WO2011110705A1 - Process for surface treatment of natural stone, agglomerates and other inorganic materials by means of plasma at atmospheric pressure - Google Patents

Process for surface treatment of natural stone, agglomerates and other inorganic materials by means of plasma at atmospheric pressure Download PDF

Info

Publication number
WO2011110705A1
WO2011110705A1 PCT/ES2011/000061 ES2011000061W WO2011110705A1 WO 2011110705 A1 WO2011110705 A1 WO 2011110705A1 ES 2011000061 W ES2011000061 W ES 2011000061W WO 2011110705 A1 WO2011110705 A1 WO 2011110705A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural stone
treatment
plasma
atmospheric pressure
stone
Prior art date
Application number
PCT/ES2011/000061
Other languages
Spanish (es)
French (fr)
Inventor
Mª Dolores ROMERO SANCHEZ
Mónica FUENSANTA SORIANO
Vicente Forrat Perez
Celia Guillem Lopez
Angel Miguel Lopez Buendia
Original Assignee
Asociación De Investigación De Industrias De La Construcción Aidico-Instituto Tecnológico De La Construcción
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asociación De Investigación De Industrias De La Construcción Aidico-Instituto Tecnológico De La Construcción filed Critical Asociación De Investigación De Industrias De La Construcción Aidico-Instituto Tecnológico De La Construcción
Publication of WO2011110705A1 publication Critical patent/WO2011110705A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4523Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the molten state ; Thermal spraying, e.g. plasma spraying
    • C04B41/4527Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0054Plasma-treatment, e.g. with gas-discharge plasma
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4529Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase
    • C04B41/4533Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase plasma assisted

Definitions

  • This invention consists of a process for the surface treatment of natural, agglomerated stone and other inorganic materials, with atmospheric pressure plasma for the improvement of the adhesion of these substrates to different coatings.
  • Mesh reinforcement is also common in natural stone in order to reduce the number of breaks.
  • Surface treatment by atmospheric pressure plasma increases the adhesion of the mesh to the stone substrate natural, as well as any polymeric coating applied to the surface of agglomerated stone or other inorganic substrate materials.
  • PROBLEM APPROACH One of the main problems facing the natural stone industry today is the high number of breaks that occur when making the tiles, especially in the polishing and transport stages, processes during which The pieces are subjected to stresses and vibrations that increase the number of fractures. This problem is not only a considerable economic loss, but also a decrease in the production and generation of large volumes of broken pieces, which leads to environmental problems arising from the creation of landfills for storage.
  • the consolidation reinforcement process consists in the application of a material that penetrates with some depth into the natural stone, improving its cohesion, mechanical properties and adhesion.
  • the main consolidation methods are based on the reinforcement of natural stone with polymeric coatings with a certain penetration capacity to join the loose grains within the stone. Fundamental factors to achieve a structural resistance with the consolidant are maximum compatibility, wettability and adhesion to the stone, for which the surface energy of both the coating and the substrate is fundamental.
  • it is essential that the consolidating agent is compatible with natural stone, so that a good penetration of the agent is ensured within the stone and the microstructure of the stone is not modified or secondary products are formed.
  • Plasma is based on a simple physical principle. By applying heat to a material, its physical state is changed, that is to say the phase change from solid to liquid and from liquid to gas. If said material in the gas phase is given more heat, it is ionized and converted into plasma, which is the fourth state of matter. Plasma energy, upon contact with the surface of any material, is released and transmitted on this surface, thus being prepared for further treatments. In this way surfaces are created with optimal properties for decorating-printing, adhering or foaming.
  • Plasma surface treatment is a very efficient procedure for cleaning, activating or coating surfaces of various materials such as plastic, aluminum, glass, stone etc.
  • the release agents and additives are removed.
  • its contact angle is modified, due to the low initial surface tension that a material may have.
  • the surface pre-treatment with plasma improves the surface properties of the material.
  • a certain gas which can be air, argon or oxygen etc., whose flow passes through one or more high voltage electrodes, to increase its temperature to cause the phase change, in order to transform said gas into plasma.
