WO2011110716A2 - Compuestos peptídicos útiles como agentes antibacterianos - Google Patents

Compuestos peptídicos útiles como agentes antibacterianos Download PDF

Info

Publication number
WO2011110716A2
WO2011110716A2 PCT/ES2011/070153 ES2011070153W WO2011110716A2 WO 2011110716 A2 WO2011110716 A2 WO 2011110716A2 ES 2011070153 W ES2011070153 W ES 2011070153W WO 2011110716 A2 WO2011110716 A2 WO 2011110716A2
Authority
WO
WIPO (PCT)
Prior art keywords
dab
arq
thr
leu
arg
Prior art date
Application number
PCT/ES2011/070153
Other languages
English (en)
French (fr)
Other versions
WO2011110716A3 (es
Inventor
Francesc Rabanal Anglada
Yolanda Cajal Visa
Maria Garcia Subirats
Montserrat RODRÍGUEZ NÚÑEZ
Original Assignee
Universidad De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Barcelona filed Critical Universidad De Barcelona
Priority to RU2012143143/04A priority Critical patent/RU2012143143A/ru
Priority to US13/583,091 priority patent/US20130053305A1/en
Priority to JP2012556552A priority patent/JP2013521330A/ja
Priority to BR112012022589A priority patent/BR112012022589A2/pt
Priority to EP11752896A priority patent/EP2548883A2/en
Priority to CN2011800220133A priority patent/CN102939301A/zh
Priority to CA2792674A priority patent/CA2792674A1/en
Publication of WO2011110716A2 publication Critical patent/WO2011110716A2/es
Publication of WO2011110716A3 publication Critical patent/WO2011110716A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/60Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation occurring through the 4-amino group of 2,4-diamino-butanoic acid
    • C07K7/62Polymyxins; Related peptides

