondensate thereof a polycondensate thereof.
  • R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
  • a solvent and if necessary, a silane coupling agent, a curing agent, a surfactant and the like may be added.
  • the polarizing plate can be produced by a general method.
  • the back side of the cellulose ester film of the present invention is subjected to alkali saponification treatment, and a completely saponified polyvinyl alcohol aqueous solution is used on at least one surface of a polarizing film prepared by immersing and stretching the treated cellulose ester film in an iodine solution. It is preferable to bond them together.
  • the cellulose ester film may be used on the other surface, or another polarizing plate protective film may be used.
  • a non-oriented film having retardation Ro of 590 nm at 0 to 5 nm and Rt of ⁇ 20 to +20 nm described in JP-A No. 2003-12859 can be mentioned as an example.
  • an optical compensation film (retardation film) having a retardation of in-plane retardation Ro of 590 nm, 20 to 70 nm, and Rt of 70 to 400 nm may be used to obtain a polarizing plate capable of widening the viewing angle. it can.
  • These can be produced, for example, by the method of JP-A-2002-71957.
  • the optically anisotropic layer can be formed by the method described in JP-A-2003-98348.
  • polarizing plate protective films preferably used include KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-2, KC4FR-2, KC4FR-2, KC8FR-2 KC4UE (Konica Minolta Opto Co., Ltd.) etc. are mentioned.
  • the polarizing film which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction.
  • a typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film.
  • polarizing film a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound.
  • a polarizing film having a thickness of 5 to 30 ⁇ m, preferably 8 to 15 ⁇ m is preferably used.
  • a polarizing plate is formed by laminating one side of the cellulose ester film of the present invention on the surface of the polarizing film. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.
  • ⁇ Liquid crystal display device> By incorporating a polarizing plate produced using the cellulose ester film of the present invention into a display device, various image display devices with excellent visibility can be produced.
  • the cellulose ester film of the present invention is incorporated in a polarizing plate and is a reflective type, transmissive type, transflective liquid crystal display device or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type. It is preferably used in liquid crystal display devices of various driving systems such as OCB type.
  • Example 1 Manufacture of cellulose ester> ⁇ Production Example 1> 100 parts by mass of raw material pulp ( ⁇ cellulose 93% or more) and 100 parts by mass of glacial acetic acid were put into a mixer and stirred to form a slurry, and then put into a stone mortar pulverizer and ground at 40 ° C. for 30 minutes. The average pulverized particle size of the pulverized raw material pulp was 63 ⁇ m by microscopic observation.
  • the acetic acid-containing pulp is put into a reactor, and 250 parts by mass of propionic anhydride, 400 parts by mass of propionic anhydride, and 9 parts by mass of sulfuric acid are sequentially added, and the temperature is gradually raised from room temperature to 40 ° C. and kept at 40 ° C. The mixture was kept warm for 1 hour to allow the esterification reaction to proceed.
  • the cellulose ester precipitated in the precipitation process was filtered off, washed 5 times with warm water at 50 ° C., and the remaining acetic acid aqueous solution was eluted, followed by drying at 70 ° C. for 3 hours, acetyl substitution degree 0.61, propionyl substitution
  • Mw weight average molecular weight
  • a cellulose ester film 1 was produced according to the following melt casting method.
  • ⁇ Melt casting method> A cellulose ester film was prepared by the melt casting method with the following composition.
  • Cellulose ester film composition Production Example 1 Cellulose ester 94 parts by mass Plasticizer: Glycerin tribenzoate 5 parts by mass Irganox 1010 (manufactured by BASF Japan Ltd.) 0.5 parts by mass Irgafos P-EPG (manufactured by BASF Japan Ltd.) 0.3 parts by mass HP-136 (manufactured by BASF Japan Ltd.) 0.2 parts by mass The cellulose ester was dried under reduced pressure at 70 ° C. for 3 hours and cooled to room temperature, and then each additive was mixed.
  • Glycerin tribenzoate 5 parts by mass Irganox 1010 (manufactured by BASF Japan Ltd.) 0.5 parts by mass Irgafos P-EPG (manufactured by BASF Japan Ltd.) 0.3 parts by mass HP-136 (manufactured by BASF Japan Ltd.) 0.2 parts by mass
  • the cellulose ester was dried under reduced pressure at 70 ° C. for 3 hours and cooled
  • the above mixture was formed into a film by a manufacturing apparatus using an elastic touch roll. In a nitrogen atmosphere, it was melted at 240 ° C., extruded from the casting die onto the first cooling roll, and molded by pressing the film between the first cooling roll and the touch roll. Further, silica particles (manufactured by Nippon Aerosil Co., Ltd.) were added as a slip agent from the hopper opening in the middle of the extruder so as to be 0.1 part by mass.
  • the heat bolt was adjusted so that the gap width of the casting die was 0.5 mm within 30 mm from the end in the width direction of the film and 1 mm at other locations.
  • 80 degreeC water was poured as cooling water in the inside.
  • the length L along the surface was set to 20 mm.
  • the touch roll was separated from the first cooling roll, and the temperature T of the melted part immediately before being sandwiched in the nip between the first cooling roll and the touch roll was measured.
  • the temperature T of the melted portion immediately before being sandwiched between the first cooling roll and the touch roll is 1 mm upstream from the nip upstream end P2, and a thermometer (HA-200E manufactured by Anritsu Keiki Co., Ltd.) It was measured by.
  • the temperature T was 141 ° C.
  • the linear pressure of the touch roll against the first cooling roll was 14.7 N / cm.
  • cooling to 30 ° C while relaxing 3% in the width direction, then releasing from the clip, cutting off the clip gripping part was subjected to a knurling process having a width of 20 mm and a height of 25 ⁇ m, and wound on a winding core with a winding tension of 220 N / m and a taper of 40%.
  • the film thickness was 40 micrometers
  • the winding length was 4000 m
  • the cellulose-ester film 1 of refractive index 1.49 was produced.
  • cellulose ester films 2 to 20 were produced using the cellulose esters produced in Production Examples 2 to 20.
  • the melt casting temperature when the cellulose esters of Production Examples 3 to 5 were used was adjusted to 260 ° C.
  • acyl group substitution degree of cellulose ester The acyl group substitution degree was measured in accordance with ASTM-D817-96.
  • Pr propionyl group
  • AC acetyl group
  • Bu butyrate group
  • total total acyl group (average molecular weight)
  • Mw weight average molecular weight
  • the measurement conditions are as follows.
  • ⁇ Dispersion of cellulose ester (vinegar cotton)> 1.
  • Variation in molecular weight distribution standard deviation of 1/10 width of molecular weight distribution of 10 samples of different production lots.
  • Variation of acyl group substitution degree standard deviation of 1/10 width of acyl group substitution degree distribution of vinegar cotton of 10 samples of different production lots ⁇ Film surface failure of cellulose ester film> The film surface failure was visually evaluated on the following evaluation scale.
  • There is no variation in film surface failure among lots.
  • The cellulose ester of different production lots has a probability of 10%, and the level of film surface failure is shifted by 1.
  • The cellulose ester of different production lots has a probability of 20%.
  • the level of surface failure shifts by 1 ⁇ The cellulose ester of different production lots has a probability of 40%, and the level of film surface failure shifts 1 to 2 ⁇ :
  • the cellulose ester of different production lots has a probability of 60% of film surface failure The level is not stable.
  • X The cellulose ester in different production lots has a probability of 80% and the film surface failure level is not stable.
  • Tables 1 to 9 A list of the production conditions of the cellulose ester and the above evaluation results are shown in Tables 1 to 9 below.
  • the cellulose esters of Production Examples 1 to 16 produced by the method for producing cellulose esters of the present invention have small variations in vinegared cotton, and film surface failure when film is formed (oblique lines, horizontal dunes, egg unevenness, etc.) It is clear that this is superior.
  • the cellulose esters of Production Examples 10 to 12 in which a filtration step is added between the esterification step and the aging step are more excellent in film surface failure when a film is formed.
  • Example 2 The cellulose ester film 1 using the cellulose ester produced in Production Example 1 of Example 1 was chipped as a return material, and a cellulose ester film 21 was produced according to the following formulation.
  • ⁇ Melt casting method> A cellulose ester film was prepared by the melt casting method with the following composition.
  • ⁇ Cellulose ester film composition Production Example 1 Cellulose ester 54 parts by mass Returning material cellulose ester film 1 chip 40 parts by mass Plasticizer: Glycerin tribenzoate 5 parts by mass Irganox 1010 (manufactured by BASF Japan Ltd.) 0.5 parts by mass Irgafos P-EPG (manufactured by BASF Japan Ltd.) 0.3 parts by mass HP-136 (manufactured by BASF Japan Ltd.) 0.2 parts by mass The cellulose ester was dried under reduced pressure at 70 ° C. for 3 hours and cooled to room temperature, and then each additive was mixed.
  • Glycerin tribenzoate 5 parts by mass Irganox 1010 (manufactured by BASF Japan Ltd.) 0.5 parts by mass Irgafos P-EPG (manufactured by BASF Japan Ltd.) 0.3 parts by mass HP-136 (manufactured by BASF Japan Ltd.) 0.2 parts by mass
  • the cellulose ester was
  • a cellulose ester film 21 was produced by the melt casting method in the same manner as in Example 1.
  • cellulose ester films 2 to 20 using the cellulose ester produced in Production Example 2 to Production Example 20 of Example 1 were used as recycled materials, and cellulose ester films 22 to 41 were produced by a melt casting method. .
  • an optical film it is preferable that it is 15 pieces / m ⁇ 2 > or less, More preferably, it is less than 10 pieces / m ⁇ 2 >.
  • Yellow index> The yellow index (yellowness) is obtained by the method described in JIS standard K7105-6.3.
  • the tristimulus values X, Y, and Z of the color were determined using a spectrophotometer U-3200 manufactured by Hitachi, Ltd. and the attached saturation calculation program, and the yellow index was determined according to the following formula.
  • Yellow index 100 (1.28X-1.06Z) / Y Evaluation was performed on the following scale from the obtained yellow index.
  • the cellulose ester films 1 to 16 produced using the cellulose esters of Production Examples 1 to 16 of the present invention have a small number of deteriorated foreign matters even when used as recycled materials in the melt casting method. It turns out that coloring is excellent and it can be used as an optical use film.
  • Example 3 Using the cellulose ester produced in Production Example 1 to Production Example 20 of Example 1, a cellulose ester film was produced under the conditions of the following solution casting method 1 and solution casting method 2, and the same membrane as in Example 1 When the surface failure was determined, the cellulose ester film using the cellulose ester produced in Production Examples 1 to 16 according to the present invention by reproducing Example 1 was excellent in film surface failure.
  • ⁇ Solution casting method 1> (Preparation of dope solution) The following materials were sequentially put into a sealed container, the temperature in the container was raised from 20 ° C. to 80 ° C., and the mixture was stirred for 3 hours while maintaining the temperature at 80 ° C. to completely dissolve the cellulose ester. .
  • the silicon oxide fine particles were added dispersed in a solution of a solvent to be added in advance and a small amount of cellulose ester.
  • This dope was filtered using a filter paper (Azumi filter paper No. 244, manufactured by Azumi Filter Paper Co., Ltd.) to obtain a dope solution A.
  • the web was dried on the support, and the web was peeled from the support with a peeling roll when the residual solvent amount of the web reached 80% by mass.
  • the web is transported while being dried with a drying air of 90 ° C. in a transport and drying process using a plurality of rolls arranged on the top and bottom, subsequently gripping both end portions of the web with a tenter, and then before stretching in the width direction at 130 ° C.
  • the film was stretched so as to be 1 time.
  • the web was dried with a drying air of 130 ° C. in a transport drying process using a plurality of rolls arranged vertically.
  • the film After heat treatment for 15 minutes in an atmosphere with an atmosphere substitution rate of 15 (times / hour) in the drying step, the film was subjected to a knurling process with a width of 10 mm and a height of 10 ⁇ m at both ends of the film, cooled to room temperature, and wound on a core.
  • thermoplastic acrylic resin (Dianar BR85 (manufactured by Mitsubishi Rayon Co., Ltd.) Mw 280000) 70 parts by weight Cellulose ester of Production Example 1 (to Production Example 20) 30 parts by weight Methylene chloride 300 parts by weight Ethanol 40 parts by weight The above composition was sufficiently dissolved with heating to prepare a dope solution B.
  • the produced dope solution B was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the amount of residual solvent reached 100%, and then peeled off from the stainless steel band support.
  • the peeled thermoplastic acrylic resin / cellulose ester resin web was evaporated at 35 ° C., slit to 1.6 m width, and then stretched 1.1 times in the width direction with a tenter, followed by a drying temperature of 130 ° C. And dried. At this time, the residual solvent amount when starting stretching with a tenter was 10%. After stretching with a tenter, relaxation was performed at 130 ° C.
  • a drying zone at 120 ° C. and 140 ° C. with many rolls, slitting to a width of 1.5 m, and a width of 10 mm at both ends of the film
  • a knurling process having a height of 10 ⁇ m was applied and wound around the core to obtain a cellulose ester film.
  • the film thickness was 40 ⁇ m and the winding length was 4000 m.
  • Example 4 Preparation of Polarizing Plate 101> According to the following steps 1 to 4, the polarizing plate 101 was produced by laminating the cellulose ester film 1 produced in Example 1 on both sides of the polarizing film.
  • PVA polyvinyl alcohol
  • the obtained PVA film had an average thickness of 25 ⁇ m, a moisture content of 4.4%, and a film width of 3 m.
  • the obtained PVA film was continuously processed in the order of pre-swelling, dyeing, uniaxial stretching by a wet method, fixing treatment, drying, and heat treatment to produce a polarizing film. That is, the PVA film was immersed in water at a temperature of 30 ° C. for 30 seconds to be pre-swelled, and immersed in an aqueous solution having an iodine concentration of 0.4 g / liter and a potassium iodide concentration of 40 g / liter at a temperature of 35 ° C. for 3 minutes. Subsequently, the film was uniaxially stretched 6 times in a 50% aqueous solution with a boric acid concentration of 4% under a tension of 700 N / m.
  • the potassium iodide concentration was 40 g / liter, and the boric acid concentration was 40 g / liter. Then, it was immersed in an aqueous solution having a zinc chloride concentration of 10 g / liter and a temperature of 30 ° C. for 5 minutes for fixing treatment. Thereafter, the PVA film was taken out, dried with hot air at a temperature of 40 ° C., and further heat-treated at a temperature of 100 ° C. for 5 minutes. The obtained polarizing film had an average thickness of 13 ⁇ m, a polarizing performance of a transmittance of 43.0%, a polarization degree of 99.5%, and a dichroic ratio of 40.1.
  • Step 2 The cellulose ester film 1 was subjected to alkali saponification treatment under the following conditions. Next, excess adhesive adhered to the polarizing film immersed in the polyvinyl alcohol adhesive solution in Step 1 was lightly removed, and the cellulose ester film 1 was bonded to the polarizing film so as to be sandwiched from both sides.
  • Step 3 The laminate was laminated with two rotating rollers at a pressure of 20 to 30 N / cm 2 and a speed of about 2 m / min. At this time, it was carried out with care to prevent bubbles from entering.
  • Step 4 The sample prepared in Step 3 was dried in a dryer at a temperature of 100 ° C. for 5 minutes to prepare a polarizing plate.
  • Step 5 A commercially available acrylic pressure-sensitive adhesive is applied to one side of the cellulose ester film 1 of the polarizing plate prepared in Step 4 so that the thickness after drying is 25 ⁇ m, and dried in an oven at 110 ° C. for 5 minutes to form an adhesive layer. And a peelable protective film was attached to the adhesive layer. This polarized light was cut (punched) into a size of 576 ⁇ 324 mm, and the polarizing plate 101 was produced.
  • the polarizing plate of the NEC notebook PC LaVie G type liquid crystal panel was peeled off, and the adhesive layer of the produced polarizing plate 101 and the liquid crystal cell glass were bonded as a polarizing plate on the viewing side. Moreover, the polarizing plate 101 was bonded to the liquid crystal cell also on the backlight side in the same manner as the above procedure, and the liquid crystal display device 101 was produced.
  • the use of the cellulose ester films 1 to 16 of the present invention for the polarizing plate shows no film surface failure and good visibility (clearness). It was found that a liquid crystal display device can be obtained.

Abstract

Disclosed is a method for producing a cellulose ester, with which variations in properties among production lots of the cellulose ester is suppressed and a cellulose ester film with reduced film surface defects (such as oblique streaks, lateral steps, or egg unevenness) can be produced. Also disclosed are a cellulose ester produced by the method, and a cellulose ester film using the cellulose ester. The method for producing a cellulose ester comprises a milling step of milling starting material cellulose, an activation step, an esterification step, an aging step, and a post-treatment step. The milling step is a mechanochemical milling step in which starting material cellulose and a solvent are mixed and milled.

