WO2011111231A1 - Heat food preparation device and heat food preparation method - Google Patents

Heat food preparation device and heat food preparation method Download PDF

Info

Publication number
WO2011111231A1
WO2011111231A1 PCT/JP2010/054256 JP2010054256W WO2011111231A1 WO 2011111231 A1 WO2011111231 A1 WO 2011111231A1 JP 2010054256 W JP2010054256 W JP 2010054256W WO 2011111231 A1 WO2011111231 A1 WO 2011111231A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooking
temperature
processing
food
steam
Prior art date
Application number
PCT/JP2010/054256
Other languages
French (fr)
Japanese (ja)
Inventor
正裕 関根
裕夫 山川
進二 新井
Original Assignee
埼玉県
株式会社T.M.L
株式会社新井機械製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 埼玉県, 株式会社T.M.L, 株式会社新井機械製作所 filed Critical 埼玉県
Priority to PCT/JP2010/054256 priority Critical patent/WO2011111231A1/en
Priority to JP2012504256A priority patent/JP5386701B2/en
Publication of WO2011111231A1 publication Critical patent/WO2011111231A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/10General methods of cooking foods, e.g. by roasting or frying
    • A23L5/13General methods of cooking foods, e.g. by roasting or frying using water or steam

Definitions

  • the present invention relates to a cooking device and a cooking method.
  • Patent Documents 1 to 8 while food such as rice is conveyed by a conveyor, water spraying, steam heating, stirring and mixing, sterilization, cooling, drying, hot water immersion, washing, draining and baking are continuously performed.
  • An apparatus for performing temperature management or the like is disclosed.
  • Patent Document 9 includes a high-temperature heating process in which high-temperature superheated steam is applied to a cooking object while the cooking object is being conveyed by a conveyor, and a temperature-lowering process in which low-temperature gas having a lower temperature is applied to the cooking object.
  • An apparatus that performs cooking while suppressing the escape of free water by repeating alternately is disclosed.
  • JP-A-6-237860 Japanese Patent Laid-Open No. 5-30952 JP-A-6-181842 Japanese Patent Laid-Open No. 6-181843 JP-A-9-206206 JP-A-9-238623 International Publication No. 00/08986 International Publication No. 07/142493 JP 2000-152754 A
  • Patent Documents 1 to 9 have a problem that they are not versatile for cooking with a processing temperature and a processing time according to the types and sizes of various foods and processing applications. It was.
  • the present invention has been made in view of the above, and the process of heat-treating the food at a constant temperature for a certain time can be carried out in multiple stages, such as the types, sizes and processing applications of various foods.
  • An object of the present invention is to provide a cooking device and a cooking method that are excellent in versatility for cooking at a processing temperature and a processing time according to the above.
  • the cooking device of the present invention includes a plurality of cooking cabinets connected to a cooking cabinet provided with a cooking space in which food to be cooked is stored, A conveyor that passes through a plurality of the cooking chambers and conveys the ingredients into the cooking chambers, a steam generation unit that generates steam, and a steam flow path that guides the steam from the steam generation units into the cooking chambers And a cooking device comprising a temperature detection unit for detecting the temperature in the cooking space, a storage unit, and a control unit, wherein the storage unit is a processing temperature for cooking in multiple stages for each of the ingredients And the processing time is stored in association with each other, and the control unit sets the processing temperature in each cooking chamber by associating with the plurality of cooking chambers according to the ratio of the processing time in the multi-stage.
  • the flow rate adjusting means, and the conveying speed of the conveyor so that the food is cooked in the processing time corresponding to the processing temperature set by the cooking chamber temperature setting means in each cooking chamber.
  • a conveyance speed control means for controlling.
  • the cooking device further includes an input unit in the cooking device described above, and the storage unit is associated with at least one of the type, processing application, and size of the food. And storing the combination of the processing temperature and the processing time of the multi-stage, and the temperature setting means for each cooking chamber provides the user with at least one of the type, processing application, and size of the foodstuff. It is further characterized by further comprising processing temperature time setting means for setting the processing temperature and the processing time in the multiple stages by performing control so as to be designated via the input unit.
  • the cooking device according to the present invention is the cooking device as described above, wherein the temperature setting means for each cooking chamber is configured such that the temperature inside the food reaches the processing temperature based on the shape and / or size of the food.
  • the apparatus further comprises processing time correction means for correcting the processing time by calculating the product temperature arrival time until it is added and adding it to the processing time.
  • the cooking device of the present invention is characterized in that, in the cooking device described above, the processing time correction means calculates the product temperature arrival time based on the following equation.
  • S ( ⁇ T, r) k ⁇ r 2 ⁇ ( ⁇ T) 0.25 (Where ⁇ T is the difference between the processing temperature at the previous stage and the processing temperature at the next stage, r is the size of the food, k is a parameter depending on the shape of the food, and S ( ⁇ T, r) is the product temperature arrival time.)
  • the cooking device is the cooking device as described above, wherein the cooking chamber includes a baffle plate inside the cooking space, and the steam flow path extends from the periphery of the entrance / exit of the food to be conveyed.
  • the heating cooking apparatus of the present invention further includes a curtain made of a heat-insulating flexible material having heat resistance and water resistance between the plurality of cooking chambers through which the conveyor passes in the heating cooking apparatus described above.
  • the heating cooking apparatus of this invention is a heating cooking apparatus as described above,
  • the said conveyance speed control means is such that the said foodstuff is cooked in the said processing time corresponding to the said processing temperature in each said cooking chamber.
  • the conveyance speed of the conveyor is controlled to be constant or intermittent.
  • the cooking device according to the present invention is characterized in that, in the cooking device described above, the conveyor is made of a metal material having high thermal conductivity and has air permeability due to a net-like or porous structure. To do.
  • the cooking device of the present invention is the cooking device as described above, wherein steam is applied to the conveyor before the food material loading position of the conveyor passing through the plurality of cooking chambers or after the food material extraction position. Or the washing
  • the cooking device according to the present invention is the cooking device described above, with respect to the conveyor before the food material loading position of the conveyor penetrating the plurality of cooking chambers or after the food material extraction position. It further comprises a conveyor processing unit that performs cold / hot water spraying, dipping, or air drying.
  • the cooking method of the present invention includes a plurality of cooking chambers connected to a cooking chamber provided with a cooking space in which ingredients to be cooked are stored, and the cooking chambers penetrating the plurality of cooking chambers.
  • Cooking in which the processing temperature is set in each cooking chamber by associating with the plurality of cooking chambers according to the ratio of the multi-stage processing time, which is executed in the control unit. Temperature setting for each chamber And in each cooking chamber, the temperature detected by the temperature detection unit flows through the steam flow path so that the processing temperature set in the cooking chamber-specific temperature setting step is constant. The food is heated and cooked in the processing time corresponding to the processing temperature set in the cooking chamber-specific temperature setting step in each cooking chamber in the flow rate adjustment step for adjusting the steam flow rate. And a conveyance speed control step for controlling the conveyance speed of the conveyor.
  • the processing temperature and the processing time for cooking in multiple stages are stored in association with each food, and each cooking is performed by associating with a plurality of cooking chambers according to the ratio of the multi-stage processing time.
  • a processing temperature is set in the cooking chamber, and in each cooking chamber, the flow rate of the steam flowing through the steam flow path is adjusted so that the temperature detected by the temperature detection unit is constant at the set processing temperature.
  • the conveyor speed is controlled so that the food is cooked in the processing time corresponding to the set processing temperature, so the process of heating the food for a certain time while maintaining the food at a constant temperature in multiple stages It can be carried out, and there is an effect that versatility can be imparted for cooking by heating at a processing temperature and a processing time according to the types and sizes of various foods, processing applications, and the like.
  • a combination of multi-stage processing temperature and processing time is stored in association with at least one of the type of food, processing application, and size, and the type of food and processing application
  • the multi-stage processing temperature and processing time are set, so the type of food, processing application, and size
  • the processing time is calculated by calculating the product temperature arrival time until the temperature inside the food reaches the processing temperature based on the shape and / or size of the food, and adding it to the processing time. Therefore, it is possible to ensure that the temperature inside the food is kept at a constant temperature and cooked for a certain period of time.
  • the product temperature arrival time is calculated based on the following formula, so the product temperature arrival time is predicted more accurately, and the temperature inside the food is kept at a constant temperature and is cooked for a fixed time. There is an effect that it can be guaranteed.
  • S ( ⁇ T, r) k ⁇ r 2 ⁇ ( ⁇ T) 0.25 (Here, ⁇ T is the difference between the processing temperature at the previous stage and the processing temperature at the next stage, r is the size of the food, k is a parameter depending on the shape of the food, and S ( ⁇ T, r) is the product temperature. It is arrival time.)
  • the cooking chamber includes a baffle plate inside the cooking space, and the steam flow path is a first spout that spouts steam from the periphery of the food inlet / outlet to the baffle plate, Since it has the 2nd spout which spouts a steam toward the baffle plate from the lower side of the conveyer inside cooking space, it is suitable temperature by contacting the low temperature baffle plate with the hot hot steam spouted Wet saturated air is generated and gently introduced from the opening of the cooking cabinet to the back and from the bottom to the top, so that the inside of the cooking cabinet can be kept uniform.
  • the present invention since a curtain made of a heat-insulating flexible material having heat resistance and water resistance is further provided between the plurality of cooking chambers through which the conveyor passes, the inside of the cooking chamber which is normal pressure is not completely sealed. In addition, there is an effect that it is possible to appropriately convey the food cooked with wet saturated air while suppressing the heat conduction between the cooking chambers while minimizing the movement of the atmosphere between the cooking chambers or outside.
  • the conveyor speed is controlled constant or intermittently so that the food is cooked in the processing time corresponding to the processing temperature in each cooking chamber.
  • the conveyor is made of a metal material having high thermal conductivity and has air permeability due to a net-like or porous structure. There is an effect that the set processing temperature can be reached.
  • the cleaning unit for spraying steam or water flow to the conveyor is further provided before the food material loading position of the conveyor passing through the plurality of cooking chambers or after the food material extraction position, there exists an effect that the conveyed conveyor can be washed appropriately.
  • a conveyor that performs cold / hot water spraying, dipping, or blow drying on the conveyor before or after the food loading position of the conveyor that passes through the plurality of cooking chambers. Since a processing part is further provided, there exists an effect that processes, such as cold / hot water spraying, immersion, and ventilation drying, can be performed with respect to the conveyor which conveys foodstuffs.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a cooking device 10 to which the present invention is applied.
  • FIG. 2 is a diagram schematically showing, as an example, a heating program that defines multi-stage processing temperatures and processing times for a certain food stored in the heating program database 106a.
  • FIG. 3 is a flowchart showing an example of a basic process of the control device 55 of the heating cooking apparatus 10 in the present embodiment.
  • FIG. 4 schematically shows a process of setting the processing temperature and the conveyance speed V of each cooking chamber 12 by associating with the plurality of cooking chambers 12 according to the ratio of the multi-stage processing time in the heating program shown in FIG.
  • FIG. 5 is a flowchart showing an example of the processing time correction processing in the present embodiment.
  • FIG. 5 is a flowchart showing an example of the processing time correction processing in the present embodiment.
  • FIG. 6 is a diagram schematically illustrating an example of the read heating program (upper diagram) and the corrected heating program (lower diagram).
  • FIG. 7 is a graph showing the results of heat transfer analysis in a temperature environment of 100 ° C. for foods of various shapes such as a plate shape, a columnar shape, and a spherical shape.
  • FIG. 8 is a graph showing the relationship between the temperature difference (° C.) analyzed from the heat transfer analysis results and the product temperature arrival time for plate-like, columnar, and spherical foods.
  • FIG. 9 is a graph showing the relationship between the square of the food material size (m) analyzed from the heat transfer analysis result and the rate of change A.
  • FIG. 10 is a diagram schematically showing a heating pattern (upper diagram) converted from the heating program after the processing time correction shown in the lower diagram of FIG. 6 and a processing temperature setting method (lower diagram) for each cooking chamber.
  • FIG. 11 is a perspective view showing a configuration of one cooking chamber 12 among a plurality of cooking chambers 12 connected to the cooking device 10 of the present embodiment in the present embodiment.
  • FIG. 12 is a front view when the cooking cabinet 12 is viewed in the x-axis direction.
  • FIG. 13 is a cross-sectional view of the cooking chamber 12 viewed in the y-axis direction.
  • FIG. 14 is a diagram illustrating an example of the lifting means 90 provided in the cooking cabinet 12.
  • FIG. 1 is a block diagram showing an example of the configuration of a cooking device 10 to which the present invention is applied, and conceptually shows only the part related to the present invention in the configuration.
  • the heating cooking apparatus 10 generally includes a plurality of cooking chambers 12A to 12D connected to a cooking chamber 12 provided with a cooking space for storing ingredients to be cooked and a plurality of cooking chambers 12A to 12D.
  • a conveyor 23 that conveys food into each cooking chamber 12, a steam generation unit 14 that generates steam, a steam channel 44 that guides the steam from the steam generation unit 14 into each cooking chamber 12, and a cooking space
  • a temperature detection unit 50 that detects temperature and a control device 55 are provided.
  • the conveyor 23 is provided with a motor 80 capable of controlling the conveyance speed so that the food can be conveyed.
  • the steam flow path 44 is provided with a controllable valve 52 so that the flow rate of the steam flowing through the steam flow path 44 can be adjusted.
  • Arbitrary numbers of cooking chambers of arbitrary length may be connected.
  • each cooking chamber 12 is provided with a cooking space in which ingredients to be cooked are stored, and a temperature detection unit 50 is installed in the cooking space.
  • a baffle plate may be installed inside the cooking cabinet 12, and as an example, the steam flow path 44 is configured as a steam pipe, and steam is directed from the periphery of the entrance / exit of the conveyed food toward the baffle plate.
  • a curtain made of a heat-insulating and flexible material having heat resistance and water resistance such as silicon rubber and Teflon (registered trademark) rubber, is installed at an entrance of the food in the cooking cabinet 12 (for example, between adjacent cooking cabinets 12). May be.
  • an air curtain may be formed instead of the curtain.
  • the conveyor 23 may be made of a metal material having high thermal conductivity, and may have air permeability due to a net-like or porous structure. Further, it may further include a cleaning unit that sprays steam or water flow on the conveyor 23 before the food material loading position of the conveyor 23 or after the food material take-out position. You may further provide the conveyor process part which performs immersion or ventilation drying.
  • embodiment of the structure of the heat cooking apparatus 10 other than these control apparatuses 55 is demonstrated in detail in the Example mentioned later.
  • the control device 55 is generally a device such as a programmable logic controller (PLC) that includes the storage unit 106, the control unit 102, and the input / output interface unit 108.
  • the control unit 102 is a microprocessor, a CPU, or the like that comprehensively controls the entire control device 55.
  • the input / output interface unit 108 is an interface connected to the temperature detection unit 50, the input unit 112, the display unit 114, the motor 80, and the valve 52.
  • the storage unit 106 is a device that stores various databases and tables. Each unit of the control device 55 is connected to be communicable via an arbitrary communication path.
  • Various databases and tables (such as the heating program database 106a) stored in the storage unit 106 are storage means such as a fixed disk device.
  • the storage unit 106 stores various programs, tables, files, databases, and the like used for various processes.
  • the heating program database 106a is a heating program storage unit that stores a heating program that associates and defines processing temperatures and processing times for cooking in multiple stages for each ingredient. .
  • the heating program database 106a may store combinations of multi-stage processing temperatures and processing times in association with at least one of the kind of food, processing application, and size.
  • FIG. 2 is a diagram schematically showing, as an example, a heating program that defines multi-stage processing temperatures and processing times for a certain food stored in the heating program database 106a.
  • the heating program stored in the heating program database 106a is optimized according to the conditions of the ingredients, the processing temperature (T1, T2, and T3) and the processing time (M1, M2, and M3). ) In association with each other.
  • the input / output control interface 108 controls the temperature detection unit 50, the input unit 112, the display unit 114, the motor 80, the valve 52, and the like.
  • the display unit 114 in addition to a monitor (including a home television), a speaker can be combined.
  • a keyboard, a mouse, a microphone, and the like can be used as the input unit 112, a keyboard, a mouse, a microphone, and the like.
  • the temperature detection part 50 may be provided with the function to detect humidity other than the function to detect the temperature in a cooking chamber.
  • control unit 102 has a control program such as an OS (Operating System), a program that defines various processing procedures, and an internal memory for storing necessary data. And the control part 102 performs the information processing for performing various processes by these programs.
  • the control unit 102 includes a cooking chamber-specific temperature setting unit 102a, a flow rate adjusting unit 102e, and a conveyance speed control unit 102f in terms of functional concept.
  • the temperature setting part 102a classified by cooking chamber is the temperature setting means according to cooking chamber which sets processing temperature to each cooking cabinet 12 by matching with the several cooking cabinet 12 according to the ratio of the multi-step processing time.
  • the temperature setting unit 102a for each cooking chamber reads a heating program (see FIG. 2 as an example) of the food to be cooked from the heating program database 106a, and multi-stage processing time (M1, M1) defined in the heating program.
  • a processing temperature (T1, T2, T3) is set in each cooking chamber corresponding to the arrangement of the plurality of cooking cabinets 12A to 12D according to the ratio of M2, M3).
  • the cooking chamber-specific temperature setting unit 102a may include a processing temperature time setting unit 102b, a processing time correction unit 102c, and a conveyance speed setting unit 102d, as shown in FIG.
  • the processing temperature time setting unit 102b is processing temperature time setting means for setting a processing time and a processing temperature for the food by causing the user to input items regarding the food to be cooked via the input unit 112. For example, the processing temperature time setting unit 102b performs the control by causing the user to specify at least one of the type, processing application, size, and the like of the food via the input unit 112. A heating program corresponding to the type, processing application, size, etc. of the food is read from the heating program database 106a, and multi-stage processing temperatures and processing times for the food are set. The processing temperature time setting unit 102b controls the display unit 114 to display options such as the type of food, processing application, and size, and allows the user to select each item via the input unit 112. Thus, a heating program corresponding to the type, processing application, size, etc. of the designated food material may be read from the heating program database 106a, and the multi-stage processing temperature and processing time for the food material may be set.
  • the processing time correction unit 102c calculates the product temperature arrival time until the temperature inside the food reaches the processing temperature based on the shape and size of the food, and adds the processing temperature to the processing time. This is processing time correction means for correcting the time.
  • the processing time correction unit 102c may calculate the product temperature arrival time based on a mathematical expression configured from parameters related to the type, size, shape, and the like of the foodstuff. For example, the processing time correction unit 102c may calculate the product temperature arrival time based on the following equation (approximate equation).
  • S ( ⁇ T, r) k ⁇ r 2 ⁇ ( ⁇ T) 0.25
  • S ( ⁇ T, r) is the product temperature arrival time
  • ⁇ T is the difference between the processing temperature at the previous stage and the processing temperature at the next stage
  • r is the size of the food
  • k is the shape of the food.
  • k 7.44 in the case of a plate shape
  • k 3.33 in the case of a cylindrical shape
  • k 2.04 in the case of a spherical shape.
  • the processing time correction unit 102c may calculate the product temperature arrival time based on the following equation (approximate equation) that further considers heat transfer characteristics.
  • S ( ⁇ T, r) h ⁇ k ⁇ r 2 ⁇ ( ⁇ T) 0.25
  • S ( ⁇ T, r) is the product temperature arrival time
  • ⁇ T is the difference between the processing temperature at the previous stage and the processing temperature at the next stage
  • r is the size of the food
  • k is the shape of the food.
  • k 7.44 in the case of a plate shape
  • k 3.33 in the case of a cylindrical shape
  • k 2.04 in the case of a spherical shape.
  • h is a coefficient related to the heat transfer characteristics of the food, and is usually 1, but is specified in the range of 0.2 to 2 in the case of food having a significant difference in heat characteristics.
  • the mathematical formula for calculating the product temperature arrival time is not limited to the above approximate expression, and the processing time correction unit 102c is capable of calculating the product temperature arrival time from parameters related to the type, size, shape, etc. of the foodstuff.
  • the product temperature arrival time may be calculated using an approximate expression of the form.
  • the conveyance speed setting unit 102d is a conveyance speed setting unit that sets the conveyance speed of the conveyor.