Definitions

  • the present invention relates to compounds that are active against Gram-positive and Gram-negative bacteria, their preparation process, pharmaceutical compositions containing them, and their use in the treatment of bacterial infections.
  • Methylicin-resistant Staphylococcus aureus Vancomincin-resistant Enterococcus and certain Gram-negative bacteria such as Pseudomonas aeruqinosa, Acinetobacter baumannii and Klebsiella pneumoniae.
  • Such infections are very difficult to control and a constant cause of disease and death.
  • Conventional antibiotics act
  • antimicrobial peptides AMP
  • Antimicrobials offer a new class of therapeutic agents to which bacteria are not able to develop genetic resistance, since they act primarily on the lipid component of cell membranes.
  • PxB polymyxin B
  • PxB polymyxin B
  • Polymyxins in particular polymyxin B, constitute a family of antibiotics discovered in 1947 with high activity against Gram-negative bacteria.
  • Polymyxin B is an antibiotic lipopeptide isolated from
  • Bacillus polvmvxa Its basic structure consists of a polycationic peptide cycle from which a tripeptide linked to a fatty acid chain hangs.
  • Polymyxin B has resurfaced in medical practice in recent years and its use will continue to increase due to the limited development of new antibiotics by pharmaceutical companies and the increasing worldwide prevalence of nosocomial infections caused by multiresistant Gram-negative bacteria ("multidrug resistant ", MDR).
  • MDR multiresistant Gram-negative bacteria
  • Polymyxin B and other members of the polymyxin family are drugs that are used as a last resort to treat infections caused by multiresistant bacteria and are sometimes the only active antibiotic available.
  • resistance to polymyxin is rare and generally adaptive and therefore reversible.
  • Polymyxin B is also capable of inhibiting the biological activity of bacterial lipopolysaccharide (LPS) through high affinity binding to lipid A, thus being the agent of choice for the treatment of septic shock induced by LPS.
  • LPS bacterial lipopolysaccharide
  • polymyxin B has no activity against Gram-positive or anaerobic bacteria.
  • polymyxins are of limited use because they have some
  • peptide compounds with antibiotic activity that act on the lipid component of bacterial membranes and that are active against both Gram-positive and Gram-negative bacteria. These compounds are based on the structure of natural polymyxin. However, unlike polymyxins, these compounds are active not only against Gram-negative bacteria but also in Gram-positive in the micromolar range. This is advantageous since they can act in response to infections caused by both types of bacteria.
  • one aspect of the present invention is related to providing compounds of formula (I),
  • Rn is a peptide sequence selected from the group consisting of Ala-Leu-Arg, Ala-Leu-Arg-Ala-Leu-Arg, Gly-Arg-Val-Glu-Val-Leu-Tyr-Arg-Gly-Ser-Trp , Lys-Val-Leu, Lys-Val-Leu-Lys-Val-Leu, Leu-Met-Trp-Trp-Met-Leu,
  • Orn-Orn_Orn Gln-Arg-GLy-Arg-Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr, and Glu- (Y-Spermide) -Arg-GLy-Arg-Ala-Glu-Glu -Val-Tyr-Tyr-Ser-Gly-Thr;
  • u is CH 2 or S;
  • v is NH or S;
  • w CH 2 or CO; with the proviso that when R 9 is CONH 2 , then one of the following conditions occurs: (a) R 5 or R 6 is -CH (CH 3 ) (OH), (b) R 5 and Re are H; (c) the configuration of C linked to R 9 is S (D-cysteine side chain) or (d) the configuration of C linked to R 5 is R; and with the proviso that when R 9 is -CH (CH 3 ) OH (threonine side chain), then R 8 is GF (CH 2 ) n where
  • the compounds of formula (I) are those mentioned above where R 2 is -CH (CH 3 ) (OH).
  • the compounds of formula (I) are those where u is CH 2 , v is NH, w is CO, R 9 is -CH (CH 3 ) (OH) and the configuration of C attached to R 9 is S. These compounds have the formula (la).
  • the compound of formula (la) is the nonanoyl-Arq-Thr-Dab-cycle (4-10) rDab-Dab-DPhe-Leu-Arq-Dab-Thr1, (lai).
  • cycle (4-10) means a macrocycle in which the terminal carboxyl of the threonine in position 10 forms an amide bond with the side chain of the Dab in position 4.
  • D-amino acids The configuration of the D-amino acids has been indicated with a D. When the configuration is not indicated, it is understood that it is an L-amino acid.
  • the compounds of formula (I) are those where u is S, v is S and w is CH 2 , which have the formula (Ib).
  • the compounds of formula (Ib) are those compounds where R 9 is CONHRn and Rn is a peptide sequence selected from the group consisting of Ala-Leu-Arg, Ala-Leu-Arg-Ala-Leu- Arg , Gly-Arg-Val-Glu-Val-Leu-Tyr-Arg-Gly- Ser-Trp, Lys-Val-Leu, Lys-Val-Leu-Lys-Val-Leu, Leu-Met-Trp-Trp-Met -Leu, Orn-Orn-Orn, Gln-Arg-Gly-Arg- Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr, Glu (y-sperm) -Arg-Gly-Arg-Ala- Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr, and Glu (Arg-Gly-Arg-Ala-Glu-Glu-Val-Tyr-Tyr-Tyr-
  • Trp-Trp-Met-Leu ( 6 lb);
  • cycle (S-S) means a macrocycle formed by a disulfide bridge between the two tanks.
  • the compounds of formula (Ib) are selected from the following list: nonanoil-Arq-Thr-Arq-cycle (SS) rCvs-Dab-Phe-Leu-Arq-Dab-Cysl, (lb 10 ) ; nonanoil-Arq-Thr-Arq-cycle (SS) rCvs-Dab-DPhe-Leu-Arq-Dab-DCys1, (Ibn); nonanoil-Arq-Thr-Dab-cycle (SS) rCvs-Dab-Phe-Leu-Arq-Dab-Cvs1, (lb 2 ); and nonanoil-Arq-Thr-Dab-cycle (SS) rCvs-Dab-DPhe-Leu-Arq-Dab-DCys1, (lb 3 ).
  • the compounds of formula (Ib) are selected from nonanoyl-Arg-Thr-Arg- cycle (SS) rCvs-Dab-DPhe-Leu-Arg-Dab-DCys1, (Ibn); and nonanoil-Arg-Thr-Dab-cycle (SS) rCvs-Dab-DPhe-Leu-Arg-Dab-DCys1, (lbi 3 ).
  • the compound of formula (Ib) is nonanoyl-Arg-Thr-Dab-cycle (SS) rCvs-Dab-DPhe-Leu-Arg-Dab-DCysl, (lb 13 ).
  • the compounds of formula (Ib) are those in which R 6 is - (CH) (CH 3 ) (OH).
  • the compounds of formula (Ib) are selected from the following list: nonanoil-Arg-Thr-Arg-cycle (SS) rCvs-Dab-DPhe-Thr-Arg-Dab-Cys1, (lb 4 ); nonanoil-Arg-Thr-Arg-cycle (SS) rCvs-Dab-Phe-Thr-Arg-Dab-Cys1, (lb 5 );
  • nonanoil-Arg-Thr-Dab-cycle SS
  • SS nonanoil-Arg-Thr-Dab-cycle
  • SS nonanoil-Arg-Thr-Dab-cycle
  • SS nonanoil-Arg-Thr-Dab-cycle
  • SS nonanoil-Arg-Thr-Arg-cycle
  • SS nonanoil-Arg-Thr-Arg-cycle
  • SS rCvs-Dab-Trp-Thr-Arg-Dab-Cys1, (lb 8 );
  • nonanoil-Arg-Thr-Arg-cycle [Cvs-Dab-DLeu-Thr-Arg-Dab-Cysl, (lb 20 ); nonanoil-Arg-Thr-Dab-cycle (SS) rCvs-Dab-DLeu-Thr-Arg-Dab-Cys1, (lb 2 i); decanoil-Arg-Thr-Arg-cycle (SS) rCvs-Dab-DTrp-Thr-Dab-Dab-Cys1, (lb 22 ); decanoil-Arg-Thr-Dab-cycle (SS) rCvs-Dab-DLeu-Thr-Arg-Dab-Cys1, (lb 23 ) decanoil-Arg-Thr-Dab-cycle (SS) rCvs-Dab-Trp-Thr- Arg-Dab-Cysl, (lb 24 ); and dodecanoyl-Arg-Thr
  • the compounds of formula (Ib) are selected from the following list: nonanoil-Arg-Thr-Arg-cycle (SS) rCvs-Dab-Glv-Glv-Arg-Dab-Cys1, (lb 26 ) ;
  • nonanoil-Ara-Thr-Arq-cycle SS
  • SS nonanoil-Arq-Thr-Dab-cycle
  • SS nonanoil-Arq-Thr-Dab-cycle
  • SS nonanoil-Arg-Thr-Dab-cycle
  • SS nonanoil-Arg-Thr-Dab-cycle
  • SS rCvs-Dab-Glv-Leu-Arg-Dab-Cys1, (lb 30 ).
  • the compounds of formula (Ib) are selected from the following list: octanoyl-Arq-Thr-Arq-cycle (SS) rCvs-Dab-DPhe-Leu-Arq-Dab-Cvs1, (lb 3 i) ; (S) -6-methyl heptanoyl-Arq-Thr-Arq-cycle (SS) rCvs-Dab-DPhe-Leu-Arg-Dab-Cys], (lb 32 );
  • the most preferred compounds of formula (I) are those from the following list: nonanoyl-Arq-Thr-Dab-cycle (4-10) rDab-Dab-DPhe-Leu-Arq-Dab-Thr1, (lai); nonanoil-Arq-Thr-Dab-cycle (SS) rCvs-Dab-DPhe-Leu-Arq-Dab-Cvs1-Glv-Arq- Val-Glu-Val-Leu-Tyr-Arg-Gly-Ser-Trp], ( lb 3 );
  • the compounds of the present invention can be prepared by solid phase synthesis Fmoc / tBu.
  • the preparation process for each amino acid comprises the following steps: (i) various resin washes with
  • DMF ⁇ , ⁇ -dimethylformamide
  • the peptides obtained by the above procedures can be purified by preparative HPLC, whereby a purity greater than 90%, preferably greater than 95%, can be obtained.
  • the compounds of the present invention are easily prepared by chemical synthesis according to the procedure mentioned above while commercial polymyxin is obtained by fermentation.
  • Another aspect of the present invention are the compounds of formula (I), for use as antibacterial agents against Gram-positive bacteria.
  • the medically relevant Gram-positive bacteria are several of the well-known genus such as Bacillus, Listeria, Staphylococcus, Micrococcus, Streptococcus, Enterococcus, Clostridium, Mvcoplasma and
  • Gram-positive bacteria are selected from Micobacterium phlei, Staphylococcus aureus and Micrococcus luteus. In a particular embodiment, Gram-positive bacteria are selected from Micobacterium phlei ATCC41423, Staphylococcus aureus ATCC 6538 and Micrococcus luteus ATCC 9341.
  • This aspect of the invention can also be formulated as the use of a compound as defined above, for the preparation of a medicament for the treatment of a bacterial infection caused by Gram-positive bacteria in a mammal, including a human.
