WO2011108713A1 - Substance discharge device - Google Patents

Substance discharge device Download PDF

Info

Publication number
WO2011108713A1
WO2011108713A1 PCT/JP2011/055098 JP2011055098W WO2011108713A1 WO 2011108713 A1 WO2011108713 A1 WO 2011108713A1 JP 2011055098 W JP2011055098 W JP 2011055098W WO 2011108713 A1 WO2011108713 A1 WO 2011108713A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
ultrasonic wave
discharged
substance
modulated
Prior art date
Application number
PCT/JP2011/055098
Other languages
French (fr)
Japanese (ja)
Inventor
洋人 立野
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to CN201180009382.9A priority Critical patent/CN102753232B/en
Publication of WO2011108713A1 publication Critical patent/WO2011108713A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0092Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin using ultrasonic, sonic or infrasonic vibrations, e.g. phonophoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • A61B2017/00154Details of operation mode pulsed
    • A61B2017/00172Pulse trains, bursts, intermittent continuous operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00747Dermatology
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B2017/22014Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being outside patient's body; with an ultrasound transmission member; with a wave guide; with a vibrated guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0034Skin treatment

Definitions

  • the present invention relates to a substance discharge device for discharging discharged substances from the surface of a discharged body such as a human body to the outside of the discharged body.
  • Patent Document 1 discloses a cosmetic treatment method in which skin is irradiated with ultrasonic waves to simultaneously cleanse pores and remove keratin.
  • Patent Document 2 discloses a cosmetic treatment method for irradiating the skin with ultrasonic waves and removing the hair at the irradiated part.
  • the present invention provides a substance discharge device that discharges discharged substances from the surface of a discharged body such as a human body to the outside of the discharged body using ultrasonic vibration and realizes efficient discharge corresponding to the discharged substance.
  • the purpose is to provide.
  • the substance discharging apparatus of the present invention discharges discharged substances from the surface of the discharged body to the outside, and the amplitude is modulated so that the amplitude of each ultrasonic wave is gradually reduced with respect to the surface of the discharged body.
  • An ultrasonic oscillator that oscillates the modulated ultrasonic wave group; and a control unit that controls the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic wave group based on the drift velocity of the discharged substance with respect to the discharged object.
  • the present invention it is possible to discharge the discharged material from the surface of the discharged body such as a human body to the outside of the discharged body using ultrasonic vibration, and to realize efficient discharge according to the discharged material. it can.
  • FIG. 1 is a block diagram showing a schematic configuration of a substance discharging apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a configuration example of the ultrasonic oscillation unit of the substance discharging apparatus according to the embodiment of the present invention.
  • FIG. 3 is a characteristic diagram showing an amplitude-modulated ultrasonic wave group oscillated from the ultrasonic oscillator to the skin of the body to be discharged and its harmonic probability function.
  • FIG. 4 is an equivalent circuit diagram of a dynamic model at the positive distortion amplitude of the sin wave.
  • FIG. 5 is a schematic diagram showing the installation state of the sample used in Experiment 1.
  • FIG. 6 is a view showing a photograph of each filter paper in which red No.
  • FIG. 7 is a characteristic diagram showing the relationship between the experiment time and the density of Red No. 102 for Samples A, B, and C in Experiment 2.
  • FIG. 8A is a characteristic diagram showing the difference between the experimental value and approximate data for Comparative Example 1.
  • FIG. 8B is a characteristic diagram showing the difference between the experimental value and the approximate data for Comparative Example 2.
  • FIG. 8C is a characteristic diagram showing the difference between the experimental value and the approximate data for the example.
  • FIG. 9 is a table showing the flow velocity J for Examples and Comparative Examples 1 and 2.
  • FIG. 10 is a characteristic diagram showing an amplitude-modulated ultrasonic wave group that is oscillated from the vibrating part to the skin of the body to be discharged in the modification of the present embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a substance discharging apparatus 100 according to an embodiment of the present invention.
  • the substance discharging apparatus 100 includes a vibrating unit 120, a control unit 130, an information input unit 140, and a drift velocity value storage unit 150.
  • an exhaust material absorber 110 is disposed on the surface (skin 201) of a body to be discharged (in this embodiment, for example, a human body) 200.
  • the discharged substance absorber 110 absorbs discharged substances discharged from the surface, and for example, filter paper or the like is selected.
  • the vibration unit 120 includes, for example, a piezoelectric element (not shown) such as PZT, and each ultrasonic wave is applied to the surface (skin 201) of the discharged object 200 via the discharged substance absorber 110.
  • An amplitude-modulated ultrasonic wave group that modulates the amplitude of is oscillated. Due to the oscillation of the amplitude-modulated ultrasonic wave group by the vibration unit 120, the discharged substance in the discharged body 200 is discharged from the skin 201 and absorbed by the discharged substance absorber 110.
  • an annular vibrator 121 may be provided at a contact portion with the surface of the discharged body 200.
  • the annular vibrator 121 has an annular flat surface at a contact portion with the discharged body 200.
  • the information input unit 140 inputs, for example, various types of information including information on the type of emission material to be discharged and information on the emission amount of the emission material to the CPU 133 of the control unit 130.
  • the drift velocity value storage unit 150 stores a plurality of drift velocity values, and the drift velocity value storage unit 150 stores, for example, a drift velocity value for each type of discharged substance.
  • the control unit 130 controls the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic wave group oscillated from the vibration unit 120 based on the drift velocity of the discharged substance with respect to the discharged object 200.
  • the control unit 130 includes an oscillation ultrasonic detection unit 131, an ultrasonic amplitude extraction unit 132, a CPU 133, an ultrasonic amplitude adjustment unit 134, a phase detection unit 135, a resonance frequency adjustment unit 136, and an AC voltage transmission unit. 137, a voltage control amplifier 138, and a power amplifier 139.
  • the oscillation ultrasonic detection unit 131 detects each ultrasonic wave of the amplitude-modulated ultrasonic wave group oscillated from the vibration unit 120 as a voltage value.
  • the ultrasonic amplitude extraction unit 132 extracts the amplitude as a voltage value for each ultrasonic wave detected by the oscillation ultrasonic wave detection unit 131.
  • the CPU 133 controls the overall operation of the substance discharging apparatus 100. For example, the CPU 133 extracts a corresponding drift speed value from the drift speed value storage unit 150 in accordance with the type of emission material input from the information input unit 140, and based on the extracted drift speed value, the vibration unit A control signal for controlling the amplitude of the amplitude-modulated ultrasonic wave group oscillated from 120 is transmitted to the ultrasonic amplitude adjustment unit 134.
  • the CPU 133 determines the number of each ultrasonic wave oscillated as one amplitude-modulated ultrasonic wave group from the vibration unit 120 based on the information related to the discharge amount of the discharged substance input from the information input unit 140, A control signal based on the determination is transmitted to the ultrasonic amplitude adjustment unit 134.
  • the CPU 133 generates a control signal for controlling the amplitude of the amplitude-modulated ultrasonic group and a control signal related to the number of ultrasonic waves oscillating as the amplitude-modulated ultrasonic group as shown in FIG. Output as signal voltage.
  • each saw tooth has a linear waveform that decreases monotonously.
  • the absolute value of the slope (inclination) of the monotonously decreasing portion of the sawtooth corresponds to the value of the extracted drift velocity, and each ultrasonic wave oscillated as one amplitude-modulated ultrasonic wave group depending on the on-time of the sawtooth. Control the number of
  • the ultrasonic amplitude adjustment unit 134 receives as input the voltage value related to the amplitude of each ultrasonic wave extracted by the ultrasonic amplitude extraction unit 132 and the sawtooth signal voltage from the CPU 133, and the amplitude-modulated ultrasonic wave group oscillated from the vibration unit 120. Are adjusted so that the amplitude of each ultrasonic wave is equal to or lower than the drift velocity, and a control voltage for adjusting the number of ultrasonic waves oscillated as the amplitude-modulated ultrasonic wave group is output.
  • the phase detection unit 135 detects the phase between the waveform of each ultrasonic wave of the amplitude-modulated ultrasonic wave group detected by the oscillation ultrasonic wave detection unit 131 and the waveform of the AC voltage output from the AC voltage transmission unit 137.
  • the resonance frequency adjustment unit 136 controls the phase of the AC voltage output from the AC voltage transmission unit 137 based on the phase detected by the phase detection unit 135 and adjusts the vibration unit 120 to be in a resonance state. That is, the phase detection unit 135 and the resonance frequency adjustment unit 136 are based on each ultrasonic wave of the amplitude modulation ultrasonic wave group detected by the oscillation ultrasonic wave detection unit 131, and the phase difference between the ultrasonic waves of the amplitude modulation ultrasonic wave group.
  • the “setting unit” of the present invention is configured to control the vibration unit 120 and set the vibrating unit 120 in a resonance state.
  • the alternating voltage transmitter 137 transmits an alternating voltage (for example, a sine wave voltage).
  • the voltage control amplifier 138 performs control such as modulating the AC voltage transmitted from the AC voltage transmission unit 137 based on the control voltage output from the ultrasonic amplitude adjustment unit 134.
  • the power amplification unit 139 amplifies the AC voltage modulated by the voltage control amplifier 138 and outputs the amplified voltage to the vibration unit 120.
  • the AC voltage input from the power amplification unit 139 is supplied to the above-described piezoelectric element (not shown), and distortion based on the AC voltage is generated in the piezoelectric element.
  • an amplitude-modulated ultrasonic wave group in which the amplitude of each ultrasonic wave is modulated is oscillated from the vibration unit 120.
  • FIG. 3 is a characteristic diagram showing an amplitude-modulated ultrasonic wave group oscillated from the vibrating section 120 to the skin 201 of the discharged body 200 and its harmonic probability function.
  • one amplitude-modulated ultrasonic wave group oscillated from the vibration unit 120 to the surface (skin 201) of the discharged body 200 includes a plurality of ultrasonic waves whose amplitudes are modulated. include.
  • the number of ultrasonic waves that oscillate as one amplitude-modulated ultrasonic wave group is determined by the control unit 130 (CPU 133) based on, for example, information related to the discharge amount of the discharged substance input (set) from the information input unit 140. Is done.
  • the control unit 130 determines the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic group with respect to the elapsed time (t) from the start of oscillation of one amplitude-modulated ultrasonic group.
  • the amplitude of each ultrasonic wave is controlled so that the absolute value V e of the gradient ⁇ V e (this gradient can also be said to be the velocity at the amplitude of each ultrasonic wave with respect to the elapsed time (t)) is equal to or lower than the drift velocity V d.
  • the gradient (inclination) of the dashed line segment connecting the amplitudes of the ultrasonic waves is ⁇ V e .
  • control unit 130 discharges the amplitude of each ultrasonic wave of one amplitude-modulated ultrasonic wave group from the first ultrasonic wave at the start of oscillation of the amplitude-modulated ultrasonic wave group. Control is performed to monotonously decrease to the last ultrasonic wave related to the number of ultrasonic waves oscillated determined based on the information related to the discharge amount of the substance. That is, the amplitude of each ultrasonic wave is monotonously decreased with the gradient ⁇ V e .
  • the ultrasonic wave in the discharge target 200 is determined by the amplitude of the first ultrasonic wave (the ultrasonic wave having the maximum amplitude among the ultrasonic waves of the amplitude-modulated ultrasonic wave group) at the start of oscillation of the amplitude-modulated ultrasonic wave group.
  • the discharge depth is determined. Assuming that the Young's modulus is E 1 and E 2 and the strain amplitudes are ⁇ 1 and ⁇ 2 for the vibrating unit 120 and the discharged body 200 that are vibrators, The stress generated by the oscillation of the sound wave is equal to the drag of the discharged object 200.
  • the distortion amplitude ⁇ 2 of the discharged object 200 which is the discharge depth, is expressed by the following formula (2).
  • the amplitude of the first ultrasonic wave at the start of oscillation of the amplitude-modulated ultrasonic wave group is a value determined according to the required discharge depth.
  • control unit 130 performs control on the last ultrasonic wave of one amplitude-modulated ultrasonic wave group, and then controls the next amplitude-modulated ultrasonic wave group from the vibrating unit 120.