  • the conveyance speed setting unit 102d removes the sum of multi-stage processing times (M1 + M2 + M3 in the case of FIG. 2) from the total cooking cabinet length Ltotal that is the length of the conveyor from the cooking cabinet 12A to the cooking cabinet 12D. By doing so, the conveyance speed may be calculated and set.
  • the flow rate adjusting unit 102e controls the valve so that the temperature detected by the temperature detecting unit 50 becomes constant at the processing temperature set by the cooking chamber specific temperature setting unit 102a.
  • 52 is a flow rate adjusting means for adjusting the flow rate of the steam flowing through the steam flow path 44 by controlling 52.
  • the flow rate adjustment unit 102e sets the valve 52A so that the temperature detected by the temperature detection unit 50A is constant at T1. Open / close control is performed. That is, the flow rate adjustment unit 102e performs control to open the valve 52A when the temperature detected by the temperature detection unit 50A is lower than T1, and close the valve 52A when higher than T1.
  • the conveyance speed control part 102f sets the conveyance speed of the conveyor 23 so that a foodstuff may be cooked in the processing time corresponding to the processing temperature set by the temperature setting part 102a for each cooking chamber in each cooking chamber 12. It is the conveyance speed control means to control.
  • the conveyance speed control unit 102f controls the motor 80 so that the conveyor 23 moves at the conveyance speed set by the conveyance speed setting unit 102d.
  • the conveyance speed control unit 102f may control the conveyance speed of the conveyor at a constant speed, or may perform an intermittent operation that stops every time the vehicle moves a certain distance.
  • FIG. 3 is a flowchart showing an example of a basic process of the control device 55 of the heating cooking apparatus 10 in the present embodiment.
  • the temperature setting unit 102a for each cooking chamber reads the heating program for the food to be cooked from the heating program database 106a (step SA-1).
  • the temperature setting unit 102a for each cooking chamber inputs items (type, processing application, size / size, shape, etc.) regarding the target food to the user via the input unit 112 by the processing of the processing temperature time setting unit 102b.
  • the corresponding heating program is read from the heating program database 106a.
  • the temperature setting part 102a classified by cooking chamber sets processing temperature to each cooking chamber 12 by matching with the several cooking chambers 12 according to the ratio of the multistep processing time prescribed
  • FIG. 4 sets the processing temperature and the conveyance speed V of each cooking cabinet 12 by matching with the several cooking cabinets 12 according to the ratio of the multi-stage processing time in the heating program shown in FIG. It is a figure showing processing typically.
  • the cooking chamber-specific temperature setting unit 102a performs the four cooking according to the ratio of each processing time.
  • the processing temperature T1 is set in the cooking chamber A
  • the processing temperature T2 is set in the cooking chamber B
  • the processing temperature T2 is set in the cooking chamber C
  • the cooking chamber D is set in the cooking chamber D. Sets the processing temperature T3.
  • the temperature setting part 102a classified by cooking chamber is the total cooking chamber length Ltotal (in this case, one cooking chamber) which is the length of the conveyor from cooking chamber 12A to cooking chamber 12D by the process of the conveyance speed setting unit 102d.
  • the temperature setting unit 102a for each cooking chamber is used for each cooking chamber 12 according to the relationship between the ratio of the multi-stage processing time defined in the read heating program and the arrangement of the plurality of cooking chambers 12. Assign the processing temperature and processing time.
  • the flow rate adjusting unit 102e controls the valve so that the temperature detected by the temperature detecting unit 50 is constant at the processing temperature set by the cooking chamber specific temperature setting unit 102a. 52 is controlled to start the process of adjusting the flow rate of the steam flowing through the steam flow path 44 (step SA-3).
  • the flow rate adjustment unit 102e sets the valve 52A so that the temperature detected by the temperature detection unit 50A is constant at T1. Open / close control is performed. That is, the flow rate adjustment unit 102e performs control to open the valve 52A when the temperature detected by the temperature detection unit 50A is lower than T1, and close the valve 52A when higher than T1.
  • the conveyance speed control part 102f sets the conveyance speed of the conveyor 23 so that a foodstuff may be heat-cooked in the processing time corresponding to the process temperature set by the temperature setting part 102a according to cooking chamber in each cooking chamber 12.
  • Control (step SA-4) For example, the conveyance speed control unit 102f controls the motor 80 so that the conveyor 23 moves at a constant conveyance speed set by the conveyance speed setting unit 102d.
  • the conveyance speed control unit 102f is set by the cooking chamber-specific temperature setting unit 102a every time a certain distance (the length of one cooking chamber 12) proceeds when performing an intermittent operation to stop each time the certain traveling distance. You may perform control which stops a conveyor during the processing time per cooking chamber 12.
  • the conveyance speed control unit 102f may increase or decrease the conveyance speed in a sine function, for example, so as to avoid a rapid acceleration when starting and stopping the intermittent operation.
  • FIG. 5 is a flowchart showing an example of the processing time correction processing in the present embodiment.
  • the temperature setting unit 102a for each cooking chamber reads the heating program for the ingredients to be cooked from the heating program database 106a, similarly to the above-described step SA-1 (step SA-1).
  • FIG. 6 is a diagram schematically showing an example of the read heating program (upper diagram) and the corrected heating program (lower diagram).
  • the read out heating program includes multi-stage processing temperatures (T1, T2, T3) and processing times (M1 ′, M2 ′, M3) for the ingredients to be cooked. ′) Is defined in association with it.
  • the temperature setting unit 102a for each cooking chamber performs control to select the size, shape, and the like of the ingredients to be cooked via the input unit 112 (step SA-21).
  • FIG. 7 is a graph showing a heat transfer analysis result in a temperature environment of 100 ° C. for each shape of food material such as a plate shape, a columnar shape, and a spherical shape.
  • FIG. 8 is a graph showing the relationship between the temperature difference (° C.) raised to the 0.25th power and the product temperature arrival time analyzed from the heat transfer analysis results for plate-like, columnar and spherical foodstuffs.
  • FIG. 9 is a graph showing the relationship between the square of the food material size (m) analyzed from the heat transfer analysis result and the rate of change A.
  • the product temperature arrival time of the foods of various sizes with respect to the plate-like, columnar, and spherical foods is the temperature difference (° C.) as shown in FIG. 8. It was confirmed that it was proportional to the power of 0.25. Further, as shown in FIG. 9, the rate of change A, which is a proportional constant, differs for each shape such as a plate shape, a columnar shape, or a spherical shape, and the rate of change A is proportional to the square of the food material size (m). It was confirmed.
  • the proportionality constant k was 7.44 in the case of a plate, 3.33 in the case of a cylinder, and 2.04 in the case of a sphere.
  • h can be obtained from the ratio of the thermal conductivity of the food used in the heat transfer analysis to the thermal conductivity of the target food.
  • the processing time correction unit 102c of the temperature setting unit 102a for each cooking chamber calculates the product temperature arrival time based on the shape, size, etc. of the selected food, using the above-described formula as an example (step) SA-22).
  • the formula for calculating the product temperature arrival time is not limited to the above-described approximate expression, and the processing time correction unit 102c is capable of calculating the product temperature arrival time from parameters related to the type, size, shape, and the like of the foodstuff.
  • the product temperature arrival time may be calculated using the approximate expression of the form, and the product temperature arrival time may be derived directly from the graph of the heat transfer analysis result without using the approximate expression.
  • an expression obtained by approximating a heat transfer analysis result by a logarithmic function (log function or the like), a trigonometric function (sin function or the like), or the like may be used.
  • the temperature setting unit 102a for each cooking chamber corrects the processing time by adding the calculated product temperature arrival time to the processing time of the heating program by the processing of the processing time correction unit 102c (step SA). -23). That is, as illustrated in FIG. 5, the processing time correction unit 102 c calculates the calculated product temperature arrival time S ( ⁇ T 1 , r for each of the multi-stage processing temperatures M1 ′, M2 ′, and M3 ′ of the read heating program. ), S ( ⁇ T 2 , r), S ( ⁇ T 3 , r) are added to derive the corrected processing times M1, M2, and M3.
  • ⁇ T 1 T1 ⁇ T0 (room temperature)
  • ⁇ T 2 T2 ⁇ T1
  • ⁇ T 3 T3 ⁇ T2
  • M1 S ( ⁇ T 1 , r) + M1 ′
  • M2 S ( ⁇ T 2 , r) + M2.
  • M3 S ( ⁇ T 3 , r) + M3 ′.
  • control device 55 performs the subsequent processing using the heating program appropriately corrected according to the product temperature arrival time.
  • the same processing as step SA-2 of the basic processing described above may be performed.
  • the transport time is calculated from the processing time, and the processing temperature and the conveyor position are calculated. The process which converts into the heating pattern which matched these, and sets the process temperature for every cooking chamber is demonstrated.
  • the cooking chamber specific temperature setting unit 102a integrates the processing time and converts it into an integrated processing time (step SA-24).
  • processing temperature T, processing time M [(T1, M1), (T2, M2),..., (Tn, Mn).
  • T, integrated processing time S [(T1, M1), (T2, (M1 + M2)),..., (Tn, ⁇ Mn)].
  • FIG. 10 is a diagram schematically showing a heating pattern (upper diagram) converted from the heating program after the processing time correction shown in the lower diagram of FIG. 6 and a processing temperature setting method (lower diagram) for each cooking chamber. is there.
  • the conveyor position Px is obtained by multiplying each processing time of the corrected heating program shown in the lower diagram of FIG. 6 by the conveyance speed V, and the processing temperature Tx and the conveyor position Px are obtained. Convert to associated heating pattern.
  • the temperature setting unit 102a for each cooking chamber associates the plurality of cooking chambers 12 with each other based on the conveyor position of the converted heating pattern, and sets the processing temperature for each cooking chamber 12 (step SA-27). That is, as shown in FIG. 10, the temperature setting unit 102a for each cooking chamber sets the processing temperature T1 for the cooking chamber A corresponding to the conveyor positions P0 to P1, and the cooking chamber B corresponding to the conveyor positions P1 to P2. The processing temperature T2 is set to C, and the processing temperature T3 is set to the cooking chamber D corresponding to the conveyor positions P2 to P3.
  • control device 55 performs the same processing as the above-described steps SA-3 and SA-4. This completes an example of the processing time correction processing in the present embodiment.
  • the main ingredients that make up food are starch, protein, fiber and lipid, and various trace ingredients such as vitamins, enzymes and spicy ingredients are also included.
  • these components contained in the food can be denatured and edible, and at the same time, a favorable taste, aroma, color, shape, and appropriate texture can be formed.
  • a cooking processing system (Soft Steam Processing (trademark)) that grasps the heat-denaturing characteristics of each food ingredient and optimally modifies each ingredient step by step to industrially produce high-quality food.
  • Soft Steam Processing (trademark)
  • the internal temperature was controlled by a program, and the food material temperature was heated stepwise (batch type soft steamer: International Publication No. 09/15101019). reference).
  • This apparatus requires a batch operation in which food is put into a cooking cabinet and taken out after cooking, and only a limited amount of production can be expected.
  • the batch type soft steamer requires a time for raising the temperature inside the chamber and a time for returning to the initial temperature after cooking, which has a drawback that the whole cooking time becomes longer. Furthermore, when high-temperature steam is directly introduced into the cabinet in order to shorten the temperature raising time, there is a problem that a part of the food may be overheated.
  • the present embodiment was developed as a result of intensive studies by the inventors of the present invention in view of the above-mentioned problems, and has a main purpose of continuating the stepwise heating process in Soft Steam Processing (trademark). Yes.
  • Soft Steam Processing (trademark)
  • the cooking device 10 of the present embodiment includes a plurality of cooking chambers 12 connected to a cooking chamber 12 provided with a cooking space in which ingredients to be cooked are stored, and a plurality of cooking chambers.
  • a conveyor 23 that passes through the cabinet 12 and conveys food into each cooking chamber 12, a steam generation unit 14 that generates steam, a steam channel 44 that guides the steam from the steam generation unit 14 into each cooking chamber 12, and A temperature detection unit 50 that detects the temperature in the cooking space and a control device 55 are provided.
  • the steam generator 14 such as a boiler is configured to generate saturated steam by a known means.
  • the conveyor 23 is provided with a motor 80 capable of controlling the conveyance speed so that the food can be conveyed.
  • FIG. 11 is a perspective view showing a configuration of one cooking chamber 12 among a plurality of cooking chambers 12 connected to the cooking device 10 of the present embodiment in the present embodiment.
  • the x-axis, y-axis, and z-axis that are orthogonal to each other represent the orientation in space.
  • the plurality of cooking chambers 12 are closely connected so that there is no gap between them.
  • the conveyor 23 is made of a metal material having high thermal conductivity, and has air permeability due to a net-like or porous structure. In the present embodiment, the conveyor 23 conveys food materials in the x-axis direction.
  • the cooking chamber 12 is provided with a steam flow path 44 for introducing the steam from the steam generating unit 14 such as a boiler into the cooking chamber 12 through the valve 52.
  • the steam flow path 44 is provided in the substantially frame shape extended along the inner periphery of the cooking chamber 12 main body like illustration.
  • the strip-shaped curtain 60 which consists of a heat insulating flexible material which has heat resistance and water resistance is installed in the foodstuff entrance / exit of the cooking cabinet 12 (for example, between the adjacent cooking cabinets 12).
  • FIG. 12 is a front view when the cooking chamber 12 is viewed in the x-axis direction. The curtain 60 is not shown so that the inside of the cooking cabinet 12 can be easily seen.
  • the steam flow path 44 is branched in two directions inside the cooking cabinet 12, and is formed in a U shape. Note that the branched steam flow path 44 is bent at 90 ° in the x-axis direction on the lower side and arranged to extend horizontally.
  • baffle plates 36 and 37 are installed substantially symmetrically inside the cooking chamber 12, and the steam flow path 44 is a first jet outlet 47 for jetting saturated steam from the periphery of the entrance and exit toward the baffle plate 37. And a second jet port 48 for jetting saturated steam from the lower side of the conveyor 23 inside the cooking space toward the baffle plate 36.
  • the saturated steam ejected toward the baffles 36 and 37 is cooled and condensed by being mixed with the atmosphere near the opening, and is supplied to the cooking space as moderately saturated wet air containing minute water droplets.
  • the cooking space is configured to be filled with wet saturated air.
  • FIG. 13 is a cross-sectional view when the cross section of the cooking cabinet 12 is seen in the y-axis direction. That is, FIG. 13 is a side view when the substantially left-right symmetric cooking chamber 12 is cut along the center line.
  • the branched steam flow path 44 is bent 90 ° in the x-axis direction and extends horizontally at the lower side, and is again bent 90 ° in the z-axis direction to form a U-shape.
  • the second ejection port 48 that ejects saturated steam from the lower side of the conveyor 23 toward the baffle plate 36.
  • the second ejection port 48 is provided with a number of ejection ports 48. That is, the saturated steam ejected from the second ejection port 48 is not directly ejected to the cooking space or the conveyor 23 but hits the low-temperature baffle plate 36 and stays in the open flow path in the low-temperature atmosphere for a certain period of time. For this reason, the above-mentioned condensation is effectively carried out, and it is gently and indirectly supplied into the cooking space as wet saturated air, and gently from the air-permeable conveyor 23 to the food F. Heat conduction is performed, which contributes to the homogenization of the atmosphere in the cooking space. Moreover, as shown in FIG.
  • the temperature detection part 50 which detects the temperature in cooking space is installed in the side wall in the cooking chamber 12, and as demonstrated in the above-mentioned embodiment, the control apparatus 55 of FIG.
  • the cooking space is maintained at the set processing temperature by the control. Further, as described in the above-described embodiment, the conveying speed of the conveyor 23 is controlled by the control device 55 so that the food is heated at the processing temperature for the set processing time.
  • the atmosphere temperature can be instantaneously changed by transferring between cooking chambers having different temperatures, and the cooking time can be shortened. Moreover, since there is no raising / lowering of cooking chamber temperature, the energy saving effect can also be desired.
  • FIG. 14 is a diagram illustrating the lifting / lowering means 90 provided in the cooking cabinet 12 as an example.
  • the elevating means 90 uses a mechanism such as a belt and a gear, and an actuator such as a motor and a cylinder (not shown) to move the plate P on which food is placed in the vertical direction (z-axis direction) and the horizontal direction.
  • a known device that can move in the (x-axis direction) is used, and a plate P on which food is placed is retained in the cooking space in the direction of the arrow shown in the figure.
  • the actuator of the lifting / lowering means 90 is connected to the control device 55, and the moving speed of the plate by the lifting / lowering means 90 can be controlled by the control device 55. That is, the control device 55 controls the elevating means 90 to control the staying time of the food, and can freely set the actual length of the cooking cabinet 12 without depending on the actual length of the cooking cabinet 12. Will be able to change.
  • all or part of the processes described as being automatically performed can be performed manually, or the processes described as being performed manually can be performed. All or a part can be automatically performed by a known method.
  • each illustrated component is functionally conceptual and does not necessarily need to be physically configured as illustrated.
  • each device of the control device 55 is all interpreted or executed by a CPU (Central Processing Unit) and the CPU. It may be realized by a program or hardware based on wired logic. The program is recorded on a recording medium to be described later, and is mechanically read by the control device 55 as necessary. That is, the storage unit 106 such as ROM or HD stores a computer program for performing various processes by giving instructions to the CPU in cooperation with an OS (Operating System). This computer program is executed by being loaded into the RAM, and constitutes a control unit in cooperation with the CPU.
  • OS Operating System
  • the computer program may be stored in an application program server connected to the control device 55 via an arbitrary network, and may be downloaded in whole or in part as necessary. .
  • the program according to the present invention may be stored in a computer-readable recording medium, or may be configured as a program product.
  • the “recording medium” refers to any “portable physical medium” such as a flexible disk, a magneto-optical disk, a ROM, an EPROM, an EEPROM, a CD-ROM, an MO, and a DVD, or a LAN, WAN, or Internet. It includes a “communication medium” that holds the program in a short period of time, such as a communication line or a carrier wave when the program is transmitted via a network represented by
  • program is a data processing method described in an arbitrary language or description method, and may be in any form such as source code or binary code.
  • program is not necessarily limited to a single configuration, but is distributed in the form of a plurality of modules and libraries, or in cooperation with a separate program typified by an OS (Operating System). Including those that achieve the function.
  • OS Operating System
  • a well-known configuration and procedure can be used for a specific configuration for reading a recording medium, a reading procedure, an installation procedure after reading, and the like in each device described in the embodiment.
  • Various databases and the like stored in the storage unit 106 are storage means such as a memory device such as a RAM and a ROM, a fixed disk device such as a hard disk, a flexible disk, and an optical disk. Stores various programs, tables, databases, etc. used for provision.
  • control device 55 may be configured as an information processing apparatus such as a known personal computer or workstation, or may be configured by connecting an arbitrary peripheral device to the information processing apparatus.
  • the control device 55 may be realized by installing software (including programs, data, and the like) that causes the information processing apparatus to implement the method of the present invention.
  • the specific form of distribution / integration of the devices is not limited to that shown in the figure, and all or a part of them may be functional or physical in arbitrary units according to various additions or according to functional loads. Can be distributed and integrated.
  • the process of heat-treating the food at a constant temperature for a certain time can be carried out in multiple stages, such as various food types, sizes and processing applications.
  • the heat cooking apparatus and the heat cooking method which were excellent in the versatility for cooking by heat with the process temperature and process time according to can be provided.
  • general industrialization is possible by making a line of soft steam processing (trademark) technology that enables production of food of high quality, high functionality, and high added value.
  • the soft steam processing machine that has been developed so far can only be produced in a small amount because of the batch processing method, but according to the present invention, it is possible to make a continuous line and cope with large-scale production. It is extremely useful in various fields such as the processing field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Commercial Cooking Devices (AREA)

Abstract

Disclosed is a heat food preparation device, comprising a plurality of linked food preparation housings, each having a food preparation space wherein the foodstuffs to be heat food prepared are contained; a conveyor belt that passes through the plurality of food preparation housings and conveys the foodstuffs into each food preparation housing; a steam generator unit that generates steam; a steam path that guides the steam from the steam generator unit into each food preparation housing; temperature detector units that detect the temperature within the food preparation space; a memory unit; and a controller unit. The processing temperature and the processing time for heat food preparing at multiple stages are associated and stored on a per foodstuff basis, and the processing temperature is set in each of the plurality of food preparation housings by association with the plurality of food preparation housings, corresponding to the proportion of processing time at the multiple stages. In each food preparation housing, the flow quantity of the steam that flows through the steam path is adjusted such that the temperature detected by the temperature detector units conforms to the set processing temperature. In each food preparation housing, the conveyor speed of the conveyor belt is controlled such that the foodstuffs are heat food prepared in the processing time associated with the set processing temperature.