  • the electrodes create positively charged ions in the air particles in the medium, which are directed to the surface of the substrate (natural stone). Due to this direct contact, positively charged particles polarize the surface of the material, increasing its surface energy and making it more receptive to coatings or adhesives.
  • Number of treatments Possibility of performing several atmospheric pressure plasma treatments consecutively to increase the degree of surface modification. They can be from 1 to 10.
  • the surface treatment is carried out at atmospheric pressure, with air and at room temperature (environmental conditions), unlike surface treatments with plasmas that work in a vacuum.
  • the treatment speed has varied between 4 and 40 m / min, so that the higher the speed, the shorter the time during which the part is treated with plasma (frequency 19 kHz, distance 6 mm).
  • Figure 3 shows the contact angles for Ivory Cream untreated and treated with plasma at different treatment rates. For all the treatment speeds studied, there is an increase in wettability (lower contact angle), when Crema Marfil marble is treated with plasma. However, it is observed that the higher the treatment speed the contact angle increases, which indicates that the treatment speed is an important parameter to control in order to study the effects produced by said treatment.
  • the number of treatments performed on the Crema Marfil surface has varied from 1 to 10 (19kHz frequency, 6mm distance, 40m / min speed).
  • Table 1 includes the atomic percentages obtained for the treated and untreated samples. There is a decrease in the atomic percentage of carbon and an increase in the atomic percentage of oxygen. This indicates that with plasma treatment there is an increase in surface polarity, which allows an increase in compatibility and adhesion to polar coatings to be expected, mainly when 4 consecutive treatments are performed.
  • Table 2 includes the tensile test values of natural stone-epoxy resin-natural stone (untreated and plasma treated) joints. The adhesive properties have been evaluated from the resistance to separation of the joint.
  • Table 3 shows the tensile test results in adhesive joints after accelerated aging. Adhesive joints natural stone-epoxy resin-natural stone treated with atmospheric pressure have greater durability than the joints of natural stone untreated with plasma.
  • Figure 1 is a diagram showing the contact angles in Crema Marfil marble untreated and treated with atmospheric pressure plasma at different frequencies (in abscissa).
  • Figure 2 is a diagram showing the contact angles in untreated Crema Marfil marble and treated with plasma at different distances from the plasma source.
  • Figure 3 is a diagram showing the contact angles (20 ° C, 5 ⁇ ) in untreated Crema Marfil marble and treated with plasma at different speeds.
  • Figure 4 is a diagram showing the contact angles in untreated Crema Marfil marble and treated with plasma using several consecutive treatments.
  • Figure 5 are SEM Micrographs of Crema Marfil marble, a) untreated; b) treated with plasma, 1 treatment; c) 4 treatments.
  • Figure 6 are AFM images of Crema Marfil marble, a) untreated; b) treated with plasma 4 treatments. PREFERRED EMBODIMENT OF THE INVENTION
  • a certain gas which can be air, argon or oxygen etc., whose flow passes through one or more high voltage electrodes, to increase its temperature until causing the phase change, with the object of transforming said gas into plasma.
  • the electrodes create positively charged ions in the air particles in the medium, which are directed to the surface of the substrate (natural stone). Due to this direct contact, positively charged particles polarize the surface of the material, increasing its surface energy and making it more receptive to coatings or adhesives.
  • the summary procedure is as follows: a) The material to be treated is placed in an atmospheric pressure chamber.
  • a certain gas is selected, which can be air, argon or oxygen.
  • the flow of the selected gas is passed through one or more high voltage electrodes.
  • the electrodes create positively charged ions in the air particles of the medium, which are directed to the surface of the substrate (natural stone).
  • the treatment conditions are as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The invention relates to a process for treating natural stone, characterized in that it consists of the following steps: a) the material to be treated is placed in a chamber at atmospheric pressure; b) a gas is selected, which can be air, argon or oxygen; c) the selected gas is passed through one or more high-voltage electrodes; d) the electrodes create positively charged ions in the air particles of the medium, which make their way to the surface of the substrate (natural stone); and e) the substrate surface is polarized by means of the positively charged particles. The treatment conditions are as follows: treatment frequency is 19-23 kHz; natural stone-plasma distance is 1-12 mm; treatment speed is 1-50 m/min; and the number of consecutive treatments is 1-10.