  • the invention is also related to a method for the treatment and / or prophylaxis of a mammal, including a human, that suffers or is susceptible to bacterial infections caused by Gram-positive bacteria, in particular to the aforementioned infections, said method comprising administration to said patient of a therapeutically effective amount of compounds of the present invention, together with pharmaceutically acceptable excipients or carriers.
  • Gram-negative bacteria include Escherichia coli, Salmonella, Enterobacteriaceae, Pseudomonas, Moraxella, Helicobacter, Leqionella, Hemophilus influenzae, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens and Acinetobacter baumannii.
  • Gram-negative bacteria are selected from Salmonella tvphimurium, Pseudomonas aeruginosa, Escherichia coli and Acinetobacter sp.
  • Gram-negative bacteria are selected from Salmonella tvphimurium 14028, Pseudomonas aeruginosa 9027, Escherichia coli 8739 and Acinetobacter sp ATCC 5798.
  • This aspect of the invention can also be formulated as the use of a compound of formula (I) as defined above for the preparation of a medicament for the treatment of a bacterial infection caused by Gram-negative bacteria in a mammal, including a human.
  • the invention is also related to a method for the treatment and / or prophylaxis of a mammal, including a human who suffers or is susceptible to bacterial infections caused by Gram-negative bacteria, in particular to any of the infections mentioned above, the method
  • the compounds of the present invention can be used analogously to other known antibacterial agents. These can be used alone or in combination with other appropriate bioactive compounds.
  • the compounds of formula (I) can be used in the treatment of bacteremias and / or septicemia resulting from infections by Gram-negative bacteria, administered alone or in combination with conventional antibiotics.
  • the compounds of formula (I) of the present invention are used topically, or orally for decontamination of the digestive tract prior to surgery.
  • a further aspect of the present invention is related to a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of the compounds of formula (I), together with appropriate amounts of pharmaceutically acceptable excipients or carriers.
  • compositions may be prepared by combining the compounds of formula (I) of the present invention with pharmaceutically acceptable solid or liquid carriers or excipients, following standard pharmaceutical practices.
  • compositions of the present invention can be administered in a manner suitable for the disease to be treated, for example by oral, parenteral, inhalation, rectal, transdermal or topical route.
  • said pharmaceutical compounds or compositions are preferably administered at a dose to obtain or maintain a concentration, that is, a amount or level in blood of the active component in the patient following the treatment that is effective as an antibacterial.
  • said amount or dose that is effective as an antibacterial will be in the approximate range of 0.1 to 100 mg / kg, plus
  • the doses may vary depending on the requirements of the patient, the severity of the bacterial infection to be treated and the particular compound used.
  • Boc tert-butoxycarbonyl
  • Dab 2,4-diaminobutyric acid
  • DIEA N.N-diisopropylethylamine
  • Dde N - [1 - (4,4-dimethyl-2,6-dioxcyclohex-1-ylidene) ethyl]
  • DIPCDI ⁇ , ⁇ '-diisopropylcarbodiimide
  • DMF N.N-dimethylformannide
  • ES electrospray
  • Fmoc 9-fluorenylmethoxycarbonyl
  • HATU 2- (7-Aza-1 H-benzotriazol-1-yl) -1, 1, 3,3-tetramethyluronium hexafluorophosphate
  • HBTU 2- (1 H-benzotriazol-1-yl) -1, 1, 3,3-tetramethyluronium hexafluorophosphate
  • HOBt 1-
  • the general solid phase synthesis protocol Fmoc / tBu has been used to prepare the compounds of the examples.
  • the Fmoc / tBu synthesis protocol for each synthetic cycle consists of the following steps: (i) washing the resin with DMF (5 x 30 s); (ii) treatment with 20% piperidine / DMF (1 x 1 min + 2 x 10 min, Fmoc deprotection); (iii) washing with DMF (5 x 30 s); (iv) acylation with the amino acid Fmoc protected (3 times excess) and HBTU / DIEA (3: 6 times excess, respectively) in the minimum amount of DMF; (v) wash with DMF (5 x 30 s) and CH 2 CI 2 (5 x
  • the general method of de-anchoring and deprotection of the peptides consisted of a treatment with TFA / thioanisole / 1,2-ethanodithiol / triisopropylsilane / water
  • Each peptide crude was then dissolved in a DMSO solution in 10% water at a concentration of approximately 1 mM or slightly lower for the formation of the disulfide bond.
  • the solution was stirred in an open system for 12-36 h. Cyclization took place by oxidation in the air that was followed by HPLC and MS.
  • the peptides were characterized by MALDI-TOF mass spectrometry in a VOYAGER-DE (PerSeptive Biosystems) mass spectrometer.
  • the amino acids of the Sequence were introduced according to a standard Fmoc / 'Bu solid phase synthesis protocol as described above.
  • nonanoic acid (134 ⁇ , 0.85 mmol, 3 times excess) was coupled with HBTU / DIEA (3 and 6 times excess, respectively) in the minimum amount of DMF.
  • the resin was washed with DMF (5 x 30 s) and CH 2 CI 2 (5 x 30 s).
  • the weight of the peptide crude after de-anchoring and deprotection according to the method indicated above was 300mg (yield 90%). Purification by preparative HPLC yielded 30mg of pure peptide (10% yield).
  • Amino acids of the sequence were introduced according to a standard Fmoc / 'Bu solid phase synthesis protocol as described above.
  • the amino acid bridge Dab 4 was introduced as Fmoc-Dab (Dde) -OH.
  • nonanoic acid (228 ⁇ , 1.44 mmol, 3 times excess) was introduced by activating it with HBTU / DIEA (3 and 6 times excess,
  • the protected peptide was treated with hydrazine (1% in DMF) to deprotect the Dde group.
  • the peptide was removed from the resin with a gentle treatment with TFA (1% in CH2CI2) keeping the rest of the protecting groups intact (of type tBu and Pbf). Cyclization between Dab 4 and Thr 10 in C-terminal was carried out in DMF: CHCI 3 (1: 1, 0.3M peptide concentration) with
  • the cyclic and protected peptide crude was purified on a silica column and then treated with the TFA / thioanisole / 1, 2-ethanodithiol / triisopropylsilane / water acidolytic solution (70: 10: 10: 1: 3.5; 3h) to remove the rest of protective groups.
  • the weight of the peptide crude obtained was 130mg (yield 21%). Purification by preparative HPLC yielded 1.1 mg of pure peptide (8.5% yield).
  • the antibacterial activity of synthetic lipopeptides was determined in sterile 96-well plates (Corning Costar 3598 microtiter plates) with a final volume of 200 ⁇ _ as follows: aliquots (100 ⁇ _) of a bacterial suspension at a concentration of 10 5 colony forming units / mL in culture medium (MH, Muller Hinton Broth, Difco, USA) at pH 7.4, were added to 100 ⁇ _ of lipopeptide solution prepared from a stock solution in water of 1 mg / mL, in dilutions double dilution series in MH at pH 7.4 (Jorgensen & Turnide, 2003).
  • Microorganisms were stored in cryoballs (EAS Victoria, France) at -20 ° C.
  • the strains of the bacteria used to carry out the antibacterial activity test were obtained from: the American Type Culture Collection (ATCC, Rockville, MD, USA):
  • the molecular weight of the compounds of the invention is greater than that of PxB, which means that the MIC antibacterial activity expressed in micromolar units instead of ⁇ g ml is greater.
  • Table 4 Antibacterial activity (MIC) in Gram negative expressed in a micromolar units Salmonella compound Pseudomonas Escherichia Acinetobacter (microM) tvphimurium aeruqinosa coli 8739 so ATCC
  • Acinetobacter sp ATCC 5798 is a model of Acinetobacter baumannii that is one of the most problematic bacteria in nosocomial infections
  • Staphylococcus aureus is one of the important bacteria because of the resistance it generates to antibiotics
  • Micobacterium phlei is a model non-pathogen of the causative agent of tuberculosis, Mycobacterium tuberculosis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Los compuestos de formula (I), donde: R0 es (C8-C11)-alquilo ramificado, CH3-(CH2)m-, CH3-O-(CH2CH2O)2CH2-, o fenil-(CH2)x-; m = 6-10; x = 1-3; R1, R3, R4, R7, y R8 se seleccionan independientemente de la formula GF-(CH2)n-; con n = 1-4; y GF = -NH2 o -NH-C(=NH)-NH2; R2 es -CH(CH3)(OH), -CH(CH3)2, -CH2NH2 o -CH2OH; R5 y R6 se seleccionan independientemente entre H, -(C1-C4)-alquilo lineal o ramificado, -(CH2)-R10, -CH2-CH2-S-CH3 y -CH-(CH3)-OH; R9 es CONH2, -CH(CH3)(OH) o CONHR11; R10 es fenilo, 3- indolilo, 4-imidazolilo, 4-hidroxifenilo, α o β-naftilo o 2-, 3- o 4-piridilo; R11 es una secuencia peptidica especifica; u es CH2 o S; v es NH o S; w es CH2 o CO; con la condicion de que cuando R9 es CONH2, entonces (a) R5 o R6 es -CH(CH3)(OH), o (b) R5 y R6 son H; o (c) la configuracion del C unido a R9 es S o (d) la configuracion del C unido a R5 es R; y con la condicion de que cuando R9 es CH(CH3)OH, entonces R8 es GF(CH2)n donde n es 3 y GF es NH-C(=NH)-NH2, y R7 es GF(CH2)n donde n es 2 y GF es NH2, se ha encontrado que son utiles en el tratamiento de infecciones bacterianas.