Description

加熱調理装置、および、加熱調理方法Heat cooking apparatus and heat cooking method
 本発明は、加熱調理装置、および、加熱調理方法に関する。 The present invention relates to a cooking device and a cooking method.
 従来、連続的に食材を加熱処理するコンベア式の装置が開発されている。 Conventionally, a conveyor type apparatus that continuously heats foods has been developed.
 例えば、特許文献1~8には、米などの食材をコンベアで搬送しながら、連続的に、水噴霧や、蒸気加熱、攪拌混合、殺菌、冷却、乾燥、熱水浸漬、洗浄、水切り、焼き温度管理等を行う装置について開示されている。 For example, in Patent Documents 1 to 8, while food such as rice is conveyed by a conveyor, water spraying, steam heating, stirring and mixing, sterilization, cooling, drying, hot water immersion, washing, draining and baking are continuously performed. An apparatus for performing temperature management or the like is disclosed.
 また、特許文献9には、調理対象物をコンベアで搬送しながら、高温の過熱蒸気を調理対象物に当てる高温加熱工程と、より温度の低い低温のガスを調理対象物に当てる降温工程とを交互に繰り返すことによって、自由水が逃げるのを抑制しながら加熱調理を行う装置について開示されている。 Patent Document 9 includes a high-temperature heating process in which high-temperature superheated steam is applied to a cooking object while the cooking object is being conveyed by a conveyor, and a temperature-lowering process in which low-temperature gas having a lower temperature is applied to the cooking object. An apparatus that performs cooking while suppressing the escape of free water by repeating alternately is disclosed.
特開平6-237860号公報JP-A-6-237860 特開平5-30952号公報Japanese Patent Laid-Open No. 5-30952 特開平6-181842号公報JP-A-6-181842 特開平6-181843号公報Japanese Patent Laid-Open No. 6-181843 特開平9-206206号公報JP-A-9-206206 特開平9-238623号公報JP-A-9-238623 国際公開第00/08986号公報International Publication No. 00/08986 国際公開第07/142493号公報International Publication No. 07/142493 特開2000-152754号公報JP 2000-152754 A
 しかしながら、特許文献1~8に記載のコンベア式装置においては、異なる温度の加熱を組合せた、蒸気加熱に用いることはできないという問題があった。 However, the conveyor devices described in Patent Documents 1 to 8 have a problem that they cannot be used for steam heating in which heating at different temperatures is combined.
 また、特許文献9に記載のコンベア式装置においては、食材の過熱による自由水の流出を避けるために、高温の加熱過程に続いて低温の降温工程を加えているが、食材を一定温度を保って一定時間加熱処理する工程を、多段階で実施する場合に適用することができないという問題があった。 In addition, in the conveyor-type device described in Patent Document 9, a low temperature lowering step is added after the high temperature heating process in order to avoid the outflow of free water due to overheating of the food material, but the food material is kept at a constant temperature. Therefore, there is a problem that the heat treatment process for a certain period of time cannot be applied when the process is performed in multiple stages.
 また、従来の特許文献1~9等のコンベア式装置においては、様々な食材の種類や大きさや加工用途等に応じた処理温度と処理時間で加熱調理するための汎用性に乏しいという問題があった。 In addition, the conventional conveyor-type devices such as Patent Documents 1 to 9 have a problem that they are not versatile for cooking with a processing temperature and a processing time according to the types and sizes of various foods and processing applications. It was.
 本発明は、上記に鑑みてなされたものであって、食材を一定温度に保って一定時間加熱処理する工程を、多段階で実施することができ、様々な食材の種類や大きさや加工用途等に応じた処理温度と処理時間で加熱調理するための汎用性に優れた、加熱調理装置、および、加熱調理方法を提供することを目的とする。 The present invention has been made in view of the above, and the process of heat-treating the food at a constant temperature for a certain time can be carried out in multiple stages, such as the types, sizes and processing applications of various foods. An object of the present invention is to provide a cooking device and a cooking method that are excellent in versatility for cooking at a processing temperature and a processing time according to the above.
 上述した課題を解決し、目的を達成するために、本発明の加熱調理装置は、加熱調理される食材が収容される調理空間が設けられた調理庫を連結した複数の前記調理庫と、前記複数の前記調理庫を貫通し前記各調理庫内に前記食材を搬送するコンベアと、蒸気を発生させる蒸気発生部と、前記蒸気発生部からの前記蒸気を前記各調理庫内に導く蒸気流路と、前記調理空間内の温度を検出する温度検出部と、記憶部と、制御部とを備えた加熱調理装置において、前記記憶部は、前記食材毎に多段階で加熱調理するための処理温度および処理時間を対応付けて記憶し、前記制御部は、前記多段階の前記処理時間の割合に応じて前記複数の前記調理庫と対応付けることにより、前記各調理庫に前記処理温度を設定する調理庫別温度設定手段と、前記各調理庫内において、前記温度検出部により検出される前記温度が前記調理庫別温度設定手段により設定された前記処理温度に一定となるように、前記蒸気流路を流れる前記蒸気の流量を調整する流量調整手段と、前記各調理庫内において、前記調理庫別温度設定手段により設定された前記処理温度に対応する前記処理時間で前記食材が加熱調理されるように、前記コンベアの搬送速度を制御する搬送速度制御手段と、を備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, the cooking device of the present invention includes a plurality of cooking cabinets connected to a cooking cabinet provided with a cooking space in which food to be cooked is stored, A conveyor that passes through a plurality of the cooking chambers and conveys the ingredients into the cooking chambers, a steam generation unit that generates steam, and a steam flow path that guides the steam from the steam generation units into the cooking chambers And a cooking device comprising a temperature detection unit for detecting the temperature in the cooking space, a storage unit, and a control unit, wherein the storage unit is a processing temperature for cooking in multiple stages for each of the ingredients And the processing time is stored in association with each other, and the control unit sets the processing temperature in each cooking chamber by associating with the plurality of cooking chambers according to the ratio of the processing time in the multi-stage. Chamber-specific temperature setting means and previous In each cooking chamber, the flow rate of the steam flowing through the steam channel is adjusted so that the temperature detected by the temperature detection unit becomes constant at the processing temperature set by the cooking chamber-specific temperature setting means. The flow rate adjusting means, and the conveying speed of the conveyor so that the food is cooked in the processing time corresponding to the processing temperature set by the cooking chamber temperature setting means in each cooking chamber. And a conveyance speed control means for controlling.
 また、本発明の加熱調理装置は、上記記載の加熱調理装置において、入力部を更に備え、前記記憶部は、前記食材の種類、加工用途、および、大きさのうちの少なくとも一つに対応付けて、前記多段階の前記処理温度および前記処理時間の組合せを記憶し、前記調理庫別温度設定手段は、前記食材の種類、加工用途、および、大きさのうちの少なくとも一つを利用者に前記入力部を介して指定させるよう制御することにより、前記多段階の前記処理温度および前記処理時間を設定する処理温度時間設定手段、を更に備えたことを特徴とする。 The cooking device according to the present invention further includes an input unit in the cooking device described above, and the storage unit is associated with at least one of the type, processing application, and size of the food. And storing the combination of the processing temperature and the processing time of the multi-stage, and the temperature setting means for each cooking chamber provides the user with at least one of the type, processing application, and size of the foodstuff. It is further characterized by further comprising processing temperature time setting means for setting the processing temperature and the processing time in the multiple stages by performing control so as to be designated via the input unit.
 また、本発明の加熱調理装置は、上記記載の加熱調理装置において、前記調理庫別温度設定手段は、前記食材の形状および/またはサイズに基づいて、当該食材内部の温度が前記処理温度に到達するまでの品温到達時間を算出して前記処理時間に加算することにより、当該処理時間を補正する処理時間補正手段、を更に備えたことを特徴とする。 Moreover, the cooking device according to the present invention is the cooking device as described above, wherein the temperature setting means for each cooking chamber is configured such that the temperature inside the food reaches the processing temperature based on the shape and / or size of the food. The apparatus further comprises processing time correction means for correcting the processing time by calculating the product temperature arrival time until it is added and adding it to the processing time.
 また、本発明の加熱調理装置は、上記記載の加熱調理装置において、前記処理時間補正手段は、下記の式に基づいて、前記品温到達時間を算出することを特徴とする。
 S(ΔT,r)=k×r×(ΔT)0.25
 (ここで、ΔTは前段階の前記処理温度と次段階の前記処理温度の差であり、rは前記食材の前記サイズであり、kは前記食材の前記形状によるパラメータであり、S(ΔT,r)は、前記品温到達時間である。)
Moreover, the cooking device of the present invention is characterized in that, in the cooking device described above, the processing time correction means calculates the product temperature arrival time based on the following equation.
S (ΔT, r) = k × r 2 × (ΔT) 0.25
(Where ΔT is the difference between the processing temperature at the previous stage and the processing temperature at the next stage, r is the size of the food, k is a parameter depending on the shape of the food, and S (ΔT, r) is the product temperature arrival time.)
 また、本発明の加熱調理装置は、上記記載の加熱調理装置において、前記調理庫は、前記調理空間内部に邪魔板を備え、前記蒸気流路は、搬送される前記食材の出入口周囲から前記邪魔板に向けて前記蒸気を噴出する第1の噴出口と、前記調理空間内部の前記コンベアの下側から前記邪魔板に向けて前記蒸気を噴出する第2の噴出口とを備えたことを特徴とする。 The cooking device according to the present invention is the cooking device as described above, wherein the cooking chamber includes a baffle plate inside the cooking space, and the steam flow path extends from the periphery of the entrance / exit of the food to be conveyed. A first jet nozzle for jetting the steam toward the plate, and a second jet nozzle for jetting the steam from the lower side of the conveyor inside the cooking space toward the baffle plate. And
 また、本発明の加熱調理装置は、上記記載の加熱調理装置において、前記コンベアが貫通する前記複数の調理庫間に、耐熱性および耐水性を有する断熱柔軟素材からなるカーテンを更に備えたことを特徴とする。 Moreover, the heating cooking apparatus of the present invention further includes a curtain made of a heat-insulating flexible material having heat resistance and water resistance between the plurality of cooking chambers through which the conveyor passes in the heating cooking apparatus described above. Features.
 また、本発明の加熱調理装置は、上記記載の加熱調理装置において、前記搬送速度制御手段は、前記各調理庫内において前記処理温度に対応する前記処理時間で前記食材が加熱調理されるように、前記コンベアの前記搬送速度を、一定に、または、間欠的に制御することを特徴とする。 Moreover, the heating cooking apparatus of this invention is a heating cooking apparatus as described above, The said conveyance speed control means is such that the said foodstuff is cooked in the said processing time corresponding to the said processing temperature in each said cooking chamber. The conveyance speed of the conveyor is controlled to be constant or intermittent.
 また、本発明の加熱調理装置は、上記記載の加熱調理装置において、前記コンベアは、高い熱伝導性を有する金属素材からなり、且つ、網状または多孔状の構造により通気性を有することを特徴とする。 Moreover, the cooking device according to the present invention is characterized in that, in the cooking device described above, the conveyor is made of a metal material having high thermal conductivity and has air permeability due to a net-like or porous structure. To do.
 また、本発明の加熱調理装置は、上記記載の加熱調理装置において、前記複数の前記調理庫を貫通する前記コンベアの食材積載位置より前、または、食材取り出し位置より後に、当該コンベアに対して蒸気または水流を吹き付ける洗浄部を更に備えたことを特徴とする。 Moreover, the cooking device of the present invention is the cooking device as described above, wherein steam is applied to the conveyor before the food material loading position of the conveyor passing through the plurality of cooking chambers or after the food material extraction position. Or the washing | cleaning part which sprays a water flow is further provided, It is characterized by the above-mentioned.
 また、本発明の加熱調理装置は、上記記載の加熱調理装置において、前記複数の前記調理庫を貫通する前記コンベアの食材積載位置より前、または、食材取り出し位置より後に、当該コンベアに対して、冷温水散布、浸漬、または、送風乾燥を行うコンベア処理部を更に備えたことを特徴とする。 Moreover, the cooking device according to the present invention is the cooking device described above, with respect to the conveyor before the food material loading position of the conveyor penetrating the plurality of cooking chambers or after the food material extraction position. It further comprises a conveyor processing unit that performs cold / hot water spraying, dipping, or air drying.
 また、本発明の加熱調理方法は、加熱調理される食材が収容される調理空間が設けられた調理庫を連結した複数の前記調理庫と、前記複数の前記調理庫を貫通し前記各調理庫内に前記食材を搬送するコンベアと、蒸気を発生させる蒸気発生部と、前記蒸気発生部からの前記蒸気を前記各調理庫内に導く蒸気流路と、前記調理空間内の温度を検出する温度検出部と、記憶部と、制御部とを備えた加熱調理装置において実行される加熱調理方法であって、前記記憶部は、前記食材毎に多段階で加熱調理するための処理温度および処理時間を対応付けて記憶し、前記制御部において実行される、前記多段階の前記処理時間の割合に応じて前記複数の前記調理庫と対応付けることにより、前記各調理庫に前記処理温度を設定する調理庫別温度設定ステップと、前記各調理庫内において、前記温度検出部により検出される前記温度が前記調理庫別温度設定ステップにて設定された前記処理温度に一定となるように、前記蒸気流路を流れる前記蒸気の流量を調整する流量調整ステップと、前記各調理庫内において、前記調理庫別温度設定ステップにて設定された前記処理温度に対応する前記処理時間で前記食材が加熱調理されるように、前記コンベアの搬送速度を制御する搬送速度制御ステップと、を含むことを特徴とする。 Moreover, the cooking method of the present invention includes a plurality of cooking chambers connected to a cooking chamber provided with a cooking space in which ingredients to be cooked are stored, and the cooking chambers penetrating the plurality of cooking chambers. A conveyor for transporting the food material therein, a steam generating section for generating steam, a steam flow path for guiding the steam from the steam generating section into the cooking chambers, and a temperature for detecting the temperature in the cooking space A cooking method that is executed in a cooking apparatus including a detection unit, a storage unit, and a control unit, wherein the storage unit is a processing temperature and a processing time for cooking in multiple stages for each food. Cooking in which the processing temperature is set in each cooking chamber by associating with the plurality of cooking chambers according to the ratio of the multi-stage processing time, which is executed in the control unit. Temperature setting for each chamber And in each cooking chamber, the temperature detected by the temperature detection unit flows through the steam flow path so that the processing temperature set in the cooking chamber-specific temperature setting step is constant. The food is heated and cooked in the processing time corresponding to the processing temperature set in the cooking chamber-specific temperature setting step in each cooking chamber in the flow rate adjustment step for adjusting the steam flow rate. And a conveyance speed control step for controlling the conveyance speed of the conveyor.
 本発明によれば、食材毎に多段階で加熱調理するための処理温度および処理時間を対応付けて記憶し、多段階の処理時間の割合に応じて複数の調理庫と対応付けることにより、各調理庫に処理温度を設定し、各調理庫内において、温度検出部により検出される温度が設定された処理温度に一定となるように、蒸気流路を流れる蒸気の流量を調整し、各調理庫内において、設定された処理温度に対応する処理時間で食材が加熱調理されるように、コンベアの搬送速度を制御するので、食材を一定温度に保って一定時間加熱処理する工程を、多段階で実施することができ、様々な食材の種類や大きさや加工用途等に応じた処理温度と処理時間で加熱調理するために汎用性を持たせることができるという効果を奏する。 According to the present invention, the processing temperature and the processing time for cooking in multiple stages are stored in association with each food, and each cooking is performed by associating with a plurality of cooking chambers according to the ratio of the multi-stage processing time. A processing temperature is set in the cooking chamber, and in each cooking chamber, the flow rate of the steam flowing through the steam flow path is adjusted so that the temperature detected by the temperature detection unit is constant at the set processing temperature. Inside, the conveyor speed is controlled so that the food is cooked in the processing time corresponding to the set processing temperature, so the process of heating the food for a certain time while maintaining the food at a constant temperature in multiple stages It can be carried out, and there is an effect that versatility can be imparted for cooking by heating at a processing temperature and a processing time according to the types and sizes of various foods, processing applications, and the like.
 また、本発明によれば、食材の種類、加工用途、および、大きさのうちの少なくとも一つに対応付けて、多段階の処理温度および処理時間の組合せを記憶し、食材の種類、加工用途、および、大きさのうちの少なくとも一つを利用者に入力部を介して指定させるよう制御することにより、多段階の処理温度および処理時間を設定するので、食材の種類や加工用途や大きさに応じた適切な処理温度と処理時間で食材を加熱調理することができるという効果を奏する。 Further, according to the present invention, a combination of multi-stage processing temperature and processing time is stored in association with at least one of the type of food, processing application, and size, and the type of food and processing application In addition, by controlling the user to specify at least one of the sizes via the input unit, the multi-stage processing temperature and processing time are set, so the type of food, processing application, and size There exists an effect that a foodstuff can be heat-cooked with the appropriate processing temperature and processing time according to.
 また、本発明によれば、食材の形状および/またはサイズに基づいて、食材内部の温度が処理温度に到達するまでの品温到達時間を算出して処理時間に加算することにより、当該処理時間を補正するので、食材内部の温度が一定温度を保って一定時間、加熱調理されることを担保することができるという効果を奏する。 Further, according to the present invention, the processing time is calculated by calculating the product temperature arrival time until the temperature inside the food reaches the processing temperature based on the shape and / or size of the food, and adding it to the processing time. Therefore, it is possible to ensure that the temperature inside the food is kept at a constant temperature and cooked for a certain period of time.
 また、本発明によれば、下記の式に基づいて品温到達時間を算出するので、より正確に品温到達時間を予測して食材内部の温度が一定温度を保って一定時間、加熱調理されることを担保することができるという効果を奏する。
 S(ΔT,r)=k×r×(ΔT)0.25
 (ここで、ΔTは前段階の処理温度と次段階の処理温度の差であり、rは食材のサイズであり、kは食材の形状によるパラメータであり、S(ΔT,r)は、品温到達時間である。)
In addition, according to the present invention, the product temperature arrival time is calculated based on the following formula, so the product temperature arrival time is predicted more accurately, and the temperature inside the food is kept at a constant temperature and is cooked for a fixed time. There is an effect that it can be guaranteed.
S (ΔT, r) = k × r 2 × (ΔT) 0.25
(Here, ΔT is the difference between the processing temperature at the previous stage and the processing temperature at the next stage, r is the size of the food, k is a parameter depending on the shape of the food, and S (ΔT, r) is the product temperature. It is arrival time.)
 また、本発明によれば、調理庫は、調理空間内部に邪魔板を備え、蒸気流路は、搬送される食材の出入口周囲から邪魔板に向けて蒸気を噴出する第1の噴出口と、調理空間内部のコンベアの下側から邪魔板に向けて蒸気を噴出する第2の噴出口とを備えるので、噴出される高温の生蒸気を低温の邪魔板に接触させて混合することで適温の湿り飽和空気を生成させて、調理庫の開口部から奥へ、また、下部から上方へ向けて穏やかに導入して、調理庫内を均一に保つことができるという効果を奏する。 Further, according to the present invention, the cooking chamber includes a baffle plate inside the cooking space, and the steam flow path is a first spout that spouts steam from the periphery of the food inlet / outlet to the baffle plate, Since it has the 2nd spout which spouts a steam toward the baffle plate from the lower side of the conveyer inside cooking space, it is suitable temperature by contacting the low temperature baffle plate with the hot hot steam spouted Wet saturated air is generated and gently introduced from the opening of the cooking cabinet to the back and from the bottom to the top, so that the inside of the cooking cabinet can be kept uniform.
 また、本発明によれば、コンベアが貫通する複数の調理庫間に、耐熱性および耐水性を有する断熱柔軟素材からなるカーテンを更に備えるので、常圧である調理庫内は完全に密閉されなくとも調理庫間あるいは外部への雰囲気の移動を最小限に留めて調理庫間の熱伝導を抑制しながら、湿り飽和空気で加熱調理される食材を適切に搬送することができるという効果を奏する。 In addition, according to the present invention, since a curtain made of a heat-insulating flexible material having heat resistance and water resistance is further provided between the plurality of cooking chambers through which the conveyor passes, the inside of the cooking chamber which is normal pressure is not completely sealed. In addition, there is an effect that it is possible to appropriately convey the food cooked with wet saturated air while suppressing the heat conduction between the cooking chambers while minimizing the movement of the atmosphere between the cooking chambers or outside.
 また、本発明によれば、各調理庫内において処理温度に対応する処理時間で食材が加熱調理されるように、コンベアの搬送速度を一定に、または、間欠的に制御するので、コンベアを一定速度、または、一定距離進むごとに停止させる間欠操作を行って、設定された処理温度における処理時間、食材が加熱調理されるように制御することができるという効果を奏する。 Further, according to the present invention, the conveyor speed is controlled constant or intermittently so that the food is cooked in the processing time corresponding to the processing temperature in each cooking chamber. There is an effect that it is possible to perform an intermittent operation that is stopped every time a speed or a certain distance is reached, so that the processing time at the set processing temperature and the food can be cooked.
 また、本発明によれば、コンベアは、高い熱伝導性を有する金属素材からなり、且つ、網状または多孔状の構造により通気性を有するので、搬送される食材を、噴出される蒸気により速やかに設定の処理温度に到達させることができるという効果を奏する。 Further, according to the present invention, the conveyor is made of a metal material having high thermal conductivity and has air permeability due to a net-like or porous structure. There is an effect that the set processing temperature can be reached.
 また、本発明によれば、複数の調理庫を貫通するコンベアの食材積載位置より前、または、食材取り出し位置より後に、当該コンベアに対して蒸気または水流を吹き付ける洗浄部を更に備えるので、食材を搬送したコンベアを適切に洗浄することができるという効果を奏する。 In addition, according to the present invention, since the cleaning unit for spraying steam or water flow to the conveyor is further provided before the food material loading position of the conveyor passing through the plurality of cooking chambers or after the food material extraction position, There exists an effect that the conveyed conveyor can be washed appropriately.
 また、本発明によれば、複数の調理庫を貫通するコンベアの食材積載位置より前、または、食材取り出し位置より後に、当該コンベアに対して、冷温水散布、浸漬、または、送風乾燥を行うコンベア処理部を更に備えるので、食材を搬送するコンベアに対し冷温水散布や浸漬や送風乾燥等の処理を行うことができるという効果を奏する。 In addition, according to the present invention, a conveyor that performs cold / hot water spraying, dipping, or blow drying on the conveyor before or after the food loading position of the conveyor that passes through the plurality of cooking chambers. Since a processing part is further provided, there exists an effect that processes, such as cold / hot water spraying, immersion, and ventilation drying, can be performed with respect to the conveyor which conveys foodstuffs.