Description

PROCEDIMIENTO DE TRATAMIENTO SUPERFICIAL DE PIEDRA NATURAL, AGLOMERADA Y OTROS MATERIALES INORGÁNICOS  PROCEDURE FOR SURFACE TREATMENT OF NATURAL STONE, AGLOMERATED AND OTHER INORGANIC MATERIALS
MEDIANTE PLASMA A PRESION ATMOSFERICA OBJETO  BY OBJECT ATMOSPHERIC PRESSURE PLASMA
Sector industrial: Materiales de la construcción. Industrial sector: Construction materials.
Este invento consiste en un procedimiento para el tratamiento superficial de la piedra natural, aglomerada y otros materiales inorgánicos, con plasma a presión atmosférica para la mejora de la adhesión de estos sustratos a distintos recubrimientos. This invention consists of a process for the surface treatment of natural, agglomerated stone and other inorganic materials, with atmospheric pressure plasma for the improvement of the adhesion of these substrates to different coatings.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
En el campo de los polímeros y los plásticos es conocido el tratamiento superficial con plasma. El objetivo de dichos tratamientos es modificar la superficie de los polímeros, de forma que se incremente su energía superficial, mojabilidad y sea similar a la del otro material al que debe de unirse, de forma que se incrementen sus propiedades de adhesión. Esto se consigue mediante la creación de grupos, generalmente oxigenados, tipo hidroxilo, carboxilo, carbonilo, etc. que son de mayor polaridad que los grupos hidrocarbonados típicos de los materiales poliméricos. Por otra parte existe una gran cantidad de consolidantes en el mercado para piedra natural, basados mayoritariamente en polímeros orgánicos. Sin embargo, su utilización está limitada por la escasa compatibilidad entre el polímero (material orgánico) y la piedra (material inorgánico). Esta falta de compatibilidad entre materiales conlleva una escasa mojabilidad y penetración del agente consolidante en el seno del material. In the field of polymers and plastics, plasma surface treatment is known. The purpose of such treatments is to modify the surface of the polymers, so that their surface energy, wettability and similar to that of the other material to which it is bound to increase are increased, so that their adhesion properties are increased. This is achieved by creating groups, generally oxygenated, hydroxyl, carboxyl, carbonyl, etc. which are of greater polarity than the typical hydrocarbon groups of polymeric materials. On the other hand there is a large amount of consolidants in the market for natural stone, based mostly on organic polymers. However, its use is limited by the poor compatibility between the polymer (organic material) and the stone (inorganic material). This lack of compatibility between materials leads to poor wettability and penetration of the consolidating agent within the material.
El refuerzo con malla es habitual también en piedra natural con objeto de disminuir el número de roturas. El tratamiento superficial mediante plasma a presión atmosférica incrementa la adhesión de la malla al sustrato de piedra natural, así como de cualquier recubrimiento polimérico aplicado a la superficie de piedra aglomerada o de otros materiales sustrato inorgánicos.Mesh reinforcement is also common in natural stone in order to reduce the number of breaks. Surface treatment by atmospheric pressure plasma increases the adhesion of the mesh to the stone substrate natural, as well as any polymeric coating applied to the surface of agglomerated stone or other inorganic substrate materials.
No se ha encontrado en bibliografía ninguna información que haga referencia al uso de tratamientos con plasma a presión atmosférica para modificar la superficie de la piedra natural, aglomerada y de otros materiales inorgánicos y mejorar sus propiedades de mojabilidad y adhesión. No information has been found in the literature that refers to the use of atmospheric pressure plasma treatments to modify the surface of natural, agglomerated stone and other inorganic materials and improve their wettability and adhesion properties.
PLANTEAMIENTO DEL PROBLEMA Uno de los principales problemas con los que se enfrenta en la actualidad la industria de la piedra natural es el elevado número de roturas que se produce al elaborar las baldosas, sobre todo en las etapas de pulido y transporte, procesos durante los cuales las piezas son sometidas a esfuerzos y vibraciones que incrementan el número de fracturas. Este problema no supone únicamente una considerable pérdida económica, sino también disminución en la producción y la generación de grandes volúmenes de piezas rotas, lo que conlleva problemas medioambientales derivados de la creación de vertederos para su almacenamiento. PROBLEM APPROACH One of the main problems facing the natural stone industry today is the high number of breaks that occur when making the tiles, especially in the polishing and transport stages, processes during which The pieces are subjected to stresses and vibrations that increase the number of fractures. This problem is not only a considerable economic loss, but also a decrease in the production and generation of large volumes of broken pieces, which leads to environmental problems arising from the creation of landfills for storage.
Estas roturas en piedra natural durante el proceso de corte son debidas a la existencia de zonas débiles. Para paliar este problema, debe reforzarse la estructura de estos materiales. El procedimiento consiste en aplicar recubrimientos en su superficie, proceso conocido en el sector de la piedra natural como consolidación de la piedra.  These breaks in natural stone during the cutting process are due to the existence of weak areas. To alleviate this problem, the structure of these materials must be reinforced. The procedure consists in applying coatings on its surface, a process known in the natural stone sector as stone consolidation.
El proceso de refuerzo por consolidación consiste en la aplicación de un material que penetre con cierta profundidad en el seno de la piedra natural, mejorando su cohesión, propiedades mecánicas y su adhesión. Los principales métodos de consolidación están basados en el refuerzo de piedra natural con recubrimientos poliméricos con cierta capacidad de penetración para unir los granos que se encuentran sueltos en el seno de la piedra. Factores fundamentales para conseguir una resistencia estructural con el consolidante, son máxima compatibilidad, mojabilidad y adhesión a la piedra, para lo cual es fundamental la energía superficial tanto del recubrimiento como del sustrato. Además, es fundamental que el agente consolidante sea compatible con la piedra natural, de forma que se asegure una buena penetración del agente en el seno de la piedra y no se modifique la microestrutura de la piedra ni se formen productos secundarios. The consolidation reinforcement process consists in the application of a material that penetrates with some depth into the natural stone, improving its cohesion, mechanical properties and adhesion. The main consolidation methods are based on the reinforcement of natural stone with polymeric coatings with a certain penetration capacity to join the loose grains within the stone. Fundamental factors to achieve a structural resistance with the consolidant are maximum compatibility, wettability and adhesion to the stone, for which the surface energy of both the coating and the substrate is fundamental. In addition, it is essential that the consolidating agent is compatible with natural stone, so that a good penetration of the agent is ensured within the stone and the microstructure of the stone is not modified or secondary products are formed.