Description

Compuestos peptídicos útiles como agentes antibacterianos
La presente invención está relacionada con compuestos que son activos contra bacterias Gram-positivas y Gram-negativas, su procedimiento de preparación, composiciones farmacéuticas que los contienen, y su uso en el tratamiento de infecciones bacterianas.
ESTADO DE LA TÉCNICA El hecho de que ciertos microorganismos patógenos se hayan convertido en resistentes a las terapias antibióticas es un problema grave en la salud pública. Parte de este problema radica en el hecho de que ciertas bacterias y otros microorganismos infecciosos son extraordinariamente capaces de desarrollar resistencia a los antibióticos. Otra causa principal se debe al uso deficiente de los antibióticos en medicina, veterinaria y agricultura.
Existe una preocupación a nivel mundial por la creciente prevalencia de infecciones causadas por bacterias multiresistentes, como por ejemplo
Staphylococcus aureus resistente a metilicina, los Enterococcus resistentes a vancomincina y ciertas bacterias Gram-negativas como Pseudomonas aeruqinosa, Acinetobacter baumannii y Klebsiella pneumoniae. Dichas infecciones son muy difíciles de controlar y una causa constante de enfermedad y mortandad. Los antibióticos convencionales actúan
habitualmente sobre una o mas proteínas o receptores diana y la resistencia genética aparece a una frecuencia que depende de muchos factores, tales como el número de dichas proteínas o receptores diana.
La continua aparición de cepas bacterianas resistentes a los antibióticos convencionales está llevando a enormes esfuerzos dirigidos al desarrollo de nuevos fármacos que actúen en la membrana bacteriana, como los péptidos antimicrobianos ("anti-microbial peptides", AMP). Los péptidos
antimicrobianos ofrecen una nueva clase de agentes terapéuticos a los cuales las bacterias no son capaces de desarrollar resistencia genética, puesto que actúan principalmente sobre el componente lipídico de las membranas celulares. Entre dichos compuestos, la polimixina B (PxB), que se halla aprobada para su uso clínico, esta adquiriendo una nueva relevancia terapéutica y está empezando a ser considerado como un representante de la clase de antibióticos activos contra bacterias multiresistentes.
Las polimixinas, en particular la polimixina B, constituyen una familia de antibióticos descubierta en 1947 con una elevada actividad contra bacterias Gram-negativas. La polimixina B es un lipopéptido antibiótico aislado de
Bacillus polvmvxa. Su estructura básica consiste en un ciclo peptídico policatiónico del cual pende un tripéptido unido a una cadena de ácido graso. La polimixina B ha resurgido en la práctica médica durante los últimos años y su uso continuará en aumento debido al escaso desarrollo de nuevos antibióticos por parte de la compañías farmacéuticas y a la creciente prevalencia mundial de infecciones nosocomiales causadas por bacterias Gram-negativas multiresistentes ("multidrug resistant", MDR). La polimixina B y otros miembros de la familia de las polimixinas son fármacos que se utilizan como último remedio para tratar infecciones causadas por bacterias multiresistentes y algunas veces son el único antibiótico activo disponible. Además, la resistencia a polimixina es rara y en general, adaptativa y, por tanto, reversible. La polimixina B es también capaz de inhibir la actividad biológica del lipopolisacárido (LPS) bacteriano por medio de la unión de alta afinidad al lípido A, siendo así el agente de elección para el tratamiento del shock séptico inducido por LPS. Desgraciadamente, la polimixina B no presenta actividad contra bacterias Gram-positivas o anaeróbicas. Además, las polimixinas son de uso limitado debido a que presentan cierta
nefrotoxicidad y neurotoxicidad.
Por todo ello, existe todavía la necesidad de encontrar nuevos agentes antibacterianos activos no sólo contra bacterias Gram-negativas sino también contra bacterias Gram-positivas. EXPLICACIÓN DE LA INVENCIÓN
Los inventores han encontrado algunos compuestos peptídicos con actividad antibiótica que actúan sobre el componente lipídico de las membranas bacterianas y que son activos tanto contra bacterias Gram-positivas como contra Gram-negativas. Estos compuestos se basan en la estructura de la polimixina natural. Sin embargo y a diferencia de las polimixinas, dichos compuestos son activos no sólo contra bacterias Gram-negativas sino también en Gram-positivas en el rango micromolar. Esto es ventajoso puesto que pueden actuar en respuesta a infecciones causadas por ambos tipos de bacteria. Así, un aspecto de la presente invención está relacionado con proporcionar compuestos de fórmula (I),
Figure imgf000005_0001
(I)
donde: R0 es un radical seleccionado entre el grupo que consiste en: (C8- Cii)-alquilo ramificado, CH3-(CH2)m-, CH3-O-(CH2CH2O)2CH2-, y
Figure imgf000005_0002
m es un entero entre 6 y 10; x es un entero entre 1 y 3; Ri, R3, R4, R7, y Rs son radicales seleccionados independientemente que tienen la fórmula siguiente: GF-(CH2)n-; donde n es un entero entre 1 y 4; y GF es un radical seleccionado entre el grupo que consiste en -NH2 y -NH-C(=NH)-NH2; R2 es un radical seleccionado entre el grupo que consiste en -CH(CH3)(OH), -CH(CH3)2, -CH2NH2 y -CH2OH; R5 y R6 son radicales seleccionados independientemente entre el grupo que consiste en H, -(d-C4)-alquilo lineal o ramificado, -(CH2)-Rio, -CH2-CH2-S-CH3 y -CH(CH3)(OH); R9 se selecciona entre el grupo que consiste en CONH2, -CH(CH3)(OH) y CONHRn; R10 es un radical seleccionado entre el grupo que consiste en fenilo, 3-indolilo,
4-imidazolilo, 4-hidroxifenilo, α o β-naftilo y 2-, 3- o 4-piridilo; Rn es una secuencia peptídica seleccionada del grupo que consiste en Ala-Leu-Arg, Ala-Leu-Arg-Ala-Leu-Arg, Gly-Arg-Val-Glu-Val-Leu-Tyr-Arg-Gly- Ser-Trp, Lys-Val-Leu, Lys-Val-Leu-Lys-Val-Leu, Leu-Met-Trp-Trp-Met-Leu,
Orn-Orn_Orn, Gln-Arg-GLy-Arg-Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr, y Glu-(Y-espermida)-Arg-GLy-Arg-Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr; u es CH2 o S; v es NH o S; w es CH2 o CO; con la condición de que cuando R9 es CONH2, entonces se da una de las siguientes condiciones: (a) R5 o R6 es -CH(CH3)(OH), (b) R5 y Re son H; (c) la configuración del C unido a R9 es S (cadena lateral de D-cisteína) o (d) la configuración del C unido a R5 es R; y con la condición de que cuando R9 es -CH(CH3)OH (cadena lateral de treonina), entonces R8 es GF(CH2)n donde n es 3 y GF es -NH-C(=NH)-NH2, y R7 es GF(CH2)n donde n es 2 y GF es NH2.
En una realización preferida, los compuestos de fórmula (I) son aquéllos anteriormente mencionados donde R2 es -CH(CH3)(OH).
En otra realización preferida, los compuestos de fórmula (I) son aquéllos donde u es CH2, v es NH, w es CO, R9 es -CH(CH3)(OH ) y la configuración del C unido a R9 es S. Estos compuestos tienen la fórmula (la).
Figure imgf000006_0001
(la) En una realización más preferida, el compuesto de fórmula (la) es el nonanoil-Arq-Thr-Dab-ciclo(4-10)rDab-Dab-DPhe-Leu-Arq-Dab-Thr1, (lai).
Por el término "ciclo(4-10)" se entiende un macrociclo en el que el carboxilo terminal de la treonina en posición 10 forma un enlace amida con la cadena lateral del Dab en posición 4.
La configuración de los D-aminoácidos se ha indicado con una D. Cuando no se indica la configuración se entiende que se trata de un L-aminoácido.
En otra realización preferida, los compuestos de fórmula (I) son aquéllos donde u es S, v es S y w es CH2, que tienen la fórmula (Ib).
Figure imgf000007_0001
(Ib)
En otra realización más preferida, los compuestos de fórmula (Ib) son aquéllos compuestos donde R9 es CONHRn y R-n es una secuencia peptídica seleccionada del grupo que consiste en Ala-Leu-Arg, Ala-Leu-Arg-Ala-Leu- Arg, Gly-Arg-Val-Glu-Val-Leu-Tyr-Arg-Gly- Ser-Trp, Lys-Val-Leu, Lys-Val- Leu-Lys-Val-Leu, Leu-Met-Trp-Trp-Met-Leu, Orn-Orn-Orn, Gln-Arg-Gly-Arg- Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr, Glu(y-espermida)-Arg-Gly-Arg-Ala-Glu- Glu-Val-Tyr-Tyr-Ser-Gly-Thr, y Glu(Arg-Gly-Arg-Ala-Glu-Glu-Val-Tyr-Tyr-Ser- Gly-Thr)-y-espermida; En otra realización todavía más preferida, los compuestos de fórmula (Ib) se seleccionan de la siguiente lista: nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arg-Dab-Cysl- Ala-Leu-
Figure imgf000008_0001
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arg-Dab-Cys1-Ala-Leu- Arg-Ala-Leu-Arg, (lb2);
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arg-Dab-Cvs1-Gly-Arg- Val-Glu-Val-Leu-Tyr-Arg-Gly-Ser-Trp], (lb3);
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arg-Dab-Cvsl-Lys-Val- Leu, (lb4);
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-Phe-Leu-Arq-Dab-Cvs1-Lys-Val-
Leu-Lys-Val-Leu, (lb5);
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cysl-Leu-Met-
Trp-Trp-Met-Leu, (lb6);
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cys1-Qm-Orn- Orn, (lb7);
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Dab-Arq-Cys1-Gln-Arg- Gly-Arg-Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr, (lb8); y
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Dab-Arq-Cys1-Glu-(y- espermida)-Arg-Gly-Arg-Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr, (lb9).
Por el término "ciclo(S-S)" se entiende un macrociclo formado por un puente disulfuro entre las dos cisternas.