  • Control to perform oscillation is performed so that the shape of the amplitude-modulated ultrasonic wave group to be oscillated becomes a sawtooth shape indicated by a dashed line in FIG.
  • drift velocity V d of the discharged substance with respect to the discharged object 200 is expressed as the following formula (5).
  • the vibration stress of The amplitude A is expressed as the following formula (7).
  • Equation (7) represents Young's modulus
  • represents strain amplitude
  • the existence probability P (x) shown in the equation (10) corresponds to the characteristic of the harmonic probability function shown in FIG.
  • the jumping frequency ⁇ j of the diffusing material gives the drift velocity V d .
  • the external force frequency ⁇ F is in the condition shown in the following formula (11), it cannot follow the external force, and the external pressure amplitude P (x) MAX point acts as the drift velocity acting force point.
  • PZT is used as the piezoelectric element of the vibration unit 120 and the PZT is used as a driving vibration source for discharging discharged substances.
  • the acoustic impedance of PZT is about 34.8 ⁇ 10 6 kg / m 2 ⁇ s
  • the acoustic impedance of muscle is about 1.5 ⁇ 10 6 kg / m 2 ⁇ s
  • the acoustic impedance of muscle is PZT. Is about 1/20 of the acoustic impedance.
  • the human body is regarded as a relaxation system.
  • the vibration amplitude given to the human body (subject 200) by the piezoelectric element of the vibration unit 120 is limited to the positive side of the amplitude pressure function of a sine wave (sin wave). That is, only the positive side amplitude of the sin wave is given to the human body (subject 200) as a striking force.
  • An equivalent circuit diagram of this dynamic model is shown in FIG.
  • the distortion positive amplitude A (t) of the sine wave shown in FIG. 4 is expressed as the following formula (12).
  • ⁇ 0 in the equation (13) is expressed as the following equation (14), and ⁇ n in the equation (13) is expressed as the following equation (15).
  • Equation (16) When the amplitude ⁇ n shown in Equation (15) is input to the relaxation system shown in FIG. 4, it becomes a product with the relaxation function, and ⁇ n (out) is expressed as in Equation (16) below.
  • Equation (16) shows that the contribution to the drift velocity V d as a vibration term is more efficient as the drive frequency is lower.
  • Equation (14) indicates the static pressure amplitude that does not depend on the ultrasonic driving frequency ⁇ . Then, when amplitude modulation is applied so as to have a sawtooth shape as in the amplitude-modulated ultrasonic wave group shown in FIG. 3A, Equation (14) is expressed as Equation (17) below.
  • ⁇ V e is the velocity at the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic wave group with respect to the elapsed time (t) from the start of oscillation of one amplitude-modulated ultrasonic wave group, that is, The inclination (gradient) of the sawtooth shape shown by the one-dot broken line in 3 (a) is shown, and the discharge condition of the discharged material must satisfy the following formula (18) as described above.
  • the diffusion activation potential of the discharged substance in the discharged object 200 is U and the diffusion coefficient of the discharged substance is D.
  • the diffusion coefficient D is proportional to the movement probability when moving to the adjacent site (distance under external force ⁇ x) in the discharged object 200 by changing the diffusion activation potential U.
  • the force per distance ⁇ x under the external force is F
  • the decrease potential ⁇ U and the diffusion coefficient DF are expressed by equations (19) and (20).
  • Equation (21) the time dependence of the concentration at a fixed point is as shown in Equations (22) and (23) below.
  • Example 1 In Experiment 1, the relationship between the discharged material and the drift velocity with respect to the discharged object 200 was examined.
  • agar 111 was used as the discharge target 200, and three types having different molecular weights were prepared as equivalent to the discharged substances.
  • sample 1 was used in which agar 111 was impregnated with red No. 102 (molecular weight 631.51), which is a coloring agent, as an emission material.
  • Sample 2 was prepared by impregnating Agar 111 with Blue No. 1 (molecular weight 792.86), which is a coloring agent, as an emission material.
  • Sample 2 was prepared by impregnating agar 111 with a drug insulin (molecular weight 5807) as an excretion substance.
  • the vibration unit 120 is arranged under the agar 111 via the filter paper which is the emission material absorber 110 of FIG. 1, and the weight 112 is placed on the agar 111 so that the ultrasonic vibration can be easily transmitted to the agar 111.
  • ultrasonic waves were sequentially oscillated in the agar 111 by the vibration unit 120.
  • the oscillation frequency of the ultrasonic wave By changing the oscillation frequency of the ultrasonic wave, the relationship between the oscillation frequency and the concentration of the discharged substance absorbed by the filter paper from each sample was examined. As a result, it was found that each sample draws different curves in relation to the oscillation frequency of ultrasonic amplitude modulation and the concentration of the discharged substance. From the above, it was confirmed that each emission material has a unique drift velocity corresponding to its molecular weight in relation to the non-emission material.
  • Example 2 In Experiment 2, based on the comparison with the comparative example, the superiority of the discharge of discharged substances by the discharge apparatus according to the present embodiment was examined.
  • the discharged object 200 was made by soaking agar No. 102, which is a coloring agent, into the agar 111.
  • the vibrating unit 120 Under the agar 111, the vibrating unit 120 was disposed via the filter paper which is the exhaust material absorber 110 of FIG. 1, and the weight 112 was placed on the agar 111.
  • an amplitude-modulated ultrasonic wave having a sawtooth shape with a negative gradient was oscillated on the agar 111 by the vibration unit 120.
  • the filter paper was placed under the agar 111, and the weight 112 was placed on the agar 111, and the comparative example 1 in which red No. 102 was naturally diffused to the filter paper only by the concentration gradient.
  • Comparative Example 2 in which ultrasonic waves having a fixed amplitude were oscillated in the agar 111 in the same state as in FIG.
  • FIG. 6 is a view showing a photograph of each filter paper in which red No. 102, which is an emission material, was diffused in Example 2 and Comparative Examples 1 and 2 in Experiment 2.
  • sample A is a filter paper left by natural diffusion of Comparative Example 1 for 3 minutes
  • sample B is a filter paper that oscillates a fixed-amplitude ultrasonic wave of Comparative Example 2 for 3 minutes
  • sample C is a negative-gradient sawtooth according to the example.
  • This is a filter paper in which amplitude-modulated ultrasonic waves having a shape are oscillated for 3 minutes with a vibration period of 0.1 seconds.
  • the density difference of red No. 102 is small between sample A and sample B, but the density of red No. 102 is very high in sample C compared to samples A and B.
  • the relationship between the experiment time and the density of Red No. 102 was examined.
  • the experimental results are shown in FIG. In FIG. 7, the test time (sample A, the standing time, and samples B and C, the ultrasonic oscillation time) is 60 seconds, 120 seconds, 180 seconds, 300 seconds, 600 seconds, and sample A, Each filter paper of B and C was dissolved in distilled water, and the absorbance (Abs) was measured with a spectroscope.
  • the approximate data in FIG. 7 is the absorbance calculated based on the mathematical formulas (22) and (23). From the experimental results of FIG. 7, it was confirmed that the sample C of the example showed higher absorbance than the samples A and B of the comparative examples 1 and 2.
  • FIGS. 8A to 8C The differences between the experimental values and the approximate data for the examples and comparative examples 1 and 2 are shown in FIGS. 8A to 8C.
  • FIG. 8A is Comparative Example 1, and the approximate data is absorbance obtained from consideration of natural diffusion.
  • FIG. 8B is Comparative Example 2, and the approximate data is the absorbance obtained from consideration when the ultrasonic wave is set to a fixed amplitude.
  • FIG. 8C is an example, and the approximate data is the absorbance calculated based on Equations (22) and (23).
  • the probability error in each example is 1 ⁇ 0.141 in Comparative Example 1 in FIG. 8A, 1 ⁇ 0.017 in Comparative Example 2 in FIG. 8B, and 1 ⁇ 0.004 in the Example in FIG. 8C. From this result, it was confirmed that the probability error was extremely small in the example as compared with Comparative Examples 1 and 2.
  • the result of Experiment 2 can be analyzed by the method of least squares. Based on the result of the experiment 1 described above, the value of the coefficient a can be calculated by using the nonlinear least square method. From the calculated coefficient a, Comparative Example 1 using only a concentration gradient, Comparative Example 2 using a fixed-amplitude ultrasonic wave, and using a negative-gradient sawtooth-shaped amplitude-modulated ultrasonic wave according to this embodiment For each example, the value of flow velocity J was calculated. The result is shown in FIG. In FIG. 9, the flow velocity J in the case of only the concentration gradient is set as the reference value 1, and the flow velocity J in the comparative example 2 and the example is set as the relative value.
  • the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic wave group oscillated from the vibration unit 120 is controlled based on the drift velocity ⁇ V d of the discharged substance with respect to the discharged object 200. Since it did in this way, when discharging
  • the substance discharge device of the present invention can be applied, for example, to the treatment of efficiently removing sebum, which is the content of acne, as a discharge substance, or discharges bodily substances such as pus, congested blood, and exudate out of the body. As a surgical operation, it can be applied to so-called drainage.
  • the control unit 130 controls the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic wave group oscillated from the vibration unit 120 based on the information related to the discharged substance input from the information input unit 140 and one The number of ultrasonic waves oscillated as an amplitude-modulated ultrasonic wave group is controlled.
  • the present invention is not limited to this.
  • the information related to the discharged substances shown in this embodiment is used.
  • the information related to the measured acoustic impedance of the discharged object 200 is input from the information input unit 140, and the amplitude oscillated from the vibration unit 120 in addition to the information related to the discharged substance in addition to the information related to the acoustic impedance. It may be configured to control the amplitude of each ultrasonic wave in the modulated ultrasonic wave group and the number of ultrasonic waves oscillated as one amplitude modulated ultrasonic wave group.
  • FIG. 10 is a characteristic diagram showing an amplitude-modulated ultrasonic wave group that is oscillated from the ultrasonic oscillator to the skin of the body to be discharged.
  • the diffusion of the discharged substance is a linear combination of the natural diffusion and the external force diffusion by the ultrasonic wave oscillated as the amplitude-modulated ultrasonic wave group from the vibration unit 120.
  • the diffusion depth based only on the concentration gradient due to natural diffusion is expressed by the following formula (24).
  • control unit 130 adds the contribution of the above natural diffusion to the external force diffusion by the ultrasonic waves oscillated from the vibration unit 120 as the amplitude-modulated ultrasonic wave group, and the oscillation order of each amplitude-modulated ultrasonic wave group having a negative gradient. Oscillation is controlled so that the amplitude increases every time. In this way, by controlling the oscillation of each amplitude-modulated ultrasonic group, the amplitude of the amplitude-modulated ultrasonic group is small at the beginning of oscillation, so the number of discharged substances transferred due to the drift speed per unit time increases, Increases the number of sweeps of emissions to the surface. As a result, the discharge efficiency of the discharged substances is further improved.
  • FIG. 1 can be realized by operating a program stored in a RAM, a ROM, or the like of a computer.
  • This program and a computer-readable storage medium storing the program are included in the present invention.
  • the program is recorded on a storage medium such as a CD-ROM, or provided to a computer via various transmission media.
  • a storage medium for recording the program a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a nonvolatile memory card, or the like can be used in addition to the CD-ROM.
  • a transmission medium of the program a communication medium in a computer network (LAN, WAN such as the Internet, wireless communication network, etc.) system for propagating and supplying program information as a carrier wave can be used.
  • examples of the communication medium at this time include a wired line such as an optical fiber, a wireless line, and the like.
  • the function of the substance discharging apparatus 100 according to the present embodiment is realized by executing a program supplied by the computer, but also an OS (Operating System) or other application in which the program is running on the computer.
  • OS Operating System
  • the function of the substance discharging apparatus 100 according to the present embodiment is realized in cooperation with software or the like, or all or part of the processing of the supplied program is performed by a function expansion board or a function expansion unit of the computer.
  • Such a program is also included in the present invention when the function of the substance discharging apparatus 100 according to the present embodiment is realized.
  • the present invention it is possible to discharge the discharged material from the surface of the discharged body such as a human body to the outside of the discharged body using ultrasonic vibration, and to realize efficient discharge according to the discharged material. it can.