Description

セルロースエステルの製造方法、セルロースエステル、及びセルロースエステルフィルムMethod for producing cellulose ester, cellulose ester, and cellulose ester film
 本発明は、セルロースエステルの製造方法、セルロースエステル、及びセルロースエステルフィルムに関し、セルロースエステルの製造ロット間における性能のバラつきを抑え、膜面故障(斜めスジ、横ダン、エッグムラ等)の低減したセルロースエステルフィルムを生産可能なセルロースエステルの製造方法、それによって製造されたセルロースエステル、及び該セルロースエステルを用いたセルロースエステルフィルムに関する。 The present invention relates to a cellulose ester production method, a cellulose ester, and a cellulose ester film, and suppresses variation in performance between production lots of cellulose ester and reduces the film surface failure (diagonal streaks, horizontal dan, egg unevenness, etc.). The present invention relates to a method for producing a cellulose ester capable of producing a film, a cellulose ester produced thereby, and a cellulose ester film using the cellulose ester.
 従来セルロースエステルはその高い透明性・低複屈折性・偏光子との易接着性等に優れるため、液晶表示装置に使用される偏光板の保護フィルムの原料として好適に用いられてきた。ほかにも、位相差フィルムや視野拡大フィルム、反射防止フィルムなどの光学フィルムの原料として好適に使用されている。 Conventionally, cellulose ester has been suitably used as a raw material for a protective film of a polarizing plate used in a liquid crystal display device because of its high transparency, low birefringence, and excellent adhesion with a polarizer. In addition, it is suitably used as a raw material for optical films such as a retardation film, a field-of-view expansion film, and an antireflection film.
 上記製品に使用されるセルロースエステルは一般に、粉砕工程において粗粉砕された原料セルロースをアシル基と反応させやすくするため活性化させる活性化(前処理)工程と、カルボン酸と酸触媒下でセルロースの水酸基をエステル化するエステル化工程と、必要に応じエステル化工程で置換されたアシル基を脱アシル化等で所望のアシル基置換度にする熟成工程と、カルボン酸無水物を加水分解し、塩基で酸触媒を中和させる中和工程を経て、生成物を沈殿、精製、乾燥させることで得られる。 Cellulose esters used in the above products are generally activated (pretreatment) in which the raw cellulose coarsely pulverized in the pulverization step is activated in order to react with acyl groups, and the cellulose ester is produced under carboxylic acid and acid catalyst. An esterification step for esterifying a hydroxyl group, an aging step for converting the acyl group substituted in the esterification step to a desired acyl group substitution degree by deacylation or the like, if necessary, hydrolyzing the carboxylic acid anhydride, and a base The product is obtained by precipitating, purifying and drying the product through a neutralization step of neutralizing the acid catalyst.
 光学用途に使用するセルロースエステルフィルムは従来溶液製膜することが一般的で、塩化メチレン等の塩素系溶剤を使用して製膜する。セルロースエステルはアシル基置換度分布や重合度の変化で溶解性、粘度等の性質に大きく関与する。アシル基置換度や重合度の分布を均一に調整していないセルロースエステルを用いて光学フィルムを作成すると、不溶解物が残り輝点異物の原因となったり、位相差などの光学的に致命的な欠陥になることもあるため、エステル化工程、熟成工程の調整は精密に行うことが肝要である。しかしながらセルロースは天然高分子であり、原料自体の分子量や分子鎖、結晶化度等のバラツキが大きく、活性化処理、エステル化工程、及び熟成工程での反応にムラが生じ、逆にムラを無くそうと各々の工程の時間を長くとったり、温度を上げたりすると重合度が低下するなど制御が困難である。上記エステル化工程、熟成工程を精密に制御することで、分布を均一にする技術が開示されている(例えば、特許文献1参照。)が、十分な効果を得るには至っていない。 Conventionally, cellulose ester films used for optical applications are generally formed into solutions, and are formed using a chlorinated solvent such as methylene chloride. Cellulose esters are greatly involved in properties such as solubility and viscosity due to changes in acyl group substitution degree distribution and polymerization degree. If an optical film is made using cellulose ester whose distribution of acyl group substitution degree or degree of polymerization is not uniformly adjusted, insoluble matter may remain and cause bright spot foreign matter, or optically fatal such as phase difference Therefore, it is important to precisely adjust the esterification process and the aging process. However, cellulose is a natural polymer, and there are large variations in the molecular weight, molecular chain, crystallinity, etc. of the raw material itself, resulting in uneven reaction in the activation process, esterification process, and aging process, and no unevenness. If the time of each process is taken long or the temperature is raised, the degree of polymerization is lowered and control is difficult. A technique for making the distribution uniform by precisely controlling the esterification step and the ripening step is disclosed (for example, see Patent Document 1), but has not yet achieved a sufficient effect.
 特許文献2には、セルロースを活性化剤で活性化処理する工程、アシル化触媒の存在下、少なくとも炭素数2以上(特に少なくとも炭素数3以上)のアシル化剤でセルロースをエステル化する工程、および生成したセルロースエステルをケン化熟成する工程を含むセルロースエステルの製造方法であって、エステル化工程の後、反応系に残存するアシル化剤1モルに対して、エステル化反応停止剤を0.3~10当量/分の速度で添加し、セルロースエステルを製造することによって、輝点異物の発生を顕著に改善する技術が開示されている。 Patent Document 2 includes a step of activating cellulose with an activating agent, a step of esterifying cellulose with an acylating agent having at least 2 carbon atoms (particularly at least 3 carbon atoms) in the presence of an acylation catalyst, And a method for producing a cellulose ester, comprising a step of saponifying and ripening the produced cellulose ester, and after the esterification step, the esterification reaction terminator is added to 0.1 mol of the acylating agent remaining in the reaction system. A technique for remarkably improving the generation of bright spot foreign matter by adding cellulose at a rate of 3 to 10 equivalents / minute to produce a cellulose ester is disclosed.
 しかしながら、最近の広幅、薄膜のセルロースエステルフィルムの製造では、アシル基置換度分布が均一でないセルロースエステルや重合度の分布が均一でないセルロースエステルを用いると、セルロースエステルのロットによって、フィルム製膜した際に膜面品質(斜めスジ、横ダン、エッグムラ等)が安定しないといった、上記特許文献記載にはない新たな問題が生じており、光学フィルムとしては致命的な欠陥となる為早急な改善が望まれていた。 However, in the recent production of wide and thin cellulose ester films, when cellulose esters having non-uniform acyl group substitution degree distributions or cellulose esters having non-uniform polymerization degree distributions are used, film formation may occur depending on the lot of cellulose esters. However, the film surface quality (diagonal streaks, horizontal dunes, egg unevenness, etc.) is not stable, and there are new problems not described in the above patent document. It was rare.
特開2006-117896号公報JP 2006-117896 A 特開2007-197563号公報JP 2007-197563 A
 本発明の目的は、セルロースエステルの製造ロット間における性能のバラつきを抑え、膜面故障(斜めスジ、横ダン、エッグムラ等)の低減したセルロースエステルフィルムを生産可能なセルロースエステルの製造方法、それによって製造されたセルロースエステル、及び該セルロースエステルを用いたセルロースエステルフィルムを提供することにある。 An object of the present invention is to provide a method for producing a cellulose ester capable of producing a cellulose ester film capable of producing a cellulose ester film with reduced film surface failures (diagonal streaks, horizontal dans, egg unevenness, etc.) by suppressing variation in performance between production lots of cellulose esters. The object is to provide a produced cellulose ester and a cellulose ester film using the cellulose ester.
 本発明の上記課題は以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.原料セルロースの粉砕工程、活性化工程、エステル化工程、熟成工程、及び後処理化工程を含むセルロースエステルの製造方法において、該粉砕工程が原料セルロースと溶剤とを混合して粉砕するメカノケミカル粉砕工程であることを特徴とするセルロースエステルの製造方法。 1. In a cellulose ester production method including a raw material cellulose pulverization step, an activation step, an esterification step, an aging step, and a post-treatment step, the pulverization step mixes and pulverizes the raw material cellulose and a solvent, and a mechanochemical pulverization step The manufacturing method of the cellulose ester characterized by the above-mentioned.
 2.前記溶剤が、カルボン酸類、アルコール類、ケトン類、エーテル類、セロソルブ類から選ばれる溶剤の少なくとも一種であるか、または前記溶剤の少なくとも一種と水との混合溶剤であることを特徴とする前記1に記載のセルロースエステルの製造方法。 2. The above-mentioned solvent is characterized in that the solvent is at least one solvent selected from carboxylic acids, alcohols, ketones, ethers and cellosolves, or a mixed solvent of at least one solvent and water. The manufacturing method of the cellulose ester as described in any one of.
 3.前記エステル化工程と熟成工程の間に濾過工程を設けることを特徴とする前記1または2に記載のセルロースエステルの製造方法。 3. 3. The method for producing a cellulose ester according to 1 or 2, wherein a filtration step is provided between the esterification step and the aging step.
 4.前記セルロースエステルが、アシル基の平均置換度が1.2~2.95、アシル基総炭素数が2.0~9.5であり、かつ平均重量分子量が100000~500000であることを特徴とする前記1または2に記載のセルロースエステルの製造方法。 4. The cellulose ester has an average acyl group substitution degree of 1.2 to 2.95, an acyl group total carbon number of 2.0 to 9.5, and an average weight molecular weight of 100,000 to 500,000. 3. The method for producing a cellulose ester according to 1 or 2 above.
 5.前記1~4のいずれか1項に記載のセルロースエステルの製造方法によって製造されたことを特徴とするセルロースエステル。 5. A cellulose ester produced by the method for producing a cellulose ester according to any one of 1 to 4 above.
 6.前記5に記載のセルロースエステルを含有することを特徴とするセルロースエステルフィルム。 6. 6. A cellulose ester film comprising the cellulose ester as described in 5 above.
 本発明によれば、セルロースエステルの製造ロット間における性能のバラつきを抑え、膜面故障(斜めスジ、横ダン、エッグムラ等)の低減したセルロースエステルフィルムを生産可能なセルロースエステルの製造方法、それによって製造されたセルロースエステル、及び該セルロースエステルを用いたセルロースエステルフィルムを提供することができる。 According to the present invention, there is provided a method for producing a cellulose ester capable of producing a cellulose ester film capable of producing a cellulose ester film with reduced film surface failures (diagonal stripes, horizontal dans, egg unevenness, etc.) by suppressing variation in performance between production lots of cellulose esters. The produced cellulose ester and a cellulose ester film using the cellulose ester can be provided.
本発明のセルロースエステルの製造フローを示す模式図である。It is a schematic diagram which shows the manufacture flow of the cellulose ester of this invention.
 以下本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, modes for carrying out the present invention will be described in detail, but the present invention is not limited to these.
 従来のセルロースエステルの製造方法は原料セルロースを乾式粉砕し、綿状にした後、酢酸水溶液、もしくは熱水で活性化処理することが一般的である。しかし原料セルロースを乾式粉砕すると、セルロースの鎖が切断されたり、粉砕粒径にムラのある綿状の微粉砕物が出来やすく、次工程の活性化処理やエステル化処理で均一なセルロースエステルが形成されにくいという問題があった。 A conventional method for producing a cellulose ester is generally to dry-grind raw material cellulose to form a cotton, and then activate it with an acetic acid aqueous solution or hot water. However, when dry pulverization of the raw material cellulose, it is easy to form a finely pulverized cotton-like product with uneven pulverized particle size, and a uniform cellulose ester is formed by the activation process and esterification process in the next step. There was a problem that it was difficult to be done.
 さらに熟成工程において、所望のアシル基置換度を均一に付与するためにはそれなりに時間をかける必要があったが、置換度分布を均一にするために時間をかけると重合度を低下させてしまうといった問題があった。 Furthermore, in the ripening step, it was necessary to spend a certain amount of time in order to uniformly give the desired degree of acyl group substitution, but if the time was taken to make the degree of substitution distribution uniform, the degree of polymerization would be lowered. There was a problem.
 更に本発明者の検討によれば、このようにして得られたアシル基置換度や重合度がロットによって不均一である場合、該セルロースエステルを用いてセルロースエステルフィルムを作製すると、フィルムの膜面故障(斜めスジ、横ダン、エッグムラ等)が発生し易いことが分かった。これは、アシル基置換度や重合度がロットによって不均一であると、フィルム形成組成物の粘度に偏りが発生し、ダイス等から流延した場合に均一な膜形成ができ難いことに起因するものである。特に溶融流延法によるフィルム製膜の場合にその欠陥が表れやすい。 Further, according to the study of the present inventors, when the acyl group substitution degree and polymerization degree obtained in this way are non-uniform depending on the lot, a cellulose ester film is produced using the cellulose ester. It was found that breakdowns (diagonal stripes, horizontal dunes, egg unevenness, etc.) are likely to occur. This is because when the acyl group substitution degree and the degree of polymerization are non-uniform from lot to lot, the viscosity of the film-forming composition is uneven, and it is difficult to form a uniform film when cast from a die or the like. Is. In particular, defects are likely to appear in the case of film formation by the melt casting method.
 本発明者は上記課題に鑑み鋭意検討した結果、原料セルロースの粉砕工程、活性化工程、エステル化工程、熟成工程、及び後処理化工程を含むセルロースエステルの製造方法において、該粉砕工程が原料セルロースと溶剤とを混合して粉砕するメカノケミカル粉砕工程であることを特徴とするセルロースエステルの製造方法によって、上記セルロースエステルの製造ロット間における性能のバラつき、フィルム製膜した際の膜面故障(斜めスジ、横ダン、エッグムラ等)の問題を解決できることを見出し、本願請求項1に係る発明を成すに至った次第である。 As a result of intensive studies in view of the above problems, the present inventor has found that in the cellulose ester production method including a raw cellulose pulverization step, an activation step, an esterification step, an aging step, and a post-treatment step, the pulverization step is the raw cellulose This is a mechanochemical pulverization process that mixes and pulverizes with a solvent. It has been found that the problem of streaks, horizontal dunes, egg unevenness, etc.) can be solved, and the invention according to claim 1 of the present application has been achieved.
 即ち、セルロースエステルの製造工程において、活性化処理を行う前に溶剤とパルプを混合して微粉砕するメカノケミカル粉砕工程を設けることで、セルロースの鎖を極力傷めず、均一に微粉砕することができるようになり、エステル化工程・熟成工程での反応をスムーズに行うことができる。特に、熟成工程での反応時間を短縮できることから、上記トレードオフになっていた反応の均一性向上と重合度の低下防止の両立を達成できたものである。 In other words, in the cellulose ester production process, by providing a mechanochemical pulverization process in which solvent and pulp are mixed and pulverized before the activation treatment, the cellulose chains can be uniformly pulverized without damaging them as much as possible. Thus, the reaction in the esterification step / ripening step can be performed smoothly. In particular, since the reaction time in the ripening step can be shortened, it has been possible to achieve both improvement in the uniformity of the reaction and prevention of a decrease in the degree of polymerization, which have been the trade-off.
 また、原料パルプには少なからず不純物が混入している。それらはエステル化工程で未酢化物や不純物として混在する。本発明では、原料セルロースと溶剤を混合しメカノケミカル粉砕をし、スラリー状態を形成させ、原料セルロースの分子間力や水素結合の切断を効果的に行うことにより、セルロースが細かな粒状になり溶剤ないし溶剤と水の混合溶液がセルロース分子間に入り込むかもしくは結合することで、セルロースの水酸基同士の水素結合を防止でき、粉砕セルロース自体が活性化した状態になる。次工程である活性化工程において粉砕時の混合溶剤に応じて活性化剤と置換する手段をとることができる為、これらの手段で粉砕し活性化させたセルロースは、後のエステル化反応が素早く均一に行われ、未酢化成分や不純物が低減するという効果がある。 Moreover, there are not a few impurities in the raw pulp. They are mixed as unacetylated products and impurities in the esterification process. In the present invention, raw material cellulose and solvent are mixed and mechanochemically pulverized to form a slurry state, and the cellulose is made into fine particles by effectively cutting the molecular force and hydrogen bonds of raw material cellulose. In addition, the mixed solution of the solvent and water enters or bonds between cellulose molecules, so that hydrogen bonding between the hydroxyl groups of cellulose can be prevented, and the pulverized cellulose itself becomes activated. In the activation step, which is the next step, it is possible to take a means to replace the activator according to the mixed solvent at the time of pulverization, so that cellulose activated by pulverization by these means can quickly undergo subsequent esterification reactions. It is performed uniformly and has the effect of reducing unacetylated components and impurities.
 更に、本願請求項3に係る発明は、エステル化後のドープを濾過機に通すことで、原料セルロース中に含まれていた不純物及び、エステル化しきれなかった未酢化成分を効果的に取り除くことができ、本発明の効果をより高める上で好ましい態様である。 Furthermore, the invention according to claim 3 of the present application effectively removes impurities contained in the raw material cellulose and unacetylated components that could not be esterified by passing the esterified dope through a filter. This is a preferred embodiment for further enhancing the effects of the present invention.
 本発明でいうメカノケミカル粉砕とは、メカノ=機械、ケミカル=化学反応を同時に行う粉砕と定義する。即ち強固な水素結合などで反応しづらい組成の物質を物理的に粉砕することで水素結合を切断し、再結合する前に、酢酸等別の物質と反応して化学変化させる、またはアルコール等の溶剤と水素結合させることである。これによって、セルロース間の水素結合を再発させないようにすることができる。 The mechanochemical pulverization referred to in the present invention is defined as pulverization in which mechano = machine and chemical = chemical reaction are simultaneously performed. That is, by physically crushing a substance with a composition that is difficult to react due to strong hydrogen bonds, etc., the hydrogen bonds are broken and recombined before reacting with another substance such as acetic acid to change chemically, or alcohol etc. It is hydrogen bonding with a solvent. As a result, hydrogen bonds between celluloses can be prevented from recurring.
 本発明は、溶剤と原料セルロースを混合して微粉砕(メカノケミカル粉砕)させることで、精製後のセルロースエステルのロット間バラツキだけでなく、ロット内バラツキも顕著に抑制できることを見出したものである。 The present invention has been found that not only variation between lots of cellulose ester after purification but also variation in lots can be remarkably suppressed by mixing and finely pulverizing (mechanochemical pulverization) a solvent and raw material cellulose. .
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 <セルロースエステル>
 本発明のセルロースエステルは、光学フィルム用途のセルロースエステルフィルムに含有されることが好ましく、炭素数2以上の脂肪族アシル基を有するセルロースエステルであることが好ましく、更に好ましくは、セルロースエステルのアシル総置換度が1.0~2.95、かつアシル基総炭素数が2.0~9.5であるセルロースエステルである。
<Cellulose ester>
The cellulose ester of the present invention is preferably contained in a cellulose ester film for use in an optical film, and is preferably a cellulose ester having an aliphatic acyl group having 2 or more carbon atoms, and more preferably an acyl total of cellulose ester. A cellulose ester having a substitution degree of 1.0 to 2.95 and a total acyl group carbon number of 2.0 to 9.5.
 セルロースエステルのアシル基総炭素数は、好ましくは、4.0~9.0であり、さらに好ましくは5.0~8.5である。但し、アシル基総炭素数は、セルロースエステルのグルコース単位に置換されている各アシル基の置換度と炭素数の積の総和である。 The total number of acyl groups in the cellulose ester is preferably 4.0 to 9.0, more preferably 5.0 to 8.5. However, the acyl group total carbon number is the sum total of the products of the substitution degree and the carbon number of each acyl group substituted in the glucose unit of the cellulose ester.
 さらに、脂肪族アシル基の炭素数は、セルロース合成の生産性、コストの観点から、2以上6以下が好ましく、2以上4以下がさらに好ましい。なお、アシル基で置換されていない部分は通常水酸基として存在している。 Furthermore, the number of carbon atoms of the aliphatic acyl group is preferably 2 or more and 6 or less, more preferably 2 or more and 4 or less, from the viewpoint of productivity and cost of cellulose synthesis. The portion not substituted with an acyl group usually exists as a hydroxyl group.
 β-1,4-グリコシド結合でセルロースを構成しているグルコース単位は、2位、3位および6位に遊離の水酸基を有している。本発明におけるセルロースエステルは、これらの水酸基の一部または全部をアシル基によりエステル化した重合体(ポリマー)である。アシル基置換度とは、繰り返し単位の2位、3位および6位について、セルロースがエステル化している割合の合計を表す。具体的には、セルロースの2位、3位および6位のそれぞれの水酸基が100%エステル化した場合をそれぞれ置換度1とする。したがって、セルロースの2位、3位および6位のすべてが100%エステル化した場合、置換度は最大の3となる。 The glucose unit constituting cellulose with β-1,4-glycosidic bonds has free hydroxyl groups at the 2nd, 3rd and 6th positions. The cellulose ester in the present invention is a polymer obtained by esterifying some or all of these hydroxyl groups with an acyl group. The acyl group substitution degree represents the total ratio of cellulose esterified at the 2nd, 3rd and 6th positions of the repeating unit. Specifically, the degree of substitution is 1 when the hydroxyl groups at the 2-position, 3-position and 6-position of cellulose are each 100% esterified. Therefore, when all of the 2nd, 3rd and 6th positions of cellulose are 100% esterified, the degree of substitution is 3 at the maximum.
 アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、ペンタネート基、ヘキサネート基等が挙げられ、セルロースエステルとしては、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースペンタネート等が挙げられる。また、上述の側鎖炭素数を満たせば、セルロースアセテート、セルロースアセテートプロピオネート、セルロースプロピオネート、セルロースアセテートブチレート、セルロースアセテートペンタネート等のように混合脂肪酸エステルでもよい。この中でも、特にセルロースアセテート、セルロースアセテートプロピオネート、セルロースプロピオネートが光学フィルム用途として好ましいセルロースエステルである。 Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, a pentanate group, and a hexanate group. Examples of the cellulose ester include cellulose acetate, cellulose propionate, cellulose butyrate, and cellulose pentanate. . Further, mixed fatty acid esters such as cellulose acetate, cellulose acetate propionate, cellulose propionate, cellulose acetate butyrate, and cellulose acetate pentanate may be used as long as the above-mentioned side chain carbon number is satisfied. Among these, cellulose acetate, cellulose acetate propionate, and cellulose propionate are particularly preferable cellulose esters for optical film applications.
 セルローストリアセテート以外で好ましいセルロースエステルは炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)および(II)を同時に満たすセルロースエステルを含むセルロースエステルである。 Preferred cellulose esters other than cellulose triacetate have an acyl group having 2 to 4 carbon atoms as a substituent, and when the substitution degree of acetyl group is X and the substitution degree of propionyl group or butyryl group is Y, the following formula ( It is a cellulose ester including a cellulose ester that simultaneously satisfies I) and (II).
 式(I) 1.2≦X+Y≦2.95
 式(II) 0≦X≦2.5
 この内特にセルロースアセテートプロピオネートが好ましく用いられ、中でも0.1≦X≦2.5、0.1≦Y≦2.8であることが好ましい。アシル基で置換されていない部分は通常水酸基として存在しているものである。アシル基置換度の測定方法はASTM-D817-96に準じて測定することができる。
Formula (I) 1.2 ≦ X + Y ≦ 2.95
Formula (II) 0 ≦ X ≦ 2.5
Of these, cellulose acetate propionate is particularly preferably used, and 0.1 ≦ X ≦ 2.5 and 0.1 ≦ Y ≦ 2.8 are particularly preferable. The portion that is not substituted with an acyl group usually exists as a hydroxyl group. The method for measuring the degree of acyl group substitution can be measured according to ASTM-D817-96.
 本発明のセルロースエステルは、重量平均分子量Mwが50000~500000のものが好ましく、より好ましくは100000~300000であり、更に好ましくは150000~250000である。 The cellulose ester of the present invention preferably has a weight average molecular weight Mw of 50,000 to 500,000, more preferably 100,000 to 300,000, still more preferably 150,000 to 250,000.
 セルロースエステルの平均分子量および分子量分布は、高速液体クロマトグラフィーを用い測定できるので、これを用いて重量平均分子量(Mw)、分子量分布を算出する。 Since the average molecular weight and molecular weight distribution of cellulose ester can be measured using high performance liquid chromatography, the weight average molecular weight (Mw) and molecular weight distribution are calculated using this.
 測定条件は以下の通りである。 The measurement conditions are as follows.
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)
 Mw=1000000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation)
A calibration curve with 13 samples from Mw = 1000000 to 500 was used. The 13 samples are preferably used at approximately equal intervals.
 本発明で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが。針葉樹パルプが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、或いは単独で使用することが出来る。 The raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood. Softwood pulp is preferably used. The cellulose ester made from these can be mixed suitably or can be used independently.
 例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることが出来る。 For example, the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
 本発明では重合度の高いセルロースが好ましく、例えば、リンターパルプが好ましく、セルロースは、少なくともリンターパルプで構成されたセルロースを使用することが好ましい。セルロースの結晶化度の指標となるα-セルロース含有量は、90%以上(例えば、92~100%、好ましくは95~100%、さらに好ましくは99.5~100%程度)である。 In the present invention, cellulose having a high degree of polymerization is preferable. For example, linter pulp is preferable, and it is preferable to use cellulose composed of at least linter pulp. The α-cellulose content, which is an index of the crystallinity of cellulose, is 90% or more (eg, 92 to 100%, preferably 95 to 100%, more preferably about 99.5 to 100%).
 <セルロースエステルの製造方法>
 セルロースエステルの製造過程は、大きく原料セルロースの粉砕工程、活性化工程、アシル基に置換させるエステル化工程、アシル基の脱離を促し、置換度を調整する熟成工程、精製物を沈殿・洗浄・乾燥させる後処理(仕上げ)工程に分けられる。
<Method for producing cellulose ester>
The cellulose ester production process is largely divided into a raw material cellulose crushing step, activation step, esterification step for substitution with acyl groups, aging step for promoting the elimination of acyl groups and adjusting the degree of substitution, and precipitation / washing of purified products. It is divided into the post-processing (finishing) process to dry.
 図1に本発明のセルロースエステルの製造フローを示す。エステル化工程と熟成工程の間には濾過工程を組み入れることが可能である。また、中和工程は熟成停止と中和の両工程を兼ねることができ、いずれも点線で示した。 FIG. 1 shows a production flow of the cellulose ester of the present invention. A filtration step can be incorporated between the esterification step and the aging step. Moreover, the neutralization process can serve as both the ripening stop and the neutralization process, and both are shown by the dotted line.
 以下図示した各工程について説明する。 Hereinafter, each process shown in the figure will be described.
 [粉砕工程]
 本発明に係る原料セルロースの粉砕工程は、原料セルロースと溶剤とを混合して粉砕するメカノケミカル粉砕工程であることを特徴とするものである。
[Crushing process]
The raw cellulose pulverization step according to the present invention is a mechanochemical pulverization step in which raw cellulose and a solvent are mixed and pulverized.
 溶剤は、カルボン酸類、アルコール類、ケトン類、エーテル類、セロソルブ類から選ばれる溶剤の少なくとも一種か、または前記溶剤と水との混合溶剤であることが好ましい。 The solvent is preferably at least one solvent selected from carboxylic acids, alcohols, ketones, ethers and cellosolves, or a mixed solvent of the solvent and water.
 中でも酢酸、プロピオン酸などのカルボン酸が好ましく、特に後の活性化処理のことを考えると、カルボン酸であることが好ましい。 Of these, carboxylic acids such as acetic acid and propionic acid are preferred, and carboxylic acid is particularly preferred in view of the subsequent activation treatment.
 原料セルロース100質量部に対して、上記溶剤を50質量部から1000質量部の範囲の溶液と混合し粉砕する。より好ましい溶剤量の範囲としては75質量部~700質量部であり、さらに95質量部~500質量部の範囲であることが好ましい。 The said solvent is mixed with the solution of the range of 50 mass parts to 1000 mass parts with respect to 100 mass parts of raw material cellulose, and it grind | pulverizes. A more preferable range of the solvent amount is 75 parts by mass to 700 parts by mass, and a range of 95 parts by mass to 500 parts by mass is more preferable.
 原料セルロースの粉砕は前段階として微粉砕する装置に投入できる程度の大きさまで乾式の粗粉砕工程を加えてもよい。また、原料セルロースと溶剤の均一な混合を促す為に溶剤を添加した後に、低速でプレ撹拌を行うことも好ましい。 The raw cellulose may be crushed by adding a dry coarse pulverization step to a size that can be charged into a fine pulverization apparatus as a previous step. It is also preferable to perform pre-stirring at a low speed after adding the solvent in order to promote uniform mixing of the raw material cellulose and the solvent.
 原料セルロースを粉砕する装置としては、湿式で微粉砕できる装置であれば特に制限はないが、ボールミル系(遊星ボールミル等)、湿式粉砕機(液体中ボール衝突型・スラリー型等)、摩砕型粉砕機(石臼式・スクリーン式等)、衝突型粉砕機(湿式ジェットミル等)、スクリュー型粉砕機等が好ましく使用され、またこれらを組み合わせて使用してもよい。 The apparatus for pulverizing the raw material cellulose is not particularly limited as long as it is an apparatus that can be finely pulverized in a wet manner, but a ball mill system (planetary ball mill, etc.), a wet pulverizer (ball-in-liquid collision type, slurry type, etc.), and a grinding type. Pulverizers (stone mortar type, screen type, etc.), collision type pulverizers (wet jet mill, etc.), screw type pulverizers, etc. are preferably used, and these may be used in combination.
 本発明は粉砕時の原料セルロースは液体中もしくはスラリー状態のように原料が湿潤している状態で微粉砕するためアモルファス化しやすく、後のセルロースエステルの製造工程において好都合である。 In the present invention, the raw material cellulose at the time of pulverization is easily amorphized because it is finely pulverized in a liquid or slurry state where the raw material is wet, which is advantageous in the subsequent cellulose ester production process.
 粉砕時は温度上昇することがあるので、粉砕機に冷却機能を備えておくことが好ましく、温度設定を60℃以下で制御しておくことが好ましい。好ましくは、10~50℃であることが好ましく、さらに20℃~45℃であることが好ましい。 Since the temperature may increase during pulverization, the pulverizer is preferably provided with a cooling function, and the temperature setting is preferably controlled at 60 ° C. or lower. The temperature is preferably 10 to 50 ° C, more preferably 20 to 45 ° C.
 粉砕時間は適宜決定することができるが、15分から45分であることが好ましく、さらに20分から30分であることが好ましい。 The pulverization time can be appropriately determined, but is preferably 15 minutes to 45 minutes, and more preferably 20 minutes to 30 minutes.