En otra realización preferida, los compuestos de fórmula (Ib), se seleccionan de la siguiente lista: nonanoil-Arq-Thr-Arq-ciclo(S-S)rCvs-Dab-Phe-Leu-Arq-Dab-Cysl, (lb10); nonanoil-Arq-Thr-Arq-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-DCys1, (Ibn); nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-Phe-Leu-Arq-Dab-Cvs1,(lb 2); y nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-DCys1, (lb 3). Resultados especialmente buenos se han encontrado con los péptidos que tienen una D-cisteína en posición 10. En otra realización más preferida, los compuestos de fórmula (Ib), se seleccionan entre nonanoil-Arg-Thr-Arg- ciclo(S-S)rCvs-Dab-DPhe-Leu-Arg-Dab-DCys1, (Ibn); y nonanoil-Arg-Thr-Dab- ciclo(S-S)rCvs-Dab-DPhe-Leu-Arg-Dab-DCys1, (lbi3). En otra realización todavía más preferida, el compuesto de fórmula (Ib) es nonanoil-Arg-Thr- Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arg-Dab-DCysl, (lb13).
En otra realización preferida, los compuestos de fórmula (Ib) son aquéllos en los que R6 es -(CH)(CH3)(OH).
En otra realización más preferida, los compuestos de fórmula (Ib), se seleccionan de la siguiente lista: nonanoil-Arg-Thr-Arg-ciclo(S-S)rCvs-Dab-DPhe-Thr-Arg-Dab-Cys1, (lb 4); nonanoil-Arg-Thr-Arg-ciclo(S-S)rCvs-Dab-Phe-Thr-Arg-Dab-Cys1, (lb 5);
nonanoil-Arg-Thr-Dab- ciclo(S-S)rCvs-Dab-DPhe-Thr-Arg-Dab-Cys1, (lbi6); nonanoil-Arg-Thr-Dab-ciclo(S-S)rCvs-Dab-Phe-Thr-Arg-Dab-Cys1, (lbi7); nonanoil-Arg-Thr-Arg-ciclo(S-S)rCvs-Dab-Trp-Thr-Arg-Dab-Cys1, (lb 8);
nonanoil-Arg-Thr-Dab-ciclo(S-S)rCvs-Dab-Trp-Thr-Arg-Dab-Cys1, (lb 9);
nonanoil-Arg-Thr-Arg-ciclo(S-S)[Cvs-Dab-DLeu-Thr-Arg-Dab-Cysl, (lb20); nonanoil-Arg-Thr-Dab-ciclo(S-S)rCvs-Dab-DLeu-Thr-Arg-Dab-Cys1, (lb2i); decanoil-Arg-Thr-Arg-ciclo(S-S)rCvs-Dab-DTrp-Thr-Dab-Dab-Cys1, (lb22); decanoil-Arg-Thr-Dab-ciclo(S-S)rCvs-Dab-DLeu-Thr-Arg-Dab-Cys1, (lb23) decanoil-Arg-Thr-Dab-ciclo(S-S)rCvs-Dab-Trp-Thr-Arg-Dab-Cysl, (lb24) ; y dodecanoil-Arg-Thr-Dab-ciclo(S-S)rCvs-Dab-Phe-Thr-Arg-Dab-Cys1, (lb25). En otra realización preferida, los compuestos de fórmula (Ib) son aquéllos en los que R5 o R6 son hidrógeno.
En otra realización más preferida, los compuestos de fórmula (Ib) se seleccionan de la siguiente lista: nonanoil-Arg-Thr-Arg-ciclo(S-S)rCvs-Dab-Glv-Glv-Arg-Dab-Cys1, (lb26);
nonanoil-Arg-Thr-Arg-ciclo(S-S)rCvs-Dab-Glv-Leu-Arg-Dab-Cys1, (lb27);
nonanoil-Ara-Thr-Arq-ciclo(S-S)rCvs-Dab-DPhe-Glv-Arg-Dab-Cysl, (lb28); nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab- DPhe -Gly-Arg-Dab-Cys], (lb29); y nonanoil-Arg-Thr-Dab-ciclo(S-S)rCvs-Dab-Glv-Leu-Arg-Dab-Cys1, (lb30). En otra realización preferida, los compuestos de fórmula (Ib) se seleccionan de la siguiente lista: octanoil-Arq-Thr-Arq-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cvs1, (lb3i); (S)-6-metil heptanoil-Arq-Thr-Arq-ciclo(S-S)rCvs-Dab- DPhe-Leu-Arg-Dab- Cys], (lb32);
(S)-6-metil octanoil-Arq-Thr-Arq-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cvs1, (lb33);
octanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cvs1, (lb34); (S)-6-metil heptanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab- DPhe-Leu-Arg-Dab- Cys], (lb35); y
(S)-6-metil octanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab- DPhe-Leu-Arg-Dab- Cys], (lb36). Los compuestos de fórmula (I) más preferidos son los de la siguiente lista: nonanoil-Arq-Thr-Dab-ciclo(4-10)rDab-Dab-DPhe-Leu-Arq-Dab-Thr1, (lai); nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cvs1-Glv-Arq- Val-Glu-Val-Leu-Tyr-Arg-Gly-Ser-Trp], (lb3);
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cvs1-Leu-Met- Trp-Trp-Met-Leu, (lb6); y
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-DCvs1, (lbi3).
Los compuestos de la presente invención pueden prepararse por síntesis en fase sólida Fmoc/tBu. El procedimiento de preparación para cada aminoácido comprende las etapas siguientes: (i) varios lavados de la resina con
Ν,Ν-dimetilformamida (DMF); (ii) tratamiento con 20% de piperidina/DMF; (iii) lavado con DMF varias veces; (iv) acilación con el aminoácido Fmoc protegido y 2-(1 H-benzotriazol-1 -il)-1 ,1 ,3,3-tetrametiluronio hexafluorofosfato /diisopropiletilamina (HBTU/DIEA) en DMF; (v) lavado con DMF varias veces y posteriormente en diclorometano (CH2CI2) varias veces; y (vi) lavado con DMF varias veces.
Los péptidos obtenidos por los procedimientos anteriores pueden purificarse por HPLC preparativa, mediante lo cual puede obtenerse una pureza superior al 90%, preferiblemente superior al 95%. Así, los compuestos de la presente invención se preparan fácilmente por síntesis química según el procedimiento mencionado anteriormente mientras que la polimixina comercial se obtiene por fermentación. Otro aspecto de la presente invención son los compuestos de fórmula (I), para uso como agentes antibacterianos contra bacterias Gram-positivas. Entre las bacterias Gram-positivas médicamente relevantes se encuentran varias de género bien conocido tales como Bacillus, Listeria, Staphylococcus, Micrococcus, Streptococcus, Enterococcus, Clostridium, Mvcoplasma y
Actinobacteria.
En una realización preferida, las bacterias Gram-positivas se seleccionan entre Micobacterium phlei, Staphylococcus aureus y Micrococcus luteus. En una realización particular, las bacterias Gram-positivas se seleccionan entre Micobacterium phlei ATCC41423, Staphylococcus aureus ATCC 6538 y Micrococcus luteus ATCC 9341 .
Este aspecto de la invención se puede formular también como el uso de un compuesto como se ha definido anteriormente, para la preparación de un medicamento para el tratamiento de una infección bacteriana causada por bacterias Gram-positivas en un mamífero, incluyendo un humano.
La invención también está relacionada con un método para el tratamiento y/o la profilaxis de un mamífero, incluyendo un humano, que sufre o es susceptible a infecciones bacterianas causada por bacterias Gram-positivas, en particular a las infecciones mencionadas anteriormente, dicho método comprendiendo la administración al mencionado paciente de una cantidad terapéuticamente efectiva de compuestos de la presente invención, junto a excipientes o portadores farmacéuticamente aceptables.
Es también parte de la invención los compuestos de fórmula (I) como se han definido anteriormente para su uso como agentes antibacterianos contra bacterias Gram-negativas. Las bacterias Gram-negativas médicamente relevantes comprenden Escherichia coli, Salmonella, Enterobacteriaceae, Pseudomonas, Moraxella, Helicobacter, Leqionella, Hemophilus influenzae, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens y Acinetobacter baumannii. En una realización preferida, las bacterias Gram-negativas se seleccionan entre Salmonella tvphimurium, Pseudomonas aeruginosa, Escherichia coli y Acinetobacter sp. En una realización particular, las bacterias Gram-negativas se seleccionan entre Salmonella tvphimurium 14028, Pseudomonas aeruginosa 9027, Escherichia coli 8739 y Acinetobacter sp ATCC 5798. Este aspecto de la invención puede ser también formulado como el uso de un compuesto de fórmula (I) como se ha definido anteriormente para la preparación de un medicamento para el tratamiento de una infección bacteriana causada por bacterias Gram-negativas en un mamífero, incluyendo un humano.
La invención también está relacionada con un método para el tratamiento y/o la profilaxis de un mamífero, incluyendo un humano que sufra o es susceptible a infecciones bacterianas causada por bacterias Gram-negativas, en particular a alguna de las infecciones mencionadas anteriormente, el método
comprendiendo la administración al mencionado paciente de una cantidad terapéuticamente efectiva de los compuestos de fórmula (I) como se han definido anteriormente, junto a excipientes o portadores farmacéuticamente aceptables.
Los compuestos de la presente invención se pueden utilizar análogamente a otros agentes antibacterianos conocidos. Estos se pueden utilizar solos o en combinación con otros compuestos bioactivos apropiados. En una realización particular, los compuestos de fórmula (I) se pueden utilizar en el tratamiento de bacteremias y/o septicemia consecuencia de infecciones por bacterias Gram-negativas, administrados solos o en combinación con antibióticos convencionales. En una realización preferida, los compuestos de fórmula (I) de la presente invención se usan por vía tópica, o bien por vía oral para la descontaminación del tracto digestivo previa a cirugía.
Como se ha mencionado anteriormente, estos compuestos presentan la ventaja de que pueden actuar sobre un espectro amplio de bacterias y debido a que aparentemente se cree que actúan sobre la membrana, pueden resultar más efectivos que otros antibióticos que actúan sobre un receptor o enzima frente a la resistencia a los antibióticos. Un aspecto adicional de la presente invención está relacionado con una composición farmacéutica que comprende una cantidad terapéuticamente efectiva de los compuestos de fórmula (I), junto con cantidades apropiadas de excipientes o portadores farmacéuticamente aceptables.
Las composiciones farmacéuticas se pueden preparar por combinación de los compuestos de fórmula (I) de la presente invención con excipientes o portadores sólidos o líquidos farmacéuticamente aceptables, siguiendo prácticas farmacéuticas estándar.
Las composiciones farmacéuticas de la presente invención se pueden administrar de manera adecuada para la enfermedad que se desea tratar, por ejemplo por vía oral, parenteral, inhalatoria, rectal, transdérmica o tópica. En el uso terapéutico para tratar o combatir infecciones bacterianas en pacientes como los humanos y otros animales que pudieren ser diagnosticados con infecciones bacterianas, dichos compuestos o composiciones farmacéuticas, preferentemente, se administran a una dosis para obtener o mantener una concentración, o sea, una cantidad o nivel en sangre del componente activo en el paciente que sigue el tratamiento que sea efectiva como antibacteriano. Generalmente, dicha cantidad o dosis que sea efectiva como antibacteriano se encontrará en el intervalo aproximado de 0.1 a 100 mg/Kg, más