Abstract

A substance discharge device (100) is provided with an oscillation unit (120) which oscillates an amplitude-modulated ultrasonic wave group obtained by modulating the amplitudes of ultrasonic waves to the surface of a discharger (200) of an excretory substance, and a control unit (130) which controls the amplitudes of the ultrasonic waves of the amplitude-modulated ultrasonic wave group oscillated by the oscillation unit (120) on the basis of the drift speed of the excretory substance with respect to the discharger (200). Consequently, the excretory substance is discharged to the outside of the discharger from the surface of the discharger such as a human body using ultrasonic oscillation, thereby achieving efficient discharge corresponding to the excretory substance.

Description

物質排出装置Substance discharge device
 本発明は、人体等の被排出体の表面から当該被排出体の外部に排出物質を排出する物質排出装置に関する。 The present invention relates to a substance discharge device for discharging discharged substances from the surface of a discharged body such as a human body to the outside of the discharged body.
 現在、美容施術として、人体等の表面に超音波による振動を与えて種々の目的を達成する諸技術が案出されている。
 例えば、特許文献1には、皮膚に超音波を照射して、毛穴内の洗浄及び角質の除去を同時に行う美容施術方法が開示されている。
 また、特許文献2には、皮膚に超音波を照射して、当該照射部位の体毛を除去する美容施術方法が開示されている。
Currently, various techniques for achieving various purposes by applying ultrasonic vibrations on the surface of a human body or the like have been devised as cosmetic treatments.
For example, Patent Document 1 discloses a cosmetic treatment method in which skin is irradiated with ultrasonic waves to simultaneously cleanse pores and remove keratin.
Patent Document 2 discloses a cosmetic treatment method for irradiating the skin with ultrasonic waves and removing the hair at the irradiated part.
特開2007-159950号公報JP 2007-159950 A 特開2002-527162号公報JP 2002-527162 A
 美容分野における、いわゆるスキンケアでは、例えば過剰皮脂(ニキビ)等に対する美容施術として、レーザ等の機器を用いた光治療やケミカルピーリング等が適用されている。
 しかしながら、超音波を用いてニキビの治療等を行う超音波機器は未だ開発されていない現況にある。
 同様に、膿やうっ血液、滲出液等の体内物質を体外へ排出する外科的施術として、いわゆるドレナージを行う場合でも、そのために用いる超音波機器は未だ開発されていない。
In so-called skin care in the beauty field, for example, as a cosmetic treatment for excessive sebum (acne) and the like, phototherapy using a device such as a laser or chemical peeling is applied.
However, an ultrasonic device that treats acne using ultrasonic waves has not yet been developed.
Similarly, even when so-called drainage is performed as a surgical operation for discharging body substances such as pus, blood congested blood, and exudate out of the body, an ultrasonic device for that purpose has not been developed yet.
 本発明は、超音波振動を用いて、人体等の被排出体の表面から当該被排出体の外部に排出物質を排出し、当該排出物質に対応した効率的な排出を実現する物質排出装置を提供することを目的とする。 The present invention provides a substance discharge device that discharges discharged substances from the surface of a discharged body such as a human body to the outside of the discharged body using ultrasonic vibration and realizes efficient discharge corresponding to the discharged substance. The purpose is to provide.
 本発明の物質排出装置は、被排出体の表面から排出物質を外部へ排出するものであって、前記被排出体の表面に対して、各超音波の振幅を漸減するように変調させた振幅変調超音波群を発振する超音波発振部と、前記被排出体に対する前記排出物質のドリフト速度に基づいて、前記振幅変調超音波群の各超音波における振幅を制御する制御部とを有する。 The substance discharging apparatus of the present invention discharges discharged substances from the surface of the discharged body to the outside, and the amplitude is modulated so that the amplitude of each ultrasonic wave is gradually reduced with respect to the surface of the discharged body. An ultrasonic oscillator that oscillates the modulated ultrasonic wave group; and a control unit that controls the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic wave group based on the drift velocity of the discharged substance with respect to the discharged object.
 本発明によれば、超音波振動を用いて、人体等の被排出体の表面から当該被排出体の外部に排出物質を排出し、当該排出物質に応じた効率的な排出を実現することができる。 According to the present invention, it is possible to discharge the discharged material from the surface of the discharged body such as a human body to the outside of the discharged body using ultrasonic vibration, and to realize efficient discharge according to the discharged material. it can.
図1は、本発明の実施形態に係る物質排出装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a substance discharging apparatus according to an embodiment of the present invention. 図2は、本発明の実施形態に係る物質排出装置の超音波発振部の構成例を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing a configuration example of the ultrasonic oscillation unit of the substance discharging apparatus according to the embodiment of the present invention. 図3は、超音波発振部から被排出体の皮膚に対して発振される振幅変調超音波群及びその調和確率関数を示す特性図である。FIG. 3 is a characteristic diagram showing an amplitude-modulated ultrasonic wave group oscillated from the ultrasonic oscillator to the skin of the body to be discharged and its harmonic probability function. 図4は、sin波の歪み正振幅における力学モデルの等価回路図である。FIG. 4 is an equivalent circuit diagram of a dynamic model at the positive distortion amplitude of the sin wave. 図5は、実験1で用いる試料の設置状態を示す模式図である。FIG. 5 is a schematic diagram showing the installation state of the sample used in Experiment 1. 図6は、実験2において、実施例及び比較例1,2により排出物質である赤色102号が拡散した各濾紙の写真を示す図である。FIG. 6 is a view showing a photograph of each filter paper in which red No. 102, which is an emission material, was diffused in Example 2 and Comparative Examples 1 and 2 in Experiment 2. 図7は、実験2において、試料A,B,Cについて、実験時間と赤色102号の濃度との関係を示す特性図である。FIG. 7 is a characteristic diagram showing the relationship between the experiment time and the density of Red No. 102 for Samples A, B, and C in Experiment 2. 図8Aは、比較例1について、実験値と近似データとの差異を示す特性図である。FIG. 8A is a characteristic diagram showing the difference between the experimental value and approximate data for Comparative Example 1. 図8Bは、比較例2について、実験値と近似データとの差異を示す特性図である。FIG. 8B is a characteristic diagram showing the difference between the experimental value and the approximate data for Comparative Example 2. 図8Cは、実施例について、実験値と近似データとの差異を示す特性図である。FIG. 8C is a characteristic diagram showing the difference between the experimental value and the approximate data for the example. 図9は、実施例及び比較例1,2について、流速Jを示す表である。FIG. 9 is a table showing the flow velocity J for Examples and Comparative Examples 1 and 2. 図10は、本実施形態の変形例において、振動部から被排出体の皮膚に対して発振される振幅変調超音波群を示す特性図である。FIG. 10 is a characteristic diagram showing an amplitude-modulated ultrasonic wave group that is oscillated from the vibrating part to the skin of the body to be discharged in the modification of the present embodiment.
 図1は、本発明の実施形態に係る物質排出装置100の概略構成を示すブロック図である。
 図1に示すように、物質排出装置100は、振動部120と、制御部130と、情報入力部140と、ドリフト速度値記憶部150とを有して構成されている。
 被排出体(本実施形態では、例えば人体)200の表面(皮膚201)には、排出物質吸収体110が配設される。排出物質吸収体110は、当該表面から排出される排出物質を吸収するものであって、例えば濾紙等が選ばれる。
FIG. 1 is a block diagram showing a schematic configuration of a substance discharging apparatus 100 according to an embodiment of the present invention.
As shown in FIG. 1, the substance discharging apparatus 100 includes a vibrating unit 120, a control unit 130, an information input unit 140, and a drift velocity value storage unit 150.
On the surface (skin 201) of a body to be discharged (in this embodiment, for example, a human body) 200, an exhaust material absorber 110 is disposed. The discharged substance absorber 110 absorbs discharged substances discharged from the surface, and for example, filter paper or the like is selected.
 振動部120は、例えば、PZT等の圧電素子(不図示)を有して構成されており、排出物質吸収体110を介した被排出体200の表面(皮膚201)に対して、各超音波の振幅を変調させた振幅変調超音波群を発振するものである。この振動部120による振幅変調超音波群の発振により、被排出体200内の排出物質が皮膚201から排出され、排出物質吸収体110に吸収される。 The vibration unit 120 includes, for example, a piezoelectric element (not shown) such as PZT, and each ultrasonic wave is applied to the surface (skin 201) of the discharged object 200 via the discharged substance absorber 110. An amplitude-modulated ultrasonic wave group that modulates the amplitude of is oscillated. Due to the oscillation of the amplitude-modulated ultrasonic wave group by the vibration unit 120, the discharged substance in the discharged body 200 is discharged from the skin 201 and absorbed by the discharged substance absorber 110.
 振動部120において、図2に示すように、その被排出体200の表面との当接部分に環状振動子121を設けても良い。この環状振動子121は、被排出体200との当接部位が環状の平坦面とされている。環状振動子121を設けることにより、排出物質吸収体110を介して被排出体200の表面に当接させた際に、環状振動子121の部分に局所的な応力勾配が発生する。この場合、振動部120の被排出体200の表面との非当接部となる中心部分(環状振動子121で囲まれた領域の中心部分)では応力が低くなり、当該表面における排出物質の排出位置が局在化され、排出効率が増加する。 As shown in FIG. 2, in the vibration unit 120, an annular vibrator 121 may be provided at a contact portion with the surface of the discharged body 200. The annular vibrator 121 has an annular flat surface at a contact portion with the discharged body 200. By providing the annular vibrator 121, a local stress gradient is generated in the portion of the annular vibrator 121 when the annular vibrator 121 is brought into contact with the surface of the discharged body 200 via the discharged substance absorber 110. In this case, the stress is low at the central portion (the central portion of the region surrounded by the annular vibrator 121) that is a non-contact portion of the vibrating portion 120 with the surface of the discharged body 200, and the discharge of exhausted substances on the surface is performed. The location is localized and the discharge efficiency is increased.
 情報入力部140は、例えば、排出対象となる排出物質の種類に係る情報や当該排出物質の排出量に係る情報を含む各種の情報を制御部130のCPU133に入力する。 The information input unit 140 inputs, for example, various types of information including information on the type of emission material to be discharged and information on the emission amount of the emission material to the CPU 133 of the control unit 130.
 ドリフト速度値記憶部150は、複数のドリフト速度の値を記憶しており、ドリフト速度値記憶部150には、例えば、排出物質の種類毎にドリフト速度の値が記憶されている。 The drift velocity value storage unit 150 stores a plurality of drift velocity values, and the drift velocity value storage unit 150 stores, for example, a drift velocity value for each type of discharged substance.
 制御部130は、被排出体200に対する排出物質のドリフト速度に基づいて、振動部120から発振する振幅変調超音波群の各超音波における振幅を制御する。この制御部130は、発振超音波検出部131と、超音波振幅抽出部132と、CPU133と、超音波振幅調整部134と、位相検波部135と、共鳴周波数調整部136と、交流電圧発信部137と、電圧制御アンプ138と、電力増幅部139とを有して構成されている。 The control unit 130 controls the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic wave group oscillated from the vibration unit 120 based on the drift velocity of the discharged substance with respect to the discharged object 200. The control unit 130 includes an oscillation ultrasonic detection unit 131, an ultrasonic amplitude extraction unit 132, a CPU 133, an ultrasonic amplitude adjustment unit 134, a phase detection unit 135, a resonance frequency adjustment unit 136, and an AC voltage transmission unit. 137, a voltage control amplifier 138, and a power amplifier 139.
 発振超音波検出部131は、振動部120から発振された振幅変調超音波群の各超音波を電圧値として検出する。超音波振幅抽出部132は、発振超音波検出部131で検出した各超音波毎に、その振幅を電圧値として抽出する。 The oscillation ultrasonic detection unit 131 detects each ultrasonic wave of the amplitude-modulated ultrasonic wave group oscillated from the vibration unit 120 as a voltage value. The ultrasonic amplitude extraction unit 132 extracts the amplitude as a voltage value for each ultrasonic wave detected by the oscillation ultrasonic wave detection unit 131.