 本発明に係るメカノケミカル粉砕によって原料セルロースは微細化され、粉砕後の原料セルロースの平均粒径は100μm以下になるが、熟成工程以前に濾過を加えることを考慮すると、各工程の反応を短時間で行い、且つ濾材の目詰まりを防止する観点から10μm以上80μm以下であることが好ましい。原料セルロースの粒径は顕微鏡等を使用することで測定が可能である。 The raw cellulose is refined by mechanochemical pulverization according to the present invention, and the average particle size of the raw cellulose after pulverization is 100 μm or less, but considering the addition of filtration before the aging step, the reaction in each step is performed in a short time. And from the viewpoint of preventing clogging of the filter medium, it is preferably 10 μm or more and 80 μm or less. The particle size of the raw material cellulose can be measured by using a microscope or the like.
 [活性化工程]
 活性化工程では、セルロースを活性化剤で処理し、セルロースを活性化させる。本発明では、原料セルロースはスラリー状の湿潤状態で供給される。
[Activation process]
In the activation step, cellulose is treated with an activator to activate the cellulose. In the present invention, raw material cellulose is supplied in a slurry wet state.
 セルロースを活性化処理する活性化剤は、通常、アシル化反応の溶媒(アシル化溶媒)が使用され、アシル化溶媒としては、有機カルボン酸、例えば、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸等の脂肪族カルボン酸(直鎖状又は分岐鎖状C1-6アルカン酸)で構成できる。これらの活性化剤は単独で又は二種以上組み合わせて使用できる。 As the activator for activating cellulose, a solvent for acylation reaction (acylation solvent) is usually used. As the acylation solvent, organic carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid are used. Or an aliphatic carboxylic acid (linear or branched C1-6 alkanoic acid) such as valeric acid. These activators can be used alone or in combination of two or more.
 活性化処理において、活性化剤としては水を含む水系媒質が使用される。この水系媒質は有機カルボン酸を含む水系媒質であってもよく、活性化処理に続く反応に先立ち反応で使用するカルボン酸を用いてセルロース原料から水系媒質を置換することを考慮すると、経済的には多くの有機カルボン酸を用いることが好ましい。 In the activation treatment, an aqueous medium containing water is used as the activator. This aqueous medium may be an aqueous medium containing an organic carboxylic acid. In consideration of substituting the aqueous medium from the cellulose raw material with the carboxylic acid used in the reaction prior to the reaction following the activation treatment, it is economical. It is preferable to use many organic carboxylic acids.
 活性化工程は単一の活性化工程に限らず複数の活性化工程で構成してもよく、アシル化触媒の濃度の異なる活性化剤を用いて行うことができる。例えば、活性化剤でセルロースを活性化させる第1の活性化工程と、アシル化触媒を含む活性化剤でセルロースを活性化させる第2の活性化工程とで構成してもよく、アシル化触媒の濃度が低濃度の活性化剤でセルロースを処理する第1の工程と、アシル化触媒の濃度が高い活性化剤でセルロースを処理する第2の工程とで構成してもよい。 The activation step is not limited to a single activation step, and may be composed of a plurality of activation steps, and can be performed using activators having different concentrations of the acylation catalyst. For example, the acylating catalyst may be composed of a first activating step for activating cellulose with an activating agent and a second activating step for activating cellulose with an activating agent containing an acylating catalyst. You may comprise in the 1st process of processing cellulose with the activator with a low density | concentration, and the 2nd process of processing cellulose with the activator with the high density | concentration of an acylation catalyst.
 活性化剤の使用量は、セルロース100質量部に対して、例えば、25~150質量部、好ましくは30~125質量部、さらに好ましくは50~100質量部(例えば、70~100質量部)程度であってもよい。 The amount of the activator used is, for example, about 25 to 150 parts by weight, preferably 30 to 125 parts by weight, and more preferably 50 to 100 parts by weight (for example, 70 to 100 parts by weight) with respect to 100 parts by weight of cellulose. It may be.
 活性化処理は、セルロースを活性化剤で処理すればよく、セルロースに活性化剤を噴霧してもよく、活性化剤中にセルロースを浸漬してもよい。通常、活性化剤中に原料セルロースを添加しスラリー状にする場合が多い。活性化処理温度は、0℃~100℃の範囲から選択でき、工業的な負荷をかけずに活性化処理を行うためには、通常、10℃~40℃、好ましくは15℃~35℃程度である。また、活性化処理時間は、0.1時間~72時間の範囲で選択でき、通常、0.1時間~3時間、好ましくは0.2時間~2時間程度である。 In the activation treatment, the cellulose may be treated with an activator, the activator may be sprayed on the cellulose, or the cellulose may be immersed in the activator. Usually, raw material cellulose is often added to the activator to form a slurry. The activation treatment temperature can be selected from a range of 0 ° C. to 100 ° C. In order to perform the activation treatment without applying industrial load, it is usually 10 ° C. to 40 ° C., preferably about 15 ° C. to 35 ° C. It is. The activation treatment time can be selected in the range of 0.1 to 72 hours, and is usually about 0.1 to 3 hours, preferably about 0.2 to 2 hours.
 本発明の場合、原料セルロースの粉砕に用いられた溶剤がカルボン酸の場合、微粉砕段階で活性化処理が進んでいるため、静置時間はわずかでよく、すぐにエステル化反応容器に投入することができる。 In the case of the present invention, when the solvent used for pulverizing the raw material cellulose is carboxylic acid, the activation process proceeds in the fine pulverization stage, so the standing time is short, and it is immediately put into the esterification reaction vessel. be able to.
 原料セルロースの粉砕に水等カルボン酸以外の溶液を使用した場合、カルボン酸で数回洗浄することで、カルボン酸に置換し、静置することで活性化処理が完了する。 When a solution other than carboxylic acid such as water is used for pulverizing raw material cellulose, the activation treatment is completed by washing with carboxylic acid several times, replacing with carboxylic acid, and allowing to stand.
 [エステル化工程]
 前記活性化処理により活性化されたセルロースを、酸触媒の存在下で少なくとも炭素数2以上のアシル基を有するカルボン酸(少なくとも1種以上含む)と無水カルボン酸(少なくとも1種以上含む)でエステル化する。酸触媒としてはルイス酸、強酸を使用することができるが、特に硫酸が一般的に使用される。
[Esterification process]
Cellulose activated by the activation treatment is esterified with a carboxylic acid (containing at least one or more) having an acyl group having at least 2 carbon atoms and a carboxylic anhydride (containing at least one or more) in the presence of an acid catalyst. Turn into. As the acid catalyst, Lewis acid or strong acid can be used, but sulfuric acid is generally used.
 通常、酸無水物[例えば、炭素数2以上のカルボン酸の酸無水物(カルボン酸無水物)]、例えば、無水酢酸、無水プロピオン酸、無水酪酸、無水吉草酸などのC2-6アルカン酸無水物が使用できる。少なくとも炭素数2以上のアシル基を有するカルボン酸(例えば、少なくともC2-6カルボン酸無水物)が使用される。これらは単独又は二種以上組み合わせて使用してもよい。アシル基を有し、アシル化しやすいものであれば、カルボン酸に限定されるものではなく、有機酸ハライド等も使用することができる。 Usually, acid anhydrides [for example, acid anhydrides of carboxylic acids having 2 or more carbon atoms (carboxylic anhydrides)], for example, C2-6 alkanoic anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, valeric anhydride, etc. Things can be used. A carboxylic acid having an acyl group having at least 2 carbon atoms (for example, at least a C2-6 carboxylic anhydride) is used. You may use these individually or in combination of 2 or more types. As long as it has an acyl group and is easily acylated, it is not limited to carboxylic acids, and organic acid halides can also be used.
 エステル化工程で酸触媒(特に、硫酸)の使用量は、例えばセルロース100質量部に対して3~20質量部、好ましくは5~18質量部、さらに好ましくは7~15質量部程度の範囲から選択でき、通常、7~15質量部程度である。 The amount of acid catalyst (especially sulfuric acid) used in the esterification step is, for example, in the range of 3 to 20 parts by weight, preferably 5 to 18 parts by weight, more preferably about 7 to 15 parts by weight with respect to 100 parts by weight of cellulose. Usually, it is about 7 to 15 parts by mass.
 エステル化溶剤としては、少なくとも炭素数2以上のアシル基に対応するエステル化溶剤、例えば、カルボン酸(酸無水物)を用いればよく、例えば、C2-6カルボン酸に対応する酸無水物から選択され、かつ炭素数の異なる複数の酸無水物を用いてもよい。例えば、無水プロピオン酸及び/又は無水酪酸と無水酢酸とを組み合わせて用いてもよい。 As the esterification solvent, an esterification solvent corresponding to at least an acyl group having 2 or more carbon atoms, for example, a carboxylic acid (acid anhydride) may be used, and for example, selected from acid anhydrides corresponding to C2-6 carboxylic acid A plurality of acid anhydrides having different carbon numbers may be used. For example, propionic anhydride and / or butyric anhydride and acetic anhydride may be used in combination.
 好ましいエステル化溶剤は、C2-4アルカンカルボン酸無水物、例えば、C2-4カルボン酸無水物から選択された少なくとも一種(無水酢酸又は無水プロピオン酸等)、無水酢酸と無水プロピオン酸との組み合わせ、無水酢酸と無水酪酸との組み合わせ、無水酢酸と無水プロピオン酸と無水酪酸との組み合わせである。特に、無水酢酸と無水プロピオン酸との組み合わせ、無水酢酸と無水酪酸との組み合わせが好ましい。なお、無水酢酸は無水プロピオン酸などと比べて反応性が高く、アセチル基の置換度が小さいセルロース混合脂肪酸エステルを得る場合には、無水酢酸を用いないか、又は本発明の目的を損なわない範囲で少なくとも炭素数3以上にアシル基に対応するエステル化溶剤と少量の無水酢酸とを組み合わせてもよい。 Preferred esterification solvents are C2-4 alkanecarboxylic anhydrides, for example, at least one selected from C2-4 carboxylic anhydrides (such as acetic anhydride or propionic anhydride), a combination of acetic anhydride and propionic anhydride, A combination of acetic anhydride and butyric anhydride, and a combination of acetic anhydride, propionic anhydride and butyric anhydride. In particular, a combination of acetic anhydride and propionic anhydride, and a combination of acetic anhydride and butyric anhydride are preferable. Acetic anhydride is more reactive than propionic anhydride and the like, and in the case of obtaining a cellulose mixed fatty acid ester having a low degree of acetyl group substitution, acetic anhydride is not used or the object of the present invention is not impaired. The esterification solvent having at least 3 carbon atoms and corresponding to the acyl group may be combined with a small amount of acetic anhydride.
 なお、炭素数3以上のアシル基を有するセルロースエステルを得る場合、酢酸の存在化でアシル化、又は熟成できれば、エステル化溶剤は炭素数3以上のアシル基に対応する、例えば、無水プロピオン酸、無水酪酸などで構成すればよく、必ずしもアセチル基に対応するエステル化溶剤(無水酢酸)を含んでいなくてもよい。アセチル基を導入するためには、必ずしも無水酢酸を使用する必要はなく、反応系に酢酸を存在させて反応させてもよい。 In the case of obtaining a cellulose ester having an acyl group having 3 or more carbon atoms, the esterification solvent may correspond to an acyl group having 3 or more carbon atoms, for example, propionic anhydride, if acylation or aging can be performed in the presence of acetic acid. What is necessary is just to comprise by butyric anhydride etc., and it does not necessarily need to contain the esterification solvent (acetic anhydride) corresponding to an acetyl group. In order to introduce an acetyl group, acetic anhydride is not necessarily used, and the reaction may be carried out in the presence of acetic acid.
 このような酢酸は、エステル化工程及び熟成工程(特に、少なくとも熟成工程)において反応系に存在させればよく、前記活性化処理由来の酢酸のみで構成してもよく、エステル化工程及び熟成工程において新たに添加してもよく、通常エステル化工程でエステル化溶媒として使用してもよい。 Such acetic acid may be present in the reaction system in the esterification step and the ripening step (particularly at least the ripening step), and may be composed only of acetic acid derived from the activation treatment. May be newly added, and may be used as an esterification solvent in an ordinary esterification step.
 なお、複数のエステル化溶剤を用いてセルロースエステルを製造する場合、エステル化工程において、反応系には複数のエステル化溶剤を共存させてもよく、特定のエステル化溶剤でセルロースをエステル化した後、他のエステル化溶剤でセルロースをエステル化してもよい。エステル化工程でのエステル化溶剤の使用量は、例えば、セルロースの水酸基に対して1.1~4当量、好ましくは1.1~2当量、さらに好ましくは1.3~1.8当量程度である。 In addition, when producing a cellulose ester using a plurality of esterification solvents, in the esterification step, a plurality of esterification solvents may coexist in the reaction system, and after esterifying cellulose with a specific esterification solvent The cellulose may be esterified with another esterification solvent. The amount of the esterification solvent used in the esterification step is, for example, about 1.1 to 4 equivalents, preferably 1.1 to 2 equivalents, more preferably about 1.3 to 1.8 equivalents relative to the hydroxyl group of cellulose. is there.
 アセチル化の場合に限り、小さいアセチル置換度のセルロースエステルを得る場合には、エステル化工程で無水酢酸の使用量は、セルロースの水酸基に対して0.5当量以下(0~0.3当量程度)、さらに0.2等量以下(0.01~0.1当量)でもよく、実質的に使用しなくてもよい。 Only in the case of acetylation, when obtaining a cellulose ester having a small degree of acetyl substitution, the amount of acetic anhydride used in the esterification step is 0.5 equivalent or less (about 0 to 0.3 equivalent) relative to the hydroxyl group of cellulose. ), Or less than 0.2 equivalent (0.01-0.1 equivalent), and may not be used substantially.
 エステル化工程において、通常、溶媒又は希釈剤としてエステル化溶媒(酢酸、プロピオン酸、酪酸などの有機カルボン酸)が使用される。エステル化溶媒(カルボン酸)の使用量は、セルロース100質量部に対して50~700質量部、好ましくは150~600質量部、さらに好ましくは200~550質量部程度である。 In the esterification step, an esterification solvent (organic carboxylic acid such as acetic acid, propionic acid, butyric acid) is usually used as a solvent or diluent. The amount of esterification solvent (carboxylic acid) used is about 50 to 700 parts by weight, preferably 150 to 600 parts by weight, and more preferably about 200 to 550 parts by weight with respect to 100 parts by weight of cellulose.
 なお、エステル化反応は、0~50℃、好ましくは5~45℃、さらに好ましく10~40℃程度の温度で行うことができる。なお、エステル化反応は、初期において、比較的低温、10℃以下(0~10℃)]で行ってもよい。このような低温での反応時間は、例えば、エステル化反応開始から30分以上、40分~2時間、好ましくは45~100分程度)であってもよい。10~50℃でのエステル化時間は、10分以上20~90分、好ましくは30~80分、40分~75分である。 The esterification reaction can be performed at a temperature of about 0 to 50 ° C., preferably 5 to 45 ° C., more preferably about 10 to 40 ° C. The esterification reaction may be initially performed at a relatively low temperature of 10 ° C. or lower (0 to 10 ° C.). The reaction time at such a low temperature may be, for example, 30 minutes or more, 40 minutes to 2 hours, preferably about 45 to 100 minutes from the start of the esterification reaction. The esterification time at 10 to 50 ° C. is 10 minutes or more and 20 to 90 minutes, preferably 30 to 80 minutes, 40 minutes to 75 minutes.
 均一な反応系が形成されると、エステル化反応が終了したと判断することができる。 When a uniform reaction system is formed, it can be determined that the esterification reaction has been completed.
 エステル化反応を終了後、加水分解反応を開始してもよいし、エステル化溶剤、エステル化溶媒、酸触媒をそのままに、熟成工程に移行してもよい。 After completion of the esterification reaction, the hydrolysis reaction may be started, or the esterification solvent, the esterification solvent, and the acid catalyst may be left as they are, and the aging step may be performed.
 [エステル化反応停止工程]
 エステル化反応後にエステル化溶剤を失活させるために加水分解反応を行う場合は、エステル化溶剤を失活可能であればよく、通常、少なくとも水を含んでいる場合が多い。加水分解を進める失活剤は、水と、エステル化溶媒、アルコール及び中和剤から選択された少なくとも一種で構成してもよい。より具体的には、失活剤としては、例えば、水単独、水とカルボン酸との混合物、水とアルコールとの混合物、水と中和剤との混合物、水と有機カルボン酸とアルコールと中和剤との混合物などが例示できる。
[Esterification reaction stopping step]
When the hydrolysis reaction is performed in order to deactivate the esterification solvent after the esterification reaction, it is sufficient if the esterification solvent can be deactivated, and usually at least water is often included. The quenching agent that promotes hydrolysis may be composed of at least one selected from water, an esterification solvent, an alcohol, and a neutralizing agent. More specifically, examples of the quenching agent include water alone, a mixture of water and carboxylic acid, a mixture of water and alcohol, a mixture of water and neutralizing agent, water, an organic carboxylic acid and alcohol, and the like. Examples thereof include a mixture with a hydrating agent.
 中和剤としては、酸触媒又はエステル化溶剤の一部を中和可能な塩基、例えば、アルカリ金属化合物(水酸化ナトリウムや水酸化カリウムなどの水酸化物、炭酸ナトリウムや炭酸カリウムなどの炭酸塩、酢酸ナトリウムや酢酸カリウムなどの有機酸塩など)、アルカリ土類金属化合物(例えば、水酸化カルシウムなどの水酸化物、炭酸カルシウムなどの炭酸塩、酢酸カルシウム、酢酸マグネシウムなどの有機酸塩など)などが挙げられ、単独で又は2種類以上組み合わせて使用してもよい。アルコールとしては、直鎖アルコール(エタノール、メタノール、プロパノール等)が例示できる。これらのアルコールも単独で又は二種以上組み合わせて使用できる。 Examples of the neutralizing agent include bases that can neutralize part of the acid catalyst or esterification solvent, such as alkali metal compounds (hydroxides such as sodium hydroxide and potassium hydroxide, carbonates such as sodium carbonate and potassium carbonate, etc. , Organic acid salts such as sodium acetate and potassium acetate), alkaline earth metal compounds (eg, hydroxides such as calcium hydroxide, carbonates such as calcium carbonate, organic acid salts such as calcium acetate and magnesium acetate) And may be used alone or in combination of two or more. Examples of the alcohol include straight chain alcohols (ethanol, methanol, propanol, etc.). These alcohols can also be used alone or in combination of two or more.
 水とエステル化溶媒または、水とアルコールとの割合は、水100質量部に対してエステル化溶媒またはアルコール20~140質量部程度の範囲から選択でき、通常、25~120質量部、好ましくは50~100質量部である。 The ratio of water and esterification solvent or water and alcohol can be selected from the range of about 20 to 140 parts by mass of esterification solvent or alcohol with respect to 100 parts by mass of water, usually 25 to 120 parts by mass, preferably 50 parts by mass. ~ 100 parts by mass.
 エステル化工程後、熟成工程前における加水分解の実施には、酸触媒を一部中和する割合で中和剤を含んでいてもよいし、中和剤を含まなくてもよい。好ましい失活剤は、水単独であってもよいが、セルロースエステルに対して水は貧溶媒なので、所望の置換度以外のセルロースエステルが析出してしまう可能性が高いため、水とエステル化溶媒との混合液が好ましい。 In carrying out the hydrolysis after the esterification step and before the ripening step, a neutralizing agent may be included at a ratio of partially neutralizing the acid catalyst, or a neutralizing agent may not be included. The preferred deactivator may be water alone, but since water is a poor solvent for cellulose esters, there is a high possibility that cellulose esters other than the desired degree of substitution will precipitate. And a mixed solution is preferable.
 原料セルロースに含まれる反応成分は100%ではないため、この段階で未反応成分が含まれるので、一度反応溶液濾過する過程を導入してもよい。 Since the reaction component contained in the raw material cellulose is not 100%, an unreacted component is included at this stage, so a process of filtering the reaction solution once may be introduced.
 この反応停止工程は必要に応じて省略することができる。 This reaction stopping step can be omitted if necessary.
 [濾過工程]
 本発明では、前記エステル化工程と後述する熟成工程の間に濾過工程を設けることが好ましい。
[Filtering process]
In this invention, it is preferable to provide a filtration process between the said esterification process and the aging process mentioned later.
 従来のセルロースエステル化反応後の溶液は高粘度のため濾過をしても、すぐ目詰まりしてしまっていたが、本発明の溶剤下で粉砕を実施しておくことで、目詰まりが起きにくくなり、熟成工程前に濾過工程を設けることが可能になった。 The solution after the conventional cellulose esterification reaction was clogged immediately after filtration because of its high viscosity, but clogging is less likely to occur by grinding in the solvent of the present invention. Thus, a filtration step can be provided before the aging step.
 エステル化反応終了後の溶液中には、原料セルロースの反応しなかった未酢化、低酢化成分や不純物が混在しているので、熟成工程直前に濾過し、取り除くことで、熟成反応にかかる時間がより短縮され、反応溶液中で起こる分子鎖や、置換基等の特異的な切断がおこりにくくなり、得られたセルロースエステルを用いて製膜したフィルムの膜面品質は濾過を省いたセルロースエステルよりもさらに良好になる。 The solution after completion of the esterification reaction contains unacetylated, low-acetylated components and impurities that did not react with the raw material cellulose. Time is further shortened, and specific cleavage of molecular chains and substituents occurring in the reaction solution is difficult to occur. The film surface quality of the film formed using the obtained cellulose ester is cellulose without filtration. Even better than the ester.
 濾過に使用する濾材は、絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さすぎると、濾材の目詰まりが発生しやすく、濾材の交換を頻繁に行わなければならず、生産性を低下させるという問題点ある。 Filter media used for filtration preferably have low absolute filtration accuracy, but if the absolute filtration accuracy is too low, the filter media is likely to be clogged, and the filter media must be replaced frequently, reducing productivity. There is a problem of making it.
 このため、本発明のエステル化工程後のセルロースエステルのスラリーに用いる濾材は、絶対濾過精度10μm以下のものが好ましく、1~8μmの範囲がより好ましく、3~5μmの範囲の濾材がさらに好ましい。 Therefore, the filter medium used in the cellulose ester slurry after the esterification step of the present invention preferably has an absolute filtration accuracy of 10 μm or less, more preferably in the range of 1 to 8 μm, and still more preferably in the range of 3 to 5 μm.
 濾材の材質には、特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、ポリエステル、PTFE等のプラスチック繊維製、ガラス繊維製の濾材やステンレス繊維等の金属製の濾材が繊維の脱落等がないため好ましい。 The material of the filter medium is not particularly limited, and a normal filter medium can be used. However, a filter medium made of plastic such as polypropylene, polyester, and PTFE, a filter medium made of glass fiber, and a metal filter medium such as stainless steel fiber can be used. This is preferable because there is no dropout.
 上記セルロースエステルのスラリーは酸を含むため、金属製のフィルターは腐食しやすいので、ガラス繊維やプラスチック繊維製のフィルターであることがより好ましい。 Since the cellulose ester slurry contains an acid, the metal filter is easily corroded, and therefore, a filter made of glass fiber or plastic fiber is more preferable.
 エステル化工程から熟成工程の間に金属フィルターを用いて濾過を行う際は硫酸や無水カルボン酸などを一度中和、失活させてから濾過する工程に移ることで、腐食を気にすることなく使用することができる。 When performing filtration using a metal filter between the esterification process and the aging process, it is possible to neutralize and deactivate sulfuric acid and carboxylic anhydride and then move to the filtration process without worrying about corrosion. Can be used.
 本発明では、上記濾材を装着した加圧式濾過機を用いることが好ましい。 In the present invention, it is preferable to use a pressure filter equipped with the filter medium.
 [熟成工程]
 熟成工程では、前記エステル化反応終了後ほぼトリエステル化している状態から、所望の置換度にするために脱アシル化を行い、脱アシル化終了後に中和剤を投入し一連の反応を終了する。
[Aging process]
In the ripening step, after the esterification reaction is almost completed, the acylation is performed to obtain a desired degree of substitution, and after the completion of the deacylation, a neutralizing agent is added to complete the series of reactions. .
 エステル化に利用した酸触媒を中和した場合、再度酸触媒を必要量投入してもよいし、エステル化工程で使用していた酸触媒(特に硫酸)を中和することなく熟成工程で利用してもよい。エステル化で使用していた酸触媒以外の酸触媒を投入してもよい。 When the acid catalyst used for esterification is neutralized, the required amount of acid catalyst may be added again, or used in the aging process without neutralizing the acid catalyst (especially sulfuric acid) used in the esterification process. May be. An acid catalyst other than the acid catalyst used in the esterification may be added.
 硫酸は多いと分子量を小さくしてしまうことがあるため、熟成工程で酸触媒を追加せず、エステル化工程で使用していた酸触媒を、そのまま熟成工程でも使用することが好ましい。 If sulfuric acid is too much, the molecular weight may be reduced. Therefore, it is preferable to use the acid catalyst used in the esterification step as it is in the aging step without adding an acid catalyst in the aging step.
 また、後に酸触媒を中和する段階で、酸触媒を追加した分、中和剤に含まれる、アルカリ金属又はアルカリ土類金属が、精製後のセルロースエステル中に残存し、輝点異物等の障害になりえるため、硫酸は熟成工程で追加しないことが好ましい。 In addition, in the stage where the acid catalyst is neutralized later, the alkali metal or alkaline earth metal contained in the neutralizing agent is added in the neutralizing agent, and remains in the purified cellulose ester. It is preferable not to add sulfuric acid in the aging process because it can be an obstacle.
 また、熟成に際し、必要に応じて新たに脱アシル化溶媒(水とカルボン酸混合溶液等)を添加してもよい。 In addition, a deacylation solvent (such as a mixed solution of water and carboxylic acid) may be newly added as necessary during aging.
 熟成工程中の反応温度は20℃~90℃の温度がよく、好ましくは25℃~80℃、さらに好ましくは30℃~70℃である熟成反応は、窒素雰囲気下行ってもよく、空気雰囲気中で行ってもよい。 The reaction temperature during the ripening step is preferably 20 ° C. to 90 ° C., preferably 25 ° C. to 80 ° C., more preferably 30 ° C. to 70 ° C. The ripening reaction may be performed in a nitrogen atmosphere or in an air atmosphere You may go on.
 熟成反応時間は20分以上、25分~6時間の範囲から選択でき、好ましくは30分~5時間、さらに好ましくは1~3時間である。 The aging reaction time can be selected from the range of 20 minutes or more and 25 minutes to 6 hours, preferably 30 minutes to 5 hours, more preferably 1 to 3 hours.
 [中和工程]
 所望のセルロースエステルが熟成工程にて得られた後、脱アシル化として使用していた酸触媒を中和させることが必要である。中和剤としては、前記エステル化反応停止工程に記載の塩基で構成された中和剤を添加するのが好ましい。
[Neutralization process]
After the desired cellulose ester is obtained in the aging step, it is necessary to neutralize the acid catalyst used for deacylation. As the neutralizing agent, it is preferable to add a neutralizing agent composed of a base described in the esterification reaction stopping step.
 反応生成物(セルロース混合脂肪酸エステルを含むドープ)を析出溶媒(水、酢酸水溶液など)に投入して生成したセルロース混合脂肪酸エステルを分離し、水洗などにより遊離の金属成分や硫酸成分などを除去してもよい。なお、水洗の際に中和剤を使用することもできる。 The reaction product (dope containing cellulose mixed fatty acid ester) is put into a precipitation solvent (water, aqueous acetic acid solution, etc.) to separate the cellulose mixed fatty acid ester, and free metal components and sulfuric acid components are removed by washing with water. May be. In addition, a neutralizing agent can also be used in the case of washing with water.
 [後処理工程(沈殿・濾過・洗浄・乾燥)]
 中和工程で酸触媒を中和した後、生成物を沈殿させて析出させる。
[Post-treatment process (precipitation, filtration, washing, drying)]
After neutralizing the acid catalyst in the neutralization step, the product is precipitated by precipitation.
 析出させるためには、水とカルボン酸の混合溶液が好ましく用いられる。これら沈殿溶剤に限られるわけではなく、ケトン類、アルコール類、エーテル類、エステル類等単独または水混合溶媒であってもよい。 In order to cause precipitation, a mixed solution of water and carboxylic acid is preferably used. These precipitation solvents are not limited, and ketones, alcohols, ethers, esters and the like alone or water mixed solvents may be used.
 沈殿した生成物を濾過して水洗する過程を繰り返し遊離酸濃度が500ppm以下、好ましくは300ppm以下、さらに好ましくは150ppm以下になるまで水洗する。 The process of filtering and washing the precipitated product is repeated until the free acid concentration is 500 ppm or less, preferably 300 ppm or less, more preferably 150 ppm or less.
 その後、ドライエアーで乾燥させ、所望のセルロースエステルを得る。 Then, it is dried with dry air to obtain the desired cellulose ester.
 [その他]
 工業的にはセルロースエステルは硫酸を触媒として合成されているが、この硫酸は完全には除去されておらず、残留する硫酸が溶融製膜時に各種の分解反応を引き起こし、得られるセルロースエステルフィルムの品質に影響を与えるため、本発明に用いられるセルロースエステル中の残留硫酸含有量は、硫黄元素換算で0.1~40ppmの範囲であることが好ましい。これらは塩の形で含有していると考えられる。残留硫酸含有量が40ppmを超えると熱溶融時のダイリップ部の付着物が増加するため好ましくない。また、熱延伸時や熱延伸後でのスリッティングの際に破断しやすくなるため好ましくない。少ない方が好ましいが、0.1未満とするにはセルロース樹脂の洗浄工程の負担が大きくなりすぎるため好ましくないだけでなく、逆に破断しやすくなることがあり好ましくない。これは洗浄回数が増えることが樹脂に影響を与えているのかもしれないがよく分かっていない。さらに0.1~30ppmの範囲が好ましい。残留硫酸含有量は、同様にASTM-D817-96により測定することができる。
[Others]
Industrially, cellulose ester is synthesized using sulfuric acid as a catalyst, but this sulfuric acid is not completely removed, and the residual sulfuric acid causes various decomposition reactions during melt film formation, and the resulting cellulose ester film In order to affect the quality, the residual sulfuric acid content in the cellulose ester used in the present invention is preferably in the range of 0.1 to 40 ppm in terms of elemental sulfur. These are considered to be contained in the form of salts. If the residual sulfuric acid content exceeds 40 ppm, the deposit on the die lip during heat melting increases, such being undesirable. Moreover, since it becomes easy to fracture | rupture at the time of slitting at the time of hot drawing or after hot drawing, it is not preferable. A smaller amount is preferable, but if it is less than 0.1, it is not preferable because the burden of the washing step of the cellulose resin becomes too large. This is not well understood, although an increase in the number of washings may affect the resin. Furthermore, the range of 0.1 to 30 ppm is preferable. The residual sulfuric acid content can be similarly measured by ASTM-D817-96.
 合成したセルロースエステルの洗浄を、溶液流延法に用いられる場合に比べてさらに十分に行うことによって、残留硫酸含有量を上記の範囲とすることができ、溶融流延法によってフィルムを製造する際に、リップ部への付着が軽減され、平面性に優れるフィルムが得られる。 By washing the synthesized cellulose ester more sufficiently than when used in the solution casting method, the residual sulfuric acid content can be within the above range, and when producing a film by the melt casting method. In addition, adhesion to the lip portion is reduced, and a film having excellent flatness can be obtained.
 <セルロースエステルフィルムの製造方法>
 上記操作により得られたセルロースエステルを用いて光学フィルム用途のセルロースエステルフィルムを製造する。
<Method for producing cellulose ester film>
A cellulose ester film for use in an optical film is produced using the cellulose ester obtained by the above operation.
 セルロースエステルフィルムの製造方法としては、大別して溶液流延製膜法、溶融流延製膜法が挙げられるが、どちらの製造方法をとっても本発明の効果を奏することができる。 The method for producing a cellulose ester film is roughly classified into a solution casting film forming method and a melt casting film forming method, and the effects of the present invention can be achieved by using either method.
 [溶融流延製膜法]
 本発明のセルロースエステルからなるセルロースエステルフィルムの製造方法は、少なくとも、フィルムを形成するポリマー、粒子状物質および添加剤を混合溶融し、該溶融物を濾過装置により濾過し、その後通常のダイから押出し、冷却ロール上に流延する。
[Melt casting method]
In the method for producing a cellulose ester film comprising the cellulose ester of the present invention, at least a polymer forming the film, particulate matter and additives are mixed and melted, the melt is filtered by a filtration device, and then extruded from a normal die. Cast on a cooling roll.