SOLUCIÓN ADOPTADA ADOPTED SOLUTION
Se propone con esta patente la descripción de un procedimiento para el tratamiento con plasma a presión atmosférica de la superficie de la piedra natural, con objeto de modificar su energía superficial y mejorar la adhesión a recubrimientos y consolidantes. Como consecuencia de la mejor compatibilidad y adhesión, la durabilidad de los tratamientos consolidantes es incrementada. PRINCIPIO FÍSICO DEL PLASMA The description of a procedure for atmospheric pressure plasma treatment of the natural stone surface is proposed with this patent, in order to modify its surface energy and improve adhesion to coatings and consolidants. As a result of the best compatibility and adhesion, the durability of the consolidating treatments is increased. PLASMA PHYSICAL PRINCIPLE
El plasma se basa en un principio físico simple. Mediante la aplicación de calor a un material, se cambia su estado físico, es decir se produce el cambio de fase de sólido a líquido y de líquido a gas. Si a dicho material en fase gaseosa se le aporta más calor, éste se ioniza y se convierte en plasma, que es el cuarto estado de la materia. La energía del plasma, al entrar en contacto con la superficie de cualquier material se libera y se transmite sobre esta superficie, quedando así preparada para posteriores tratamientos. De esta manera se crean superficies con óptimas propiedades para decorar-imprimir, adherir o espumar. CARACTERÍSTICAS Y APLICACIONES Plasma is based on a simple physical principle. By applying heat to a material, its physical state is changed, that is to say the phase change from solid to liquid and from liquid to gas. If said material in the gas phase is given more heat, it is ionized and converted into plasma, which is the fourth state of matter. Plasma energy, upon contact with the surface of any material, is released and transmitted on this surface, thus being prepared for further treatments. In this way surfaces are created with optimal properties for decorating-printing, adhering or foaming. FEATURES AND APPLICATIONS
El tratamiento superficial con plasma es un procedimiento muy eficiente para limpiar, activar o recubrir superficies de diversos materiales tales como plástico, aluminio, vidrio, piedra etc. Plasma surface treatment is a very efficient procedure for cleaning, activating or coating surfaces of various materials such as plastic, aluminum, glass, stone etc.
Por ejemplo durante el proceso de limpieza de la superficie de plásticos, mediante la aplicación de plasma, se eliminan los agentes de desmoldeo y los aditivos. Para facilitar la adhesión de pegamentos y revestimientos sobre la superficie de un material, mediante la aplicación superficial de plasma, se modifica su ángulo de contacto, debido a la baja tensión superficial inicial que pueda tener un material. For example, during the process of cleaning the surface of plastics, by applying plasma, the release agents and additives are removed. To facilitate the adhesion of adhesives and coatings on the surface of a material, through the superficial application of plasma, its contact angle is modified, due to the low initial surface tension that a material may have.
En resumen el pre tratamiento superficial con plasma mejora las propiedades de la superficie del material. In summary, the surface pre-treatment with plasma improves the surface properties of the material.
Mediante esta tecnología se pueden tratar previamente diversos materiales de manera muy eficiente y de acuerdo con propiedades individualmente predeterminadas. Se crean materiales de muy alta calidad que cumplen con los requerimientos específicos en múltiples procesos industriales - desde la tecnología médica, automovilística, construcción etc. Este tratamiento con plasma se ha aplicado hasta el presente a diversos materiales, pero nunca a la piedra natural que constituye el objeto de esta invención. By means of this technology, various materials can be pretreated very efficiently and in accordance with individually predetermined properties. Very high quality materials are created that meet the specific requirements in multiple industrial processes - from medical, automotive, construction technology etc. This plasma treatment has been applied so far to various materials, but never to the natural stone that is the subject of this invention.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
En el tratamiento superficial con plasma a presión atmosférica intervienen distintos parámetros experimentales. La variación de los distintos parámetros permite determinar el grado de modificación superficial más adecuado, mejorando la interacción en la interfase mineral-recubrimiento y compatibilizando la naturaleza superficial de los dos materiales y por tanto, mejorando la adhesión piedra natural-recubrimiento. Different experimental parameters are involved in surface treatment with plasma at atmospheric pressure. The variation of the different parameters makes it possible to determine the most appropriate degree of surface modification, improving the interaction in the mineral-coating interface and making the surface nature of the two materials compatible and, therefore, improving the natural stone-coating adhesion.
El procedimiento es el siguiente: En una cámara de tratamiento a presión atmosférica, se selecciona un determinado gas, que puede se aire, argón u oxígeno etc., cuyo flujo pasa por uno o más electrodos de alto voltaje, para aumentar su temperatura hasta provocar el cambio de fase, con el objeto de transformar dicho gas en plasma. Los electrodos crean iones cargados positivamente en las partículas de aire del medio, que se dirigen a la superficie del sustrato (piedra natural). Debido a este contacto directo, las partículas cargadas positivamente polarizan la superficie del material, aumentando su energía superficial y haciéndola más receptiva a recubrimientos o adhesivos. The procedure is as follows: In a treatment chamber at atmospheric pressure, a certain gas is selected, which can be air, argon or oxygen etc., whose flow passes through one or more high voltage electrodes, to increase its temperature to cause the phase change, in order to transform said gas into plasma. The electrodes create positively charged ions in the air particles in the medium, which are directed to the surface of the substrate (natural stone). Due to this direct contact, positively charged particles polarize the surface of the material, increasing its surface energy and making it more receptive to coatings or adhesives.