 CPU133は、物質排出装置100における動作を統括的に制御する。例えば、CPU133は、情報入力部140から入力された排出物質の種類に応じてドリフト速度値記憶部150から対応するドリフト速度の値を抽出し、当該抽出したドリフト速度の値に基づいて、振動部120から発振する振幅変調超音波群の振幅を制御するための制御信号を超音波振幅調整部134に送信する。また、例えば、CPU133は、情報入力部140から入力された排出物質の排出量に係る情報に基づいて、振動部120から1つの振幅変調超音波群として発振する各超音波の数を決定し、当該決定に基づく制御信号を超音波振幅調整部134に送信する。 The CPU 133 controls the overall operation of the substance discharging apparatus 100. For example, the CPU 133 extracts a corresponding drift speed value from the drift speed value storage unit 150 in accordance with the type of emission material input from the information input unit 140, and based on the extracted drift speed value, the vibration unit A control signal for controlling the amplitude of the amplitude-modulated ultrasonic wave group oscillated from 120 is transmitted to the ultrasonic amplitude adjustment unit 134. Further, for example, the CPU 133 determines the number of each ultrasonic wave oscillated as one amplitude-modulated ultrasonic wave group from the vibration unit 120 based on the information related to the discharge amount of the discharged substance input from the information input unit 140, A control signal based on the determination is transmitted to the ultrasonic amplitude adjustment unit 134.
 具体的に、CPU133は、振幅変調超音波群の振幅を制御するための制御信号及び振幅変調超音波群として発振する各超音波の数に係る制御信号を、図1に示す負勾配のノコギリ歯信号電圧として出力する。ここで、各ノコギリ歯は、単調減少する線形波形である。ノコギリ歯の単調減少部の勾配(傾き)の絶対値は、抽出したドリフト速度の値に相当するものであり、また、ノコギリ歯のオン時間によって1つの振幅変調超音波群として発振する各超音波の数を制御する。 Specifically, the CPU 133 generates a control signal for controlling the amplitude of the amplitude-modulated ultrasonic group and a control signal related to the number of ultrasonic waves oscillating as the amplitude-modulated ultrasonic group as shown in FIG. Output as signal voltage. Here, each saw tooth has a linear waveform that decreases monotonously. The absolute value of the slope (inclination) of the monotonously decreasing portion of the sawtooth corresponds to the value of the extracted drift velocity, and each ultrasonic wave oscillated as one amplitude-modulated ultrasonic wave group depending on the on-time of the sawtooth. Control the number of
 超音波振幅調整部134は、超音波振幅抽出部132で抽出した各超音波の振幅に係る電圧値と、CPU133からノコギリ歯信号電圧とを入力とし、振動部120から発振する振幅変調超音波群の各超音波における振幅が前記ドリフト速度以下になるように調整すると共に、当該振幅変調超音波群として発振する各超音波の数を調整する制御電圧を出力する。 The ultrasonic amplitude adjustment unit 134 receives as input the voltage value related to the amplitude of each ultrasonic wave extracted by the ultrasonic amplitude extraction unit 132 and the sawtooth signal voltage from the CPU 133, and the amplitude-modulated ultrasonic wave group oscillated from the vibration unit 120. Are adjusted so that the amplitude of each ultrasonic wave is equal to or lower than the drift velocity, and a control voltage for adjusting the number of ultrasonic waves oscillated as the amplitude-modulated ultrasonic wave group is output.
 位相検波部135は、発振超音波検出部131で検出した振幅変調超音波群の各超音波の波形と、交流電圧発信部137から出力する交流電圧の波形との位相を検出する。共鳴周波数調整部136は、位相検波部135で検出された位相に基づいて、交流電圧発信部137から出力する交流電圧の位相を制御し、振動部120が共鳴状態となるように調整する。即ち、この位相検波部135及び共鳴周波数調整部136は、発振超音波検出部131で検出した振幅変調超音波群の各超音波に基づいて、当該振幅変調超音波群の各超音波の位相差を制御して振動部120を共鳴状態に設定する、本発明の「設定部」を構成する。 The phase detection unit 135 detects the phase between the waveform of each ultrasonic wave of the amplitude-modulated ultrasonic wave group detected by the oscillation ultrasonic wave detection unit 131 and the waveform of the AC voltage output from the AC voltage transmission unit 137. The resonance frequency adjustment unit 136 controls the phase of the AC voltage output from the AC voltage transmission unit 137 based on the phase detected by the phase detection unit 135 and adjusts the vibration unit 120 to be in a resonance state. That is, the phase detection unit 135 and the resonance frequency adjustment unit 136 are based on each ultrasonic wave of the amplitude modulation ultrasonic wave group detected by the oscillation ultrasonic wave detection unit 131, and the phase difference between the ultrasonic waves of the amplitude modulation ultrasonic wave group. The “setting unit” of the present invention is configured to control the vibration unit 120 and set the vibrating unit 120 in a resonance state.
 交流電圧発信部137は、交流電圧(例えば、正弦波電圧)を発信するものである。電圧制御アンプ138は、交流電圧発信部137から発信された交流電圧を、超音波振幅調整部134から出力された制御電圧に基づいて変調させる等の制御を行う。電力増幅部139は、電圧制御アンプ138で変調させた交流電圧を電力増幅して振動部120に出力する。 The alternating voltage transmitter 137 transmits an alternating voltage (for example, a sine wave voltage). The voltage control amplifier 138 performs control such as modulating the AC voltage transmitted from the AC voltage transmission unit 137 based on the control voltage output from the ultrasonic amplitude adjustment unit 134. The power amplification unit 139 amplifies the AC voltage modulated by the voltage control amplifier 138 and outputs the amplified voltage to the vibration unit 120.
 振動部120では、電力増幅部139から入力された交流電圧が上述の圧電素子(不図示)に供給され、当該交流電圧に基づく歪みが圧電素子で発生する。これにより、振動部120から、各超音波の振幅を変調させた振幅変調超音波群が発振されることになる。 In the vibration unit 120, the AC voltage input from the power amplification unit 139 is supplied to the above-described piezoelectric element (not shown), and distortion based on the AC voltage is generated in the piezoelectric element. Thereby, an amplitude-modulated ultrasonic wave group in which the amplitude of each ultrasonic wave is modulated is oscillated from the vibration unit 120.
 次に、排出物質の被排出体200に対するドリフト速度(以下、このドリフト速度をVとする)を考慮した、本発明に係る物質排出方法について説明する。
 図3は、振動部120から被排出体200の皮膚201に対して発振される振幅変調超音波群及びその調和確率関数を示す特性図である。
Next, a substance discharging method according to the present invention in consideration of a drift speed of the discharged substance with respect to the discharge target 200 (hereinafter, this drift speed is referred to as V d ) will be described.
FIG. 3 is a characteristic diagram showing an amplitude-modulated ultrasonic wave group oscillated from the vibrating section 120 to the skin 201 of the discharged body 200 and its harmonic probability function.
 まず、図3の(a)に示す振幅変調超音波群について説明する。
 図3の(a)に示すように、振動部120から被排出体200の表面(皮膚201)に発振される1つの振幅変調超音波群には、それぞれ振幅が変調された複数の超音波が含まれている。この1つの振幅変調超音波群として発振する超音波の数は、制御部130(CPU133)において、例えば、情報入力部140から入力(設定)された排出物質の排出量に係る情報に基づいて決定される。
First, the amplitude-modulated ultrasonic wave group shown in FIG.
As shown in FIG. 3 (a), one amplitude-modulated ultrasonic wave group oscillated from the vibration unit 120 to the surface (skin 201) of the discharged body 200 includes a plurality of ultrasonic waves whose amplitudes are modulated. include. The number of ultrasonic waves that oscillate as one amplitude-modulated ultrasonic wave group is determined by the control unit 130 (CPU 133) based on, for example, information related to the discharge amount of the discharged substance input (set) from the information input unit 140. Is done.
 また、制御部130は、図3の(a)に示すように、1つの振幅変調超音波群の発振開始時からの経過時間(t)に対する当該振幅変調超音波群の各超音波における振幅の勾配-V(この勾配は、経過時間(t)に対する各超音波の振幅における速度とも言える)の絶対値Vが、ドリフト速度V以下となるように、当該各超音波の振幅を制御する。ここで、図3の(a)において、各超音波の振幅を結んだ一点破線の線分の勾配(傾き)が-Vとなる。 Further, as shown in FIG. 3A, the control unit 130 determines the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic group with respect to the elapsed time (t) from the start of oscillation of one amplitude-modulated ultrasonic group. The amplitude of each ultrasonic wave is controlled so that the absolute value V e of the gradient −V e (this gradient can also be said to be the velocity at the amplitude of each ultrasonic wave with respect to the elapsed time (t)) is equal to or lower than the drift velocity V d. To do. Here, in (a) of FIG. 3, the gradient (inclination) of the dashed line segment connecting the amplitudes of the ultrasonic waves is −V e .
 また、制御部130は、図3の(a)に示すように、1つの振幅変調超音波群の各超音波の振幅を、当該振幅変調超音波群の発振開始時における最初の超音波から排出物質の排出量に係る情報に基づき決定した発振する超音波の数に係る最後の超音波まで、単調減少させる制御を行う。即ち、各超音波の振幅を勾配-Vで単調減少させている。 Further, as shown in FIG. 3A, the control unit 130 discharges the amplitude of each ultrasonic wave of one amplitude-modulated ultrasonic wave group from the first ultrasonic wave at the start of oscillation of the amplitude-modulated ultrasonic wave group. Control is performed to monotonously decrease to the last ultrasonic wave related to the number of ultrasonic waves oscillated determined based on the information related to the discharge amount of the substance. That is, the amplitude of each ultrasonic wave is monotonously decreased with the gradient −V e .
 ここで、振幅変調超音波群の発振開始時における最初の超音波(振幅変調超音波群の各超音波のうちで振幅が最大となる超音波)の振幅により、被排出体200内の超音波による排出深さが決まる。
 振動子である振動部120及び被排出体200について、ヤング率をE,Eとし、歪み振幅をε,εとすると、以下の数式(1)のように、振動部120の超音波の発振により発生する応力は、被排出体200の抗力に等しい。
Here, the ultrasonic wave in the discharge target 200 is determined by the amplitude of the first ultrasonic wave (the ultrasonic wave having the maximum amplitude among the ultrasonic waves of the amplitude-modulated ultrasonic wave group) at the start of oscillation of the amplitude-modulated ultrasonic wave group. The discharge depth is determined.
Assuming that the Young's modulus is E 1 and E 2 and the strain amplitudes are ε 1 and ε 2 for the vibrating unit 120 and the discharged body 200 that are vibrators, The stress generated by the oscillation of the sound wave is equal to the drag of the discharged object 200.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 従って、排出深さである被排出体200の歪み振幅εは、以下の数式(2)のようになる。 Therefore, the distortion amplitude ε 2 of the discharged object 200, which is the discharge depth, is expressed by the following formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 このことから、振幅変調超音波群の発振開始時における最初の超音波の振幅は、必要な排出深さに応じて決定される値である。 Therefore, the amplitude of the first ultrasonic wave at the start of oscillation of the amplitude-modulated ultrasonic wave group is a value determined according to the required discharge depth.
 また、制御部130は、図3の(a)に示すように、1つの振幅変調超音波群の前記最後の超音波における制御を行った後、振動部120から次の振幅変調超音波群の発振を行う制御を行って、発振する振幅変調超音波群の形状が、図3の(a)の一点破線に示すノコギリ歯形状となるように制御する。 Further, as shown in FIG. 3A, the control unit 130 performs control on the last ultrasonic wave of one amplitude-modulated ultrasonic wave group, and then controls the next amplitude-modulated ultrasonic wave group from the vibrating unit 120. Control to perform oscillation is performed so that the shape of the amplitude-modulated ultrasonic wave group to be oscillated becomes a sawtooth shape indicated by a dashed line in FIG.
 続いて、図3の(b)に示す調和確率関数に係る一般的な原理について説明する。
 外力Fにより均一な系内(固体)に引き起こる流速Jは濃度をCとすると、以下の数式(3)及び数式(4)のように示される。
Next, the general principle relating to the harmonic probability function shown in FIG.
The flow velocity J caused in the uniform system (solid) by the external force F is expressed by the following formulas (3) and (4), where the concentration is C.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、排出物質の被排出体200に対するドリフト速度Vは、以下の数式(5)のように示される。 Further, the drift velocity V d of the discharged substance with respect to the discharged object 200 is expressed as the following formula (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、下記の数式(6)に示すように、振動応力による排出を有効とし(濃度勾配のみでは排出物質の排出は効率的ではない。)、振動応力の振幅をAとすると、振動応力の振幅Aは、以下の数式(7)のように示される。 Here, as shown in the following formula (6), if the discharge by vibration stress is effective (the discharge of the discharge substance is not efficient only by the concentration gradient), and the amplitude of the vibration stress is A, the vibration stress of The amplitude A is expressed as the following formula (7).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、数式(7)のEはヤング率を示し、εは歪み振幅を示す。そして、歪み振幅εの速度vとすると、歪み振幅εの波頭xとx+Δxの存在時間Δtは、以下の数式(8)及び数式(9)のように示される。 Here, E in Equation (7) represents Young's modulus, and ε represents strain amplitude. When the velocity v of the strain amplitude ε is assumed, the wavefront x of the strain amplitude ε and the existence time Δt of x + Δx are expressed as in the following formulas (8) and (9).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 そして、振動周期をτとすると、歪み振幅εの波頭xの存在確率P(x)は、以下の数式(10)のように示される。 Then, if the vibration period is τ, the existence probability P (x) of the wave front x of the strain amplitude ε is expressed as the following formula (10).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 この数式(10)で示した存在確率P(x)は、図3の(b)に示す調和確率関数の特性に相当するものである。 The existence probability P (x) shown in the equation (10) corresponds to the characteristic of the harmonic probability function shown in FIG.
