WO2011110054A1 - 利用粗煤气显热生产直接还原铁的方法 - Google Patents

利用粗煤气显热生产直接还原铁的方法 Download PDF

Info

Publication number
WO2011110054A1
WO2011110054A1 PCT/CN2011/000376 CN2011000376W WO2011110054A1 WO 2011110054 A1 WO2011110054 A1 WO 2011110054A1 CN 2011000376 W CN2011000376 W CN 2011000376W WO 2011110054 A1 WO2011110054 A1 WO 2011110054A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
iron
shaft furnace
coal
crude gas
Prior art date
Application number
PCT/CN2011/000376
Other languages
English (en)
French (fr)
Inventor
苏亚杰
杜英虎
陈寿林
苏亚达
Original Assignee
Su Yajie
Du Yinghu
Chen Shoulin
Su Yada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Su Yajie, Du Yinghu, Chen Shoulin, Su Yada filed Critical Su Yajie
Publication of WO2011110054A1 publication Critical patent/WO2011110054A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/22Dust arresters
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • C21B13/023Making spongy iron or liquid steel, by direct processes in shaft furnaces wherein iron or steel is obtained in a molten state
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a coal gasification crude gas waste heat recovery and utilization method, in particular to a coal gasification crude gas sensible heat directly heating iron ore coal pellets or iron ore, iron oxide pellets to produce direct reduced iron Process method.
  • the invention directly feeds the high-temperature crude gas into the direct reduction shaft furnace for heating the iron ore briquettes or the iron ore and the iron oxide pellets in the direct reduction shaft furnace to produce the direct reduced iron.
  • the invention is characterized in that three stages of continuous dust removal are used in recycling the sensible heat contained in the crude gas, and the first stage is dusted by a dust deposition chamber, a baffle and a cyclone at a high temperature to remove coarser particles in the crude gas; The second stage uses the reduced iron and iron ore coal pellets or iron ore and iron oxide pellets to remove dust in the reduction shaft furnace; the third stage removes dust during the purification process after the reduction of the top gas of the shaft furnace.
  • the invention patent No. 200610012837 discloses a method for producing direct reduced iron from iron ore briquettes self-produced reducing gas, which is prepared by preparing N 2 , coke oven gas, coal gas, natural gas and coalbed methane before opening the furnace.
  • the gas source is heated to start 1150 'C, into the reduction shaft furnace heated iron ore briquettes group, a portion of the thermal coal pellets produced in the solution containing C0,, CH 4 of Coal pyrolysis gas, a part of coal is used as a reducing agent for reducing iron ore, producing a reduced tail gas containing C0 2 and H 2 0; the generated coal pyrolysis gas and reducing tail gas are discharged from the top of the furnace to the reduction shaft furnace, and the dust is purified and dedusted. After removing tar, sulfur and H 2 0, C0 2 and other impurity gases, it becomes a reducing gas.
  • the heated reducing gas is gradually replaced by the high-temperature starting gas source until the high-temperature starting gas source is completely replaced by the reducing shaft furnace, heating the new iron ore coal pellets, generating new coal pyrolysis gas and reducing tail gas, and directly reducing the reducing gas.
  • the production and use of self-produced reducing gas is formed. This cycle is repeated to achieve continuous production of direct reduced iron.
  • the invention patent No. 20081 00553998 discloses a method for directly reducing reduced gas in iron by using red coke heating, which is a reducing gas heating furnace in the process of producing direct reduced iron by replacing the iron ore coal pellets with a dry quenching furnace, and replacing the N by the reducing gas. 2
  • red coke heating which is a reducing gas heating furnace in the process of producing direct reduced iron by replacing the iron ore coal pellets with a dry quenching furnace, and replacing the N by the reducing gas. 2
  • the reducing gas absorbs red sensible heat during the process of cooling the red coke into the coke oven, is heated to 650 - 960 °C, and then is discharged to the reducing gas of the coke oven.
  • the invention patent No. 20091 00753306 discloses a method for heating a reducing gas in a direct reduced iron by using a garbage gas, which is a combustible gas produced by waste incineration or melting incineration, using a low calorific value gas high temperature combustion technology regenerative heating furnace, ironmaking blast furnace A hot blast stove is used to heat the endogenous reducing gas of the iron ore briquettes to produce a circulating reducing gas in the direct reduced iron.
  • a garbage gas which is a combustible gas produced by waste incineration or melting incineration
  • the calorific value of the crude gas should be 850kcal (3558kj). If the minimum calorific value is not met, coal, coke, semi-coke and briquette can be added to the waste incineration or melting incinerator to increase the calorific value of the crude gas. In order to prevent waste incineration or melt incineration and secondary combustion of gas to produce dioxin and dioxins, it is necessary to purify the gas before it is burned or after the gas is burned. This technology can be used to produce direct reduced iron while processing municipal waste.
  • the sensible heat recovery methods in coal gasification crude gas mainly include: foreign Texaco gasification process, Destec coal gasification process, Shel l coal gasification process, Prenf lo coal gasification process; and China's coal gasification technology such as: Multi-nozzle opposed coal-water slurry gasification technology, ash fusion fluidized bed coal gasification technology, two-stage coal gasification technology.
  • the sensible heat of the crude gas in these technologies is recovered in the form of water vapor and hot water, including crude gas chilling technology and heat recovery technology of waste heat boiler.
  • the sensible heat recovered is mainly used to produce water vapor and power generation. .
  • An object of the present invention is to provide a method for directly reducing iron ore briquettes in a shaft furnace by utilizing sensible heat heating of coal gasification high temperature crude gas to produce direct reduced iron.
  • the crude gas entering the reduction shaft furnace passes through the moving bed of iron ore briquettes, and the second stage of the moving bed of iron ore is removed by the iron ore briquettes, and the iron ore pellets are heated to produce direct reduced iron;
  • the crude gas passes the sensible heat to the iron ore briquettes for reducing the iron, and then cools to 150-200'C, which is used as the top gas of the reduction shaft furnace to discharge the reduction shaft furnace;
  • the discharged top gas is further dedusted by the third section of the electric bag to remove the H 2 S. COS, C0 2 and trace coal tar, and then become the reducing gas;
  • the iron ore briquettes in the reduction shaft furnace are heated and reduced by the crude gas to form direct reduced iron, and cooled to 30 (TC or less) in the lower part of the reduction shaft furnace, and the coal ash and reduced iron are separated after being sieved through the bottom discharge port lock hopper. Baked out.
  • the method for producing direct reduced iron by using sensible heat of crude gas can be realized because: the iron gas in the iron ore pellets is used as a reducing agent, so that the crude gas after dust removal transfers sensible heat to the iron ore pellets. Thereafter, together with the dry distillation gas produced by the iron ore pellets in the dry distillation section of the shaft furnace, the reduced tail gas, and the crude gas which is not involved in the reduction reaction, the top gas is discharged from the shaft of the shaft furnace from the top of the shaft furnace.
  • the amount of reducing agent required for the iron powder reducing agent in the iron ore briquettes is equal to that of the reduced iron ore, the heat of the 3 ⁇ 4 and C0 participating in the reduction reaction in the crude gas, and the coal not participating in the reduction reaction in the iron ore pellets
  • the heat of the pyrolysis gases CH 4 , H 2 , CO, etc. is substantially equal. That is: Since the coal is added to the pellet, the heat contained in the chemical components of the crude gas is substantially equal to the heat contained in the chemical composition of the top gas after the direct reduction of iron.
  • the production of direct reduced iron only utilizes the sensible heat in coal gasification of crude gas.
  • direct-reduced iron cannot be produced directly from coal gasification high-temperature crude gas. It is even less likely to produce direct reduced iron using sensible heat from high temperature crude gas. The reason is that the crude gas contains harmful element S, which may be absorbed by the reduced iron in the process of reducing iron; the second is that the crude gas has a high degree of oxidation and cannot guarantee the low oxidation degree required for direct reduction of iron; Containing a large amount of dust, the dust softens and sticks at high temperatures, and will stick to pipes, dust collectors, and direct reduced iron equipment, which will cause damage to the pipeline, dust collector and equipment, and even cause accidents such as parking; Because of the high pressure and low pressure of the crude gas due to the coal gasification process, the crude gas cannot be pressurized when it is lower than the pressure required for the direct reduced iron process.
  • the crude gas outlet pressure range of the coal gasifier is 0. 5 - 4. O MPa, which can be decompressed during the dust removal process, or the pressure reducing valve can be depressurized to meet the pressure requirements of the direct reduced iron process.
  • coal with a coal ash melting point higher than 200 °C of direct reduced iron process temperature can be selected as coal for gasification to avoid low melting point of coal ash, viscous pipes, doors and equipment.
  • the problem is to use the iron ore briquettes and direct reduced iron in the reduction shaft furnace, or the iron ore and iron oxide pellets as the particles of the moving particle bed in the direct reduction shaft furnace, and simultaneously produce the high temperature uninterrupted continuous dust removal. Direct reduction of iron.
  • the gas dust produced from the melting reduction furnace contains a large amount of iron oxide, which reduces the melting point of the coal ash.
  • the inlet temperature of the gas from the melting reduction furnace to the direct reduction furnace is 8301, and the gas and dust enter the reduction vertical. After sputum, it aggregates under the action of iron pellets and iron oxide pellets and causes bonding;
  • the reduction shaft furnace adopts oxidized pellets and massive iron ore, and its soft melting point is about 850 °C, which is one of the causes of the reverse gas, dust and iron ore bonding.
  • the present invention adopts the following technical solutions:
  • the present invention uses iron ore briquettes to increase the soft melting point of the iron ore-containing raw materials.
  • the soft melting point of iron ore briquettes is 1150'C.
  • the soft melting point of iron oxide pellets is 85 (TC is 300'C higher.
  • the temperature of the crude gas entering the reduction shaft furnace is controlled at 1000 - 1100'C to avoid occurrence. Bonding.
  • the crude gas will not return to the shaft furnace after passing through the reduction shaft furnace, avoiding the dust containing iron ore powder entering the reduction shaft furnace, thus avoiding the occurrence of bonding.
  • the iron ore briquettes used in the present invention have a particle size of 10 to 50.
  • the gap between the pellets increases, the movement and retention space of the dust after entering the reduction shaft furnace increases, and the bed continuously moves downward to carry the dust downward.
  • the airflow moves upwards to carry the dust upwards, so that it will not be blocked due to dust accumulation.