 以下、製造方法の全体について述べる。 Hereinafter, the whole manufacturing method will be described.
 〈溶融ペレット製造工程〉
 溶融押出しに用いるフィルムを形成するポリマー、粒子状物質、可塑剤およびその他の添加剤の混合物は、通常あらかじめ混錬してペレット化しておくことが好ましい。
<Melted pellet manufacturing process>
The mixture of the polymer, particulate matter, plasticizer and other additives that form the film used for melt extrusion is preferably kneaded in advance and pelletized.
 ペレット化は、公知の方法でよく、例えば、フィルムを形成するポリマーや可塑剤、その他添加剤をフィーダーで押出機に供給し1軸や2軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングすることでできる。 Pelletization may be performed by a known method. For example, a polymer, a plasticizer, and other additives that form a film are supplied to an extruder with a feeder, and are kneaded using a single-screw or twin-screw extruder. Extruded into a shape, water-cooled or air-cooled and cut.
 原材料は、押出する前に予備乾燥しておくことが原材料の分解を防止する上で重要である。特に光学フィルムを形成するポリマーは吸湿しやすいので、除湿熱風乾燥機や真空乾燥機で70~140℃で3時間以上乾燥し、水分率を300ppm以下、さらに100ppm以下にしておくことが好ましい。 Pre-drying of raw materials before extrusion is important for preventing decomposition of the raw materials. In particular, since the polymer forming the optical film is likely to absorb moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 300 ppm or less, further 100 ppm or less.
 添加剤は、押出機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。 Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders. A small amount of an additive such as an antioxidant is preferably mixed in advance in order to mix uniformly.
 酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、光学フィルムを形成するポリマーに含浸させて混合してもよく、あるいは噴霧して混合してもよい。 Mixing of the antioxidants may be performed by mixing solids, and if necessary, the antioxidant may be dissolved in a solvent and impregnated with a polymer forming an optical film, or may be mixed or sprayed. May be mixed.
 真空ナウターミキサなどが乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口など空気と触れる場合は、除湿空気や除湿したNガスなどの雰囲気下にすることが好ましい。 A vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
 押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。ペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
 〈溶融混合物をダイから冷却ロールへ押し出す工程〉
 作製したペレットを1軸や2軸タイプの押出機を用いて、押し出す際の溶融温度Tmを200~350℃程度とし、本発明の濾過装置により濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ロール上で固化し、弾性タッチロールと押圧しながら流延する。
<Process for extruding molten mixture from die to cooling roll>
The produced pellets are extruded using a single-screw or twin-screw type extruder, the melting temperature Tm is about 200 to 350 ° C., filtered by the filtration device of the present invention to remove foreign matters, and then formed into a film from the T die. And solidified on a cooling roll and cast while pressing with an elastic touch roll.
 供給ホッパーから押出機へ導入する際は真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。なお、Tmは、押出機のダイ出口部分の温度である。 When introducing into the extruder from the supply hopper, it is preferable to prevent oxidative decomposition or the like under vacuum, reduced pressure, or inert gas atmosphere. Tm is the temperature of the die exit portion of the extruder.
 ダイに傷や可塑剤の凝結物等の異物が付着するとスジ状の欠陥が発生する場合がある。このような欠陥のことをダイラインとも呼ぶが、ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力無いものを用いることが好ましい。 ∙ If foreign matter such as scratches or plasticizer aggregates adheres to the die, streaky defects may occur. Such defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
 押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。 The inner surface that comes into contact with the molten resin, such as an extruder or a die, is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy. Specifically, a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
 冷却ロールには特に制限はないが、高剛性の金属ロールで内部に温度制御可能な熱媒体または冷媒体が流れるような構造を備えるロールであり、大きさは限定されないが、溶融押し出されたフィルムを冷却するのに十分な大きさであればよく、通常冷却ロールの直径は100mmから1m程度である。 There is no particular limitation on the cooling roll, but it is a roll having a structure in which a heat medium or a cooling medium whose temperature can be controlled flows with a high-rigidity metal roll, the size of which is not limited, but a melt-extruded film The diameter of the cooling roll is usually about 100 mm to 1 m.
 冷却ロールの表面材質は、炭素鋼、ステンレス、アルミニウム、チタンなどが挙げられる。さらに表面の硬度を上げたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。 The surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
 冷却ロール表面の表面粗さは、Raで0.1μm以下とすることが好ましく、さらに0.05μm以下とすることが好ましい。ロール表面が平滑であるほど、得られるフィルムの表面も平滑にできるのである。もちろん表面加工した表面はさらに研磨し上述した表面粗さとすることが好ましい。 The surface roughness of the cooling roll surface is preferably 0.1 μm or less in terms of Ra, and more preferably 0.05 μm or less. The smoother the roll surface, the smoother the surface of the resulting film. Of course, it is preferable that the surface processed is further polished to have the above-described surface roughness.
 本発明の弾性タッチロールとしては、特開平03-124425号、特開平08-224772号、特開平07-100960号、特開平10-272676号、WO97-028950、特開平11-235747号、特開2002-36332号、特開2005-172940号や特開2005-280217号に記載されているような表面が薄膜金属スリーブ被覆シリコンゴムロールを使用することができる。 Examples of the elastic touch roll of the present invention include JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97-028950, JP-A-11-235747, JP-A-11-235747. As described in JP 2002-36332 A, JP 2005-172940 A, and JP 2005-280217 A, a thin-film metal sleeve-covered silicon rubber roll can be used.
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.
 上記のようにして得られたフィルムは、冷却ロールに接する工程を通過後、延伸操作により延伸することが好ましい。 The film obtained as described above is preferably stretched by a stretching operation after passing through a step in contact with a cooling roll.
 延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。延伸温度は、通常フィルムを構成する樹脂のTg~Tg+60℃の温度範囲で行われることが好ましい。 As the stretching method, a known roll stretching machine or tenter can be preferably used. The stretching temperature is usually preferably in the temperature range of Tg to Tg + 60 ° C. of the resin constituting the film.
 巻き取る前に、製品となる幅に端部をスリットして裁ち落とし、巻き中の貼り付きやすり傷防止のために、ナール加工(エンボッシング加工)を両端に施してもよい。ナール加工の方法は凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。なお、フィルム両端部のクリップの把持部分は通常、フィルムが変形しており製品として使用できないので切除されて、再利用される。 Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking or scratching during winding. The knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing. In addition, since the film has deform | transformed and cannot use as a product normally, the holding | grip part of the clip of both ends of a film is cut out and reused.
 [溶液流延製膜法]
 〈有機溶媒〉
 セルロースエステルフィルムを溶液流延法で製造する場合のドープを形成するのに有用な有機溶媒は、セルロースエステル、その他の添加剤を同時に溶解するものであれば制限なく用いることが出来る。
[Solution casting film forming method]
<Organic solvent>
An organic solvent useful for forming a dope when a cellulose ester film is produced by a solution casting method can be used without limitation as long as it dissolves cellulose ester and other additives simultaneously.
 例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることが出来、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。 For example, as a chlorinated organic solvent, methylene chloride, as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc. Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系での熱可塑性アクリル樹脂、セルロースエステル樹脂の溶解を促進する役割もある。 In addition to the organic solvent, the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the proportion of alcohol in the dope increases, the web gels and peeling from the metal support becomes easy. When the proportion of alcohol is small, thermoplastic acrylic resins and cellulose ester resins in non-chlorine organic solvent systems There is also a role of promoting dissolution of the.
 特に、メチレンクロライド、及び炭素数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有する溶媒に、熱可塑性アクリル樹脂と、セルロースエステル樹脂と、アクリル粒子の3種を、少なくとも計15~45質量%溶解させたドープ組成物であることが好ましい。 In particular, in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms, at least 15 kinds of thermoplastic acrylic resin, cellulose ester resin, and acrylic particles are used. A dope composition in which 45% by mass is dissolved is preferable.
 炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることが出来る。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
 〈溶液流延法〉
 セルロースエステルフィルムの溶液流延法による製造では、セルロースエステルおよび添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。
<Solution casting method>
In the production of a cellulose ester film by a solution casting method, a step of preparing a dope by dissolving a cellulose ester and an additive in a solvent, a step of casting the dope on a belt-shaped or drum-shaped metal support, and casting. It is performed by a step of drying the dope as a web, a step of peeling from the metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
 ドープ中のセルロースエステル、および添加剤の濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。 The concentration of the cellulose ester and the additive in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of the cellulose ester is too high, the load during filtration increases. Thus, the filtration accuracy is deteriorated. The concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。 The metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
 キャストの幅は1~4mとすることができる。流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。 The cast width can be 1 ~ 4m. The surface temperature of the metal support in the casting step is set to −50 ° C. to below the temperature at which the solvent boils and does not foam. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
 好ましい支持体温度としては0~100℃で適宜決定され、5~30℃が更に好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。 A preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent.
 金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。 The method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
 温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。 When using warm air, considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there may be cases where wind at a temperature higher than the target temperature is used while preventing foaming. .
 特に、流延から剥離するまでの間で支持体の温度および乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。 Particularly, it is preferable to efficiently dry by changing the temperature of the support and the temperature of the drying air during the period from casting to peeling.
 セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、更に好ましくは20~40質量%または60~130質量%であり、特に好ましくは、20~30質量%または70~120質量%である。 In order for the cellulose ester film to exhibit good flatness, the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
 残留溶媒量は下記式で定義される。 The amount of residual solvent is defined by the following formula.
 残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
 また、セルロースエステルフィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。 Further, in the drying step of the cellulose ester film, the web is peeled off from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, Particularly preferred is 0 to 0.01% by mass or less.
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールをウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。 In the film drying process, generally, a roll drying method (a method in which a plurality of rolls arranged at the top and bottom are alternately passed through the web for drying) or a tenter method for drying while transporting the web is employed.
 <セルロースエステルフィルムに使用する添加剤>
 セルロースエステルフィルムには、組成物の流動性や柔軟性を向上するために、可塑剤を併用することも好ましい。可塑剤としては特に限定されないが、好ましくは、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、脂肪酸エステル系可塑剤及び多価アルコールエステル系可塑剤、ポリエステル系可塑剤、アクリル系可塑剤、炭水化物エステル系可塑剤等から選択される。そのうち、可塑剤を2種以上用いる場合は、少なくとも1種は多価アルコールエステル系可塑剤であることが好ましい。
<Additives used for cellulose ester film>
In order to improve the fluidity and flexibility of the composition, it is also preferable to use a plasticizer in combination with the cellulose ester film. The plasticizer is not particularly limited, but is preferably a polycarboxylic acid ester plasticizer, a glycolate plasticizer, a phthalate ester plasticizer, a fatty acid ester plasticizer, a polyhydric alcohol ester plasticizer, or a polyester. It is selected from plasticizers, acrylic plasticizers, carbohydrate ester plasticizers and the like. Of these, when two or more plasticizers are used, at least one plasticizer is preferably a polyhydric alcohol ester plasticizer.
 多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環またはシクロアルキル環を有することが好ましい。好ましくは2~20価の脂肪族多価アルコールエステルである。 The polyhydric alcohol ester plasticizer is a plasticizer composed of an ester of a divalent or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule. A divalent to 20-valent aliphatic polyhydric alcohol ester is preferred.
 本発明に好ましく用いられる多価アルコールは次の一般式(a)で表される。 The polyhydric alcohol preferably used in the present invention is represented by the following general formula (a).
 一般式(a)  Ra-(OH)n
(但し、Raはn価の有機基、nは2以上の正の整数、OH基はアルコール性、及び/またはフェノール性水酸基を表す。)
 好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
Formula (a) Ra- (OH) n
(However, Ra represents an n-valent organic group, n represents a positive integer of 2 or more, and an OH group represents an alcoholic and / or phenolic hydroxyl group.)
Examples of preferred polyhydric alcohols include the following, but the present invention is not limited to these. Adonitol, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3- Butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 1,6-hexanediol, hexanetriol, galactitol, mannitol, 3-methylpentane Examples include 1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, and xylitol. In particular, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane, and xylitol are preferable.
 多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。 There is no restriction | limiting in particular as monocarboxylic acid used for polyhydric alcohol ester, Well-known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid, etc. can be used. Use of an alicyclic monocarboxylic acid or aromatic monocarboxylic acid is preferred in terms of improving moisture permeability and retention.
 好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。 Preferred examples of the monocarboxylic acid include the following, but the present invention is not limited to this.
 脂肪族モノカルボン酸としては、炭素数1~32の直鎖または側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1~20であることが更に好ましく、1~10であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。 As the aliphatic monocarboxylic acid, a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. The number of carbon atoms is more preferably 1-20, and particularly preferably 1-10. When acetic acid is contained, the compatibility with the cellulose ester is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。 Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanoic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。 Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、メトキシ基或いはエトキシ基などのアルコキシ基を1~3個を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に安息香酸が好ましい。 Examples of preferred aromatic monocarboxylic acids include those in which 1 to 3 alkoxy groups such as alkyl group, methoxy group or ethoxy group are introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, biphenylcarboxylic acid, Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as naphthalenecarboxylic acid and tetralincarboxylic acid, or derivatives thereof. Benzoic acid is particularly preferable.
 多価アルコールエステルの分子量は特に制限はないが、300~1500であることが好ましく、350~750であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。 The molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably 300 to 1500, and more preferably 350 to 750. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose ester.
 多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。 The carboxylic acid used in the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
 グリコレート系可塑剤は特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。アルキルフタリルアルキルグリコレート類としては、例えばメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。 The glycolate plasticizer is not particularly limited, but alkylphthalylalkyl glycolates can be preferably used. Examples of alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl ethyl Glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl glycol Butyl phthalyl propyl glycolate, methyl phthalyl octyl glycolate, ethyl phthalyl octyl glycolate, octyl phthalyl methyl glycolate, octyl phthalate Ethyl glycolate, and the like.
 フタル酸エステル系可塑剤としては、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。 Examples of the phthalate ester plasticizer include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, and dicyclohexyl terephthalate.
 クエン酸エステル系可塑剤としては、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。 Examples of the citrate plasticizer include acetyl trimethyl citrate, acetyl triethyl citrate, and acetyl tributyl citrate.
 脂肪酸エステル系可塑剤として、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。 Examples of fatty acid ester plasticizers include butyl oleate, methylacetyl ricinoleate, and dibutyl sebacate.
 リン酸エステル系可塑剤としては、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。 Examples of the phosphate ester plasticizer include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like.
 炭水化物エステル系可塑剤として、具体的には、グルコースペンタアセテート、グルコースペンタプロピオネート、グルコースペンタブチレート、サッカロースオクタアセテート、サッカロースオクタベンゾエート等を好ましく挙げることができ、この内、サッカロースオクタアセテート、サッカロースオクタベンゾエートがより好ましく、サッカロースオクタベンゾエートが特に好ましい。例えば市販品として、モノペットSB:第一工業製薬社製、モノペットSOA:第一工業製薬社製が挙げられる。 Specific examples of the carbohydrate ester plasticizer include glucose pentaacetate, glucose pentapropionate, glucose pentabtylate, saccharose octaacetate, saccharose octabenzoate and the like. Among these, saccharose octaacetate, saccharose Octabenzoate is more preferred, and sucrose octabenzoate is particularly preferred. For example, monopet SB: manufactured by Daiichi Kogyo Seiyaku Co., Ltd., monopet SOA: manufactured by Daiichi Kogyo Seiyaku Co., Ltd. can be cited as commercially available products.
 可塑剤はセルロースエステルフィルム100質量部に対して、0.5~30質量部を添加するのが好ましい。可塑剤の添加量が30質量部を越えると、表面がべとつくので、実用上好ましくない。 The plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the cellulose ester film. If the added amount of the plasticizer exceeds 30 parts by mass, the surface becomes sticky, which is not preferable for practical use.
 セルロースエステルフィルムは、紫外線吸収剤を含有することも好ましく、用いられる紫外線吸収剤としては、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系またはサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。ここで、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる。 The cellulose ester film preferably contains an ultraviolet absorber, and examples of the ultraviolet absorber used include benzotriazole, 2-hydroxybenzophenone, and salicylic acid phenyl ester. For example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And benzophenones. Here, among ultraviolet absorbers, ultraviolet absorbers having a molecular weight of 400 or more are less likely to volatilize at a high boiling point and are difficult to disperse even during high-temperature molding. be able to.
 分子量が400以上の紫外線吸収剤としては、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系、さらには2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらのうちでも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が特に好ましい。 Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] Such as til] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine A hybrid system having both structures can be mentioned, and these can be used alone or in combination of two or more. Among these, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
 さらに、セルロースエステルフィルムには、成形加工時の熱分解性や熱着色性を改良するために各種の酸化防止剤を添加することもできる。また帯電防止剤を加えて、光学フィルムに帯電防止性能を与えることも可能である。 Furthermore, various antioxidants can be added to the cellulose ester film in order to improve the thermal decomposability and thermal colorability during molding. It is also possible to add an antistatic agent to give the optical film antistatic performance.
 セルロースエステルフィルムには、リン系難燃剤を配合した難燃アクリル系樹脂組成物を用いても良い。 For the cellulose ester film, a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used.
 ここで用いられるリン系難燃剤としては、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる1種、あるいは2種以上の混合物を挙げることができる。 Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, halogen-containing phosphites, and the like.
 具体的な例としては、トリフェニルホスフェート、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド、フェニルホスホン酸、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。 Specific examples include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris (β-chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
 セルロースエステルフィルムは、滑り性や光学的、機械的機能を付与するためにマット剤を添加することができる。マット剤としては、無機化合物の微粒子又は有機化合物の微粒子が挙げられる。 In the cellulose ester film, a matting agent can be added in order to impart slipperiness, optical and mechanical functions. Examples of the matting agent include inorganic compound fine particles and organic compound fine particles.
 マット剤の形状は、球状、棒状、針状、層状、平板状等の形状のものが好ましく用いられる。マット剤としては、例えば二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の金属の酸化物、リン酸塩、ケイ酸塩、炭酸塩等の無機微粒子や架橋高分子微粒子を挙げることができる。中でも、二酸化ケイ素がフィルムのヘーズを低くできるので好ましい。これらの微粒子は有機物により表面処理されていることが、フィルムのヘーズを低下できるため好ましい。 The shape of the matting agent is preferably a spherical shape, rod shape, needle shape, layer shape, flat plate shape or the like. Examples of the matting agent include oxidation of metals such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate. Inorganic fine particles such as materials, phosphates, silicates, carbonates and crosslinked polymer fine particles. Among these, silicon dioxide is preferable because it can reduce the haze of the film. These fine particles are preferably surface-treated with an organic substance because the haze of the film can be reduced.
 〈熱可塑性アクリル樹脂〉
 本発明のセルロースエステルフィルムにおいて、樹脂としてセルロースエステルに熱可塑性アクリル樹脂を混合してもよい。
<Thermoplastic acrylic resin>
In the cellulose ester film of the present invention, a thermoplastic acrylic resin may be mixed with the cellulose ester as a resin.
 本発明に用いられるアクリル系樹脂は、フィルムの延伸方向に対して負の複屈折性を示すことが好ましく、特に構造が限定されるものではないが、エチレン性不飽和モノマーを重合して得られた重量平均分子量が500以上1000000以下である重合体を、適宜選択したものであることが好ましい。アクリル系重合体の適正な分子量範囲が上記の通りであるが、30質量%以上含有させる場合は、セルロースエステルとの相溶性の点から重量平均分子量が80000~1000000であることが好ましい。 The acrylic resin used in the present invention preferably exhibits negative birefringence with respect to the stretching direction of the film, and the structure is not particularly limited, but is obtained by polymerizing an ethylenically unsaturated monomer. It is preferable that a polymer having a weight average molecular weight of 500 or more and 1000000 or less is appropriately selected. The proper molecular weight range of the acrylic polymer is as described above, but when it is contained in an amount of 30% by mass or more, the weight average molecular weight is preferably 80,000 to 1,000,000 from the viewpoint of compatibility with the cellulose ester.
 熱可塑性アクリル樹脂とセルロースエステルの含有質量比は、熱可塑性アクリル樹脂:セルロースエステル樹脂=95:5~50:50であることが好ましい。より好ましくは90:10~60:40である。 The mass ratio of the thermoplastic acrylic resin and the cellulose ester is preferably thermoplastic acrylic resin: cellulose ester resin = 95: 5 to 50:50. More preferably, it is 90:10 to 60:40.
 熱可塑性アクリル樹脂は、メタクリル樹脂も含まれる。熱可塑性アクリル樹脂としては、特に制限されるものではないが、メチルメタクリレート単位50~99質量%、およびこれと共重合可能な他の単量体単位1~50質量%からなるものが好ましい。共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上の単量体を併用して用いることができる。 Thermoplastic acrylic resin includes methacrylic resin. The thermoplastic acrylic resin is not particularly limited, but is preferably composed of 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith. Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid. Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and α-methylstyrene, α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile, Examples thereof include maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like, and these can be used alone or in combination of two or more monomers.
 これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。また、重量平均分子量(Mw)は80000~500000であることが好ましく、更に好ましくは、110000~500000の範囲内である。熱可塑性アクリル樹脂の重量平均分子量は、測定条件含めて、上記記載のゲルパーミエーションクロマトグラフィーにより測定することができる。熱可塑性アクリル樹脂の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系およびアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁または乳化重合では30~100℃、塊状または溶液重合では80~160℃で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。また、市販品も使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。熱可塑性アクリル樹脂は2種以上を併用することもできる。また、熱可塑性アクリル樹脂には、特開2009-84574号に記載の(メタ)アクリル系ゴムと芳香族ビニル化合物の共重合体に(メタ)アクリル系樹脂がグラフトされたグラフト共重合体を用いてもよい。前記グラフト共重合体は、(メタ)アクリル系ゴムと芳香族ビニル化合物の共重合体がコア(core)を構成し、その周辺に前記(メタ)アクリル系樹脂がシェル(shell)を構成するコア-シェルタイプのグラフト共重合体であることが好ましい。 Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used. Further, the weight average molecular weight (Mw) is preferably 80,000 to 500,000, and more preferably 110,000 to 500,000. The weight average molecular weight of the thermoplastic acrylic resin can be measured by the gel permeation chromatography described above, including the measurement conditions. There is no restriction | limiting in particular as a manufacturing method of a thermoplastic acrylic resin, You may use any well-known methods, such as suspension polymerization, emulsion polymerization, block polymerization, or solution polymerization. Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used. The polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization. In order to control the reduced viscosity of the obtained copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent. Commercial products can also be used. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. . Two or more thermoplastic acrylic resins can be used in combination. As the thermoplastic acrylic resin, a graft copolymer obtained by grafting a (meth) acrylic resin to a copolymer of (meth) acrylic rubber and an aromatic vinyl compound described in JP-A-2009-84574 is used. May be. In the graft copolymer, a copolymer of (meth) acrylic rubber and an aromatic vinyl compound forms a core, and the (meth) acrylic resin forms a shell around the copolymer. -A shell-type graft copolymer is preferred.
 〈セルロースエステルフィルムの物性〉
 本発明に係るセルロースエステルフィルムは、「延性破壊が起こらないフィルム」であることが好ましい。ここで、延性破壊とは、ある材料が有する強度よりも、大きな応力が作用することで生じる破断のことであり、最終破断までに材料の著しい伸びや絞りを伴う破壊と定義される。その破面には、ディンプルと呼ばれる窪みが無数に形成される特徴がある。
<Physical properties of cellulose ester film>
The cellulose ester film according to the present invention is preferably a “film that does not cause ductile fracture”. Here, the ductile fracture is a fracture caused by applying a stress larger than the strength of a certain material, and is defined as a fracture accompanied by significant elongation or drawing of the material until the final fracture. The fracture surface is characterized by numerous indentations called dimples.
 「延性破壊が起こらないフィルム」であるか否かは、フィルムを2つに折り曲げるような大きな応力を作用させても破断等の破壊がみられないことにより評価するものとする。 「Whether or not it is a“ film that does not cause ductile fracture ”shall be evaluated based on the fact that no breakage such as breakage is observed even when a large stress is applied to bend the film in two.
 液晶表示装置が大型化され、バックライト光源の輝度が益々高くなっていることに加え、デジタルサイネージ等の屋外用途への利用により、より高い輝度が求められていることから、セルロースエステルフィルムはより高温の環境下での使用に耐えられることが求められており、本発明のセルロースエステルフィルムは張力軟化点が、105℃~145℃であれば、十分な耐熱性を示すものと判断でき好ましく、特に110℃~130℃に制御することが好ましい。 The size of liquid crystal display devices is increasing, and the brightness of backlight light sources is increasing. In addition, the use of digital signage and other outdoor applications demands higher brightness. The cellulose ester film of the present invention is required to be able to withstand use in a high temperature environment, and if the tension softening point is 105 ° C. to 145 ° C., it can be determined that it exhibits sufficient heat resistance, In particular, it is preferable to control at 110 ° C. to 130 ° C.