 一方、拡散物質のジャンピング周波数ωがドリフト速度Vを与える。外力周波数ωが以下の数式(11)に示す条件のとき、外力に追従できず、外圧振幅P(x)MAX点がドリフト速度作用力点として作用する。 On the other hand, the jumping frequency ω j of the diffusing material gives the drift velocity V d . When the external force frequency ω F is in the condition shown in the following formula (11), it cannot follow the external force, and the external pressure amplitude P (x) MAX point acts as the drift velocity acting force point.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 振動部120の圧電素子としてPZTを用いて、当該PZTを排出物質の排出の駆動振動源とした場合について考える。PZTの音響インピーダンスは約34.8×10kg/m・sであり、また、筋肉の音響インピーダンスは約1.5×10kg/m・sであり、筋肉の音響インピーダンスはPZTの音響インピーダンスの約20分の1の大きさである。 Consider the case where PZT is used as the piezoelectric element of the vibration unit 120 and the PZT is used as a driving vibration source for discharging discharged substances. The acoustic impedance of PZT is about 34.8 × 10 6 kg / m 2 · s, the acoustic impedance of muscle is about 1.5 × 10 6 kg / m 2 · s, and the acoustic impedance of muscle is PZT. Is about 1/20 of the acoustic impedance.
 そのうえ、人体の音響振動減衰係数は、実験により、超音波振動周波数80kHzで0.15/cm程度であるので、人体は緩和系と見做される。一方、振動部120の圧電素子が人体(被排出体200)に与える振動振幅は、正弦波(sin波)の振幅圧力関数の正側に限られる。即ち、sin波の正側振幅だけが人体(被排出体200)に打撃力として与えられる。この力学モデルの等価回路図を図4に示す。 Furthermore, since the acoustic vibration attenuation coefficient of the human body is about 0.15 / cm at an ultrasonic vibration frequency of 80 kHz according to experiments, the human body is regarded as a relaxation system. On the other hand, the vibration amplitude given to the human body (subject 200) by the piezoelectric element of the vibration unit 120 is limited to the positive side of the amplitude pressure function of a sine wave (sin wave). That is, only the positive side amplitude of the sin wave is given to the human body (subject 200) as a striking force. An equivalent circuit diagram of this dynamic model is shown in FIG.
 図4に示すsin波の歪み正振幅A(t)は、以下の数式(12)のように示される。 The distortion positive amplitude A (t) of the sine wave shown in FIG. 4 is expressed as the following formula (12).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 これをフーリエ級数展開すると、歪み正振幅A(t)は、以下の数式(13)のように示される。 When this is expanded into a Fourier series, the distortion positive amplitude A (t) is expressed by the following equation (13).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、数式(13)のεは、以下の数式(14)のように示され、また、数式(13)のεは、以下の数式(15)のように示される。 Here, ε 0 in the equation (13) is expressed as the following equation (14), and ε n in the equation (13) is expressed as the following equation (15).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 数式(15)に示す振幅εが図4に示す緩和系に入力されると、緩和関数との積になり、εn(out)は、以下の数式(16)のように示される。 When the amplitude ε n shown in Equation (15) is input to the relaxation system shown in FIG. 4, it becomes a product with the relaxation function, and ε n (out) is expressed as in Equation (16) below.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 数式(16)は、振動項としてドリフト速度Vdに対する寄与は駆動周波数が低い程、効率的であることを示す。ここで、数式(14)は超音波駆動周波数ωに依存しない静圧振幅を示している。そして、図3(a)に示す振幅変調超音波群のように、ノコギリ歯形状となるように振幅変調をかけると、数式(14)は、以下の数式(17)のように示される。 Equation (16) shows that the contribution to the drift velocity V d as a vibration term is more efficient as the drive frequency is lower. Here, Equation (14) indicates the static pressure amplitude that does not depend on the ultrasonic driving frequency ω. Then, when amplitude modulation is applied so as to have a sawtooth shape as in the amplitude-modulated ultrasonic wave group shown in FIG. 3A, Equation (14) is expressed as Equation (17) below.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここで、-Vは、上述したように、1つの振幅変調超音波群の発振開始時からの経過時間(t)に対する当該振幅変調超音波群の各超音波の振幅における速度、即ち、図3(a)の一点破線に示すノコギリ歯形状の傾き(勾配)を示し、排出物質の排出条件は、上述したように、以下の数式(18)を満たさなければならない。 Here, as described above, −V e is the velocity at the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic wave group with respect to the elapsed time (t) from the start of oscillation of one amplitude-modulated ultrasonic wave group, that is, The inclination (gradient) of the sawtooth shape shown by the one-dot broken line in 3 (a) is shown, and the discharge condition of the discharged material must satisfy the following formula (18) as described above.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 被排出体200内の排出物質の拡散活性化ポテンシャルをU、排出物質の拡散係数をDとする。拡散係数Dは、拡散活性化ポテンシャルUを変えて、被排出体200内で隣接サイト(外力下距離Δx)へ移動する際の移動確率に比例する。
 また、外力下距離Δx当たりの力をFとすると、減少ポテンシャルΔU、拡散係数Dは数式(19),(20)のようになる。
It is assumed that the diffusion activation potential of the discharged substance in the discharged object 200 is U and the diffusion coefficient of the discharged substance is D. The diffusion coefficient D is proportional to the movement probability when moving to the adjacent site (distance under external force Δx) in the discharged object 200 by changing the diffusion activation potential U.
Further, when the force per distance Δx under the external force is F, the decrease potential ΔU and the diffusion coefficient DF are expressed by equations (19) and (20).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 従って、棒状試料に沿った溶質濃度Cの拡散係数Dは、外力が0の拡散係数Dより外力に起因して大きくなる。Cを時間無限大の拡散濃度とすると、外力下のCは、数式(21)のようになる。 Therefore, the diffusion coefficient D F of solute concentration C along the rod-shaped sample is increased due to an external force than the diffusion coefficient D 0 of the external force is zero. When C 0 is a diffusion concentration with an infinite time, C under an external force is expressed by Equation (21).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 数式(21)を踏まえ、定点による濃度の時間依存は、以下の数式(22),(23)のようになる。 Based on Equation (21), the time dependence of the concentration at a fixed point is as shown in Equations (22) and (23) below.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 次に、本発明の実施形態に係る物質排出装置を用いた諸実験結果について説明する。 Next, various experimental results using the substance discharging apparatus according to the embodiment of the present invention will be described.
 (実験1)
 実験1では、排出物質と、被排出体200に対するドリフト速度との関係について調べた。
 実験には、図5に示すように、被排出体200として寒天111を用い、排出物質に相当するものとして、分子量の異なる3種を用意した。具体的に、試料1として、寒天111に排出物質として着色料である赤色102号(分子量631.51)を染み込ませたものを用いた。試料2として、寒天111に排出物質として着色料である青色1号(分子量792.86)を染み込ませたものを用いた。試料2として、寒天111に排出物質として薬剤であるインスリン(分子量5807)を染み込ませたものを用いた。
(Experiment 1)
In Experiment 1, the relationship between the discharged material and the drift velocity with respect to the discharged object 200 was examined.
In the experiment, as shown in FIG. 5, agar 111 was used as the discharge target 200, and three types having different molecular weights were prepared as equivalent to the discharged substances. Specifically, sample 1 was used in which agar 111 was impregnated with red No. 102 (molecular weight 631.51), which is a coloring agent, as an emission material. Sample 2 was prepared by impregnating Agar 111 with Blue No. 1 (molecular weight 792.86), which is a coloring agent, as an emission material. Sample 2 was prepared by impregnating agar 111 with a drug insulin (molecular weight 5807) as an excretion substance.
 寒天111下に、図1の排出物質吸収体110である濾紙を介して振動部120を配置し、寒天111に超音波の振動が伝わり易いように寒天111上に重り112を載置した。この状態で、寒天111に振動部120により超音波を順次発振させた。超音波の発振周波数を変え、当該発振周波数と、各試料から濾紙に吸収された排出物質の濃度との関係を調べた。その結果、各試料では、超音波振幅変調の発振周波数と排出物質の濃度との関係において、それぞれ相異なる曲線を描くことが判った。以上より、各排出物質には、非排出体との関係において、その分子量に対応した固有のドリフト速度が存在することが確認された。 The vibration unit 120 is arranged under the agar 111 via the filter paper which is the emission material absorber 110 of FIG. 1, and the weight 112 is placed on the agar 111 so that the ultrasonic vibration can be easily transmitted to the agar 111. In this state, ultrasonic waves were sequentially oscillated in the agar 111 by the vibration unit 120. By changing the oscillation frequency of the ultrasonic wave, the relationship between the oscillation frequency and the concentration of the discharged substance absorbed by the filter paper from each sample was examined. As a result, it was found that each sample draws different curves in relation to the oscillation frequency of ultrasonic amplitude modulation and the concentration of the discharged substance. From the above, it was confirmed that each emission material has a unique drift velocity corresponding to its molecular weight in relation to the non-emission material.
 (実験2)
 実験2では、比較例との比較に基づいて、本実施形態に係る物質排出装置による排出物質の排出の優位性について調べた。
 実験には、図5と同様に、被排出体200として、寒天111に排出物質として着色料である赤色102号を染み込ませたものを用いた。寒天111下に、図1の排出物質吸収体110である濾紙を介して振動部120を配置し、寒天111上に重り112を載置した。この状態で、実施例として、寒天111に振動部120により負勾配のノコギリ歯形状の振幅変調超音波を発振させた。また、実施例との比較のため、寒天111下に濾紙を配置し、寒天111上に重り112を載置した状態で、濃度勾配のみにより濾紙へ赤色102号を自然拡散させた比較例1と、図5と同様の状態で寒天111に固定振幅の超音波を発振させた比較例2とを行った。
(Experiment 2)
In Experiment 2, based on the comparison with the comparative example, the superiority of the discharge of discharged substances by the discharge apparatus according to the present embodiment was examined.
In the experiment, as in FIG. 5, the discharged object 200 was made by soaking agar No. 102, which is a coloring agent, into the agar 111. Under the agar 111, the vibrating unit 120 was disposed via the filter paper which is the exhaust material absorber 110 of FIG. 1, and the weight 112 was placed on the agar 111. In this state, as an example, an amplitude-modulated ultrasonic wave having a sawtooth shape with a negative gradient was oscillated on the agar 111 by the vibration unit 120. Further, for comparison with the example, the filter paper was placed under the agar 111, and the weight 112 was placed on the agar 111, and the comparative example 1 in which red No. 102 was naturally diffused to the filter paper only by the concentration gradient. 5 and Comparative Example 2 in which ultrasonic waves having a fixed amplitude were oscillated in the agar 111 in the same state as in FIG.
 図6は、実験2において、実施例及び比較例1,2により排出物質である赤色102号が拡散した各濾紙の写真を示す図である。
 図6において、試料Aは比較例1の自然拡散で3分間放置した濾紙、試料Bは比較例2の固定振幅の超音波を3分間発振した濾紙、試料Cは実施例による負勾配のノコギリ歯形状の振幅変調超音波を振動周期0.1秒で3分間発振した濾紙である。
 図6の写真から明らかなように、試料Aと試料Bとでは赤色102号の濃度差は僅かであるが、試料Cでは試料A,Bと比べて赤色102号の濃度が極めて大きい。
FIG. 6 is a view showing a photograph of each filter paper in which red No. 102, which is an emission material, was diffused in Example 2 and Comparative Examples 1 and 2 in Experiment 2.
In FIG. 6, sample A is a filter paper left by natural diffusion of Comparative Example 1 for 3 minutes, sample B is a filter paper that oscillates a fixed-amplitude ultrasonic wave of Comparative Example 2 for 3 minutes, and sample C is a negative-gradient sawtooth according to the example. This is a filter paper in which amplitude-modulated ultrasonic waves having a shape are oscillated for 3 minutes with a vibration period of 0.1 seconds.
As is apparent from the photograph in FIG. 6, the density difference of red No. 102 is small between sample A and sample B, but the density of red No. 102 is very high in sample C compared to samples A and B.
 続いて、試料A,B,Cについて、実験時間と赤色102号の濃度との関係について調べた。実験結果を図7に示す。
 図7では、実験時間(試料Aでは放置時間、試料B,Cでは超音波の発振時間)を60秒、120秒、180秒、300秒、600秒とし、赤色102号を吸収した試料A,B,Cの各濾紙を蒸留水に溶かし込み、分光器によってその吸光度(Abs)を計測した。図7の近似データは、数式(22),(23)に基づいて算出した吸光度である。
 図7の実験結果より、実施例の試料Cでは、比較例1,2の試料A,Bに比べて高い吸光度を示すことが確認された。
Subsequently, for samples A, B, and C, the relationship between the experiment time and the density of Red No. 102 was examined. The experimental results are shown in FIG.
In FIG. 7, the test time (sample A, the standing time, and samples B and C, the ultrasonic oscillation time) is 60 seconds, 120 seconds, 180 seconds, 300 seconds, 600 seconds, and sample A, Each filter paper of B and C was dissolved in distilled water, and the absorbance (Abs) was measured with a spectroscope. The approximate data in FIG. 7 is the absorbance calculated based on the mathematical formulas (22) and (23).