図1は、本発明が適用される加熱調理装置10の構成の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of a configuration of a cooking device 10 to which the present invention is applied. 図2は、加熱プログラムデータベース106aに格納される、ある食材についての多段階の処理温度と処理時間を規定する加熱プログラムを一例として模式的に示した図である。FIG. 2 is a diagram schematically showing, as an example, a heating program that defines multi-stage processing temperatures and processing times for a certain food stored in the heating program database 106a. 図3は、本実施の形態における加熱調理装置10の制御機器55の基本処理の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of a basic process of the control device 55 of the heating cooking apparatus 10 in the present embodiment. 図4は、図2に示した加熱プログラムにおいて、多段階の処理時間の割合に応じて複数の調理庫12と対応付けることにより、各調理庫12の処理温度と搬送速度Vを設定する処理を模式的に表した図である。FIG. 4 schematically shows a process of setting the processing temperature and the conveyance speed V of each cooking chamber 12 by associating with the plurality of cooking chambers 12 according to the ratio of the multi-stage processing time in the heating program shown in FIG. FIG. 図5は、本実施の形態における処理時間補正処理の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the processing time correction processing in the present embodiment. 図6は、読み出された加熱プログラム(上図)と補正後の加熱プログラム(下図)の一例を模式的に示した図である。FIG. 6 is a diagram schematically illustrating an example of the read heating program (upper diagram) and the corrected heating program (lower diagram). 図7は、板状や円柱状や球状等の各形状の食材について100℃の温度環境における伝熱解析結果を示すグラフ図である。FIG. 7 is a graph showing the results of heat transfer analysis in a temperature environment of 100 ° C. for foods of various shapes such as a plate shape, a columnar shape, and a spherical shape. 図8は、板状や円柱状や球状の各形状の食材について、伝熱解析結果から解析された温度差(℃)の0.25乗と品温到達時間の関係を示すグラフ図である。FIG. 8 is a graph showing the relationship between the temperature difference (° C.) analyzed from the heat transfer analysis results and the product temperature arrival time for plate-like, columnar, and spherical foods. 図9は、伝熱解析結果から解析された食材サイズ(m)の2乗と変化率Aの関係を示すグラフ図である。FIG. 9 is a graph showing the relationship between the square of the food material size (m) analyzed from the heat transfer analysis result and the rate of change A. 図10は、図6下図に示した処理時間補正後の加熱プログラムから変換した加熱パターン(上図)と、調理庫別の処理温度設定方法(下図)を模式的に示した図である。FIG. 10 is a diagram schematically showing a heating pattern (upper diagram) converted from the heating program after the processing time correction shown in the lower diagram of FIG. 6 and a processing temperature setting method (lower diagram) for each cooking chamber. 図11は、本実施の形態における本実施例の加熱調理装置10の連結した複数の調理庫12のうち1つの調理庫12の構成を示す斜視図である。FIG. 11 is a perspective view showing a configuration of one cooking chamber 12 among a plurality of cooking chambers 12 connected to the cooking device 10 of the present embodiment in the present embodiment. 図12は、x軸方向に調理庫12を見た場合の正面図である。FIG. 12 is a front view when the cooking cabinet 12 is viewed in the x-axis direction. 図13は、y軸方向に調理庫12の断面を見た場合の断面図である。FIG. 13 is a cross-sectional view of the cooking chamber 12 viewed in the y-axis direction. 図14は、調理庫12内に設けられた昇降手段90を一例として示す図である。FIG. 14 is a diagram illustrating an example of the lifting means 90 provided in the cooking cabinet 12.
 以下に、本発明にかかる加熱調理装置、加熱調理方法およびプログラムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a cooking device, a cooking method, and a program according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
[加熱調理装置の構成]
 以下、本発明が適用される加熱調理装置の構成について説明し、つづいて加熱調理装置の処理について説明する。図1は、本発明が適用される加熱調理装置10の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。
[Configuration of cooking device]
Hereinafter, the structure of the heating cooking apparatus to which this invention is applied is demonstrated, and the process of a heating cooking apparatus is demonstrated continuously. FIG. 1 is a block diagram showing an example of the configuration of a cooking device 10 to which the present invention is applied, and conceptually shows only the part related to the present invention in the configuration.
 本加熱調理装置10は、概略的に、加熱調理される食材が収容される調理空間が設けられた調理庫12を連結した複数の調理庫12A~Dと、複数の調理庫12A~Dを貫通し各調理庫12内に食材を搬送するコンベア23と、蒸気を発生させる蒸気発生部14と、蒸気発生部14からの蒸気を各調理庫12内に導く蒸気流路44と、調理空間内の温度を検出する温度検出部50と、制御機器55とを備える。また、コンベア23には、食材を搬送することができるよう搬送速度が制御可能なモータ80が設置されている。また、蒸気流路44には、蒸気流路44を流れる蒸気の流量を調整することができるよう制御可能な弁52が設置されている。なお、本実施形態においては、調理庫12を4つ連結させた例について説明するが、本発明はこれに限られず、任意の長さの調理庫を任意の数、連結させてもよい。 The heating cooking apparatus 10 generally includes a plurality of cooking chambers 12A to 12D connected to a cooking chamber 12 provided with a cooking space for storing ingredients to be cooked and a plurality of cooking chambers 12A to 12D. A conveyor 23 that conveys food into each cooking chamber 12, a steam generation unit 14 that generates steam, a steam channel 44 that guides the steam from the steam generation unit 14 into each cooking chamber 12, and a cooking space A temperature detection unit 50 that detects temperature and a control device 55 are provided. Further, the conveyor 23 is provided with a motor 80 capable of controlling the conveyance speed so that the food can be conveyed. The steam flow path 44 is provided with a controllable valve 52 so that the flow rate of the steam flowing through the steam flow path 44 can be adjusted. In addition, in this embodiment, although the example which connected the four cooking chambers 12 is demonstrated, this invention is not restricted to this, Arbitrary numbers of cooking chambers of arbitrary length may be connected.
 図1において、各調理庫12は、加熱調理される食材が収容される調理空間が設けられ、調理空間内に温度検出部50が設置されている。ここで、調理庫12内部には、邪魔板が設置されていてもよく、一例として、蒸気流路44は、蒸気管として構成され、搬送される食材の出入口周囲から邪魔板に向けて蒸気を噴出する第1の噴出口と、調理空間内部のコンベア23の下側から邪魔板に向けて蒸気を噴出する第2の噴出口を備える。また、調理庫12における食材の出入口(例えば、隣り合う調理庫12の間)には、シリコンゴムやテフロン(登録商標)ゴム等の耐熱性および耐水性を有する断熱柔軟素材からなるカーテンが設置されてもよい。なお、カーテンに替えて、エアカーテンが形成されるよう構成してもよい。また、コンベア23は、高い熱伝導性を有する金属素材からなり、且つ、網状または多孔状の構造により通気性を有するものでもよい。また、コンベア23の食材積載位置より前、または、食材取り出し位置より後に、当該コンベア23に対して蒸気または水流を吹き付ける洗浄部を更に備えてもよく、当該コンベア23に対して、冷温水散布、浸漬、または、送風乾燥を行うコンベア処理部を更に備えてもよい。なお、これら制御機器55以外の加熱調理装置10の構成の実施の形態については、後述する実施例において詳細に説明する。 In FIG. 1, each cooking chamber 12 is provided with a cooking space in which ingredients to be cooked are stored, and a temperature detection unit 50 is installed in the cooking space. Here, a baffle plate may be installed inside the cooking cabinet 12, and as an example, the steam flow path 44 is configured as a steam pipe, and steam is directed from the periphery of the entrance / exit of the conveyed food toward the baffle plate. There are provided a first jet port for jetting and a second jet port for jetting steam from the lower side of the conveyor 23 inside the cooking space toward the baffle plate. In addition, a curtain made of a heat-insulating and flexible material having heat resistance and water resistance, such as silicon rubber and Teflon (registered trademark) rubber, is installed at an entrance of the food in the cooking cabinet 12 (for example, between adjacent cooking cabinets 12). May be. Note that an air curtain may be formed instead of the curtain. Further, the conveyor 23 may be made of a metal material having high thermal conductivity, and may have air permeability due to a net-like or porous structure. Further, it may further include a cleaning unit that sprays steam or water flow on the conveyor 23 before the food material loading position of the conveyor 23 or after the food material take-out position. You may further provide the conveyor process part which performs immersion or ventilation drying. In addition, embodiment of the structure of the heat cooking apparatus 10 other than these control apparatuses 55 is demonstrated in detail in the Example mentioned later.
 図1において、制御機器55は、概略的に、記憶部106と制御部102と入出力インターフェース部108を備えるPLC(programmable logic controller)等の機器である。ここで、制御部102は、制御機器55の全体を統括的に制御するマイクロプロセッサやCPU等である。また、入出力インターフェース部108は、温度検出部50や入力部112や表示部114やモータ80や弁52に接続されるインターフェースである。また、記憶部106は、各種のデータベースやテーブルなどを格納する装置である。これら制御機器55の各部は任意の通信路を介して通信可能に接続されている。 In FIG. 1, the control device 55 is generally a device such as a programmable logic controller (PLC) that includes the storage unit 106, the control unit 102, and the input / output interface unit 108. Here, the control unit 102 is a microprocessor, a CPU, or the like that comprehensively controls the entire control device 55. The input / output interface unit 108 is an interface connected to the temperature detection unit 50, the input unit 112, the display unit 114, the motor 80, and the valve 52. The storage unit 106 is a device that stores various databases and tables. Each unit of the control device 55 is connected to be communicable via an arbitrary communication path.
 記憶部106に格納される各種のデータベースやテーブル(加熱プログラムデータベース106aなど)は、固定ディスク装置等のストレージ手段である。例えば、記憶部106は、各種処理に用いる各種のプログラムやテーブルやファイルやデータベース等を格納する。 Various databases and tables (such as the heating program database 106a) stored in the storage unit 106 are storage means such as a fixed disk device. For example, the storage unit 106 stores various programs, tables, files, databases, and the like used for various processes.
 これら記憶部106の各構成要素のうち、加熱プログラムデータベース106aは、食材毎に多段階で加熱調理するための処理温度および処理時間を対応付けて規定した加熱プログラムを記憶する加熱プログラム記憶手段である。ここで、加熱プログラムデータベース106aは、食材の種類、加工用途、および、大きさのうちの少なくとも一つに対応付けて、多段階の処理温度および処理時間の組合せを記憶してもよい。図2は、加熱プログラムデータベース106aに格納される、ある食材についての多段階の処理温度と処理時間を規定する加熱プログラムを一例として模式的に示した図である。図2に示すように、加熱プログラムデータベース106aに記憶される加熱プログラムは、食材の条件に応じて最適となる、処理温度(T1、T2、およびT3)と、処理時間(M1、M2、およびM3)とを対応付けて規定している。 Among these components of the storage unit 106, the heating program database 106a is a heating program storage unit that stores a heating program that associates and defines processing temperatures and processing times for cooking in multiple stages for each ingredient. . Here, the heating program database 106a may store combinations of multi-stage processing temperatures and processing times in association with at least one of the kind of food, processing application, and size. FIG. 2 is a diagram schematically showing, as an example, a heating program that defines multi-stage processing temperatures and processing times for a certain food stored in the heating program database 106a. As shown in FIG. 2, the heating program stored in the heating program database 106a is optimized according to the conditions of the ingredients, the processing temperature (T1, T2, and T3) and the processing time (M1, M2, and M3). ) In association with each other.
 また、図2において、入出力制御インターフェース108は、温度検出部50や入力部112や表示部114やモータ80や弁52等の制御を行う。ここで、表示部114としては、モニタ(家庭用テレビを含む)の他、スピーカを組合せることができる。また、入力部112としては、キーボード、マウス、およびマイク等を用いることができる。ここで、温度検出部50は、調理庫内の温度を検出する機能のほか、湿度を検出する機能を備えてもよい。 In FIG. 2, the input / output control interface 108 controls the temperature detection unit 50, the input unit 112, the display unit 114, the motor 80, the valve 52, and the like. Here, as the display unit 114, in addition to a monitor (including a home television), a speaker can be combined. As the input unit 112, a keyboard, a mouse, a microphone, and the like can be used. Here, the temperature detection part 50 may be provided with the function to detect humidity other than the function to detect the temperature in a cooking chamber.
 また、図1において、制御部102は、OS(Operating System)等の制御プログラムや、各種の処理手順等を規定したプログラム、および、所要データを格納するための内部メモリを有する。そして、制御部102は、これらのプログラム等により、種々の処理を実行するための情報処理を行う。制御部102は、機能概念的に、調理庫別温度設定部102a、流量調整部102e、および、搬送速度制御部102fを備える。 Further, in FIG. 1, the control unit 102 has a control program such as an OS (Operating System), a program that defines various processing procedures, and an internal memory for storing necessary data. And the control part 102 performs the information processing for performing various processes by these programs. The control unit 102 includes a cooking chamber-specific temperature setting unit 102a, a flow rate adjusting unit 102e, and a conveyance speed control unit 102f in terms of functional concept.
 このうち、調理庫別温度設定部102aは、多段階の処理時間の割合に応じて複数の調理庫12と対応付けることにより、各調理庫12に処理温度を設定する調理庫別温度設定手段である。例えば、調理庫別温度設定部102aは、加熱プログラムデータベース106aから加熱調理対象となる食材の加熱プログラム(一例として図2参照)を読み出し、当該加熱プログラムに規定された多段階の処理時間(M1,M2,M3)の割合に応じて複数の調理庫12A~Dの配列と対応させて、各調理庫に処理温度(T1、T2、T3)を設定する。ここで、調理庫別温度設定部102aは、図1に示すように、処理温度時間設定部102b、処理時間補正部102c、および、搬送速度設定部102dを備えてもよい。 Among these, the temperature setting part 102a classified by cooking chamber is the temperature setting means according to cooking chamber which sets processing temperature to each cooking cabinet 12 by matching with the several cooking cabinet 12 according to the ratio of the multi-step processing time. . For example, the temperature setting unit 102a for each cooking chamber reads a heating program (see FIG. 2 as an example) of the food to be cooked from the heating program database 106a, and multi-stage processing time (M1, M1) defined in the heating program. A processing temperature (T1, T2, T3) is set in each cooking chamber corresponding to the arrangement of the plurality of cooking cabinets 12A to 12D according to the ratio of M2, M3). Here, the cooking chamber-specific temperature setting unit 102a may include a processing temperature time setting unit 102b, a processing time correction unit 102c, and a conveyance speed setting unit 102d, as shown in FIG.
 処理温度時間設定部102bは、入力部112を介して利用者に加熱調理対象の食材に関する項目を入力させることにより、当該食材についての処理時間および処理温度を設定する処理温度時間設定手段である。例えば、処理温度時間設定部102bは、食材の種類や、加工用途や、大きさ等のうちの少なくとも一つを利用者に入力部112を介して指定させるよう制御することにより、当該指定された食材の種類や加工用途や大きさ等に対応する加熱プログラムを加熱プログラムデータベース106aから読み出し、当該食材についての多段階の処理温度および処理時間を設定する。なお、処理温度時間設定部102bは、食材の種類や、加工用途や、大きさ等の選択肢を表示部114に表示させ、利用者に入力部112を介して各項目を選択させるよう制御することにより、当該指定された食材の種類や加工用途や大きさ等に対応する加熱プログラムを加熱プログラムデータベース106aから読み出し、当該食材についての多段階の処理温度および処理時間を設定してもよい。 The processing temperature time setting unit 102b is processing temperature time setting means for setting a processing time and a processing temperature for the food by causing the user to input items regarding the food to be cooked via the input unit 112. For example, the processing temperature time setting unit 102b performs the control by causing the user to specify at least one of the type, processing application, size, and the like of the food via the input unit 112. A heating program corresponding to the type, processing application, size, etc. of the food is read from the heating program database 106a, and multi-stage processing temperatures and processing times for the food are set. The processing temperature time setting unit 102b controls the display unit 114 to display options such as the type of food, processing application, and size, and allows the user to select each item via the input unit 112. Thus, a heating program corresponding to the type, processing application, size, etc. of the designated food material may be read from the heating program database 106a, and the multi-stage processing temperature and processing time for the food material may be set.
 また、処理時間補正部102cは、食材の形状やサイズ等に基づいて、当該食材内部の温度が処理温度に到達するまでの品温到達時間を算出して処理時間に加算することにより、当該処理時間を補正する処理時間補正手段である。ここで、処理時間補正部102cは、食材の種類、サイズ、形状等に関するパラメータから構成される数式に基づいて、品温到達時間を算出してもよい。例えば、処理時間補正部102cは、下記の式(近似式)に基づいて、品温到達時間を算出してもよい。
 S(ΔT,r)=k×r×(ΔT)0.25
 (ここで、S(ΔT,r)は、品温到達時間であり、ΔTは前段階の処理温度と次段階の処理温度の差であり、rは食材のサイズである。kは食材の形状によるパラメータであり、例えば、板状の形状の場合、k=7.44であり、円柱の形状の場合、k=3.33であり、球状の形状の場合、k=2.04である。)
Further, the processing time correction unit 102c calculates the product temperature arrival time until the temperature inside the food reaches the processing temperature based on the shape and size of the food, and adds the processing temperature to the processing time. This is processing time correction means for correcting the time. Here, the processing time correction unit 102c may calculate the product temperature arrival time based on a mathematical expression configured from parameters related to the type, size, shape, and the like of the foodstuff. For example, the processing time correction unit 102c may calculate the product temperature arrival time based on the following equation (approximate equation).
S (ΔT, r) = k × r 2 × (ΔT) 0.25
(Here, S (ΔT, r) is the product temperature arrival time, ΔT is the difference between the processing temperature at the previous stage and the processing temperature at the next stage, r is the size of the food, and k is the shape of the food. For example, k = 7.44 in the case of a plate shape, k = 3.33 in the case of a cylindrical shape, and k = 2.04 in the case of a spherical shape. )
 また、処理時間補正部102cは、更に伝熱特性を考慮した下記の式(近似式)に基づいて、品温到達時間を算出してもよい。
 S(ΔT,r)=h×k×r×(ΔT)0.25
 (ここで、S(ΔT,r)は、品温到達時間であり、ΔTは前段階の処理温度と次段階の処理温度の差であり、rは食材のサイズである。kは食材の形状によるパラメータであり、例えば、板状の形状の場合、k=7.44であり、円柱の形状の場合、k=3.33であり、球状の形状の場合、k=2.04である。また、hは食材の伝熱特性に関わる係数であり、通常は1であるが、熱特性に顕著な差がある食材の場合には0.2から2の範囲で指定される。)
Further, the processing time correction unit 102c may calculate the product temperature arrival time based on the following equation (approximate equation) that further considers heat transfer characteristics.
S (ΔT, r) = h × k × r 2 × (ΔT) 0.25
(Here, S (ΔT, r) is the product temperature arrival time, ΔT is the difference between the processing temperature at the previous stage and the processing temperature at the next stage, r is the size of the food, and k is the shape of the food. For example, k = 7.44 in the case of a plate shape, k = 3.33 in the case of a cylindrical shape, and k = 2.04 in the case of a spherical shape. Further, h is a coefficient related to the heat transfer characteristics of the food, and is usually 1, but is specified in the range of 0.2 to 2 in the case of food having a significant difference in heat characteristics.)
 なお、品温到達時間を算出するための数式は、上述の近似式に限られず、処理時間補正部102cは、食材の種類、サイズ、形状等に関するパラメータから品温到達時間を算出し得る他の形態の近似式を用いて、品温到達時間を算出してもよい。 Note that the mathematical formula for calculating the product temperature arrival time is not limited to the above approximate expression, and the processing time correction unit 102c is capable of calculating the product temperature arrival time from parameters related to the type, size, shape, etc. of the foodstuff. The product temperature arrival time may be calculated using an approximate expression of the form.
 また、搬送速度設定部102dは、コンベアの搬送速度を設定する搬送速度設定手段である。例えば、搬送速度設定部102dは、調理庫12Aから調理庫12Dまでのコンベアの長さである総調理庫長さLtotalから、多段階の処理時間の総和(図2の場合、M1+M2+M3)を除することにより搬送速度を算出して設定してもよい。 The conveyance speed setting unit 102d is a conveyance speed setting unit that sets the conveyance speed of the conveyor. For example, the conveyance speed setting unit 102d removes the sum of multi-stage processing times (M1 + M2 + M3 in the case of FIG. 2) from the total cooking cabinet length Ltotal that is the length of the conveyor from the cooking cabinet 12A to the cooking cabinet 12D. By doing so, the conveyance speed may be calculated and set.
 また、図1において、流量調整部102eは、各調理庫12内において、温度検出部50により検出される温度が調理庫別温度設定部102aにより設定された処理温度に一定となるように、弁52を制御して蒸気流路44を流れる蒸気の流量を調整する流量調整手段である。例えば、流量調整部102eは、調理庫12Aについて、調理庫別温度設定部102aにより処理温度T1と設定された場合、温度検出部50Aにより検出される温度がT1一定となるように、弁52Aの開閉制御を行う。すなわち、流量調整部102eは、温度検出部50Aによる検出温度がT1より低い場合は弁52Aを開き、T1より高い場合は弁52Aを閉じる制御を行う。 Further, in FIG. 1, the flow rate adjusting unit 102e controls the valve so that the temperature detected by the temperature detecting unit 50 becomes constant at the processing temperature set by the cooking chamber specific temperature setting unit 102a. 52 is a flow rate adjusting means for adjusting the flow rate of the steam flowing through the steam flow path 44 by controlling 52. For example, when the processing temperature T1 is set by the cooking chamber temperature setting unit 102a for the cooking chamber 12A, the flow rate adjustment unit 102e sets the valve 52A so that the temperature detected by the temperature detection unit 50A is constant at T1. Open / close control is performed. That is, the flow rate adjustment unit 102e performs control to open the valve 52A when the temperature detected by the temperature detection unit 50A is lower than T1, and close the valve 52A when higher than T1.
 また、搬送速度制御部102fは、各調理庫12内において、調理庫別温度設定部102aにより設定された処理温度に対応する処理時間で食材が加熱調理されるように、コンベア23の搬送速度を制御する搬送速度制御手段である。例えば、搬送速度制御部102fは、搬送速度設定部102dにより設定された搬送速度で、コンベア23が移動するようモータ80を制御する。ここで、搬送速度制御部102fは、コンベアの搬送速度を、一定速度で制御してもよく、また、一定距離進むごとに停止させる間欠操作を行ってもよい。 Moreover, the conveyance speed control part 102f sets the conveyance speed of the conveyor 23 so that a foodstuff may be cooked in the processing time corresponding to the processing temperature set by the temperature setting part 102a for each cooking chamber in each cooking chamber 12. It is the conveyance speed control means to control. For example, the conveyance speed control unit 102f controls the motor 80 so that the conveyor 23 moves at the conveyance speed set by the conveyance speed setting unit 102d. Here, the conveyance speed control unit 102f may control the conveyance speed of the conveyor at a constant speed, or may perform an intermittent operation that stops every time the vehicle moves a certain distance.
 以上で、本実施の形態における加熱調理装置10の構成の説明を終える。 Above, description of the structure of the heat cooking apparatus 10 in this Embodiment is finished.
[加熱調理装置10の処理]
 次に、このように構成された本実施の形態における加熱調理装置10の処理の一例について、以下に図3~図6を参照して詳細に説明する。
[Processing of the cooking device 10]
Next, an example of the processing of the cooking device 10 according to the present embodiment configured as described above will be described in detail with reference to FIGS.
[基本処理]
 まず、本実施の形態における加熱調理装置10の制御機器55の基本処理について図3および図4を参照して説明する。図3は、本実施の形態における加熱調理装置10の制御機器55の基本処理の一例を示すフローチャートである。
[Basic processing]
First, basic processing of the control device 55 of the heating cooking apparatus 10 in the present embodiment will be described with reference to FIGS. 3 and 4. FIG. 3 is a flowchart showing an example of a basic process of the control device 55 of the heating cooking apparatus 10 in the present embodiment.
 まず、調理庫別温度設定部102aは、加熱プログラムデータベース106aから加熱調理対象となる食材の加熱プログラムを読み出す(ステップSA-1)。例えば、調理庫別温度設定部102aは、処理温度時間設定部102bの処理により、対象食材に関する項目(種類や加工用途や大きさ・サイズ、形状等)を入力部112を介して利用者に入力させることにより、対応する加熱プログラムを加熱プログラムデータベース106aから読み出す。 First, the temperature setting unit 102a for each cooking chamber reads the heating program for the food to be cooked from the heating program database 106a (step SA-1). For example, the temperature setting unit 102a for each cooking chamber inputs items (type, processing application, size / size, shape, etc.) regarding the target food to the user via the input unit 112 by the processing of the processing temperature time setting unit 102b. By doing so, the corresponding heating program is read from the heating program database 106a.