 張力軟化点の具体的な測定方法としては、例えば、テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて、セルロースエステルフィルムを120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/minの昇温速度で昇温を続け、9Nになった時点での温度を3回測定し、その平均値により求めることができる。 As a specific method for measuring the tension softening point, for example, using a Tensilon tester (produced by ORIENTEC, RTC-1225A), the cellulose ester film is cut out at 120 mm (length) × 10 mm (width) with a tension of 10 N. While pulling, the temperature can be raised at a rate of 30 ° C./min. The temperature at the time when the temperature reaches 9 N is measured three times, and the average value can be obtained.
 また、耐熱性の観点で、セルロースエステルフィルムは、ガラス転移温度(Tg)が110℃以上であることが好ましい。より好ましくは120℃以上である。特に好ましくは150℃以上である。 Also, from the viewpoint of heat resistance, the cellulose ester film preferably has a glass transition temperature (Tg) of 110 ° C. or higher. More preferably, it is 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.
 尚、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。 The glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min. Point glass transition temperature (Tmg).
 また、液晶表示装置の偏光板用保護フィルムとしてセルロースエステルフィルムが用いられる場合は、吸湿による寸法変化によりムラや位相差値の変化が発生してしまい、コントラストの低下や色むらといった問題を発生させる。特に屋外で使用される液晶表示装置に用いられる偏光板保護フィルムであれば、上記の問題は顕著となる。このため、寸法変化率(%)は0.5%未満が好ましく、更に、0.3%未満であることが好ましい。 In addition, when a cellulose ester film is used as a protective film for a polarizing plate of a liquid crystal display device, unevenness or a change in retardation value occurs due to a dimensional change due to moisture absorption, causing problems such as a decrease in contrast and uneven color. . In particular, the above problem becomes significant when the polarizing plate protective film is used in a liquid crystal display device used outdoors. For this reason, the dimensional change rate (%) is preferably less than 0.5%, and more preferably less than 0.3%.
 また、セルロースエステルフィルムは、フィルム面内の直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。更に好ましくは0.5個/10cm四方以下、一層好ましくは0.1個/10cm四方以下である。 Further, the cellulose ester film preferably has a defect of 5 μm or more in diameter in the film plane of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less.
 ここで欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。 Here, the diameter of the defect indicates the diameter when the defect is circular, and when it is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ロール傷の転写や擦り傷など、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。 The range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object. If the defect is a change in surface shape, such as transfer of a roll flaw or an abrasion, the size is confirmed by observing the defect with the reflected light of a differential interference microscope.
 なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。 In addition, when observing with reflected light, if the size of the defect is not clear, aluminum or platinum is vapor-deposited on the surface for observation.
 かかる欠点頻度にて表される品位に優れたフィルムを生産性よく得るには、ポリマー溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。 In order to obtain a film having excellent quality expressed by such a defect frequency with high productivity, it is necessary to filter the polymer solution with high precision immediately before casting, to increase the cleanliness around the casting machine, It is effective to set drying conditions after rolling stepwise and to dry efficiently while suppressing foaming.
 欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時などでフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。 When the number of defects is more than 1/10 cm square, for example, when a tension is applied to the film during processing in a later process, the film may be broken with the defect as a starting point and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
 また、目視で確認できない場合でも、該フィルム上にハードコート層などを形成したときに、塗剤が均一に形成できず欠点(塗布抜け)となる場合がある。ここで、欠点とは、溶液製膜の乾燥工程において溶媒の急激な蒸発に起因して発生するフィルム中の空洞(発泡欠点)や、製膜原液中の異物や製膜中に混入する異物に起因するフィルム中の異物(異物欠点)を言う。 Also, even when visual confirmation is not possible, when a hard coat layer or the like is formed on the film, the coating agent may not be formed uniformly, resulting in defects (coating defects). Here, the defect is a void in the film (foaming defect) generated due to the rapid evaporation of the solvent in the drying process of the solution casting, a foreign matter in the film forming stock solution, or a foreign matter mixed in the film forming. This refers to the foreign matter (foreign matter defect) in the film.
 また、セルロースエステルフィルムは、JIS-K7127-1999に準拠した測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。 Further, the cellulose ester film preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more, as measured in accordance with JIS-K7127-1999.
 破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。 The upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
 セルロースエステルフィルムの厚みは、20μm以上であることが好ましい。より好ましくは30μm以上である。 The thickness of the cellulose ester film is preferably 20 μm or more. More preferably, it is 30 μm or more.
 厚みの上限は特に限定される物ではないが、溶液製膜法でフィルム化する場合は、塗布性、発泡、溶媒乾燥などの観点から、上限は250μm程度である。なお、フィルムの厚みは用途により適宜選定することができる。 The upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 250 μm from the viewpoint of applicability, foaming, solvent drying and the like. The thickness of the film can be appropriately selected depending on the application.
 セルロースエステルフィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。 The cellulose ester film preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
 また、製膜時のフィルム接触部(冷却ロール、カレンダーロール、ドラム、ベルト、溶液製膜における塗布基材、搬送ロールなど)の表面粗さを小さくしてフィルム表面の表面粗さを小さくすることや、熱可塑性アクリル樹脂の屈折率を小さくすることによりフィルム表面の光の拡散や反射を低減させることが有効である。 Also, reduce the surface roughness of the film surface by reducing the surface roughness of the film contact part (cooling roll, calender roll, drum, belt, coating substrate in solution casting, transport roll, etc.) during film formation. It is also effective to reduce the diffusion and reflection of light on the film surface by reducing the refractive index of the thermoplastic acrylic resin.
 〈返材適性〉
 従来のセルロースエステルからセルロースエステルフィルムを作る工程において、フィルムの両端部を適宜スリットする工程が設けられ、その際に出る不要な端部フィルムを再利用する。これを一般に返材という。
<Reply material suitability>
In the process of making a cellulose ester film from a conventional cellulose ester, a step of appropriately slitting both end portions of the film is provided, and unnecessary end films that appear at that time are reused. This is generally called return material.
 溶液流延製膜においてはスリットされたフィルムは比較的低温で再度溶剤に溶解されるため、新規原料同等の性質を維持でき、光学フィルムになっても特に特性上問題はない。本発明のセルロースエステルを用いたセルロースエステルフィルムを溶液流延製膜において返材として使用しても従来と同様に問題はなかった。 In the solution casting film formation, the slit film is dissolved again in the solvent at a relatively low temperature, so that the properties equivalent to those of the new raw material can be maintained, and there is no particular problem in the properties even when the optical film is formed. Even when the cellulose ester film using the cellulose ester of the present invention was used as a recycled material in solution casting film formation, there was no problem as in the prior art.
 一方、溶融流延製膜フィルムでは溶液流延製膜フィルムの様に返材を使いこなすことは困難である。即ち、溶融流延製膜工程では、セルロースエステルに溶融時に高温の熱が加わっているため、セルロースエステル分子は劣化や分解が進行しており、再利用した場合は更に分解や劣化が進むため、劣化物やゲル異物、輝点異物といった光学用途フィルムに悪影響を与える成分が発生し易く、実際に返材を利用するに至っていなかった。 On the other hand, it is difficult to make full use of the recycled material in the case of a melt cast film as in the case of a solution cast film. That is, in the melt casting film forming process, since high-temperature heat is applied to the cellulose ester at the time of melting, the cellulose ester molecules have been deteriorated and decomposed, and when reused, the decomposition and deterioration further proceed. Components that adversely affect the film for optical use such as a deteriorated product, a gel foreign material, and a bright spot foreign material are likely to be generated, and the recycled material has not been actually used.
 しかしながら本発明のセルローエステルは、極めて均一性が高く不純物が少ない為、溶融流延製膜することで得られるフィルムを再度返材として使用しても、劣化物の発生や着色が少なく、光学用途フィルムの品質に十分達していることが分かった。 However, since the cellulose ester of the present invention is extremely uniform and has few impurities, even if the film obtained by melt casting is used again as a recycled material, there is little occurrence of deterioration and coloring, and optical use It turns out that the quality of the film has been fully achieved.
 返材の使用比率は、主未使用原料の処方値の固形分に対して0~70質量%が好ましく、10~50質量%が更に好ましく、特に20~40質量%が好ましい。 The use ratio of the recycled material is preferably 0 to 70% by mass, more preferably 10 to 50% by mass, and particularly preferably 20 to 40% by mass with respect to the solid content of the main unused raw material.
 返材を使用した場合は、その使用量に対応して、可塑剤、紫外線吸収剤、微粒子などセルロースエステルフィルムに含まれる添加剤は減量して、最終的なセルロースエステルフィルム組成が設計値になるように調整を行うことが好ましい。 When the recycled material is used, the additives contained in the cellulose ester film such as plasticizers, ultraviolet absorbers, and fine particles are reduced according to the amount used, and the final cellulose ester film composition becomes the design value. It is preferable to make such adjustments.
 <機能性層>
 本発明のセルロースエステルフィルムには、帯電防止層、バックコート層、反射防止層、易滑性層、接着層、防眩層、バリアー層等の機能性層を設けることができる。
<Functional layer>
The cellulose ester film of the present invention can be provided with functional layers such as an antistatic layer, a backcoat layer, an antireflection layer, a slippery layer, an adhesive layer, an antiglare layer, and a barrier layer.
 〈ハードコート層〉
 本発明に用いられるハードコート層は活性線硬化樹脂を含有し、紫外線や電子線のような活性線(活性エネルギー線ともいう)照射により、架橋反応を経て硬化する樹脂を主たる成分とする層であることが好ましい。
<Hard coat layer>
The hard coat layer used in the present invention contains an actinic radiation curable resin, and is a layer mainly composed of a resin that cures through a crosslinking reaction by irradiation with an actinic ray (also referred to as an active energy ray) such as an ultraviolet ray or an electron beam. Preferably there is.
 活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性線硬化樹脂層が形成される。 As the actinic radiation curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and an actinic radiation curable resin layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams. The
 活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。 Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, but the resin that is cured by ultraviolet irradiation is excellent in mechanical film strength (abrasion resistance, pencil hardness). preferable.
 紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。 As the ultraviolet curable resin, for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, ultraviolet curable acrylate resins are preferred.
 また、ハードコート層には活性線硬化樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤:活性線硬化樹脂=20:100~0.01:100で含有することが好ましい。 In addition, it is preferable that the hard coat layer contains a photopolymerization initiator to accelerate the curing of the actinic radiation curable resin. The amount of the photopolymerization initiator is preferably contained in a mass ratio of photopolymerization initiator: active ray curable resin = 20: 100 to 0.01: 100.
 光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等およびこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。 Specific examples of the photopolymerization initiator include acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, α-amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto.
 またハードコート層には、無機化合物または有機化合物の微粒子を含むことが好ましい。 The hard coat layer preferably contains fine particles of an inorganic compound or an organic compound.
 無機微粒子としては、酸化珪素、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムを挙げることができる。特に、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等が好ましく用いられる。 As inorganic fine particles, silicon oxide, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated silicic acid Mention may be made of calcium, aluminum silicate, magnesium silicate and calcium phosphate. In particular, silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide and the like are preferably used.
 有機粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等を添加することができる。 As organic particles, polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder, A polyolefin resin powder, a polyester resin powder, a polyamide resin powder, a polyimide resin powder, a polyfluoroethylene resin powder, or the like can be added.
 これらの微粒子粉末の平均粒子径は特に制限されないが、0.01~5μmが好ましく、更には、0.01~1.0μmであることが好ましい。また、粒径の異なる2種以上の微粒子を含有しても良い。微粒子の平均粒子径は、例えばレーザー回折式粒度分布測定装置により測定することができる。 The average particle diameter of these fine particle powders is not particularly limited, but is preferably 0.01 to 5 μm, and more preferably 0.01 to 1.0 μm. Moreover, you may contain 2 or more types of microparticles | fine-particles from which a particle size differs. The average particle diameter of the fine particles can be measured by, for example, a laser diffraction particle size distribution measuring device.
 紫外線硬化樹脂組成物と微粒子の割合は、樹脂組成物100質量部に対して、10~400質量部となるように配合することが望ましく、更に望ましくは、50~200質量部である。 The ratio of the ultraviolet curable resin composition and the fine particles is desirably 10 to 400 parts by mass, more preferably 50 to 200 parts by mass with respect to 100 parts by mass of the resin composition.
 これらのハードコート層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法を用いて、ハードコート層を形成する塗布組成物を塗布し、塗布後、加熱乾燥し、UV硬化処理することで形成できる。 These hard coat layers are coated using a known method such as a gravure coater, dip coater, reverse coater, wire bar coater, die coater, ink jet method, and the like. And can be formed by UV curing.
 ハードコート層のドライ膜厚としては平均膜厚0.1~30μm、好ましくは1~20μm、特に好ましくは6~15μmである。 The dry film thickness of the hard coat layer is an average film thickness of 0.1 to 30 μm, preferably 1 to 20 μm, particularly preferably 6 to 15 μm.
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。 As a light source for UV curing treatment, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
 照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5~500mJ/cm、好ましくは5~200mJ/cmである。 Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 5 to 500 mJ / cm 2 , preferably 5 to 200 mJ / cm 2 .
 〈バックコート層〉
 本発明のセルロースエステルフィルムは、フィルムのハードコート層を設けた側と反対側の面に、カールやくっつき防止の為にバックコート層を設けてもよい。
<Back coat layer>
In the cellulose ester film of the present invention, a back coat layer may be provided on the surface opposite to the side on which the hard coat layer is provided to prevent curling and sticking.
 バックコート層に添加される粒子としては無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムを挙げることができる。 As particles added to the backcoat layer, examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, and oxide. Mention may be made of indium, zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate.
 バックコート層に含まれる粒子は、バインダーに対して0.1~50質量%が好ましい。バックコート層を設けた場合のヘーズの増加は1.5%以下であることが好ましく、0.5%以下であることが更に好ましく、特に0.1%以下であることが好ましい。 The particles contained in the backcoat layer are preferably 0.1 to 50% by mass with respect to the binder. When the back coat layer is provided, the increase in haze is preferably 1.5% or less, more preferably 0.5% or less, and particularly preferably 0.1% or less.
 バインダーとしては、ジアセチルセルロース等のセルロースエステル樹脂が好ましい。 The binder is preferably a cellulose ester resin such as diacetylcellulose.
 〈反射防止層〉
 本発明のセルロースエステルフィルムは、ハードコート層の上層に反射防止層を塗設して、外光反射防止機能を有する反射防止フィルムとして用いることができる。
<Antireflection layer>
The cellulose ester film of the present invention can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on the hard coat layer.
 反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体よりも屈折率の低い低屈折率層、もしくは支持体よりも屈折率の高い高屈折率層と低屈折率層を組み合わせて構成されていることが好ましい。特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。または、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。 The antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference. The antireflection layer is preferably composed of a low refractive index layer having a refractive index lower than that of the support, or a combination of a high refractive index layer having a refractive index higher than that of the support and a low refractive index layer. Particularly preferably, it is an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support). Are preferably laminated in the order of a layer having a lower refractive index) / a high refractive index layer / a low refractive index layer. Alternatively, an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
 反射防止フィルムの層構成としては下記のような構成が考えられるが、これに限定されるものではない。 As the layer structure of the antireflection film, the following structure can be considered, but it is not limited to this.
 セルロースエステルフィルム/ハードコート層/低屈折率層
 セルロースエステルフィルム/ハードコート層/中屈折率層/低屈折率層
 セルロースエステルフィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
 セルロースエステルフィルム/ハードコート層/高屈折率層(導電性層)/低屈折率層
 セルロースエステルフィルム/ハードコート層/防眩性層/低屈折率層
 反射防止フィルムには必須である低屈折率層は、シリカ系微粒子を含有することが好ましく、その屈折率は、支持体であるセルロースフィルムの屈折率より低く、23℃、波長550nm測定で、1.30~1.45の範囲であることが好ましい。
Cellulose ester film / hard coat layer / low refractive index layer Cellulose ester film / hard coat layer / medium refractive index layer / low refractive index layer Cellulose ester film / hard coat layer / medium refractive index layer / high refractive index layer / low refractive index Layer Cellulose ester film / Hard coat layer / High refractive index layer (conductive layer) / Low refractive index layer Cellulose ester film / Hard coat layer / Anti-glare layer / Low refractive index layer Low refractive index essential for antireflection film The refractive index layer preferably contains silica-based fine particles, and its refractive index is lower than the refractive index of the cellulose film as the support, and is in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm. It is preferable.
 低屈折率層の膜厚は、5nm~0.5μmであることが好ましく、10nm~0.3μmであることが更に好ましく、30nm~0.2μmであることが最も好ましい。 The film thickness of the low refractive index layer is preferably 5 nm to 0.5 μm, more preferably 10 nm to 0.3 μm, and most preferably 30 nm to 0.2 μm.
 低屈折率層形成用組成物については、シリカ系微粒子として、特に外殻層を有し内部が多孔質または空洞の粒子を少なくとも1種類以上含むことが好ましい。特に該外殻層を有し内部が多孔質または空洞である粒子が、中空シリカ系微粒子であることが好ましい。 The composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles. In particular, the particles having the outer shell layer and having a porous or hollow interior are preferably hollow silica-based fine particles.
 なお、低屈折率層形成用組成物には、下記一般式(OSi-1)で表される有機珪素化合物もしくはその加水分解物、或いは、その重縮合物を併せて含有させても良い。 Note that the composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
  一般式(OSi-1):Si(OR)
 前記一般式で表される有機珪素化合物は、式中、Rは炭素数1~4のアルキル基を表す。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。
General formula (OSi-1): Si (OR) 4
In the organosilicon compound represented by the above general formula, R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
 他に溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。 In addition, a solvent, and if necessary, a silane coupling agent, a curing agent, a surfactant and the like may be added.
 <偏光板>
 本発明のセルロースエステルフィルムを用いた偏光板について述べる。偏光板は一般的な方法で作製することができる。本発明のセルロースエステルフィルムの裏面側をアルカリ鹸化処理し、処理したセルロースエステルフィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。
<Polarizing plate>
A polarizing plate using the cellulose ester film of the present invention will be described. The polarizing plate can be produced by a general method. The back side of the cellulose ester film of the present invention is subjected to alkali saponification treatment, and a completely saponified polyvinyl alcohol aqueous solution is used on at least one surface of a polarizing film prepared by immersing and stretching the treated cellulose ester film in an iodine solution. It is preferable to bond them together.
 もう一方の面に該セルロースエステルフィルムを用いても、別の偏光板保護フィルムを用いてもよい。例えば、特開2003-12859号記載のリターデーションRoが590nmで0~5nm、Rtが-20~+20nmの無配向フィルムが一例として挙げられる。 The cellulose ester film may be used on the other surface, or another polarizing plate protective film may be used. For example, a non-oriented film having retardation Ro of 590 nm at 0 to 5 nm and Rt of −20 to +20 nm described in JP-A No. 2003-12859 can be mentioned as an example.
 また、他に面内リターデーションRoが590nmで、20~70nm、Rtが70~400nmの位相差を有する光学補償フィルム(位相差フィルム)を用いて、視野角拡大可能な偏光板とすることもできる。これらは例えば、特開2002-71957号の方法で作製することができる。または、更にディスコチック液晶等の液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを用いることが好ましい。例えば、特開2003-98348号記載の方法で光学異方性層を形成することができる。 In addition, an optical compensation film (retardation film) having a retardation of in-plane retardation Ro of 590 nm, 20 to 70 nm, and Rt of 70 to 400 nm may be used to obtain a polarizing plate capable of widening the viewing angle. it can. These can be produced, for example, by the method of JP-A-2002-71957. Alternatively, it is preferable to use an optical compensation film having an optical anisotropic layer formed by aligning a liquid crystal compound such as a discotic liquid crystal. For example, the optically anisotropic layer can be formed by the method described in JP-A-2003-98348.
 また、好ましく用いられる市販の偏光板保護フィルムとしては、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4FR-1、KC4FR-2、KC8UE、KC4UE(コニカミノルタオプト(株)製)等が挙げられる。 Also, commercially available polarizing plate protective films preferably used include KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-2, KC4FR-2, KC4FR-2, KC8FR-2 KC4UE (Konica Minolta Opto Co., Ltd.) etc. are mentioned.
 偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。 The polarizing film, which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film. There are ones in which iodine is dyed on a system film and ones in which a dichroic dye is dyed, but it is not limited to this.
 偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚は5~30μm、好ましくは8~15μmの偏光膜が好ましく用いられる。 As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound. A polarizing film having a thickness of 5 to 30 μm, preferably 8 to 15 μm is preferably used.
 該偏光膜の面上に、本発明のセルロースエステルフィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。 A polarizing plate is formed by laminating one side of the cellulose ester film of the present invention on the surface of the polarizing film. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.
 <液晶表示装置>
 本発明のセルロースエステルフィルムを用いて作製した偏光板を表示装置に組み込むことによって、種々の視認性に優れた画像表示装置を作製することができる。
<Liquid crystal display device>
By incorporating a polarizing plate produced using the cellulose ester film of the present invention into a display device, various image display devices with excellent visibility can be produced.
 本発明のセルロースエステルフィルムは偏光板に組み込まれ、反射型、透過型、半透過型液晶表示装置またはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型、OCB型等の各種駆動方式の液晶表示装置で好ましく用いられる。 The cellulose ester film of the present invention is incorporated in a polarizing plate and is a reflective type, transmissive type, transflective liquid crystal display device or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type. It is preferably used in liquid crystal display devices of various driving systems such as OCB type.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1
 <セルロースエステルの製造>
 <製造例1>
 原料パルプ(αセルロース93%以上)100質量部と氷酢酸を100質量部を混合機に入れ撹拌しスラリー状態にした後、石臼式粉砕機に投入し40℃、30分間粉砕した。粉砕後の原料パルプの平均粉砕粒径は顕微鏡観察により63μmであった。
Example 1
<Manufacture of cellulose ester>
<Production Example 1>
100 parts by mass of raw material pulp (α cellulose 93% or more) and 100 parts by mass of glacial acetic acid were put into a mixer and stirred to form a slurry, and then put into a stone mortar pulverizer and ground at 40 ° C. for 30 minutes. The average pulverized particle size of the pulverized raw material pulp was 63 μm by microscopic observation.
 次いで、粉砕後の原料パルプに酢酸50質量部を加え、1時間活性化処理を行った。 Next, 50 parts by mass of acetic acid was added to the pulverized raw material pulp, and activation treatment was performed for 1 hour.
 上記含酢酸パルプを反応器に入れ、さらに無水プロピオン酸250質量部、無水プロピオン酸400質量部、硫酸9質量部を順次投入し室温から徐々に40℃まで温度を上昇させ、40℃に保温しながら1時間保温し、エステル化反応を進行させた。 The acetic acid-containing pulp is put into a reactor, and 250 parts by mass of propionic anhydride, 400 parts by mass of propionic anhydride, and 9 parts by mass of sulfuric acid are sequentially added, and the temperature is gradually raised from room temperature to 40 ° C. and kept at 40 ° C. The mixture was kept warm for 1 hour to allow the esterification reaction to proceed.
 次いで1次中和工程で30%酢酸水溶液250部を加え中和した後、熟成工程にて残った無水カルボン酸類を加水分解するために、80質量%の酢酸水溶液を150質量部入れ、60℃に保持し、1時間撹拌させた。 Next, after neutralizing by adding 250 parts of 30% acetic acid aqueous solution in the primary neutralization step, 150 parts by mass of 80% by mass acetic acid aqueous solution was put in order to hydrolyze the remaining carboxylic anhydrides in the aging step, and 60 ° C. And allowed to stir for 1 hour.
 その後反応停止のために、硫酸を中和するため、30質量%の酢酸マグネシウム水溶液を15質量部加えた。 Then, in order to stop the reaction, 15 parts by mass of a 30% by mass aqueous magnesium acetate solution was added to neutralize the sulfuric acid.
 沈殿工程で析出したセルロースエステルを濾別し、50℃の温水で5回洗浄し、残っている酢酸水溶液を溶出させた後、70℃で3時間乾燥させ、アセチル置換度0.61、プロピオニル置換度2.07、総置換度2.68のセルロースアセテートプロピオネートである製造例1のセルロースエステルを得た。重量平均分子量(Mw)は下記測定法を用いて測定した結果20万であった。 The cellulose ester precipitated in the precipitation process was filtered off, washed 5 times with warm water at 50 ° C., and the remaining acetic acid aqueous solution was eluted, followed by drying at 70 ° C. for 3 hours, acetyl substitution degree 0.61, propionyl substitution A cellulose ester of Production Example 1 which is a cellulose acetate propionate having a degree of 2.07 and a total degree of substitution of 2.68 was obtained. The weight average molecular weight (Mw) was 200,000 as a result of measurement using the following measurement method.
 <製造例2~製造例20>
 製造例1と同様にして、表1~表9の記載のように粉砕工程、活性化工程、エステル化工程、濾過工程、熟成工程の条件を変化させて、製造例2~製造例20によるセルロースエステルを作製した。表6、製造例15の溶液A:EGはエチレングリコールを表す。
<Production Example 2 to Production Example 20>
Cellulose according to Production Examples 2 to 20 was changed in the same manner as in Production Example 1 by changing the conditions of the pulverization step, activation step, esterification step, filtration step, and aging step as described in Tables 1 to 9. Esters were made. Table 6, Solution A of Production Example 15: EG represents ethylene glycol.
 尚、粉砕機は以下のものを用いた。 The following grinder was used.
 a:石臼式摩砕型粉砕機(増幸産業(株)製 マイクロコーダー MKZA10-15J (グラインダー種:MKM))
 b:遊星ボールミル粉砕機((有)ナガオシステム製 Planet750F)
 c:湿式粉砕機(アシザワ・ファインテック(株) スターミル ナノ・ゲッター)
 d:乾式ジェットミル(サンレックス工業(株) ナノグランディングミル NJ300)
 e:カッティングミル((株)レッチェ カッティングミル SM 2000)
 f:粉砕機なし
 また、製造例10~12では、エステル化工程、熟成工程の間に濾過工程を設け、目開き5μmのポリプロピレン製濾材を装着した加圧式濾過機を用いて濾過を行った。
a: Stone mill type grinding mill (Massko Sangyo Co., Ltd. Microcoder MKZA10-15J (Grinder type: MKM))
b: Planetary ball mill crusher (Planet750F manufactured by Nagao System)
c: Wet grinding machine (Ashizawa Finetech Co., Ltd. Star Mill Nano Getter)
d: Dry jet mill (Sunrex Industry Co., Ltd. Nano Grounding Mill NJ300)
e: Cutting mill (Lecce Cutting Mill SM 2000)
f: No pulverizer Further, in Production Examples 10 to 12, a filtration step was provided between the esterification step and the aging step, and filtration was performed using a pressure filter equipped with a polypropylene filter medium having an opening of 5 μm.