From the experimental results of FIG. 7, it was confirmed that the sample C of the example showed higher absorbance than the samples A and B of the comparative examples 1 and 2.
 実施例及び比較例1,2について、実験値と近似データとの差異を図8A~図8Cに示す。図8Aは比較例1であり、近似データは自然拡散の考察から得られた吸光度である。図8Bは比較例2であり、近似データは超音波を固定振幅とした場合の考察から得られた吸光度である。図8Cは実施例であり、近似データは数式(22),(23)に基づいて算出した吸光度である。
 各例における確率誤差は、図8Aの比較例1では1±0.141、図8Bの比較例2では1±0.017、図8Cの実施例では1±0.004である。この結果から、実施例では、比較例1,2に比べて確率誤差が極めて小さいことが確認された。
The differences between the experimental values and the approximate data for the examples and comparative examples 1 and 2 are shown in FIGS. 8A to 8C. FIG. 8A is Comparative Example 1, and the approximate data is absorbance obtained from consideration of natural diffusion. FIG. 8B is Comparative Example 2, and the approximate data is the absorbance obtained from consideration when the ultrasonic wave is set to a fixed amplitude. FIG. 8C is an example, and the approximate data is the absorbance calculated based on Equations (22) and (23).
The probability error in each example is 1 ± 0.141 in Comparative Example 1 in FIG. 8A, 1 ± 0.017 in Comparative Example 2 in FIG. 8B, and 1 ± 0.004 in the Example in FIG. 8C. From this result, it was confirmed that the probability error was extremely small in the example as compared with Comparative Examples 1 and 2.
 数式(21)を用いて、最小二乗法により、実験2の結果を解析することができる。
 上記した実験1の結果に基づいて、非線形最小二乗法を用いることにより、係数aの値を算出することができる。
 算出された係数aの値から、濃度勾配のみを用いた比較例1、固定振幅の超音波を用いた比較例2、本実施形態による負勾配のノコギリ歯形状の振幅変調超音波を用いた実施例の夫々について、流速Jの値を算出した。その結果を図9に示す。図9では、濃度勾配のみの場合の流速Jを基準値1として、比較例2及び実施例の流速Jを相対値としている。実施例では、比較例1,2の2倍程度の流速が得られた。このことから、本実施形態による負勾配のノコギリ歯形状の振幅変調超音波を用いた、排出物質の排出の有効性が確認された。
 即ち、ドリフト速度(-V)を考慮して振幅変調超音波群を供給する方が、濃度勾配により自然拡散させたり、固定振幅の超音波を供給し続けるよりも、排出物質の効率的な排出を実現できることが実証できた。
Using Equation (21), the result of Experiment 2 can be analyzed by the method of least squares.
Based on the result of the experiment 1 described above, the value of the coefficient a can be calculated by using the nonlinear least square method.
From the calculated coefficient a, Comparative Example 1 using only a concentration gradient, Comparative Example 2 using a fixed-amplitude ultrasonic wave, and using a negative-gradient sawtooth-shaped amplitude-modulated ultrasonic wave according to this embodiment For each example, the value of flow velocity J was calculated. The result is shown in FIG. In FIG. 9, the flow velocity J in the case of only the concentration gradient is set as the reference value 1, and the flow velocity J in the comparative example 2 and the example is set as the relative value. In the examples, a flow rate about twice that of Comparative Examples 1 and 2 was obtained. From this, the effectiveness of the discharge of the discharged substance using the amplitude-modulated ultrasonic wave of the sawtooth shape having a negative gradient according to the present embodiment was confirmed.
That is, it is more efficient to supply the amplitude-modulated ultrasonic group in consideration of the drift velocity (−V d ) than the natural diffusion due to the concentration gradient or the continuous supply of the fixed-amplitude ultrasonic wave. It was proved that emission can be realized.
 以上説明したように、本実施形態によれば、排出物質の被排出体200に対するドリフト速度-Vに基づいて、振動部120から発振する振幅変調超音波群の各超音波における振幅を制御するようにしたので、人体等の被排出体の表面から超音波を用いて排出物質を排出する際に、当該排出物質に応じた効率的な排出が実現する。
 本発明の物質排出装置は、例えば、ニキビの内容物である皮脂を排出物質として、これを効率的に排出する治療に適用したり、膿やうっ血液、滲出液等の体内物質を体外へ排出する外科的施術として、いわゆるドレナージに適用することができる。
As described above, according to the present embodiment, the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic wave group oscillated from the vibration unit 120 is controlled based on the drift velocity −V d of the discharged substance with respect to the discharged object 200. Since it did in this way, when discharging | emitting waste material from the surface of to-be-discharged bodies, such as a human body, using an ultrasonic wave, the efficient discharge | emission according to the said discharge | release material is implement | achieved.
The substance discharge device of the present invention can be applied, for example, to the treatment of efficiently removing sebum, which is the content of acne, as a discharge substance, or discharges bodily substances such as pus, congested blood, and exudate out of the body. As a surgical operation, it can be applied to so-called drainage.
 本実施形態においては、制御部130において、情報入力部140から入力された排出物質に係る情報に基づいて、振動部120から発振する振幅変調超音波群の各超音波における振幅の制御及び1つの振幅変調超音波群として発振する各超音波の数の制御を行うようにしているが、本発明においてはこれに限定されるわけでなく、例えば、本実施形態で示した排出物質に係る情報に加えて、測定した被排出体200の音響インピーダンスに係る情報を情報入力部140から入力し、排出物質に係る情報に加え、当該音響インピーダンスに係る情報を加味して、振動部120から発振する振幅変調超音波群の各超音波における振幅の制御及び1つの振幅変調超音波群として発振する各超音波の数の制御を行うようにする形態であっても良い。 In the present embodiment, the control unit 130 controls the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic wave group oscillated from the vibration unit 120 based on the information related to the discharged substance input from the information input unit 140 and one The number of ultrasonic waves oscillated as an amplitude-modulated ultrasonic wave group is controlled. However, the present invention is not limited to this. For example, the information related to the discharged substances shown in this embodiment is used. In addition, the information related to the measured acoustic impedance of the discharged object 200 is input from the information input unit 140, and the amplitude oscillated from the vibration unit 120 in addition to the information related to the discharged substance in addition to the information related to the acoustic impedance. It may be configured to control the amplitude of each ultrasonic wave in the modulated ultrasonic wave group and the number of ultrasonic waves oscillated as one amplitude modulated ultrasonic wave group.
 (変形例)
 以下、本実施形態の変形例について説明する。本変形例では、本実施形態の図1と同様の装置構成である物質排出装置を開示するが、その振幅変調超音波群の発振状態が若干異なる点で本実施形態と相違する。
(Modification)
Hereinafter, modifications of the present embodiment will be described. In this modification, a substance discharging apparatus having the same apparatus configuration as that of FIG. 1 of the present embodiment is disclosed, but is different from the present embodiment in that the oscillation state of the amplitude-modulated ultrasonic wave group is slightly different.
 図10は、超音波発振部から被排出体の皮膚に対して発振される振幅変調超音波群を示す特性図である。排出物質の拡散(被排出体の皮膚から外部への拡散)は、自然拡散と振動部120から振幅変調超音波群として発振する超音波による外力拡散との線形結合となる。自然拡散による濃度勾配のみによる拡散深さは、以下の数式(24)で示される。 FIG. 10 is a characteristic diagram showing an amplitude-modulated ultrasonic wave group that is oscillated from the ultrasonic oscillator to the skin of the body to be discharged. The diffusion of the discharged substance (diffusion of the discharged body from the skin to the outside) is a linear combination of the natural diffusion and the external force diffusion by the ultrasonic wave oscillated as the amplitude-modulated ultrasonic wave group from the vibration unit 120. The diffusion depth based only on the concentration gradient due to natural diffusion is expressed by the following formula (24).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 本変形例では、制御部130は、振動部120から振幅変調超音波群として発振する超音波による外力拡散に上記の自然拡散の寄与を加算し、負勾配の各振幅変調超音波群の発振順番ごとに振幅が増大するように発振制御する。
 このように、各振幅変調超音波群を発振制御することにより、発振当初では振幅変調超音波群の振幅が小さいため、単位時間当たりのドリフト速度による排出物質の移送回数が増え、被排出体の表面への排出物質の掃引回数が増大する。これにより、排出物質の排出効率が更に向上することになる。
In this modification, the control unit 130 adds the contribution of the above natural diffusion to the external force diffusion by the ultrasonic waves oscillated from the vibration unit 120 as the amplitude-modulated ultrasonic wave group, and the oscillation order of each amplitude-modulated ultrasonic wave group having a negative gradient. Oscillation is controlled so that the amplitude increases every time.
In this way, by controlling the oscillation of each amplitude-modulated ultrasonic group, the amplitude of the amplitude-modulated ultrasonic group is small at the beginning of oscillation, so the number of discharged substances transferred due to the drift speed per unit time increases, Increases the number of sweeps of emissions to the surface. As a result, the discharge efficiency of the discharged substances is further improved.
 なお、本実施形態及び変形例においては、被排出体200として人体を想定して説明したが、本発明においてはこれに限定されるわけでなく、他の動物であっても適用可能である。
 更に、被排出体を、生体以外、例えば衣服等とし、衣服等の染みを排出物質として、本発明の物質排出装置を衣服等の染み抜きに適用することも可能である。
In addition, in this embodiment and the modification, although demonstrated supposing the human body as the to-be-discharged body 200, in this invention, it is not necessarily limited to this and can apply also to another animal.
Furthermore, it is also possible to apply the substance discharging apparatus of the present invention to stain removal of clothes and the like by using a body to be discharged other than a living body, for example, clothes and the like, and using stains on clothes and the like as discharge substances.
 前述した本実施形態に係る物質排出装置100を構成する図1の制御部130の各手段の機能は、コンピュータのRAMやROMなどに記憶されたプログラムが動作することによって実現できる。このプログラム及び当該プログラムを記録したコンピュータ読み取り可能な記憶媒体は本発明に含まれる。 1 can be realized by operating a program stored in a RAM, a ROM, or the like of a computer. This program and a computer-readable storage medium storing the program are included in the present invention.
 具体的に、前記プログラムは、例えばCD-ROMのような記憶媒体に記録し、或いは各種伝送媒体を介し、コンピュータに提供される。前記プログラムを記録する記憶媒体としては、CD-ROM以外に、フレキシブルディスク、ハードディスク、磁気テープ、光磁気ディスク、不揮発性メモリカード等を用いることができる。他方、前記プログラムの伝送媒体としては、プログラム情報を搬送波として伝搬させて供給するためのコンピュータネットワーク(LAN、インターネットの等のWAN、無線通信ネットワーク等)システムにおける通信媒体を用いることができる。また、この際の通信媒体としては、光ファイバ等の有線回線や無線回線などが挙げられる。 Specifically, the program is recorded on a storage medium such as a CD-ROM, or provided to a computer via various transmission media. As a storage medium for recording the program, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a nonvolatile memory card, or the like can be used in addition to the CD-ROM. On the other hand, as the transmission medium of the program, a communication medium in a computer network (LAN, WAN such as the Internet, wireless communication network, etc.) system for propagating and supplying program information as a carrier wave can be used. In addition, examples of the communication medium at this time include a wired line such as an optical fiber, a wireless line, and the like.
 また、コンピュータが供給されたプログラムを実行することにより本実施形態に係る物質排出装置100の機能が実現されるだけでなく、そのプログラムがコンピュータにおいて稼働しているOS(オペレーティングシステム)或いは他のアプリケーションソフト等と共同して本実施形態に係る物質排出装置100の機能が実現される場合や、供給されたプログラムの処理の全て、或いは一部がコンピュータの機能拡張ボードや機能拡張ユニットにより行われて本実施形態に係る物質排出装置100の機能が実現される場合も、かかるプログラムは本発明に含まれる。 Moreover, not only the function of the substance discharging apparatus 100 according to the present embodiment is realized by executing a program supplied by the computer, but also an OS (Operating System) or other application in which the program is running on the computer. When the function of the substance discharging apparatus 100 according to the present embodiment is realized in cooperation with software or the like, or all or part of the processing of the supplied program is performed by a function expansion board or a function expansion unit of the computer. Such a program is also included in the present invention when the function of the substance discharging apparatus 100 according to the present embodiment is realized.
 本発明によれば、超音波振動を用いて、人体等の被排出体の表面から当該被排出体の外部に排出物質を排出し、当該排出物質に応じた効率的な排出を実現することができる。 According to the present invention, it is possible to discharge the discharged material from the surface of the discharged body such as a human body to the outside of the discharged body using ultrasonic vibration, and to realize efficient discharge according to the discharged material. it can.