  • changing the shape of the raw pellets can also increase the movement and retention space of the dust, such as making the pellets into oblate or flat cylinders. .
  • the gasification process with low oxidation degree in the coal gasification process should be selected to reduce the oxidation degree of the crude gas in the input reduction shaft furnace.
  • crude gas does not desulfurize.
  • sensible heat in crude gas cannot be used to smelt direct reduced iron.
  • the invention finds in the experiment that the iron ore coal pellets have desulfurization phenomenon in the process of heating and directly producing the reduced iron, and the desulfurization rate reaches 70-80%. This may be related to coal H; related to, solution hydrogenation and desulfurization technology similar thermal coal, coke oven gas close to the co-pyrolysis of coal desulfurization technology.
  • the coke oven gas and coal co-pyrolysis desulfurization process technology is essentially a coal hydrogenation and methane pyrolysis process combining coal hydrothermal pyrolysis and coal methane co-pyrolysis.
  • the desulfurization effect is divided into two parts: 1 Desulfurization in the pellet, that is, hydrogen generated by pyrolysis of coal in the pellet reacts with sulfur to form gas such as H 2 S and COS and discharges the pellet and shaft furnace; 2 Hydrogen in the reducing gas
  • the H 2 S gas generated by the reaction with the sulfur in the coal and iron concentrate is discharged from the shaft furnace with the reduced exhaust gas.
  • containing 20% of 3 ⁇ 4 in the crude gas can inhibit the absorption of H 2 S and COS by elemental iron during the production of direct reduced iron, due to H /. High content, can remove 5 from iron ore and coal.
  • the entrained flow coal gasification process in the coal gasification process such as the crude gas in the dry coal gasification process, generally does not contain coal tar.
  • the tar content in the coal is about 4%, and the weight is about 8.72 kg. Due to the dilution effect of the crude gas and the reducing tail gas, it is 2 ⁇ / ⁇ 3 ⁇
  • the coal tar content in the top gas is further reduced, about 3. 2g / m 3 .
  • One way to solve the problem of coal tar is to select the coal tar dew point temperature above 85 'C to purify the top gas, and the second is to use the electric tar removal process to remove the tar.
  • the optimum reduction temperature of iron ore briquettes is 1000 ⁇ 110 (TC, in order to ensure the temperature in the reduction shaft furnace, the crude gas temperature of the input reduction shaft furnace can be increased to 1100 'C.
  • the best way to adjust the temperature of the crude gas is to choose In the coal gasification process, the crude gas temperature is close to 1100 ⁇ , and the adjustment is carried out on the basis of this.
  • the coal injection volume is adjusted to adjust the outlet temperature of the crude gas, reducing
  • the coal injection amount of the upper stage furnace can increase the crude gas outlet temperature, and increasing the coal injection amount of the upper stage furnace can reduce the crude gas outlet temperature.
  • increasing the oxygen injection amount of the upper stage furnace can increase the crude gas temperature, and reducing the oxygen injection amount can reduce the coarseness. Gas temperature.
  • the crude gas outlet pressure may be 2. 5 ⁇ 8. 5 MPa according to the needs of different industries.
  • the process of the present invention requires an appropriate gas pressure. When the iron ore pellets are coal blended with high volatile coal, the excessive pressure may cause excessive softening of the coal, decrease the strength of the pellets, and even cause an accident.
  • increasing the gas pressure in the reduction shaft furnace is beneficial to increase the output and use the gas pressure of the gasifier gas, but for the safety of the process equipment.
  • the stability of the gas should be selected in accordance with the appropriate gas pressure, generally in the range of 0. l ⁇ 3MPa.
  • One of the features of the present invention is three-stage dry continuous dust removal. Compared with the wet dust removal and cooling, the three-stage dry continuous dust removal of the present invention does not generate a large amount of black water, but only a small amount of sewage is generated during the top gas recovery process. This part of the sewage can be formulated into a binder for the production of iron ore briquettes, or it can be purified and reused, such as the production of steam for coal gasification. Therefore, zero discharge of sewage can be achieved.
  • the first stage of dust removal is primary dust removal.
  • the coarse dust can be separated by a dust deposition chamber or a baffle, or it can be removed by a cyclone. Because the gas produced from the coal gasifier has a certain pressure, it is not necessary to install electrical and mechanical power components on the cyclone, avoiding the influence of high temperature on electrical and mechanical power components, and the lining of the dust collector is selected.
  • High-temperature resistant refractory materials such as high-temperature ceramics with alumina as raw material, heat-insulating materials between steel plates and refractory materials, water jackets can also be added to prevent high-temperature rotation of dust-containing high-temperature gas, causing high-temperature damage to the friction of the cyclone wall. dust collector.
  • a section of dust removal equipment can be connected in series or in parallel, such as dust deposition chamber, baffle, cyclone dust collector arranged in series, or multiple cyclone dust collectors arranged side by side or in multiple pipes, or only dust deposition chamber, baffle, cyclone dust collector can be used.
  • dust deposition chamber baffle, cyclone dust collector arranged in series
  • multiple cyclone dust collectors arranged side by side or in multiple pipes, or only dust deposition chamber, baffle, cyclone dust collector can be used.
  • the second stage of dust removal is dust removal on the moving particle bed.
  • the crude gas carries part of the dust into the reduction shaft furnace for the second stage of dust removal.
  • the crude gas is also cooled and dust-removed.
  • a part of the dust is discharged from the shaft furnace through the top of the furnace together with the gas and the reduced exhaust gas, and enters the gas purification process for the third stage of dust removal; the other part of the dust is lowered together with the direct reduced iron to the cooling section of the lower part of the reduction shaft furnace, and the top gas is used.
  • the cooled and purified gas is used as cooling gas, and the cooling gas is sent to the reduction shaft furnace from the lower part of the direct reduction shaft furnace, and the lower part of the surrounding pipe of the direct reduction shaft furnace is discharged from the middle of the reduction shaft furnace to discharge the shaft furnace; the direct reduced iron and part of the dust are in The lower part of the reduction shaft furnace is cooled under the action of the cooling gas, and is continuously lowered to the discharge port to be discharged together, and the direct reduced iron and dust are separated by the discharge lock sieving.
  • the top gas is evacuated after the third section of the electric bag is dedusted, and the dust from the second stage and the dust generated by the first and third stages are collected and disposed of.
  • the second section of the shaft furnace also includes dust removal in the cooling section, that is, the cooling gas is input into the shaft furnace from the lower part of the shaft furnace, and the heat of the reduced iron is absorbed, and then the crude gas is discharged from the lower part of the inlet pipe, and a part of the dust is blown back, and the waste heat is used to cool the waste heat. After the bag is dusted, the cold gas is recycled. It is also possible to input the cooling gas after absorbing heat into the shaft furnace of the upper part of the shaft into the shaft furnace for preheating the charge, and it is necessary to add a gas input pipe to the upper part of the shaft of the raw gas input shaft.
  • the third stage of dust removal is a conventional bag dust removal or electric bag composite dust removal.
  • the temperature of the top gas discharged from the direct reduction shaft furnace has dropped to 150 ⁇ 200 ° C, which contains H 2 S, COS. H: 0, a small amount of tar and a small amount of dust, need to carry out the third
  • the stage is dedusted and purified, it can be used for IGCC 3 ⁇ 4 electricity or as a chemical raw material gas to produce chemical products.
  • the purification of the top gas discharged from the top of the reduction shaft furnace can be carried out by a conventional gas purification process because the top gas contains a large amount of co, H 2 , C0, H 2 0, H 2 S, COS, dust and a small amount of coal.
  • Tar, etc. must be removed and purified in order to be used in gas, or chemical industry.
  • Raw gas For the top gas purification method, different processes should be selected according to the actual process.
  • the low temperature methanol washing, ammonia series desulfurization technology, decarburization technology, and pressure swing adsorption method can be selected.
  • the recovered s and co 2 can be reused.
  • the purified gas is sent to the gas turbine for combustion and power generation after being pressurized by the compressor, and the exhaust gas is recovered by the waste heat boiler to generate water vapor and generate electricity.
  • the recycled dust can be used as a building material.
  • the second feature of the present invention is that compared with waste heat power generation, heat energy utilization is only a single heat transfer, no waste heat power is converted into steam, steam is converted into kinetic energy, and kinetic energy is converted into multiple conversions of electric energy, so the crude gas sensible heat utilization efficiency 2 to 3 times higher than power generation.
  • the third feature of the present invention is that compared with the waste heat power generation, not only the waste heat utilization does not consume carbon, but also the CO 2 produced by the direct reduced iron production can be recovered at a lower cost in the top gas recovery and purification process, and can be combined with the crude gas.
  • the toxic and harmful gases H 2 S, COS, etc. and the production of direct reduced iron produce H 2 S, COS and other sulfides in the exhaust gas, and other toxic and harmful gases are recovered and utilized.
  • the fourth feature of the present invention is that the direct reduced iron production process has no waste gas and waste residue discharge, and a small amount of water generated during the top gas recovery process can be used for preparing the coal water slurry, and can also be used to supplement the power generation process water or to produce water vapor. It is injected into the coal gasifier to increase the H 2 content in the gas, so that clean production can be achieved.
  • the fifth feature of the present invention is that the energy for producing direct reduced iron is low. Since only the crude gas sensible heat, pulverized coal reductant and a small amount of organic binder are used, the theoretical energy consumption of the reducing agent is only 218 kg C/ton of iron, which is actually only 220-240 kg of standard coal/ton of iron.
  • the sixth feature of the present invention is that the direct reduced iron is a strong endothermic reaction, and the temperature in the furnace is only continuously reduced by the endothermic reaction, and the furnace temperature is not raised. Therefore, the reduction shaft furnace is insulated to minimize heat loss.
  • the seventh feature of the present invention is to reduce the top of the shaft furnace and the bottom of the furnace ( ⁇ to make a gas seal. If the gas pressure in the reduction furnace exceeds 0. 8Mpa, the upper and lower gas seals should be changed to the upper and lower lock buckets, that is, by the lock bucket Material, discharge, use N 2 gas as a transition gas to isolate air to ensure safe production and prevent safety accidents.