 そして、調理庫別温度設定部102aは、読み出した加熱プログラムに規定された多段階の処理時間の割合に応じて複数の調理庫12と対応付けることにより、各調理庫12に処理温度を設定する(ステップSA-2)。ここで、図4は、図2に示した加熱プログラムにおいて、多段階の処理時間の割合に応じて複数の調理庫12と対応付けることにより、各調理庫12の処理温度と搬送速度Vを設定する処理を模式的に表した図である。 And the temperature setting part 102a classified by cooking chamber sets processing temperature to each cooking chamber 12 by matching with the several cooking chambers 12 according to the ratio of the multistep processing time prescribed | regulated to the read heating program ( Step SA-2). Here, FIG. 4 sets the processing temperature and the conveyance speed V of each cooking cabinet 12 by matching with the several cooking cabinets 12 according to the ratio of the multi-stage processing time in the heating program shown in FIG. It is a figure showing processing typically.
 図4に示すように、加熱プログラムにおいて、処理温度T1,T2,T3に対応する処理時間M1,M2,M3が、M1:M2:M3=1:2:1の割合で規定されている場合、本実施の形態においては、同じ長さの4つの調理庫A~Dが連結して配置されているので、調理庫別温度設定部102aは、各処理時間の割合に応じて、この4つの調理庫A~Dに対応付けを行い、調理庫Aには処理温度T1を設定し、調理庫Bには処理温度T2を設定し、調理庫Cには処理温度T2を設定し、調理庫Dには処理温度T3を設定する。そして、調理庫別温度設定部102aは、搬送速度設定部102dの処理により、調理庫12Aから調理庫12Dまでのコンベアの長さである総調理庫長さLtotal(この場合、1つの調理庫の長さの4倍)から、多段階の処理時間の総和(St=M1+M2+M3)を除することにより搬送速度(V=Ltotal/St)を算出して設定する。なお、調理庫別温度設定部102aは、搬送速度制御部102fにより一定距離進むごとにコンベアを停止させる間欠操作を行う場合、1つの調理庫12当りの処理時間、すなわち、一定距離(1つの調理庫の長さ)進むごとに停止させる停止時間(この場合、V×Ltotal/4=M1=M2/2=M3)を算出してもよい。このように、調理庫別温度設定部102aは、読み出した加熱プログラムに規定された多段階の処理時間の割合と複数の調理庫12の配列との関係に応じて、各調理庫12に対して処理温度や処理時間等の割り当てを行う。 As shown in FIG. 4, in the heating program, when the processing times M1, M2, and M3 corresponding to the processing temperatures T1, T2, and T3 are defined at a ratio of M1: M2: M3 = 1: 2: 1, In the present embodiment, since four cooking chambers A to D having the same length are connected and arranged, the cooking chamber-specific temperature setting unit 102a performs the four cooking according to the ratio of each processing time. The processing temperature T1 is set in the cooking chamber A, the processing temperature T2 is set in the cooking chamber B, the processing temperature T2 is set in the cooking chamber C, and the cooking chamber D is set in the cooking chamber D. Sets the processing temperature T3. And the temperature setting part 102a classified by cooking chamber is the total cooking chamber length Ltotal (in this case, one cooking chamber) which is the length of the conveyor from cooking chamber 12A to cooking chamber 12D by the process of the conveyance speed setting unit 102d. The transport speed (V = L total / St) is calculated and set by dividing the sum of the multi-stage processing times (St = M1 + M2 + M3) from (4 times the length of). When the temperature setting unit 102a for each cooking chamber performs an intermittent operation to stop the conveyor every time the conveyance speed control unit 102f advances a certain distance, the processing time per cooking chamber 12, that is, a certain distance (one cooking You may calculate the stop time (in this case, V * Ltotal / 4 = M1 = M2 / 2 = M3) to stop whenever it advances. As described above, the temperature setting unit 102a for each cooking chamber is used for each cooking chamber 12 according to the relationship between the ratio of the multi-stage processing time defined in the read heating program and the arrangement of the plurality of cooking chambers 12. Assign the processing temperature and processing time.
 再び図3に戻り、流量調整部102eは、各調理庫12内において、温度検出部50により検出される温度が調理庫別温度設定部102aにより設定された処理温度に一定となるように、弁52を制御して蒸気流路44を流れる蒸気の流量を調整する処理を開始する(ステップSA-3)。例えば、流量調整部102eは、調理庫12Aについて、調理庫別温度設定部102aにより処理温度T1と設定された場合、温度検出部50Aにより検出される温度がT1一定となるように、弁52Aの開閉制御を行う。すなわち、流量調整部102eは、温度検出部50Aによる検出温度がT1より低い場合は弁52Aを開き、T1より高い場合は弁52Aを閉じる制御を行う。 Returning to FIG. 3 again, the flow rate adjusting unit 102e controls the valve so that the temperature detected by the temperature detecting unit 50 is constant at the processing temperature set by the cooking chamber specific temperature setting unit 102a. 52 is controlled to start the process of adjusting the flow rate of the steam flowing through the steam flow path 44 (step SA-3). For example, when the processing temperature T1 is set by the cooking chamber temperature setting unit 102a for the cooking chamber 12A, the flow rate adjustment unit 102e sets the valve 52A so that the temperature detected by the temperature detection unit 50A is constant at T1. Open / close control is performed. That is, the flow rate adjustment unit 102e performs control to open the valve 52A when the temperature detected by the temperature detection unit 50A is lower than T1, and close the valve 52A when higher than T1.
 そして、搬送速度制御部102fは、各調理庫12内において、調理庫別温度設定部102aにより設定された処理温度に対応する処理時間で食材が加熱調理されるように、コンベア23の搬送速度を制御する(ステップSA-4)。例えば、搬送速度制御部102fは、搬送速度設定部102dにより設定された一定の搬送速度で、コンベア23が移動するようモータ80を制御する。ここで、搬送速度制御部102fは、一定距離進むごとに停止させる間欠操作を行う場合、一定距離(1つの調理庫12の長さ)進むごとに、調理庫別温度設定部102aにより設定された調理庫12当りの処理時間の間、コンベアを停止させる制御を行ってもよい。なお、搬送速度制御部102fは、間欠操作の動作開始及び停止の際には、急激な加速度を避けるよう、例えば、搬送速度を正弦関数的に増減させてもよい。 And the conveyance speed control part 102f sets the conveyance speed of the conveyor 23 so that a foodstuff may be heat-cooked in the processing time corresponding to the process temperature set by the temperature setting part 102a according to cooking chamber in each cooking chamber 12. Control (step SA-4). For example, the conveyance speed control unit 102f controls the motor 80 so that the conveyor 23 moves at a constant conveyance speed set by the conveyance speed setting unit 102d. Here, the conveyance speed control unit 102f is set by the cooking chamber-specific temperature setting unit 102a every time a certain distance (the length of one cooking chamber 12) proceeds when performing an intermittent operation to stop each time the certain traveling distance. You may perform control which stops a conveyor during the processing time per cooking chamber 12. FIG. The conveyance speed control unit 102f may increase or decrease the conveyance speed in a sine function, for example, so as to avoid a rapid acceleration when starting and stopping the intermittent operation.
 以上が、本実施の形態における加熱調理装置10の制御機器55の基本処理の一例である。 The above is an example of the basic processing of the control device 55 of the cooking device 10 in the present embodiment.
[処理時間補正処理]
 つづいて、上述した基本処理のステップSA-2において処理時間補正を行う場合について以下に図5~図10を参照して説明する。すなわち、上述した基本処理においては、加熱プログラムの処理時間を、そのまま調理庫別の処理温度の設定に用いていたが、加熱プログラムの処理時間において、食材が調理庫内の処理温度に到達するまでの時間(品温到達時間)が加味されていない場合がある。本処理時間補正処理においては、この品温到達時間を算出して処理時間を補正することによって、食材内部が処理温度に到達した後、補正前の処理時間の間、加熱処理されることを担保することができる。ここで、図5は、本実施の形態における処理時間補正処理の一例を示すフローチャートである。
[Processing time correction]
Next, the case where the processing time correction is performed in step SA-2 of the basic processing described above will be described below with reference to FIGS. That is, in the above-described basic processing, the processing time of the heating program is used as it is for setting the processing temperature for each cooking chamber, but until the food reaches the processing temperature in the cooking chamber during the processing time of the heating program. May not be taken into account (time to reach product temperature). In this processing time correction process, by calculating the product temperature arrival time and correcting the processing time, it is ensured that after the food material reaches the processing temperature, the food is heated during the processing time before correction. can do. Here, FIG. 5 is a flowchart showing an example of the processing time correction processing in the present embodiment.
 まず、調理庫別温度設定部102aは、上述したステップSA-1と同様に、加熱プログラムデータベース106aから加熱調理対象となる食材の加熱プログラムを読み出す(ステップSA-1)。ここで、図6は、読み出された加熱プログラム(上図)と補正後の加熱プログラム(下図)の一例を模式的に示した図である。図6上図に示すように、例えば、読み出された加熱プログラムには、加熱調理対象の食材についての多段階の処理温度(T1,T2,T3)と処理時間(M1´、M2´、M3´)が対応付けて規定される。 First, the temperature setting unit 102a for each cooking chamber reads the heating program for the ingredients to be cooked from the heating program database 106a, similarly to the above-described step SA-1 (step SA-1). Here, FIG. 6 is a diagram schematically showing an example of the read heating program (upper diagram) and the corrected heating program (lower diagram). As shown in the upper diagram of FIG. 6, for example, the read out heating program includes multi-stage processing temperatures (T1, T2, T3) and processing times (M1 ′, M2 ′, M3) for the ingredients to be cooked. ′) Is defined in association with it.
 再び図5に戻り、調理庫別温度設定部102aは、加熱調理対象となる食材のサイズや形状等を入力部112を介して選択させる制御を行う(ステップSA-21)。 Returning to FIG. 5 again, the temperature setting unit 102a for each cooking chamber performs control to select the size, shape, and the like of the ingredients to be cooked via the input unit 112 (step SA-21).
 そして、調理庫別温度設定部102aは、処理時間補正部102cの処理により、選択された食材の形状やサイズ等に基づいて、当該食材内部の温度が処理温度に到達するまでの品温到達時間を算出する(ステップSA-22)。ここで、図7は、板状や円柱状や球状等の各形状の食材について100℃の温度環境における伝熱解析結果を示すグラフ図である。また、図8は、板状や円柱状や球状の各形状の食材について、伝熱解析結果から解析された温度差(℃)の0.25乗と品温到達時間の関係を示すグラフ図であり、図9は、伝熱解析結果から解析された食材サイズ(m)の2乗と変化率Aの関係を示すグラフ図である。 And the temperature setting part 102a classified by cooking chamber is the product temperature arrival time until the temperature inside the said foodstuff reaches processing temperature based on the shape, size, etc. of the selected foodstuff by the process of the processing time correction | amendment part 102c. Is calculated (step SA-22). Here, FIG. 7 is a graph showing a heat transfer analysis result in a temperature environment of 100 ° C. for each shape of food material such as a plate shape, a columnar shape, and a spherical shape. Moreover, FIG. 8 is a graph showing the relationship between the temperature difference (° C.) raised to the 0.25th power and the product temperature arrival time analyzed from the heat transfer analysis results for plate-like, columnar and spherical foodstuffs. FIG. 9 is a graph showing the relationship between the square of the food material size (m) analyzed from the heat transfer analysis result and the rate of change A.
 図7に示すような伝熱解析結果から、板状や円柱状や球状の各形状の食材について、様々なサイズの食材の品温到達時間は、図8に示すように、温度差(℃)の0.25乗に比例することが確認された。また、図9に示すように、この比例定数である変化率Aは、板状や円柱状や球状等の形状毎に異なり、この変化率Aは、食材サイズ(m)の2乗に比例することが確認された。そして、この比例定数kは、板状の場合7.44であり、円柱の場合3.33であり、球状の場合2.04であった。 From the results of the heat transfer analysis as shown in FIG. 7, the product temperature arrival time of the foods of various sizes with respect to the plate-like, columnar, and spherical foods is the temperature difference (° C.) as shown in FIG. 8. It was confirmed that it was proportional to the power of 0.25. Further, as shown in FIG. 9, the rate of change A, which is a proportional constant, differs for each shape such as a plate shape, a columnar shape, or a spherical shape, and the rate of change A is proportional to the square of the food material size (m). It was confirmed. The proportionality constant k was 7.44 in the case of a plate, 3.33 in the case of a cylinder, and 2.04 in the case of a sphere.
 以上のことから、品温到達時間を算出するための以下の式(近似式)が導出された。
 S(ΔT,r)=k×r×(ΔT)0.25
 (ここで、S(ΔT,r)は、品温到達時間であり、ΔTは前段階の処理温度と次段階の処理温度の差であり、rは食材のサイズである。kは食材の形状によるパラメータであり、板状の形状の場合、k=7.44であり、円柱の形状の場合、k=3.33であり、球状の形状の場合、k=2.04である。)
From the above, the following formula (approximate formula) for calculating the product temperature arrival time was derived.
S (ΔT, r) = k × r 2 × (ΔT) 0.25
(Here, S (ΔT, r) is the product temperature arrival time, ΔT is the difference between the processing temperature at the previous stage and the processing temperature at the next stage, r is the size of the food, and k is the shape of the food. (K = 7.44 in the case of a plate shape, k = 3.33 in the case of a cylindrical shape, and k = 2.04 in the case of a spherical shape.)
 更に、上記の式において、伝熱特性を考慮に入れた下記の式(近似式)が導出された。
 S(ΔT,r)=h×k×r×(ΔT)0.25
 (ここで、S(ΔT,r)は、品温到達時間であり、ΔTは前段階の処理温度と次段階の処理温度の差であり、rは食材のサイズである。kは食材の形状によるパラメータであり、例えば、板状の形状の場合、k=7.44であり、円柱の形状の場合、k=3.33であり、球状の形状の場合、k=2.04である。また、hは食材の伝熱特性に関わる係数であり、通常は1であるが、熱特性に顕著な差がある食材の場合には0.2から2の範囲で指定される数である。例えば、hは、対象とする食材の熱伝導度に対する、伝熱解析に用いた食材の熱伝導度の比により求めることができる。)
Further, in the above formula, the following formula (approximate formula) taking into consideration heat transfer characteristics was derived.
S (ΔT, r) = h × k × r 2 × (ΔT) 0.25
(Here, S (ΔT, r) is the product temperature arrival time, ΔT is the difference between the processing temperature at the previous stage and the processing temperature at the next stage, r is the size of the food, and k is the shape of the food. For example, k = 7.44 in the case of a plate shape, k = 3.33 in the case of a cylindrical shape, and k = 2.04 in the case of a spherical shape. In addition, h is a coefficient related to the heat transfer characteristics of the food, and is usually 1. However, in the case of a food having a significant difference in the heat characteristics, it is a number specified in the range of 0.2 to 2. For example, h can be obtained from the ratio of the thermal conductivity of the food used in the heat transfer analysis to the thermal conductivity of the target food.)
 このように、調理庫別温度設定部102aの処理時間補正部102cは、一例として上述した式等を用いて、選択された食材の形状やサイズ等に基づいて品温到達時間を算出する(ステップSA-22)。なお、品温到達時間を算出するための式は、上述した近似式に限られず、処理時間補正部102cは、食材の種類、サイズ、形状等に関するパラメータから品温到達時間を算出し得る他の形態の近似式を用いて、品温到達時間を算出してもよく、また、近似式を用いることなく伝熱解析結果のグラフから直接、品温到達時間を導出してもよいものである。ここで、他の形態の近似式としては、例えば、伝熱解析結果を、対数関数(log関数など)や三角関数(sin関数など)等により近似した式を用いてもよい。 As described above, the processing time correction unit 102c of the temperature setting unit 102a for each cooking chamber calculates the product temperature arrival time based on the shape, size, etc. of the selected food, using the above-described formula as an example (step) SA-22). In addition, the formula for calculating the product temperature arrival time is not limited to the above-described approximate expression, and the processing time correction unit 102c is capable of calculating the product temperature arrival time from parameters related to the type, size, shape, and the like of the foodstuff. The product temperature arrival time may be calculated using the approximate expression of the form, and the product temperature arrival time may be derived directly from the graph of the heat transfer analysis result without using the approximate expression. Here, as an approximate expression of another form, for example, an expression obtained by approximating a heat transfer analysis result by a logarithmic function (log function or the like), a trigonometric function (sin function or the like), or the like may be used.
 再び図5に戻り、調理庫別温度設定部102aは、処理時間補正部102cの処理により、算出した品温到達時間を加熱プログラムの処理時間に加算することにより、処理時間を補正する(ステップSA-23)。すなわち、図5に示すように、処理時間補正部102cは、読み出した加熱プログラムの多段階の処理温度M1´,M2´,M3´のそれぞれに、算出した品温到達時間S(ΔT,r),S(ΔT,r),S(ΔT,r)を加算することにより、補正後の処理時間M1,M2,M3を導出する。なお、ΔT=T1-T0(室温)、ΔT=T2-T1、ΔT=T3-T2であり、M1=S(ΔT,r)+M1´、M2=S(ΔT,r)+M2´、M3=S(ΔT,r)+M3´となる。 Returning to FIG. 5 again, the temperature setting unit 102a for each cooking chamber corrects the processing time by adding the calculated product temperature arrival time to the processing time of the heating program by the processing of the processing time correction unit 102c (step SA). -23). That is, as illustrated in FIG. 5, the processing time correction unit 102 c calculates the calculated product temperature arrival time S (ΔT 1 , r for each of the multi-stage processing temperatures M1 ′, M2 ′, and M3 ′ of the read heating program. ), S (ΔT 2 , r), S (ΔT 3 , r) are added to derive the corrected processing times M1, M2, and M3. Note that ΔT 1 = T1−T0 (room temperature), ΔT 2 = T2−T1, ΔT 3 = T3−T2, M1 = S (ΔT 1 , r) + M1 ′, and M2 = S (ΔT 2 , r) + M2. ', M3 = S (ΔT 3 , r) + M3 ′.
 以上のように、制御機器55は、品温到達時間に応じて適切に補正した加熱プログラムを用いて、その後の処理を行う。なお、その後の処理においては、上述した基本処理のステップSA-2と同様の処理を行ってもよいが、以下の例では、処理時間から搬送時間を先に算出して、処理温度とコンベア位置を対応付けた加熱パターンに変換し、調理庫別の処理温度を設定する処理について説明する。 As described above, the control device 55 performs the subsequent processing using the heating program appropriately corrected according to the product temperature arrival time. In the subsequent processing, the same processing as step SA-2 of the basic processing described above may be performed. However, in the following example, the transport time is calculated from the processing time, and the processing temperature and the conveyor position are calculated. The process which converts into the heating pattern which matched these, and sets the process temperature for every cooking chamber is demonstrated.
 すなわち、調理庫別温度設定部102aは、処理時間を積算して、積算処理時間に変換する(ステップSA-24)。例えば、調理庫別温度設定部102aは、加熱プログラムの各段の集合(処理温度T,処理時間M)=[(T1,M1),(T2,M2),・・・,(Tn,Mn)]から、各段の集合(温度T,積算処理時間S)=[(T1,M1),(T2,(M1+M2)),・・・,(Tn,ΣMn)]に変換する。 That is, the cooking chamber specific temperature setting unit 102a integrates the processing time and converts it into an integrated processing time (step SA-24). For example, the temperature setting unit 102a for each cooking chamber has a set of processing steps (processing temperature T, processing time M) = [(T1, M1), (T2, M2),..., (Tn, Mn). ] To the set of each stage (temperature T, integrated processing time S) = [(T1, M1), (T2, (M1 + M2)),..., (Tn, ΣMn)].
 そして、調理庫別温度設定部102aは、コンベアの搬送速度Vを算出する(ステップSA-25)。すなわち、調理庫別温度設定部102aは、総調理庫長さLtotalを総処理時間Mt(=ΣMn)で除することにより搬送速度V(=Ltotal/Mt)を算出する。 Then, the cooking chamber temperature setting unit 102a calculates the conveying speed V of the conveyor (step SA-25). That is, the cooking chamber specific temperature setting unit 102a calculates the conveyance speed V (= L total / Mt) by dividing the total cooking cabinet length L total by the total processing time Mt (= ΣMn).
 そして、調理庫別温度設定部102aは、各段の積算処理時間Sxに搬送速度Vを乗ずることにより、各段のコンベア位置Px(=Sx×V)を算出して、加熱パターンに変換する(ステップSA-26)。例えば、調理庫別温度設定部102aは、ステップSA-24で求めた各段の集合(温度T,積算処理時間S)=[(T1,M1),(T2,(M1+M2)),・・・,(Tn,ΣMn)]の各MxにVを乗ずることにより、加熱パターン(温度T,コンベア位置P)=[(T1,P1(=M1×V)),(T2,P2(=(M1+M2)×V)),・・・,(Tn,Pn(=ΣMn×V))]に変換する。ここで、図10は、図6下図に示した処理時間補正後の加熱プログラムから変換した加熱パターン(上図)と、調理庫別の処理温度設定方法(下図)を模式的に示した図である。図10上図に示すように、図6下図に示した補正後の加熱プログラムの各処理時間に対して、搬送速度Vを乗ずることにより、コンベア位置Pxを求め、処理温度Txとコンベア位置Pxを対応付けた加熱パターンに変換する。 And the temperature setting part 102a classified by cooking chamber calculates the conveyor position Px (= Sx * V) of each step | paragraph by multiplying the conveyance speed V to the integrated processing time Sx of each step | paragraph, and converts it into a heating pattern ( Step SA-26). For example, the temperature setting unit 102a for each cooking chamber sets a set of temperatures obtained in step SA-24 (temperature T, integrated processing time S) = [(T1, M1), (T2, (M1 + M2)),. , (Tn, ΣMn)] by multiplying each Mx by V, the heating pattern (temperature T, conveyor position P) = [(T1, P1 (= M1 × V)), (T2, P2 (= (M1 + M2)) × V)),..., (Tn, Pn (= ΣMn × V))]. Here, FIG. 10 is a diagram schematically showing a heating pattern (upper diagram) converted from the heating program after the processing time correction shown in the lower diagram of FIG. 6 and a processing temperature setting method (lower diagram) for each cooking chamber. is there. As shown in the upper diagram of FIG. 10, the conveyor position Px is obtained by multiplying each processing time of the corrected heating program shown in the lower diagram of FIG. 6 by the conveyance speed V, and the processing temperature Tx and the conveyor position Px are obtained. Convert to associated heating pattern.
 そして、調理庫別温度設定部102aは、変換した加熱パターンのコンベア位置に基づいて複数の調理庫12に対応付けを行い、各調理庫12に処理温度を設定する(ステップSA-27)。すなわち、図10に示すように、調理庫別温度設定部102aは、コンベア位置P0からP1に対応する調理庫Aには処理温度T1を設定し、コンベア位置P1からP2に対応する調理庫BおよびCには処理温度T2を設定し、コンベア位置P2からP3に対応する調理庫Dには処理温度T3を設定する。 Then, the temperature setting unit 102a for each cooking chamber associates the plurality of cooking chambers 12 with each other based on the conveyor position of the converted heating pattern, and sets the processing temperature for each cooking chamber 12 (step SA-27). That is, as shown in FIG. 10, the temperature setting unit 102a for each cooking chamber sets the processing temperature T1 for the cooking chamber A corresponding to the conveyor positions P0 to P1, and the cooking chamber B corresponding to the conveyor positions P1 to P2. The processing temperature T2 is set to C, and the processing temperature T3 is set to the cooking chamber D corresponding to the conveyor positions P2 to P3.
 以上のように、調理庫別温度設定部102aによる処理が終了すると、制御機器55は、上述したステップSA-3およびSA-4と同様の処理を行う。これにて、本実施の形態における処理時間補正処理の一例を終える。 As described above, when the processing by the temperature setting unit 102a for each cooking chamber is completed, the control device 55 performs the same processing as the above-described steps SA-3 and SA-4. This completes an example of the processing time correction processing in the present embodiment.
[実施例]
 つづいて、上述した実施の形態における加熱調理装置10の実施例について、図11~図14を参照して説明する。ここで、まず、本実施例の加熱調理装置10が開発された背景について説明する。
[Example]
Next, an example of the cooking device 10 in the above-described embodiment will be described with reference to FIGS. Here, first, the background of the development of the cooking device 10 of the present embodiment will be described.
 食品を構成する主な成分はデンプン、タンパク質、繊維質や脂質であり、その他にもビタミン、酵素、辛み成分など様々な微量成分も含まれる。加熱調理では、食材に含まれるこれらの成分を変性させ、可食化させると同時に、好ましい味や香り、色、形、適度な食感を形成させることができる。 The main ingredients that make up food are starch, protein, fiber and lipid, and various trace ingredients such as vitamins, enzymes and spicy ingredients are also included. In cooking by heating, these components contained in the food can be denatured and edible, and at the same time, a favorable taste, aroma, color, shape, and appropriate texture can be formed.