Con el objeto de controlar el grado de modificación superficial en el sustrato, se determina la variación de los parámetros experimentales siguientes que afectan a la efectividad del tratamiento: In order to control the degree of surface modification in the substrate, the variation of the following experimental parameters that affect the effectiveness of the treatment is determined:
(1 ) Tiempo de tratamiento.  (1) Treatment time.
(2) Distancia entre la fuente de plasma y el sustrato de piedra natural. Éste también es un parámetro que afecta a la efectividad del tratamiento, ya que distancias muy grandes dificultan que el plasma llegue de forma homogénea a la superficie de la piedra natural. Puede ser de 1 a 12 mm.  (2) Distance between the plasma source and the natural stone substrate. This is also a parameter that affects the effectiveness of the treatment, since very large distances make it difficult for the plasma to reach the surface of the natural stone homogeneously. It can be from 1 to 12 mm.
(3) Frecuencia de tratamiento con plasma: 19-23 kHz.  (3) Frequency of plasma treatment: 19-23 kHz.
(4) Velocidad del tratamiento: Hasta 50 m/min.  (4) Treatment speed: Up to 50 m / min.
(5) Número de tratamientos. Posibilidad de realizar varios tratamientos con plasma a presión atmosférica de forma consecutiva para aumentar el grado de modificación superficial. Pueden ser de 1 a 10.  (5) Number of treatments. Possibility of performing several atmospheric pressure plasma treatments consecutively to increase the degree of surface modification. They can be from 1 to 10.
VENTAJAS DEL INVENTO ADVANTAGES OF THE INVENTION
- El tratamiento superficial se realiza a presión atmosférica, con aire y a temperatura ambiente (condiciones ambientales), a diferencia de los tratamientos superficiales con plasmas que trabajan en vacío. - The surface treatment is carried out at atmospheric pressure, with air and at room temperature (environmental conditions), unlike surface treatments with plasmas that work in a vacuum.
- Permite su aplicación en materiales de piedra natural, mármoles, granitos, areniscas.  - Allows its application in natural stone materials, marbles, granites, sandstones.
- Permite la introducción de gases distintos al aire para incrementar la efectividad del tratamiento.  - Allows the introduction of gases other than air to increase the effectiveness of the treatment.
- El incremento en energía superficial de la piedra natural por el tratamiento superficial con plasma a presión atmosférica mejora la compatibilidad y adhesión de recubrimientos a piedra natural.  - The increase in surface energy of natural stone by surface treatment with plasma at atmospheric pressure improves the compatibility and adhesion of natural stone coatings.
- La durabilidad de las uniones adhesivas piedra natural tratada superficialmente con plasma a presión atmosférica con los distintos recubrimientos aumenta. - El tratamiento puede realizarse durante el proceso continuo de fabricación del producto, integrándose en la cadena de elaboración de la piedra natural, y por lo tanto no supone un coste extra excesivamente elevado, ya que no requiere de costosas instalaciones. - The durability of the natural stone adhesive joints superficially treated with atmospheric pressure plasma with the different coatings increases. - The treatment can be carried out during the continuous process of manufacturing the product, integrating into the natural stone processing chain, and therefore does not entail an excessively high extra cost, since it does not require expensive facilities.
RESULTADOS EXPERIMENTALES: TRATAMIENTO SUPERFICIAL CON PLASMA A PRESIÓN ATMOSFÉRICA EN UN SUSTRATO DE PIEDRA NATURAL (mármol Crema Marfil). La medida de ángulos de contacto en la superficie del mármol CremaEXPERIMENTAL RESULTS: SURFACE TREATMENT WITH ATMOSPHERIC PRESSURE PLASMA IN A NATURAL STONE SUBSTRATE (Crema Marfil marble). The measure of contact angles on the surface of Crema marble
Marfil tratado con plasma a diferentes frecuencias de tratamiento muestra el incremento en la mojabilidad de la superficie de piedra natural cuando se trata con plasma a presión atmosférica respecto a la mojabilidad del mismo sustrato sin tratamiento con plasma y cómo una mayor frecuencia de tratamiento incrementa esta mojabilidad. Figura 1. Ivory treated with plasma at different treatment frequencies shows the increase in wettability of the natural stone surface when treated with atmospheric pressure plasma with respect to the wettability of the same substrate without plasma treatment and how a higher treatment frequency increases this wettability . Figure 1.
Para analizar la influencia de la distancia entre la fuente plasma y el sustrato, se han utilizado una frecuencia de 19 kHz y una velocidad de 40 m/min (condiciones menos favorables para el tratamiento con plasma para poder analizar la influencia de la distancia). Los valores de ángulos de contacto medidos en la superficie de Crema Marfil después del tratamiento se han representado en la Figura 2. To analyze the influence of the distance between the plasma source and the substrate, a frequency of 19 kHz and a speed of 40 m / min have been used (less favorable conditions for plasma treatment in order to analyze the influence of distance). The contact angle values measured on the surface of Crema Marfil after the treatment have been represented in Figure 2.
En esta figura se observa que la distancia entre la fuente de plasma y el sustrato tiene gran influencia en los efectos sobre la mojabilidad que produce el tratamiento. Para la menor distancia estudiada (3 mm), se obtiene un ángulo de contacto de 25°. El aumento de la distancia a la fuente de plasma incrementa el ángulo de contacto, de forma que para una distancia de 12 mm, el ángulo de contacto coincide con el obtenido para el mármol Crema marfil sin tratar (59°), lo cual indica que para esta distancia el plasma ya no modifica la superficie.  This figure shows that the distance between the plasma source and the substrate has a great influence on the effects on the wettability of the treatment. For the shortest distance studied (3 mm), a contact angle of 25 ° is obtained. Increasing the distance to the plasma source increases the contact angle, so that for a distance of 12 mm, the contact angle coincides with that obtained for untreated Crema Marfil marble (59 °), which indicates that for this distance the plasma no longer modifies the surface.