  • the eighth feature of the present invention is that the use of the gasification furnace crude gas pressure eliminates the reduction shaft furnace reduction air pump pressurization system, and this part of the electric energy and kinetic energy consumption can be completely saved, and the residual pressure can be used to generate electricity. .
  • the invention can also select iron oxide pellets and iron ore as raw materials for producing direct reduced iron and dust removing particles, and use the crude gas sensible heat to produce direct reduced iron, including the following process:
  • the crude gas passes the sensible heat to the iron oxide pellets and the iron ore for the reduction of iron, and then the temperature is lowered to 150-200 °C, and the reduction shaft furnace is discharged as a top gas of the reduction shaft furnace;
  • the discharged top gas is then combined with the third section of electric bag to remove dust, remove H 2 S. COS. C0 2 , trace coal tar, become reducing gas, or used for gas, or for power generation, or for Production of raw materials for chemical products;
  • the iron oxide pellets and iron ore are heated and reduced by crude gas to form direct reduced iron, which is cooled to below 300 °C in the lower part of the reduction shaft furnace, and sealed by N 2 gas at the bottom discharge port. After sieving out the coal ash and reducing iron, it is discharged.
  • the oxidation degree of the crude gas fed to the reduction shaft furnace is controlled at 8%
  • the softening point of the coal ash is controlled at 1000
  • other process parameters and processes including crude gas pressure, three-stage dust removal, top gas Purification, etc.
  • the iron oxide pellets and iron ore are used as raw materials for the direct reduction of iron and dust particles, the corresponding gas and gas in the crude gas are consumed while using the crude gas sensible heat, and the crude gas consumption is 700 - 1000m. 3 , Since the iron ore reduction process has the preference of selecting H 2 as a reducing agent in the gas, the consumption of gas can be further reduced.
  • the iron oxide pellets and iron ore briquettes are used as dust removing particles, the carbon content of the pellets is 0 - 203 ⁇ 4, including carbon in coal powder, coke powder and binder.
  • the invention can also select a pellet made of iron ore powder with a mixture of pulverized coal, a binder and a lime powder mixture as a direct reduced iron raw material and a dust removing granule, and the direct reduced iron is produced by the sensible heat of the crude gas, including the following process. : a. selecting coal with a coal ash melting point higher than the direct reduced iron reduction temperature of at least 200 ° C as raw material, and producing crude gas in a coal gasifier;
  • the lime powder mixture is a direct reduction shaft furnace of a pellet made of iron ore powder wrapped in a layer;
  • the crude gas entering the reduction shaft furnace passes through the moving bed of the iron ore pellets, and the second section of the granular bed is moved by the iron ore pellets to remove the dust, and the coarse gas heats the iron ore pellets, which are produced by the wrapping layer.
  • the gas is subjected to a reduction reaction to the iron ore pellet;
  • the crude gas passes the sensible heat to the iron ore pellets for reducing iron, and then cools to 150-200 'C, and is used as a reduction shaft furnace top gas discharge reduction shaft furnace;
  • the discharged top gas is then combined with the third section of electric bag to remove dust, remove H 2 S, COS, C0 ; Reducing gas, or used for gas, or for power generation, or for the production of chemical products; f.
  • the above-mentioned iron ore pellets in the reduction shaft furnace are heated and reduced by crude gas to form direct reduced iron, in the lower part of the reduction shaft furnace. Cooled to below 300 TC, protected by N 2 protection through the bottom discharge lock cylinder, sealed sieved coal ash and reduced iron with a coating layer, crushed and sieved direct reduced iron.
  • the separated carbonaceous coating can be used as a raw material for the coal gasifier.
  • the crude gas fed to the reduction shaft furnace is protected by a coal-containing protective layer and limestone Desaturation, oxidation and other chemical components can be unrestricted.
  • Other process parameters and processes including crude gas pressure, three-stage dust removal, top gas purification, etc. are the same as direct reduction iron processes using iron ore briquettes as raw materials. .
  • the invention can also be used for the gas-based direct reduction shaft furnace high-temperature hot state direct reduction iron discharging method, including the N 2 gas-sealed hot-out furnace method of the MIDREX and HYL-in processes, or can be heat-released by the closed lock bucket, and the gas is discharged after the furnace is discharged.
  • Protective closed heat screening separates direct reduced iron and dust, direct reduced iron is used for steel making, and dust is used to produce building materials.
  • the invention adopts a direct reduction iron shaft furnace and a high-temperature crude gas dust remover, and uses iron ore briquettes, iron oxide pellets, coal-coated iron pellets, iron ore as high-temperature dust-removing particles, and has a high melting point of coal ash.
  • the coal under the direct reduction temperature of 200 "C or above is a gasification raw material, and the high-temperature crude gas of 790'C ⁇ 1100 °C is introduced into the direct reduction shaft furnace, and the direct reduced iron is produced by the sensible heat of the crude gas while removing the dust at a high temperature.
  • the invention can desulfurize, solves the problem of direct reduction of iron by sensible heat smelting in crude gas while removing dust from high temperature and coarse gas.
  • the invention is dry dust removal, water saving, energy saving, pollution reduction, emission reduction C0 2 , S, Greenhouse gases such as COS, combined with chemical products, can achieve near-zero emissions of greenhouse gases and achieve clean production.
  • the invention can organize coal gasification, ironmaking, coal chemical, power generation and other products in different industries to achieve coal gasification. Efficient use of energy cascades can nearly double the efficiency of coal energy use at current levels.
  • the crude gas is discharged from the coal gasifier, the temperature reaches I OOO - 1100'C, the melting point of coal ash is >1300' ( , the oxidation degree of crude gas is ⁇ 15%, the pressure is 0.1 ⁇ 4MPa, after the first stage baffle, ceramic cyclone dust removal Dust removal, input into the shaft furnace containing iron ore briquettes for the production of direct reduced iron; iron ore briquettes particle size is 10 ⁇ 50mn!.
  • Crude gas in the reduction shaft furnace to move the second stage of the particle bed, dust reduction, reduced iron After the crude gas is discharged from the top of the shaft furnace together with the reduced tail gas and coal pyrolysis gas, the temperature of the top gas has dropped to 150 - 20 (TC.
  • the top gas is then removed by the third section of the electric bag composite, and removed. After H 2 S, COS. C0 2 , H 2 0 and other toxic and harmful gases, it is used as gas or chemical raw material gas. Direct reduced iron becomes a product. Used as a raw material for building materials, the recovered s co 2 can be used as a chemical raw material.
  • the crude gas is produced from the coal gasifier, the temperature is 1150, the melting point of the coal ash is > 1300 ° C, the oxidation degree is 15%, the pressure is 0.25 ⁇ 8 MPa, and the pressure is reduced to 0. l ⁇ 4 MPa by the pressure reducing valve.
  • the top gas is erected, the temperature of the crude gas is reduced to 1000 - 1100, and the oxidation degree is reduced to 15%.
  • the iron ore pellets are loaded for direct reduction. In the iron shaft furnace; the iron ore coal pellets have a particle size of 10 to 50 mm.
  • the crude gas is removed in the second stage of the moving particle bed in the reduction shaft furnace.
  • the crude gas after the reduction of iron is discharged from the top of the shaft furnace together with the reduced tail gas and coal pyrolysis gas. At this time, the temperature of the top gas has been reduced to 150 ⁇ 20 (TC.
  • the top gas is dedusted by the third section of the electric bag composite, except for tar, removing H 2 S COS, C0 2 0 and other toxic and harmful gases, used as gas or chemical raw material gas. Direct reduced iron becomes a product. After concentration, it is used as a raw material for building materials, and recovered S C0 2 is used as a chemical raw material.
  • the crude gas is produced from the coal gasifier, the temperature reaches 1000 - 1100 °C, the melting point of coal ash is > 1300 °0, the oxidation degree of crude gas is ⁇ 15%, the pressure is 0.25 ⁇ 8 MPa, and the pressure is reduced to G. l ⁇ 4MPa by the pressure reducing valve.
  • baffle dedusting input into the shaft furnace containing iron ore briquettes for the production of direct reduced iron; iron ore briquettes with a particle size of 10 ⁇ 50 coarse gas moving in the reduction shaft furnace
  • the crude gas is discharged from the top of the shaft furnace together with the reduced tail gas and the coal pyrolysis gas.
  • the temperature of the top gas has dropped to 150 - 20 (TC.
  • the third section of the bag is dedusted, and after removing toxic and harmful gases such as H 2 S COS, C0 2 H 2 0, etc., it is used as a chemical raw material gas or gas. Direct reduced iron becomes a product. After dust concentration, it is used as building materials, and recycled S C0 2 is used as a chemical raw material.
  • Example 4
  • the iron oxide pellets and iron ore are used as raw materials and dust-removing particles for direct reduction of iron.
  • the crude gas is removed in the second stage of the moving particle bed in the reduction shaft furnace.
  • the crude gas after the reduction of iron is discharged from the top of the shaft furnace together with the reduced tail gas and coal pyrolysis gas.
  • the temperature of the top gas has been reduced to 200 - 300.
  • the top gas is then removed by the third stage of the bag, and the toxic and harmful gases such as H 2 S COS. C0 2 H 2 0 are removed and used as chemical raw materials gas or gas.
  • Direct reduced iron becomes a product. After the dust is concentrated, it is used as a raw material for building materials.
  • the recovered S CO is used as a chemical raw material.
  • Example 5 The crude gas is produced from the coal gasifier, the temperature reaches 1000 ⁇ 1200 ⁇ , the melting point of coal ash is >1300'0, the oxidation degree of crude gas is 8-25%, the pressure is 0.1 ⁇ 4MPa, after the first section of baffle, ceramic phoenix dust removal and dust removal , inputting a pellet made of iron ore fine powder with a mixture of pulverized coal, binder and lime powder as a direct reduction iron raw material and dust removing particles; the size of the wrapped pellet is 30 - 80 thick
  • the gas is removed in the second stage of the moving particle bed in the reduction shaft furnace.
  • the crude gas after the reduction of iron is discharged from the top of the shaft furnace together with the reduced tail gas and coal pyrolysis gas.
  • the temperature of the top gas has been reduced to 150 ⁇ 200.
  • the top gas is then dedusted by the third section of the electric bag to remove the toxic and harmful gases such as H 2 S COS. C0 2 0, and then used as gas or chemical raw material gas.
  • the directly reduced iron wrapped by the carbonized carbon layer becomes a product, and the directly reduced iron is separated by crushing and screening. After the dust is concentrated, it is used as a raw material for building materials, and the recovered S CO can be used as a chemical raw material.