 しかし、各成分の変性する温度、処理時間は異なるため、単純に100℃で加熱する従来の調理技術では、各成分に最適な変性を与え、高品質な加熱調理食品とするのは容易ではなかった。また、熟練した調理人にはカンと経験によって火力を調整しながら美味しい料理をつくるが、これを工業的に再現するのは至難である。 However, since the temperature at which each component is denatured and the processing time are different, it is not easy to provide a high-quality cooked food by imparting optimum denaturation to each component with the conventional cooking technique that simply heats at 100 ° C. It was. In addition, skilled cooks cook delicious dishes while adjusting the firepower based on experience and experience, but this is difficult to reproduce industrially.
 そこで、食材成分ごとの熱変性特性を把握し、段階的に各成分を至適変性させ高品質な食品を工業的に生産する調理加工システム(ソフトスチーム加工(商標))が開発された。このソフトスチーム加工機では、複数成分を至適変性させるためには、庫内温度をプログラム制御し、食材温度を段階的に加温していた(バッチ式ソフトスチーマ:国際公開第09/151019号参照)。この装置では食材を調理庫内に入れ、加熱調理終了後に取り出すというバッチ操作が必要であり、限られた生産量しか望めなかった。また、バッチ式ソフトスチーマでは庫内を昇温させる時間や調理後に初期温度に戻す時間が必要であり、調理時間全体が長くなるという欠点があった。さらに、昇温時間を短縮させるために高温蒸気を庫内に直接導入すると食材の一部に過熱変性を起こす恐れがあるという問題があった。 Therefore, a cooking processing system (Soft Steam Processing (trademark)) has been developed that grasps the heat-denaturing characteristics of each food ingredient and optimally modifies each ingredient step by step to industrially produce high-quality food. In this soft steam processing machine, in order to optimally denature a plurality of components, the internal temperature was controlled by a program, and the food material temperature was heated stepwise (batch type soft steamer: International Publication No. 09/15101019). reference). This apparatus requires a batch operation in which food is put into a cooking cabinet and taken out after cooking, and only a limited amount of production can be expected. In addition, the batch type soft steamer requires a time for raising the temperature inside the chamber and a time for returning to the initial temperature after cooking, which has a drawback that the whole cooking time becomes longer. Furthermore, when high-temperature steam is directly introduced into the cabinet in order to shorten the temperature raising time, there is a problem that a part of the food may be overheated.
 本実施例は、上記問題点に鑑みて本願発明者らによる鋭意検討の結果開発されたものであり、ソフトスチーム加工(商標)において段階的に加熱する工程を連続化することを主要な目的としている。なお、以下の本実施例の説明においては、上述した実施の形態のうち構成をより詳細化した例について説明し、その他の構成および処理については上述した実施の形態を参照することにより省略する。 The present embodiment was developed as a result of intensive studies by the inventors of the present invention in view of the above-mentioned problems, and has a main purpose of continuating the stepwise heating process in Soft Steam Processing (trademark). Yes. In the following description of the present embodiment, an example in which the configuration is more detailed among the above-described embodiments will be described, and other configurations and processes will be omitted by referring to the above-described embodiment.
 本実施例の加熱調理装置10は、上述した実施の形態と同様に、加熱調理される食材が収容される調理空間が設けられた調理庫12を連結した複数の調理庫12と、複数の調理庫12を貫通し各調理庫12内に食材を搬送するコンベア23と、蒸気を発生させる蒸気発生部14と、蒸気発生部14からの蒸気を各調理庫12内に導く蒸気流路44と、調理空間内の温度を検出する温度検出部50と、制御機器55とを備える。ボイラ等の蒸気発生部14は、公知の手段により、飽和水蒸気を発生させるように構成されている。また、コンベア23には、食材を搬送することができるよう搬送速度が制御可能なモータ80が設置されている。また、蒸気流路44には、蒸気流路44を流れる蒸気の流量を調整することができるよう制御可能な弁52が設置されている。ここで、図11は、本実施の形態における本実施例の加熱調理装置10の連結した複数の調理庫12のうち1つの調理庫12の構成を示す斜視図である。なお、図11等に示すように、本実施例においては、互いに直交するx軸、y軸、およびz軸により、空間上の向きを表している。なお、図11に図示されていないが、好適には、複数の調理庫12は、互いに隙間がないように密接して連結されている。 As in the above-described embodiment, the cooking device 10 of the present embodiment includes a plurality of cooking chambers 12 connected to a cooking chamber 12 provided with a cooking space in which ingredients to be cooked are stored, and a plurality of cooking chambers. A conveyor 23 that passes through the cabinet 12 and conveys food into each cooking chamber 12, a steam generation unit 14 that generates steam, a steam channel 44 that guides the steam from the steam generation unit 14 into each cooking chamber 12, and A temperature detection unit 50 that detects the temperature in the cooking space and a control device 55 are provided. The steam generator 14 such as a boiler is configured to generate saturated steam by a known means. Further, the conveyor 23 is provided with a motor 80 capable of controlling the conveyance speed so that the food can be conveyed. The steam flow path 44 is provided with a controllable valve 52 so that the flow rate of the steam flowing through the steam flow path 44 can be adjusted. Here, FIG. 11 is a perspective view showing a configuration of one cooking chamber 12 among a plurality of cooking chambers 12 connected to the cooking device 10 of the present embodiment in the present embodiment. As shown in FIG. 11 and the like, in this embodiment, the x-axis, y-axis, and z-axis that are orthogonal to each other represent the orientation in space. Although not shown in FIG. 11, preferably, the plurality of cooking chambers 12 are closely connected so that there is no gap between them.
 図11に示すように、連結した複数の調理庫12のうち1つの調理庫12に関して、各調理庫12には、食材を搬送するベルト式コンベア23が貫通している。コンベア23は、高い熱伝導性を有する金属素材からなり、且つ、網状または多孔状の構造により通気性を有する。本実施例において、コンベア23は、x軸方向に食材を搬送する。 As shown in FIG. 11, with respect to one cooking chamber 12 among a plurality of connected cooking chambers 12, belt-type conveyors 23 that convey ingredients pass through each cooking chamber 12. The conveyor 23 is made of a metal material having high thermal conductivity, and has air permeability due to a net-like or porous structure. In the present embodiment, the conveyor 23 conveys food materials in the x-axis direction.
 また、図11に示すように、調理庫12には、ボイラ等の蒸気発生部14からの蒸気を、弁52を介して調理庫12内に導入する蒸気流路44が配置されている。そして、調理庫12内部において、蒸気流路44は、図示の如く、調理庫12本体の内周に沿って延びる略枠状に設けられている。 Further, as shown in FIG. 11, the cooking chamber 12 is provided with a steam flow path 44 for introducing the steam from the steam generating unit 14 such as a boiler into the cooking chamber 12 through the valve 52. And in the cooking chamber 12, the steam flow path 44 is provided in the substantially frame shape extended along the inner periphery of the cooking chamber 12 main body like illustration.
 また、図11に示すように、調理庫12の食材出入口(例えば、隣り合う調理庫12の間)には、耐熱性および耐水性を有する断熱柔軟素材からなる短冊状のカーテン60が設置されている。ここで、図12は、x軸方向に調理庫12を見た場合の正面図である。なお、調理庫12内部が見易いように、カーテン60は図示していない。 Moreover, as shown in FIG. 11, the strip-shaped curtain 60 which consists of a heat insulating flexible material which has heat resistance and water resistance is installed in the foodstuff entrance / exit of the cooking cabinet 12 (for example, between the adjacent cooking cabinets 12). Yes. Here, FIG. 12 is a front view when the cooking chamber 12 is viewed in the x-axis direction. The curtain 60 is not shown so that the inside of the cooking cabinet 12 can be easily seen.
 図12に示すように、本実施例において、蒸気流路44は、調理庫12内部で2方向に分岐し、コの字型に形成されている。なお、分岐した蒸気流路44は、下側でx軸方向に90°折れ曲がり、水平に延びるように配置されている。また、調理庫12内部には、邪魔板36,37が略左右対称に設置されており、蒸気流路44は、出入口周囲から邪魔板37に向けて飽和蒸気を噴出する第1の噴出口47と、調理空間内部のコンベア23の下側から邪魔板36に向けて飽和蒸気を噴出する第2の噴出口48を備える。なお、各邪魔板36,37は、国際公開第09/151019号等に記載の公知の手段で構成してもよい。邪魔板36,37に向けて噴出された飽和蒸気は、開口部付近の雰囲気と混合されることで冷却されて凝縮し、微小水滴を含んだ適度の湿り飽和空気となって調理空間に供給され、調理空間内は、湿り飽和空気で満たされた状態となるよう構成されている。なお、出入口付近の開口部より、調理空間への外気導入と、調理空間内の空気の排出が可能になっており、調理空間内は常圧(大気圧)に維持される。 As shown in FIG. 12, in this embodiment, the steam flow path 44 is branched in two directions inside the cooking cabinet 12, and is formed in a U shape. Note that the branched steam flow path 44 is bent at 90 ° in the x-axis direction on the lower side and arranged to extend horizontally. Further, baffle plates 36 and 37 are installed substantially symmetrically inside the cooking chamber 12, and the steam flow path 44 is a first jet outlet 47 for jetting saturated steam from the periphery of the entrance and exit toward the baffle plate 37. And a second jet port 48 for jetting saturated steam from the lower side of the conveyor 23 inside the cooking space toward the baffle plate 36. In addition, you may comprise each baffle plate 36 and 37 by the well-known means as described in international publication 09/151019 grade | etc.,. The saturated steam ejected toward the baffles 36 and 37 is cooled and condensed by being mixed with the atmosphere near the opening, and is supplied to the cooking space as moderately saturated wet air containing minute water droplets. The cooking space is configured to be filled with wet saturated air. In addition, it is possible to introduce outside air into the cooking space and discharge air in the cooking space from the opening near the entrance, and the cooking space is maintained at normal pressure (atmospheric pressure).
 ここで、図13は、y軸方向に調理庫12の断面を見た場合の断面図である。すなわち、図13は、略左右対称の調理庫12を中心線に沿って切断した場合の側面図である。図13に示すように、分岐した蒸気流路44は、下側でx軸方向に90°折れて水平に延び、再びz軸方向に90°折れて、コの字型に形成されている。また、この下側の水平方向(x軸方向)に伸びる蒸気流路44には、上述のように、コンベア23の下側から邪魔板36に向けて飽和蒸気を噴出する第2の噴出口48が備えられており、この第2の噴出口48は、図示の如く、多数の噴出口48が設けられている。すなわち、第2の噴出口48から噴出された飽和蒸気は、調理空間ないしコンベア23に直接噴出されずに、低温の邪魔板36に当たって、低温雰囲気の開放流路内である程度の時間滞留する。このため、前述の凝縮が効果的に行われることになり、しかも、湿り飽和空気として間接的に穏やかに調理空間内に供給されるとともに、通気性のあるコンベア23から食材Fに対して穏やかに熱伝導が行われ、調理空間内の雰囲気の均質化に寄与することになる。また、図13に示すように、調理庫12内の側壁には、調理空間内の温度を検出する温度検出部50が設置されており、上述の実施の形態において説明したように制御機器55の制御により、調理空間内は設定された処理温度に保たれる。また、上述の実施の形態において説明したように、食材は設定された処理時間の間、当該処理温度で加熱処理されるようにコンベア23の搬送速度が制御機器55により制御される。 Here, FIG. 13 is a cross-sectional view when the cross section of the cooking cabinet 12 is seen in the y-axis direction. That is, FIG. 13 is a side view when the substantially left-right symmetric cooking chamber 12 is cut along the center line. As shown in FIG. 13, the branched steam flow path 44 is bent 90 ° in the x-axis direction and extends horizontally at the lower side, and is again bent 90 ° in the z-axis direction to form a U-shape. Further, in the steam flow path 44 extending in the lower horizontal direction (x-axis direction), as described above, the second ejection port 48 that ejects saturated steam from the lower side of the conveyor 23 toward the baffle plate 36. As shown in the figure, the second ejection port 48 is provided with a number of ejection ports 48. That is, the saturated steam ejected from the second ejection port 48 is not directly ejected to the cooking space or the conveyor 23 but hits the low-temperature baffle plate 36 and stays in the open flow path in the low-temperature atmosphere for a certain period of time. For this reason, the above-mentioned condensation is effectively carried out, and it is gently and indirectly supplied into the cooking space as wet saturated air, and gently from the air-permeable conveyor 23 to the food F. Heat conduction is performed, which contributes to the homogenization of the atmosphere in the cooking space. Moreover, as shown in FIG. 13, the temperature detection part 50 which detects the temperature in cooking space is installed in the side wall in the cooking chamber 12, and as demonstrated in the above-mentioned embodiment, the control apparatus 55 of FIG. The cooking space is maintained at the set processing temperature by the control. Further, as described in the above-described embodiment, the conveying speed of the conveyor 23 is controlled by the control device 55 so that the food is heated at the processing temperature for the set processing time.
 以上、本実施例によれば、連続生産によるライン化が可能となり、大量生産体制にも対応可能となる。また、本実施例によれば、温度の異なる調理庫間を移送することで瞬時に雰囲気温度を変えることができ、調理時間を短縮することができる。また、調理庫温度の昇降がないため、省エネルギー効果も望むことができる。 As described above, according to the present embodiment, it is possible to form a line by continuous production, and it is possible to cope with a mass production system. In addition, according to the present embodiment, the atmosphere temperature can be instantaneously changed by transferring between cooking chambers having different temperatures, and the cooking time can be shortened. Moreover, since there is no raising / lowering of cooking chamber temperature, the energy saving effect can also be desired.
 なお、上述した実施例の調理庫12内において、更に昇降手段を設置してもよい。ここで、図14は、調理庫12内に設けられた昇降手段90を一例として示す図である。図14に示すように、昇降手段90は、ベルト、歯車等の機構、および、図示しないモータ、シリンダ等のアクチュエータを使って、食材を載せたプレートPを上下方向(z軸方向)および水平方向(x軸方向)に移動可能にする公知の装置が用いられており、図示の矢印の方向に、食材を載せたプレートPを調理空間内に滞留させる。そして、昇降手段90のアクチュエータは、制御機器55に接続され、昇降手段90によるプレートの移動速度は制御機器55により制御可能に構成されている。すなわち、制御機器55は、昇降手段90を制御することにより食材の滞留時間を制御して、調理庫12の実際の長さに依存することなく、調理庫12の事実上の長さを自由に変更することができるようになる。 In addition, you may install a raising / lowering means further in the cooking chamber 12 of the Example mentioned above. Here, FIG. 14 is a diagram illustrating the lifting / lowering means 90 provided in the cooking cabinet 12 as an example. As shown in FIG. 14, the elevating means 90 uses a mechanism such as a belt and a gear, and an actuator such as a motor and a cylinder (not shown) to move the plate P on which food is placed in the vertical direction (z-axis direction) and the horizontal direction. A known device that can move in the (x-axis direction) is used, and a plate P on which food is placed is retained in the cooking space in the direction of the arrow shown in the figure. The actuator of the lifting / lowering means 90 is connected to the control device 55, and the moving speed of the plate by the lifting / lowering means 90 can be controlled by the control device 55. That is, the control device 55 controls the elevating means 90 to control the staying time of the food, and can freely set the actual length of the cooking cabinet 12 without depending on the actual length of the cooking cabinet 12. Will be able to change.
[他の実施の形態]
 さて、これまで本発明の実施の形態について説明したが、本発明は、上述した実施の形態以外にも、請求の範囲に記載した技術的思想の範囲内において種々の異なる実施の形態にて実施されてよいものである。
[Other embodiments]
Although the embodiments of the present invention have been described so far, the present invention can be implemented in various different embodiments in addition to the above-described embodiments within the scope of the technical idea described in the claims. It may be done.
 また、実施の形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。 In addition, among the processes described in the embodiment, all or part of the processes described as being automatically performed can be performed manually, or the processes described as being performed manually can be performed. All or a part can be automatically performed by a known method.
 このほか、上記文献中や図面中で示した処理手順、制御手順、具体的名称、各処理の登録データ等のパラメータを含む情報、画面例、データベース構成については、特記する場合を除いて任意に変更することができる。 In addition, information including parameters, such as processing procedures, control procedures, specific names, registration data of each processing, screen examples, and database configurations shown in the above documents and drawings are arbitrarily selected unless otherwise specified. Can be changed.
 また、加熱調理装置10に関して、図示の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。 Further, regarding the cooking device 10, each illustrated component is functionally conceptual and does not necessarily need to be physically configured as illustrated.
 また、制御機器55の各装置が備える処理機能、特に制御部102にて行われる各処理機能については、その全部または任意の一部を、CPU(Central Processing Unit)および当該CPUにて解釈実行されるプログラムにて実現してもよく、また、ワイヤードロジックによるハードウェアとして実現してもよい。尚、プログラムは、後述する記録媒体に記録されており、必要に応じて制御機器55に機械的に読み取られる。すなわち、ROMまたはHDなどの記憶部106などは、OS(Operating System)として協働してCPUに命令を与え、各種処理を行うためのコンピュータプログラムが記録されている。このコンピュータプログラムは、RAMにロードされることによって実行され、CPUと協働して制御部を構成する。 In addition, the processing functions provided in each device of the control device 55, particularly the processing functions performed by the control unit 102, are all interpreted or executed by a CPU (Central Processing Unit) and the CPU. It may be realized by a program or hardware based on wired logic. The program is recorded on a recording medium to be described later, and is mechanically read by the control device 55 as necessary. That is, the storage unit 106 such as ROM or HD stores a computer program for performing various processes by giving instructions to the CPU in cooperation with an OS (Operating System). This computer program is executed by being loaded into the RAM, and constitutes a control unit in cooperation with the CPU.
 また、このコンピュータプログラムは、制御機器55に対して任意のネットワークを介して接続されたアプリケーションプログラムサーバに記憶されていてもよく、必要に応じてその全部または一部をダウンロードすることも可能である。 The computer program may be stored in an application program server connected to the control device 55 via an arbitrary network, and may be downloaded in whole or in part as necessary. .
 また、本発明に係るプログラムを、コンピュータ読み取り可能な記録媒体に格納してもよく、また、プログラム製品として構成することもできる。ここで、この「記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、EPROM、EEPROM、CD-ROM、MO、DVD等の任意の「可搬用の物理媒体」、あるいは、LAN、WAN、インターネットに代表されるネットワークを介してプログラムを送信する場合の通信回線や搬送波のように、短期にプログラムを保持する「通信媒体」を含むものとする。 Further, the program according to the present invention may be stored in a computer-readable recording medium, or may be configured as a program product. Here, the “recording medium” refers to any “portable physical medium” such as a flexible disk, a magneto-optical disk, a ROM, an EPROM, an EEPROM, a CD-ROM, an MO, and a DVD, or a LAN, WAN, or Internet. It includes a “communication medium” that holds the program in a short period of time, such as a communication line or a carrier wave when the program is transmitted via a network represented by
 また、「プログラム」とは、任意の言語や記述方法にて記述されたデータ処理方法であり、ソースコードやバイナリコード等の形式を問わない。なお、「プログラム」は必ずしも単一的に構成されるものに限られず、複数のモジュールやライブラリとして分散構成されるものや、OS(Operating System)に代表される別個のプログラムと協働してその機能を達成するものをも含む。なお、実施の形態に示した各装置において記録媒体を読み取るための具体的な構成、読み取り手順、あるいは、読み取り後のインストール手順等については、周知の構成や手順を用いることができる。 In addition, “program” is a data processing method described in an arbitrary language or description method, and may be in any form such as source code or binary code. Note that the “program” is not necessarily limited to a single configuration, but is distributed in the form of a plurality of modules and libraries, or in cooperation with a separate program typified by an OS (Operating System). Including those that achieve the function. Note that a well-known configuration and procedure can be used for a specific configuration for reading a recording medium, a reading procedure, an installation procedure after reading, and the like in each device described in the embodiment.
 記憶部106に格納される各種のデータベース等(加熱プログラムデータベース106a)は、RAM、ROM等のメモリ装置、ハードディスク等の固定ディスク装置、フレキシブルディスク、光ディスク等のストレージ手段であり、各種処理やウェブサイト提供に用いる各種のプログラムやテーブルやデータベース等を格納する。 Various databases and the like (heating program database 106a) stored in the storage unit 106 are storage means such as a memory device such as a RAM and a ROM, a fixed disk device such as a hard disk, a flexible disk, and an optical disk. Stores various programs, tables, databases, etc. used for provision.
 また、制御機器55は、既知のパーソナルコンピュータ、ワークステーション等の情報処理装置として構成してもよく、また、該情報処理装置に任意の周辺装置を接続して構成してもよい。また、制御機器55は、該情報処理装置に本発明の方法を実現させるソフトウェア(プログラム、データ等を含む)を実装することにより実現してもよい。 Further, the control device 55 may be configured as an information processing apparatus such as a known personal computer or workstation, or may be configured by connecting an arbitrary peripheral device to the information processing apparatus. The control device 55 may be realized by installing software (including programs, data, and the like) that causes the information processing apparatus to implement the method of the present invention.
 更に、装置の分散・統合の具体的形態は図示するものに限られず、その全部または一部を、各種の付加等に応じて、または、機能負荷に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。 Furthermore, the specific form of distribution / integration of the devices is not limited to that shown in the figure, and all or a part of them may be functional or physical in arbitrary units according to various additions or according to functional loads. Can be distributed and integrated.
 以上詳述に説明したように、本発明によれば、食材を一定温度に保って一定時間加熱処理する工程を、多段階で実施することができ、様々な食材の種類や大きさや加工用途等に応じた処理温度と処理時間で加熱調理するための汎用性に優れた、加熱調理装置、および、加熱調理方法を提供することができる。特に、本発明によれば、高品質、高機能、高付加価値な食品の製造を可能とするソフトスチーム加工(商標)技術のライン化による一般工業化が可能になる。すなわち、これまで開発されていたソフトスチーム加工機は、バッチ処理方式のため、少量しか生産できなかったが、本発明によれば、連続ライン化が可能で大規模生産にも対応できるので、食品加工分野などの様々な分野において極めて有用である。 As explained in detail above, according to the present invention, the process of heat-treating the food at a constant temperature for a certain time can be carried out in multiple stages, such as various food types, sizes and processing applications. The heat cooking apparatus and the heat cooking method which were excellent in the versatility for cooking by heat with the process temperature and process time according to can be provided. In particular, according to the present invention, general industrialization is possible by making a line of soft steam processing (trademark) technology that enables production of food of high quality, high functionality, and high added value. In other words, the soft steam processing machine that has been developed so far can only be produced in a small amount because of the batch processing method, but according to the present invention, it is possible to make a continuous line and cope with large-scale production. It is extremely useful in various fields such as the processing field.
 10 加熱調理装置
 12 調理庫
 14 蒸気発生部
 23 コンベア
 36,37 邪魔板
 44 蒸気流路
 47 第1の噴出口
 48 第2の噴出口
 50 温度検出部
 52 弁
 55 制御機器
 60,61 カーテン
 80 モータ
 90 昇降手段
 102 制御部
 102a 調理庫別温度設定部
 102b 処理温度時間設定部
 102c 処理時間補正部
 102d 搬送速度設定部
 102e 流量調整部
 102f 搬送速度制御部
 106 記憶部
 106a 加熱プログラムデータベース
 108 入出力制御インターフェース部
 112 入力部
 114 表示部
DESCRIPTION OF SYMBOLS 10 Cooking apparatus 12 Cooking chamber 14 Steam generating part 23 Conveyor 36, 37 Baffle plate 44 Steam flow path 47 1st outlet 48 2nd outlet 50 Temperature detection part 52 Valve 55 Control apparatus 60, 61 Curtain 80 Motor 90 Lifting means 102 Control unit 102a Temperature setting unit for each cooking chamber 102b Processing temperature time setting unit 102c Processing time correction unit 102d Transport speed setting unit 102e Flow rate adjustment unit 102f Transport speed control unit 106 Storage unit 106a Heating program database 108 Input / output control interface unit 112 Input unit 114 Display unit