Claims (9)

  1.  被排出体の表面から排出物質を外部へ排出する物質排出装置であって、
     前記被排出体の表面に対して、各超音波の振幅を漸減するように変調させた振幅変調超音波群を発振する超音波発振部と、
     前記被排出体に対する前記排出物質のドリフト速度に基づいて、前記振幅変調超音波群の各超音波における振幅を制御する制御部と
     を有することを特徴とする物質排出装置。
    A substance discharge device for discharging discharged substances from the surface of the discharged body to the outside,
    An ultrasonic oscillator that oscillates an amplitude-modulated ultrasonic wave group that is modulated so as to gradually reduce the amplitude of each ultrasonic wave with respect to the surface of the discharged object;
    And a control unit that controls the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic wave group based on a drift velocity of the discharged substance with respect to the discharged object.
  2.  前記制御部は、前記振幅変調超音波群の発振開始時からの経過時間に対する当該振幅変調超音波群の各超音波における振幅の勾配の絶対値が、前記ドリフト速度以下となるように、当該各超音波の振幅を制御することを特徴とする請求項1に記載の物質排出装置。 The control unit is configured so that an absolute value of an amplitude gradient in each ultrasonic wave of the amplitude-modulated ultrasonic wave group with respect to an elapsed time from the start of oscillation of the amplitude-modulated ultrasonic wave group is equal to or less than the drift velocity. 2. The substance discharging apparatus according to claim 1, wherein the amplitude of the ultrasonic wave is controlled.
  3.  前記制御部は、設定された前記排出物質の排出量に応じて、前記振幅変調超音波群として発振する前記各超音波の数を決定することを特徴とする請求項1に記載の物質排出装置。 2. The substance discharging apparatus according to claim 1, wherein the control unit determines the number of the respective ultrasonic waves that oscillate as the amplitude-modulated ultrasonic wave group according to a set discharge amount of the discharged substance. .
  4.  前記制御部は、前記振幅変調超音波群の各超音波の振幅を、当該振幅変調超音波群の発振開始時における最初の超音波から前記決定した発振する超音波の数に係る最後の超音波まで、単調減少させる制御を行うことを特徴とする請求項3に記載の物質排出装置。 The control unit determines the amplitude of each ultrasonic wave of the amplitude-modulated ultrasonic wave group from the first ultrasonic wave at the start of oscillation of the amplitude-modulated ultrasonic wave group according to the determined number of ultrasonic waves to be oscillated. The substance discharging apparatus according to claim 3, wherein control is performed so as to monotonously decrease.
  5.  前記制御部は、前記振幅変調超音波群の前記最後の超音波における制御を行った後、前記超音波発振部から次の振幅変調超音波群の発振を行う制御を行って、当該振幅変調超音波群の形状が負勾配のノコギリ歯形状となるように制御することを特徴とする請求項4に記載の物質排出装置。 The control unit performs control for oscillating the next amplitude-modulated ultrasonic wave group from the ultrasonic wave oscillating unit after performing control on the last ultrasonic wave of the amplitude-modulated ultrasonic wave group. 5. The substance discharging apparatus according to claim 4, wherein the sound wave group is controlled so as to have a sawtooth shape having a negative gradient.
  6.  前記制御部は、前記各振幅変調超音波群の発振順番ごとに振幅が増大するように制御することを特徴とする請求項5に記載の物質排出装置。 6. The substance discharging apparatus according to claim 5, wherein the control unit controls the amplitude to increase for each oscillation order of the amplitude-modulated ultrasonic groups.
  7.  前記超音波発振部は、被排出体の表面との当接部分に環状振動子を有していることを特徴とする請求項1に記載の物質排出装置。 2. The substance discharging apparatus according to claim 1, wherein the ultrasonic wave oscillating portion has an annular vibrator at a contact portion with the surface of the discharged body.
  8.  前記排出物質の種類毎に前記ドリフト速度の値を記憶する記憶部と、
     少なくとも、実際に排出する前記排出物質の種類に係る情報の入力を行う情報入力部と
     を更に有し、
     前記制御部は、前記情報入力部から入力された前記排出物質の種類に応じて前記記憶部から対応するドリフト速度の値を抽出し、当該抽出したドリフト速度の値に基づいて前記振幅変調超音波群の振幅を制御することを特徴とする請求項1に記載の物質排出装置。
    A storage unit for storing a value of the drift velocity for each type of the emission substance;
    And at least an information input unit for inputting information relating to the type of the substance to be actually discharged,
    The control unit extracts a corresponding drift velocity value from the storage unit according to the type of the emission material input from the information input unit, and the amplitude-modulated ultrasonic wave based on the extracted drift velocity value The substance discharging apparatus according to claim 1, wherein the group amplitude is controlled.
  9.  前記制御部は、前記超音波発振部から発振された前記振幅変調超音波群の各超音波を検出する検出部と、前記検出部で検出された前記各超音波に基づいて、当該振幅変調超音波群の各超音波の位相差を制御して前記超音波発振部を共鳴状態に設定する設定部とを有することを特徴とする請求項1に記載の物質排出装置。 The control unit detects a respective ultrasonic wave of the amplitude-modulated ultrasonic wave group oscillated from the ultrasonic wave oscillating unit, and the amplitude-modulated ultrasonic wave based on the ultrasonic wave detected by the detection unit. The substance discharging apparatus according to claim 1, further comprising: a setting unit that controls a phase difference of each ultrasonic wave of the sound wave group to set the ultrasonic wave oscillation unit in a resonance state.
PCT/JP2011/055098 2010-03-05 2011-03-04 Substance discharge device WO2011108713A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180009382.9A CN102753232B (en) 2010-03-05 2011-03-04 Substance discharge device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010049761A JP5305469B2 (en) 2010-03-05 2010-03-05 Substance discharge device
JP2010-049761 2010-03-05