Description

利用粗煤气显热生产直接还原铁的方法 技术领域
本发明涉及一种煤炭气化粗煤气余热回收利用方法, 具体是一种利用煤炭气化粗煤气 显热直接加热铁矿煤球团或铁矿石、 氧化铁球团矿, 以生产直接还原铁的工艺方法。 本发 明将高温粗煤气直接送入直接还原竖炉中, 用于加热直接还原竖炉中的铁矿煤球团或铁矿 石、 氧化铁球团矿生产直接还原铁。 本发明的特点是在回收利用粗煤气中所含显热时釆用 了三段连续除尘, 第一段用粉尘沉降室、 挡板、 旋风除尘器高温除尘, 除去粗煤气中的较 粗颗粒; 第二段在还原竖炉中利用还原铁和铁矿煤球团或铁矿石、 氧化铁球团矿颗粒床除 尘; 第三段在还原竖炉炉顶煤气降温后的净化过程中除尘。
背景技术
200610012837号发明专利公开了一种铁矿煤球团自产还原气生产直接还原铁的方法, 该方法是在开炉前准备 N2、 焦炉气、 煤制气、 天然气、 煤层气中的一种或数种气体混合做 为启动气源, 将启动气源加热至 1150 'C , 通入还原竖炉中加热铁矿煤球团, 使球团中的一 部分煤热解产生含 C0、 、 CH4的煤热解气, 一部分煤作为还原剂用于还原铁矿石, 产生出 含有 C02和 H20的还原尾气;产生的煤热解气与还原尾气由炉顶排出还原竖炉,经净化除尘、 脱除焦油、 硫及 H20、 C02等杂质气体后成为还原气。 以加热的还原气逐步替代高温启动气 源, 直至完全替代高温启动气源通入还原竖炉中, 加热新的铁矿煤球团, 产生新的煤热解 气和还原尾气, 在还原气直接还原铁矿煤球团中铁精矿粉的同时, 形成自产还原气循环生 产与使用。 如此反复循环, 实现直接还原铁的连续生产。
20081 00553998 号发明专利公开了一种利用红焦加热直接还原铁中还原气的方法, 是 以干熄焦炉代替铁矿煤球团生产直接还原铁工艺中的还原气加热炉, 由还原气代替 N2作为 冷却红焦的传热介质, 还原气在通入干熄焦炉冷却红焦的过程中吸收红焦显热, 被升温至 650 - 960 °C , 再向排出干熄焦炉的还原气中施加 02 , 使其与还原气燃烧产生热量, 将还原 气加热到 1100 ~ 115(TC , 氧化度控制在 < 20%后送入还原竖炉, 为铁矿煤球团还原铁提供 热量。 该发明可以实现 C02近零排放, 并且没有气、 液、 固体废弃物排放, 可实现清洁生 产。
20091 00753306 号发明专利公开了利用垃圾制燃气加热直接还原铁中还原气的方法, 是由垃圾焚烧或融熔焚烧产生的可燃气体, 利用低热值燃气高温燃烧技术蓄热式加热炉、 炼铁高炉热风炉来加热铁矿煤球团内生还原气生产直接还原铁中的循环还原气。 该方法要
- 1 - 确认本 求粗燃气的热值要》 850kcal (3558kj) , 若达不到热值最低要求时, 可以在垃圾焚烧或融 熔焚烧炉中添加煤炭、 焦炭、 半焦、 型煤以提高粗燃气热值。 为防止垃圾焚烧或融熔焚烧 以及燃气二次燃烧产生二 ®英及二 英类物质, 需要在燃气燃烧前或燃气燃烧后做净化处 理。 利用该技术可以在处理城巿生活垃圾的同时生产直接还原铁。
目前,煤炭气化粗煤气中的显热回收利用方法主要有:国外的 Texaco气化工艺、 Destec 煤气化工艺、 Shel l 煤气化工艺、 Prenf lo 煤气化工艺; 以及我国的煤炭气化技术如: 多 喷嘴对置式水煤浆气化技术、 灰熔聚流化床粉煤气化技术、 两段式煤炭气化技术等。 这些 技术中的粗煤气显热都是以水蒸气和热水形态回收的, 其中包括有粗煤气激冷工艺技术、 余热锅炉回收热量技术, 回收的显热也主要是用于生产水蒸气和发电。
发明内容
本发明的目的是提供一种利用煤炭气化高温粗煤气的显热加热直接还原竖炉中的铁 矿煤球团, 以生产直接还原铁的方法。
实现本发明目的的具体方法是:
a.选择煤灰熔点高于直接还原铁还原温度至少 200 'C的煤炭为原料, 在煤气化炉中生 产粗煤气;
b.控制从煤气化炉中产出的粗煤气温度在 1000 - 1100'C , 经高温第一段除尘后, 由设 在还原竖炉中部的围管输送到装填有铁矿煤球团的直接还原竖妒内;
c.进入还原竖炉的粗煤气从铁矿煤球团移动颗粒床层中穿过, 经铁矿煤球团移动颗粒 床第二段除尘, 并加热铁矿煤球团以生产直接还原铁;
d.粗煤气将显热传给铁矿煤球团用于还原铁后, 降温到 150 - 200'C , 作为还原竖炉炉 顶气排出还原竖炉;
e.排出的炉顶气再经第三段电袋复合除尘, 脱除 H2S . COS , C02、 微量煤焦油后, 成为 还原气;
f.还原竖炉中的铁矿煤球团经粗煤气加热还原生成直接还原铁, 在还原竖炉下部冷却 到 30(TC以下, 经底部出料口锁斗密闭筛分出煤灰和还原铁后出炉。
本发明利用粗煤气显热生产直接还原铁的方法能够得以实现的原因是: 由于在铁矿煤 球团中配有煤粉作为还原剂, 使得除尘后的粗煤气将显热传递给铁矿煤球团后, 与铁矿煤 球团在竖炉上部干馏段产生的干馏煤气、 还原尾气和未参与还原反应的粗煤气一同作为炉 顶气从竖炉炉顶排出竖炉。 如果铁矿煤球团内配的煤粉还原剂与还原铁矿所需的还原剂量 相等, 则粗煤气中参与还原反应的 ¾和 C0的热量, 与铁矿煤球团中未参与还原反应的煤 热解气 CH4、 H2、 CO 等的热量大体上相等。 即: 由于球团中加配了煤, 使得粗煤气中化学 成分所含的热量与直接还原铁后炉顶气中化学成分所含的热量大体相等。 生产直接还原铁 只是利用了煤炭气化粗煤气中的显热。
一般认为, 不能直接利用煤气化高温粗煤气来生产直接还原铁。 更不可能利用高温粗 煤气显热生产直接还原铁。 其理由一是因为粗煤气中含有有害元素 S , 在还原铁过程中可 能被还原铁吸收; 二是粗煤气氧化度较高, 不能保证直接还原铁所需要的低氧化度; 三是 粗煤气中含有大量粉尘, 粉尘在高温下软化有粘结性, 会粘滞在管道、 除尘器、 以及直接 还原铁设备上, 会使管道、 除尘器及设备损坏失去设计功能, 甚至造成停车等事故; 四是 因煤气化工艺不同粗煤气的压力有高有低, 粗煤气低于直接还原铁工艺所需压力时无法加 压。
然而, 本发明研究发现:
调整粗煤气温度, 达到直接还原铁工艺要求温度; 粗煤气中含有足够量的 H2; 粗煤气 具有一定压力; 氧化度低于直接还原铁工艺要求; 在直接还原铁前和直接还原铁过程中清 除粉尘; 粗煤气就可以直接用于生产直接还原铁。 GSP、 She l l . 两段式粉煤加压气化等煤 气化工艺经选择煤灰熔点较高的煤和调整工艺参数, 其粗煤气就可以直接用于生产直接还 原铁。
各种煤气化工艺的粗煤气温度在 800 - 1 500 TC之间, 通过调整输 02量, 输水蒸气量和 输煤量比例可以调整粗煤气温度, 当粗煤气温度高于直接还原铁工艺温度时, 也可以兑入 冷煤气降低粗煤气温度, 以达到直接还原铁工艺温度要求,
当粗煤气中 H2含量 > 20%时, 可以有效预防直接还原铁生产过程中单质铁对 H2S、 COS 的吸收, 并可以利用 H2脱除铁矿煤球团中的 S。 因此, 不必担心 S进入直接还原铁产品中, 煤气中的 H2S、 COS可以在生产直接还原铁降温后再回收并加以利用。