preferentemente alrededor de 3.0 a 50 mg/Kg de peso corporal/día. Se entiende que las dosis pueden variar dependiendo de los requisitos del paciente, la severidad de la infección bacteriana a tratar y del compuesto particular que se use.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas. EJEMPLOS
Abreviaciones: Boc, terc-butoxicarbonilo; Dab: ácido 2,4-diaminobutírico; DIEA, N.N-diisopropiletilamina; Dde, N -[1 -(4,4-dimetil-2,6-dioxociclohex-1 - iliden)etilo]; DIPCDI, Ν,Ν'-diisopropilcarbodiimida; DMF, N.N- dimetilformannida; ES, electrospray; Fmoc, 9-fluorenilmetoxicarbonilo; HATU, 2-(7-Aza-1 H-benzotriazol-1 -il)-1 ,1 ,3,3-tetrametiluronio hexafluorofosfato; HBTU, 2-(1 H-benzotriazol-1 -il)-1 ,1 ,3,3-tetrametiluronio hexafluorofosfato; HOBt, 1 -hidroxibenzotriazol; HPLC, chromatografía liquida de alta eficacia; MALDI-TOF, ionización por desorción láser asistida por matriz-tiempo de vuelo; MS, espectrometría de masas; MIC, concentración mínima inhibitoria; Pbf, 2,2,4,6,7-pentametildihidrobenzofuran-5-sulfonilo; PM, peso molecular; TFA, ácido trifluoroacético; Trt, tritilo. Métodos generales
Se ha empleado el protocolo general de síntesis en fase sólida Fmoc/tBu para preparar los compuestos de los ejemplos. El protocolo de síntesis Fmoc/tBu para cada ciclo sintético consiste en las etapas siguientes: (i) lavado de la resina con DMF (5 x 30 s); (ii) tratamiento con 20% de piperidina/DMF(1 x 1 min + 2 x 10 min, desprotección Fmoc); (iii) lavado con DMF (5 x 30 s); (iv) acilación con el aminoácido Fmoc protegido (3 veces de exceso) y HBTU/DIEA (3:6 veces de exceso, respectivamente) en la cantidad mínima de DMF; (v) lavado con DMF (5 x 30 s) y CH2CI2 (5 x
30 s); (vi) prueba de Kaiser (con una muestra de resina peptídica); (vii) lavado con DMF (5 x 30 s).
El método general de desanclaje y desprotección de los péptidos consistió en un tratamiento con TFA/tioanisol/1 ,2-ethanoditiol/triisopropilsilano/agua
(70:10:10:1 :3.5, 3h). La solución de TFA se filtró y la resina se lavó con dos porciones adicionales de TFA puro (0.5 mL) que se juntaron con la primera fracción acidolítica. La solución resultante se añadió sobre éter frío (TFA:éter en proporción 1 :20) para precipitar el péptido. El crudo peptídico se lavó con éter tres veces, éste se decantó y el sólido se seco al aire.
Cada crudo peptídico se disolvió a continuación en una solución de DMSO en agua al 10% a una concentración aproximada de 1 mM o ligeramente inferior para la formación del enlace disulfuro. La solución se agitó en sistema abierto durante 12-36 h. La ciclación tuvo lugar por oxidación al aire que se siguió por HPLC y MS.
La purificación se llevó a cabo por HPLC preparativa. En los Ejemplos se empleó un equipo a Varían Pro-star 200 prep-system con una columna Varían Load&lock C18 (250 x 2'5 mm, 10 μιτι) y se eluyó en gradiente con mezclas de H2O-acetonithlo-0.1 % TFA y detección UV a 220 nm.
Los péptidos se caracterizaron por espectrometría de masas MALDI-TOF en un espectrómetro de masas VOYAGER-DE (PerSeptive Biosystems).
La homogeneidad de los péptidos purificados se comprobó por HPLC analítica empleando columnas Merck or Kromasil C18 de fase reversa (4 x 250 mm, 5 μιτι de diámetro de partícula y una medida de poro de 120 Á). La elución se llevó a cabo a 1 ml-min"1 con mezclas de H2O- 0.1 % TFA y acetonitrilo-0.1 % TFA y detección UV a 220 nm. Ejemplo 1 : Preparación de nonanoil-Arq-Thr-Dab-ciclo(S-S)[Cvs-Dab-DPhe-
Leu-Arq-Dab-Cvsl-Glv-Arq-Val-Glu-Val-Leu-Tyr-Arq-Glv-Ser-Trpl ((lb. .
compuesto de fórmula (Ib) con Ro = CH3(CH2)7-, Ri =
-CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), R2 = -CH(CH3)OH, (cadena lateral de Thr), R3 = -CH2CH2NH2 (cadena lateral de Dab), R4 =
-CH2CH2NH2 (cadena lateral de Dab), Rs = -CH2Ph (cadena lateral de DPhe), Re = -CH2CH(CH3)2 (cadena lateral de Leu). R7 = -CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), Re = -CH2CH2NH2 (cadena lateral de Dab), y R9 = G I v-Arq -Va I -G I u -Va I - Leu -Tyr-Arq -G I v-Ser-Trp ) Aminoácidos protegidos: Fmoc-Cys(Trt)-OH, Fmoc-Dab(Boc)-OH, Fmoc-
Arg(Pbf)-OH, Fmoc-Leu-OH, Fmoc-DPhe-OH, Fmoc-Thr(tBu)-OH, Fmoc-Gly- OH, Fmoc-Val-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu)- OH, Fmoc-Trp(Boc)-OH. Se llevo a cabo la síntesis manual según un protocolo estándar Fmoc/'Bu en jeringas de polipropileno con un filtro de polietileno. Se utilizó la resina Fmoc- Rink (600mg, 0.282 mmoles, f= 0.47mmol/g). Los aminoácidos de la secuencia se introdujeron según un protocolo estándar de síntesis en fase sólida Fmoc/'Bu como se ha descrito anteriormente. Una vez la secuencia se completó, se acopló el ácido nonanoico (134 μΙ, 0.85 mmoles, 3 veces de exceso) con HBTU/DIEA (3 y 6 veces de exceso, respectivamente) en la cantidad mínima de DMF. Una vez concluida la reacción, la resina se lavó con DMF (5 x 30 s) y CH2CI2 (5 x 30 s). El peso del crudo peptídico tras el desanclaje y desprotección según el método indicado anteriormente fue de 300mg (rendimiento 90%). La purificación por HPLC preparativa rindió 30mg de péptido puro (rendimiento 10%).
Caracterización del péptido purificado: Homogeneidad (por integración del área de la traza de HPLC) >95%; ESI: m/z 528.95 ([M+5H+]5+), 660.90
([M+4H+]4+), 440.95 ([M+6H+]6+), 881 .00([M+3H+]3+). PM encontrado= 2639.75 (PM esperado 2639.39).
Ejemplo 2: Preparación de nonanoil-Arq-Thr-Dab-ciclo(S-S)[Cvs-Dab-DPhe- Leu-Arg-Dab-Cvsl-Leu-Met-Trp-Trp-Met-Leu (dbfi), compuesto de fórmula (Ib) con Ro = CHa(CH?)7-, Ri =-CH?CH?CH?NHC(=NH)-NH? (cadena lateral de Arq), R? = -CH(CHa)OH, (cadena lateral de Thr), F¾ =-CH?CH?NH? (cadena lateral de Dab), R¿ = -CH?CH?NH? (cadena lateral de Dab), Rfi =-CH?Ph
(cadena lateral de DPhe), Rfi = -CH?CH(CHa)? (cadena lateral de Leu), R7 = - CH?CH?CH?NHC(=NH)-NH? (cadena lateral de Arq), Rs = -CH?CH?NH? (cadena lateral de Dab), y Rc¡ = Leu-Met-Trp-Trp-Met-Leu Aminoácidos protegidos: Fmoc-Cys(Trt)-OH, Fmoc-Dab(Boc)-OH, Fmoc-
Arg(Pbf)-OH, Fmoc-Leu-OH, Fmoc-DPhe-OH, Fmoc-Thr(tBu)-OH, Fmoc-Met- OH, Fmoc-Trp(Boc)-OH.
Se llevo a cabo la síntesis manual según un protocolo estándar Fmoc/'Bu sobre resina Fmoc-Rink como se ha descrito anteriormente en el Ejemplo 1 .
Caracterización del péptido purificado: Homogeneidad (por integración del área de la traza de HPLC) >95%; ESI: m/z 550.15 ([M+4H+]4+), 440.15
([M+5Hf +), 733.35 ([M+3Hf+). PM encontrado= 2196.6 (PM esperado
2197.04). Ejemplo 3: Preparación de nonanoil-Arq-Thr-Dab-ciclo(S-S)[Cvs-Dab-DPhe- Leu-Arg-Dab-DCvsl ((Ib-i compuesto de fórmula (Ib) con Ro = CH3(CH2)7-, Ri = -CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), R2 = -CH(CH3)OH, (cadena lateral de Thr), R3 =- CH2CH2NH2 (cadena lateral de Dab), R4 =
-CH2CH2NH2 (cadena lateral de Dab), Rs = -CH2Ph (cadena lateral de DPhe), Re = -CH2CH(CH3)2 (cadena lateral de Leu). R7 = -CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arg), Re = -CH2CH2NH2 (cadena lateral de Dab) y R9 = CONHRii, v Rii = H Aminoácidos protegidos: Fmoc-Cys(Trt)-OH, Fmoc-Dab(Boc)-OH, Fmoc- Arg(Pbf)-OH, Fmoc-Leu-OH, Fmoc-DPhe-OH, Fmoc-Thr(tBu)-OH, Fmoc- DCys(Trt)-OH
Se llevo a cabo la síntesis manual según un protocolo estándar Fmoc/'Bu sobre resina Fmoc-Rink como se ha descrito anteriormente en el Ejemplo 1 .
Caracterización del péptido purificado: Homogeneidad (por integración del área de la traza de HPLC) >95%; MALDI-TOF: m/z 1336.68 ([M+H]M 00%), 1359.49 ([M+Na] +, 17%).
Ejemplo 4: Preparación de nonanoil-Arq-Thr-Dab-ciclo(S-S)[Cvs-Dab-DPhe- Thr-Arg-Dab-Cvsl (dbifi), compuesto de fórmula (Ib) con Ro = CH3(CH2)7-, R1 = -CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), R2 = -CH(CH3)OH, (cadena lateral de Thr), R3 = -CH2CH2NH2 (cadena lateral de Dab), R4 = - CH2CH2lMH2 (side chain of Dab), Rs = -CH2Ph (cadena lateral de DPhe), Re =
-CH(CH3)(OH), (cadena lateral de Thr), R7 = -CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), Re = -CH2CH2NH2 (cadena lateral de Dab), R9 =
CONHRii, Rii = H Aminoácidos protegidos: Fmoc-Arg(Pbf)-OH, Fmoc-Thr(tBu)-OH, Fmoc-
Dab(Boc)-OH, Fmoc-Cys(Trt)-OH, Fmoc-DPhe-OH,
Se llevo a cabo la síntesis manual según un protocolo estándar Fmoc/'Bu sobre resina Fmoc-Rink como se ha descrito anteriormente en el Ejemplo 1 . Caracterización del péptido purificado: Homogeneidad (por integración del área de la traza de HPLC) >95%; MALDI-TOF: m/z 1324.24 ([M+H]M 00%), 1347.45 ([M+Na] +, 16%). Ejemplo 5: Preparación de nonanoil-Arq-Thr-Dab-cvclo(S-S)[Cvs-Dab-DPhe- Gly-Arg-Dab-Cysl ((Ib), compuesto de fórmula (Ib-vi ) con Ro = CH3(CH2)7-, Ri =-CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), R2 = -CH(CH3)OH, (cadena lateral de Thr), R3 = -CH2CH2NH2 (cadena lateral de Dab), R4 =
-CH2CH2NH2 (cadena lateral de Dab), Rs = -CH2Ph (cadena lateral de DPhe), Re =-H, (cadena lateral de Glv). R7= -CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), Rs = -CH2CH2NH2 (cadena lateral de Dab), Rg = CONHRn. v
Aminoácidos protegidos:, Fmoc-Dab(Boc)-OH, Fmoc-Arg(Pbf)-OH, Fmoc- DPhe-OH, Fmoc-Thr(tBu)-OH, Fmoc-Cys(Trt)-OH Fmoc-Gly-OH.
Se llevo a cabo la síntesis manual según un protocolo estándar Fmoc/'Bu sobre resina Fmoc-Rink como se ha descrito anteriormente en el Ejemplo 1 . Caracterización del péptido purificado: Homogeneidad (por integración del área de la traza de HPLC) >95%; MALDI-TOF: m/z 1280.59 ([M+H]M 00%), 1284.45 ([M+Na] +, 18%).