Claims (11)

  1.  加熱調理される食材が収容される調理空間が設けられた調理庫を連結した複数の前記調理庫と、前記複数の前記調理庫を貫通し前記各調理庫内に前記食材を搬送するコンベアと、蒸気を発生させる蒸気発生部と、前記蒸気発生部からの前記蒸気を前記各調理庫内に導く蒸気流路と、前記調理空間内の温度を検出する温度検出部と、記憶部と、制御部とを備えた加熱調理装置において、
     前記記憶部は、
     前記食材毎に多段階で加熱調理するための処理温度および処理時間を対応付けて記憶し、
     前記制御部は、
     前記多段階の前記処理時間の割合に応じて前記複数の前記調理庫と対応付けることにより、前記各調理庫に前記処理温度を設定する調理庫別温度設定手段と、
     前記各調理庫内において、前記温度検出部により検出される前記温度が前記調理庫別温度設定手段により設定された前記処理温度に一定となるように、前記蒸気流路を流れる前記蒸気の流量を調整する流量調整手段と、
     前記各調理庫内において、前記調理庫別温度設定手段により設定された前記処理温度に対応する前記処理時間で前記食材が加熱調理されるように、前記コンベアの搬送速度を制御する搬送速度制御手段と、
     を備えたことを特徴とする加熱調理装置。
    A plurality of cooking chambers connected to a cooking chamber provided with a cooking space in which cooking ingredients to be cooked are stored; a conveyor that passes through the plurality of cooking chambers and conveys the food materials into the cooking chambers; A steam generating section for generating steam; a steam flow path for guiding the steam from the steam generating section into each cooking chamber; a temperature detecting section for detecting a temperature in the cooking space; a storage section; In the cooking device with
    The storage unit
    Store the processing temperature and the processing time for cooking in multiple stages for each food,
    The controller is
    A temperature setting means for each cooking chamber that sets the processing temperature in each cooking chamber by associating with the plurality of cooking chambers according to the ratio of the processing time in the multi-stage,
    In each cooking chamber, the flow rate of the steam flowing through the steam flow path is set so that the temperature detected by the temperature detection unit becomes constant at the processing temperature set by the cooking chamber-specific temperature setting means. Flow rate adjusting means to adjust;
    In each said cooking chamber, the conveyance speed control means which controls the conveyance speed of the said conveyor so that the said foodstuff is heat-cooked by the said processing time corresponding to the said processing temperature set by the said cooking chamber temperature setting means. When,
    A heating cooking apparatus comprising:
  2.  請求項1に記載の加熱調理装置において、
     入力部を更に備え、
     前記記憶部は、
     前記食材の種類、加工用途、および、大きさのうちの少なくとも一つに対応付けて、前記多段階の前記処理温度および前記処理時間の組合せを記憶し、
     前記調理庫別温度設定手段は、
     前記食材の種類、加工用途、および、大きさのうちの少なくとも一つを利用者に前記入力部を介して指定させるよう制御することにより、前記多段階の前記処理温度および前記処理時間を設定する処理温度時間設定手段、
     を更に備えたことを特徴とする加熱調理装置。
    The cooking device according to claim 1,
    An input unit;
    The storage unit
    In association with at least one of the type, processing application, and size of the food, the combination of the processing temperature and the processing time of the multi-stage is stored,
    The temperature setting means for each cooking chamber is:
    The multi-stage processing temperature and the processing time are set by controlling the user to specify at least one of the type, processing application, and size of the food via the input unit. Processing temperature time setting means,
    A heating cooking apparatus further comprising:
  3.  請求項1または2に記載の加熱調理装置において、
     前記調理庫別温度設定手段は、
     前記食材の形状および/またはサイズに基づいて、当該食材内部の温度が前記処理温度に到達するまでの品温到達時間を算出して前記処理時間に加算することにより、当該処理時間を補正する処理時間補正手段、
     を更に備えたことを特徴とする加熱調理装置。
    The heating cooking apparatus according to claim 1 or 2,
    The temperature setting means for each cooking chamber is:
    A process of correcting the processing time by calculating the product temperature arrival time until the temperature inside the food reaches the processing temperature based on the shape and / or size of the food and adding it to the processing time Time correction means,
    A heating cooking apparatus further comprising:
  4.  請求項3に記載の加熱調理装置において、
     前記処理時間補正手段は、
     下記の式に基づいて、前記品温到達時間を算出すること、
     S(ΔT,r)=k×r×(ΔT)0.25
     (ここで、ΔTは前段階の前記処理温度と次段階の前記処理温度の差であり、rは前記食材の前記サイズであり、kは前記食材の前記形状によるパラメータであり、S(ΔT,r)は、前記品温到達時間である。)
     を特徴とする加熱調理装置。
    The heating cooking apparatus according to claim 3,
    The processing time correction means includes
    Based on the following formula, calculating the product temperature arrival time,
    S (ΔT, r) = k × r 2 × (ΔT) 0.25
    (Where ΔT is the difference between the processing temperature at the previous stage and the processing temperature at the next stage, r is the size of the food, k is a parameter depending on the shape of the food, and S (ΔT, r) is the product temperature arrival time.)
    A cooking device characterized by the above.
  5.  請求項1乃至4のいずれか一つに記載の加熱調理装置において、
     前記調理庫は、前記調理空間内部に邪魔板を備え、
     前記蒸気流路は、搬送される前記食材の出入口周囲から前記邪魔板に向けて前記蒸気を噴出する第1の噴出口と、前記調理空間内部の前記コンベアの下側から前記邪魔板に向けて前記蒸気を噴出する第2の噴出口とを備えたことを特徴とする加熱調理装置。
    In the cooking device according to any one of claims 1 to 4,
    The cooking chamber includes a baffle plate inside the cooking space,
    The steam channel has a first jet port for jetting the steam from the periphery of the entrance / exit of the food to be conveyed toward the baffle plate, and from the lower side of the conveyor in the cooking space toward the baffle plate. A heating cooking apparatus comprising: a second jet nozzle for jetting the steam.
  6.  請求項1乃至5のいずれか一つに記載の加熱調理装置において、
     前記コンベアが貫通する前記複数の調理庫間に、耐熱性および耐水性を有する断熱柔軟素材からなるカーテンを更に備えたことを特徴とする加熱調理装置。
    In the cooking device according to any one of claims 1 to 5,
    A heating cooking apparatus, further comprising a curtain made of a heat-insulating flexible material having heat resistance and water resistance between the plurality of cooking chambers through which the conveyor passes.
  7.  請求項1乃至6のいずれか一つに記載の加熱調理装置において、
     前記搬送速度制御手段は、
     前記各調理庫内において前記処理温度に対応する前記処理時間で前記食材が加熱調理されるように、前記コンベアの前記搬送速度を、一定に、または、間欠的に制御することを特徴とする加熱調理装置。
    The cooking device according to any one of claims 1 to 6,
    The transport speed control means includes
    Heating characterized in that the conveying speed of the conveyor is controlled constant or intermittently so that the food is cooked in the processing time corresponding to the processing temperature in each cooking chamber. Cooking equipment.
  8.  請求項1乃至7のいずれか一つに記載の加熱調理装置において、
     前記コンベアは、
     高い熱伝導性を有する金属素材からなり、且つ、網状または多孔状の構造により通気性を有することを特徴とする加熱調理装置。
    In the cooking device according to any one of claims 1 to 7,
    The conveyor is
    A cooking apparatus characterized in that it is made of a metal material having high thermal conductivity and has air permeability due to a net-like or porous structure.
  9.  請求項1乃至8のいずれか一つに記載の加熱調理装置において、
     前記複数の前記調理庫を貫通する前記コンベアの食材積載位置より前、または、食材取り出し位置より後に、当該コンベアに対して蒸気または水流を吹き付ける洗浄部を更に備えたことを特徴とする加熱調理装置。
    In the cooking device according to any one of claims 1 to 8,
    The cooking apparatus further comprising a cleaning unit that blows steam or water flow on the conveyor before or after the food take-out position of the food that passes through the plurality of cooking chambers. .
  10.  請求項1乃至9のいずれか一つに記載の加熱調理装置において、
     前記複数の前記調理庫を貫通する前記コンベアの食材積載位置より前、または、食材取り出し位置より後に、当該コンベアに対して、冷温水散布、浸漬、または、送風乾燥を行うコンベア処理部を更に備えたことを特徴とする加熱調理装置。
    The cooking device according to any one of claims 1 to 9,
    A conveyor processing unit is further provided that performs cold / hot water spraying, dipping, or air drying on the conveyor before or after the food loading position of the conveyor passing through the plurality of cooking chambers. A cooking device characterized by that.
  11.  加熱調理される食材が収容される調理空間が設けられた調理庫を連結した複数の前記調理庫と、前記複数の前記調理庫を貫通し前記各調理庫内に前記食材を搬送するコンベアと、蒸気を発生させる蒸気発生部と、前記蒸気発生部からの前記蒸気を前記各調理庫内に導く蒸気流路と、前記調理空間内の温度を検出する温度検出部と、記憶部と、制御部とを備えた加熱調理装置において実行される加熱調理方法であって、
     前記記憶部は、
     前記食材毎に多段階で加熱調理するための処理温度および処理時間を対応付けて記憶し、
     前記制御部において実行される、
     前記多段階の前記処理時間の割合に応じて前記複数の前記調理庫と対応付けることにより、前記各調理庫に前記処理温度を設定する調理庫別温度設定ステップと、
     前記各調理庫内において、前記温度検出部により検出される前記温度が前記調理庫別温度設定ステップにて設定された前記処理温度に一定となるように、前記蒸気流路を流れる前記蒸気の流量を調整する流量調整ステップと、
     前記各調理庫内において、前記調理庫別温度設定ステップにて設定された前記処理温度に対応する前記処理時間で前記食材が加熱調理されるように、前記コンベアの搬送速度を制御する搬送速度制御ステップと、
     を含むことを特徴とする加熱調理方法。
    A plurality of cooking chambers connected to a cooking chamber provided with a cooking space in which cooking ingredients to be cooked are stored; a conveyor that passes through the plurality of cooking chambers and conveys the food materials into the cooking chambers; A steam generating section for generating steam; a steam flow path for guiding the steam from the steam generating section into each cooking chamber; a temperature detecting section for detecting a temperature in the cooking space; a storage section; A cooking method that is executed in a cooking device comprising:
    The storage unit
    Store the processing temperature and the processing time for cooking in multiple stages for each food,
    Executed in the control unit,
    A temperature setting step for each cooking chamber that sets the processing temperature in each cooking chamber by associating with the plurality of cooking chambers according to the ratio of the processing time in the multi-stage,
    In each cooking chamber, the flow rate of the steam flowing through the steam channel so that the temperature detected by the temperature detection unit becomes constant at the processing temperature set in the cooking chamber-specific temperature setting step. A flow rate adjustment step for adjusting,
    In each said cooking chamber, the conveyance speed control which controls the conveyance speed of the said conveyor so that the said foodstuff is cooked by the said processing time corresponding to the said processing temperature set in the said cooking chamber temperature setting step. Steps,
    The cooking method characterized by including.
PCT/JP2010/054256 2010-03-12 2010-03-12 Heat food preparation device and heat food preparation method WO2011111231A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/054256 WO2011111231A1 (en) 2010-03-12 2010-03-12 Heat food preparation device and heat food preparation method
JP2012504256A JP5386701B2 (en) 2010-03-12 2010-03-12 Heat cooking apparatus and heat cooking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054256 WO2011111231A1 (en) 2010-03-12 2010-03-12 Heat food preparation device and heat food preparation method