煤气化炉的粗煤气出口压力范围为 0. 5 - 4. O MPa , 可以在除尘过程中减压, 或设减压 阀门降压以满足直接还原铁工艺压力要求。
解决粗煤气中的粉尘粘结问题, 可以选择煤灰熔点高于直接还原铁工艺温度 200 'C的 煤, 作为气化用煤, 以避免煤灰熔点低, 粘滞管道、 阐门和设备的问题, 并利用还原竖炉 中的铁矿煤球团和直接还原铁, 或铁矿石、 氧化铁球团矿作为直接还原竖炉中移动颗粒床 除尘的颗粒, 在实现高温不间断连续除尘的同时生产出直接还原铁。
在本发明利用粗煤气显热生产直接还原铁的方法中, 高温除尘是关键。 宝钢 C0REX融 熔还原工艺中, 在熔融炉与还原竖炉之间设置有旋凤除尘器, 除尘温度 850 TC , 但是应用 效果不尽如意, 因为除尘不彻底, 粉尘进入还原竖炉后, 容易造成炉料粘结, 致使还原竖 炉出料不畅, 被迫停炉清理, 影响 C0REX整体作业效率。 竖炉预还原铁粘接的原因是:
1 )、 从融熔还原炉中产出的煤气粉尘中含有大量铁氧化物, 降低了煤灰熔点, 煤气从 融熔还原炉进入直接还原炉的入口温度为 8301 , 煤气与粉尘在进入还原竖妒后, 在铁球 团和氧化铁球团矿过滤作用下聚集并造成粘结;
2 从融熔还原炉中产生的煤气, 在直接还原铁沿管道下降到融熔还原炉过程中, 向 上串入直接还原竖炉, 其温度可达 1000 TC以上, 超过预还原铁软化温度和氧化铁球团矿软 熔点的温度, 造成粘结;
3 ). 还原竖炉采用氧化球团矿和块状铁矿, 其软熔点 850°C左右, 是造成反串煤气、 粉尘与铁矿粘结的原因之一。
本发明为解决上述问题, 采取了以下技术方案:
1 )、 选择灰熔点高的煤。 选择灰熔点高于还原铁温度 1000 - l l OO'C以上 200 的煤, 即煤灰熔点 1200 - 1300'C以上。 因为高于煤灰熔点温度 200°C , —般情况下可以确保避免 煤灰粘附堵塞管道、 阀门、 除尘器和还原竖炉。 煤灰熔点与煤灰矿物成分有着直接关系, 一般认为, 含碱性氧化物 (FeA. CaO MgO, Na20 Κ20 )质量成分越高, 煤灰的熔融温度 越低; 含酸性氧化物 (AI203 Si02 TiOj质量成分越高, 煤灰的熔融温度越高。 各种煤 中 AI203在煤灰中的变化较大, 一般在 3 ~ 50½之间, AI203在煤灰中始终起着增高煤灰熔点 的作用, 在煤灰中的含量达到 30%时, 煤灰熔点可高达 1300 - 1500^:以上。
2 )、 本发明采用铁矿煤球团来提高含铁矿原料的软熔点。 铁矿煤球团软熔点 1150'C 比氧化铁球团矿的软熔点 85 (TC高出 300'C, 此时, 将粗煤气进入还原竖炉的温度控制在 1000 - 1100'C即可避免发生粘结。
3 )、 粗煤气经过还原竖炉后不再返回竖炉, 避免了含铁矿粉的粉尘进入还原竖炉, 因 此也就避免了粘结的发生。
4 )、 增大原料球团矿的粒度, 增大球团之间的空隙。 本发明釆用的铁矿煤球团的粒度 为 10 ~ 50 由于球团之间空隙增大, 使得粉尘进入还原竖炉后的运动和滞留空间增大, 料床不断向下移动携带粉尘向下移动, 气流向上运动携带粉尘向上移动, 不会因粉尘堆积 造成堵塞。 同时, 改变原料球团矿形状也可以增大粉尘的运动和滞留空间, 如将原料球团 制成扁圆球形或扁圆柱体。 . .
5 )、 送入还原竖炉中的粗煤气氧化度 ^+^^ / ^+ + ^^要 ^/。。 实验表明, 用 煤气氧化度 > 25%的煤气还原含碳铁矿球团时, 含碳铁矿球团还原后会再氧化。 由于铁矿 煤球团还原产生大量氧化气体 C02和 H20 , 与粗煤气在还原竖炉中汇合后, 会提高还原竖炉 中气体的氧化度, 消耗铁矿煤球团中的碳元素, 严重时会使 FeA氧化为 Fe203, 造成铁矿 晶体的晶格转变, 导致球团膨胀. 酥松, 失去必要的球团强度而粉化, 致使还原竖炉不能 正常运行。 为保证不出现上述问题, 应选择煤炭气化工艺中氧化度低的气化工艺, 降低输 入还原竖炉中粗煤气的氧化度。
6 )、 粗煤气不脱硫。 目前还没有成熟的 1000 - 1100 TC粗煤气脱硫技术, 要脱硫必须将 粗煤气温度降至常温再脱硫。 如此, 粗煤气中的显热就不能用于冶炼直接还原铁。 本发明 在试验中发现, 铁矿煤球团在加热生产直接还原铁过程中有脱硫现象, 脱硫率达到 70 - 80%。 这可能与煤中的 H;有关, 与煤加氢热解脱硫工艺技术相似, 接近于焦炉煤气与煤共 热解脱硫工艺技术。 焦炉煤气与煤共热解脱硫工艺技术实质上是把煤的加氢热解与煤甲烷 共热解结合在一起的煤加氢、 甲烷热解工艺。 其脱硫作用分为两部分: ①球团内的脱硫, 即球团内煤热解产生的氢与硫反应生成 H2S和 COS等气体并排出球团和竖炉; ②还原气中 的氢与煤和铁精矿中的硫反应生成的 H2S气体, 随还原尾气排出竖炉。 同时, 在粗煤气中 含有》 20%的¾, 可以抑制直接还原铁生产过程中单质铁对 H2S、 COS的吸收, 由于 H /。含量 较高, 可以脱除铁矿及煤中的 5。
7 )、 电捕焦油。 煤气化工艺中的气流床煤气化工艺, 如干粉煤气化工艺的粗媒气一般 都不含煤焦油。在铁矿煤球团直接还原工艺中,每生产 1吨还原铁使用 218kg煤做还原剂, 煤中的焦油含量约为 4%, 重约 8. 72kg , 由于粗煤气和还原尾气的稀释作用, 到了炉顶气 中的煤焦油含量进一步降低, 约为 3. 2g/m3。 解决煤焦油问题的办法一是选择煤焦油露点 温度 85 'C以上净化炉顶气, 二是釆用电捕焦油工艺清除焦油。
8 )、 调整输入还原竖炉的粗煤气温度。 铁矿煤球团的最佳还原温度为 1000 ~ 110(TC, 为保证还原竖炉内的温度, 输入还原竖炉的粗煤气温度可以提高到 1100 'C。 调整粗煤气温 度的最佳办法是选择煤气化工艺中粗煤气温度接近 1100 Ό的工艺, 在此基础上进行调整。 例如在西安热工研究院两段式煤气化炉的上段, 用调整喷煤量来调整粗煤气的出口温度, 减少上段炉的喷煤量可以提高粗煤气出口温度, 增加上段炉的喷煤量可以降低粗煤气出口 温度。 又如, 增加上段炉的喷氧量可以提高粗煤气温度, 减少喷氧量可以降低粗煤气温度。
9 )、 调整还原竖炉内的气体压力。 粗煤气出口压力根据不同行业的需要可以是 2. 5 ~ 8. 5 MPa。 本发明工艺要求适当的气体压力, 是由于铁矿煤球团配煤选用高挥发分煤时, 压力过高有可能造成煤的过度软化, 降低球团强度, 甚至造成事故。 当然, 提高还原竖炉 内气体压力有利于提高产量和利用煤气化炉粗煤气气体压力, 不过为了工艺设备的安全和 稳定顺行, 应选择适当的气体压力, 一般应在 0. l ~ 3MPa。
本发明的特征之一, 是三段干法连续除尘。 与湿法除尘降温相比, 本发明的三段干法 连续除尘不会产生大量黑水, 只是在炉顶气回收过程中会有少量污水产生。 这一部分污水 可以配制生产铁矿煤球团用粘结剂, 也可以净化后回用, 如生产水蒸气用于煤炭气化。 因 此可以实现污水零排放。