La velocidad de tratamiento se ha variado entre 4 y 40 m/min, de manera que cuanto mayor es la velocidad, menor es el tiempo durante el que la pieza se trata con plasma (frecuencia 19 kHz, distancia 6 mm). La Figura 3 muestra los ángulos de contacto para Crema Marfil sin tratar y tratado con plasma a distintas velocidades de tratamiento. Para todas las velocidades de tratamiento estudiadas, se produce un incremento de la mojabilidad (menor ángulo de contacto), cuando el mármol Crema Marfil se trata con plasma. Sin embargo, se observa que cuanto mayor es la velocidad de tratamiento el ángulo de contacto aumenta, lo cual indica que la velocidad de tratamiento es un parámetro importante a controlar para estudiar los efectos que produce dicho tratamiento. El número de tratamientos realizados en la superficie de Crema Marfil se ha variado desde 1 hasta 10 (frecuencia 19kHz, distancia 6mm, velocidad 40m/min). Los resultados obtenidos indican que con sólo 1 tratamiento el ángulo de contacto disminuye 20° respecto al mármol Crema Marfil sin tratar. El incremento a 2 y 4 tratamientos consecutivos disminuye todavía más el ángulo de contacto. La realización de 10 tratamientos incrementa ligeramente el ángulo de contacto respecto a la realización de 4 tratamientos, lo cual indica que el número de tratamientos óptimo sería de 4, que es el que produce un mayor incremento de la mojabilidad (menor ángulo de contacto). Ver Figura 4. The treatment speed has varied between 4 and 40 m / min, so that the higher the speed, the shorter the time during which the part is treated with plasma (frequency 19 kHz, distance 6 mm). Figure 3 shows the contact angles for Ivory Cream untreated and treated with plasma at different treatment rates. For all the treatment speeds studied, there is an increase in wettability (lower contact angle), when Crema Marfil marble is treated with plasma. However, it is observed that the higher the treatment speed the contact angle increases, which indicates that the treatment speed is an important parameter to control in order to study the effects produced by said treatment. The number of treatments performed on the Crema Marfil surface has varied from 1 to 10 (19kHz frequency, 6mm distance, 40m / min speed). The results obtained indicate that with only 1 treatment the contact angle decreases 20 ° with respect to the untreated Crema Marfil marble. The increase to 2 and 4 consecutive treatments further decreases the contact angle. The performance of 10 treatments slightly increases the contact angle with respect to the performance of 4 treatments, which indicates that the optimal number of treatments would be 4, which is the one that produces a greater increase in wettability (lower contact angle). See Figure 4.
El análisis mediante Espectroscopia Fotoelectrón ica de Rayos X (XPS) permite evaluar las modificaciones químicas producidas en superficie. La Tabla 1 incluye los porcentajes atómicos obtenidos para las muestras tratadas y sin tratar. Se produce una disminución en el porcentaje atómico de carbono y un incremento en el porcentaje atómico de oxígeno. Esto indica que con el tratamiento plasma se produce un incremento en la polaridad superficial, lo cual permite esperar un incremento en la compatibilidad y adherencia a los recubrimientos de carácter polar, principalmente cuando se realizan 4 tratamientos consecutivos. The analysis by X-ray Photoelectron Spectroscopy (XPS) allows to evaluate the chemical modifications produced on the surface. Table 1 includes the atomic percentages obtained for the treated and untreated samples. There is a decrease in the atomic percentage of carbon and an increase in the atomic percentage of oxygen. This indicates that with plasma treatment there is an increase in surface polarity, which allows an increase in compatibility and adhesion to polar coatings to be expected, mainly when 4 consecutive treatments are performed.
Tabla 1. Porcentajes atómicos de elementos en mármol Crema Marfil. ELEMENTO ENERGÍA DE % ATÓMICO Table 1. Atomic percentages of elements in Crema Marfil marble. ATOMIC% ENERGY ELEMENT
ENLACE SIN TRATAR N° TRAT: 1 N° TRAT: 4 UNTREATED LINK TRAT #: 1 TRAT #: 4
(eV) (eV)
C1s 285.0 47.25 40.78 35.14  C1s 285.0 47.25 40.78 35.14
O1s 532.2 39.65 46.10 51.76  O1s 532.2 39.65 46.10 51.76
Ca2p3 348.0 8.97 8.28 10.59  Ca2p3 348.0 8.97 8.28 10.59
N1s 401.0 1.52 1.57 0.78  N1s 401.0 1.52 1.57 0.78
Si2p3 102.0 2.61 3.27 2.33  Si2p3 102.0 2.61 3.27 2.33
En las micrografías SEM se observa que la realización del tratamiento plasma produce un proceso de limpieza superficial, que es más notable cuando se realizan 4 tratamientos consecutivos. De esta forma, se eliminan cristales que están sueltos en superficie, de forma que es previsible que se consiga un mejor anclaje mecánico entre el recubrimiento y la superficie de las piezas de piedra natural. Figura 5. In the SEM micrographs it is observed that the realization of the plasma treatment produces a surface cleaning process, which is more noticeable when 4 consecutive treatments are performed. In this way, crystals that are loose on the surface are removed, so that it is foreseeable that a better mechanical anchor between the coating and the surface of the natural stone pieces will be achieved. Figure 5
Mediante AFM se han observado modificaciones superficiales producidas por el tratamiento plasma similares a las obtenidas con SEM, ya que se observa un proceso de limpieza superficial, con la eliminación de los cristales sueltos en superficie. Ver Figura 6. Through AFM, surface modifications produced by plasma treatment similar to those obtained with SEM have been observed, since a surface cleaning process is observed, with the elimination of loose crystals on the surface. See Figure 6.
Propiedades adhesivas piedra natural-recubrimiento Adhesive properties natural stone-coating
Selección de una resina epoxi estándar utilizada habitualmente para la consolidación de piedra natural para la evaluación de las propiedades adhesivas en piedra natural tratada superficialmente con plasma a presión atmosférica. En la Tabla 2 se incluyen los valores del ensayo a tracción de uniones piedra natural-resina epoxi-piedra natural (sin tratar y tratada con plasma). Las propiedades adhesivas se han evaluado a partir de la resistencia a la separación de la unión. Selection of a standard epoxy resin commonly used for the consolidation of natural stone for the evaluation of the adhesive properties in natural stone surface treated with atmospheric pressure plasma. Table 2 includes the tensile test values of natural stone-epoxy resin-natural stone (untreated and plasma treated) joints. The adhesive properties have been evaluated from the resistance to separation of the joint.
Con la aplicación del tratamiento superficial con plasma se obtienen valores de resistencia a la tracción superiores a los obtenidos para el mismo ensayo en uniones de piedra natural sin tratar superficialmente con plasma a presión atmosférica (Tabla 2). Tabla 2. Ensayos de tracción para piedra natural-resina epoxi estándar- piedra natural. With the application of the surface treatment with plasma, tensile strength values higher than those obtained for the same test are obtained in natural stone joints without surface treatment with plasma at atmospheric pressure (Table 2). Table 2. Tensile tests for natural stone - standard epoxy resin - natural stone.
Figure imgf000010_0001
Durabilidad de las uniones adhesivas piedra natural-consolidante
Figure imgf000010_0001
Durability of natural-consolidating stone adhesive joints