Eiemplo 6: Preparación de nonanoil-Arq-Thr-Dab-cvclo(4-10)[Dab-Dab-DPhe- Leu-Arq-Dab-Thrl (dai), compuesto de formula (la) con Ro = CH3(CH2)7-, R1 =-
CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), R2 = -CH(CH3)OH, (cadena lateral de Thr), R3 = -CH2CH2NH2 (cadena lateral de Dab), R4 = - CH2CH2NH2 (cadena lateral de Dab), Rs = -CH2Ph (cadena lateral de DPhe), Re = -CH2CH(CH3)2 (cadena lateral de Leu), R7= -CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), y Re = -CH2CH2NH2 (cadena lateral de Dab).
Aminoácidos protegidos: Fmoc-Arg(Pbf)-OH, Fmoc-Thr(tBu)-OH, Fmoc- Dab(Boc)-OH, Fmoc-Dab(Dde)-OH, Fmoc-DPhe-OH, Fmoc-Leu-OH. Se llevo a cabo la síntesis manual según un protocolo estándar Fmoc/'Bu en jeringas de polipropileno con un filtro de polietileno. Se utilizó la resina cloruro de clorotritilo (800mg, 0.48 mmoles, f= 0.6 mmol/g). Los aminoácidos de la secuencia se introdujeron según un protocolo estándar de síntesis en fase sólida Fmoc/'Bu como se ha descrito anteriormente. El aminoácido puente Dab4 se introdujo como Fmoc-Dab(Dde)-OH. Una vez se completó la secuencia, se introdujo el ácido nonanoico (228 μΙ, 1 .44 mmoles, 3 veces de exceso) activándolo con HBTU/DIEA (3 y 6 veces de exceso,
respectivamente) en la mínima cantidad de DMF. Una vez concluida la reacción, la resina se lavó con DMF (5 x 30 s) y CH2CI2 (5 x 30 s).
El péptido protegido se trató con hidrazina (1 % en DMF) para desproteger el grupo Dde. El péptido se desancló de la resina con un tratamiento suave con TFA (1 % en CH2CI2) manteniendo intactos el resto de los grupos protectores (de tipo tBu y Pbf). La ciclación entre Dab4 y la Thr10 en C-terminal se llevó a cabo en DMF:CHCI3 (1 :1 , concentración de péptido 0.3M) con
HATU:HOBt:DIEA (1 .1 :1 .1 :2.2 equiv.) a temperatura ambiente durante 48h. El crudo peptídico cíclico y protegido se purificó en columna de sílica y a continuación se trató con la solución acidolítica TFA/tioanisol/1 ,2- ethanoditiol/triisopropilsilano/agua (70:10:10:1 :3.5; 3h) para eliminar el resto de grupos protectores. El peso del crudo peptídico obtenido fue de 130mg (rendimiento 21 %). La purificación por HPLC preparativa rindió 1 1 mg de péptido puro (rendimiento 8.5%).
Caracterización del péptido purificado: Homogeneidad (por integración del área de la traza de HPLC) 91 '8 %; MALDI-TOF: m/z 1316.89 ([M+H]+, 100%), 1297.98 ([M+H-H2O]+, 68%) 1339.65 ([M+Na] +, 19%).
Ejemplo 7: Preparación de nonanoil-Arq-Thr-Dab-ciclo(S-S)[Cvs-Dab-Phe- Leu-Arq-Dab-Cvsl (Ib-i?); compuesto de fórmula (Ib) con Ro = CH3(CH2)7-, R1 = -CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), R2 = -CH(CH3)OH, (cadena lateral de Thr), R3 =- CH2CH2NH2 (cadena lateral de Dab), R4 =
-CH2CH2NH2 (cadena lateral de Dab), Rs = -CH2Ph (cadena lateral de Phe),
Re = -CH2CH(CH3)2 (cadena lateral de Leu), R7 = -CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), Re = -CH2CH2NH2 (cadena lateral de Dab), Rg =
CONHRii, v Rii = H Aminoácidos protegidos: Fmoc-Cys(Trt)-OH, Fmoc-Dab(Boc)-OH, Fmoc- Arg(Pbf)-OH, Fmoc-Leu-OH, Fmoc-Phe-OH, Fmoc-Thr(tBu)-OH, Fmoc- Cys(Trt)-OH Se llevo a cabo la síntesis manual según un protocolo estándar Fmoc/'Bu sobre resina Fmoc-Rink como se ha descrito anteriormente en el Ejemplo 1 . Caracterización del péptido purificado: Homogeneidad (por integración del área de la traza de HPLC) >95%; MALDI-TOF: m/z 1336.30 ([M+H]+,100%), 1358.40 ([M+Na] +, 15%).
Ejemplo 8: Preparación de nonanoil-Arq-Thr-Dab-ciclo(S-S)[Cvs-Dab-Glv- Leu-Arg-Dab-Cvsl, (Ib.^o), compuesto de fórmula (Ib) con Ro = CH3(CH2)7-, Ri = -CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), R2 = -CH(CH3)OH, (cadena lateral de Thr), R3 =- CH2CH2NH2 (cadena lateral de Dab), R4 =
-CH2CH2NH2 (cadena lateral de Dab), Rs = H (cadena lateral de Glv), Re = -CH2CH(CH3)2 (cadena lateral de Leu). R7 = -CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arg), Re = -CH2CH2NH2 (cadena lateral de Dab), Rg =
CONHRi i, v Rii = H
Aminoácidos protegidos: Fmoc-Cys(Trt)-OH, Fmoc-Dab(Boc)-OH, Fmoc- Arg(Pbf)-OH, Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Thr(tBu)-OH, Fmoc- Cys(Trt)-OH
Se llevo a cabo la síntesis manual según un protocolo estándar Fmoc/'Bu sobre resina Fmoc-Rink como se ha descrito anteriormente en el Ejemplo 1 . Caracterización del péptido purificado: Homogeneidad (por integración del área de la traza de HPLC) >95%; MALDI-TOF: m/z 1246Ό3 ([M+H]+,100%),
Ejemplo 9: Preparación de nonanoil-Arq-Thr-Dab-ciclo(S-S)[Cvs-Dab-DLeu- Thr-Arg-Dab-Cvsl, (lb?i), compuesto de fórmula (Ib) con Ro = CH3(CH2)7-, R1 = -CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), R2 = -CH(CH3)OH, (cadena lateral de Thr), R3 =- CH2CH2NH2 (cadena lateral de Dab), R4 =
-CH2CH2NH2 (cadena lateral de Dab), Rs = CH2CH(CH3)2 (cadena lateral de DLeu), Re =-CH(CH3)OH, (cadena lateral de Thr), R? =
-CH2CH2CH2NHC(=NH)-NH2 (cadena lateral de Arq), Rs = -CH2CH2NH2 (cadena lateral de Dab), Rg = CONHRn. v Rn = H Aminoácidos protegidos: Fmoc-Cys(Trt)-OH, Fmoc-Dab(Boc)-OH, Fmoc- Arg(Pbf)-OH, Fmoc-DLeu-OH, Fmoc-Thr(tBu)-OH, Fmoc-Cys(Trt)-OH Se llevo a cabo la síntesis manual según un protocolo estándar Fmoc/'Bu sobre resina Fmoc-Rink como se ha descrito anteriormente en el Ejemplo 1 . Caracterización del péptido purificado: Homogeneidad (por integración del área de la traza de HPLC) >95%; MALDI-TOF: m/z 1291 .70 ([M+H]M 00%), 1312.76 ([M+Na] -, 16%).
Ejemplo 10: Ensayo de actividad antibacteriana
La actividad antibacteriana de los lipopéptidos sintéticos se determinó en placas estériles de 96 pocilios (Corning Costar 3598 microtiter plates) con un volumen final de 200μΙ_ como se indica a continuación: alícuotas (100 μΙ_) de una suspensión de bacterias a una concentración de 105 unidades formadoras de colonias/mL en medio de cultivo (MH, Muller Hinton Broth, Difco, USA) a pH 7.4, se adicionaron a 100μΙ_ de solución de lipopéptido preparada a partir de una disolución madre en agua de 1 mg/mL, en diluciones seriadas a doble dilución en MH a pH 7.4 (Jorgensen & Turnide, 2003).
La inhibición de crecimiento bacteriano se determinó a partir de la
absorbancia a 492 nm en un instrumento Absorbance Microplate reader ELx
800 (Bio-tek Instruments) tras incubación a 37 °C durante 24-48 h. La actividad antibacteriana se expresó como CMI, la concentración a la cual no se detecta crecimiento tras las 24-48 h de incubación. Los microorganismos se cultivaron en Tryptycase Soy Broth (Pronadisa, Barcelona), incubando a 37 °C hasta observar crecimiento bacteriano. A continuación, se sembrarán en Trypticase Soy Agar (Pronadisa, Barcelona) y se incubaron a 37°C hasta observar la formación de colonias. Los
microorganismos se conservaron en criobolas (EAS laboratoire, France) a -20°C.
Las cepas de las bacterias usadas para llevar a cabo el test de actividad antibacteriana se obtuvieron de: the American Type Culture Collection (ATCC, Rockville, MD, USA):
Escherichia coli ATCC 8739
Pseudomonas aeruginosa ATCC 9027 Salmonella typhimurium ATCC14028
Acinetobacter sp ATCC 5798
Staphylococcus aureus ATCC 6538
Mvcobacterium phlei ATCC41423
Microccous luteus ATCC 9341
Los resultados se muestran en la Tabla 1 y en la Tabla 2.
Tabla 1 : Actividad antibacteriana (CMI) en Gram positivos expresada μς/ιτιΙ
Figure imgf000022_0002
Tabla 2: Actividad antibacteriana (CMI) en Gram negativos expresada en μς/ιτιΙ
Figure imgf000022_0001
Control (polimixina B): (S)-6-metiloctanoil-Dab-Thr-Dab-ciclo(4-10)rDab-Dab- DPhe-Leu-Dab-Dab-Thr].
El peso molecular de los compuestos de la invención es mayor que el de la PxB, lo que significa que la actividad antibacteriana CMI expresada en unidades micromolares en lugar de μg ml es mayor.
Así, los resultados anteriores se han expresado en unidades micromolares lo que permite una mejor comparación de los resultados obtenidos.
Tabla 3: Actividad antibacteriana (CMI) en Gram positivos expresada
Unidades micromolares
Figure imgf000023_0001
Tabla 4: Actividad antibacteriana (CMI) en Gram negativos expresada en un unidades micromolares Compuesto Salmonella Pseudomonas Escherichia Acinetobacter (microM) tvphimurium aeruqinosa coli 8739 so ATCC
14028 9027 5798
(lai) 6.08-12.16 3.04 3.04 6.08
(Iba) 6.06 >12.12 6.06 1 .51
(I e) >14.56 >14.56 >14.56 3.64-7.28
(lb13) 1 1 .98 2'99 5.99 1 1 .98
PxB 0.84 1 .68 0.84-1 .68 0.42
(comparativo)
Asimismo, cabe destacar que los mejores resultados se han encontrado con modelos que tienen actividad terapéutica. Así, el Acinetobacter sp ATCC 5798 es un modelo del Acinetobacter baumannii que es una de las bacterias más problemáticas en infecciones nosocomiales, el Staphylococcus aureus es una de las bacterias importantes por la resistencia que genera a los antibióticos, y el Micobacterium phlei es un modelo no patógeno del agente causal de la tuberculosis, Micobacterium tuberculosis. Estos resultados demuestran que los compuestos (I) muestran actividad antibacteriana a nivel micromolar tanto contra bacterias Gram-positivas como contra bacterias Gram-negativas (en este último caso, la CMI es ligeramente superior a la de la polimixina natural, pero la polimixina no muestra actividad contra bacterias Gram-positivas). En consecuencia, los nuevos compuestos presentan un espectro de actividad superior puesto que los antibióticos peptídicos disponibles (polimixina natural y daptomicina) son sólo activos contra un tipo de bacteria, Gram-negativas o Gram-positivas,
respectivamente.