第一段除尘为初级除尘。 可以用粉尘沉降室、 挡板将粗颗粒粉尘分离, 也可以用旋风 除尘器除尘。 因为从煤气化炉中产出的煤气带有一定的压力, 不需要在旋风除尘器上加设 电器及机械动力元器件, 避免了高温对电器及机械动力元器件的影响, 除尘器内衬选用耐 高温的耐火材料, 如氧化铝为原料的高温陶瓷, 在钢板与耐火材料之间加隔热材料, 也可 以加水套, 以防止含尘高温煤气高速旋转, 对旋风除尘器壁摩擦产生高温损害除尘器。 一 段除尘设备可以串联也可以并联, 如粉尘沉降室、 挡板、 旋风除尘器串联布置, 或旋风除 尘器多台并排或多管布置, 也可以只使用粉尘沉降室、 挡板、 旋风除尘器其中的一种。
第二段除尘为移动颗粒床除尘。 经一段除尘后的粗煤气携带部分粉尘进入还原竖炉进 行第二段除尘, 在给直接还原竖炉中的铁矿煤球团施加热量还原铁的同时, 还对粗煤气起 到了降温和除尘作用。 其中一部分粉尘与煤气和还原后的尾气一起经炉顶排出竖炉, 进入 煤气净化工序进行第三段除尘; 另一部分粉尘与直接还原铁一起下降到还原竖炉下部的冷 却段, 用炉顶气冷却净化后的煤气做冷却气, 冷却气从直接还原竖炉下部送入还原竖炉, 从还原竖炉中部粗煤气输入直接还原竖炉的围管下部排出竖炉; 直接还原铁和部分粉尘在 还原竖炉下段在冷却气作用下进行降温, 并不断下降到出料口一起排出, 经出料锁斗密闭 筛分出直接还原铁和粉尘。炉顶气经电袋复合第三段除尘后排空, 二段筛分出的粉尘与一、 三段除尘产生的粉尘集中回收处理。
竖炉第二段除尘还包括冷却段除尘, 即冷却煤气从竖炉下部输入竖炉, 吸收还原铁热 量后从粗煤气输入围管口下部排出, 反吹出一部分粉尘, 经废锅冷却利用余热, 布袋除尘 后冷煤气循环利用。 也可以将吸收热量后的冷却煤气, 输入竖炉粗煤气输入围管上段的竖 炉中, 用于预热炉料, 需要在粗煤气输入竖炉围管上段加设煤气输入围管。
第三段除尘为常规的布袋除尘或电袋复合除尘。 经前两段除尘后, 从直接还原竖炉中 排出的炉顶气温度已经降至 150 ~ 200°C, 其中含有 H2S、 COS. H:0、 少量焦油和少量粉尘, 需要进行第三段除尘与净化后才能用于 IGCC ¾电或用作化工原料气生产化工产品。 从还 原竖炉顶部排出的炉顶气的净化可以釆用常规的煤气净化工艺, 因炉顶气含有大量的 co、 H2、 C0,、 H20、 H2S、 COS, 粉尘和少量煤焦油等, 要依次清除净化, 才能用于燃气、 或化工 原料气。 炉顶煤气净化方法, 应根据工艺实际选择不同工艺, 可以选择低温甲醇洗、 氨法 系列脱硫技术、 脱碳技术, 以及变压吸附法等还原气净化方法。 回收的 s和 co2可以再利 用。 净化后的煤气经压缩机加压升温送入燃气轮机燃烧发电, 尾气再经余热锅炉回收水蒸 气和发电。 回收的粉尘可以作为建筑材料使用。
本发明的特征之二, 是与余热发电比较, 热能利用只是单一的热量传输, 没有余热发 电热量转换为蒸汽、 蒸汽转换为动能、 动能转换为电能的多次转换, 所以粗煤气显热利用 效率比发电高 2 - 3倍。
本发明的特征之三, 是与余热发电比较, 不仅余热利用不消耗碳, 而且生产直接还原 铁产生的 C02可以全部在炉顶气回收净化过程中以较低的成本回收, 可以与粗煤气中有毒 有害气体 H2S、 COS等和生产直接还原铁产生尾气中的 H2S、 COS等硫化物, 以及其他有毒 有害气体一起回收并加以利用。
本发明的特征之四, 是直接还原铁生产过程没有废气、 废渣排放, 炉顶气回收过程中 产生的少量水可以用于配制水煤浆, 也可以净化后补充发电工序用水, 或生产水蒸汽, 喷 入煤气化炉中用以增加煤气中的 H2含量, 因此可以实现清洁生产。
本发明的特征之五, 是生产直接还原铁的能源消粍低。 由于只用粗煤气显热、 煤粉还 原剂和少量有机粘结剂, 使得还原剂的理论能耗仅为 218kg C/吨铁, 实际仅为 220 ~ 240kg 标准煤 /吨铁。
本发明的特征之六, 是因为直接还原铁是强吸热反应, 炉内温度只会因吸热反应不断 降低, 炉温不会升髙, 因此还原竖炉要保温尽量减少热量散失。
本发明的特征之七, 是还原竖炉炉顶和炉底用 (^做气封。 若还原炉中气体压力超过 0. 8Mpa时, 上下气封应改为上下锁斗, 即通过锁斗装料、 出料, 用 N2气作过渡气体, 用以 隔绝空气保障安全生产, 防止安全事故。
本发明的特征之八, 是因为利用了煤气化炉粗煤气压力, 取消了还原竖炉还原气泵增 压系统, 这一部分电能、 动能消粍可以全部节省下来, 有条件的还可以利用余压发电。
本发明也可以选用氧化铁球团矿和铁矿石为生产直接还原铁的原料和除尘颗粒, 利用 粗煤气显热生产直接还原铁, 包括以下过程:
a.选择煤灰熔点高于直接还原铁还原温度至少 2001C的煤炭为原料, 在煤气化炉中生 产粗煤气;
b.控制从煤气化炉中产出的粗煤气温度在 790 ~ 900 , 经髙温第一段除尘后, 由设在 还原竖炉中部的围管输送到装填有氧化铁球团矿和铁矿的直接还原竖炉内; c.进入还原竖炉的粗煤气从氧化铁球团矿和铁矿移动颗粒床层中穿过, 经氧化铁球团 矿和铁矿移动颗粒床第二段除尘, 粗煤气加热并还原氧化铁球团矿和铁矿, 以生产直接还 原铁;
d.粗煤气将显热传给氧化铁球团矿和铁矿用于还原铁后, 降温到 150 - 200 °C , 作为还 原竖炉炉顶气排出还原竖炉;
e.排出的炉顶气再经第三段电袋复合除尘, 脱除 H2S . COS. C02、 微量煤焦油后, 成为 还原气, 或用于燃气, 或用于发电, 或用于生产化工产品的原料气;
f.在还原竖炉中氧化铁球团矿和铁矿经粗煤气加热还原生成直接还原铁, 在还原竖炉 下部冷却到 300 °C以下, 经底部出料口锁斗加 N2气保护密闭筛分出煤灰和还原铁后出炉。
上述直接还原铁生产方法中, 送入还原竖炉的粗煤气氧化度控制在《8%, 煤灰软化点 控制在 1000 , 其他工艺参数及过程(包括粗煤气压力、 三段除尘、 炉顶煤气净化等) 与铁矿煤球团为原料的直接还原铁工艺相同。
以氧化铁球团矿和铁矿石为生产直接还原铁的原料和除尘颗粒时, 在利用粗煤气显热 的同时还要消耗粗煤气中相应的 ^和 CO, 消耗粗煤气量为 700 - 1000m3, 由于铁矿还原过 程有优先选择煤气中 H2做还原剂的特性, 消耗煤气量还有进一步降低的可能性。 以氧化铁 球团矿和铁矿煤球团为除尘颗粒时, 球团的配碳量为 0 - 20¾, 其中包括煤粉、 焦粉、 粘结 剂中的碳元素。
本发明还可以选用以煤粉、 粘结剂、 石灰粉混合物为包裹层的铁矿粉制成的球团为直 接还原铁原料和除尘颗粒, 利用粗煤气显热生产直接还原铁, 包括以下过程: a.选择煤灰熔点高于直接还原铁还原温度至少 200 °C的煤炭为原料, 在煤气化炉中生 产粗煤气;
b.控制从煤气化炉中产出的粗煤气温度在 900 - 1300 C , 经高温第一段除尘后, 由设 在还原竖炉中部的围管输送到装填有以煤粉、 粘结剂、 石灰粉混合物为包裹层的铁矿粉制 成的球团的直接还原竖炉内;