Uniones adhesivas piedra natural-resina epoxi-piedra natural sin tratar y tratada superficialmente con plasma a presión atmosférica sometidas a ensayo de envejecimiento acelerado durante 7 días (70 °C, humedad relativa del 70%).  Adhesive joints natural stone-epoxy resin-natural stone untreated and surface treated with atmospheric pressure plasma undergoing accelerated aging test for 7 days (70 ° C, 70% relative humidity).
En la Tabla 3 se recogen los resultados de ensayo a tracción en las uniones adhesivas después de envejecimiento acelerado. Las uniones adhesivas piedra natural-resina epoxi-piedra natural tratada con plasma a presión atmosférica tienen mayor durabilidad que las uniones de piedra natural sin tratar con plasma. Table 3 shows the tensile test results in adhesive joints after accelerated aging. Adhesive joints natural stone-epoxy resin-natural stone treated with atmospheric pressure have greater durability than the joints of natural stone untreated with plasma.
Tabla 3. Ensayo a tracción en uniones de piedra natural-resina epoxi-piedra natural sometidas a ensayo de envejecimiento acelerado. Table 3. Tensile test in natural stone-epoxy resin-natural stone joints subjected to accelerated aging test.
Resistencia a Resistance to
Desv.  Dev.
Sustrato Tratamiento la tracción  Substrate Traction treatment
estándar  standard
(MPa)  (MPa)
Crema Marfil Sin tratar 5.25 0.55  Ivory Cream Untreated 5.25 0.55
Crema Marfil Tratado con 6.50 0.53  Ivory Cream Treated with 6.50 0.53
plasma DESCRIPCIÓN DE DIBUJOS plasma DESCRIPTION OF DRAWINGS
Para complementar la descripción de este invento y con el objeto de facilitar la comprensión de sus características, se acompaña una serie de figuras en las que con carácter ilustrativo y no limitativo, se han representado los siguientes dibujos cuyos componentes principales son los siguientes: To complement the description of this invention and in order to facilitate the understanding of its characteristics, a series of figures are attached in which, with illustrative and non-limiting nature, the following drawings whose main components are the following have been represented:
La Figura 1 es un diagrama donde se representa en ordenadas los ángulos de contacto en mármol Crema Marfil sin tratar y tratado con plasma a presión atmosférica a distintas frecuencias (en abcisas). Figure 1 is a diagram showing the contact angles in Crema Marfil marble untreated and treated with atmospheric pressure plasma at different frequencies (in abscissa).
La Figura 2 es un diagrama donde se representan los ángulos de contacto en mármol Crema Marfil sin tratar y tratado con plasma a distintas distancias de la fuente de plasma. Figure 2 is a diagram showing the contact angles in untreated Crema Marfil marble and treated with plasma at different distances from the plasma source.
La Figura 3 es un diagrama donde se representan los ángulos de contacto (20°C, 5μΙ) en mármol Crema Marfil sin tratar y tratado con plasma a distintas velocidades. La Figura 4 es un diagrama donde se representan los ángulos de contacto en mármol Crema Marfil sin tratar y tratado con plasma realizando varios tratamientos consecutivos. Figure 3 is a diagram showing the contact angles (20 ° C, 5μΙ) in untreated Crema Marfil marble and treated with plasma at different speeds. Figure 4 is a diagram showing the contact angles in untreated Crema Marfil marble and treated with plasma using several consecutive treatments.
La Figura 5 son Micrografías SEM de mármol Crema Marfil, a) sin tratar; b) tratado con plasma, 1 tratamiento; c) 4 tratamientos. Figure 5 are SEM Micrographs of Crema Marfil marble, a) untreated; b) treated with plasma, 1 treatment; c) 4 treatments.
La Figura 6 son imágenes AFM de mármol Crema marfil, a) sin tratar; b) tratado con plasma 4 tratamientos. REALIZACIÓN PREFERENTE DE LA INVENCIÓN Figure 6 are AFM images of Crema Marfil marble, a) untreated; b) treated with plasma 4 treatments. PREFERRED EMBODIMENT OF THE INVENTION
Entre las diferentes posibilidades de aplicación del tratamiento superficial mediante plasma atmosférico en piedra natural, el procedimiento preferente es el que se describe a continuación: Among the different possibilities of applying surface treatment using atmospheric plasma in natural stone, the preferred procedure is as described below:
En una cámara de tratamiento a presión atmosférica, se selecciona un determinado gas, que puede ser aire, argón u oxígeno etc., cuyo flujo pasa por uno o más electrodos de alto voltaje, para aumentar su temperatura hasta provocar el cambio de fase, con el objeto de transformar dicho gas en plasma. In a treatment chamber at atmospheric pressure, a certain gas is selected, which can be air, argon or oxygen etc., whose flow passes through one or more high voltage electrodes, to increase its temperature until causing the phase change, with the object of transforming said gas into plasma.
Los electrodos crean iones cargados positivamente en las partículas de aire del medio, que se dirigen a la superficie del sustrato (piedra natural). Debido a este contacto directo, las partículas cargadas positivamente polarizan la superficie del material, aumentando su energía superficial y haciéndola más receptiva a recubrimientos o adhesivos.  The electrodes create positively charged ions in the air particles in the medium, which are directed to the surface of the substrate (natural stone). Due to this direct contact, positively charged particles polarize the surface of the material, increasing its surface energy and making it more receptive to coatings or adhesives.
El procedimiento resumido es el siguiente: a) Se coloca el material a tratar en una cámara a presión atmosférica. The summary procedure is as follows: a) The material to be treated is placed in an atmospheric pressure chamber.
b) Se selecciona un determinado gas, que puede se aire, argón u oxígeno. c) Se hace pasar el flujo del gas seleccionado, por uno o más electrodos de alto voltaje. b) A certain gas is selected, which can be air, argon or oxygen. c) The flow of the selected gas is passed through one or more high voltage electrodes.
d) Los electrodos crean iones cargados positivamente en las partículas de aire del medio, que se dirigen a la superficie del sustrato (piedra natural). e) Polarización de la superficie del sustrato mediante las partículas cargadas positivamente. d) The electrodes create positively charged ions in the air particles of the medium, which are directed to the surface of the substrate (natural stone). e) Polarization of the substrate surface by means of positively charged particles.
Las condiciones del tratamiento son las siguientes: The treatment conditions are as follows:
- Frecuencia de tratamiento: 19-23 kHz - Treatment frequency: 19-23 kHz
- Distancia piedra natural-plasma: 1-12 mm  - Natural stone-plasma distance: 1-12 mm
- Velocidad de tratamiento: 1-50 m/min  - Treatment speed: 1-50 m / min
- Número de tratamientos consecutivos: 1-10  - Number of consecutive treatments: 1-10