 <セルロースエステルフィルム1の作製>
 次いで、製造例1で得られたセルロースエスエルを用いて、下記溶融流延法に従ってセルロースエステルフィルム1を作製した。
<Preparation of cellulose ester film 1>
Subsequently, using the cellulose ester obtained in Production Example 1, a cellulose ester film 1 was produced according to the following melt casting method.
 <溶融流延法>
 下記組成で、溶融流延法によりセルロースエステルフィルムを作製した。
<Melt casting method>
A cellulose ester film was prepared by the melt casting method with the following composition.
 〈セルロースエステルフィルム組成物〉
 製造例1セルロースエステル              94質量部
 可塑剤:グリセリントリベンゾエート           5質量部
 Irganox 1010(BASFジャパン株式会社製)
                           0.5質量部
 Irgafos P-EPG(BASFジャパン株式会社製)
                           0.3質量部
 HP-136(BASFジャパン株式会社製)     0.2質量部
 上記セルロースエステルを70℃、3時間減圧下で乾燥を行い室温まで冷却した後、各添加剤を混合した。
<Cellulose ester film composition>
Production Example 1 Cellulose ester 94 parts by mass Plasticizer: Glycerin tribenzoate 5 parts by mass Irganox 1010 (manufactured by BASF Japan Ltd.)
0.5 parts by mass Irgafos P-EPG (manufactured by BASF Japan Ltd.)
0.3 parts by mass HP-136 (manufactured by BASF Japan Ltd.) 0.2 parts by mass The cellulose ester was dried under reduced pressure at 70 ° C. for 3 hours and cooled to room temperature, and then each additive was mixed.
 以上の混合物を弾性タッチロールを用いた製造装置で製膜した。窒素雰囲気下、240℃にて溶融して流延ダイから第1冷却ロール上に押し出し、第1冷却ロールとタッチロールとの間にフィルムを挟圧して成形した。また押出し機中間部のホッパー開口部から、滑り剤としてシリカ粒子(日本アエロジル社製)を、0.1質量部となるよう添加した。 The above mixture was formed into a film by a manufacturing apparatus using an elastic touch roll. In a nitrogen atmosphere, it was melted at 240 ° C., extruded from the casting die onto the first cooling roll, and molded by pressing the film between the first cooling roll and the touch roll. Further, silica particles (manufactured by Nippon Aerosil Co., Ltd.) were added as a slip agent from the hopper opening in the middle of the extruder so as to be 0.1 part by mass.
 流延ダイのギャップの幅がフィルムの幅方向端部から30mm以内では0.5mm、その他の場所では1mmとなるようにヒートボルトを調整した。タッチロールとしては、その内部に冷却水として80℃の水を流した。 The heat bolt was adjusted so that the gap width of the casting die was 0.5 mm within 30 mm from the end in the width direction of the film and 1 mm at other locations. As a touch roll, 80 degreeC water was poured as cooling water in the inside.
 流延ダイから押し出された樹脂が第1冷却ロールに接触する位置P1から第1冷却ロールとタッチロールとのニップの第1冷却ロール回転方向上流端の位置P2までの、第1冷却ローラの周面に沿った長さLを20mmに設定した。その後、タッチロールを第1冷却ロールから離間させ、第1冷却ロールとタッチロールとのニップに挟圧される直前の溶融部の温度Tを測定した。第1冷却ロールとタッチロールとのニップに挟圧される直前の溶融部の温度Tは、ニップ上流端P2よりも更に1mm上流側の位置で、温度計(安立計器株式会社製HA-200E)により測定した。測定の結果、温度Tは141℃であった。タッチロールの第1冷却ロールに対する線圧は14.7N/cmとした。更に、テンターに導入し、巾方向に160℃で1.3倍延伸した後、巾方向に3%緩和しながら30℃まで冷却し、その後クリップから開放し、クリップ把持部を裁ち落とし、フィルム両端に幅20mm、高さ25μmのナーリング加工を施し、巻き取り張力220N/m、テーパー40%で巻芯に巻き取った。なお、膜厚は40μm、巻長は4000mとし、屈折率1.49のセルロースエステルフィルム1を作製した。 The circumference of the first cooling roller from the position P1 where the resin extruded from the casting die contacts the first cooling roll to the position P2 at the upstream end in the first cooling roll rotation direction of the nip between the first cooling roll and the touch roll. The length L along the surface was set to 20 mm. Thereafter, the touch roll was separated from the first cooling roll, and the temperature T of the melted part immediately before being sandwiched in the nip between the first cooling roll and the touch roll was measured. The temperature T of the melted portion immediately before being sandwiched between the first cooling roll and the touch roll is 1 mm upstream from the nip upstream end P2, and a thermometer (HA-200E manufactured by Anritsu Keiki Co., Ltd.) It was measured by. As a result of the measurement, the temperature T was 141 ° C. The linear pressure of the touch roll against the first cooling roll was 14.7 N / cm. Furthermore, after introducing into a tenter and stretching 1.3 times at 160 ° C in the width direction, cooling to 30 ° C while relaxing 3% in the width direction, then releasing from the clip, cutting off the clip gripping part, Was subjected to a knurling process having a width of 20 mm and a height of 25 μm, and wound on a winding core with a winding tension of 220 N / m and a taper of 40%. In addition, the film thickness was 40 micrometers, the winding length was 4000 m, and the cellulose-ester film 1 of refractive index 1.49 was produced.
 <セルロースエステルフィルム2~20の作製>
 セルロースエステルフィルム1の作製と同様にして、製造例2~製造例20で作製したセルロースエステルを用いて、セルロースエステルフィルム2~20を作製した。
<Production of cellulose ester films 2 to 20>
Similarly to the production of the cellulose ester film 1, cellulose ester films 2 to 20 were produced using the cellulose esters produced in Production Examples 2 to 20.
 尚、製造例3~製造例5のセルロースエステルを用いた場合の溶融流延温度は260℃に調整した。 The melt casting temperature when the cellulose esters of Production Examples 3 to 5 were used was adjusted to 260 ° C.
 《評価》
 (セルロースエステルの収率)
 投入原料セルロースの質量に対する製造されたセルロースエステルの質量の比を百分率(%)で示した。
<Evaluation>
(Yield of cellulose ester)
The ratio of the mass of the produced cellulose ester to the mass of the input cellulose was shown as a percentage (%).
 (セルロースエステルのアシル基置換度)
 アシル基置換度の測定方法はASTM-D817-96に準じて行った。
(Acyl group substitution degree of cellulose ester)
The acyl group substitution degree was measured in accordance with ASTM-D817-96.
 表中の略称は以下の通り。 The abbreviations in the table are as follows.
 Pr:プロピオニル基、AC:アセチル基、Bu:ブチレート基、総:総アシル基
 (平均分子量)
 セルロースエステルの平均分子量および分子量分布は、高速液体クロマトグラフィーを用い測定し重量平均分子量(Mw)、分子量分布を算出した。
Pr: propionyl group, AC: acetyl group, Bu: butyrate group, total: total acyl group (average molecular weight)
The average molecular weight and molecular weight distribution of the cellulose ester were measured using high performance liquid chromatography, and the weight average molecular weight (Mw) and molecular weight distribution were calculated.
 測定条件は以下の通りである。 The measurement conditions are as follows.
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)
 Mw=1000000~500迄の13サンプルによる校正曲線を使用した。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation)
A calibration curve with 13 samples from Mw = 1000000 to 500 was used.
 〈セルロースエステル(酢綿)のばらつき〉
  1.分子量分布のばらつき:製造ロット違い10サンプルの酢綿の分子量分布10分の1幅の標準偏差
  2.アシル基置換度のばらつき:製造ロット違い10サンプルの酢綿のアシル基置換度分布10分の1幅の標準偏差
 〈セルロースエステルフィルムの膜面故障〉
 膜面故障は目視にて下記評価尺度で評価した。
<Dispersion of cellulose ester (vinegar cotton)>
1. 1. Variation in molecular weight distribution: standard deviation of 1/10 width of molecular weight distribution of 10 samples of different production lots. Variation of acyl group substitution degree: standard deviation of 1/10 width of acyl group substitution degree distribution of vinegar cotton of 10 samples of different production lots <Film surface failure of cellulose ester film>
The film surface failure was visually evaluated on the following evaluation scale.
 5:膜面故障(斜めスジ、横ダン、エッグムラ等)なし
 4:気にならないほど微少な斜め筋がある
 3:斜め筋がやや目立ち、横ダンがややある
 2:斜め筋がはっきりと目立ち、横段も認められる
 1:斜めスジ、横ダン、エッグムラがある
 0:斜めスジ、横ダン、エッグムラが大いに目立つ
 また、膜面故障のロット間でのばらつきを以下の尺度で評価した。
5: No film surface failure (diagonal streaks, horizontal dan, egg unevenness, etc.) 4: Slightly slanted lines are not noticeable 3: Diagonal lines are slightly conspicuous, horizontal dans are slightly conspicuous 2: Diagonal lines are clearly conspicuous, Horizontal lines are also recognized 1: Diagonal streaks, horizontal dunes, and egg unevenness 0: Diagonal streaks, horizontal dunes, and egg unevenness are very conspicuous In addition, the variation between lots of film surface failures was evaluated on the following scale.
 ◎ :ロット間で膜面故障のばらつきがない
 ○ :製造ロット違いのセルロースエステルが10%の確率で膜面故障のレベルが1ずれる
 ○△:製造ロット違いのセルロースエステルが20%の確率で膜面故障のレベルが1ずれる
 △ :製造ロット違いのセルロースエステルが40%の確率で膜面故障のレベルが1~2ずれる
 △×:製造ロット違いのセルロースエステルが60%の確率で膜面故障のレベルが安定しない
 × :製造ロット違いのセルロースエステルが80%の確率で膜面故障のレベルが安定しない
 セルロースエステルの製造条件一覧及び上記評価結果を、下記表1~9に記載する。
◎: There is no variation in film surface failure among lots. ○: The cellulose ester of different production lots has a probability of 10%, and the level of film surface failure is shifted by 1. △: The cellulose ester of different production lots has a probability of 20%. The level of surface failure shifts by 1 △: The cellulose ester of different production lots has a probability of 40%, and the level of film surface failure shifts 1 to 2 △: The cellulose ester of different production lots has a probability of 60% of film surface failure The level is not stable. X: The cellulose ester in different production lots has a probability of 80% and the film surface failure level is not stable. A list of the production conditions of the cellulose ester and the above evaluation results are shown in Tables 1 to 9 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明のセルロースエステルの製造方法によって製造された製造例1~16のセルロースエステルは、上表から、酢綿バラツキが小さく、フィルム製膜した際の膜面故障(斜めスジ、横ダン、エッグムラ等)に優れていることが明かである。 The cellulose esters of Production Examples 1 to 16 produced by the method for producing cellulose esters of the present invention have small variations in vinegared cotton, and film surface failure when film is formed (oblique lines, horizontal dunes, egg unevenness, etc.) It is clear that this is superior.
 またエステル化工程と熟成工程の間に濾過工程を加えた製造例10~12のセルロースエステルは、フィルム製膜した際の膜面故障がより優れていることが分かる。 In addition, it can be seen that the cellulose esters of Production Examples 10 to 12 in which a filtration step is added between the esterification step and the aging step are more excellent in film surface failure when a film is formed.
 実施例2
 実施例1の製造例1で作製したセルロースエステルを用いたセルロースエステルフィルム1を返材としてチップ化し、以下の処方にて、セルロースエステルフィルム21を作製した。
Example 2
The cellulose ester film 1 using the cellulose ester produced in Production Example 1 of Example 1 was chipped as a return material, and a cellulose ester film 21 was produced according to the following formulation.
 <溶融流延法>
 下記組成で、溶融流延法によりセルロースエステルフィルムを作製した。
<Melt casting method>
A cellulose ester film was prepared by the melt casting method with the following composition.
 〈セルロースエステルフィルム組成物〉
 製造例1セルロースエステル              54質量部
 返材セルロースエステルフィルム1チップ        40質量部
 可塑剤:グリセリントリベンゾエート           5質量部
 Irganox 1010(BASFジャパン株式会社製)
                           0.5質量部
 Irgafos P-EPG(BASFジャパン株式会社製)
                           0.3質量部
 HP-136(BASFジャパン株式会社製)     0.2質量部
 上記セルロースエステルを70℃、3時間減圧下で乾燥を行い室温まで冷却した後、各添加剤を混合した。
<Cellulose ester film composition>
Production Example 1 Cellulose ester 54 parts by mass Returning material cellulose ester film 1 chip 40 parts by mass Plasticizer: Glycerin tribenzoate 5 parts by mass Irganox 1010 (manufactured by BASF Japan Ltd.)
0.5 parts by mass Irgafos P-EPG (manufactured by BASF Japan Ltd.)
0.3 parts by mass HP-136 (manufactured by BASF Japan Ltd.) 0.2 parts by mass The cellulose ester was dried under reduced pressure at 70 ° C. for 3 hours and cooled to room temperature, and then each additive was mixed.
 上記セルロースエステルフィルム組成物を用い、実施例1と同様にして溶融流延法にてセルロースエステルフィルム21を作製した。 Using the above cellulose ester film composition, a cellulose ester film 21 was produced by the melt casting method in the same manner as in Example 1.
 同様に、実施例1の製造例2~製造例20で作製したセルロースエステルを用いたセルロースエステルフィルム2~20を返材として使用し、溶融流延法にてセルロースエステルフィルム22~41を作製した。 Similarly, cellulose ester films 2 to 20 using the cellulose ester produced in Production Example 2 to Production Example 20 of Example 1 were used as recycled materials, and cellulose ester films 22 to 41 were produced by a melt casting method. .
 《評価》
 〈劣化異物個数(個/m)〉
 返材成分は熱履歴がかかっているため、再度熱をかけるとうっすら、または褐色に着色した粒状の異物ができることがある。それら劣化異物を以下の様に評価した。
<Evaluation>
<Number of deteriorated foreign matters (pieces / m 2 )>
Since the returned material component has a heat history, when it is heated again, there may be a slight foreign matter colored brown. These deteriorated foreign substances were evaluated as follows.
 溶融流延製膜で得られた溶融フィルムの巻きから1m分を切り出し、グリーンランプの光をフィルムに当て、表面の凹凸を目視でチェックした。チェックした部分を光学顕微鏡で内容を精査し、着色成分とゴミ等の外部異物との分離をして着色成分を劣化異物個数とした。 1 m 2 minutes were cut out from the winding of the molten film obtained by the melt casting film formation, the light of a green lamp was applied to the film, and the surface unevenness was visually checked. The contents of the checked parts were examined with an optical microscope, and the colored components were separated from external foreign matters such as dust, and the colored components were determined as the number of deteriorated foreign matters.
 光学フィルムとしては、15個/m以下であることが好ましく、より好ましくは10個/m未満である。 As an optical film, it is preferable that it is 15 pieces / m < 2 > or less, More preferably, it is less than 10 pieces / m < 2 >.
 〈フィルムの着色:イエローインデックス〉
 イエローインデックス(黄色度)は、JIS規格K7105-6.3に記載の方法で求められる。イエローインデックスは、日立製作所製分光光度計U-3200と付属の彩度計算プログラム等を用いて、色の三刺激値X、Y、Zを求め、以下の式に従ってイエローインデックスを求めた。
<Coloring of film: Yellow index>
The yellow index (yellowness) is obtained by the method described in JIS standard K7105-6.3. For the yellow index, the tristimulus values X, Y, and Z of the color were determined using a spectrophotometer U-3200 manufactured by Hitachi, Ltd. and the attached saturation calculation program, and the yellow index was determined according to the following formula.
  イエローインデックス=100(1.28X-1.06Z)/Y
 求めたイエローインデックスから以下の尺度で評価を行った。
Yellow index = 100 (1.28X-1.06Z) / Y
Evaluation was performed on the following scale from the obtained yellow index.
 返材を利用しない溶融フィルムのイエローインデックスを0としたとき、返材を40質量%利用した溶融フィルムのイエローインデックスとの差を以下のように示す。 The difference from the yellow index of the molten film using 40% by mass of recycled material when the yellow index of the molten film not using recycled material is 0 is shown below.
 光学フィルムとしては○△~○であれば実用上問題がない。 As an optical film, there is no practical problem if it is ○ △ to ○.
 ○ :0~0.05未満
 ○△:0.05以上~0.1未満
 △ :0.1以上~0.2未満
 △×:0.2以上~0.5未満
 × :0.5以上
 以上の評価結果を下記表10に記載する。
○: 0 to less than 0.05 ○ △: 0.05 to less than 0.1 △: 0.1 to less than 0.2 Δ ×: 0.2 to less than 0.5 ×: 0.5 or more The evaluation results are shown in Table 10 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上表から本発明の製造例1~製造例16のセルロースエステルを用いて作製したセルロースエステルフィルム1~16は、溶融流延法で返材として使用しても、劣化異物個数が少なく、かつフィルム着色が優れており、光学用途フィルムとして使用可能であることが分かる。 From the above table, the cellulose ester films 1 to 16 produced using the cellulose esters of Production Examples 1 to 16 of the present invention have a small number of deteriorated foreign matters even when used as recycled materials in the melt casting method. It turns out that coloring is excellent and it can be used as an optical use film.
 実施例3
 実施例1の製造例1~製造例20で作製したセルロースエステルを用いて、以下の溶液流延法1、溶液流延法2の条件でセルロースエステルフィルムを作製し、実施例1と同様な膜面故障の判定を行ったところ、実施例1を再現して、本発明に係る製造例1~16で作製したセルロースエステルを用いたセルロースエステルフィルムは膜面故障に優れていた。
Example 3
Using the cellulose ester produced in Production Example 1 to Production Example 20 of Example 1, a cellulose ester film was produced under the conditions of the following solution casting method 1 and solution casting method 2, and the same membrane as in Example 1 When the surface failure was determined, the cellulose ester film using the cellulose ester produced in Production Examples 1 to 16 according to the present invention by reproducing Example 1 was excellent in film surface failure.
 <溶液流延法1>
 (ドープ液の調製)
 下記の材料を、順次密閉容器中に投入し、容器内温度を20℃から80℃まで昇温した後、温度を80℃に保ったままで3時間攪拌を行って、セルロースエステルを完全に溶解した。酸化ケイ素微粒子は予め添加する溶媒と少量のセルロースエステルの溶液中に分散して添加した。このドープを濾紙(安積濾紙株式会社製、安積濾紙No.244)を使用して濾過し、ドープ液Aを得た。
<Solution casting method 1>
(Preparation of dope solution)
The following materials were sequentially put into a sealed container, the temperature in the container was raised from 20 ° C. to 80 ° C., and the mixture was stirred for 3 hours while maintaining the temperature at 80 ° C. to completely dissolve the cellulose ester. . The silicon oxide fine particles were added dispersed in a solution of a solvent to be added in advance and a small amount of cellulose ester. This dope was filtered using a filter paper (Azumi filter paper No. 244, manufactured by Azumi Filter Paper Co., Ltd.) to obtain a dope solution A.
 (ドープ液Aの調製)
 製造例1(~製造例20)のセルロースエステル    100質量部
 トリメチロールプロパントリベンゾエート         5質量部
 エチルフタリルエチルグリコレート            5質量部
 酸化ケイ素微粒子                  0.1質量部
  (アエロジルR972V、日本アエロジル株式会社製)
 チヌビン109(BASFジャパン社製)         1質量部
 チヌビン171(BASFジャパン社製)         1質量部
 メチレンクロライド                 400質量部
 エタノール                      40質量部
 ブタノール                       5質量部
 上記の材料を混合してドープ液Aを調製し、得られたドープ液Aを、温度35℃に保温した流延ダイを通より、ステンレス鋼製エンドレスベルトよりなる温度35℃の支持体上に流延して、ウェブを形成した。
(Preparation of dope solution A)
Cellulose ester of Production Example 1 (to Production Example 20) 100 parts by mass Trimethylolpropane tribenzoate 5 parts by mass Ethylphthalylethyl glycolate 5 parts by mass Fine particles of silicon oxide 0.1 part by mass (Aerosil R972V, manufactured by Nippon Aerosil Co., Ltd.)
Tinuvin 109 (manufactured by BASF Japan) 1 part by weight Tinuvin 171 (manufactured by BASF Japan) 1 part by weight Methylene chloride 400 parts by weight Ethanol 40 parts by weight Butanol 5 parts by weight The above materials are mixed to obtain a dope solution A. The dope A thus obtained was cast through a casting die kept at a temperature of 35 ° C. onto a support having a temperature of 35 ° C. made of a stainless steel endless belt to form a web.
 ついで、ウェブを支持体上で乾燥させ、ウェブの残留溶媒量が80質量%になった段階で、剥離ロールによりウェブを支持体から剥離した。 Next, the web was dried on the support, and the web was peeled from the support with a peeling roll when the residual solvent amount of the web reached 80% by mass.
 ついで、ウェブを上下に複数配置したロールによる搬送乾燥工程で90℃の乾燥風にて乾燥させながら搬送し、続いてテンターでウェブ両端部を把持した後、130℃で幅方向に延伸前の1.1倍となるように延伸した。テンターでの延伸の後、ウェブを上下に複数配置したロールによる搬送乾燥工程で130℃の乾燥風にて乾燥させた。乾燥工程の雰囲気置換率15(回/時間)とした雰囲気内で15分間熱処理した後、フィルム両端に幅10mm、高さ10μmのナーリング加工を施し、室温まで冷却してコアに巻き取り、幅1.5m、膜厚40μm、長さ4000mのセルロースエステルフィルムを作製した。 Next, the web is transported while being dried with a drying air of 90 ° C. in a transport and drying process using a plurality of rolls arranged on the top and bottom, subsequently gripping both end portions of the web with a tenter, and then before stretching in the width direction at 130 ° C. The film was stretched so as to be 1 time. After stretching with a tenter, the web was dried with a drying air of 130 ° C. in a transport drying process using a plurality of rolls arranged vertically. After heat treatment for 15 minutes in an atmosphere with an atmosphere substitution rate of 15 (times / hour) in the drying step, the film was subjected to a knurling process with a width of 10 mm and a height of 10 μm at both ends of the film, cooled to room temperature, and wound on a core. A cellulose ester film having a thickness of 0.5 m, a thickness of 40 μm, and a length of 4000 m was produced.
 <溶液流延法2>
 (ドープ液Bの調製)
 市販の熱可塑性アクリル樹脂(ダイヤナールBR85(三菱レイヨン(株)製)Mw280000)                70質量部
 製造例1(~製造例20)のセルロースエステル     30質量部
 メチレンクロライド                 300質量部
 エタノール                      40質量部
 上記組成物を、加熱しながら十分に溶解し、ドープ液Bを作製した。
<Solution casting method 2>
(Preparation of dope solution B)
Commercially available thermoplastic acrylic resin (Dianar BR85 (manufactured by Mitsubishi Rayon Co., Ltd.) Mw 280000) 70 parts by weight Cellulose ester of Production Example 1 (to Production Example 20) 30 parts by weight Methylene chloride 300 parts by weight Ethanol 40 parts by weight The above composition Was sufficiently dissolved with heating to prepare a dope solution B.
 上記作製したドープ液Bを、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。剥離した熱可塑性アクリル樹脂・セルロースエステル樹脂のウェブを35℃で溶媒を蒸発させ、1.6m幅にスリットし、その後、テンターで幅方向に1.1倍に延伸しながら、130℃の乾燥温度で乾燥させた。このときテンターで延伸を始めたときの残留溶剤量は10%であった。テンターで延伸後、130℃で5分間緩和を行った後、120℃、140℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1.5m幅にスリットし、フィルム両端に幅10mm、高さ10μmのナーリング加工を施し、コアに巻き取り、セルロースエステルフィルムを得た。膜厚は40μm、巻長は4000mであった。 The produced dope solution B was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the amount of residual solvent reached 100%, and then peeled off from the stainless steel band support. The peeled thermoplastic acrylic resin / cellulose ester resin web was evaporated at 35 ° C., slit to 1.6 m width, and then stretched 1.1 times in the width direction with a tenter, followed by a drying temperature of 130 ° C. And dried. At this time, the residual solvent amount when starting stretching with a tenter was 10%. After stretching with a tenter, relaxation was performed at 130 ° C. for 5 minutes, and then drying was completed while transporting a drying zone at 120 ° C. and 140 ° C. with many rolls, slitting to a width of 1.5 m, and a width of 10 mm at both ends of the film Then, a knurling process having a height of 10 μm was applied and wound around the core to obtain a cellulose ester film. The film thickness was 40 μm and the winding length was 4000 m.
 実施例4
 <偏光板101の作製>
 下記工程1~4に従って、偏光膜に上記実施例1で作製したセルロースエステルフィルム1を両面に貼り合わせて偏光板101を作製した。
Example 4
<Preparation of Polarizing Plate 101>
According to the following steps 1 to 4, the polarizing plate 101 was produced by laminating the cellulose ester film 1 produced in Example 1 on both sides of the polarizing film.
 (a)偏光膜の作製
 鹸化度99.95モル%、重合度2400のポリビニルアルコール(以下、PVAと略記する)100質量部に、グリセリン10質量部、及び水170質量部を含浸させたものを溶融混練し、脱泡後、Tダイから金属ロール上に溶融押出し、製膜した。その後、乾燥・熱処理して、PVAフィルムを得た。
(A) Production of Polarizing Film A material obtained by impregnating 10 parts by mass of glycerin and 170 parts by mass of water into 100 parts by mass of polyvinyl alcohol (hereinafter abbreviated as PVA) having a saponification degree of 99.95 mol% and a polymerization degree of 2400. After melt-kneading and defoaming, it was melt-extruded from a T-die onto a metal roll to form a film. Then, it dried and heat-processed and obtained the PVA film.
 得られたPVAフィルムは、平均厚みが25μm、水分率が4.4%、フィルム幅が3mであった。 The obtained PVA film had an average thickness of 25 μm, a moisture content of 4.4%, and a film width of 3 m.
 次に、得られたPVAフィルムを、予備膨潤、染色、湿式法による一軸延伸、固定処理、乾燥、熱処理の順番で、連続的に処理して、偏光膜を作製した。すなわち、PVAフィルムを温度30℃の水中に30秒間浸して予備膨潤し、ヨウ素濃度0.4g/リットル、ヨウ化カリウム濃度40g/リットルの温度35℃の水溶液中に3分間浸した。続いて、ホウ酸濃度4%の50℃の水溶液中でフィルムにかかる張力が700N/mの条件下で、6倍に一軸延伸を行い、ヨウ化カリウム濃度40g/リットル、ホウ酸濃度40g/リットル、塩化亜鉛濃度10g/リットルの温度30℃の水溶液中に5分間浸漬して固定処理を行った。その後、PVAフィルムを取り出し、温度40℃で熱風乾燥し、更に温度100℃で5分間熱処理を行った。得られた偏光膜は、平均厚みが13μm、偏光性能については透過率が43.0%、偏光度が99.5%、2色性比が40.1であった。 Next, the obtained PVA film was continuously processed in the order of pre-swelling, dyeing, uniaxial stretching by a wet method, fixing treatment, drying, and heat treatment to produce a polarizing film. That is, the PVA film was immersed in water at a temperature of 30 ° C. for 30 seconds to be pre-swelled, and immersed in an aqueous solution having an iodine concentration of 0.4 g / liter and a potassium iodide concentration of 40 g / liter at a temperature of 35 ° C. for 3 minutes. Subsequently, the film was uniaxially stretched 6 times in a 50% aqueous solution with a boric acid concentration of 4% under a tension of 700 N / m. The potassium iodide concentration was 40 g / liter, and the boric acid concentration was 40 g / liter. Then, it was immersed in an aqueous solution having a zinc chloride concentration of 10 g / liter and a temperature of 30 ° C. for 5 minutes for fixing treatment. Thereafter, the PVA film was taken out, dried with hot air at a temperature of 40 ° C., and further heat-treated at a temperature of 100 ° C. for 5 minutes. The obtained polarizing film had an average thickness of 13 μm, a polarizing performance of a transmittance of 43.0%, a polarization degree of 99.5%, and a dichroic ratio of 40.1.
 (b)偏光板の作製
 工程1:前述の偏光膜を、固形分2質量%のポリビニルアルコール接着剤溶液の貯留槽中に1~2秒間浸漬した。
(B) Production of Polarizing Plate Step 1: The polarizing film described above was immersed in a storage tank of a polyvinyl alcohol adhesive solution having a solid content of 2% by mass for 1 to 2 seconds.
 工程2:セルロースエステルフィルム1を下記条件でアルカリ鹸化処理を実施した。次いで、工程1でポリビニルアルコール接着剤溶液に浸漬した偏光膜に付着した過剰の接着剤を軽く取り除き、この偏光膜にセルロースエステルフィルム1を両面から挟み込むように貼合した。 Step 2: The cellulose ester film 1 was subjected to alkali saponification treatment under the following conditions. Next, excess adhesive adhered to the polarizing film immersed in the polyvinyl alcohol adhesive solution in Step 1 was lightly removed, and the cellulose ester film 1 was bonded to the polarizing film so as to be sandwiched from both sides.
 (アルカリ鹸化処理)
  ケン化工程  2.5M-KOH  50℃  120秒
  水洗工程   水         30℃   60秒
  中和工程   10質量部HCl  30℃   45秒
  水洗工程   水         30℃   60秒
  ケン化処理後、水洗、中和、水洗の順に行い、次いで100℃で乾燥。
(Alkaline saponification treatment)
Saponification step 2.5M-KOH 50 ° C 120 seconds Water washing step Water 30 ° C 60 seconds Neutralization step 10 parts HCl 30 ° C 45 seconds Water washing step Water 30 ° C 60 seconds After saponification treatment, water washing, neutralization, water washing in this order And then dried at 100 ° C.
 工程3:積層物を、2つの回転するローラにて20~30N/cmの圧力で約2m/minの速度で貼り合わせた。このとき、気泡が入らないように注意して実施した。 Step 3: The laminate was laminated with two rotating rollers at a pressure of 20 to 30 N / cm 2 and a speed of about 2 m / min. At this time, it was carried out with care to prevent bubbles from entering.
 工程4:工程3で作製した試料を、温度100℃の乾燥機中にて5分間乾燥処理し、偏光板を作製した。 Step 4: The sample prepared in Step 3 was dried in a dryer at a temperature of 100 ° C. for 5 minutes to prepare a polarizing plate.
 工程5:工程4で作製した偏光板のセルロースエステルフィルム1の片面に市販のアクリル系粘着剤を乾燥後の厚みが25μmとなるように塗布し、110℃のオーブンで5分間乾燥して粘着層を形成し、粘着層に剥離性のプロテクトフィルムを張り付けた。この偏光を576×324mmサイズに裁断(打ち抜き)し、偏光板101を作製した。 Step 5: A commercially available acrylic pressure-sensitive adhesive is applied to one side of the cellulose ester film 1 of the polarizing plate prepared in Step 4 so that the thickness after drying is 25 μm, and dried in an oven at 110 ° C. for 5 minutes to form an adhesive layer. And a peelable protective film was attached to the adhesive layer. This polarized light was cut (punched) into a size of 576 × 324 mm, and the polarizing plate 101 was produced.
 <液晶表示装置101の作製>
 NEC製ノートPC LaVie Gタイプの液晶パネルの偏光板を剥がし、視認側の偏光板として上記作製した偏光板101の粘着剤層と液晶セルガラスとを貼合した。また、バックライト側にも、上記手順と同様に偏光板101を液晶セルに貼合し、液晶表示装置101を作製した。
<Production of Liquid Crystal Display Device 101>
The polarizing plate of the NEC notebook PC LaVie G type liquid crystal panel was peeled off, and the adhesive layer of the produced polarizing plate 101 and the liquid crystal cell glass were bonded as a polarizing plate on the viewing side. Moreover, the polarizing plate 101 was bonded to the liquid crystal cell also on the backlight side in the same manner as the above procedure, and the liquid crystal display device 101 was produced.
 <偏光板102~120の作製、液晶表示装置102~120の作製>
 偏光板101、液晶表示装置101と同様にして、実施例1で作製したセルロースエステルフィルム2~20を用いて、偏光板102~120、液晶表示装置102~120を作製した。
<Production of Polarizing Plates 102 to 120, Production of Liquid Crystal Display Devices 102 to 120>
In the same manner as the polarizing plate 101 and the liquid crystal display device 101, the polarizing plates 102 to 120 and the liquid crystal display devices 102 to 120 were produced using the cellulose ester films 2 to 20 produced in Example 1.
 作製した液晶表示装置101~120の視認性を目視評価した結果、本発明のセルロースエステルフィルム1~16を偏光板に用いることで、膜面故障も観察されず、視認性(クリア性)が良好な液晶表示装置が得られることが分かった。 As a result of visual evaluation of the visibility of the manufactured liquid crystal display devices 101 to 120, the use of the cellulose ester films 1 to 16 of the present invention for the polarizing plate shows no film surface failure and good visibility (clearness). It was found that a liquid crystal display device can be obtained.