c.进入还原竖炉的粗煤气从上述铁矿球团移动颗粒床层中穿过, 经上述铁矿球团移动 颗粒床第二段除尘, 粗煤气加热上述铁矿球团, 由包裹层产生的煤气对铁矿球团实施还原 反应;
d.粗煤气将显热传给上述铁矿球团用于还原铁后, 降温到 150 - 200 'C , 作为还原竖炉 炉顶气排出还原竖炉;
e.排出的炉顶气再经第三段电袋复合除尘, 脱除 H2S、 COS , C0;、 微量煤焦油后, 成为 还原气, 或用于燃气, 或用于发电, 或用于生产化工产品的原料气; f.还原竖炉中的上述铁矿球团经粗煤气加热还原生成直接还原铁, 在还原竖炉下部冷 却到 300 TC以下, 经底部出料口锁斗加 N2保护, 密闭筛分出煤灰和带有包裹层的还原铁, 破碎筛分出直接还原铁。 分离出的碳质包裹层可以作为煤气化炉的原料。
上述直接还原铁生产方法中 _, 送入还原竖炉的粗煤气氧化度控制在 8¾, 煤灰软化点 控制在 > 100() 1C , 其他工艺参数及过程(包括粗煤气压力、 三段除尘、 炉顶煤气净化等) 与铁矿煤球团为原料的直接还原铁工艺相同。
用煤粉、 粘结剂、 石灰粉混合物为包裹层的铁矿粉制成的球团生产直接还原铁的上述 方法中, 送入还原竖炉的粗煤气因有含煤保护层的保护以及石灰石的脱琉, 氧化度及其它 化学成分可以不受条件限制, 其它工艺参数及过程(包括粗煤气压力. 三段除尘、 炉顶煤 气净化等) 与铁矿煤球团为原料的直接还原铁工艺相同.
本发明也可以气基直接还原竖炉高温热态直接还原铁出炉方法出炉, 包括 MIDREX 和 HYL-in工艺的 N2气密封热出炉方法, 也可以用密闭锁斗热出炉, 出炉后要^气保护密闭热 筛分出直接还原铁和粉尘, 直接还原铁用于炼钢, 粉尘用于生产建材。
本发明是以直接还原铁竖炉兼做高温粗煤气除尘器, 以铁矿煤球团、 氧化铁球团矿、 煤包裹铁球团矿、 铁矿石兼做高温除尘颗粒, 以煤灰熔点高于直接还原温度 200 "C以上条 件下的煤为气化原料, 将 790'C ~ 1100°C高温粗煤气通入直接还原竖炉中, 在高温除尘的 同时利用粗煤气显热生产直接还原铁。 本发明可以脱硫, 解决了高温粗煤气除尘的同时利 用粗煤气中的显热冶炼直接还原铁的问题。 本发明系干法除尘, 节水、 节能、 减少污染, 减排 C02、 S、 COS 等温室气体, 与化工产品联产可以实现温室气体近零排放, 实现清洁 生产。 利用本发明可以组织煤气化、 炼铁、 煤化工、 发电等不同行业不同产品联产, 实现 了煤炭气化能源的梯级高效利用, 可将煤炭能源利用效率在现有水平上提高近一倍。 具体实施方式
实施例 1
粗煤气从煤气化炉出炉, 温度达到 I OOO - 1100'C , 煤灰熔点> 1300'( , 粗煤气氧化度 < 15%, 压力 0. 1 ~ 4MPa, 经过第一段挡板、 陶瓷旋风除尘器除尘, 输入装有铁矿煤球团用 于生产直接还原铁的竖炉中; 铁矿煤球团粒度为 10 ~ 50mn!。 粗煤气在还原竖炉中进行移动 顆粒床第二段除尘, 还原铁后粗煤气与还原尾气、 煤热解气一同从竖炉顶部排出竖炉, 此 时炉顶煤气温度已经降至 150 - 20(TC。炉顶煤气再经电袋复合第三段除尘,脱除 H2S、 COS. C02、 H20 等有毒有害气体后, 作为燃气或化工原料气使用。 直接还原铁成为产品。 粉尘集 中后作为建材原料使用, 回收的 s co2可作为化工原料使用。
实施例 2
粗煤气从煤气化炉产出,温度》 1150 ,煤灰熔点 > 1300°C,氧化度 15%,压力 0.25 ~ 8MPa, 经减压阀减压到 0. l~4MPa, 兌入净化后的还原竖妒炉顶煤气, 将粗煤气温度降到 1000 - 1100 , 氧化度降低到 15%, 经过粉尘沉降室、 陶瓷旋风除尘器第一段除尘后, 输入装有铁矿煤球团用于生产直接还原铁的竖炉中; 铁矿煤球团粒度为 10~50mm。 粗煤气 在还原竖炉中进行移动颗粒床第二段除尘, 还原铁后的粗煤气与还原尾气、 煤热解气一同 从竖炉顶部排出竖炉, 此时炉顶煤气温度已经降至 150~20(TC。 炉顶煤气经电袋复合第三 段除尘, 除焦油、 脱除 H2S COS, C02 0等有毒有害气体后, 作为燃气或化工原料气使 用。 直接还原铁成为产品。 粉尘集中后作为建材原料使用, 回收的 S C02作为化工原料使 用。
实施例 3
粗煤气从煤气化炉产出, 温度达到 1000 - 1100°C, 煤灰熔点> 1300°0, 粗煤气氧化度 <15%, 压力 0.25~8MPa, 经减压阀减压到 G. l~4MPa, 再经第一段粉尘沉降室、 挡板除 尘, 输入装有铁矿煤球团用于生产直接还原铁的竖炉中; 铁矿煤球团粒度为 10 ~ 50 粗 煤气在还原竖炉中进行移动颗粒床第二段除尘, 还原铁后粗煤气与还原尾气、 煤热解气一 同从竖炉顶部排出竖炉, 此时炉顶煤气温度已降至 150 - 20(TC。 炉顶煤气再经电袋复合第 三段除尘, 脱除 H2S COS, C02 H20等有毒有害气体后, 作为化工原料气或燃气使用。 直 接还原铁成为产品。 粉尘集中后作为建材原料使用, 回收的 S C02作为化工原料使用. 实施例 4
以氧化铁球团矿和铁矿石为生产直接还原铁的原料和除尘颗粒。 从煤气化炉产出, 温 度达到 900'C的粗煤气, 煤灰熔点>1100'0, 兌入净化后冷的炉顶气, 将温度调整到 830 , 粗煤气氧化度 <8¾, 压力 0.25~8MPa, 经减压阀减压到 0.1 ~ 4MPa, 再经过第一段粉 尘沉降室和旋凤除尘器除尘后, 输入装有氧化铁球团矿、 铁矿石为原料的用于生产直接还 原铁的竖炉中; 氧化铁球团矿、 铁矿石的粒度为 10- 50mm。 粗煤气在还原竖炉中进行移动 颗粒床第二段除尘, 还原铁后的粗煤气与还原尾气、 煤热解气一同从竖炉顶部排出竖炉, 此时炉顶煤气温度已经降至 200 - 300 。 炉顶煤气再经布袋第三段除尘, 脱除 H2S COS. C02 H20 等有毒有害气体后, 作为化工原料气或燃气使用。 直接还原铁成为产品。 粉尘集 中后作为建材原料使用。 回收的 S CO,作为化工原料使用。
实施例 5 粗煤气从煤气化炉中产出, 温度达到 1000 ~ 1200Ό, 煤灰熔点> 1300'0, 粗煤气氧化 度 8-25%, 压力 0.1 ~4MPa, 经过第一段挡板、 陶瓷旋凤除尘 除尘, 输入装有以煤粉、 粘结剂, 石灰粉混合物为包裹层的铁矿粉制成的球团为直接还原铁原料和除尘颗粒的竖炉 中; 包裹球团的粒度为 30 - 80 粗煤气在还原竖炉中进行移动颗粒床第二段除尘, 还原 铁后的粗煤气与还原尾气、 煤热解气一同从竖炉的顶部排出竖炉, 此时炉顶煤气温度已经 降至 150~ 200 。 炉顶煤气再经电袋复合第三段除尘, 脱除 H2S COS. C02 0等有毒有 害气体后, 作为燃气或化工原料气使用。 由干馏炭层包裹的直接还原铁成为产品, 经破碎 筛分出直接还原铁。 粉尘集中后作为建材原料使用, 回收的 S CO;可作为化工原料使用。