Publications (1)

Publication Number Publication Date
WO2011108713A1 true WO2011108713A1 (en) 2011-09-09

Family

ID=44542357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055098 WO2011108713A1 (en) 2010-03-05 2011-03-04 Substance discharge device

Country Status (3)

Country Link
JP (1) JP5305469B2 (en)
CN (1) CN102753232B (en)
WO (1) WO2011108713A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518879B (en) 2019-04-01 2023-12-15 斯瓦戈洛克公司 Push-to-connect catheter adapter assembly and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277369A (en) * 1990-03-27 1991-12-09 Olympus Optical Co Ltd Solubilization medical device
JP2005534451A (en) * 2002-08-07 2005-11-17 アドバンスト メディカル アプリケーションズ インコーポレーテッド Ultrasonic wound cleaning apparatus and method
WO2008059810A1 (en) * 2006-11-14 2008-05-22 Kagoshima University Drug injecting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL126505A0 (en) * 1998-10-09 1999-08-17 Ultra Cure Ltd A method and device for hair removal
JP2007159950A (en) * 2005-12-16 2007-06-28 La Parler:Kk Cosmetic operation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277369A (en) * 1990-03-27 1991-12-09 Olympus Optical Co Ltd Solubilization medical device
JP2005534451A (en) * 2002-08-07 2005-11-17 アドバンスト メディカル アプリケーションズ インコーポレーテッド Ultrasonic wound cleaning apparatus and method
WO2008059810A1 (en) * 2006-11-14 2008-05-22 Kagoshima University Drug injecting device

Also Published As

Publication number Publication date
CN102753232B (en) 2014-05-28
JP5305469B2 (en) 2013-10-02
CN102753232A (en) 2012-10-24
JP2011182883A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
US11717662B2 (en) Sonotrode
AU2011207601B2 (en) Apparatuses and systems for generating high-frequency shockwaves, and methods of use
US20080154157A1 (en) Cosmetic and biomedical applications of ultrasonic energy and methods of generation thereof
CN107708473B (en) Hair care device and method for enhancing the absorption of topical in hair
JP2013517100A5 (en)
DE60044808D1 (en) DEVICE FOR ULTRASOUND AND ELECTROMAGNETIC TREATMENT OF TISSUE
FR2904923B1 (en) VIBRATING DEVICE AND MAKE-UP METHOD USING SUCH A DEVICE
DE502004007110D1 (en) Apparatus for continuous bonding and / or consolidation of material webs by means of ultrasound
JP5305469B2 (en) Substance discharge device
JP2000060927A (en) Ultrasonic vibration actuator
JP4706069B2 (en) Drug injection device
WO2004100850A2 (en) Method of applying gas contact ultrasound therapy, surgery, and drug delivery
Bell The cochlea as a graded bank of independent, simultaneously excited resonators: calculated properties of an apparent'travelling wave'
KR20190025265A (en) Apparatus for generating acoustic cavitation
Grigorev et al. Ultrasonic technology of nucleus pulposus destruction
RU2003126456A (en) METHOD OF APPLICATION REFLEXOTHERAPY

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009382.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750822

Country of ref document: EP

Kind code of ref document: A1