Claims

REIVINDICACIONES
1- Procedimiento de tratamiento superficial de piedra natural, aglomerada y otros materiales inorgánicos de construcción caracterizado porque, consta de los siguientes pasos: a) Se coloca el material a tratar en una cámara a presión atmosférica. 1- Procedure for surface treatment of natural stone, agglomerated and other inorganic building materials characterized in that it consists of the following steps: a) The material to be treated is placed in an atmospheric pressure chamber.
b) Se selecciona un determinado gas, que puede se aire, argón u oxígeno. c) Se hace pasar el flujo del gas seleccionado, por uno o más electrodos de alto voltaje. b) A certain gas is selected, which can be air, argon or oxygen. c) The flow of the selected gas is passed through one or more high voltage electrodes.
d) Los electrodos crean iones cargados positivamente en las partículas de aire del medio, que se dirigen a la superficie del sustrato (piedra natural). e) Polarización de la superficie del sustrato mediante las partículas cargadas positivamente d) The electrodes create positively charged ions in the air particles of the medium, which are directed to the surface of the substrate (natural stone). e) Polarization of the substrate surface by means of positively charged particles
2- Procedimiento de tratamiento superficial de piedra natural, aglomerada y otros materiales inorgánicos de construcción, mediante plasma a presión atmosférica según reivindicación primera caracterizado porque, la aplicación de dicho tratamiento se realiza con un intervalo de frecuencia de 19-23 kHz. 2- Procedure for surface treatment of natural stone, agglomerated and other inorganic building materials, by means of atmospheric pressure plasma according to claim one, characterized in that the application of said treatment is carried out with a frequency range of 19-23 kHz.
3- Procedimiento de tratamiento superficial de piedra natural, aglomerada y otros materiales inorgánicos de construcción, mediante plasma a presión atmosférica según reivindicaciones anteriores caracterizado porque, la aplicación de dicho tratamiento se realiza a una distancia entre la piedra natural y el plasma de 1 a 12 mm. 3- Procedure for surface treatment of natural, agglomerated stone and other inorganic building materials, using atmospheric pressure plasma according to previous claims characterized in that, the application of said treatment is carried out at a distance between the natural stone and the plasma from 1 to 12 mm
4- Procedimiento de tratamiento superficial de piedra natural, aglomerada y otros materiales inorgánicos de construcción, mediante plasma a presión atmosférica según reivindicaciones anteriores caracterizado porque, para la aplicación de dicho tratamiento se ejerce una velocidad de entre 1 y 50 m/min. 4- Surface treatment procedure of natural, agglomerated stone and other inorganic building materials, by means of atmospheric pressure plasma according to previous claims characterized in that, for the application of said treatment, a speed of between 1 and 50 m / min is exerted.
PCT/ES2011/000061 2010-03-01 2011-03-01 Process for surface treatment of natural stone, agglomerates and other inorganic materials by means of plasma at atmospheric pressure WO2011110705A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201000269 2010-03-01
ES201000269A ES2364783B1 (en) 2010-03-01 2010-03-01 Surface treatment procedure of natural stone, agglomerated and other inorganic materials by atmospheric pressure plasma.

Publications (1)

Publication Number Publication Date
WO2011110705A1 true WO2011110705A1 (en) 2011-09-15

Family

ID=44508291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000061 WO2011110705A1 (en) 2010-03-01 2011-03-01 Process for surface treatment of natural stone, agglomerates and other inorganic materials by means of plasma at atmospheric pressure

Country Status (2)

Country Link
ES (1) ES2364783B1 (en)
WO (1) WO2011110705A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9980567B2 (en) 2012-01-31 2018-05-29 Prestige Film Technologies Directional and gas permeable clear protective covering for permanent installation on stone countertops

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1946832A1 (en) * 2007-01-19 2008-07-23 Università Degli Studi Di Milano - Bicocca A processing method for surfaces of stone materials and composites
WO2008125969A2 (en) * 2007-04-17 2008-10-23 Lapidei Nantech S.R.L. Slabs of stone material, resistant to wear5 to corrosion caused by acids and to the staining action of oily substances.
WO2009138945A1 (en) * 2008-05-12 2009-11-19 Aros S.R.L. A superficially-treated stone-material manufactured article, and a process for obtaining the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1946832A1 (en) * 2007-01-19 2008-07-23 Università Degli Studi Di Milano - Bicocca A processing method for surfaces of stone materials and composites
WO2008125969A2 (en) * 2007-04-17 2008-10-23 Lapidei Nantech S.R.L. Slabs of stone material, resistant to wear5 to corrosion caused by acids and to the staining action of oily substances.
WO2009138945A1 (en) * 2008-05-12 2009-11-19 Aros S.R.L. A superficially-treated stone-material manufactured article, and a process for obtaining the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9980567B2 (en) 2012-01-31 2018-05-29 Prestige Film Technologies Directional and gas permeable clear protective covering for permanent installation on stone countertops

Also Published As

Publication number Publication date
ES2364783A1 (en) 2011-09-14
ES2364783B1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
Liu et al. Modification of carbon fiber by air plasma and its adhesion with BMI resin
Khan et al. Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene
Xing et al. Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation
Gude et al. Adhesive bonding of carbon fibre/epoxy laminates: correlation between surface and mechanical properties
JP2011140167A (en) Method for manufacturing composite of metal and resin
Liu et al. Effects of argon plasma treatment on the interfacial adhesion of PBO fiber/bismaleimide composite and aging behaviors
Singh et al. Effect of silanizion on mechanical and tribological properties of kenaf-carbon and kenaf-glass hybrid polymer composites
Fischer et al. Toughened high performance epoxy resin system for aerospace applications
ES2779071T3 (en) Inorganic binder composition comprising surface modified polyolefin fibers
WO2011110705A1 (en) Process for surface treatment of natural stone, agglomerates and other inorganic materials by means of plasma at atmospheric pressure
WO2010048367A3 (en) Automotive coating surface enhancement using a plasma treatment technique
CN111542429A (en) Novel high-strength multi-performance glue-clamping rib plate and process
Yuan et al. Skinless polyphenylene sulfide foam with enhanced thermal insulation properties fabricated by constructing aligned gas barrier layers for surface-constrained sc-CO2 foaming
Chen et al. Engineering the interface in mechanically responsive graphene-based films
TW201540490A (en) Metal-resin composite
Gutowski et al. A novel surface treatment process for enhanced adhesion of ultra-high modulus polyethylene fibres to epoxy resins
Zhou et al. Combined surface treatment of wood plastic composites to improve adhesion
Enescu et al. Formation and oxygen diffusion barrier properties of fish gelatin/natural sodium montmorillonite clay self-assembled multilayers onto the biopolyester surface
MX2011007784A (en) Composites comprising a polymer and a selected layered compound and methods of preparing and using same.
Bayati et al. The effect of hydrophilic and hydrophobic nanofillers on moisture uptake and mechanical properties degradation of nanocomposites under hot and wet conditions
Demirkir et al. Effects of plasma surface treatment on bending strength and modulus of elasticity of beech and poplar plywood
Li et al. Toughing epoxy nanocomposites with Graphite-Nanocellulose layered framework
GB201209879D0 (en) Bonding method
Douglas et al. Highly accelerated lifetime for externally applied bond critical fiber-reinforced polymer (FRP) infrastructure materials.
Yong et al. Natural rubber-rubberwood fibre laminated composites with enhanced stab resistance properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11752885

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11752885

Country of ref document: EP

Kind code of ref document: A1