Claims (6)

  1. 原料セルロースの粉砕工程、活性化工程、エステル化工程、熟成工程、及び後処理化工程を含むセルロースエステルの製造方法において、該粉砕工程が原料セルロースと溶剤とを混合して粉砕するメカノケミカル粉砕工程であることを特徴とするセルロースエステルの製造方法。 In a cellulose ester production method including a raw material cellulose pulverization step, an activation step, an esterification step, an aging step, and a post-treatment step, the pulverization step mixes and pulverizes the raw material cellulose and a solvent, and a mechanochemical pulverization step The manufacturing method of the cellulose ester characterized by the above-mentioned.
  2. 前記溶剤が、カルボン酸類、アルコール類、ケトン類、エーテル類、セロソルブ類から選ばれる溶剤の少なくとも一種であるか、または前記溶剤の少なくとも一種と水との混合溶剤であることを特徴とする請求項1に記載のセルロースエステルの製造方法。 The solvent is at least one solvent selected from carboxylic acids, alcohols, ketones, ethers, cellosolves, or a mixed solvent of at least one solvent and water. A method for producing a cellulose ester according to 1.
  3. 前記エステル化工程と熟成工程の間に濾過工程を設けることを特徴とする請求項1または2に記載のセルロースエステルの製造方法。 The method for producing a cellulose ester according to claim 1, wherein a filtration step is provided between the esterification step and the aging step.
  4. 前記セルロースエステルが、アシル基の平均置換度が1.2~2.95、アシル基総炭素数が2.0~9.5であり、かつ平均重量分子量が100000~500000であることを特徴とする請求項1または2に記載のセルロースエステルの製造方法。 The cellulose ester has an average acyl group substitution degree of 1.2 to 2.95, an acyl group total carbon number of 2.0 to 9.5, and an average weight molecular weight of 100,000 to 500,000. The method for producing a cellulose ester according to claim 1 or 2.
  5. 請求項1~4のいずれか1項に記載のセルロースエステルの製造方法によって製造されたことを特徴とするセルロースエステル。 A cellulose ester produced by the method for producing a cellulose ester according to any one of claims 1 to 4.
  6. 請求項5に記載のセルロースエステルを含有することを特徴とするセルロースエステルフィルム。 A cellulose ester film comprising the cellulose ester according to claim 5.
PCT/JP2011/053229 2010-03-09 2011-02-16 Method for producing cellulose ester, cellulose ester, and cellulose ester film WO2011111484A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012504380A JPWO2011111484A1 (en) 2010-03-09 2011-02-16 Method for producing cellulose ester, cellulose ester, and cellulose ester film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-051519 2010-03-09
JP2010051519 2010-03-09