Claims

杈利 要 求
1、 利用粗煤气显热生产直接还原铁的方法, 包括以下过程:
a.选择煤灰熔点高于直接还原铁还原温度至少 20(TC的煤炭为原料, 在煤气化炉中生 产粗煤气;
b.控制从煤气化炉中产出的粗煤气温度在 1000 - noire , 经高温第一段除尘后, 由设 在还原竖炉中部的围管输送到装填有铁矿煤球团的直接还原竖炉内;
C.进入还原竖炉的粗煤气从铁矿煤球团移动颗粒床层中穿过, 经铁矿煤球团移动颗粒 床第二段除尘, 并加热铁矿煤球团以生产直接还原铁;
d.粗煤气将显热传给铁矿煤球团用于还原铁后, 降温到 150 - 2001C , 作为还原竖炉炉 顶气排出还原竖炉;
e.排出的炉顶气再经第三段电袋复合除尘, 脱除 H2S COS. C02、 微量煤焦油后, 成为 还原气;
f.还原竖炉中的铁矿煤球团经粗煤气加热还原生成直接还原铁, 在还原竖炉下部冷却 到 300 'C以下, 经底部出料口锁斗密闭筛分出煤灰和还原铁后出炉。
2、 根据杈利要求 1 所述的利用粗煤气显热生产直接还原铁的方法, 其特征是所述的 第一段除尘是沉降室除尘、 挡板除尘、 旋风除尘器除尘中的一种, 或者几种的组合除尘。
3、 根据权利要求 1 所述的利用粗煤气显热生产直接还原铁的方法, 其特征是送入还 原竖炉的粗煤气氧化度 +C0) I (H2+CO+C02+H30) < 15%
4、 根据杈利要求 1 所述的利用粗煤气显热生产直接还原铁的方法, 其特征是还原竖 炉中装填的铁矿煤球团的粒度为 10 ~ 50
5、 根据杈利要求 1 所述的利用粗煤气显热生产直接还原铁的方法, 其特征是所述直 接还原铁的冷却是以净化的还原气做冷却气, 由还原竖炉的下部输入, 从中部还原气围 管下部排出竖炉。
6、 根据权利要求 1 所述的利用粗煤气显热生产直接还原铁的方法, 其特征是产出的 还原气用于燃气, 或用于发电, 或用于生产化工产品的原料气。
7、 利用粗煤气显热生产直接还原铁的方法, 包括以下过程:
a.选择煤灰熔点高于直接还原铁还原温度至少 200Ό的煤炭为原料, 在煤气化炉中生 产粗煤气;
b.控制从煤气化炉中产出的粗煤气温度在 790 ~ 900 ϋ , 经高温第一段除尘后, 由设在 还原竖炉中部的围管输送到装填有氧化铁球团矿和铁矿的直接还原竖炉内; c.进入还原竖炉的粗煤气从氧化铁球团矿和铁矿移动颗粒床层中穿过, 经氧化铁球团 矿和铁矿移动颗粒床第二段除尘, 粗煤气加热并还原氧化铁球团矿和铁矿, 以生产直接还 原铁; - . d.粗煤气将显热传给氧化铁球团矿和铁矿用于还原铁后, 降温到 150 ~ 20(TC, 作为还 原竖炉炉顶气排出还原竖炉;
e.排出的炉顶气再经第三段电袋复合除尘, 脱除 H2S、 COS. C02、 微量煤焦油后, 成为 还原气, 或用于燃气, 或用于发电, 或用于生产化工产品的原料气;
f.在还原竖炉中氧化铁球团矿和铁矿经粗煤气加热还原生成直接还原铁, 在还原竖炉 下部冷却到 30(TC以下, 经底部出料口锁斗密闭筛分出煤灰和还原铁后出炉。
8、 根据杈利要求 7 所述的利用粗煤气显热生产直接还原铁的方法, 其特征是所述的 第一段除尘是沉降室除尘、 挡板除尘、 旋风除尘器除尘中的一种, 或者几种的组合除尘。
9、 根据杈利要求 Ί 所述的利用粗煤气显热生产直接还原铁的方法, 其特征是送入还 原竖炉的粗煤气氧化度(H2+C0) I (H2+CO+C02+H30) < 8¾。
10、 根据权利要求 7所述的利用粗煤气显热生产直接还原铁的方法, 其特征是还原竖 炉中装填的氧化铁球团矿和铁矿的粒度为 10 ~ 50mm.
11、 利用粗煤气显热生产直接还原铁的方法, 包括以下过程:
a.选择煤灰熔点高于直接还原铁还原温度至少 200'C的煤炭为原料, 在煤气化炉中生 产粗煤气;
b.控制从煤气化炉中产出的粗煤气温度在 1000 - 1300'C , 经高温第一段除尘后, 由设 在还原竖炉中部的围管输送到装填有以煤粉、 粘结剂、 石灰粉混合物为包裹层的铁矿粉制 成的球团的直接还原竖炉内;
c.进入还原竖炉的粗煤气从上述铁矿球团移动颗粒床层中穿过, 经移动颗粒床第二段 除尘, 粗煤气加热上述铁矿球团, 由包裹层产生的干馏煤气对铁矿球团实施还原反应; d.粗煤气将显热传给上述铁矿球团用于还原铁后, 降温到 150 ~ 200'C, 作为还原竖炉 炉顶气排出还原竖炉;
e.排出的炉顶气再经第三段电袋复合除尘, 脱除 H2S、 COS. C0;、 微量煤焦油后, 成为 还原气, 或用于燃气, 或用于发电, 或用于生产化工产品的原料气;
f.还原竖炉中的上述铁矿球团经粗煤气加热还原生成直接还原铁, 在还原竖炉下部冷 却到 300'C以下, 经底部出料口锁斗加 N2保护, 密闭筛分出煤灰和带有包裹层的还原铁, 破碎筛分出直接还原铁。
12、 根据杈利要求 11 所述的利用粗煤气显热生产直接还原铁的方法, 其特征是还原 竖炉中装填的以煤粉、粘结剂、 石灰粉混合物为包裹层的铁矿粉制成的球团的粒度为 30 - 80
PCT/CN2011/000376 2010-03-12 2011-03-10 利用粗煤气显热生产直接还原铁的方法 WO2011110054A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010124542.1 2010-03-12
CN2010101245421A CN101787408B (zh) 2010-03-12 2010-03-12 利用粗煤气显热生产直接还原铁的方法

Publications (1)

Publication Number Publication Date
WO2011110054A1 true WO2011110054A1 (zh) 2011-09-15

Family

ID=42530786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000376 WO2011110054A1 (zh) 2010-03-12 2011-03-10 利用粗煤气显热生产直接还原铁的方法

Country Status (2)

Country Link
CN (1) CN101787408B (zh)
WO (1) WO2011110054A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101787408B (zh) * 2010-03-12 2011-12-21 苏亚杰 利用粗煤气显热生产直接还原铁的方法
CN101928800A (zh) * 2010-08-15 2010-12-29 苏亚杰 利用粗煤气显热直接还原含碳铁磁性金属球团矿的方法
CN103276131B (zh) * 2013-05-23 2015-02-04 苏亚杰 一种高温粗煤气余热余压余气综合利用工艺方法
CN105492633A (zh) * 2013-07-29 2016-04-13 新日铁住金株式会社 直接还原用原料、直接还原用原料的制造方法和还原铁的制造方法
CN105177211B (zh) * 2015-09-07 2017-05-31 石家庄新华能源环保科技股份有限公司 一种高纯铁的生产方法和装置
CN106244756A (zh) * 2016-08-28 2016-12-21 苏亚杰 煤制气两段串联冶炼直接还原铁工艺方法
CN108754056A (zh) * 2018-06-11 2018-11-06 安徽工业大学 一种高密度全氧短流程高效清洁炼铁工艺
CN108970354B (zh) * 2018-08-03 2020-06-19 山东大学 一种黄铁矿冶炼过程中铁、硫磺、煤气三联产的装置及方法
CN112175642B (zh) * 2020-08-18 2021-08-27 北京科技大学 一种生物质热解同步还原含锰铁矿物的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529599A (en) * 1995-01-20 1996-06-25 Calderon; Albert Method for co-producing fuel and iron
US6334883B1 (en) * 1998-11-24 2002-01-01 Kobe Steel, Ltd. Pellets incorporated with carbonaceous material and method of producing reduced iron
CN1896286A (zh) * 2006-06-13 2007-01-17 苏亚杰 铁矿煤球团自产还原气生产直接还原铁的方法
CN101476010A (zh) * 2009-01-21 2009-07-08 沈阳东方钢铁有限公司 煤粉竖炉还原金属化球团的方法和设备
CN101787408A (zh) * 2010-03-12 2010-07-28 苏亚杰 利用粗煤气显热生产直接还原铁的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035955C (zh) * 1995-06-23 1997-09-24 宝山钢铁(集团)公司 煤基造气竖炉法生产海绵铁的方法
DE60321221D1 (de) * 2002-12-21 2008-07-03 Posco Pohang Vorrichtung zur herstellung von schmelzflüssigem eisen durch heissverdichtung von feinem, direkt reduzierten eisen und kalzinierten zusatzstoffen und verfahren zu dessen verwendung
CN101397597B (zh) * 2007-09-26 2010-12-01 宝山钢铁股份有限公司 干煤粉气化热煤气粉矿流化床直接还原生产海绵铁的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529599A (en) * 1995-01-20 1996-06-25 Calderon; Albert Method for co-producing fuel and iron
US6334883B1 (en) * 1998-11-24 2002-01-01 Kobe Steel, Ltd. Pellets incorporated with carbonaceous material and method of producing reduced iron
CN1896286A (zh) * 2006-06-13 2007-01-17 苏亚杰 铁矿煤球团自产还原气生产直接还原铁的方法
CN101476010A (zh) * 2009-01-21 2009-07-08 沈阳东方钢铁有限公司 煤粉竖炉还原金属化球团的方法和设备
CN101787408A (zh) * 2010-03-12 2010-07-28 苏亚杰 利用粗煤气显热生产直接还原铁的方法

Also Published As

Publication number Publication date
CN101787408A (zh) 2010-07-28
CN101787408B (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
WO2011110054A1 (zh) 利用粗煤气显热生产直接还原铁的方法
CN110923387B (zh) 一种含铁冶金渣粒梯级余热回收及直接还原系统及方法
CN110872531B (zh) 利用固体颗粒热载体热解气化的梯级余热回收装置及方法
JP5166443B2 (ja) ガス・蒸気タービン(コンバインドサイクル)発電所における電気的エネルギーの生成方法及び設備
CN1896286B (zh) 铁矿煤球团自产还原气生产直接还原铁的方法
CN105567897B (zh) 炼铁方法及窑炉
CN203002174U (zh) 用于从生铁制造设备的废气中去除co2的装置
CN102816606B (zh) 一种可燃固体废弃物气化制取富烃可燃气的方法
CN111763791A (zh) 一种含铁赤泥煤基直接还原工艺及系统
CN210916134U (zh) 一种铁矿石煤基氢冶金装置
CN111187871A (zh) 一种用于直接还原铁的生产系统及其方法
CN101928800A (zh) 利用粗煤气显热直接还原含碳铁磁性金属球团矿的方法
CN103276131B (zh) 一种高温粗煤气余热余压余气综合利用工艺方法
CN105314894A (zh) 一种间接生产石灰、回收二氧化碳的回转窑装置和方法
CN100575505C (zh) 利用红焦加热直接还原铁中还原气的方法
CN214694260U (zh) 一种钢铁厂含铁含锌固体废料直接熔炼工艺装置
CN101805811B (zh) 全氧富氢煤气炼铁方法及其装置
CN210916204U (zh) 一种铁矿石回转窑煤基氢冶金装置
CN111057560B (zh) 一种干熄焦炉与炼铁高炉能质耦合的方法
CN112250323B (zh) 一种粉粒状菱镁矿一步法制备烧结镁砂的方法
CN104261700A (zh) 一种利用辐射热生产活性石灰制作干冰的装置及方法
CN204625479U (zh) 一种间接煅烧生产石灰、回收二氧化碳的回转窑装置
CN210367760U (zh) 一种采用酸性含碳金属化球团生产铁水的装置
CN111218535A (zh) 熔铁浴煤制气加热循环还原气生产直接还原铁的方法
CN114990274B (zh) 一种粉状铁矿气基/氢基悬浮还原粉状dri装置系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11752797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11752797

Country of ref document: EP

Kind code of ref document: A1