Publications (1)

Publication Number Publication Date
WO2011111231A1 true WO2011111231A1 (en) 2011-09-15

Family

ID=44563073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054256 WO2011111231A1 (en) 2010-03-12 2010-03-12 Heat food preparation device and heat food preparation method

Country Status (2)

Country Link
JP (1) JP5386701B2 (en)
WO (1) WO2011111231A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163622A (en) * 2013-02-27 2014-09-08 Tml:Kk Adjusting structure of steam temperature in steam heating chamber
KR20200053568A (en) * 2017-09-15 2020-05-18 홈 테크 이노베이션, 아이엔씨 Apparatus and method for at least semi-autonomous food storage and cooking

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010240B1 (en) * 2015-03-13 2016-10-19 ケレス株式会社 Heating / cooling integrated food processing system
WO2020175928A1 (en) 2019-02-28 2020-09-03 Samsung Electronics Co., Ltd. Heating cooker and heating cooking method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181843A (en) * 1993-08-01 1994-07-05 Koresawa Tekkosho:Kk Continuous rice cooking device
JPH06181842A (en) * 1993-08-01 1994-07-05 Koresawa Tekkosho:Kk Continuous rice cooking device
JPH06237860A (en) * 1993-02-17 1994-08-30 Toyo Suisan Kaisha Ltd Automated continuous rice steaming apparatus
JPH07106185B2 (en) * 1987-05-29 1995-11-15 株式会社是沢鉄工所 Method and apparatus for steaming cereals
JPH09206206A (en) * 1996-02-05 1997-08-12 Nakanishi Seisakusho:Kk Steaming part of steam type continuous rice cooker
JPH09238623A (en) * 1996-03-06 1997-09-16 Q P Corp Continuous production of rapidly boiled rice and apparatus therefor
JPH1023962A (en) * 1996-07-10 1998-01-27 Hitachi Home Tec Ltd Continuous rice cooking device
WO2000008986A1 (en) * 1998-08-14 2000-02-24 Showa Sangyo Co., Ltd. Method and device for processing rice using continuous steaming device
JP2000152754A (en) * 1998-11-17 2000-06-06 Jiro Toyoda Cooking and device therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106185B2 (en) * 1987-05-29 1995-11-15 株式会社是沢鉄工所 Method and apparatus for steaming cereals
JPH06237860A (en) * 1993-02-17 1994-08-30 Toyo Suisan Kaisha Ltd Automated continuous rice steaming apparatus
JPH06181843A (en) * 1993-08-01 1994-07-05 Koresawa Tekkosho:Kk Continuous rice cooking device
JPH06181842A (en) * 1993-08-01 1994-07-05 Koresawa Tekkosho:Kk Continuous rice cooking device
JPH09206206A (en) * 1996-02-05 1997-08-12 Nakanishi Seisakusho:Kk Steaming part of steam type continuous rice cooker
JPH09238623A (en) * 1996-03-06 1997-09-16 Q P Corp Continuous production of rapidly boiled rice and apparatus therefor
JPH1023962A (en) * 1996-07-10 1998-01-27 Hitachi Home Tec Ltd Continuous rice cooking device
WO2000008986A1 (en) * 1998-08-14 2000-02-24 Showa Sangyo Co., Ltd. Method and device for processing rice using continuous steaming device
JP2000152754A (en) * 1998-11-17 2000-06-06 Jiro Toyoda Cooking and device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163622A (en) * 2013-02-27 2014-09-08 Tml:Kk Adjusting structure of steam temperature in steam heating chamber
KR20200053568A (en) * 2017-09-15 2020-05-18 홈 테크 이노베이션, 아이엔씨 Apparatus and method for at least semi-autonomous food storage and cooking
KR102586961B1 (en) * 2017-09-15 2023-10-10 홈 테크 이노베이션, 아이엔씨 Apparatus and method for at least semi-autonomous food storage and cooking

Also Published As

Publication number Publication date
JP5386701B2 (en) 2014-01-15
JPWO2011111231A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
US11116359B2 (en) Apparatus and method for preparing food
EP1797758B1 (en) Continuous cooking oven system
EP3573477B1 (en) Spiral conveyor thermal processing system
JP5386701B2 (en) Heat cooking apparatus and heat cooking method
US8932658B2 (en) Method and apparatus for steam-cooking
EP2713756B1 (en) Systems and methods for adjusting oven cooking zones
GB2481553A (en) Cooking apparatus with independently controlled convention and radiant heat sources.
CN206777205U (en) Germinated rice producing device and the cooking apparatus for cooking apparatus
EP2636955A1 (en) A cooking oven provided for heat transfer by convection
US20170071246A1 (en) Low-temperature, forced-convection, steam-heating of nuts
CN112754267A (en) Microwave oven and cooking method implemented by same
US7798059B2 (en) Oven with improved stream chamber
EP3487315B1 (en) Bulk food processor with angled fan
KR20110085901A (en) Method and device for heating food materials
JP2018015047A (en) Rice cooking method
US10098375B2 (en) Forced-convection, steam-heating of nuts with preheating
US20140202339A1 (en) Vertical conveyor oven with advanced airflow
US20050092312A1 (en) Indirect and direct heated continuous oven system
WO2013192085A1 (en) Low-temperature steam-cooking of chicken parts
JP2001061655A (en) Food cooking system using superheated steam
JP2018201766A (en) Hybrid oven
JP2004121431A (en) Method and apparatus for heating with superheated steam
JP2007167394A (en) Solid steaming conveyor, and rice cooking system using it
JP2019205518A (en) Steaming device and heating treatment method
JPH11332521A (en) Method and apparatus for steaming food product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504256

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847461

Country of ref document: EP

Kind code of ref document: A1