Claims

REIVINDICACIONES
1 . Compuesto de fórmula (I),
Figure imgf000025_0001
donde:
R0 es un radical seleccionado entre el grupo que consiste en: (C8-Cn)-alquilo ramificado, CH3-(CH2)m-, CH3-O-(CH2CH2O)2CH2-, y
Figure imgf000025_0002
m es un entero entre 6 y 10; x es un entero entre 1 y 3;
R-i , R3, R4, R7, y Rs son radicales seleccionados independientemente que tienen la fórmula siguiente:
GF-(CH2)n-; donde n es un entero entre 1 y 4; y GF es un radical seleccionado entre el grupo que consiste en -NH2 y -NH-C(=NH)-NH2;
R2 es un radical seleccionado entre el grupo que consiste en -CH(CH3)(OH), -CH(CH3)2, -CH2NH2 y -CH2OH;
R5 y Re son radicales seleccionados independientemente entre el grupo que consiste en H, -(d-C4)-alquilo lineal o ramificado, -(CH2)-Rio,
-CH2-CH2-S-CH3 y -CH-(CH3)-OH;
R9 se selecciona entre el grupo que consiste en CONH2, -CH(CH3)(OH) y CONHRn;
Ri0 es un radical seleccionado entre el grupo que consiste en fenilo, 3- indolilo, 4-imidazolilo, 4-hidroxifenilo, α o β-naftilo y 2-, 3- o 4-piridilo;
R11 es una secuencia peptídica seleccionada del grupo que consiste en Ala- Leu-Arg, Ala-Leu-Arg-Ala-Leu-Arg, Gly-Arg-Val-Glu-Val-Leu-Tyr-Arg-Gly- Ser-Trp, Lys-Val-Leu, Lys-Val-Leu-Lys-Val-Leu, Leu-Met-Trp-Trp-Met-Leu, Orn-Orn-Orn, Gln-Arg-Gly-Arg-Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr, Glu-(y- espermida)-Arg-Gly-Arg-Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr, y Glu(Arg-Gly- Arg-Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr)-y-espermida; u es CH2 o S; v es NH o S; w es CH2 o CO; con la condición de que cuando R9 es CONH2, entonces
(a) R5 o R6 es -CH(CH3)(OH), o
(b) R5 y Re son H; o
(c) la configuración del C unido a R9 es S o
(d) la configuración del C unido a R5 es R; y con la condición de que cuando R9 es -CH(CH3)OH, entonces R8 es GF(CH2)n donde n es 3 y GF es -NH-C(=NH)-NH2, y R7 es GF(CH2)n donde n es 2 y GF es NH 2-
2. Compuesto según la reivindicación 1 , donde u es CH2, v es NH, Z es CO, R9 es -CH(CH3)(OH) y la configuración del C unido a Rg es S, que tiene la fórmula (la).
Figure imgf000027_0001
(la)
3. Compuesto según la reivindicación 2, que es el nonanoil-Arg-Thr-Dab- ddoi4I10][Da b- Da b-D Ph e- Leu -Arg - Da b-Th r] .
4. Compuesto según la reivindicación 2, donde u es S, v es S y w es CH2, que tiene la fórmula (Ib).
Figure imgf000027_0002
(Ib)
5. Compuesto según la reivindicación 4, donde Rn es una secuencia peptídica seleccionada del grupo que consiste en Ala-Leu-Arg, Ala-Leu-Arg- Ala-Leu-Arg, Gly-Arg-Val-Glu-Val-Leu-Tyr-Arg-Gly- Ser-Trp, Lys-Val-Leu, 5 Lys-Val-Leu-Lys-Val-Leu, Leu-Met-Trp-Trp-Met-Leu, Orn-Orn-Orn, Gln-Arg- Gly-Arg-Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr, Glu-(7-espermida)-Arg-Gly-Arg- Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr, y Glu(Arg-Gly-Arg-Ala-Glu-Glu-Val-Tyr- Tyr-Ser-Gly-Thr)-Y-espermida; 0
6. Compuesto según la reivindicación 5, que se selecciona entre los
siguientes: nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cys1-Ala-Leu- Arg;
5
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cys1-Ala-Leu- Arg-Ala-Leu-Arg; nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cvs1-Gly-Arq- o Val-Glu-Val-Leu-Tyr-Arg-Gly-Ser-Trp nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cvs1-Lys-Val- Leu; 5 nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-Phe-Leu-Arq-Dab-Cvsl-Lys-Val- Leu-Lys-Val-Leu; nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cys1-Leu-Met- Trp-Trp-Met-Leu;
0
nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cys1-Orn-Orn- Orn; nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Dab-Arq-Cys1-Gln-Arq-5 Gly-Arg-Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr; y nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Dab-Arq-Cvs1-Glu-(y- espermida)-Arg-Gly-Arg-Ala-Glu-Glu-Val-Tyr-Tyr-Ser-Gly-Thr.
7. Compuesto según la reivindicación 4, que se selecciona entre los siguientes: nonanoil-Arq-Thr-Arq-ciclo(S-S)rCvs-Dab-Phe-Leu-Arg-Dab-Cys1; nonanoil-Arq-Thr-Arq-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-DCys1; nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-Phe-Leu-Arq-Dab-Cys1; y nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-DCys1.
8. Compuesto según la reivindicación 7, que se selecciona entre los siguientes: nonanoil-Arq-Thr-Arq-ciclo(S-S)rCvs-Dab-Phe-Leu-Arq-Dab-Cys1; y nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-DCys1.
9. Compuesto según la reivindicación 4, que se selecciona entre los siguientes: nonanoil-Arq-Thr-Arq-ciclo(S-S)rCvs-Dab-DPhe-Thr-Arq-Dab-Cys1; nonanoil-Arq-Thr-Arq-ciclo(S-S)rCvs-Dab-Phe-Thr-Arq-Dab-Cys1; nonanoil-Arq-Thr-Dab- ciclo(S-S)rCvs-Dab-DPhe-Thr-Arq-Dab-Cys1; nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-Phe-Thr-Arq-Dab-Cys1; nonanoil-Arq-Thr-Arq-Cvs-ciclo(S-S)rCvs-Dab-Trp-Thr-Arg-Dab-Cys1; nonanoil-Arq-Thr-Dab-Cvs-ciclo(S-S)rCvs-Dab-Trp-Thr-Arq-Dab-Cys1; nonanoil-Arq-Thr-Arq-ciclo(S-S)rCvs-Dab-DLeu-Thr-Arg-Dab-Cysl; nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DLeu-Thr-Arg-Dab-Cys1; decanoil-Arq-Thr-Arq-ciclo(S-S)rCvs-Dab-DTrp-Thr-Dab-Dab-Cys1; decanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DLeu-Thr-Arq-Dab-Cys1; decanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-Trp-Thr-Arq-Dab-Cys1; y dodecanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-Phe-Thr-Arq-Dab-Cys1.
10. Compuesto según la reivindicación 1 , que se selecciona entre los siguientes: nonanoil-Arq-Thr-Dab-ciclo(4-10)rDab-Dab-DPhe-Leu-Arq-Dab-Thr1; nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cvs1-Gly-Arq- Va I -G I u - Va I - Leu -Ty r-Arg -G I y-Ser-Trp ; nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-Cys1-Leu-Met- Trp-Trp-Met-Leu; y nonanoil-Arq-Thr-Dab-ciclo(S-S)rCvs-Dab-DPhe-Leu-Arq-Dab-DCys1.
1 1 . Uso de un compuesto como se ha definido en cualquiera de las reivindicaciones 1 -10, para la preparación de un medicamento para el tratamiento de una infección bacteriana causada por bacterias Gram- positivas en un mamífero, incluyendo un humano.
12. Uso según la reivindicación 1 1 , donde las bacterias Gram-positivas se seleccionan entre el grupo que consiste en Micobacterium phlei,
Staphylococcus aureus y Micrococcus luteus.
13. Uso de un compuesto como se ha definido en cualquiera de las reivindicaciones 1 -10, para la preparación de un medicamento para el tratamiento de una infección bacteriana causada por bacterias Gram- negativas en una mamífero, incluyendo un humano.
14. Uso según la reivindicación 13, donde las bacterias Gram-negativas se seleccionan entre el grupo que consiste en Salmonella tvphimurium, Pseudomonas aeruqinosa, Escherichia coli y Acinetobacter sp.
15. Composición farmacéutica que comprende una cantidad
terapéuticamente efectiva de un compuesto como se ha definido en cualquiera de las reivindicaciones 1 -10, junto a excipientes o portadores farmacéuticamente aceptables.
PCT/ES2011/070153 2010-03-10 2011-03-09 Compuestos peptídicos útiles como agentes antibacterianos WO2011110716A2 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2012143143/04A RU2012143143A (ru) 2010-03-10 2011-03-09 Пептидные соединения, пригодные для использования в качестве антибактериальных средств
US13/583,091 US20130053305A1 (en) 2010-03-10 2011-03-09 Peptide compounds that can be used as antibacterial agents
JP2012556552A JP2013521330A (ja) 2010-03-10 2011-03-09 抗菌剤として有用なペプチド化合物
BR112012022589A BR112012022589A2 (pt) 2010-03-10 2011-03-09 compostos de peptídeo úteis como agentes antibacterianos
EP11752896A EP2548883A2 (en) 2010-03-10 2011-03-09 Peptide compounds that can be used as antibacterial agents
CN2011800220133A CN102939301A (zh) 2010-03-10 2011-03-09 作为抗菌剂使用的肽化合物
CA2792674A CA2792674A1 (en) 2010-03-10 2011-03-09 Peptide compounds that can be used as antibacterial agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201000349 2010-03-10
ES201000349A ES2374779B1 (es) 2010-03-10 2010-03-10 Compuestos péptidicos útiles como agentes antibacterianos.

Publications (2)

Publication Number Publication Date
WO2011110716A2 true WO2011110716A2 (es) 2011-09-15
WO2011110716A3 WO2011110716A3 (es) 2012-12-20

Family

ID=44563923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070153 WO2011110716A2 (es) 2010-03-10 2011-03-09 Compuestos peptídicos útiles como agentes antibacterianos

Country Status (9)

Country Link
US (1) US20130053305A1 (es)
EP (1) EP2548883A2 (es)
JP (1) JP2013521330A (es)
CN (1) CN102939301A (es)
BR (1) BR112012022589A2 (es)
CA (1) CA2792674A1 (es)
ES (1) ES2374779B1 (es)
RU (1) RU2012143143A (es)
WO (1) WO2011110716A2 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2506715A1 (es) * 2013-04-12 2014-10-13 Universitat De Barcelona Compuestos peptídicos útiles como agentes antibióticos
EP3173421A1 (en) 2015-11-30 2017-05-31 Universitat de Barcelona Peptidic compounds useful as antibacterial agents
EP3636659A1 (en) 2018-10-08 2020-04-15 Universitat de Barcelona Polymyxin-based compounds useful as antibacterial agents

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3454882A1 (en) * 2016-05-13 2019-03-20 Spero Potentiator, Inc. Spr741 human pharmacokinetics and efficacious dose
WO2019084628A1 (en) 2017-11-02 2019-05-09 The University Of Queensland Peptide antibiotics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951652B2 (en) * 1998-07-29 2005-10-04 Biosynth S.R.L. Vaccine for prevention of gram-negative bacterial infections and endotoxin related diseases
EP2295444A3 (en) * 1999-12-15 2011-03-23 Cubist Pharmaceutical Inc. Lipopeptides as antibacterial agents
NZ544750A (en) * 2003-07-17 2009-06-26 Migenix Inc Compositions of amphomycin or aspartocin based lipopeptide antibiotic derivatives and methods of use thereof
US20060004185A1 (en) * 2004-07-01 2006-01-05 Leese Richard A Peptide antibiotics and peptide intermediates for their prepartion
CN1616484A (zh) * 2004-09-27 2005-05-18 沈阳药科大学 一种新的环肽类抗肿瘤抗病毒抗菌活性化合物
CN101189253A (zh) * 2004-11-12 2008-05-28 丘比斯特药物股份有限公司 抗感染脂肽类
CN101602792B (zh) * 2009-04-14 2012-02-01 华东师范大学 一种新型抗菌脂肽及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2506715A1 (es) * 2013-04-12 2014-10-13 Universitat De Barcelona Compuestos peptídicos útiles como agentes antibióticos
WO2014167160A1 (es) * 2013-04-12 2014-10-16 Universitat De Barcelona Compuestos peptídicos útiles como agentes antibióticos
EP3173421A1 (en) 2015-11-30 2017-05-31 Universitat de Barcelona Peptidic compounds useful as antibacterial agents
WO2017093210A1 (en) 2015-11-30 2017-06-08 Universitat De Barcelona Peptidic compounds useful as antibacterial agents
EP3636659A1 (en) 2018-10-08 2020-04-15 Universitat de Barcelona Polymyxin-based compounds useful as antibacterial agents
WO2020074405A1 (en) 2018-10-08 2020-04-16 Universitat De Barcelona Polymyxin-based compounds useful as antibacterial agents

Also Published As

Publication number Publication date
RU2012143143A (ru) 2014-04-20
WO2011110716A3 (es) 2012-12-20
ES2374779A1 (es) 2012-02-22
ES2374779B1 (es) 2012-12-27
CN102939301A (zh) 2013-02-20
EP2548883A2 (en) 2013-01-23
CA2792674A1 (en) 2011-09-15
US20130053305A1 (en) 2013-02-28
BR112012022589A2 (pt) 2016-08-30
JP2013521330A (ja) 2013-06-10

Similar Documents

Publication Publication Date Title
US10111926B2 (en) Selectively targeted antimicrobial peptides and the use thereof
ES2334547B1 (es) Compuestos peptidicos antibacterianos.
WO2011110716A2 (es) Compuestos peptídicos útiles como agentes antibacterianos
US20220289794A1 (en) Synthetic antimicrobial peptides
KR20120104986A (ko) 의료용 펩티드
US9090655B2 (en) Low hemolytic antimicrobial peptide, pharmaceutical composition and use thereof
WO2011120359A1 (en) Low hemolytic antimicrobial peptide, pharmaceutical composition and use thereof
US6800727B2 (en) Peptides with increased + charge and hydrophobicity by substituting one or more amino acids of CA-MA peptide and pharmaceutical compositions containing thereof
KR20100065639A (ko) 새로운 피시딘 유도체 항생 펩타이드 및 그 용도
WO2014167160A1 (es) Compuestos peptídicos útiles como agentes antibióticos
CN104628869A (zh) 一类兼具抗菌和抗流感病毒活性的融合肽衍生物
WO2017093210A1 (en) Peptidic compounds useful as antibacterial agents
Son et al. Effects of C-terminal residues of 12-mer peptides on antibacterial efficacy and mechanism
US20230181678A1 (en) Novel antibacterial peptide or peptide analog and use thereof
WO2020065595A1 (es) Lipopeptidos cortos con actividad antimicrobiana contra bacterias gram negativas y gram positivas
AU2016228293B2 (en) Selectively targeted antimicrobial peptides and the use thereof
ES2320867T3 (es) Peptidos de bolisina antimicrobianos.
AU2013204065B2 (en) Selectively targeted antimicrobial peptides and the use thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022013.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012556552

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2792674

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8229/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011752896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012143143

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13583091

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012022589

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012022589

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120906