Publications (1)

Publication Number Publication Date
WO2011111484A1 true WO2011111484A1 (en) 2011-09-15

Family

ID=44563309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053229 WO2011111484A1 (en) 2010-03-09 2011-02-16 Method for producing cellulose ester, cellulose ester, and cellulose ester film

Country Status (2)

Country Link
JP (1) JPWO2011111484A1 (en)
WO (1) WO2011111484A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111171161A (en) * 2020-02-19 2020-05-19 江苏瑞佳新材料有限公司 Cellulose acetate butyrate and preparation method thereof
CN116333173A (en) * 2023-05-31 2023-06-27 成都普什医药塑料包装有限公司 Cellulose acetate and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA914674A (en) * 1972-11-14 Abson Derek Acetylation of wood pulp
JPS5820961B1 (en) * 1971-06-30 1983-04-26 Celanese Corp
JPH02311501A (en) * 1989-05-26 1990-12-27 Daicel Chem Ind Ltd Method for grinding cellulose sheet and production of cellulose acetate therefrom
JPH03197501A (en) * 1989-12-26 1991-08-28 Daicel Chem Ind Ltd Disintegration of pulp sheet
JPH059201A (en) * 1991-07-02 1993-01-19 Daicel Chem Ind Ltd Production of cellulose acetate
JPH05239101A (en) * 1992-02-28 1993-09-17 Daicel Chem Ind Ltd Production of cellulose acetate
JPH09302001A (en) * 1996-05-20 1997-11-25 Kao Corp Fine crosslinked cellulose particle and its production
JP2001261701A (en) * 2000-03-23 2001-09-26 Natl Inst Of Advanced Industrial Science & Technology Meti Method for acylating cellulose
JP2004292760A (en) * 2003-03-28 2004-10-21 National Institute Of Advanced Industrial & Technology Method for producing acylated cellulose
WO2010001677A1 (en) * 2008-07-02 2010-01-07 コニカミノルタオプト株式会社 Optical film, manufacturing method for optical film, polarizing plate, and liquid crystal display device using same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA914674A (en) * 1972-11-14 Abson Derek Acetylation of wood pulp
JPS5820961B1 (en) * 1971-06-30 1983-04-26 Celanese Corp
JPH02311501A (en) * 1989-05-26 1990-12-27 Daicel Chem Ind Ltd Method for grinding cellulose sheet and production of cellulose acetate therefrom
JPH03197501A (en) * 1989-12-26 1991-08-28 Daicel Chem Ind Ltd Disintegration of pulp sheet
JPH059201A (en) * 1991-07-02 1993-01-19 Daicel Chem Ind Ltd Production of cellulose acetate
JPH05239101A (en) * 1992-02-28 1993-09-17 Daicel Chem Ind Ltd Production of cellulose acetate
JPH09302001A (en) * 1996-05-20 1997-11-25 Kao Corp Fine crosslinked cellulose particle and its production
JP2001261701A (en) * 2000-03-23 2001-09-26 Natl Inst Of Advanced Industrial Science & Technology Meti Method for acylating cellulose
JP2004292760A (en) * 2003-03-28 2004-10-21 National Institute Of Advanced Industrial & Technology Method for producing acylated cellulose
WO2010001677A1 (en) * 2008-07-02 2010-01-07 コニカミノルタオプト株式会社 Optical film, manufacturing method for optical film, polarizing plate, and liquid crystal display device using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASAKURA PUBLISHING CO., LTD., CELLULOSE NO JITEN, 10 November 2000 (2000-11-10), pages 474 - 479 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111171161A (en) * 2020-02-19 2020-05-19 江苏瑞佳新材料有限公司 Cellulose acetate butyrate and preparation method thereof
CN111171161B (en) * 2020-02-19 2020-09-11 江苏瑞佳新材料有限公司 Cellulose acetate butyrate and preparation method thereof
CN116333173A (en) * 2023-05-31 2023-06-27 成都普什医药塑料包装有限公司 Cellulose acetate and preparation method thereof

Also Published As

Publication number Publication date
JPWO2011111484A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5447374B2 (en) Acrylic film manufacturing method and acrylic film produced by the manufacturing method
TWI475058B (en) A cellulose ester optical film, a liquid crystal display device, a method for producing a cellulose ester optical film, and a polymer
JP2014178709A (en) Process for producing polarizing plate
JP5479258B2 (en) Cellulose acylate film, production method thereof, polarizing plate and liquid crystal display device using the same
JPWO2015076250A1 (en) Optical film, polarizing plate, and liquid crystal display device
JPWO2006117981A1 (en) Optical film, polarizing plate, and transverse electric field switching mode type liquid crystal display device
KR20140006776A (en) Optical film and its production method, polarizer and liquid crystal display device
WO2014136529A1 (en) Optical film, polarizing plate containing same and vertical alignment liquid crystal display device
JP5447389B2 (en) Optical film
JP5500042B2 (en) Method for producing cellulose ester
KR20140015540A (en) Elongated polarization plate and liquid crystal display device
JP2012018341A (en) Polarizing plate and liquid crystal display device using the same
WO2011055624A1 (en) Polarizing plate and liquid crystal display device
JP2009249588A (en) Cellulose ester film, polarizing plate and liquid crystal display device
JP2012025896A (en) Cellulose ester, method for producing the same, and optical film
KR20130025881A (en) Cellulose acetate film, and polarizing plate and liquid crystal display device which are made using same
WO2011111484A1 (en) Method for producing cellulose ester, cellulose ester, and cellulose ester film
JP5725035B2 (en) Method for producing cellulose ester-containing resin molding
JPWO2011114764A1 (en) Retardation film and polarizing plate provided with the same
JP2012111887A (en) Method for producing resin film, resin film, polarizing plate and liquid crystal display both using the same
JP2010060879A (en) Liquid crystal display
JP2011022188A (en) Polarization shielded smectic liquid crystal display device
JP2013152390A (en) Cellulose ester, manufacturing method thereof, optical film, polarizer and liquid crystal display unit
TWI465501B (en) A cellulose ester film, a method for producing a cellulose ester film, a method for producing a cellulose ester film, a
JP2010242017A (en) Method for producing optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753146

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504380

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753146

Country of ref document: EP

Kind code of ref document: A1